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Abstract

With the ever increasing amount of high-throughput molecular profile data, biologists need
versatile tools to enable them to quickly and succinctly analyze their data. Furthermore,
pathway databases have grown increasingly robust with the KEGG database at the fore-
front. Previous tools have color-coded the genes on different pathways using differential
expression analysis. Unfortunately, they do not adequately capture the relationships of the
genes amongst one another. Structure Enrichment Analysis (SEA) thus seeks to take bio-
logical analysis to the next level. SEA accomplishes this goal by highlighting for users the
sub-pathways of a biological pathways that best correspond to their molecular profile data
in an easy to use GUI interface.

Network Partitioning, Network Reconstruction, Structure Enrichment Analysis, Community
Detection Algorithms, Biological Networks, KEGG
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Chapter 1: Background and Introduction

The world of biological systems is a vast and complex system of regulation processes and

biomolecular interactions. An underlying goal for biologists is to arrive at a theory that

shines light on the complicated interaction patterns in living organisms. These interaction

patterns result in various biological phenomena where recognition of these patterns can

provide much needed insight into biomolecular activities. Capturing these biomolecular

activities, however, is a daunting task due to the complexity of the systems at hand as well

as lacking of data needed to fully capture the underlying biomolecular activities. Thus, two

problems have recently received a considerable amount of attention: (1) inferring biological

pathway structures from gene expression data and gene sets and (2) decomposing different

biological pathway structures into functional units.

A revolution in the understanding of biomolecular interaction mechanisms has oc-

curred in large part due to the rapid and significant advances in high-throughput technolo-

gies. Such technologies, such as microarrays and second-generation sequencing, now enable a

systematic study of biomolecular activities due to the copious amount of genome-wide mea-

surements. These genome-wide measurements continue to be accumulated into numerous

databases by research labs across the world. Unfortunately, gaining biological insights from

large-scale gene expression data is a daunting task due to the curse of dimensionality. To

overcome this task, many computational and experimental models have been developed to

group genes into various sets based on either a structural or functional similarity. This lead

to the birth of gene sets as a new source of data leading to a burst in novel algorithms that

infer biological pathway structures from gene sets. These two types of data, gene expression

data and gene sets, will now be examined in more detail.

1



First, gene expression data is represented as a matrix of numerical values. Each row

corresponds to a gene while each columns corresponds to an experiment. Each entry of the

matrix corresponds to the gene expression level for a given gene under a given experiment.

Gene expression profiling has thus allowed the simultaneous measurement of the expression

levels of thousands of genes. A systematic study of biomolecular interaction mechanisms is

now possible on a genomic scale. One typical example of gene expression data is microarray

data. For microarray data one usually has a glass slide that is coated with oligonucleotides

corresponding to specific gene coding regions. The slide is then labeled and hybridized with

purified RNA . A laser is scanned on the washed microarray slide to obtain gene expression

data.

Ways to obtain genome-wide measurements have also grown. There are a wide array

of microarray platforms, and genome-wide measurements can be obtained via conventional

hybridization based microarray [14, 20, 31] or deep sequencing experiments [32, 33]. Some

representative microarray platforms include Agilent Microarray, Affymetrix GeneChip, and

Illumina BeadArray.

Moving on to gene sets, gene sets are defined as a group of genes that share biological

similarities. They are a rich source of data for reconstructing the structure of biological

pathways as they tend to participate in the same biological process. Gene sets are derived

from a variety of sources including PubMed text, ChIP-chip, co-localization along the a

chromosome, and gene expression data. There are a variety of methods to rank gene sets

with GSEA-P [34] being one of the most popular methods. A major advantage of working

with gene sets is their capability to incorporate with ease higher-order interaction patterns.

They are also more robust to noise than gene expression data and are capable of integrating

data from a variety of sources. Given the ways a gene set may be derived, one must keep in

mind the possibility that not all gene sets may represent network structures.
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An important underlying assumption when trying to reconstruct a biological pathway

structure using gene sets or gene expression data is that these sets of data were originally

emitted from unobserved signaling pathways. There are various algorithms based on this

assumption that attempt to reconstruct the structure of biological pathways using gene sets

and/or gene expression data.. First, a biological pathway structure is a graph G(V,E) where

V is the set of vertices or nodes. E is the set of edges. In the case of biological pathways, a

vertex v ε V may either be a gene or protein whereas an edge e ε E joining two such vertices

represents the biological properties connecting them. The final underlying network may

either be directed or undirected, and both types of networks occur naturally in biological

systems.

For example, a signal transduction is a typical example of a directed network in

biological systems. According to the Central Dogma of Molecular Biology, DNA encodes the

genetic information of living organisms. DNA directs protein synthesis via the formation

of messenger RNA (mRNA) [4]. A signal transduction is thus the primary means that

decodes DNA into mRNA and then into protein synthesis. For a signal transduction to

occur, cytokines or chemokines bind to the transmembrane proteins which in turn activates

a sequential activation of signal molecules leading to a biological end-point. In this case a

directed edge represents one event in a signal transduction activating another, and a signaling

pathway is thus composed of a web of gene regulatory wiring or different transduction events.

Undirected networks, on the other hand, are typically exemplified by Protein-Protein

Interaction (PPI) networks [35]. These networks have no self-loops, and all vertices consist

of proteins. An edge exists between two proteins if they can physically interact.

Once a biological pathway structure has been reconstructed, one needs to examine

it at a finer level as usually only part of a biological pathway structure is involved in a

biological process of interest. Thus, decomposing different biological pathway structures into

sub-pathways is a must. By retrieving the sub-pathways, one is able to accomplish two major

3



goals: predict gene functionality and relevant sub-pathways for different phenotypes. For

example, if gene A is clustered with other genes responsible for apoptosis, one may infer that

gene A also plays a role in apoptosis. This leads to predicting a new gene functionality for

gene A that may have been previously unknown. As another example, one may possess cancer

molecular profile data. By “enriching” the sub-pathways, one may extract new biological

insights about the sub-pathways most relevant to cancer. Figure 1.1 succinctly summarizes

the relationships amongst the various topics discussed in this introduction.

Figure 1.1: The big picture. Gene expression data and gene sets may be converted from
one to another. Furthermore, given gene expression data or gene sets, one can reconstruct
different biological pathway structures. Given that only a sub-pathway is usually activated
for a particular biological process, decomposing a biological pathway structure into sub-
pathways is a must. From these sub-pathways, one may extract useful biological insights.
Otherwise, one may use molecular profile data in conjunction with sub-pathways to extract
the most relevant sub-pathways for the data at hand.

To outline the remainder of this thesis, three areas will now be examined in more

detail. Chapter 2 will examine three network reconstruction algorithms. The first approach
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is Bayesian networks [24, 12], which is an approach based on gene expression data. The

second approach is the Frequency Method [29], which is a gene set based approach. The

final approach is Linear Path Augmentation (LPA) [15], which is an original contribution

to the field. Chapter 3 will examine three network partitioning algorithms including the

Kernighan-Lin algorithm [19], the Girvan-Newman algorithm [13, 26], and the Clique Per-

colation Method (CPM) [27, 28]. Finally, for Chapter 4 the focus will be on an original

and novel software pipeline, SEA (Structure Enrichment Analysis), which closely resembles

Figure 1.1.
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Chapter 2: Network Reconstruction

Given gene expression data and gene sets, it is often the case that more biological insight

needs to be extracted from them. One concise manner to extract data from gene expression

data and gene sets is to reconstruct a biological pathway structure. Reconstructing a bio-

logical pathway structure is a key step as it is often the gateway for further analysis. For

example, it may be a difficult task to accurately extract signal cascades if the underlying

network is unknown. A biological pathway structure can also illustrate how various sub-

pathways cross-talk within one another. Thus, there are a plethora of reasons to reconstruct

a biological pathway structure.

There are a variety of methods to reconstruct biological pathways. Some methods,

such as Bayesian networks, rely on gene expression data. Other methods, such as Frequency

Method, rely on gene sets. Both of these methods will be examined later on in the chapter.

In addition, an original and novel algorithm, Linear Path Augmentation (LPA), will be

presented in detail later on in this chapter as well.

2.1 Bayesian Networks

A Bayesian network [24, 12] is a graphical model that ties with its vertices some probabilistic

relationships. From a network structural view, a Bayesian network embodies the conditional

dependencies and indepedencies of its various vertices. It also efficiently encodes the joint

probability distribution of all the vertices in the graph. A Bayesian network is represented

by a DAG (directed acyclic graph), which automatically rules out Bayesian networks from

representing feed-back loops and other cyclic structures.

A Bayesian network consists of a pair (G,Θ) where G represents a DAG. The |V | = n

nodes of G are random variables X1, X2, ..., Xn that may represent discrete or continuous
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random variables. Θ denotes the set of parameters for each of the random variables and is

needed to encode a random variable’s CPD (conditional probability distribution) or CPT

(conditional probability table) depending on whether it is discrete or continuous. More

formally, one can define Θ as

Θxi|pa(xi) = P (xi|pa(xi)) (2.1)

∀ xi ε Xi given the set of parents of xi in G. Θ is often learned by assuming some underlying

distribution and using gene expression data to derive Θ. Using the factorization definition,

one can express the joint probability distribution as a product of the conditional probabilities

P (x1, x2, ..., xn) =
n∏
i=1

P (xi|pa(xi)). (2.2)

Using Bayesian networks often consist of using a structure learning algorithm that

consists of two major components: searching for “good” structures and then scoring them.

It is necessary to employ a heuristic to search for structures since the search space is super-

exponential rendering an exhaustive search to be implausible. For these types of problems,

a greedy algorithm is a natural choice where one begins with either a full network or empty

network. One then adds, deletes, or reverses an edge until a local maximum is reached. One

may also employ simulated annealing to aid for the search of a global solution.

As will be seen in Chapter 4, it may be the case that the structures of interest are

already available. Thus, one may venture to say that scoring structures may ultimately

be more important than searching. Often times an approximation may be used such as

the Bayesian Information Criterion (BIC) defined as ln p(D|θ̂G, G) − d
2

lnN where D is the

dataset, G is the structure, d is the number of parameters, and N is the size of the dataset.

θ̂S is an estimate of the model parameters, and for large enough N , one may use the MLE .

Thus, a Bayesian network is a good probabilistic modeling approach to learn the

structure of a biological pathway from gene expression data. They are also quite robust
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against noisy data, which in turn prevents over-fitting of the data. Its main disadvantages lie

in its computational complexity and its restriction to DAGs. Regardless, Bayesian networks

are still quite popular in many fields, and many implementations, such as BNT [23], exist

that allow users to harness their power.

2.2 Frequency Method

The Frequency Method [29] is a method to reconstruct directed networks from gene sets.

It makes three important assumptions about the gene sets. First, it assumes that tree

structures in the paths correspond to gene sets. Another assumption is the availability of

the source and destination of each gene set, which may not necessarily be known for all

biological systems. Finally, it is assumed that the directed edges used to form a tree in each

gene set are already available, but their order is unknown.

Using terminology similar to [2], let S be the set of source nodes, D be the set of

destination or target nodes, and E is the collection of all directed edges of the graph. Each

member m ε S ∪D ∪ E can be associated with a binary vector of length N , the number of

gene sets, where xm(i) = 1 indicates that m is involved with ith gene set. By letting si be

the fixed beginning of the ith gene set and di its destination, the order of genes for the ith

gene set is found by satisfying

e∗ = argmax
eεE

λi(e) (2.3)

where λi(e) is defined as

λi(e) = xTsixe − x
T
di
xe (2.4)

∀ e ε E with xe(i) = 1. It should be noted that λi(e) is used to determine whether e is closer

to its source si than its destination di. The result of Equation 2.3 is that e∗ is placed closet

to si. Thus, the edges are placed in proximity to si based on their λ scores.
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The Frequency Method leads to a unique solution in reconstructing the biological

pathway structure and is computationally efficient. A major drawback is the stringent as-

sumptions made by it such as knowing the source and destination genes of each gene set.

Furthermore, if there exist multiple paths between a pair of genes, the Frequency Method

may fail.

2.3 LPA

LPA (Linear Path Augmentation) [15] is an original and novel network reconstruction algo-

rithm. The goal of LPA is to reconstruct an original biological pathway structure using gene

sets as the input. The underlying hypothesis of LPA is that gene sets correspond to signal

cascades and that the underlying network corresponds to a DAG (Directed Acyclic Graph).

With these assumptions LPA has a robust pipeline to reconstruct biological pathways using

gene sets as input. Figure 2.1 provides an overview of the problem that LPA attempts to

solve.

Before proceeding to the details of LPA, it is prudent to describe how simulations

were conducted. To be able to test LPA as well as other algorithms, it is necessary to be

able to generate some linear paths from the original network. To accomplish this goal, the

algorithm All Linear Paths was developed. It is important to note that for a fully connected

DAG, there are
∑n−1

j=1

∑j−1
i=1

(
j
i

)
linear paths where n is the number of vertices in the DAG.

Thus, this algorithm is only feasible for very sparse pathways. Figure 2.2 presents a flow

chart describing the All Linear Paths algorithm.

A very significant step that can easily be overlooked is permuting the order of the

gene sets at the very end. It is natural for algorithms to handle gene sets one at a time.

An issue that arises, though, occurs if some assumption or calculation is made using the

remaining gene sets. One example is GSGS(Gene Set Gibbs Sampler) by [1]. In particular,
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Figure 2.1: This sample network illustrates the problem that LPA attempts to solve. At step
1, one has the original, unobserved biological pathway. At step 2 the pathway consists of
signal cascades. Unordered gene sets corresponding to the signal cascades are represented at
step 3. Finally, using a network reconstruction algorithm, the original biological pathway is
reconstructed from the gene sets in step 3. This original author contribution first appeared
in [15].

the remaining gene sets in GSGS are used to calculate the TPM (Transitional Probability

Matrix). It is hoped that with a good number of gene sets this effect is diminished as

the weight of a single gene set in calculating the TPM is reduced. Similarly, for LPA the

remaining gene sets play a significant role in the score function to be discussed later on in

subsection 2.3.3. For both cases mentioned, the order of the gene sets may affect the final

results with LPA being affected far more significantly than GSGS.

One important note is that any network and its transpose can produce the same set

of linear paths. Any algorithm that does network reconstruction must always keep this fact

in mind. At least for biological networks, though, this problem is somewhat mitigated as

biologists should usually be able to easily tell the proper matrix. For example, biologists
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Figure 2.2: All Linear Paths

would not label a transcription factor as a leaf node. Thus, from an algorithmic perspective,

some prior knowledge is a must.

The final step needed for simulation studies are some gold standard networks. The

gold standard networks chosen are from the DREAM3 Network Challenges [22]. Further-

more, the chosen networks are all DAGs and small-scale as well. Table 2.1 lists a set of

networks from the DREAM3 Network Challenges as well as some useful statistic per net-

work. Results of the LPA algorithm are also displayed.

The LPA algorithm itself is a novel combination of a variety of techniques. Its name,

Linear Path Augmentation, is based on augmenting matrices with linear paths. Based on

the available knowledge, no other algorithm functions in a manner similar to it. In addition

to its novelty, it is quite modular consisting of preprocessing, sorting, growth, pruning, and
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Figure 2.3: A network and its transpose. By running the All Linear Paths algorithm detailed
in Figure 2.2 on both networks, the same set of gene sets is produced. In essence, this states
that without any prior information a network and its transpose are both equal in terms of
finding the final network.

Table 2.1: Statistics concerning E. coli networks from the DREAM3 Network Challenges.
Also displayed are the results of the LPA algorithm where Sensitivity = TP

TP+FN
. Specificity

= TN
TN+FP

. Positive Predictive Value (PPV) = TP
TP+FP

. TP equals true positives, FP equals
false positives, TN equals true negatives, and FN equals false negatives.

intersection stages. This modularity allows for ease of updating stages individually. Figure

2.4 presents a high-level flow chart of the LPA algorithm.
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Figure 2.4: The LPA algorithm consists of five key stages. The first stage, preprocessing,
separates the gene sets into components. The second stage, sorting, places the gene sets in
order. The third stage, growth, searches for candidate networks. The fourth stage, pruning,
scores the candidate solutions and removes candidate solutions with low score. The final
and fifth stage, intersection, is needed in the absence of prior data to reconcile any candidate
solutions still left.

2.3.1 Preprocessing

The idea behind the preprocessing stage is to divide the gene sets into “components.” The

process is relatively straightforward. If two gene sets A and B share at least one node, they

are placed in the same component. If gene set C shares at least one node with either gene set

A or B, it is also placed in the same component. If the original network is a single connected

component, than all gene sets will fall into one component. Similarly, if the original network

had k disconnected components, then there will be k sets of gene sets. For all scenarios

listed, it is assumed that no gene sets are missing so the number of sets of gene sets in

practice may vary. This allows for a divide and conquer approach where the next steps are

run k times, once for each set of gene sets.
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2.3.2 Sorting

This stage assigns an order for a set of gene sets. The LPA algorithm is very sensitive to

the order of the gene sets. The order of the gene sets can actually determine whether the

algorithm converges to the correct solution and may have a direct affect on its computational

complexity. The current approach places the longest gene sets first. While this increases

the computational complexity of the algorithm, it makes it more likely to converge to the

correct solution.

2.3.3 Growth

The growth stage is very akin to the “searching” stage of a structure learning algorithm.

For the first iteration, assuming no prior knowledge has been provided, length(G1)!
2

networks

are constructed where G1 is the first gene set. Each network corresponds to one linear path

from the length(G1)!
2

possible permutations. The quantity is divided by two as the reverse of

the permutations are automatically discarded (Figure 2.3). These networks are stored in a

set of candidate networks F 1
i . After the pruning stage, one now begins with the pruned F 1′

i .

Each network in F 1′
i is expanded using length(G2)!

2
permutations for G2. However, to reduce

the search space, the topological sort order of each network is taken into account. Thus,

only permutations that do not violate its topological sort order are added. For example, if a

pathway P consists of the linear path 1→ 2→ 3 and the new gene set is {2, 3, 4}, 3→ 2→ 4

will not be added as it violates the topological sort order. {2 → 3 → 4, 2 → 4 → 3, ...}, on

the other hand, are valid permutations, and P will split into new networks accordingly. The

new augmented networks are then added to F 2
i while the networks in F 1′

i are discarded. The

process repeats itself until all gene sets are used and is illustrated in Figure 2.5.
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Figure 2.5: Growth Stage.

2.3.4 Pruning

The pruning stage is very akin to the “scoring” stage of a structure learning algorithm. This

stage attempts to reduce even further the set of candidate solutions. An important part of

this stage is that it uses all gene sets to compute a score for each network. In its essence,

this score measures how many gene sets that the underlying network can support. In other

words, if one were to run the All Linear Paths algorithm on the network, its score consists of

the intersection of its unordered linear paths with the gene sets. Figure 2.6 provides further

details on the pruning stage.

2.3.5 Intersection

The final stage is needed only when there still remain some candidate network solutions.

Thus, the final network returned is the intersection of all remaining candidate network

solutions. In the absence of prior knowledge, one must choose between a network and

its transpose. An ad hoc solution at the moment is to choose the network whose upper
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Figure 2.6: Pruning Stage.

triangular matrix is heavier. Naturally, this process may fail when the upper triangular and

lower triangular matrices have an equal number of edges. Figure 2.7 provides an example of

the intersection stage.

Figure 2.7: Intersection Stage.

A post-processing step is the combination of the separate components, if any, pro-

duced by the algorithm. At this stage, the presence of prior knowledge is a must as a
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network and its transpose are equally likely in the absence of prior knowledge. After this

step is finished, the final network is ready for presentation to the user.

LPA has some novel contributions. At this stage, though, it needs a better sorting,

growth, and pruning stages for it be computationally feasible. Given its modular nature,

though, it is hoped that finding improvements for these stages will be an achievable task.
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Chapter 3: Network Partitioning

It is often the case that a reconstructed network is too broad of a representation for a process

of interest. Furthermore, there are now readily available high fidelity biological networks with

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16, 18, 17] being at the forefront

of the databases. Since not all of a biological pathway structure is activated at once, a

finer level of detail is needed when examining the structure of biological pathways. As such,

decomposing a biological pathway structure into sub-pathways is of utmost importance as

they may provide valuable insight into various biological processes.

It is vital to first define what a sub-pathway is. For biological pathways the concept

sub-pathway is very similar to the concept of communities in social networks. A community

is a subgraph of a given graph such that (1) the connections within the community from

node to node are strong and (2) the external connections between other communities are few

and weak. Figure 3.1 provides an illustration of the concept of communities.

Figure 3.1: The network displayed consists of two communities shaded white and black,
respectively. Both communities exhibit high internal connections. Furthermore, the con-
nections between the two communities consists only of a single edge. This original author
contribution is set to also appear in [2].

There are two approaches for finding the sub-pathways of a biological pathway struc-

ture or graph, namely graph clustering and community detection algorithms [25]. The former

type of algorithms have their origin in computer science and other related fields. The latter
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type of algorithms were originally used by sociologists. They now encompass algorithms in

applied mathematics, physics, and biology.

For graph clustering algorithms, a user must specify the number of clusters or par-

titions. A graph clustering algorithm will always return the specified number of partitions

regardless of whether the underlying graph is partitionable. These algorithms were designed

with specific applications in mind. Some applications include improving the paging prop-

erties of programs and placing the components of an electronic circuit onto printed circuit

cards [19].

One may ask, “Why study graph clustering algorithms for biological pathways?”

This is indeed a pertinent question. The major reason is that these algorithms often serve

as an inspiration for community detection algorithms. For example, the Laplacian matrix

whose use is popular in graph clustering algorithms can be modified to perform eigenvector

decomposition [25]. Another example can also be found in Newman’s eigenvector method

[25]. In this paper Newman used the Kernighan-Lin algorithm [19] as inspiration for a

post-processing algorithm, namely Algorithm 2.

Concerning community detection algorithms, the underlying assumption behind these

algorithms is that a network or graph can “naturally” be divided into sub-pathways or

communities. Thus, the sub-pathways of a graph can be viewed as a topological property of

the graph. This design philosophy is a major difference between community detection and

graph clustering algorithms.

Before discussing some algorithms in detail, it is prudent to discuss the nature of

these algorithms. Most algorithms in this field work for undirected networks and produce

mutually exclusive partitions. It is often far from trivial to extend the undirected version of

an algorithm to work for directed networks [10]. It is often the case that an algorithm that

works only for undirected graphs is simply applied to directed graphs by ignoring the edge

direction in the directed graphs. As seen in Figure 3.2, this approach is far from adequate.
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Figure 3.2: An E. coli network from the DREAM3 Network Challenges [22]. (Left) The
six communities of the network ignoring edge direction. (Right) Taking edge direction into
account, no communities could be found. In both cases, the appropriate version of InfoMap
[30] was run for 100,000 iterations. This original author contribution is set to also appear in
[2].

As with the network reconstruction algorithms outlined earlier, it is very helpful to

have some gold standard networks to compare different algorithms. What constitutes a gold

standard network is an area of research itself. For illustration purposes Zachary’s karate

club [36] has often been used as a “gold standard” network. This social network has in its

origin the relationships amongst 34 karate club members. A disagreement arose between the

club’s administrator and the instructor with the latter splintering off to form a new club as

seen in Figure 3.3.

The remainder of this chapter will now be outlined. First, the Kernighan-Lin al-

gorithm [19] will be discussed to provide a flavor for graph clustering algorithms. This

discussion will be followed by an examination of the Girvan-Newman Algorithm [13, 26],

a very popular community detection algorithm. Finally, the Clique Percolation Method

(CPM) [27] will be discussed. Compared to the previous two algorithms, CPM has a version

that works with directed networks and also produces nonexclusive sub-pathways.
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(a) The true partitioning (b) Girvan-Newman partition

Figure 3.3: (Left) The true partitioning of Zachary’s karate club. (Right) The partitioning as
returned by the Girvan-Newman algorithm [13] which mislabels a single node. This original
author contribution is set to also appear in [2].

3.4 Kernighan-Lin Algorithm

Developed in the 1970s, the Kernighan-Lin algorithm is a well-known graph clustering algo-

rithm. Given its applicability it is often used as a subroutine for other algorithms. It was

initially developed in order to divide electronic circuits on boards. The connections between

the various circuits were quite expensive. Minimizing the number of connections between the

various circuits is a key goal. Formally, the Kernighan-Lin algorithm is a heuristic method

that sought to solve the following combinatorics problem: provided a weighted graph G, di-

vide the vertices in V into k partitions such that no partition is larger than a user-specified

m. The objective function is that to minimize the total weight of the edges connecting the

k partitions.

The algorithm itself seeks to divide a network into two subnetworks. If more clusters

are needed, the algorithm may be applied in a recursive fashion. To begin one has an undi-

rected graph G of size |V | = n1 + n2 where n1, n2 correspond to the size of the subnetworks

X,Y , respectively. Without loss of generality, assume that n1 ≤ n2. Let cij be the cost from

vertex i to vertex j. All cii equal zero, and the adjacency matrix representing G is
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symmetrical. Thus, the goal of the Kernighan-Lin algorithm is to minimize the cost C of

the edges connecting the subnetworks X and Y , where for y ε Y and x ε X

C =
∑
X×Y

cxy. (3.1)

For each node α ε A where A may be either X or Y , let

Dα =
∑
βεĀ

cαβ −
∑
α′εA

cαα′ (3.2)

where the first sum represents the intracluster costs between a vertex α and all other vertices

in the opposite cluster. The second sum represents the intercluster costs between vertex α

and all other vertices in its own cluster. Another important quantity to note is the gain g

for swapping two nodes between their respective clusters. Let

g = Dx +Dy − 2cxy. (3.3)

Algorithm 1: Kernighan-Lin Algorithm

Data: An undirected network G and initial guesses for X and Y
Result: The subnetworks X and Y such that Equation 3.1 is minimized.
repeat

Calculate D values ∀ x ε X, y ε Y
Let Y ′ = Y , X ′ = X.
for i = 1 : n1 do

Select y ε Y ′ and x ε X ′ that maximizes gi.
Let y′i = y and x′i = x.
Remove the selected x and y from their respective clusters X ′ and Y ′.
Recalculate the D values for the remaining elements.

Select j to maximize Γ =
∑j

i=1 gi.
if Γ � 0 then

Swap the 1 to j x′i’s and y′i’s between X and Y .

until Γ ≤ 0
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The complexity of the Kernighan-Lin algorithm is O(|V |2log|V |). It is very sensitive

to the initial guesses for the subnetworks X and Y and may perform quite poorly for a

random initialization. It is often the case that a different algorithm provides the initial

guesses for the subnetworks, and the Kernighan-Lin algorithm improves upon those guesses.

From a biological standpoint, the Kernighan-Lin algorithm may not be quite applicable as

initial guesses for X and Y may be hard to obtain, especially if prior knowledge is lacking.

Furthermore, the Kernighan-Lin algorithm imposes a minimum number of sub-pathways

which may not be biologically valid. Regardless, the Kernighan-Lin algorithm did provide

the inspiration for a post-processing community detection algorithm developed by Newman

[25].

Algorithm 2: Post-processing Community Optimization

Data: An undirected network G and initial guesses for X and Y
Result: The subnetworks X and Y such that some quality function F is maximized.
repeat

for i = 1 : |V | do
Move a vertex v from either X to Y or vice-versa that maximizes F .
Remove vertex v from any further consideration.
Store the resulting partition of G as Pi

Select Pi that maximizes F .
Let X = Xi and Y = Yi obtained from Pi.

until no further improvement in F can be obtained.

3.5 Girvan-Newman Algorithm

The Girvan-Newman algorithm [13] is an extremely popular divisive clustering algorithm.

Divisive clustering algorithms are machine-learning algorithms that provide users with par-

titions of varying sizes. They are also a type of hierarchical clustering algorithms of which a

second type is agglomerative clustering. A brief description of the two types of hierarchical

clustering algorithms now follows.
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First, agglomerative clustering focuses on building clusters from the bottom up. One

begins an agglomerative clustering algorithm with each vertex or node in its own cluster.

Based on a specified distance metric, the two most similar clusters or partitions are combined

into a single cluster. This process is recursively repeated until all nodes belong to a single

cluster. While these algorithms are strong at find the core of different communities, they are

weak in finding the outer layers. They have also been shown to produce inconsistent results

for networks whose partitions are known [26].

On the other hand, divisive clustering algorithms use a top-down approach. Initially,

all nodes belong to a single partition and are recursively divided until each node belongs to

its own partition. These type of algorithms produce a dendrogram as can be seen in Figure

3.4.

Figure 3.4: A dendrogram is produced as the output of a divisive clustering algorithm. To
determine the final number of communities, the dendrogram needs to be cut. Where the
dendrogram is cut is an area of research in of itself. For this dendrogram, the given cut
line divides the network into two communities shaded white and black, respectively. This
original author contribution is set to also appear in [2].

For the Girvan-Newman algorithm, it follows the spirit of divisive clustering algo-

rithms. Compared to previous approaches, the Girvan-Newman algorithm focuses on the

“information flow” of the network as opposed to its structure. As such, it focuses on highly
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significant edges that serve as “bridges” between different communities. These edges tend to

have a high value of “edge betweenness”, which is an extension of vertex betweenness [11].

The authors introduced three types of edge betweenness: random-walk betweenness, current-

flow betweenness, and shortest-path betweenness. In practice, shortest-path betweenness is

most used and will be the focus for this section. The major reasons for using shortest-path

betweenness is that it provides the best combination of performance and accuracy [26].

To calculate the shortest-path betweenness scores for all of the edges, one must first

calculate all shortest paths between all pairs of vertices. For any given edge e, its between-

ness score measures how many shortest paths possess it as an edge. One may refer to [26] for

details on calculating shortest-path betweenness scores for an O(|V ||E|) algorithm. Overall,

the Girvan-Newman algorithm displayed in Algorithm 3 has complexity O(|V ||E|2). A sam-

ple result of the Girvan-Newman algorithm on Zachary’s karate club may be seen in Figure

3.3.

Algorithm 3: Girvan-Newman Algorithm

Data: An unweighted and undirected network G
Result: A dendrogram representing the hierarchy of the different communities. The

place where the dendrogram is cut determines the output communities.
Compute the shortest-path betweenness score ∀ edges e ε E.
for i = 1 : |E| do

Remove the edge e ε E that possesses the largest shortest-path betweenness score
from E.
For all edges affected by the removal of e, recalculate their shortest-path
betweenness scores.

The Girvan-Newman algorithm returns a varying number of communities depending

on where the dendrogram is cut. Thus, one can have a myriad of resolutions to view the

resulting communities by cutting the dendrogram at various locations. For the structure of

biological pathways this allows a researcher to view a variety of hypothesized sub-pathways.

It is often the case, though, that a researcher is only interest in the best partition amongst
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all available candidate partitions. Thus, determining where to cut the dendrogram is a

significant issue and subject to more research. Newman and Girvan attempted to address this

limitation by introducing the concept of modularity. If a graph G divides into k communities,

the modularity A is defined as

Q =
∑
i

eii − ||e2|| (3.4)

where e is a k × k symmetric matrix where an entry eij measures the fraction of all edges

that link community i and community j. For more details on modularity, one may refer to

[2, 10, 26, 25].

3.6 Clique Percolation Method

The Clique Percolation Method (CPM) [27] is a community detection algorithm that allows

for overlapping sub-pathways. This is an important feature, especially for biological pathways

where a node in a biological pathway may participate in different biological processes. The

building blocks of CPM are k-cliques. A k-clique is a maximal subgraph of size k such that

any two nodes in the k-clique possess an edge between them. Another critical concept is

adjacent k-cliques. Two k-cliques are said to be adjacent if and only if they share k − 1

nodes. Thus, a k-clique community is the union of all adjacent k-cliques.

Concerning the algorithm itself, one key step is to find all of the maximal cliques

within a given network. While the authors introduced a methodology to find maximal

cliques, one may simply use the well-known Bron-Kerbosch algorithm [6] to find all of the

maximal cliques in a network. Letting the total number of cliques found be denoted as n,

another crucial concept for CPM is building an n × n clique-clique overlap matrix M . In

this matrix M , each Mij denotes the number of nodes shared between clique i and clique j.

For details on CPM, one may refer to Algorithm 4.
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Algorithm 4: Clique Percolation Method

Data: An unweighted and undirected network G and the size k of the k-clique
communities to find.

Result: A set of k-clique communities.
For the graph G, find all of its maximal cliques.
Build an n× n clique-clique overlap matrix M .
Set all entries on the main diagonal of M less than k to zero.
Set all off-diagonal entries of M less than k − 1 to zero.
Return the k-clique communities consisting of the connected cliques whose entries
remain in M .

Probably one of the most major attractions for CPM in terms of biological pathways

is its ability to find overlapping communities or sub-pathways. More importantly, Fortunato

[10] stated that CPM has the ability to distinguish between graphs with community structure

and random graphs. However, a major drawback for CPM is that not all of the nodes on

the periphery of the network may participate in a module making it somewhat similar to

agglomerative clustering algorithms. Furthermore, choosing a good value for k a priori

is a daunting task. A potential solution to this problem is to extract all possible k-clique

communities and then use a quality function like modularity to determine the best partition.

CPM also has issues from a complexity perspective as its complexity cannot be expressed in

closed form. At the very minimum, its complexity is in NP-complete since it involves finding

maximal cliques, which is known to be NP-complete. Figure 3.5 illustrates the application

of CPM on Zachary’s karate club.

One final note of interest is that the CPM algorithm has a directed version noted

as CPMd [28]. The key to this algorithm is to extend the concept of k-clique to directed

k-clique. In its simplest form, a directed k-clique is simply a graph that has a subset of edges

that produce a k-clique and a directed acyclic graph. For more details on finding directed

k-cliques, one may refer to [28]. Figure 3.6 provides an illustration of a directed 4-clique.
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Figure 3.5: Using CFinder [3] Zachary’s karate club is divided into three types of communities
based on their k value. The partitions returned by CPM vary quite differently with the
partitions seen in Figure 3.3. This original author contribution is set to also appear in [2].

Figure 3.6: (Left) A directed acyclic graph and a directed 4-clique. The node labels refer
to the outdegree of each node. (Middle-Left) While a 4-clique, it is not a directed 4-clique
due to the presence of a cycle. Furthermore, it is necessary that each node has a unique
outdegree in order for it to be a directed 4-clique. (Right) Using CFinder [3] the different
3-communities of the E. coli network in Figure 3.2 are found. Many nodes were left out
of the final partitioning, which may prove problematic for analyzing the structure of some
biological pathways. This original author contribution is set to also appear in [2].

28



Chapter 4: SEA

Structure Enrichment Analysis (SEA) is a standalone GUI software tool implemented in

Matlab. It consists of a robust and modular software pipeline that allows for greater control of

its core functionality. This robustness and modularity also makes incorporating components

of SEA into other applications easy as well. SEA seeks to be a standard tool in the repertoire

of tools available to biologists since there is an ever increasing amount of high-throughput

data that needs analysis. Figure 4.1 presents an overview of the software pipeline.

Figure 4.1: Overview of SEA: SEA first uses the KEGG (Kyoto Encyclopedia of Genes and
Genomes) API [16, 18, 17] to extract adjacency matrices for the various pathways found in
the KEGG pathway database. SEA then extracts signal cascades and nonlinear regulatory
modules from each pathway. In conjunction with molecular profile data provided by users,
SEA then uses the Bayesian Information Criterion (BIC) score function found in BNT [23]
to score each module. SEA then displays the sub-pathways in a ranked list, and by clicking
upon a result, the desired sub-pathway is displayed in the default web browser.
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4.7 Related Work

Before discussing the details of SEA, it is prudent to discuss some of the other methods

currently available. These include GenMAPP [9], the work by [7], and COSINE [21]. These

methods provide biologists with useful concepts and tools for analysis of their data. However,

each method mentioned has their own shortcoming that needs to be addressed. Concerning

the current trend in the research, the overall trend seems to be combining molecular profile

data and biological pathways in a meaningful manner.

4.7.1 GenMAPP

GenMAPP (Gene Map Annotator and Pathway Profiler) is a popular tool that takes as input

two sets of gene expression data from the user. It then color-codes different genes based on

fold changes. The genes are mapped across different pathways. Figure 4.2 provides a sample

output of GenMAPP.

Figure 4.2: An illustration of GenMAPP [9]
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While GenMAPP has proven to be quite a useful and popular tool for biologists,

the use of fold changes to determine activated genes cannot properly detect some biological

processes such as stress response and transcriptional programs. These processes are typically

distributed across subnetworks where changes may be quite subtle at the level of individual

genes. Also, as seen in Figure 4.2, GenMAPP makes no use of the pathway topology. There

is no structure that connects genes on a given pathway.

4.7.2 The Work of Chen Et Al.

Chen et al. used the pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathway database as their starting point for their work. For these pathways they constructed

DFS-trees and extracted root to leaf linear paths from these trees. They then proceed to

score each linear path using Euclidean distance to determine the significance of a linear path

from the two sets of gene expression data.

Chen et al. provided quite an interesting concept that tries to fully account for the

topology of a given module. Their approach does have limitations, though. First, their

score function makes use of Euclidean distance. By using Euclidean distance, they do not

fully capture pathway topology as one can permute the order of the genes within the linear

path and still obtain the same score. They also do not account for nonlinear sub-pathways.

Finally, they do not provide a software package to allow users to make use of their work.

4.7.3 COSINE

Another approach is COSINE (COndition-SpecIfic sub-Network). COSINE is novel since it

focuses both on differential expression of genes and the differential correlation of gene pairs.

It uses a genetic algorithm to find the best subnetwork for a given background pathway or

network. It is currently available as an R package.
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While COSINE is quite an interesting work, its weakness lies in using gene pairs to

build its subnetwork. Given the score function used in COSINE, this network is naturally

undirected. While undirected networks may suffice for PPI networks, they lack the important

directionality information needed by signaling pathways. Furthermore, COSINE does not

consider gene relationships beyond a pair.

4.8 Goals and Original Contributions

The goals of SEA are manyfold based on the underlying assumption that pathways are

activated either via signaling cascades (linear sub-pathways) or nonlinear regulatory modules

(nonlinear sub-pathways). First, SEA focuses on network structures. The topology of these

structures are fully accounted for by making use of the BIC (Bayesian Information Criterion)

score function found in BNT [23]. This allows SEA to go beyond the placement of genes

on a pathway or the order of genes within a gene set. SEA also provides users with a GUI

(Graphical User Interface) to allow for ease of use and the visualization of significant sub-

pathways. SEA will also seek an answer to the important biological question: “From between

signal cascades and nonlinear nonlinear regulatory modules, which one is more significant?”

Given the knowledge available at the moment, the original contributions of SEA are

manyfold. First, SEA focuses both on linear and nonlinear sub-pathways of a given pathway.

Furthermore, SEA fully accounts for the topology of sub-pathways via the use of the BIC

score function as opposed to statistical tests. Finally, SEA does not need multiple classes of

data to map molecular profile data onto different pathways. SEA only needs to make use of

steady-state data or time series data.
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4.9 Pathway Extraction

Figure 4.1 succinctly surmises the software pipeline that makes SEA. The first step within

the pipeline is fetching the pathways from the KEGG pathway database. There are two

approaches from which one can obtain pathway data. One approach is by parsing KGML

(KEGG Markup Language) files. Essentially an XML file, a KGML file consists of entries,

relations, and reactions. Entries correspond to the nodes or vertices of the pathway. Relations

and reactions are two sets of edges between the entries corresponding to a network of proteins

and a network of chemical compounds, respectively. One can then parse the KGML files to

extract their corresponding pathways.

The major downside to using KGML files for pathway extraction is obtaining these

files in an automatic fashion. Previously, one could use the KEGG FTP server to automat-

ically download all of the relevant pathways for any given organism. However, from July

1, 2011 onwards, the KEGG FTP server is no longer freely available for academic users.

Instead, users can now download the respective KGML file from the pathway’s webpage.

However, how one can obtain a list of pathways remains to be seen.

Before describing the KEGG API, it is prudent to discuss entries and relations as

this same information can be extracted using the KEGG API. Given that SEA works with

molecular profile data, only protein networks comprised from relations are of interest so

reactions are not extracted. The important components of an entry in a KGML file are

its ID, gene name, and components if any. An entry’s ID most closely resembles an ID of

a node in an adjacency matrix. Gene name describes what gene the entry corresponds to

using the KEGG naming system. It may very well be the case that multiple entries have the

same gene name as can be seen in Figure 4.3. Components are used to define a compound

gene where compound genes are defined in two manners. First, a gene name may consist

of multiple genes. The latter method uses components that are composed of multiple IDs.
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One must then find the entries with the corresponding IDs to extract the gene names within

those IDs. Multiple temporary map structures are used to achieve this goal.

Concerning relations, the set of relations are very similar in concept to a list of edges

where each relation essentially consists of an entry ID pointing towards another entry ID.

Another important characteristic is the type of edge. As of now, edges corresponding to

maplink are pruned as one of their nodes correspond to a whole pathway, which cannot be

represented effectively using molecular profile data.

Given the above, for pathway extraction and pathway visualization, the KEGG API

has been chosen. The KEGG API provides a SOAP/WSDL interface available in Perl, Ruby,

Python, Java, and Matlab. The KEGG API provides a robust set of methods for a variety

of functions of which a subset is used. These include fetching the relations of a pathway and

the entries of a pathway. To extract the pathways, the major methods used are as follows:

list pathways, get elements by pathway, and get element relations by pathway.

The first method, list pathways, is necessary to obtain the list of pathways for a given

organism. The KEGG pathway database is constantly updated. As such, it is necessary to

use this method to list all of the pathways for a given organism. The latter two methods are

needed to extract the nodes and edges of the pathways, respectively. Both sets are pruned to

eventually extract the final adjacency matrices corresponding to their respective pathways.

It is important to note that KEGG pathways may posses an element of redundancy as

illustrated in Figure 4.3. At this stage a faithful representation of KEGG pathways is kept.

Only self-cycles and edges mapping a gene to another pathway are removed at this stage.

Any pathway that does not possess at least one linear path of length one is removed from

further consideration. Concerning duplicate genes that may occur, Section 4.11 details in

more detail how sub-pathways with duplicate gene elements are handled.

Concerning the pathway that is extracted, a one to one relationship is kept between

both the KEGG element ID and the adjacency matrix ID representing the pathway. Often-
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Figure 4.3: A sample pathway illustrating the duplication found in KEGG. KEGG essentially
tries to represent biological processes as opposed to constructing an adjacency matrix. In
this pathway Ubiquitin B (UB), highlighted with a red border, appears multiple times.
Thus, a programmer must choose whether to consolidate the different entries or represent
the networks as they are. For SEA the latter approach was chosen.

times this may create a very sparse matrix as not all matrix IDs have corresponding KEGG

element IDs, but this allows SEA to represent as faithfully as possible the original pathway.

Throughout the pathway extraction process, essential information is stored in a

data structure. One vital piece is a map that maps matrix IDs, essentially entry IDs,
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to their equivalent gene names. This map is essential especially in Section 4.11 where a

module is mapped from local matrix IDs to their gene names and finally a global ma-

trix integer. These local matrix IDs are kept throughout the lifetime of a module since

get html of colored pathway by elements from the KEGG API needs the entry IDs to display

the results as seen in Subsection 4.14.6.

4.10 Retrieving NCBI Gene IDs

Once the pathways are extracted, a list of all genes present in all of the pathways are

extracted. It is important to remember that some of these nodes in the KEGG pathways

are actually a combination of different genes. The decomposition of these compound genes

into individual genes is handled automatically. Thus, SEA now has a large list of genes. It

is also important to note that these genes have labels specific to KEGG only. For example,

hsa:7314 is the KEGG gene for UB where hsa corresponds to Homo Sapiens and 7314 is

the KEGG gene label.

To get the NCBI Gene IDs, the bconv method from the KEGG API is used. Using

the list of genes as input, this returns a large string consisting of the KEGG gene label

and its equivalent amongst many other databases. Since the NCBI Gene ID system is most

complete (in fact, for the case of hsa, there is a one to one mapping from KEGG to NCBI

Gene ID), the NCBI Gene IDs are extracted with their corresponding KEGG gene labels.

Two very important maps are now built. The first map, called GeneToGlobalID, maps a

KEGG node, including compound genes, to a global integer. The key for this map is the

KEGG gene label or a set of KEGG gene labels for compound genes. GeneToGlobalID is

needed to map a gene to a row of the data matrix. The second map, called NCBItoKEGG,

maps NCBI Gene IDs to KEGG gene labels, which is needed later on for Section 4.12.
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4.11 Decomposing the Pathways

With the list of pathways complete as well as a map that maps KEGG genes to a global

integer, SEA proceeds to extract both linear and nonlinear components. For each pathway,

both linear and nonlinear sub-pathways are extracted as seen in subsections 4.11.1 and

4.11.2. Using the map GeneToGlobalID in conjunction with the local maps per pathway

mentioned in Section 4.9, sub-pathways now have an equivalent, global representation. Thus,

the problem illustrated earlier in Figure 4.3 is now easily solved by checking for any duplicate

global IDs in the new representation for the module. If any duplicates are found, the module

is simply discarded.

4.11.1 Signal Cascades

Extracting signal cascsades is not necessarily a trivial task. The natural way in doing so

would be to simply extract all root to leaf linear paths of the original pathway. However,

such an approach will produce for some pathways a computationally intractable number of

signal cascades to analyze. Thus, a sample of the total signal cascades is needed.

To obtain a sample of the signal cascades, the “vanilla” DFS algorithm found in [8]

has been modified. The major modifications involve modifying the order for which DFS

visits nodes within a pathway. The order first places roots at the forefront and all other

nodes afterwards. Each sublist is ranked by the outdegree of each node such that nodes with

a high outdegree are prioritized. Finally, only tree edges are kept in the DFS-tree Dt where

forward edges, back edges, and cross edges are discarded. Once the tree is constructed, all

root to leaf paths of Dt are extracted. This produces a sample of linear paths that is a subset

of the full set of linear paths. It is important to note, though, that a root to leaf linear path

of a DFS-tree may not necessarily correspond to a root to leaf linear path of the original

pathway as indicated in Figure 4.4.
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Figure 4.4: A network (blue) and a sample DFS-tree (red). While {1, 2} is a root to leaf
linear path of the DFS-tree, it is not the case for the original network.

4.11.2 Nonlinear Regulatory Modules

Nonlinear sub-pathways are extracted using a modified version of the CPM algorithm [27] as

detailed previously in Section 3.6. Essentially, instead of finding all cliques, only feed-forward

loops are found, which are directed cliques of size three. All other details of the algorithm

remain the same. Furthermore, the choice of feed-forward loops is well-justified given their

biological significance [5].

It is important to note that the procedures outlined from Sections 4.9 to 4.11 occur

only once or whenever the user updates a chosen organism. This reduces the computational

complexity of the SEA software pipeline as there is no need to compute a list of sub-pathways

every time the user runs the program. It is sufficient to use a precomputed list of sub-

pathways.

4.12 User Input

For input SEA takes molecular profile data in the form of a tab-delimited text file. SEA takes

this tab-delimited text file and extracts a data matrix D where the map GeneToGlobalID
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maps a KEGG gene to a row in D. Concerning the input file, each line must consist of an

NCBI Gene ID and the corresponding molecular profile data. SEA can also handle multiple

occurrences of an NCBI Gene ID within a file. It keeps the row with the highest average to

include in its data matrix. It can also handle multiple NCBI Gene IDs per row as well and

updates the corresponding row of D accordingly.

To map the NCBI Gene IDs properly, the NCBItoKEGG map constructed in Section

4.10 is used. Once all single genes are mapped, compound genes consisting of multiple single

genes are also mapped. For a row in D corresponding to a compound gene, its mapped value

consists of the average of all rows for its element genes. Once manipulation of the data file is

complete, the user is then informed of the number of sub-pathways that their data supports

as it may be the case their data set does not have all of the genes found in the extracted

KEGG pathways.

4.13 Scoring the Sub-pathways

Given the precomputed list of sub-pathways as well as molecular profile data loaded by the

user, the user may proceed to scoring and ranking the precomputed list of sub-pathways. To

score their sub-pathways, the BIC score function found in BNT (Bayes Net Toolbox) is used.

The underlying assumptions made are that the data originated from a Gaussian distribution.

Furthermore, another underlying assumption is that the module is a DAG (directed acyclic

graph). Given the manner in which the sub-pathways were extracted in Section 4.11, all

of the sub-pathways extracted are by their nature DAGs. After the user scores the desired

sub-pathways, they are displayed in ranked order as seen in Figure 4.6.
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4.14 The Graphical User Interface (GUI)

The final component is the GUI that provides the user with access to the various functionality

of SEA. There are a variety of useful features in the GUI that provide the user with a variety

of options. The first feature of note is the user-friendly “quick start guide” that appears on

program execution. It can also be accessed via the menu by selecting Help → Quick Start

Guide. Figure 4.5 shows the guide visible to users of SEA.

Figure 4.5: Quick Start Guide for SEA

Beyond the “quick start guide,” there are a variety of features available that allow

the user a wide range of flexibility. The overall interface can be seen in Figure 4.6. These
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features include updating the list of organisms, selecting or updating an organism, loading

profile data, selecting a subset of sub-pathways, ranking the sub-pathways, viewing results,

and saving and loading previous results. These features will be examined in further detail

below.

Figure 4.6: SEA Interface

4.14.1 Updating the List of Organisms

The KEGG pathway database is constantly updated. Usually the updates deal with adding

and modifying pathways, but there are times when new organisms are added. Thus, it is
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necessary to update the list of organisms from time to time. The user can do so by selecting

Update → List of Organisms from the menu. For this feature the method of interest from

the KEGG API is list organisms.

4.14.2 Selecting or Updating an Organism

Selecting or updating an organism is a straightforward process. The procedure for each can

be obtained from Figure 4.5. For updating an organism, essentially the procedures detailed in

Sections 4.9 to 4.11 occur. As for selecting an organism, it loads into memory a precomputed

list of sub-pathways.

4.14.3 Loading Profile Data

To load some molecular profile data, the user selects Analysis → Load Profile Data. Essen-

tially, this feature makes use of the procedure listed in Section 4.12. As stated before, a

message box informs the user of the sub-pathways that are supported by his data set.

4.14.4 Selecting a Subset of Sub-pathways

It may very well be the case that a user is not interested in examining all of the sub-pathways

for all of the KEGG pathways. As seen in Figure 4.6, there are a variety of radio buttons

that allow the user maximum flexibility over the types of sub-pathways they wish to analyze.

One group of radio buttons allows the user to specify the type of pathways they wish to study

whether they are metabolic, nonmetabolic, or both. The other group of radio buttons allows

the user to specify the type of sub-pathways they wish to examine whether they are linear,

nonlinear, or both. Upon selecting Analysis → Perform Analysis, the user is presented with

a customized list of pathways corresponding to the options selected.
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4.14.5 Ranking the Sub-pathways

In order to rank the sub-pathways, the user can select from the menu Analysis → Perform

Analysis. This essentially calls the procedure found in Section 4.13, which calculates the

BIC score for each module. The sub-pathways are then sorted in descending order based on

their BIC scores and are then displayed in the Results box as seen in Figure 4.6.

4.14.6 Viewing Results

After ranking the sub-pathways, the user is presented with a list of sub-pathways in ranked

order as seen in Figure 4.6. Clicking on an item in the Results box displays a pathway with

the module highlighted as seen in Figure 4.7. Users can further click upon an item in their

web browser to view detailed information for their selected entry. The essential method from

the KEGG API being used is get html of colored pathway by elements.

4.14.7 Saving and Loading Results

This feature allows users to save or load results. The former is accomplished by selecting

from the menu Analysis→ Save Current Results while the latter is accomplished by selecting

from the menu Analysis → Load Previous Results. These features will allow users to share

their data with one another as well as performing joint analysis.

4.15 Conclusions

In this thesis two major pieces of original work were presented. The first work, LPA (Linear

Path Augmentation) was presented in Section 2.3. LPA is a novel algorithm that seeks to

reconstruct networks using gene sets only. A variety of novel techniques were presented,

but its current limitation is its computational complexity. The second work, SEA, presents
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Figure 4.7: Results displayed in the default web browser using the KEGG API.

a novel pipeline to highlight significant sub-pathways on pathways. It is essentially ready

for deployment save for some final validation studies. It is hoped that SEA will become a

standard tool used by biologists worldwide.

Finally, for future work there are a variety of directions that can be taken. Both

LPA and SEA can be further improved upon. Given the modular nature of both pipelines,

further improvement and refinement is not very difficult. For LPA the major improvement

needs to be in the Growth stage that is the current bottleneck. New techniques can also be

incorporated to allow LPA to handle gene sets that do not originate from a DAG. For SEA

there are a variety of improvements that can be pursued. Support for additional pathway

databases can be added. The ideal, though, would be to use an algorithm such as LPA to
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infer the pathways. One can then use these context-specific pathways in addition to the

KEGG pathways as the starting point. Further research can also be conducted in scoring

the sub-pathways. In short, given the robustness and versatility of the SEA pipeline, there

is no shortage of areas for future research and improvements.

45



References

[1] L. Acharya, T. Judeh, Z. Duan, M. Rabbat, and D. Zhu. GSGS: A Computational Framework to Reconstruct Signaling Pathways

from Gene Sets. ArXiv e-prints, January 2011.

[2] L. Acharya, T. Judeh, and D. Zhu. A survey of computational approaches to biological network reconstruction and partition. In

M. Dehmer, editor, Machine Learning Approach for Network Analysis: Novel Graph Classes and Classification Techniques.

Wiley Publishing, To appear 2011.

[3] B. Adamcsek, G. Palla, I. J. Farkas, I. Derenyi, and Vicsek T. Cfinder: Locating cliques and overlapping modules in biological

networks. Bioinformatics, 22(8):1021–1023, 2006.

[4] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of the Cell,

fourth edition. Garland Science, 2002.

[5] Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):450–461, 2007.

[6] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM, 16:575–577,

September 1973.

[7] Xiujie Chen, Jiankai Xu, Bangqing Huang, Jin Li, Xin Wu, Ling Ma, Xiaodong Jia, Xiusen Bian, Fujian Tan, Lei Liu, Sheng

Chen, and Xia Li. A sub-pathway-based approach for identifying drug response principal network. Bioinformatics, 27(5):649–

654, 2011.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition.

The MIT Press, 3rd edition, 2009.

[9] Kam D. Dahlquist, Nathan Salomonis, Karen Vranizan, Steven C. Lawlor, and Bruce R. Conklin. Genmapp, a new tool for

viewing and analyzing microarray data on biological pathways. Nature Genetics, 31(1):19–20, 2002.

[10] S. Fortunato. Community detection in graphs. Phys. Rep., 486:75–174, February 2010.

[11] Linton C. Freeman. A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1):35–41, March 1977.

[12] Nir Friedman, Michal Linial, and Iftach Nachman. Using bayesian networks to analyze expression data. Journal of Computational

Biology, 7:601–620, 2000.

[13] M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the National Academy

of Sciences, 99(12):7821–7826, 2002.

[14] Kevin L. Gunderson, Semyon Kruglyak, Michael S. Graige, Francisco Garcia, Bahram G. Kermani, Chanfeng Zhao, Diping Che,

Todd Dickinson, Eliza Wickham, Jim Bierle, Dennis Doucet, Monika Milewski, Robert Yang, Chris Siegmund, Juergen Haas,

Lixin Zhou, Arnold Oliphant, Jian-Bing Fan, Steven Barnard, and Mark S. Chee. Decoding Randomly Ordered DNA Arrays.

Genome Research, 14(5):870–877, May 2004.

[15] Thair Judeh, Lipi Acharya, and Dongxiao Zhu. Gene network inference via linear path augmentation. In BIOT 2010, 2010.

[16] Minoru Kanehisa and Susumu Goto. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1):27–30,

2000.

[17] Minoru Kanehisa, Susumu Goto, Miho Furumichi, Mao Tanabe, and Mika Hirakawa. Kegg for representation and analysis of

molecular networks involving diseases and drugs. Nucleic Acids Research, 38(suppl 1):D355–D360, 2010.

[18] Minoru Kanehisa, Susumu Goto, Masahiro Hattori, Kiyoko F. Aoki-Kinoshita, Masumi Itoh, Shuichi Kawashima, Toshiaki

Katayama, Michihiro Araki, and Mika Hirakawa. From genomics to chemical genomics: new developments in kegg. Nucleic

Acids Research, 34(suppl 1):D354–D357, 2006.

[19] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell system technical journal,

49(1):291–307, 1970.

[20] D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton,

and E. L. Brown. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 15:1359–

1367, 1997.

46



[21] Haisu Ma, Eric E. Schadt, Lee M. Kaplan, and Hongyu Zhao. Cosine: Condition-specific sub-network identification using a

global optimization method. Bioinformatics, 27(9):1290–1298, 2011.

[22] Schaffter T. Mattiussi C. Marbach, D. and D. Floreano. Generating realistic in silico gene networks for performance assessment

of reverse engineering methods. Journal of Computational Biology, 16(2):229 – 239, 2009.

[23] Kevin P. Murphy. The bayes net toolbox for matlab. Computing Science and Statistics, 33:2001, 2001.

[24] Chris J Needham, James R Bradford, Andrew J Bulpitt, and David R Westhead. A primer on learning in bayesian networks for

computational biology. PLoS Comput Biol, 3(8):e129, 08 2007.

[25] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences,

103(23):8577–8582, 2006.

[26] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2):026113, Feb

2004.

[27] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the overlapping community structure of complex

networks in nature and society. Nature, 435(7043):814–818, 2005.

[28] Gergely Palla, Ills J Farkas, Pter Pollner, Imre Dernyi, and Tams Vicsek. Directed network modules. New Journal of Physics,

9(6):186, 2007.

[29] M G Rabbat, J R Treichler, S L Wood, and M G Larimore. Understanding the topology of a telephone network via internally-

sensed network tomography. In In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, pages

977–980, 2005.

[30] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings

of the National Academy of Sciences, 105(4):1118–1123, 2008.

[31] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary

DNA microarray. Science (New York, N.Y.), 270(5235):467–470, October 1995.

[32] J. Shendure, R. D. Mitra, C. Varma, and G. M. Church. Advanced sequencing technologies: methods and goals. Nature Reviews

Genetics, 5(5):335–344, 2004.

[33] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nat Biotechnol, 26(10):1135–1145, October 2008.

[34] Aravind Subramanian, Heidi Kuehn, Joshua Gould, Pablo Tamayo, and Jill P. Mesirov. Gsea-p: a desktop application for gene

set enrichment analysis. Bioinformatics, 23(23):3251–3253, 2007.

[35] J.-P. Vert. Reconstruction of biological networks by supervised machine learning approaches. ArXiv e-prints, June 2008.

[36] W W Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research,

33(4):452–473, 1977.

47



Vita

The author was born in New Orleans, Louisiana. He received a double major in Mathematics
and Computer Science from Loyola University New Orleans in 2005. He joined the University
of New Orleans in the Fall of 2009 to pursue graduate studies in Computer Science. He
became a member of Dr. Dongxiao Zhu’s group in Spring 2010.

48


	SEA: a novel computational and GUI software pipeline for detecting activated biological sub-pathways
	Recommended Citation

	tmp.1312734961.pdf.zqIVI

