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ABSTRACT 

The Faraday rotation spectrum of composites containing magnetite nanoparticles is found to be 

dependent on the interparticle spacing of the constituent nanoparticles. The composite materials 

are prepared by combining chemically-synthesized Fe3O4 (magnetite) nanoparticles (8 nm 

diameter) and poly(methylmethacrylate) (PMMA). Composites are made containing a range of 

nanoparticle concentrations.  The peak of the main spectral feature depends on nanoparticle 

concentration; this peak is observed to shift from approximately 470 nm for (dilute composites) 

to 560 nm (concentrated). A theory is presented based on the dipole approximation which 

accounts for optical coupling between magnetite particles. Qualitative correlations between 

theoretical calculations and experimental data suggest the shifts in spectral peak position depend 

on both interparticle distance and geometrical configuration. 
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CHAPTER 1:  INTRODUCTION

 
1.1 Overview and Motivation 

The coupling of light with structures much smaller than the light’s wavelength (typically, 

interaction lengths less than 100 nm) is particularly relevant with the current push to fabricate 

photonic devices on the nanometer scale.1  Previous studies of these optical near-field 

interactions have focused mostly on noble metal nanoparticles, which display resonances in the 

optical absorption spectrum dependent on the particle size, shape and interparticle spacing.2  In 

addition, light has been shown to propagate along noble metal nanoparticle chains.3  Here, we 

extend the investigations of near-field optical interactions and include a study of the magneto-

optical properties of nanoparticles as a function of interparticle spacing.  Magneto-optically 

active nanoparticles could have applications in the emerging field of nanophotonics, data storage 

or sensing.  

The magneto-optical properties of films containing dilute concentrations of Fe3O4 

(magnetite) particles have previously been studied.4,5  Barnakov et al. recently reported that 

shifts in the Faraday rotation spectrum of magnetite/polymer nanocomposites are observed with 

changes in the nanoparticle size, with particle diameters ranging from 8 nm to 200 nm.6  In this 

work, we report shifts in Faraday rotation peak position that are dependent on the concentration 

of nanoparticles in the matrix. Magnetite particles are estimated to have separations (on average) 

as small as a few nanometers. To explain these results, a new theory is presented based on the 

coupled-dipole approximation, which accounts for optical dipole-dipole coupling between the 

magnetite particles. 
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1.2 Background on the Magneto-Optic Effect 

On September 13, 1845 Michael Faraday discovered what is known as the magneto-optic 

effect.  On that day, after experimenting with polarized light transmitted through glass, he 

recorded the following passage in his lab notebook: “A piece of heavy glass, which was 2 in. by 

1.8 in. and 0.5 of an inch thick, being a silicoborate of lead, was experimented with… when 

contrary magnetic poles were on the same side there was an effect produced on the polarized 

ray, and thus magnetic force and light were proved to have relations to each other.  This fact will 

most likely prove exceedingly fertile, and of great value in the investigation of conditions of 

nature force.”7  After several days work, he verified that the effect of the magnet was to rotate 

the plane of polarization by an angle proportional to the strength of the magnet.  This can be 

illustrated by the equation8 

 θ = VHL , (1.1) 

where θ  is the angle of rotation of the polarized light, L  is the thickness of the material, H  is 

the applied magnetic field, and V  is the Verdet constant.  The Verdet constant depends on the 

properties of the medium, the wavelength of the light, and the temperature.  The Scottish 

physicist John Kerr discovered a similar effect in 1888.  He was conducting an experiment where 

he examined the polarization of light, which was reflected off the pole of a polished 

electromagnet.  Again the plane of polarization was found to rotate after reflection from the 

surface of the magnet.  Accordingly, magneto-optics conducted by transmission and reflection is 

referred to as the Faraday and Kerr effect, respectively. 
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1.3 Applications of Magneto-Optical Materials 

Since Faraday’s original discovery, magneto-optic effects have proven to be an extremely 

significant phenomenon for both fundamental science and the development of numerous 

applications.  Various Magneto-Optical devices have been developed which include modulators, 

bistable optical switches, optical isolators, magneto-optical circulators, deflectors, transparencies 

and displays, read heads, and low-insertion-loss magneto-optical elements for laser gyroscopes.8  

In addition to these devices, magneto-optical memories have been used extensively in the form 

of disks and tapes.  

A wide range of magnetic materials have been studied over the last several decades.  

Magneto-optical materials can be divided into two main groups.  The first includes metals and 

metal alloys, which are only partially transparent at film thicknesses less than 100 nm.  These 

materials are typically studied using the Kerr effect and includes rare-earth-transition metal 

alloys, which are often used in magneto-optical disk memory systems.  The other group includes 

the dielectric and semimagnetic materials.  Magnetic dielectrics, such as ferromagnetic garnets, 

orthoferrites, spinel ferrites, and oxides are generally quite transparent and lend themselves for 

Faraday effect applications.8 

 

1.4 Optics of Nanocomposite Materials 

Calculations of the magneto-optic effects of nanocomposite materials are often made using 

effective medium theory (EMT).  These calculations are made by determining the effective 

dielectric tensor elements by taking the volume average of the dielectric functions of the 

constituent materials.9  However, EMT does not take into account optical coupling between the 

nanostructured elements. 
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Discrete-dipole approximation (DDA) calculations have been used to determine the 

scattering and absorption of a large variety of nanometer sized structures and geometries.  The 

DDA replaces the structures with collections of point dipoles which interact optically.  DDA 

methods have been used in astrophysical calculations to determine the optical cross-sections of 

interstellar graphite grains.10  In addition, Lazarides et al. have used the DDA for DNA-linked 

gold nanoparticles, where each particle is replaced by a single dipole.11 

 In this study, we adapt the DDA calculations for determination of the magneto-optical 

properties of collections of nanoparticles.  This allows for the first faraday effect calculations 

which take into account the near-field optical interactions between particles. 
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CHAPTER 2:  THEORY 

 
2.1 Derivation of Polarization Parameters 

In order to discuss how magneto-optic effects change the polarization of light, a graphic 

illustration is derived that fully defines the state of polarization.  The polarization of an 

electromagnetic monochromatic wave can be described as the behavior of the electric field 

vector as it moves through time, observed from a fixed point in space.  The electric field vector 

can be broken into three independent, linear, simple-harmonic vibrations12 

 ˆ ˆ ˆx y zE E x E y E z= + +
K

, (2.1) 

   Ei = E0i cos(ωt +δ i ) ,      (2.2) 

where   i = x, y, z ,   E0i  is the amplitude, and δ i  is the phase along the ith coordinate axis.  Each of 

the linear vibrations can be broken into two collinear vibrations 

   Ei = (E0i cosδ i )cosωt − (E0i sinδ i )sinωt . (2.3) 

Additionally, the group of three oscillations represented by equation (2.3) can be broken into two 

subgroups.  The first subgroup contains all of the (E0i cosδ i )cosωt  terms and the second 

contains all of the   −(E0i sinδ i )sinωt  terms.  Each subgroup represents three in-phase linear 

vibrations which vary in time by either cosωt  or − sinωt .  It can be shown (fig. 2.1-1) that any 

two (or more) in-phase vibrations along different directions combine to form a single linear 

vibration that is in-phase with its component vibrations.  This allows us to rewrite equation (2.3) 

as 

 1 1 2 2ˆ ˆ( cos ) ( sin )E a t u a t uω ω= −
K

, (2.4) 
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where 1̂u  and 2û  are unit vectors which represent the resultant linear vibrations of the two 

subgroups, and   a1  and   a2  are their respective amplitudes.  If we take the plane containing the 

unit vectors, with γ  representing the angle between the two vectors, we can define 

 1 2ˆ ˆcos u uγ = ⋅  (2.5) 

and 

 1 2ˆ ˆsin u uγ = × . (2.6) 

 

 

Figure 2.1-1:  Two in-phase linear vibrations combine to 

form a third in-phase linear vibration.12 

 

If we take the projections of E
K

 of equation (2.4) parallel and perpendicular to 1̂u , we have 

 1 2cos ( cos )sinE a t a tω γ ω= −&  (2.7) 

and 

   E⊥ = −(a2 sinγ )sinωt . (2.8) 



 7

With the above derived equations, it is straight forward to show that 

 
2 2

2 2 2
1 2 1

2 cot
1

( sin )
E E EE
a a a

γ
γ

⊥⊥+ − =& & , (2.9) 

which is the equation of an ellipse in the plane of the unit vectors 1̂u  and 2û .  Therefore, the tip 

of the electric field vector traces out an ellipse in the general case of a monochromatic wave (fig. 

2.1-2).   

 

Figure 2.1-2:  Diagram of elliptical polarization where θ  

is the rotation of the plane of polarization, η  is the 

ellipticity, δ  is the phase, and A  is the amplitude of the 

electric field. 12 

 

The elliptical polarization is generally defined by the four parameters12: 

i. azimuth θ  of the major axis from a reference direction; 
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ii. the ellipticity η , where + and – signs refer to right- and left-handed polarizations, 

respectively, which defines the direction the tip of the electric field vector moves in time; 

iii. the total amplitude  A , where A = a2 + b2 ; 

iv. and the phase δ , which is represented by the angle between the electric field vector and 

the major axis a time t = 0 . 

The special case of polarization where the light is linearly polarized with an azimuth of  0o 

and an ellipticity of zero is shown in figure 2.1-3.  The two illustrations in figure 2.1-4 display 

right- and left-handed circularly polarized light with ellipticities of  45o and   −45o , respectively. 

 

 

 

Figure 2.1-3:  Illustration of the special case of linearly 

polarized light, where θ = 0o  and η = 0o . 
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Figure 2.1-4:  Illustration of left- and right-circularly 

polarized light, where η = 45o ,−45o , respectively. 

 

2.2 Origin of the Magneto-Optic Effect 

Magneto-optical effects arise from a magnetic field-induced anisotropy, which manifests 

itself through the presence of non-symmetric, off-diagonal components of a material’s dielectric 

tensor.  These off-diagonal components are a result of different electronic transitions excited by 

left and right circularly polarized light.8  In the absence of a magnetic field, the two processes are 

equal and no magneto-optic effect occurs (fig. 2.2-1).   

The placements of the off-diagonal components within the dielectric tensor vary according to 

the particular orientation of the axis of propagation of incident light and the  

direction of the applied magnetic field.  In this study, we focus on the case where the magnetic  
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Figure 2.2-1:  Energy level splittings which result 

in a difference in optical absorption energy for left 

and right circularly polarized light. Lσ  indicates 

left circular polarization (spin -1) and Rσ  

indicates right circular polarization (spin +1).  8 

 

 

field is parallel to the axis of propagation of the incident radiation.  This is referred to as the 

“polar” geometry (fig. 2.2-2) and results in a dielectric tensor of the following form8 

 
0
0

0 0

xx xy

xy xx

xx

i
i
ε ε

ε ε ε
ε

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

� , (2.10) 

where  ε xx  is the diagonal component and ε xy  is the off-diagonal component.  A  

transformation to a right-left-handed circular cylindrical coordinate system can be made with the 

transformation matrix12 

 
1 1 0

1 0
2

0 0 2

f i i
⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

� , (2.11) 

by the matrix multiplication 

 1rl f fε ε−= � �� � , (2.12) 
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Figure 2.2-2:  Polar and longitudinal geometries 

for transmission (Faraday) magneto-optical 

measurements. 

 

polarized light, which can be written as 

   
n±

2 = ε xx ± ε xy , (2.14) 

where the + and - denote the right- and left-circular index of refraction, respectively.   

where the  rl  superscript represents the right-left-handed circular cylindrical coordinate system.  

With this transformation, the dielectric tensor is diagonalized 
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0 0

0 0
0 0

xx xy
rl

xx xy

xx

ε ε
ε ε ε

ε

+⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

� , (2.13) 

and displays the difference in the index of refraction for right-left handed circularly 

If we write the complex index of refraction as 

 n n iκ= +� , (2.15) 

the difference between the left and right circular indexes is13 

 ( ) ( ) xy

xx

n n n n i
ε

κ κ
ε

+ − + − + −− = − + − =� � . (2.16) 

The complex Faraday rotation angle is given by the sum of the azimuthal angle and the ellipticity 

 ( )i n nπθ η
λ + −Θ = + = −� � . (2.17) 

The Faraday rotation is just proportional to the difference in the real parts of the index of 

refraction (phase difference) 

 ( ) Re xy

xx

n n
επ πθ

λ λ ε
+ −

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥⎣ ⎦

 (2.18) 

and the ellipticity is given by the difference in the absorption, 

 ( ) Im xy

xx

επ πη κ κ
λ λ ε

+ −

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥⎣ ⎦

. (2.19) 

 

2.3 Scattering and Maxwell’s Equations 

Fundamentally, all optical interactions can be categorized as scattering processes in the sense 

that any optical process involves the absorption and re-radiation of light by ions in solids, 

molecules or free electrons. This absorption/re-radiation process is, of course, governed by 
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Maxwell’s equations. For this study, we were interested in composite thin film materials in 

which the optically-active constituents consist of magnetic nanoparticles embedded in a 

transparent, nonmagnetic medium.  Therefore, as a first step towards the development of a model 

for magneto-optic effects in this system, it is important to look at what happens to an individual 

particle in an electric field (fig. 2.3-1).   

 

 

Figure 2.3-1:  Scattering by and arbitrary particle in an 

electromagnetic field.  The subscript i  indicates the 

incident field, 1 indicates the field inside the particle, and s 

represents the scattered field. 14 

 

A particle illuminated by a beam of light can scatter light in a large variety of ways 

depending on its shape, size, and composition.  Considering an incident field defined by the 

plane harmonic waves, 

 0 exp( )iE E ik x i tω= ⋅ −
KK K K  (2.15) 

and 
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 0 exp( )iH H ik x i tω= ⋅ −
KK K K , (2.16) 

the field outside the particle is the sum of the incident and scattered fields14, 

 2 i sE E E= +
K K K

 (2.17) 

and 

 2 i sH H H= +
K K K

, (2.18) 

where sE
K

 and sH
K

 are the scattered electric and magnetic fields, respectively. 

These fields must satisfy Maxwell’s equations 

 0E∇⋅ =
K K

, (2.19) 

 0H∇⋅ =
K K

, (2.20) 

 E i Hωµ∇× =
K K K

, (2.21) 

and 

 H i Eωε∇× = −
K K K

, (2.22) 

at all interior points where ε  and µ  are continuous.  Taking the curl of both sides of equations 

(2.21) and (2.22) leads to the vector wave equations 

 2 2 0E k E∇ + =
K K

 (2.23) 

and 

 2 2 0H k H∇ + =
K K

, (2.24) 

where 

   k
2 = ω 2εµ . (2.25) 

Therefore, the fields must satisfy the vector wave equations. 
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2.4 Particles Small Compared to the Wavelength of Light 

The absorption and scattering efficiencies of a spherical particle in an electric field with a 

wavelength much greater than the diameter of the particle are14 

   
Qabs = 4x Im

ε1 − εm

ε1 + 2εm

⎛

⎝⎜
⎞

⎠⎟
 (2.26) 

and 

   
Qsca =

8
3

x4 ε1 − εm

ε1 + 2εm

2

, (2.27) 

where  ε1  and  εm  are the dielectric constants of the sphere and the surrounding material, 

respectively.  The term   (ε1 − εm ) / (ε1 + 2εm )  also appears in the case of a spherical particle in a 

uniform static electric field, and suggests that we can use an electrostatic approximation when 

the particle size is much less than the wavelength of light.  Because we actually use a wavelength 

dependent dielectric function in this model, this is often referred to as a quasistatic 

approximation. 

For the case of a homogeneous, isotropic sphere embedded in an arbitrary medium, both of 

which are within a uniform static electric field, 

 0 0 ˆzE E e=
K

, (2.28) 

the initially uniform field will be distorted by an induced charge on the surface of the sphere due 

to the difference in dielectric constants of the sphere and host medium.  The electric fields inside 

and outside the sphere, 1E
K

 and 2E
K

, respectively, are derivable from scalar potentials   Φ1(r,θ)  

and   Φ2(r,θ) 14, 

 1 1E = −∇Φ
K K

 (2.29) 
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and 

 2 2E = −∇Φ
K K

, 

where 

 
2

1 0∇ Φ =  (2.30) 

if  r < a  , and 

 
2

2 0∇ Φ =  (2.31) 

if  r > a , where  a  is the radius of the sphere. The potentials are independent of the azimuthal 

angle φ  due to the spherical symmetry of the problem.  The boundary conditions for the 

interface between the sphere and the medium are 

  Φ1 = Φ2  (2.32) 

and 

   
ε1

∂Φ1

∂r
= εm

∂Φ2

∂r
, (2.33) 

for  r = a .  Additionally, at large distances from the sphere, the field is the unperturbed incident 

electric field 

   
lim
r→∞

Φ2 = −E0r cosθ = −E0z . (2.34) 

It can be shown that the functions14 

   
Φ1 = −

3εm

ε1 + 2εm

E0r cosθ  (2.35) 

and 

   
Φ2 = −E0r cosθ + a3E0

ε1 − εm

ε1 + 2εm

cosθ
r 2  (2.36) 

satisfy equations 2.19-2.24. 
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Figure 2.4-1:  Electric dipole represented by a positive and 

negative charge q  spaced a distance d  from each other.14 

 

If one looks at two point charges q  and −q  separated by a distance d as in figure 2.4-1, the 

dipole moment is 

 ˆzp pe=K , (2.37) 

where p qd=
GG .  The potential of the dipole embedded in a medium with dielectric constant εm  at 

point  P  is 

   
Φ =

q
4πεm

1
r+
−

1
r−

⎛

⎝⎜
⎞

⎠⎟
, (2.38) 

where 

 

1
2 2

2 2

ˆ
1

4
zr e dr r d

r r+

⎛ ⎞⋅
= − +⎜ ⎟

⎝ ⎠

K
 (2.39) 

and 
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1
2 2

2 2

ˆ
1

4
zr e dr r d

r r−

⎛ ⎞⋅
= + +⎜ ⎟

⎝ ⎠

K
. (2.40) 

If  d  is made to approach zero in such a way that qd  remains constant, the ideal dipole potential 

is obtained 

 3 2

cos
4 4m m

p r p
r r

θ
πε πε
⋅

Φ = =
K K

. (2.41) 

When this is compared to equation (2.36), we can see that the potential outside of the spherical 

particle is the superposition of the incident field and the field from an ideal dipole at the origin 

with dipole moment 

 3 1
0

1

4
2

m
m

m

p a Eε επε
ε ε

−
=

+

KK , (2.42) 

or 

 0mp Eε α=
GK , (2.43) 

where α  is the polarizability defined by the Claussius-Mossoti equation15 

   
α i = 4πa3 ε i − εm

ε i + 2εm

. (2.44) 

This is the basic form of the polarizability that will be used in the next section. 

  

2.5 Coupled-Dipole Model (CDM) for Nanocomposite Materials 

The nanoparticle composite materials investigated in this research consist of large numbers 

of particles.  In this section, the model will be constructed for a material in the absence of a 

magnetic field and, therefore, with constituents that do not posses off-diagonal components in 

their dielectric function.  The basis for this approximation is that the individual particles can be 

represented as radiating electric dipoles. Each dipole radiates an electric dipole field as16 
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 ( ) ( )2
3 2

0

1 1ˆ ˆ ˆ ˆ3
4

i r
i re iE r p r r r p p e

r r r

κ
κκκ

πε
⎧ ⎫⎛ ⎞= × × + ⋅ − −⎡ ⎤⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎩ ⎭

K K K K . (2.45) 

The dipole, pG , is polarized in response to the incident field plus the fields radiated by all the 

other dipoles in the system. In this way, the Coupled-Dipole Model allows for an investigation of 

the near-field interactions between particles.   

As a first approximation, each particle in the composite is replaced by a point dipole located 

at the point jrG  with a scalar polarizability jα . The polarization of each dipole is given by 

 j j jP Eα=
K K

, (2.46)   

where jE
K

 is the local electric field at point jrG . When exposed to light, the electric field jE
K

 is the 

sum of the incident field and the field emitted by all neighboring dipoles17 

 ,dipole j jk k
k j

E A P
≠

= −∑
K K� , (2.47) 

where 

 2
3 32

1
ˆ ˆ ˆ ˆ[ ( 1 ) (3 1 )]

jki r
jk

jk jk jk jk jk
jk jk

i reA r r r r
r r

κ κ
κ

−
= − + −� � � , (2.48) 

and 
 
rjk  is the distance from particle  j  to particle k , and ĵkr  is the unit vector in the jkrK  direction, 

with  κ = ω / c .  The 3×3 identity matrix is represented by 31� .  With some persistence, equation 

(2.47) can be shown to be analogous to equation (2.45).  For N particles, the polarizations of 

each particle jP
K

  can then by determined by solving the self-consistent system of 3N complex 

linear equations 

 ,
1

N

j jk k inc j
k

E A P E
=

+ =∑
K K K� , (2.49) 
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where 0jjA =� , or, more compactly, 

 ,
1

N

jk k inc j
k

A P E
=

=∑
K K� , (2.50) 

where 1
jj jA α −=� . 

 

2.6 CDM in a Right-Left Circular Coordinate System 

For the case where a magnetic field is applied, off-diagonal components of the dielectric 

tensor are non-zero. The tensor must be diagonalized as in equation (2.13) in order to use the 

Claussius-Mossoti equation to determine the polarizability.  This is often done for particles that 

exhibit shape-dependent anisotropy10 and the additional assumption is taken that the equation can 

be used for any diagonalized anisotropy. An identical transformation of the matrix jkA�  and the 

vectors , and k inc jP E
K K

 is made which yields 

 ,
1

N
rl rl rl
jk k inc j

k
A P E

=

=∑
K K� , (2.51) 

with ( ) 1rl rl
jj jA α

−
=� � .  Similarly, this allows for calculations of the polarizations of each particle. 

 

2.7 Calculation of the Faraday Rotation 

Solving Eq. (2.51) for the polarizations 
K
Pk

rl , an average polarizability is determined from a 

volume average of the calculated polarizations 

  
   

K
Prl =

1
N

K
Pk

rl

k=1

N

∑ , (2.52) 
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Effective dielectric components were found by using the inverse of the Classius-Mossotti 

relation  

   
ε ii = εm

a3 + 2α ii

a3 −α ii

, (2.53) 

using the averaged polarizability. The Faraday rotation spectrum can then be calculated from9 

 
Re xy

xx

επθ
λ ε

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
,     (2.54) 

where  ε xx  and 
 
ε xy  are the effective diagonal and off-diagonal components in Cartesian 

coordinates, respectively.  Alternatively, the ellipticity can be determined by taking the 

imaginary part of equation (2.54). 
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CHAPTER 3:  EXPERIMENT

 

3.1 Experimental Setup for Magneto-Optic Measurements 

 

 

Figure 3.1-1:  Coordinate system for the experimental 

setup looking towards the light source, which propagates 

down the z-axis. 

 

The experimental setup shown in figure 3.1-2 was used for the measurement of Faraday 

rotation and ellipticity as a function of wavelength.  A broadband light source is fed through a 

monochromator which gives a spectral range from approximately 400 to 1000 nanometers.  The 

“unpolarized” light then passes through a linear polarizer set at 45 degrees from the x-axis before 

it is sent through a photoelastic modulator (PEM).  The PEM causes the light to undergo a 

periodically changing polarization from right-handed circular (RHCP) to left-handed circular 

(LHCP).  The modulated light then passes through holes bored through the axis of a 2 Tesla 

electromagnet.  A sample is placed between the poles of the magnet.  Next, the light passes  
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Figure 3.1-2:  Experimental setup for magneto-optical 

measurements. 

 

through an analyzer, which is another linear polarizer set parallel to the x-axis.  At the end of the 

light path, the signal is detected by a silicon photodiode. 

 

3.2 PEM Method of Polarization measurement 

The photoelastic modulator is essentially a periodically varying quarter wave plate made 

from a fused silica optical element.  The fused silica element is attached to a piezoelectric 

transducer, which induces mechanical strain along one if its axis.  The strain causes a 

birefringence proportional to the resulting stress, otherwise known as the photoelastic effect.  

Because the light passes through the element at  45o and the strain of the PEM is along the y-axis 

of the optical system, the phase of the y-component of the linearly polarized incident light is 

periodically lagged.  This is what causes the light to periodically shift between RHCP and LHCP 

(fig. 3.2-1). 
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Figure 3.2-1:  Modulation of linearly polarized light as it 

passes through the photoelastic modulator at 45o .18  

 

With the above mentioned optically elements and periodically varying polarization of the 

incident light, it can be shown through Jones matrix calculations that the Faraday rotation and 

ellipticity is proportional to the normalized second and first harmonic, respectively.18  That is 

 

2 f

DC

I
A

I
θ = , (53) 

and 

 

1 f

DC

I
B

I
η = , (54) 

where 
  
I2 f  is the 2f signal, 

  
I1 f  is the 1f signal, IDC  is the DC signal, and A and B are calibration 

constants determined by the optical system. 

8 9 10 

11 12 13

7 6 

1 2 3 4 5 

RHCP

LHCP 
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3.3 Sample Preparation 

Samples were prepared by combining varying amounts of a magnetite nanoparticle solution 

with a 10% solution of poly(methylmethacrylate) PMMA and toluene (fig. 3.3-1).  Magnetite 

nanoparticles (fig. 3.3-2) were synthesized using the method of Caruntu, et al.19  Briefly, FeCl3 

and FeCl2 were dissolved in diethylene glycol yielding a solution containing Fe3+ and Fe2+ ions 

in the ratio of 2:1. Coprecipitation with NaOH at ~200oC resulted in 8-10 nm Fe3O4 particles.  

The nanoparticles were washed, dried and suspended in toluene by the addition of oleic acid as a 

capping ligand. The concentration of this solution was approximately 5 mg/ml.  Volume 

fractions of 3-25 percent nanoparticles were prepared, which corresponded to interparticle 

distances of approximately 10-20 nanometers.  Thin films were prepared by spin-coating 20 ml 

of the solution onto quartz disks for 9 minutes at 150 RPM. 

 

 

Figure 3.3-1:  Vials containing different concen-trations of 

magnetite nanoparticles. 



 26

 

Figure 3.3-2:  TEM image of magnetite nano-particles. 

 

 

 

 

 

 

 

 

 

 

 

 



 27

CHAPTER 4:  RESULTS 

 

4.1 Experimental Results 

Figure 4.1-1 shows the experimental Faraday rotation spectra of magnetite 

nanoparticle/PMMA composite films. By increasing the concentration of magnetite in the 

composite materials, shifts in the main spectral feature of the Faraday rotations by up to 

approximately 92 nm are observed.  Films produced with dilute concentrations of nanoparticles 

exhibited peaks at approximately 470 nm, while those at higher concentrations shifted towards 

red wavelengths.  The largest shift was observed for the two most concentrated composites at 

approximately 560 nm.  Typically, magneto-optic materials are modeled using effective medium  
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Figure 4.1-1:  Experimental Faraday rotation spectra for 

various nanoparticle concentrations. 

 



 28

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

S
pe

ct
ra

l S
hi

ft 
(n

m
)

Sample

 Nanoparticle
Concentration

 

Figure 4.1-2:  Spectral shift of experimental data for various 

concentrations of nanoparticles. 

 

theory (EMT).9  These shifts in the spectral peak are not predicted by EMT, which does not 

account for optical interactions between the particles.  

 

4.2 Calculations of Two-Particle Geometries 

We use our coupled-dipole model to explicitly account for particle-particle interactions. First, 

we limit the calculations to two coupled Fe3O4 nanoparticles of 8 nm diameter and find that this 

is sufficient to reproduce the qualitative features of the measured Faraday rotation spectrum. We 

calculate the spectrum for the three basic orthogonal two-particle geometries shown in figures 

4.2-1 to 4.2-3. In these calculations, the magnetic field is parallel to the direction of light 

propagation, taken to be the z-direction, consistent with equation (2.10).  The polarization of the 

incident light is linear in the x-direction for all calculations. We used literature values for 

diagonal components of the dielectric tensor of Fe3O4  in Eq. (2.10) taken from data reported by 
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Schlegel, et al.20 and off-diagonal components taken from Zhang, et al.21  A dielectric constant of 

1.49 was used for the PMMA ( εhst ). These values can be found in Appendix A. 
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Figure 4.2-1:  Calculation of the Faraday rotation spectra 

for two nanoparticles with various interparticle distances.  

Geometry is indicated in the inset. 

 

For all three two-particle geometries, little change was seen in the spectra until the particles 

were brought within approximately 6 nm of each other. In fact, for interparticle distances greater 

than 6 nm, our calculation is similar to EMT, which is included in the figures for comparison.  

Figure 4.2-1 shows the theoretical results for two particles aligned on the x-axis, perpendicular to 

the propagation direction and parallel to the linear polarized light. This geometry shows a 

progressive red-shift of approximately 92 nm for dipoles with a 3 nm spacing.  In figure 4.2-2,  
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Figure 4.2-2: Calculation of the Faraday rotation spectra 

for two nanoparticles with various interparticle distances.  

Geometry is indicated in the inset. 
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Figure 4.2-3: Calculation of the Faraday rotation spectra 

for two nanoparticles with various interparticle distances.  

Geometry is indicated in the inset. 
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the particles are, again, aligned perpendicular to the propagation direction, but with the incident 

light polarized perpendicular to the particles.  Red-shifts are shown with a maximum of around 

105 nm, but no significant shift is seen in the spectra until the particles are within 4 nm.  In the 

last two-particle geometry, shown in figure 4.2-3, the particles are aligned parallel to the 

propagation direction.  In contrast to the other geometries, blue-shifting is observed in these 

calculations by approximately 97 nm at a 3 nm spacing. We point out that if we assume we have 
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Figure 4.2-4:  Summary of the spectral shifts of each two-

particle geometry. 

 

8-nm diameter particles, separations less than 8 nm would correspond to particles that physically 

overlap. This is justified within this approximation since the physical particle is replaced by a 

radiating point dipole at the particle’s position. Size is only taken into account in calculating the 

“strength” of the polarizability equation 2.44. Phenomenologically, this overlap has been 

suggested to account for multipolar corrections to the depolarization factor.  A summary of the 

spectral shifts of the three geometries is provided in figure 4.2-4. 
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4.3 Cubic Arrays of Particles 

In the experimental system, the particles are expected to be randomly distributed with an 

average interparticle spacing determined by the volume fraction of nanoparticles to PMMA host 

material. The measured spectrum would then be an average of the three basic particle geometries 

of figures 4.2-1 through 4.2-3.  The Faraday spectra of three cubic arrays of particles were 

calculated in order to confirm that a net red-shift would occur from a combination of the three 

two-particle geometries.  In addition, by calculating an increasing number of nanoparticle cubic 

arrays, an estimate of the amount of neighboring particles contributing to the spectral shift was 

able to be determined.  The Faraday spectra of the cubic arrays confirm a net red-shift as the 

interparticle spacing is decreased.  The largest red-shift of approximately 123 nm is shown for 

the 6x6x6 cubic array (fig 2.3-3).  As the number of particles in the model is increased, the red-

shift appears to converge at the 120-130 nm range.  This suggests that the system of 

approximately 216 particles is sufficient to account for contributions from neighboring particles.   
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Figure 4.3-1:  Calculation of the Faraday spectra for a 

2x2x2 cubic array of nanoparticles with various spacings. 
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Figure 4.3-2:  Calculation of the Faraday spectra for a 

4x4x4 cubic array of nanoparticles with various spacings. 
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Figure 4.3-3: Calculation of the Faraday spectra for a 

6x6x6 cubic array of nanoparticles with various spacings. 
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Figure 4.3-4:  Summary of the spectral shift for three cubic 

arrays of nanoparticles. 
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Figure 4.3-5:  Summary of the spectral shift for two-

particle and cubic geometries. 
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CHAPTER 5:  CONCLUSION 

 

Peak position of the Faraday rotation spectrum of magnetite/PMMA nanocomposite films is 

shown to be concentration dependent.  By increasing the concentration of 8 nm diameter 

particles in the PMMA matrix, a red-shift and broadening of the main spectral feature is 

observed.  Calculations using existing EMT models fail to account for the shifts seen in the 

experimental data.  Using a coupled-dipole-based model, shifts in peak position are shown to 

occur based purely on optical effects where only the inter-particle distance is varied.  In addition, 

the peak positions of the calculated spectra depend on the geometrical configuration.  It is also 

shown that the main features of the Faraday spectra can be calculated by taking into account 

nearest neighbor effects.  Models of cubic arrays show a net red-shifting of the peak position as 

the concentration of particles is increased. 

Future directions for this research might include improved characterization of the distribution 

of nanoparticles in the material.  This would allow for a better choice of particle arrangement 

within the model.  Additionally, particles might be better approximated by a discrete-dipole 

model, where individual particles are made up of large amounts of dipoles.  Along these lines, 

more complex structures could be obtained, such as cylinders and rough surfaces.  
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Appendix A:  Dielectric Constants 

 

Energy (eV) Re[ ]xxε  Im[ ]xxε  

1.500 5.000 2.000 

1.625 5.229 2.171 

1.750 5.235 2.465 

1.875 5.125 2.774 

2.000 5.000 3.000 

2.125 4.940 3.069 

2.250 4.940 3.054 

2.375 4.969 3.065 

2.500 5.000 3.200 

2.625 5.003 3.536 

2.750 4.966 3.979 

2.875 4.869 4.410 

3.000 4.700 4.700 

3.125 4.454 4.761 

3.250 4.160 4.645 

3.375 3.859 4.444 

3.500 3.600 4.250 

3.625 3.404 4.129 

3.750 3.272 4.081 

3.875 3.174 4.079 

4.000 3.100 4.100 

 

Table B-1:  Real and imaginary parts of the diagonal 

dielectric tensor elements for magnetite. 
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Energy (eV) Re[ ]xyε  Im[ ]xyε  

1.500 0.042 0.010 

1.625 0.035 0.016 

1.750 0.025 0.023 

1.875 0.015 0.028 

2.000 0.005 0.029 

2.125 -0.005 0.025 

2.250 -0.012 0.017 

2.375 -0.016 0.007 

2.500 -0.014 -0.004 

2.625 -0.005 -0.014 

2.750 0.007 -0.021 

2.875 0.021 -0.025 

3.000 0.031 -0.025 

3.125 0.036 -0.020 

3.250 0.037 -0.013 

3.375 0.034 -0.003 

3.500 0.031 0.005 

3.625 0.028 0.011 

3.750 0.025 0.016 

3.875 0.023 0.019 

4.000 0.021 0.022 

 

Table B-2:  Real and imaginary parts of the off-diagonal 

dielectric tensor elements for magnetite. 
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APPENDIX B:  MATHEMATICA PROGRAM FOR  
                             TWO-PARTICLE CALCULATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



H∗ Program for calculation of extinction and Magneto−

Optic Spetra of two particles ∗L
H∗ Turn Off Spell Checker ∗L
Off@General::spellD

H∗ Import Dielectric Constants Heach file must contain the same amount of entriesL∗L
perm1d = Import@"D:\permittivity\Fe3O4−diagonal2.txt", "Table"D;
perm1o = Import@"D:\permittivity\Fe3O4−offdiagonal2.txt", "Table"D;

H∗ Number of Entries For EnergyêDielectric Constants ∗L
num = Length@perm1dD;

H∗ Extract Dielectric Info ∗L
xx1 = Table@Hperm1d@@iDDL@@2DD + I Hperm1d@@iDDL@@3DD, 8i, num<D;
xy1 = Table@Hperm1o@@iDDL@@2DD + I Hperm1o@@iDDL@@3DD, 8i, num<D;
enr = Table@Hperm1d@@iDDL@@1DD, 8i, num<D;

H∗ Host dielectric constant, particle radius, and inter−particle distance ∗L
host = H1.49L2;
size = 4 ;
d = 3 êê N;

H∗ Transformation Matrices ∗L

finv =
1

ccccccccccè!!!!
2

 981, I, 0<, 81, −I, 0<, 90, 0,
è!!!!

2 ==;

f =
1

ccccccccccè!!!!
2

 981, 1, 0<, 8−I, I, 0<, 90, 0,
è!!!!

2 ==;

H∗ Unit Vectors "Cartesian" ∗L
r12 = 8−1, 0, 0<;
r21 = 81, 0, 0<;

H∗ Incident Wave at Dipole 1 and 2 "Cartesian" ∗L
ei = 81, 0, 0<;

H∗ Incident Wave "RightêLeft" ∗L
eirl = finv . ei;

H∗ The "TOTAL" Electric Field at Dipole 1 and 2 "Cartesian" ∗L
e1 = 8e1x, e1y, e1z<;
e2 = 8e2x, e2y, e2z<;

H∗ The "TOTAL" Electric Field at Dipole 1 and 2 "RightêLeft" ∗L
e1rl = finv . e1;
e2rl = finv . e2;

H∗ Identity Matrix ∗L
im = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<;
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H∗ Dummy Arrays ∗L
cextl = 8<;
effeps = 8<;

H∗ Loop For Calculating C_ext Spectrum ∗L
DoA
H∗ Dielectric Functions "Cartesian" ∗L
ε1 = 88xx1@@nDD, I xy1@@nDD, 0<, 8−I xy1@@nDD, xx1@@nDD, 0<, 80, 0, xx1@@nDD<<;

ε2 = 88xx1@@nDD, I xy1@@nDD, 0<, 8−I xy1@@nDD, xx1@@nDD, 0<, 80, 0, xx1@@nDD<<;

H∗ Conversian of Dielectric Functions to RightêLeft Circular ∗L
ε1rl = finv . ε1 . f;
ε2rl = finv . ε2 . f;

H∗ Polarizability ∗L

alp1 = size3 99 Hε1rl@@1DDL@@1DD − host
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε1rl@@1DDL@@1DD + 2 host

, 0, 0=,

90,
Hε1rl@@2DDL@@2DD − host

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε1rl@@2DDL@@2DD + 2 host
, 0=, 90, 0,

Hε1rl@@3DDL@@3DD − host
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε1rl@@3DDL@@3DD + 2 host

==;

alp2 = size3 99 Hε2rl@@1DDL@@1DD − host
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε2rl@@1DDL@@1DD + 2 host

, 0, 0=, 90,
Hε2rl@@2DDL@@2DD − host

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε2rl@@2DDL@@2DD + 2 host
, 0=,

90, 0,
Hε2rl@@3DDL@@3DD − host

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccHε2rl@@3DDL@@3DD + 2 host
==;

H∗ Wavelength ∗L

λ =
1242

cccccccccccccccccccccccc
enr@@nDD ;

H∗ Wave Number ∗L

k =
2 π
ccccccccc

λ

è!!!!!!!!!!!!
host ;

H∗ Polarization ∗L
p1 = alp1 . e1rl;
p2 = alp2 . e2rl;

H∗ Individual "a" Matrices "Cartesian" ∗L

a12 =
i
k
jjjj

EI k d

ccccccccccccc
d

 i
k
jjk2 HOuter@Times, r12, r12D − imL +

I k d − 1
ccccccccccccccccccccc

d2
 H3 Outer@Times, r12, r12D − imLy

{
zzy
{
zzzz;

a21 =
i
k
jjjj

EI k d

ccccccccccccc
d

 i
k
jjk2 HOuter@Times, r21, r21D − imL +

I k d − 1
ccccccccccccccccccccc

d2
 H3 Outer@Times, r21, r21D − imLy

{
zzy
{
zzzz;

H∗ Individual "a" Matrices "RightêLeft" ∗L
a12rl = finv . a12 . f;
a21rl = finv . a21 . f;

H∗ Create Total 3 n x 3 n "A" Matrix ∗L
a = Table@0, 86<, 86<D;
Do@a = ReplacePart@a, Join@a12rl@@iDD, 80, 0, 0<D, iD, 8i, 3<D;
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Do@a = ReplacePart@a, Join@80, 0, 0<, a21rl@@iDDD, i + 3D, 8i, 3<D;

H∗ Create 1 x 6 Polarization Matrix ∗L
p = Join@p2, p1D;

H∗ Electric Field Contribution from Neighboring Paricle ∗L
ap = a.p;

H∗ Total Electric Field From All Contributions ∗L
ed = Join@e1rl, e2rlD;

H∗ Total Electric Field at Particle + Contribution ∗L
edap = ed + ap;

H∗ Incident Linear Polarized Light "RightêLeft" ∗L
eit = Join@eirl, eirlD;

H∗ Solve for electric field ∗L
sol1 = Solve@8edap@@1DD m eit@@1DD, edap@@2DD m eit@@2DD,

edap@@3DD m eit@@3DD, edap@@4DD m eit@@4DD, edap@@5DD m eit@@5DD,
edap@@6DD m eit@@6DD<, 8e1x, e1y, e1z, e2x, e2y, e2z<D;

e1xt = e1x ê. sol1@@1DD;
e1yt = e1y ê. sol1@@1DD;
e1zt = e1z ê. sol1@@1DD;
e2xt = e2x ê. sol1@@1DD;
e2yt = e2y ê. sol1@@1DD;
e2zt = e2z ê. sol1@@1DD;

H∗ Calculate polarizations ∗L

p1f = alp1.9 e1xt + I e1yt
ccccccccccccccccccccccccccccccccccè!!!!

2
,

e1xt − I e1yt
ccccccccccccccccccccccccccccccccccè!!!!

2
, e1zt=;

p2f = alp2.9 e2xt + I e2yt
ccccccccccccccccccccccccccccccccccè!!!!

2
,

e2xt − I e2yt
ccccccccccccccccccccccccccccccccccè!!!!

2
, e2zt=;

H∗ Convert Polarization Back to Cartesian ∗L
p1c = f . p1f;
p2c = f . p2f;

H∗ Formula for extinction spectra ∗L
cext@ei1_, ei2_, pol1_, pol2_D =

4 π k HIm@Conjugate@ei1D.pol1D + Im@Conjugate@ei2D.pol2DL;

H∗ Calculate extinction spectra and add to list ∗L
cextl = Append@cextl, 8λ, cext@ei, ei, p1c, p2cD<D;

H∗ Calculate effective polarization for the materials ∗L
effpol = Solve@8p1f@@1DD m αxx eirl@@1DD, p1f@@2DD == αyy eirl@@1DD<, 8αxx, αyy<D;

H∗ Effective polarizability ∗L
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alpxx = αxx ê. effpol@@1DD;
alpyy = αyy ê. effpol@@1DD;

H∗ Effective dielectric constant ∗L

effepsxx =
−2 alpxx host − size3 host
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

alpxx − size3
;

effepsyy =
−2 alpyy host − size3 host
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

alpyy − size3
;

H∗ Convert effective dielectric tensor to cartesian coordinates ∗L
effepscon = f . 88effepsxx, 0, 0<, 80, effepsyy, 0<, 80, 0, 1<< . finv;

H∗ Add converted dielectric tensor elements and wavelengths to list ∗L
effeps = Append@effeps, 8λ, Heffepscon@@1DDL@@1DD, Heffepscon@@2DDL@@1DD<D;

, 8n, num<E;

H∗ Plot extinction spectrum ∗L
ListPlot@cextl, PlotJoined → True, PlotLabel → d "= d"D

H∗ Calculate Faraday rotation ∗L
rot =

TableA9Heffeps@@nDDL@@1DD, ReA π
cccccccccccccccccccccccccccccccccccccccccccccccccccccHeffeps@@nDDL@@1DD  

Heffeps@@nDDL@@3DD
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Heffeps@@nDDL@@2DD

E=, 8n, num<E;

H∗ Plot Faraday rotation ∗L
ListPlot@rot, PlotJoined → True, PlotRange → All, PlotLabel −> "nm = d" dD
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1 function result=DArl(targetnum,parameter1,parameter2,parameter3,dipolespacing,...
2     radius1,radius2,eps1diag,eps1off,eps2diag,eps2off,hstN,E_inc,plot)
3
4 % create target
5 target_1=DAtarget(targetnum,parameter1,parameter2,parameter3,dipolespacing);
6
7 % total number of dipoles on grid
8 [dim1,dim2,dim3]=size(target_1); 
9 totaldipoles=dim1*dim2*dim3;
10
11 % host dielectric function
12 hsteps=hstN^2;
13
14 % transformation matrix
15 f=1/sqrt(2)*[1,1,0;-i,i,0;0,0,sqrt(2)];
16
17 % count the number of eps1 and eps2 dipoles
18 eps1dipoles=0;
19 eps2dipoles=0;
20 x=1;
21 y=1;
22 z=1;
23 while z<=dim3
24     if target_1(x,y,z)==1
25         eps1dipoles=eps1dipoles+1;
26     end
27     if target_1(x,y,z)==2
28         eps2dipoles=eps2dipoles+1;
29     end
30     if x==dim1
31         x=1;
32         if y==dim2
33             y=1;
34             z=z+1;
35         else
36             y=y+1;
37         end
38     else
39         x=x+1;
40     end
41 end
42
43 % import dielectric constants
44 path='D:\permittivity\';
45 file1=[path,eps1diag,'.txt'];
46 file2=[path,eps1off,'.txt'];
47 file3=[path,eps2diag,'.txt'];
48 file4=[path,eps2off,'.txt'];
49 eps1diagtable=importdata(file1);
50 eps1offtable=importdata(file2);
51 eps2diagtable=importdata(file3);
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52 eps2offtable=importdata(file4);
53 num=max(size(eps1diagtable));
54 for n=1:num
55     nextlambda=1240/eps1diagtable(n,1);
56     nexteps1diag=eps1diagtable(n,2)+i*eps1diagtable(n,3);
57     nexteps1off=eps1offtable(n,2)+i*eps1offtable(n,3);
58     nexteps2diag=eps2diagtable(n,2)+i*eps2diagtable(n,3);
59     nexteps2off=eps2offtable(n,2)+i*eps2offtable(n,3);
60     if n==1
61         lambda=nextlambda;
62         eps1diag=nexteps1diag;
63         eps1off=nexteps1off;
64         eps2diag=nexteps2diag;
65         eps2off=nexteps2off;
66     else
67         lambda=[lambda;nextlambda];
68         eps1diag=[eps1diag;nexteps1diag];
69         eps1off=[eps1off;nexteps1off];
70         eps2diag=[eps2diag;nexteps2diag];
71         eps2off=[eps2off;nexteps2off];
72     end
73 end
74
75
76 % compute faraday spectrum
77 for n=1:num
78     eps1matrix=[eps1diag(n),i*eps1off(n),0;-i*eps1off(n),eps1diag(n),0;0,0,eps1diag(n

)];
79     eps2matrix=[eps2diag(n),i*eps2off(n),0;-i*eps2off(n),eps2diag(n),0;0,0,eps2diag(n

)];
80     k=2*pi/(lambda(n)/hstN); 
81     dipole_calc=DAcalc(f,k,eps1matrix,eps2matrix,radius1,radius2,hsteps,target_1,eps1

dipoles,...
82         eps2dipoles,dim1,dim2,dim3,dipolespacing,E_inc,plot);
83     if plot==1
84         nextfaraday=(pi/lambda(n))*(dipole_calc(2)/sqrt(dipole_calc(1)));
85         if n==1
86             faraday=nextfaraday;
87         else
88             faraday=[faraday;nextfaraday];
89         end
90     else
91         for j=1:totaldipoles
92             nextsinext=4*pi*k*imag(conj(rot90(E_inc))*(f*[dipole_calc(1+3*(j-1));dipo

le_calc(2+3*(j-1));dipole_calc(3+3*(j-1))]));
93             if j==1
94                 sinext=nextsinext;
95             else
96                 sinext=sinext+nextsinext;
97             end
98         end
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99         if n==1
100             ext=sinext;
101         else
102             ext=[ext;sinext];
103         end
104     end
105 end
106
107 % return faraday if plot==1 and ext if plot==2
108 if plot==1
109     result=[lambda,real(faraday)];
110 else
111     result=[lambda,ext];
112 end
113
114 save mydata.txt result -ascii -tabs
115
116 x=1;
117 y=1;
118 z=1;
119 c=1;
120 while z<=dim3
121     if target_1(x,y,z)==1
122         plot3(x,y,z,'bo','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
123     end
124     if c==1
125         hold on
126     end
127     if c==dim1*dim2*dim3
128         hold off
129     end
130     c=c+1;
131     if x==dim1
132         x=1;
133         if y==dim2
134             y=1;
135             z=z+1;
136         else
137             y=y+1;
138         end
139     else
140         x=x+1;
141     end
142 end
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1 function result=DAcalc(f,k,eps1,eps2,radius1,radius2,hsteps,target_1,eps1dipoles,...
2     eps2dipoles,dim1,dim2,dim3,dipolespacing,E_inc,plot)
3
4 % polarization
5 epsrl1=inv(f)*eps1*f;
6 epsrl2=inv(f)*eps2*f;
7 alpha1=radius1^3*[(epsrl1(1,1)-1*hsteps)/(epsrl1(1,1)+2*hsteps),0,0;0,(epsrl1(2,2)-1*

hsteps)/(epsrl1(2,2)+2*hsteps),0;...
8         0,0,(epsrl1(3,3)-1*hsteps)/(epsrl1(3,3)+2*hsteps)];
9 alpha2=radius2^3*[(epsrl2(1,1)-1*hsteps)/(epsrl2(1,1)+2*hsteps),0,0;0,(epsrl2(2,2)-1*

hsteps)/(epsrl2(2,2)+2*hsteps),0;...
10         0,0,(epsrl2(3,3)-1*hsteps)/(epsrl2(3,3)+2*hsteps)];
11
12 % initialize counters and create A matrix
13 xo=1;
14 yo=1;
15 zo=1;
16 x=1;
17 y=1;
18 z=1;
19 Ajk=[];
20 A=[];
21 while zo<=dim3
22     while z<=dim3
23         if target_1(xo,yo,zo)==0
24             % Do nothing
25         else
26             if x==xo & y==yo & z==zo
27                 if target_1(x,y,z)==1
28                     nextAjk=inv(alpha1);
29                 else
30                     nextAjk=inv(alpha2);
31                 end
32             else
33                 rjk=sqrt((x-xo)^2+(y-yo)^2+(z-zo)^2)*dipolespacing;
34                 rjkhatcol=([xo;yo;zo]-[x;y;z])/(rjk/dipolespacing);
35                 rjkhatrow=([xo,yo,zo]-[x,y,z])/(rjk/dipolespacing);
36                 nextAjk=inv(f)*((exp(i*k*rjk)/rjk)*(k^2*((rjkhatcol*rjkhatrow)-eye(3)

)+((i*k*rjk-1)/rjk^2)*...
37                     (3*(rjkhatcol*rjkhatrow)-eye(3))))*f;
38             end
39         end
40         
41         if target_1(x,y,z)==0 | target_1(xo,yo,zo)==0
42             % Do nothing
43         else
44             if length(Ajk)==0
45                 Ajk=nextAjk;
46             else
47                 Ajk=[Ajk,nextAjk];
48             end
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49         end
50         
51         if x==dim1
52             x=1;
53             if y==dim2
54                 y=1;
55                 z=z+1;
56             else
57                 y=y+1;
58             end
59         else
60             x=x+1;
61         end
62     end
63     
64     if target_1(xo,yo,zo)==0
65         % Do nothing
66     else
67         if length(A)==0
68             A=Ajk;
69         else
70             A=[A;Ajk];
71         end
72     end
73     
74     if xo==dim1
75         xo=1;
76         if yo==dim2
77             yo=1;
78             zo=zo+1;
79         else
80             yo=yo+1;
81         end
82     else
83         xo=xo+1;
84     end
85 x=1;
86 y=1;
87 z=1;
88 Ajk=[];
89 end
90
91 % create incident electric field vector
92 Eincrl=inv(f)*E_inc;
93 for n=1:length(A)/3
94     next=Eincrl;
95     if n==1
96         Einc=next;
97     else
98         Einc=[Einc;next];
99     end
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100 end
101
102 % Solve for the dipole polarizations
103 P=lsqr(A,Einc,1e-5,100000);
104
105 % Average polarization
106 for n=1:length(A)/3
107     nextP1=P(1+3*(n-1));
108     nextP2=P(2+3*(n-1));
109     if n==1
110         P1=nextP1;
111         P2=nextP2;
112     else
113         P1=P1+nextP1;
114         P2=P2+nextP2;
115     end
116 end
117 P1avg=P1/(eps1dipoles+eps2dipoles);
118 P2avg=P2/(eps1dipoles+eps2dipoles);
119
120 % average dielectric constant
121 alphaeffxx=P1avg/Eincrl(1);
122 alphaeffyy=P2avg/Eincrl(2);
123 averageradius=(eps2dipoles*radius2+eps1dipoles*radius1)/(eps1dipoles+eps2dipoles);
124 epseffxx=(hsteps*(averageradius^3+2*alphaeffxx))/(averageradius^3-alphaeffxx);
125 epseffyy=(hsteps*(averageradius^3+2*alphaeffyy))/(averageradius^3-alphaeffyy);
126 epseffcart=f*[epseffxx,0,0;0,epseffyy,0;0,0,1]*inv(f);
127
128 % return effective eps if plot==1 or polarizations if plot==2
129 if plot==1
130     result=[epseffcart(1,1);epseffcart(2,1)];
131 else
132     result=P;
133 end
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1 function result=DAtarget(targetnum,parameter1,parameter2,parameter3,dipolespacing)
2
3 % available targets
4 %   #1: two particles
5 %           parameter1=axis alignment
6 %   #2: radially inhomogenous cluster
7 %           parameter1=cluster_R
8 %           parameter2=shell_N
9 %   #3: cubic array
10 %           parameter1=side_L
11
12 if targetnum==1
13     
14     if parameter1=='x'
15         target_1=[1;1];
16     end
17     
18     if parameter1=='y'
19         target_1=[1,1];
20     end
21     
22     if parameter1=='z'
23         target_1=ones(1,1,2);
24     end
25     
26 end
27
28 if targetnum==2
29     
30     % Length of grid
31     grid_L=floor(2*parameter1/dipolespacing+1);
32     
33     % Center of grid
34     center=(grid_L+1)/2;
35     center_vect=[center;center;center];
36     
37     % Length of shells
38     shell_L=((grid_L-1)/2)/parameter2;
39     
40     % Number of points in shell
41     shell_pnts=zeros(parameter2,1);
42     x=1;
43     y=1;
44     z=1;
45     while z<=grid_L
46         
47         dist=sqrt((x-center_vect(1))^2+(y-center_vect(2))^2+(z-center_vect(3))^2);
48         for n = 1:parameter2
49             if dist == 0
50                 shell_pnts(1)=shell_pnts(1)+1;
51             end
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52             if dist > (n-1)*shell_L & dist <= n*shell_L
53                 shell_pnts(n)=shell_pnts(n)+1;
54             end
55         end
56         
57         if x==grid_L
58             x=1;
59             if y==grid_L
60                 y=1;
61                 z=z+1;
62             else
63                 y=y+1;
64             end
65         else
66             x=x+1;
67         end
68     end
69     
70     % Shell densities
71     for n = 1:parameter2
72         density=floor(exp(1-n)*shell_pnts(n));
73         if n == 1
74             density_array=density;
75         else
76             density_array=[density_array;density];
77         end
78     end
79     
80     % Total points to fill
81     for n = 1:parameter2
82         next=density_array(n);
83         if n == 1
84             particle_N=next;
85         else
86             particle_N=particle_N+next;
87         end
88     end
89     
90     particle_N=floor(particle_N*(1-(1/4)))
91     % Generate grid
92     target_1=zeros(grid_L,grid_L,grid_L);
93     
94     % Number of points in shell so far
95     shell_n=zeros(parameter2,1);
96     
97     particle_n=0;
98     while particle_n < particle_N
99         rnd_pnt=[rnd_gen_1(grid_L);rnd_gen_1(grid_L);rnd_gen_1(grid_L)];

100         dist=sqrt((rnd_pnt(1)-center_vect(1))^2+(rnd_pnt(2)-center_vect(2))^2+(rnd_pn
t(3)-center_vect(3))^2);

101         if target_1(rnd_pnt(1),rnd_pnt(2),rnd_pnt(3))==0;
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102             for n = 1:parameter2
103                 if dist == 0
104                     shell=1;
105                 end
106                 if dist > (n-1)*shell_L & dist <= n*shell_L
107                     shell=n;
108                 end
109                 if dist > parameter2*shell_L
110                     shell=parameter2;
111                 end
112             end
113             if shell_n(shell) < density_array(shell)
114                 target_1(rnd_pnt(1),rnd_pnt(2),rnd_pnt(3))=1;
115                 shell_n(shell)=shell_n(shell)+1;
116                 particle_n=particle_n+1;
117             end
118         end
119     end
120     
121 end
122
123 if targetnum==3
124     target_1=ones(parameter1,parameter1,parameter1);
125 end
126
127 % return target
128 result=target_1;
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1 function result=rnd_gen_1(length)
2
3 rnd=0;
4 while rnd == 0
5     rnd=floor(rand(1)*length);
6 end
7
8 result=rnd;
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