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Abstract

In a pioneering work, Bechhofer (1954) introduced the concept of indifference-zone formu-

lation and formulated some methodologies in the case of the problem of selecting the best normal

population. In statistical literature, numerous vector− at− a time and unbalanced methodologies

are available for the selecting the best normal population. However, the literature is not that rich

for the partition problem. In this thesis, an unbalanced methodology of sampling along the lines

of Mukhopadhyay and Solanky (2002) is introduced for the partition problem. A two-stage and a

purely sequential procedure are introduced which takes c (≥ 1) observations from the control pop-

ulation for each observation from the non-control populations. The theoretical properties of the

two introduced procedures are derived. Also the two proposed procedures are simulated via Monte

Carlo simulations and then small to moderate sample size performances have been studied. The

robustness of various already known procedures in the statistical literature and the ones proposed

in this thesis are studied. An attempt has also been made to determine the optimal choice of the

value of c.

vii



Introduction

0.1 A Brief History

Since the first appearance in the early 1950’s of the ranking and selection formulation of

statistical inference problem, the literature in the area has grown enormously in all ramifications.

There are numerous procedures along the lines of Bechhofer’s (1954) indifference-zone formulation,

and also along the lines of Gupta’s subset selection, to carry out multiple comparisons.

The idea of sampling in two stages was first considered by Mahalanobis (1940), and later

by Stein (1945, 1949) to construct a fixed-width confidence intervals for a normal mean problem.

The purely sequential procedures have been considered by Chow and Robbins (1965) and Srivastava

(1966) for some ranking problems. Tong (1969) formulated the partition problem using Bechhofer’s

(1954) indifference zone formulation and constructed two-stage and purely sequential procedures.

Starr (1966) and Woodroofe (1977) have also done some ground breaking work to further the theory

behind sequential and other multistage procedures. A brief history of these procedures is available

in Mukhopadhyay and Solanky (1994), Ghosh, Mukhopadhyay and Sen (1997), and Ghosh and Sen

(1991).

Finally, in Solanky and Wu (2004), the unbalanced two-stage procedure and the unbalanced

purely sequential procedures are proposed. The details and properties of these two procedures will

be discussed in the next Chapter.
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0.2 Progress Made in This Thesis

In Chapter 1, the author proposed the unbalanced two-stage procedure and the unbalanced

purely sequential procedure. These procedures take c(> 1) observations from the control popula-

tion while taking 1 observation from each of the non-control populations. These procedures will

reduce the average sample sizes from the non-control populations. When the price of sampling is

under consideration, especially the case when the price for sampling from non-control populations

is higher, using these two procedures will have tremendous advantage on the total cost of sampling.

The theoretical first-order and second-order asymptotics of the purely sequential procedure are

obtained. The performance of the two proposed procedures is studied via Monte Carlo simulations

for small and moderately large sample sizes.

In Chapter 2, the robustness of the procedures against deviations from model assumptions

is assessed. The description of the procedures under the investigation and the distributions used

for these simulations are specified in Chapter 2. Briefly speaking, the sequential procedure with

elimination is the best choice, with respect to robustness and the total sample size. If sequential

sampling is not convenient, then the fine tuned three-stage procedure is the next best choice. The

two-stage procedure with elimination tends to over sample under the LFC. Hence this procedure is

not preferred, unless we have some prior knowledge about the location parameters of the treatment

populations. Finally, we suggested that the direction for future research is to propose a unbalanced

sequential procedure with elimination along the lines of Solanky (2001).

In Chapter 3, a rule for choosing the optimal value of c is given, where c is the number

of observations we take from the control population while taking one from each of the treatment

populations.

2



Chapter 1

Unbalanced Procedures

1.1 Introduction

Suppose that we have π0, π1, . . . , πk, independent and normally distributed populations,

with unknown means µi, and, unknown but common variance σ2, i = 0, 1, · · · , k. We consider π0

to be the control population. The goal is to partition the set of treatments Ω = (πi : i = 1, 2, · · · , k),

into two disjoint and exhaustive subsets, corresponding to “Good” and “Bad” populations com-

pared to the control population, as defined later, and also, with a pre specified probability of correct

partition.

Given arbitrary but fixed constants δ1 and δ2, δ1 < δ2, we define three subsets of Ω along

the lines of Bechhofer’s (1954) indifference-zone formulation, as:

ΩL = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},

ΩM = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, · · · , k},

ΩR = {πi : µi ≥ µ0 + δ2, i = 1, · · · , k}.

(1.1.1)

We refer to ΩR as the set of “good populations” and ΩL as the set of “bad populations”. The set ΩM

would be referred to as the set of “mediocre populations”. Adopting the Bechhofer’s indifference

zone approach, we are interested in the correct population of the populations in ΩR and ΩL. And,

we will be indifferent to correct partition of populations in ΩM . That is, with high accuracy we

want to partition the set Ω into two disjoint subsets PL and PR, such that, ΩL ⊆ PL and ΩR ⊆ PR.

Such a partition is known in the literature as a correct decision (CD). In other words, given a pre

3



assigned number P ∗, 2−k < P ∗ < 1, we seek statistical methodologies ℘ to determine PL and PR,

such that

P{CD|µ, σ2, ℘} ≥ P ∗ ∀ µ ∈ Rk+1, σ ∈ R+. (1.1.2)

Also, we will use the following notation in the rest of this thesis for convenience:

d = (δ1 + δ2)/2, a = (−δ1 + δ2)/2, λ = σ/a, and,

r =











k/2 if k is even;

(k + 1)/2 if k is odd.

(1.1.3)

Customarily, in many situations it is possible to collect a larger sample from the con-

trol population. We assume, in general, that we observe random variables X 0i, X1i, · · · , Xki from

π0, π1, · · · , πk, respectively, where X ′
0i = (X0 (i−1)c+1, X0 (i−1)c+2, · · · , X0 ic), in a sequential frame-

work, i = 1, 2, · · · , and, c(≥ 1) being an integer. In other words, as needed, we take c observations

form π0 and one observation from π1, · · · , πk.

Assuming that σ2 is known, we observe the sequence X0i, X1i, · · · , Xki for i = 1, 2, · · · , n,

where n is to be determined below. We denote

X̄0cn = (c n)−1
∑n

p=1

∑c
q=1X0 (p−1)c+q ,

X̄jn = n−1
∑n

p=1Xjp , j = 1, · · · , k .
(1.1.4)

Consider the decision rule ℘ defined as:

PL = {πi : X̄in − X̄0cn < d, i = 1, · · · , k},

PR = {πi : X̄in − X̄0cn > d, i = 1, · · · , k}.
(1.1.5)

Next, observe that for a mean vector µ to be a least favorable configuration under ℘, the

set ΩM must be empty, and, all the populations in ΩL and ΩR must have common means µ0 + δ1

and µ0 + δ2, respectively. Let µ0(r′) be the configuration such that µi = µ0 + δ2 and µj = µ0 + δ1,

0 < i ≤ r′, r′ < j ≤ k for some r′ such that 0 < r′ ≤ k. Then, we have

4



P
[

CD|µ0(r′), σ2, ℘
]

= P
[

X̄jn − X̄0cn < d, X̄in − X̄0cn > d, 0 < i ≤ r′, r′ < j ≤ k|µ0(r′), σ2
]

,

= P
[

Yi ≤ a/
√

σ2

n ( c+1
c ), i = 1, · · · , k

]

,

where, Yi = (X̄0cn−X̄in+δ2)/
√

σ2

n ( c+1
c ), for 0 < i ≤ r′ and Yi = (X̄in−X̄0cn−δ1)/

√

σ2

n ( c+1
c ), for r′ <

i ≤ k. Note that under the parameter configuration µ0(r′), Yi has the standard normal distribution,

i = 1, · · · , k. Let the (k × k) covariance matrix Σr′ = (σij) be given by

σij =























1 for i = j,

1/(c + 1) for i 6= j, and, 0 < i, j ≤ r′ or r′ < i, j ≤ k,

−1/(c + 1) for 0 < i ≤ r′, and, r′ < j ≤ k.

(1.1.6)

Then, one can express

P
[

CD|µ0(r′), σ2, ℘
]

=

a/

√

σ2

n
( c+1

c
)

∫

−∞

· · ·
a/

√

σ2

n
( c+1

c
)

∫

−∞

(2π)−
k

2 |Σr′ |−
1
2 exp (−1

2
Y ′Σ−1

r′ Y )
k

∏

i=1

dyi, (1.1.7)

where Y ′ = [Y1, · · · , Yk]. Note that (1.1.7) gives the infimum of the probability of correct decision

under ℘ for the set of all configurations such that there are r ′ populations in ΩR and k− r′ in ΩL.

Also, observe that (1.1.7) is similar to the equation (1.6) of Tong (1969). Next, using the theorem

from the Appendix of Tong (1969), with ρ = 1/(c+1) in the equation A.1 of Tong (1969), one obtains

the Least Favorable Configuration (LFC) under the decision rule ℘ as: µ1 = · · · = µr = µ0 + δ2,

and, µr+1 = · · · = µk = µ0 + δ1, where r is defined in (1.1.3). We will refer to the LFC as µ0. Next,

5



along the lines of (1.1.6) with r in place of r ′, we define the covariance matrix Σ as:

Σ =

































1 1
c+1 − 1

c+1 · · · − 1
c+1

. . .
...

. . .
...

1
c+1 1 − 1

c+1 · · · − 1
c+1

− 1
c+1 · · · − 1

c+1 1 1
c+1

...
. . .

...
. . .

− 1
c+1 · · · − 1

c+1
1

c+1 1

































· (1.1.8)

Next, as in Tong (1969), let b = b(P ∗, k, c) be the solution of the equation

P ∗ =

b
∫

−∞

· · ·
b

∫

−∞

(2π)−
k

2 |Σ|− 1
2 exp (−1

2
Y ′Σ−1Y )

k
∏

i=1

dyi. (1.1.9)

Then, one can immediately note that

P
[

CD|µ, σ2, ℘
]

≥ P ∗,

provided n satisfies

n ≥ b2σ2

a2
(
c+ 1

c
) (= n∗c , say). (1.1.10)

In other words, if σ2 is known, and one collects a sample of size n∗
c from each of π1, . . . , πk

and a sample of size cn∗
c from π0, and, uses the decision rule ℘ given by (1.1.5) to partition the k

populations, then the probability requirement (1.1.2) is achieved.

For c = 1 case, Tong (1969) gave a single-stage procedure for the partition problem when

the σ2 known. The single-stage procedure provided above is a simple generalization of Tong’s

(1969) single-stage procedure. The values of the constant b, for selected values of P ∗, k, and, c,

have been tabulated in the Table 1.1, in section 4 of this chapter. Note that for c = 1, the values of

b have been extensively tabulated in Tong (1969), and, as well in the chapter 10 of Gibbons, Olkin,

and Sobel (1977).

6



For the case when σ2 is unknown, it is known that there does not exist a single-stage

procedure which can satisfy the probability requirement (1.1.2). So, for the σ2 unknown case,

Tong (1969) constructed a two-stage and a purely sequential procedure for c = 1. Datta and

Mukhopadhyay (1998) studied this problem further for the c = 1 case and constructed a fine-tuned

purely sequential procedure and some other multistage methodologies, emphasizing the second-

order asymptotics. Solanky (2001) has constructed an elimination type procedure for the partition

problem for the c = 1 case which takes samples of unequal sizes. The reader is also recommended

to look at Aoshima and Takada (2000) and Solanky (2004), who have studied various aspects of

the partition problem. Many other additional references to the partition problem are available in

the articles mentioned in this paragraph.

In this chapter, we focus on the case when c can be any positive integer by constructing a

two-stage and a purely sequential procedure for this problem, which are described in the sections

2 and 3 of this chapter, respectively. In section 4 of this chapter, we study the small and moderate

sample size performance of these procedures via Monte Carlo Simulation studies and also provide

relevant tables to facilitate practical usage of the two proposed procedures.

1.2 Two-Stage Procedure

Writing m (≥2) for the starting sample size, one starts with mc observations from π0 and

m observations from each of π1, · · · , πk, to obtain the stage I sample, of the two-stage sampling

design, as X0i, X1i, · · · , Xki, i = 1, 2, · · · ,m. Then, we define

X̄0cm = (cm)−1
∑m

p=1

∑c
q=1X0 (p−1)c+q ,

S2
0cm = (cm− 1)−1

∑m
p=1

∑c
q=1(X0 (p−1)c+q − X̄0 m)2 ,

X̄jm = m−1
∑m

p=1Xj p ,

S2
jm = (m− 1)−1

∑m
p=1(Xj p − X̄j m)2, j = 1, · · · , k .

Also, we define

S2
ν = {(cm− 1)S2

0cm + (m− 1)

k
∑

j=1

S2
jm}/{(cm − 1) + k(m− 1)}, (1.2.1)

7



as the usual pooled estimator of the common unknown variance σ2, with ν = (cm− 1) + k(m− 1)

degree of freedom. Next, we define the two-stage procedure as:

N = max{m,< h2
νS

2
ν

a2
(
c+ 1

c
) >}, (1.2.2)

where, < x > denotes the largest integer less than x, and hν = hν(P
∗, k, c) is a constant defined in

(1.2.4).

Note that for the two-stage procedure, the sampling is carried out in two batches. We start

with cm observations form π0 and m observations from π1, · · · , πk. Next, we determine the value

of N using (1.2.2). If N = m, then no additional sampling is carried out. However, if N > m, the

difference, that is, Nc−mc observations form π0, and, N −m from π1, · · · , πk, are sampled in one

batch, known as the stage II of the two-stage procedure. Next, the sample mean X̄0cN from π0,

and X̄ iN from πi, i = 1, · · · , k are computed, as defined in (1.1.4) with N in place of n and the

decision rule (1.1.5) is implemented accordingly.

Theorem 1.2.1 If N is chosen according to (1.2.2) with hν = hν(P ∗, k, c) as defined in (1.2.4),

then we have

P
[

CD|µ, σ2, ℘
]

≥ P ∗ ,

provided the decision rule (1.1.5)is used to partition the populations based on N observations each

from π1, · · · , πk and cN observations from π0.

Proof: We consider without loss of generality, a parametric configuration µ0 under the LFC given

by µ1 = . . . = µr = µ0 + δ2 and µr+1 = · · · = µk = µ0 + δ1. Then, based on a sample of size cN

form π0 and N from π1, · · · , πk, where N comes from (1.2.2), we have:

P
[

CD|µ0, σ2, ℘
]

= P
[

X̄ iN − X̄0cN > d, X̄jN − X̄0cN < d, i = 1, · · · , r, j = r + 1, · · · , k
]

.

Next, for 1 ≤ i ≤ r, we write ti = X̄0cN−X̄iN +δ2
√

σ2

N
( c+1

c
)
/
√

S2
ν

σ2 , and, for r + 1 ≤ i ≤ k we write ti =

8



X̄iN−X̄0cN−δ1
√

σ2

N
( c+1

c
)
/

√

S2
ν

σ2 . Then, we can simplify the above expression as

P
[

CD|µ0, σ2, ℘
]

= P
[

ti <
aN

1
2

√

c
c+1

Sν
, i = 1, · · · , k

]

, (1.2.3)

where, (t1, · · · , tk) follows a multivariate t distribution fk,ν,Σ(·) with ν = (mc−1)+k(m−1) degrees

of freedom and correlation matrix Σ given by (1.1.8). Now, if hν = hν(P ∗, k, c) is chosen to satisfy

P ∗ =

∫ hν

−∞
· · ·

∫ hν

−∞
fk,ν,Σ(t1, · · · , tk) dt1 · · · dtk, (1.2.4)

then using (1.2.3), one can immediately claim that P
[

CD|µ, σ2, ℘
]

≥ P ∗. The values of the con-

stant hν = hν(P ∗, k, c) have been tabulated in the Table 1.2, in section 4 of this chapter.

Remark 1.2.1: Under some additional conditions one can also obtain the second-order properties

for a two-stage procedure. The reader is referred to Mukhopadhyay and Duggan (1997, 1999) for

details.

1.3 Purely Sequential Procedure

The purely sequential procedure starts with observations X0j , X1j , · · · , Xkj , j = 1, · · · ,m,

where m (≥2) is the starting sample size from π1, · · · , πk, and, cm is the starting sample size from

π0. After this, one takes c observations from π0 and one observation from π1, · · · , πk, at each step,

according to the stopping rule

N = inf{n ≥ m : n ≥ b2S∗
n
2

a2
(
c+ 1

c
)}, (1.3.1)

where S∗
n
2 is an estimator of σ2 defined below. Note that in order to fully exploit the tools from

Woodroofe (1977) to obtain the second-order expansions, one needs to express the estimator of σ2

as a sum of i.i.d. random variables. Based on a sample of size n from each of π1, · · · , πk, and, cn

from π0, the following estimator S∗
n
2 is obtained along the lines of Mukhopadhyay and Solanky

9



(2002). We write

X̄
(p)
0n = n−1

n
∑

j=1

X0 (n−j)c+p , S
2
0n

(p)
=

n
∑

j=1

(X0 (n−j)c+p − X̄
(p)
0n )2 , p = 1, · · · , c ,

and, X̄jn, S2
jn, j = 1, · · · , k, are evaluated according to the expressions defined in the Section 2 of

this chapter, for a sample size n. Then, we define S∗
n
2 as:

S∗
n
2 =

∑c
p=1 S

2
0n

(p)
+

∑k
j=1 S

2
jn

c+ k
.

Note that (n− 1)(c+ k)S∗
n
2/σ2 ∼ χ2

(n−1)(c+k), and, using the Helmert’s orthogonal transformation,

one can write (n− 1)(c + k)S∗
n
2/σ2 =

∑n−1
i=1 Yi, where Y ′s are i.i.d. χ2

(k+c) random variables.

Next, we put the unbalanced purely sequential procedure constructed here in a more gen-

eral form and state two theorems to emphasize some important properties of the purely sequential

procedure (1.3.1).

Consider a sequence {Nν : ν ≥ 1} of positive integer valued random variables defined as

follows:

N = nν = inf{n ≥ m : n ≥ ψνTn} (1.3.2)

where m is the starting sample size, ψν is a sequence of positive constants, as ν → ∞, and

{T − n : n ≥ m} are statistics such that P (Tn) ≤ 0 = 0 for all n ≥ m.

Lemma 1.3.1 For the purely sequential procedure (1.3.2), if both

N1/2
ν (TNν

− a)/b and N 1/2
ν (TNν−1 − a)/b (1.3.3)

converge to N(0,1) in distribution as ν → ∞, where a(> 0) and b(> 0) are constants, then we have:

a1/2(Nν − aψν)/(bψ1/2
ν )

L→ N(0, 1) as ν → ∞.

This Lemma is Theorem 2.4.1 in Mukhopadhyay and Solanky (1994).
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Theorem 1.3.1 For the purely sequential procedure (1.3.1)and using the decision rule (1.1.5) based

on a sample of size cN from π0 and N from π1, · · · , πk, we have as a→ 0:

(i) N/n∗ → 1 with probability 1;

(ii) E(N) → n∗c ;

(iii) limP (CD) = P ∗ under the LFC;

where n∗c = b2σ2

a2
c+1

c and b comes from (1.1.9).

Proof: Using Lemma 1 of Chow and Robbins (1965), it follows that as a → 0, we have N → ∞

with probability 1, S∗
N

2 → σ2 with probability 1 and S∗
N−1

2 → σ2 with probability 1. Also, we

have

b2S∗
N

2

a2
(
c+ 1

c
) ≤ N ≤ m+

b2S∗
N−1

2

a2
(
c+ 1

c
) (1.3.4)

Now divide throughout (1.3.4) by n∗
c and take limits as a → 0. This leads to part (i).

From the right hand side of the inequality (1.3.4) it follows that

N ≤ m+
b2

a2
W∗

that is N/n∗c ≤ m + σ−2W∗ for sufficiently small a such that n∗
c
−1 becomes smaller than unity,

where W∗ = sup{(n− 1)−1
∑n−1

i=1 Yi} where Y ′s are i.i.d.χ2
k+c random variables, as we pointed out

before. by Wiener’s (1939) dominated erodic theorem one concludes that E(W∗) < ∞. Now, the

dominated converagence theorem and part (i) together imply part (ii).

From part(i), one gets N 1/2aσ−1 → h w.p.1 as a→ 0. Hence,

P (CD) = E[

∫ infty

∞
{Phi(y +N 1/2aσ−1)}k−1φ(y/c)dy] (1.3.5)

together with the dominated convergence theorem will lead to part(iii).

Theorem 1.3.2 For the purely sequential procedure (1.3.1) and using the decision rule (1.1.5)

11



based on a sample of size cN form π0 and N from π1, · · · , πk, we have as a→ 0:

(i) n∗c
− 1

2 (N − n∗c)
L→ N(0, 2

k+c) ;

(ii) E(N) = n∗c + (ν∗ − 2)(k + c)−1 + o(1) ;

(iii) P [CD|µ, σ2, ℘] = P ∗ + ((k + c)n∗c)
−1{(ν∗ − 2)g′(1) + g′′(1)} + o(n∗c

−1)

if m > 5
k+c + 1, under the LFC;

where n∗c = b2σ2

a2 ( c+1
c ), g′(·), and g′′(·) are defined in (1.3.7), and, ν∗ comes from (1.3.11).

Proof: Invoke helmert’s orthogonal transformation to construct (n− 1)(c+ k)S ∗
n
2/σ2 =

∑n−1
i=1 Yi,

where Y ′s are i.i.d. χ2
(k+c) random variables. Using Anscombe’s(1952) results to claim that the

sufficient conditions given in Lemma 1.3.1 hold with a=σ2 and b=(2/k)1/2σ2. Now part (i) of this

theorem follows from Lemma 1.3.1.

Next, observe that N = Q+ 1, where

Q = inf{n ≥ m− 1 :
n

∑

i=1

Yi ≤
1

n∗c
(c+ k)n2(1 +

1

n
)}. (1.3.6)

Also, one can verify, P [Y1 < y] < By(k+c)/2, for some B > 0 and ∀y > 0. Let us define

ν∗ =
1

2
(k + c+ 2) −

∞
∑

n=1

1

n
E[(χ2

n(k+c) − 2n(k + c))+] . (1.3.7)

Then, using the Theorem 2.4 of Woodroofe (1977), one will obtain

E(Q) = n∗c + ν∗(k + c)−1 − 1 − 2(k + c)−1 + o(1),

and, noting that N = Q+ 1, the part (ii) of the theorem follows.

In order to verify part (iii), note that for i = 1, · · · , r and j = r + 1, · · · , k, and, for the

parametric configuration µ0 under LFC, we have:

P
[

CD|µ0, σ2, ℘
]

= P
[

X̄iN − X̄0cN > d, X̄jN − X̄0cN < d
]

12



= P
[X̄iN − µi

√

σ2/N
>
X̄0cN − µ0
√

σ2/N
− a

√

σ2/N
,

X̄jN − µj
√

σ2/N
<

X̄0cN − µ0
√

σ2/N
− a

√

σ2/N

]

= P
[

Zi >
Z0√
c
− a

√
N

σ
, Zj >

Z0√
c

+
a
√
N

σ

]

where Zi = X̄iN−µi√
σ2/N

, i = 1, 2, · · · , k, Z0 =
√
c X̄0cN−µ0√

σ2/N
, and Z0, Z1, · · · , Zk are independent and have

standard normal distributions. That is,

P
[

CD|µ0, σ2, ℘
]

= E
{

P
[

− Zi <
a
√
N

σ
− z√

c
, Zj <

a
√
N

σ
+

z√
c
|Z0 = z

]}

.

The above expression can be expressed as

P
[

CD|µ0, σ2, ℘
]

=

∫ ∞

−∞
Φr(

a
√
N

σ
− z√

c
) Φk−r(

a
√
N

σ
+

z√
c
)φ(z)dz , (1.3.8)

where Φ(x) and φ(x) denotes the cdf and the pdf of the standard normal distribution, respectively.

Let us write

β(x) =

∫ ∞

−∞
Φr

(

√

c+ 1

c
x− z√

c

)

Φk−r
(

√

c+ 1

c
x+

z√
c

)

φ(z)dz. (1.3.9)

Now, as in Mukhopadhyay and Solanky (1994), and, also in Datta and Mukhopadhyay (1998), we

have

β′(x) =

√

c+1
c

∞
∫

−∞

Φr−1
(

√

c+ 1

c
x− z√

c

)

Φk−r−1
(

√

c+ 1

c
x+

z√
c

)

{

rφ
(
√

c+1
c x− z√

c

)

Φ
(
√

c+1
c x+ z√

c

)

+(k − r)φ
(
√

c+1
c x+ z√

c

)

Φ
(
√

c+1
c x− z√

c

)}

φ(z)dz,
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β′′(x) =

c+1
c

∞
∫

−∞

Φr−2
(

√

c+ 1

c
x− z√

c

)

Φk−r−2
(

√

c+ 1

c
x+

z√
c

)

[

(r − 1)φ
(
√

c+1
c x− z√

c

)

Φ
(
√

c+1
c x+ z√

c

)

+(k − r − 1)φ
(
√

c+1
c x+ z√

c

)

Φ
(
√

c+1
c x− z√

c

)]

φ(z)dz

+ c+1
c

∞
∫

−∞

Φr−1
(

√

c+ 1

c
x− z√

c

)

Φk−r−1
(

√

c+ 1

c
x+

z√
c

)

[

rφ
(
√

c+1
c x+ z√

c

)

φ
(
√

c+1
c x− z√

c

)

−r(
√

c+1
c x− z√

c
)φ

(
√

c+1
c x− z√

c

)

Φ
(
√

c+1
c x+ z√

c

)

−(k − r)(
√

c+1
c x+ z√

c
)φ

(
√

c+1
c x+ z√

c

)

Φ
(
√

c+1
c x− z√

c

)

+(k − r)φ
(
√

c+1
c x+ z√

c

)

φ
(
√

c+1
c x− z√

c

)]

φ(z)dz.

Then, we define

g(x) = β(bx1/2), x > 0. (1.3.10)

It is easy to verify that

g′(x) = 1
2bx

−1/2β′(bx1/2),

g′′(x) = 1
4b[bx

−1β′′(bx1/2) − x−3/2β′(bx1/2)],

|g′′(x)| ≤ a1x
−1/2 + a2x

−1 + a3x
−3/2, a1, a2, a3 being positive constants.

(1.3.11)

One may note that since I(N = n) is independent of (X̄0cn, X̄1n, · · · , X̄kn) for all n ≥ m, by using

Theorem 3.2.1 of Mukhopadhyay and Solanky (1994), we have

InfµP
[

CD|µ, σ2, ℘
]

= E
[

g(N/n∗)
]

. (1.3.12)

Now, for m > 5
k+c + 1, one will obtain

E[g(N/n∗)] = g(1) + n∗c
−1

[

(ν∗ − 2)(k + c)−1g′(1) +
1

2

2

k + c
g′′(1)

]

+ o(n∗c
−1),

which is part (iii) of the theorem.
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1.4 Computations of the Design Constants and Simulations

We start this section by tabulating the values of some design constants which are needed

in order to implement the procedures proposed in the sections 2 and 3 of this chapter. We also

tabulate the value of constants g′(·) and g′′(·) which are defined in (1.3.7), and, the constant ν∗

which is defined (1.3.3). The computations of these constants will allow us to clearly explain the

usage of second-order expansions obtained in the Theorem 1.3.1 (ii, iii) to the reader. We will

conclude this section by simulating the two proposed procedures via Monte Carlo simulations in

order to study the small and moderately large sample performances.

Table 1.1: Values of b = b(P ∗, k, c) as defined in (1.1.9)

c
k 1 2 3 5 10

1 1.64485 1.64485 1.64485 1.64485 1.64485
2 1.95993 1.95955 1.95902 1.95809 1.95680
3 2.10574 2.11592 2.11906 2.12099 2.12171
4 2.21212 2.22643 2.23074 2.23342 2.23450
5 2.28653 2.30633 2.31247 2.31651 2.31847
6 2.34897 2.37192 2.37898 2.38361 2.38587
7 2.39816 2.42483 2.43309 2.43860 2.44142
8 2.44177 2.47096 2.47995 2.48594 2.48900
9 2.47820 2.51021 2.52011 2.52674 2.53019
10 2.51146 2.54555 2.55607 2.56309 2.56675
15 2.63309 2.67635 2.68972 2.69868 2.70343
20 2.71629 2.76603 2.78141 2.79170 2.79715

In the Table 1.1, we provide the values of design constant b = b(P ∗, k, c) given by equation

(1.1.9), for P ∗ = 0.95, k = 1(1)10, 15, 20, and c = 1, 2, 3, 5, 10, for the covariance matrix Σ

defined in (1.1.8). As remarked earlier, for c = 1, the values of b have been also tabulated in Tong

(1969) and Gibbons, Olkin, and Sobel (1977). For the sake of completeness, we have included the

case c = 1, in the Table 1 as well, and, we must mention that the values provided in Table 1 for

c = 1 matches with the other two sources described above. The value of b is needed in order to

implement the purely sequential procedure (1.3.1) and also to compute the optimal sample size n∗
c .
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Table 1.2: Values of hν = hν(P
∗, k, c) as defined in (1.2.4): P ∗ = .95

c
k 1 2 3 5 10

m = 5

1 1.85955 1.77093 1.73406 1.70113 1.67412
2 2.17806 2.10838 2.07146 2.03366 1.99829
3 2.29301 2.25802 2.23294 2.20230 2.16901
4 2.37855 2.36100 2.34268 2.31679 2.28519
5 2.43430 2.43161 2.41982 2.39935 2.37091
6 2.48299 2.48946 2.48190 2.46524 2.43927
7 2.52027 2.53487 2.53122 2.51830 2.49512
8 2.55449 2.57470 2.57381 2.56367 2.54270
9 2.58267 2.60809 2.60977 2.60225 2.58358
10 2.60913 2.63841 2.64200 2.63650 2.61971
15 2.70710 2.75024 2.76056 2.76235 2.75296
20 2.77646 2.82783 2.84189 2.84774 2.84296

m = 10

1 1.73427 1.70113 1.68595 1.67155 1.65909
2 2.05163 2.02532 2.01021 1.99353 1.97681
3 2.18542 2.17875 2.17063 2.15884 2.14439
4 2.28346 2.28592 2.28126 2.27202 2.25867
5 2.35022 2.36173 2.36080 2.35470 2.34336
6 2.40696 2.42391 2.42524 2.42112 2.41112
7 2.45116 2.47352 2.47714 2.47512 2.46672
8 2.49082 2.51687 2.52204 2.52146 2.51422
9 2.52375 2.55354 2.56028 2.56118 2.55520
10 2.55412 2.58667 2.59455 2.59652 2.59150
15 2.66559 2.70910 2.72137 2.72750 2.72636
20 2.74278 2.79343 2.80840 2.81698 2.81822

m = 15

1 1.70113 1.68107 1.67155 1.66235 1.65425
2 2.01796 2.00180 1.99215 1.98124 1.96999
3 2.15633 2.15625 2.15239 2.14566 2.13662
4 2.25751 2.26461 2.26336 2.25853 2.25037
5 2.32712 2.34189 2.34365 2.34132 2.33479
6 2.38597 2.40529 2.40881 2.40795 2.40241
7 2.43200 2.45608 2.46149 2.46228 2.45797
8 2.47311 2.50043 2.50708 2.50896 2.50548
9 2.50732 2.53803 2.54599 2.54905 2.54652
10 2.53875 2.57195 2.58086 2.58474 2.58290
15 2.65391 2.69738 2.71010 2.71731 2.71834
20 2.73328 2.78364 2.79878 2.80802 2.81083
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Table 1.3: Value of g′(1) as defined in (1.3.11)

c
k 1 2 3 5 10

1 0.08482 0.08482 0.08482 0.08482 0.08482
2 0.11452 0.11430 0.11405 0.11368 0.11323
3 0.12698 0.12869 0.12924 0.12954 0.12959
4 0.13739 0.14015 0.14106 0.14161 0.14175
5 0.14413 0.14812 0.14956 0.15055 0.15101
6 0.15030 0.15520 0.15697 0.15822 0.15881
7 0.15487 0.16070 0.16288 0.16446 0.16529
8 0.15921 0.16578 0.16827 0.17008 0.17104
9 0.16264 0.16997 0.17278 0.17488 0.17604
10 0.16595 0.17393 0.17701 0.17931 0.18060
15 0.17778 0.18847 0.19277 0.19609 0.19804
20 0.18596 0.19870 0.20393 0.20805 0.21053

Next, in the Table 1.2, we provide the values of design constant hν = hν(P ∗, k, c) which is

defined in (1.2.4), for P ∗ = 0.95, k = 1(1)10, 15, 20, c = 1, 2, 3, 5, 10, and m = 5, 10, 15, for the

covariance matrix Σ defined in (1.8). The values of b for c = 1 have been also tabulated in Tong

(1969) and Gibbons, Olkin, and Sobel (1977). Again, we have included the case c = 1 in the Table

1.2 and the values provided in Table 1.2 for c = 1 matches with the other two sources described

above. The value of hν is needed in order to implement the two-stage procedure (1.2.2).

In the Tables 1.3 and 1.4, we provide the values of constants g ′(1) and g′′(1), respectively

for k = 1(1)10, 15, 20, and, c = 1, 2, 3, 5, 10. These constants, defined in (1.3.7), are needed to

compute the asymptotic expansion provided in Theorem 1.3.1 (iii).

In the Table 1.5, we report the value of constant ν∗ = ν∗(k, c) as defined in (1.3.3). Note

that since the constant ν∗ depends on k and c only via k + c, we provide the values of ν∗ for

different values of k + c. Also, when k + c > 60, the second term on the right side of (1.3.3),

∑∞
n=1

1
nE[(χ2

n(k+c) − 2n(k + c))+] is negligible (≤ 2 · 10−5). Therefore, in Table 5, we provide the

value of ν∗ for k + c = 2(1)60.
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Table 1.4: Value of g′′(1) as defined in (1.3.11)

c
k 1 2 3 5 10

1 -0.34805 -0.27483 -0.25755 -0.24490 -0.23582
2 -0.27696 -0.27523 -0.27351 -0.27115 -0.26845
3 -0.28735 -0.29752 -0.30072 -0.30262 -0.30320
4 -0.30247 -0.32191 -0.32871 -0.33357 -0.33628
5 -0.32240 -0.34592 -0.35493 -0.36194 -0.36642
6 -0.34170 -0.36903 -0.37993 -0.38866 -0.39447
7 -0.36096 -0.39059 -0.40294 -0.41314 -0.42019
8 -0.37930 -0.41118 -0.42483 -0.43628 -0.44433
9 -0.39685 -0.43035 -0.44509 -0.45769 -0.46673
10 -0.41363 -0.44872 -0.46447 -0.47808 -0.48793
15 -0.48653 -0.52728 -0.54697 -0.56474 -0.57811
20 -0.54599 -0.59098 -0.61366 -0.63463 -0.65070

Next, in order to explain the role of second-order expansions to the reader, we look at

the expansions provided in Theorem 1.3.1, parts (ii) and (iii). From Theorem 1.3.1(ii), note that

as a→ 0, E(N) − n∗c = (ν∗ − 2)(k + c)−1 + o(1). For example, for k = 10 the value of term

(ν∗ − 2)(k + c)−1 can be computed using the Table 1.5 as, .40187 for c = 1, .41880 for c = 3,

and, .43072 for c = 5. Note that, these are the asymptotic values of the difference between E(N)

and n∗c for the selected values of k, c, and P ∗. Later in this section, we use these to evaluate the

performance of the purely sequential procedure (1.3.1) for small or moderate sample sizes.

Now, we study the performance of the proposed procedures via Monte Carlo simulation

studies and also compare the procedures with the balanced ones, which correspond to c = 1.

The two-stage procedure (1.2.2) and the purely sequential procedure (1.3.1) were simulated

for m = 10, c = 1, 3, 5, k = 10 and P ∗ = .95, under a LFC. Without loss of generality we took σ = 1

for the purpose of generating populations. We took δ1 = −δ2, giving a = δ2(= δ, say). Next, using

n∗c = b2σ2

a2 ( c+1
c ), we computed the values of δ corresponding to n∗

c = 25, 100, 200, 400 and 800.

Then, each procedure was independently repeated 1000 times. The performance of the two-stage

procedure (1.2.2) is summarized in the Table 1.6 and that of the purely sequential procedure (1.3.1)
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Table 1.5: Values of ν∗ as defined in (1.3.7)

2 3 4 5 6 7
1.49000 2.10441 2.68634 3.24766 3.79489 4.33199

8 9 10 11 12 13
4.86155 5.38538 5.90474 6.42058 6.93362 7.44440

14 15 16 17 18 19
7.95334 8.46078 8.96699 9.47218 9.97653 10.48019

20 21 22 23 24 25
10.98326 11.48585 11.98803 12.48986 12.99142 13.49273

26 27 28 29 30 31
13.99383 14.49477 14.99556 15.49624 15.99680 16.49730

32 33 34 35 36 37
16.99770 17.49805 17.99834 18.49859 18.99880 19.49898

38 39 40 41 42 43
19.99913 20.49926 20.99938 21.49947 21.99955 22.49962

44 45 46 47 48 49
22.99967 23.49972 23.99976 24.49980 24.99983 25.49985

50 51 52 53 54 55
25.99988 26.49989 26.99991 27.49992 27.99993 28.49994

56 57 58 59 60
28.99995 29.49996 29.99997 30.49997 30.99998

(The value on top is (k + c) and below it is ν∗)

in the Table 1.7. In the Tables 1.6 and 1.7, we report the values of n∗
c , δ, n̄π: the average sample

size from π1, · · · , πk, and n̄t: the average sample size from π0, π1, · · · , πk, and, P̄ : the proportion

of times all the k populations are partitioned correctly. We also report the standard errors of the

reported estimates.

Note that as expected, using Theorems 1.2.1 and 1.3.1, the value of P̄ is close to or above

the target value of 0.95, for all the cases considered and for both the procedures. One should

note that one of the inbuilt advantages of taking a larger sample from the control population

is to compensate for a smaller sample sizes from the other populations π1, · · · , πk. This is clearly

evident for the cases c = 3 and c = 5 by comparing the values of n̄π and n̄t, in the Tables 1.6 and 1.7.

From Table 1.6, it is evident that the two-stage procedure is oversampling compared to the
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Table 1.6: Performance of the two-stage procedure (1.2.2)

c=1

n∗c δ n̄π n̄t p̄
s(n̄π) s(n̄t) s(p̄)

25 0.7104 25.402 25.402 0.948
(0.1152) (0.1152) (0.0070)

100 0.3552 102.026 102.026 0.950
(0.4391) (0.4391) (0.0069)

200 0.2512 207.277 207.277 0.941
(0.9167) (0.9167) (0.0075)

400 0.1776 412.936 412.936 0.955
(1.8806) (1.8806) (0.0066)

800 0.1256 828.887 828.887 0.951
(3.7084) (3.7084) (0.0068)

c=3

25 0.5903 25.380 29.995 0.954
(0.1044) (0.1458) (0.0066)

100 0.2952 102.785 121.473 0.954
(0.4053) (0.5661) (0.0066)

200 0.2087 204.828 242.069 0.949
(0.8041) (1.1231) (0.0070)

400 0.1476 411.029 485.762 0.955
(1.6920) (1.9996) (0.0066)

800 0.1044 823.220 972.896 0.955
(3.3405) (4.6657) (0.0066)

c=5

25 0.5616 24.997 34.087 0.949
(0.0983) (0.1828) (0.0070)

100 0.2808 101.858 138.897 0.948
(0.3840) (0.7140) (0.0070)

200 0.1986 206.100 281.045 0.958
(0.8012) (1.4898) (0.0063)

400 0.1404 410.180 599.336 0.957
(1.5499) (2.8820) (0.0064)

800 0.0993 818.437 1116.050 0.955
(3.2087) (5.9666) (0.0066)

k = 10, P ∗ = .95, and m = 10
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Table 1.7: Performance of the purely sequential procedure (1.3.1)

c=1

n∗c δ n̄π n̄t p̄
s(n̄π) s(n̄t) s(p̄)

25 0.7104 25.496 25.496 0.941
(0.0687) (0.0687) (0.0075)

100 0.3552 100.287 100.287 0.949
(0.1364) (0.1364) (0.0070)

200 0.2512 200.713 200.713 0.953
(0.1904) (0.1904) (0.0067)

400 0.1776 400.354 400.354 0.947
(0.2610) (0.2610) (0.0071)

800 0.1256 800.180 800.180 0.947
(0.3826) (0.3826) (0.0071)

[n∗c+.402]a

c=3

25 0.5903 25.485 30.119 0.941
(0.0687) (0.0960) (0.0075)

100 0.2952 100.347 118.619 0.953
(0.1264) (0.1765) (0.0067)

200 0.2087 200.654 237.137 0.958
(0.1754) (0.2450) (0.0063)

400 0.1476 400.347 473.173 0.958
(0.2408) (0.3363) (0.0063)

800 0.1044 800.360 945.88 0.947
(0.3674) (0.5131) (0.0071)

[n∗c+.419]a

c=5

25 0.5616 25.394 34.628 0.942
(0.0651) (0.1211) (0.0074)

100 0.2808 100.410 136.923 0.956
(0.1264) (0.2350) (0.0067)

200 0.1986 200.716 273.704 0.963
(0.1754) (0.3262) (0.0063)

400 0.1404 400.311 545.879 0.966
(0.2407) (0.4476) (0.0063)

800 0.0993 800.362 1091.402 0.941
(0.3262) (0.6066) (0.0075)

[n∗c+.431]a

k = 10, P ∗ = .95, and m = 10
(a: denotes the asymptotic value from Theorem 1.3.1(ii))
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optimal sample size. For example, for c = 1 and n∗
c = 800, the two stage procedure oversamples

by 29 or so observations. Such a behavior of the two-stage procedures is well documented in the

statistical literature. One way to eliminate over-sampling is to adopt a purely sequential procedure.

Note that in the Table 1.7, the values of n∗
c and n̄π are quite close and there does not appear to be

any oversampling. In the Table 1.7, we also provide the asymptotic value of E(N)− n∗
c . Note that

even for small sample sizes, such as 25 or 100, the agreement between the asymptotic value and the

observed values is remarkable for all the three cases. In addition, using the Theorem 1.3.1(iii) and

the Tables provided in this section, one can easily verify that the observed p̄ value is in agreement

with the asymptotic value. For example, in Table 1.7, for c = 5, we expect p̄ − P ∗ to be close to

((k + c)n∗c)
−1{(ν∗ − 2)g′(1) + g′′(1) (=.0004536) and the observed difference is .006 with standard

error of .0067.

Remark 1.4.1: It is important to note that within the Table 1.6 , and, also within the Table 1.7,

one cannot compare the blocks corresponding to different values of c with one another. This is so

because even though the n∗
c values are same in the three blocks, the value of δ is smaller for the

larger c value. Also, note that in Tables 6 and 7, for c = 3 and c = 5, the value of n̄t is significantly

larger than that of n̄π, as we take more observations from π0. In other words, since n∗
c denotes

the optimal sample size from π1, · · · , πk, it needs to be compared with n̄π. An alternative way to

compute n̄t would be to divide the number of samples collected from π0 by c before computing the

average.
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Chapter 2

Assessing Robustness of Procedures

2.1 Introduction

In real world applications, the partition problem is a routine problem which gets applied in

numerous different areas, such as, biological sciences, medical sciences, agricultural sciences, etc, to

name a few, in order to compare newer treatments with a control. However, a large proportion of

the statistical theory is developed for the normal distribution case and also under various assump-

tions.

In this chapter, we consider the robustness of various partition procedures known in the

statistical literature, including the ones proposed in Chapter 1, from the point of view of mild to

moderate departures from the assumptions. The goal of the study is to document the performance

of the different procedures under such several mild/moderate departures.

2.2 Description of The Procedures

In this chapter, we have selected a few procedures to study the robustness issues. It should

be noted that the literatures is quite rich and has many such procedures and inclusion of all such

procedures in not practical. However, we have selected a few, to illustrate our point. The selected

procedures are somewhat the standard procedures and have been cited regularly in the statistical

literature.

Two Stage Procedure (DS): In a two-stage procedure, samples are collected in two batches.
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The procedure described below was developed by Tong (1969).

Let m > 1 be a pre-assigned positive integer indicating the starting sample size. We collect

m observations from each of the k + 1 populations, and compute the estimator of σ2 given by

S2 = ν−1
k

∑

i=0

m
∑

j=1

[Xi j −m−1(

m
∑

n=1

Xi j)]
2

where ν = (k+1)(m−1). After this, in the second stage we collect N −m additional samples from

each population, where N is the smallest integer satisfying

N ≥ max{m, < 2h2
νS

2
ν/a

2 >}. (2.2.1)

Then we partition the k populations based on N samples using (1.1.5). Note that hν is available

in the Table 2 in Tong (1969).

Three Stage Procedure (TS): In a three-stage procedure, the samples are collected in three

batches. The procedure stated below and its fine tuned version were developed by Datta and

Mukhopadhyay(1998).

Choose and fix ρ ∈ (0, 1), collect m observations from each population as the starting

sample size, and compute

T = max{m, < 2ρb2S2
ma

−2 > +1}.

Collect T −m additional samples from each populations in the second batch and compute:

N = max{T, < 2b2S2
Ta

−2 > +1}.

In the third batch, we collect N − T additional samples from each population, compute overall

sample means and apply the same decision as described in (1.1.5), where < x >=largest integer

< x and b is available in the Table 1 in Tong (1969).
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Fined Tuned Three Stage Procedure (TSR):

Choose and fix ρ ∈ (0, 1), collect m observations from each population as the starting

sample size, and compute

T = max{m, < 2ρb2S2
ma

−2 > +1}.

Collect T −m additional samples from each populations in the second batch and compute:

N = max{T, < 2b2S2
Ta

−2 + ε > +1}.

In the third batch, we collect N − T additional samples from each population, compute overall

sample means and apply the same decision as described in (1.1.5), where < x >=largest integer

< x, b is available in table 1 in Tong (1969), and ε = ρ−1(k + 1)−1[2 − {g′′(1)/g′(1)}] − 1/2. Here

g(·) is a special case for c = 1 of the g(·), which is defined in the Chapter 1.

Purely Sequential Procedure (PS): This procedure and its fine tuned version were developed

by Datta and Mukhopadhyay (1998).

Define N = inf{n ≥ m : n ≥ 2b2S2
n/a

2}. Then apply the decision rule as described in

(1.1.5) based on N samples, where b is available in the Table 1 in Tong (1969).

Fined Tuned Purely Sequential Procedure (PSR):

Define N = inf{n ≥ m : n+ ε ≥ 2b2S2
n/a

2}. Then apply the decision rule as described in

(1.1.5) based on N samples, where b is available in the Table 1 in Tong (1969). Where, the constant

ε = (k+ 1)−1[(ν − 2) + g′′(1)/g′(1)] and g(·) is same as the one introduced for the fine tuned three

stage procedure.

Purely Sequential Procedure with Elimination (ES): This procedure can eliminate and

partition “inferior” or “superior” populations using triangular boundaries. It was developed by
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Solanky (2001). This procedure has the following steps.

(1) Start with the sample size m (> 1) samples from each population, compute:

X i m =
m

∑

j−1

Xi j/m, S
2
i m =

m
∑

j=1

(Xi j −Xi m)2/(m− 1),

S2 =

k
∑

i=0

S2
i m/k, aλ = ηfS2/a, Wλ = [aλ/λ].

(2) Draw one observation from those populations, which have not been eliminated, until

(i) m ≥Wλ, or

(ii) all the populations have been partitioned,

and then do step (4).

(3) Within each population that to be partitioned, partition any populations into SB for which

r
∑

j=1

Xi j <
r

∑

j=1

(X0 j + d− aλ + rλ),

partition any populations into SG for which

r
∑

j=1

Xi j >

r
∑

j=1

(X0 j + d+ aλ − rλ).

(4) if m = Wλ, then get one more observation from the populations haven’t been partitioned, and

them apply decision rule (1.1.5) to those populations. Here η could be found in table 1 in Solanky

(2001) and λ = a/(2j).

Unbalanced Procedures

There are two kinds of unbalanced procedures, which are the two-stage unbalanced proce-

dure (UDS) and purely sequential unbalanced procedure (UPS). The details of these procedures

are provided in the Chapter 1 of this thesis.

26



2.3 Performance of the Procedures

We start by simulating all the selected procedures when all of the assumptions are satis-

fied. We generated k + 1 groups of samples, which are independent within each group and from

independent and normally distributed populations. We choose k = 10, and the populations are

assumed under the LFC and the variance of the populations was taken to be 1, without the loss

of generality. We took µ0 = 0 and δ1 = −δ2, giving a = δ2(= δ, say). Next, using n∗ = 2b2σ2

a2 , we

computed the values of δ corresponding to n∗ = 15, 20, 25, 30, 50, 100, 200, 400 and 800. The

values are in the following table:

Table 2.1: Values of δ for specified optional sample sizes

n∗ 15 20 25 30 50 100 200 400 800

δ = −δ1 = δ2 0.9171 0.7942 0.7103 0.6485 0.5023 0.3552 0.2511 0.1776 0.1256

We took the starting sample size to be m = 10, P ∗ = .95, ρ = 1
4 , for TS and TSR and j = 2

for the ES. For each value of δ, each procedure was independently repeated for 5000 times and we

recorded the sample size as well as whether the partition is a CD or not, in each iteration. The aver-

age sample sizes and the actual percentages of CD for the procedures are displayed in the Table 2.2.

To summarize, all the procedures are working quite well with the estimated probability of

CD (= p̄) being close to its target value and the average sample size (= n̄) being close to its optimal

value n∗.

2.4 Departure from Normality

2.4.1 Symmetric Distributions Case

In this section, we restrict our attention to symmetric distributions only. For the underlying

distributions, we chose a variety of non-normal distributions to represent a wide range of symmetric

configuration with varying degrees of “heaviness” in the tails.
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Table 2.2: Simulation Results under Normal Distribution Assumption

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0562 0.9448 15.5416 0.9494 16.6230 0.9618 10.6448 0.9546
0.03168 0.00323 0.03072 0.00310 0.03044 0.00271 0.01351 0.00294

20 20.1540 0.9438 20.4766 0.9450 21.6296 0.9550 13.7272 0.9410
0.04193 0.00326 0.04054 0.00322 0.04039 0.00293 0.02599 0.00333

25 25.2774 0.9466 25.4224 0.9494 26.5636 0.9504 17.2460 0.9448
0.05170 0.00318 0.04995 0.00310 0.05044 0.00307 0.03260 0.00323

30 30.6572 0.9510 30.1223 0.9512 31.5738 0.9542 21.0410 0.9518
0.06630 0.00305 0.06231 0.03050 0.06011 0.00296 0.03920 0.00303

50 51.2702 0.9496 49.7364 0.9440 50.8938 0.9462 35.0980 0.9430
0.10548 0.00309 0.08835 0.00325 0.08799 0.00319 0.06591 0.00328

100 102.8248 0.9508 99.6156 0.9490 100.7132 0.9436 70.6572 0.9446
0.20593 0.00306 0.12375 0.00311 0.12254 0.00326 0.12997 0.00324

200 206.5910 0.9528 199.8712 0.0947 200.9702 0.9522 141.9520 0.9518
0.42360 0.00300 0.17729 0.00316 0.17288 0.00302 0.26548 0.00303

400 412.0918 0.9472 399.6728 0.9484 400.7262 0.9544 283.2800 0.9466
0.83922 0.00316 0.24720 0.00313 0.24978 0.00295 0.52596 0.00318

800 825.8844 0.9508 799.6728 0.9512 800.2626 0.9478 567.5690 0.9496
1.65895 0.00306 0.34115 0.00305 0.34602 0.00315 1.04258 0.00309

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.3840 0.9484 15.2130 0.9466 10.7336 0.9815 11.0140 0.9576
0.02520 0.00313 0.02530 0.00318 0.01093 0.00191 0.01464 0.00285

20 20.4332 0.9532 20.2496 0.9502 11.9840 0.9760 14.2140 0.9518
0.02834 0.00299 0.02843 0.00308 0.01920 0.00216 0.02199 0.00303

25 25.3502 0.9522 25.1702 0.9510 13.6548 0.9752 17.7180 0.9466
0.03162 0.00302 0.03179 0.00305 0.02713 0.00220 0.02449 0.00318

30 30.3360 0.9468 30.1704 0.9460 15.6448 0.9680 21.1066 0.9504
0.03377 0.00317 0.03379 0.00320 0.03485 0.00249 0.02638 0.00307

50 50.2884 0.9468 50.1086 0.9452 24.6672 0.9682 34.8538 0.9478
0.04348 0.00317 0.04355 0.00322 0.06377 0.00248 0.03340 0.00315

100 100.5278 0.9518 100.3614 0.9520 48.2293 0.9646 69.5042 0.9474
0.06001 0.00303 0.06000 0.00302 0.13131 0.00261 0.04750 0.00316

200 200.5360 0.9492 200.3634 0.9494 94.8163 0.9610 138.5652 0.9516
0.08566 0.00311 0.08582 0.00310 0.26151 0.00274 0.06457 0.00304

400 400.3552 0.9478 400.1814 0.9480 187.2401 0.9642 276.5646 0.9460
0.12283 0.00315 0.12292 0.00314 0.50991 0.00263 0.09209 0.00320

800 800.1210 0.9484 799.9554 0.9486 372.4971 0.9646 553.0370 0.9516
0.17098 0.00313 0.17093 0.00312 1.03014 0.00261 0.12900 0.00304
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We included two Student t distributions with 10 and 20 d.f. respectively, a Laplace distri-

bution and three mixture of normal distributions with 2, 4 and 6 squared Mahalanobis distances,

respectively, to represent a family of distributions with varying kurtosis. The cdf of these mixture-

normal distributions was

Fi(x) = πi1N(x;µi1, σ
2) + πi2N(x;µi2, σ

2), (2.4.1)

where N(x;µi1, σ
2) and N(x;µi2, σ

2) are Gaussian random variables with locations (µi1, µi2) and a

common covariance, σ2 and πi1 + πi2 = 1 are the mixing proportions. To specify a mixture-normal

distribution with a given mean and variance 1, we define

∆ = (µi1 − µi2)
2σ−2 (2.4.2)

as squared Mahalanobis distance associated with the distribution. We choose the mean and vari-

ance of the component normal distributions, such that the mixture-normal distribution will have

squared Mahalanobis distances as 2, 4 and 6 respectively. The parameters for such distribution

with mean µ = 0 are in the Table 2.3:

Table 2.3: The Parameters for Symmetrical Mixture-Normal Distributions

∆ = 2 ∆ = 4 ∆ = 6

π1 = 0.5 µ1 = −µ2 = 0.70107 µ1 = −µ2 = 0.89443 µ1 = −µ2 = 0.94868
σ = 0.70107 σ = 0.44721 σ = 0.31623

As before, we choose k = 10, and assumed the k non-control populations have some non-

normal distributions in the same location family and the control population still has the standard

normal distribution. Also, we assumed that the populations are independent and they are under

LFC and have common variance σ2 = 1, without the loss of generality. Note that the mixture-

normal distributions with the parameters given in Table 2.3 have variance σ2 = 1. Hence, the

distributions of the non-control populations are in the location families of these distributions. And
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for the student t and Laplace distributions, we chose the ones with variance σ2 = 1 from their

location-scale family to be the location families, which include the distributions of the non-control

populations. The value of δ1 and δ2 were set in the same way as in the first paragraph in Section

2.3 to specify the distributions of the non-control populations from the location families described

above. Then we generated k + 1 groups of samples from such populations, each group is corre-

sponding to one population, for our robustness study.

We took the starting sample size to be m = 10, P ∗ = .95, ρ = 1
4 , for TS and TSR and

j = 2 for the ES. For each distribution we mentioned above and each value of δ, each procedure

was repeated 5000 times independently, and the value of n̄ and s(n̄), p̄ and s(p̄) are recorded and

displayed in Tables 2.4 - 2.9.

From the Tables 2.7, 2.8 and 2.9, we see that for the distributions with lighter tails than

normal distributions, i.e., with smaller kurtosis, the procedures perform well. The values of p̄ are

increasing as the tails of the distributions become lighter.

The Table 2.4, 2.5 and 2.6, indicate that the performance of the procedures with heavy

tails. Generally, the heavier the tail, the smaller the p̄ for all the procedures and in all the cases.

We also found that the ES is robust to the heavy-tailedness. Since the ES procedure is based on

some inequalities and the p̄ values are generally overshooting the target, the ES procedure works

well even under such moderate violation. The validity of the UPS procedure is marginally affected

by heavy-tailedness. The performance of the other six procedures is moderately affected by heavy-

tailedness.

From the Tables, it is difficult to pin point the exact robustness of the procedures. However,

it is important to note that the worst performance is for TSR with n∗ = 50, giving p̄ = 0.9364. Note

that this worst case is well within 2 standard errors of the target value. Hence, our conclusion is that

the procedures considered are quite rubust to mild to moderate heavy/light tailedness violations.
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Table 2.4: Simulation Results for t20 Distribution

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0024 0.9418 15.4900 0.9498 16.6312 0.9644 10.6444 0.9514
0.03329 0.00331 0.03213 0.00309 0.03321 0.00262 0.01379 0.00304

20 20.1856 0.9462 20.5038 0.9484 21.6098 0.9606 13.7262 0.9438
0.04440 0.00319 0.04287 0.00313 0.04253 0.00275 0.02751 0.00326

25 25.2694 0.9490 25.4130 0.9500 26.6638 0.9538 17.2460 0.9458
0.05635 0.00311 0.05449 0.00308 0.05371 0.00297 0.03523 0.00320

30 30.6144 0.9474 30.5438 0.9476 31.6022 0.9508 20.9094 0.9426
0.06818 0.00316 0.06449 0.00315 0.06340 0.00306 0.04238 0.00329

50 51.0944 0.9436 49.5350 0.9406 50.7556 0.9510 35.0158 0.9436
0.11229 0.00326 0.09412 0.00334 0.09291 0.00305 0.06971 0.00326

100 102.6926 0.9482 99.5318 0.9472 100.6496 0.9480 70.5460 0.9512
0.21929 0.00313 0.13294 0.00316 0.13474 0.00314 0.13708 0.00305

200 205.8878 0.9478 199.6950 0.9482 200.9040 0.9518 141.5770 0.9446
0.45609 0.00315 0.19233 0.00313 0.18828 0.00303 0.28342 0.00324

400 413.2788 0.9488 399.4182 0.9514 401.1600 0.9562 284.2158 0.9510
0.90211 0.00312 0.26372 0.00304 0.26234 0.00289 0.55626 0.00305

800 827.1610 0.9420 799.3644 0.9452 800.9254 0.9510 568.7584 0.9486
1.82051 0.00331 0.36993 0.00322 0.37371 0.00305 1.12719 0.00312

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.4140 0.9470 15.2336 0.9460 10.7394 0.9796 11.0422 0.9616
0.02669 0.00317 0.02673 0.00320 0.01112 0.00200 0.01547 0.00272

20 20.3616 0.9498 20.1926 0.9484 11.9849 0.9778 14.2002 0.9528
0.03043 0.00309 0.03069 0.00313 0.01961 0.00208 0.02315 0.00300

25 25.3738 0.9504 25.1986 0.9506 13.6879 0.9716 17.6798 0.9488
0.03355 0.00307 0.03361 0.00306 0.02808 0.00235 0.02569 0.00312

30 30.3482 0.9540 30.1722 0.9540 15.5872 0.9710 21.0728 0.9538
0.03702 0.00296 0.03723 0.00296 0.03566 0.00237 0.02827 0.00297

50 50.4142 0.9482 50.2378 0.9480 24.6208 0.9656 34.9134 0.9490
0.04710 0.00313 0.04706 0.00314 0.06701 0.00258 0.03558 0.00311

100 100.3500 0.9524 100.1764 0.9518 47.9847 0.9664 69.4396 0.9492
0.06624 0.00301 0.06623 0.00303 0.13321 0.00255 0.04993 0.00311

200 200.3658 0.9502 200.1868 0.9506 94.8547 0.9662 138.5380 0.9524
0.09233 0.00308 0.09232 0.00306 0.27186 0.00256 0.07047 0.00301

400 400.2880 0.9480 400.1088 0.9480 186.3133 0.9564 276.5396 0.9478
0.13098 0.00314 0.13102 0.00314 0.54313 0.00289 0.09826 0.00315

800 800.4784 0.9470 800.2932 0.9468 371.3969 0.9562 552.8602 0.9514
0.18607 0.00317 0.18611 0.00317 1.06446 0.00289 0.13985 0.00304
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Table 2.5: Simulation Results for t10 Distribution

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0414 0.9462 15.5194 0.9504 16.6158 0.9580 10.7104 0.9534
0.03716 0.00319 0.03608 0.00307 0.03640 0.00284 0.01570 0.00298

20 20.1950 0.9458 20.5152 0.9510 21.6144 0.9486 13.7524 0.9438
0.04849 0.00320 0.04678 0.00305 0.04793 0.00312 0.02956 0.00326

25 25.4304 0.9472 25.5588 0.9474 26.7004 0.9598 17.3444 0.9442
0.06260 0.00316 0.06031 0.00316 0.05915 0.00278 0.03850 0.00325

30 30.6018 0.9508 30.5184 0.9498 31.4970 0.9532 20.8838 0.9442
0.07407 0.00306 0.06986 0.00309 0.06932 0.00299 0.04561 0.00325

50 51.2114 0.9462 49.5132 0.9406 50.6020 0.9506 35.1008 0.9460
0.12259 0.00319 0.10240 0.00334 0.10268 0.00306 0.07537 0.00320

100 102.9150 0.9504 99.3822 0.9442 100.1190 0.9420 70.6942 0.9452
0.24633 0.00307 0.15121 0.00325 0.14953 0.00331 0.15011 0.00322

200 205.6234 0.9444 199.1190 0.9438 200.3764 0.9530 141.3906 0.9508
0.48899 0.00324 0.20941 0.00326 0.20819 0.00299 0.30073 0.00306

400 413.5736 0.9434 399.3724 0.9438 400.7564 0.9476 284.7942 0.9500
1.03575 0.00327 0.29783 0.00326 0.29242 0.00315 0.62894 0.00308

800 826.0084 0.9436 799.5828 0.9506 801.4692 0.9486 567.8116 0.9428
1.97272 0.00326 0.41629 0.00306 0.42254 0.00312 1.21229 0.00328

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.3318 0.9510 15.1532 0.9478 10.7509 0.9800 11.0424 0.9524
0.02920 0.00305 0.02928 0.00315 0.01161 0.00198 0.01642 0.00301

20 20.2626 0.9460 20.0852 0.9446 11.9635 0.9742 14.2442 0.9496
0.03350 0.00320 0.03383 0.00324 0.02041 0.00224 0.02496 0.00309

25 25.3076 0.9516 25.1230 0.9506 13.6690 0.9730 17.6604 0.9544
0.03655 0.00304 0.03670 0.00306 0.03015 0.00229 0.02872 0.00295

30 30.3390 0.9544 30.1632 0.9520 15.7363 0.9644 21.0422 0.9506
0.03983 0.00295 0.03998 0.00302 0.03917 0.00262 0.03015 0.00306

50 50.3626 0.9510 50.1842 0.9510 24.7543 0.9650 34.8968 0.9520
0.05196 0.00305 0.05209 0.00305 0.07137 0.00260 0.03868 0.00302

100 100.3638 0.9576 100.1866 0.9570 47.9579 0.9614 69.3964 0.9464
0.07302 0.00285 0.07305 0.00287 0.14168 0.00272 0.05480 0.00319

200 200.3668 0.9474 200.1964 0.9480 94.3464 0.9620 138.5110 0.9548
0.10386 0.00316 0.10396 0.00314 0.28114 0.00270 0.07716 0.00294

400 400.4982 0.9490 400.3254 0.9490 186.7014 0.9578 276.6496 0.9522
0.14545 0.00311 0.14537 0.00311 0.57102 0.00284 0.10927 0.00302

800 800.7582 0.9530 800.5872 0.9528 371.7556 0.9642 552.7822 0.9494
0.20511 0.00299 0.20518 0.00300 1.12777 0.00263 0.15239 0.00310
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Table 2.6: Simulation Results for Laplace Distribution

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0680 0.9370 15.5354 0.9444 16.6516 0.9598 10.8632 0.9508
0.04599 0.00344 0.04480 0.00324 0.04536 0.00278 0.01920 0.00306

20 20.1848 0.9428 20.4912 0.9470 21.6520 0.9526 13.7868 0.9396
0.06267 0.00328 0.06050 0.00317 0.05928 0.00301 0.03629 0.00337

25 25.3860 0.9420 25.5094 0.9444 26.5384 0.9546 17.2860 0.9384
0.07714 0.00331 0.07373 0.00324 0.07490 0.00294 0.04595 0.00340

30 30.4968 0.9418 30.3122 0.9410 31.4456 0.9504 20.8304 0.9394
0.09307 0.00331 0.08494 0.00333 0.08593 0.00307 0.05563 0.00337

50 51.3894 0.9412 49.2110 0.9370 50.3252 0.9432 35.1426 0.9430
0.15312 0.00333 0.12471 0.00344 0.12572 0.00327 0.09162 0.00328

100 103.1948 0.9436 98.7002 0.9396 99.7328 0.9452 70.8246 0.9450
0.30878 0.00326 0.18795 0.00337 0.18853 0.00322 0.18572 0.00322

200 205.7662 0.9466 198.2938 0.9498 200.1640 0.9450 141.3786 0.9410
0.62266 0.00318 0.26657 0.00309 0.26400 0.00322 0.37134 0.00333

400 411.7306 0.9430 398.4490 0.9524 399.0816 0.9550 283.0924 0.9484
1.24781 0.00328 0.37917 0.00301 0.38075 0.00293 0.74708 0.00313

800 826.4782 0.9414 798.7574 0.9470 799.8952 0.9490 568.7938 0.9466
2.46818 0.00332 0.54711 0.00317 0.53572 0.00311 1.46721 0.00318

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.2296 0.9458 15.0444 0.9428 10.7962 0.9766 11.1348 0.9548
0.03596 0.00320 0.03594 0.00328 0.01282 0.00214 0.01885 0.00294

20 20.2624 0.9452 20.0806 0.9434 12.0138 0.9710 14.0720 0.9498
0.04245 0.00322 0.04256 0.00327 0.02293 0.00237 0.03051 0.00309

25 25.2372 0.9434 25.0656 0.9420 13.7042 0.9682 17.5930 0.9418
0.04812 0.00327 0.04839 0.00331 0.03385 0.00248 0.03421 0.00331

30 30.2208 0.9480 30.0352 0.9462 15.6556 0.9658 20.9754 0.9518
0.05086 0.00314 0.05091 0.00319 0.04326 0.00257 0.03779 0.00303

50 50.2000 0.9486 50.0232 0.9484 24.6831 0.9648 34.8032 0.9472
0.06578 0.00312 0.06584 0.00313 0.08269 0.00261 0.04778 0.00316

100 100.2728 0.9488 100.0888 0.9480 48.0851 0.9586 69.4130 0.9524
0.09313 0.00312 0.09322 0.00314 0.16771 0.00282 0.06793 0.00301

200 200.1482 0.9540 199.9750 0.9546 94.3808 0.9558 138.4542 0.9456
0.13059 0.00296 0.13069 0.00294 0.33727 0.00291 0.09708 0.00321

400 400.0282 0.9454 399.8514 0.9454 186.3922 0.9550 276.5936 0.9518
0.18563 0.00321 0.18575 0.00321 0.65378 0.00293 0.13509 0.00303

800 800.0730 0.9552 799.9012 0.9560 369.6602 0.9554 552.6472 0.9490
0.26146 0.00293 0.26153 0.00290 1.31944 0.00292 0.19226 0.00311
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Table 2.7: Simulation Results for Mixture-Normal Distribution with ∆ = 2

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.7822 0.9424 15.3096 0.9530 16.3676 0.9578 10.5068 0.9570
0.02802 0.00330 0.02669 0.00299 0.02622 0.00284 0.01132 0.00287

20 19.8894 0.9434 20.1820 0.9506 21.3308 0.9568 13.5282 0.9400
0.03669 0.00327 0.03530 0.00306 0.03607 0.00288 0.02351 0.00336

25 24.9434 0.9410 25.0874 0.9484 26.2310 0.9526 17.0688 0.9500
0.04551 0.00333 0.04483 0.00313 0.04494 0.00301 0.02979 0.00308

30 30.0744 0.9472 30.0270 0.9468 31.2068 0.9552 20.6028 0.9486
0.05516 0.00316 0.05289 0.00317 0.05359 0.00293 0.03532 0.00312

50 50.4348 0.9502 49.1058 0.9430 50.2124 0.9484 34.6038 0.9502
0.09208 0.00308 0.07757 0.00328 0.07812 0.00313 0.05957 0.00308

100 101.3880 0.9488 98.5354 0.9468 99.3878 0.9526 69.8182 0.9470
0.18231 0.00312 0.10894 0.00317 0.10751 0.00301 0.11673 0.00317

200 203.4292 0.9530 196.9604 0.9510 198.2364 0.9492 140.4634 0.9498
0.36160 0.00299 0.15243 0.00305 0.15005 0.00311 0.24029 0.00309

400 407.4462 0.9494 394.0478 0.9460 395.0836 0.9492 280.4296 0.9538
0.74799 0.00310 0.21205 0.00320 0.21168 0.00311 0.47231 0.00297

800 812.9954 0.9488 787.6208 0.9472 788.9544 0.9476 561.8558 0.9496
1.48233 0.00312 0.29854 0.00316 0.30620 0.00315 0.92060 0.00309

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.1884 0.9506 15.0110 0.9482 10.6690 0.9822 10.8560 0.9580
0.02226 0.00306 0.02226 0.00313 0.01015 0.00187 0.01325 0.00284

20 20.0958 0.9572 19.9140 0.9542 11.8592 0.9756 14.0668 0.9488
0.02504 0.00286 0.02507 0.00296 0.01802 0.00218 0.01995 0.00312

25 25.0576 0.9512 24.8796 0.9492 13.5127 0.9738 17.4618 0.9536
0.02757 0.00305 0.02767 0.00311 0.02552 0.00226 0.02222 0.00298

30 29.9230 0.9516 29.7428 0.9508 15.4671 0.9714 20.8318 0.9474
0.02953 0.00304 0.02963 0.00306 0.03252 0.00236 0.02350 0.00316

50 49.6596 0.9524 49.4946 0.9524 24.2416 0.9708 34.5154 0.9560
0.03755 0.00301 0.03770 0.00301 0.05896 0.00238 0.03046 0.00290

100 98.7670 0.9504 98.5916 0.9500 47.1625 0.9660 68.5512 0.9534
0.05337 0.00307 0.05331 0.00308 0.12056 0.00256 0.04203 0.00298

200 197.3852 0.9516 197.2054 0.9508 93.0877 0.9624 136.8506 0.9514
0.07495 0.00304 0.07509 0.00306 0.24241 0.00269 0.05875 0.00304

400 394.3956 0.9512 394.2206 0.9506 184.1207 0.9608 273.0638 0.9498
0.10402 0.00305 0.10385 0.00306 0.47372 0.00275 0.08292 0.00309

800 787.9080 0.9464 787.7244 0.9468 365.8572 0.9568 545.4098 0.9490
0.14764 0.00319 0.14768 0.00317 0.94331 0.00288 0.11740 0.00311
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Table 2.8: Simulation Results for mixture-normal Distribution with ∆ = 4

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0396 0.9498 15.5150 0.9500 16.6018 0.9612 10.5046 0.9544
0.02195 0.00309 0.02125 0.00308 0.02073 0.00273 0.01052 0.00295

20 20.1904 0.9480 20.5146 0.9520 21.6242 0.9624 13.7326 0.9416
0.02902 0.00314 0.02857 0.00302 0.02846 0.00269 0.02004 0.00332

25 25.3562 0.9512 25.5182 0.9544 26.6184 0.9566 17.2740 0.9466
0.03690 0.00305 0.03480 0.00295 0.03528 0.00288 0.02431 0.00318

30 30.5156 0.9484 30.4444 0.9470 31.6876 0.9570 20.8012 0.9466
0.04274 0.00313 0.04202 0.00317 0.04218 0.00287 0.02935 0.00318

50 51.2414 0.9504 50.0292 0.9486 51.2224 0.9538 35.0024 0.9490
0.07230 0.00307 0.06135 0.00312 0.06005 0.00297 0.04939 0.00311

100 103.0512 0.9512 100.2854 0.9478 101.2198 0.9536 70.8156 0.9484
0.14282 0.00305 0.08014 0.00315 0.08101 0.00298 0.09557 0.00313

200 207.0092 0.9550 200.1274 0.9542 201.4768 0.9576 141.5366 0.9534
0.29155 0.00293 0.11238 0.00296 0.11140 0.00285 0.19484 0.00298

400 413.8526 0.9542 400.1616 0.9510 401.5578 0.9522 284.2274 0.9544
0.57800 0.00296 0.15946 0.00305 0.15764 0.00302 0.39690 0.00295

800 828.0466 0.9532 800.1750 0.9512 801.6500 0.9540 569.5322 0.9530
1.13162 0.00299 0.22046 0.00305 0.22553 0.00296 0.78164 0.00299

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.4698 0.9524 15.2880 0.9500 10.7234 0.9828 10.9378 0.9560
0.01696 0.00301 0.01704 0.00308 0.01036 0.00184 0.01228 0.00290

20 20.4664 0.9490 20.2974 0.9480 11.9036 0.9788 14.2362 0.9524
0.01899 0.00311 0.01909 0.00314 0.01679 0.00204 0.01655 0.00301

25 25.4454 0.9594 25.2746 0.9576 13.6705 0.9720 17.6980 0.9418
0.02094 0.00279 0.02106 0.00285 0.02405 0.00233 0.01782 0.00331

30 30.4350 0.9492 30.2508 0.9486 15.6417 0.9728 21.1694 0.9518
0.02292 0.00311 0.02311 0.00312 0.03093 0.00230 0.01954 0.00303

50 50.4222 0.9514 50.2578 0.9514 24.5850 0.9720 34.9990 0.9466
0.02884 0.00304 0.02883 0.00304 0.05569 0.00233 0.02439 0.00318

100 100.4730 0.9498 100.2974 0.9488 47.8925 0.9624 69.5152 0.9438
0.03911 0.00309 0.03914 0.00312 0.11205 0.00269 0.03333 0.00326

200 200.4232 0.9498 200.2500 0.9504 94.4451 0.9660 138.5840 0.9508
0.05595 0.00309 0.05597 0.00307 0.21734 0.00256 0.04708 0.00306

400 400.4350 0.9464 400.2584 0.9468 187.8742 0.9664 276.7572 0.9452
0.07776 0.00319 0.07782 0.00317 0.44184 0.00255 0.06685 0.00322

800 800.4140 0.9444 800.2402 0.9448 372.2781 0.9600 552.8476 0.9472
0.10904 0.00324 0.10888 0.00323 0.86274 0.00277 0.09236 0.00316
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Table 2.9: Simulation Results for mixture-normal Distribution with ∆ = 6

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0200 0.9460 15.5030 0.9494 16.6136 0.9634 10.4394 0.9548
0.01869 0.00320 0.01799 0.00310 0.01758 0.00266 0.00949 0.00294

20 20.1962 0.9480 20.4936 0.9498 21.6266 0.9614 13.7304 0.9432
0.02488 0.00314 0.02407 0.00309 0.02389 0.00272 0.01784 0.00327

25 25.3644 0.9546 25.5044 0.9556 26.6318 0.9558 17.2764 0.9474
0.03038 0.00294 0.02942 0.00291 0.02974 0.00291 0.02174 0.00316

30 30.4864 0.9492 30.4554 0.9490 31.6822 0.9578 20.7960 0.9460
0.03668 0.00311 0.03552 0.00311 0.03554 0.00284 0.02615 0.00320

50 51.1438 0.9512 50.1592 0.9492 51.3248 0.9542 35.0202 0.9492
0.06120 0.00305 0.05123 0.00311 0.04970 0.00296 0.04414 0.00311

100 103.1460 0.9514 100.3686 0.9466 101.3582 0.9518 70.8074 0.9488
0.11653 0.00304 0.06544 0.00318 0.06575 0.00303 0.08527 0.00312

200 206.3396 0.9564 200.2512 0.9550 201.5550 0.9590 141.5674 0.9550
0.24184 0.00289 0.09006 0.00293 0.08959 0.00280 0.17340 0.00293

400 413.0340 0.9542 400.2968 0.9496 401.6666 0.9498 284.2840 0.9560
0.49152 0.00296 0.12781 0.00309 0.12557 0.00309 0.35539 0.00290

800 829.3414 0.9526 800.3340 0.9510 801.6526 0.9550 569.2280 0.9548
0.96623 0.00301 0.17547 0.00305 0.17871 0.00293 0.69797 0.00294

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.4556 0.9528 15.2770 0.9524 10.6908 0.9820 10.8684 0.9530
0.01430 0.00300 0.01445 0.00301 0.00992 0.00188 0.01105 0.00299

20 20.4530 0.9522 20.2810 0.9520 11.9233 0.9794 14.2660 0.9528
0.01601 0.00302 0.01601 0.00302 0.01668 0.00201 0.01454 0.00300

25 25.4798 0.9528 25.3016 0.9510 13.6366 0.9800 17.7192 0.9556
0.01716 0.00300 0.01717 0.00305 0.02311 0.00198 0.01577 0.00291

30 30.4544 0.9546 30.2742 0.9526 15.6298 0.9728 21.1996 0.9510
0.01826 0.00294 0.01840 0.00301 0.02925 0.00230 0.01697 0.00305

50 50.4944 0.9542 50.3224 0.9544 24.6040 0.9732 35.0016 0.9512
0.02262 0.00296 0.02268 0.00295 0.05190 0.00228 0.02127 0.00305

100 100.4356 0.9520 100.2538 0.9510 47.9398 0.9690 69.5248 0.9516
0.03202 0.00302 0.03203 0.00305 0.10325 0.00245 0.02891 0.00304

200 200.5076 0.9474 200.3368 0.9474 94.3115 0.9714 138.5306 0.9526
0.04475 0.00316 0.04469 0.00316 0.20720 0.00236 0.04073 0.00301

400 400.5458 0.9512 400.3738 0.9514 187.0386 0.9668 276.6980 0.9524
0.06165 0.00305 0.06149 0.00304 0.40854 0.00253 0.05752 0.00301

800 800.3734 0.9502 800.2028 0.9504 371.2251 0.9638 553.1274 0.9516
0.08682 0.00308 0.08687 0.00307 0.80890 0.00264 0.07946 0.00304
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2.4.2 Asymmetric Distributions Case

Also, we studied some asymmetric distributions. We chose that k = 10 and three mixture-

normal distributions to represent the asymmetric distributions. The distributions we considered

here is similar to those mixture-normal distributions we considered above. The only difference is

that the mixing proportions are 0.9 and 0.1 here while they are 0.5 and 0.5 above. The parameters

of the asymmetric mixture-normal distributions with the variance σ2 = 1 and mean µ = 0 are

summarized in following Table 2.10.

Table 2.10: Parameters of Asymmetrical mixture-normal Distribution

∆ = 2 ∆ = 4 ∆ = 6

π1 = 0.9 µ1 = 0.17150 µ1 = 0.25607 µ1 = 0.29139
µ2 = −1.54349 µ2 = −2.30467 µ2 = −2.62247
σ = 0.85749 σ = 0.64018 σ = 0.48564

The distributions of the populations were specified in the same way as described in Section

2.4.1 for our robustness study, except that the distributions for the non-control populations used

here are the three asymmetric mixture-normal distributions. Also, samples were generated in the

same way as described in Section 2.4.1 to obtain the results displayed in Table 2.11 - 2.13.

In addition, we not only studied the situation that all the non control populations have the

same shape (distribution), but also studied when the skewness in these populations differs consid-

erably. For such situation, we assumed the control population still has standard normal distribu-

tion. Also, we assumed the non-control populations X1, · · · Xr ∼ f(−δ − x) and Xr+1, · · · Xk ∼

f(−δ + x), where the f(·) is the pdf of the asymmetric mixture-normal distribution with ∆ = 6

and other parameters as specified in Table 2.10. Note that such populations are also under LFC

and have common variance σ2 = 1. By generating samples from such populations, we obtained

the probability of correct decision of the procedures for the most strongly skewed and most badly

differed populations, in some degree.

We took the starting sample size to be m = 10, P ∗ = .95, ρ = 1
4 , for TS and TSR and j = 2
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for the ES. For each set of distributions of the populations and each value of δ, each procedure was

repeated 5000 times independently and the values of n̄, s(n̄), p̄ and s(p̄) are recorded and displayed

in tables 2.11-2.14.

Based on the simulations, we conclude that, if the populations have the same shape, then

the validity of all the procedures is marginally affected by skewness. Secondly, if the skewness in

the populations differs considerably, then the validity of all the procedures, except the ES, is mod-

erately affected. However, the averse effects diminish, with increasing the sample size. Thirdly,

if the skewness in the populations differs considerably, then the validity of the ES procedure is

marginally affected, due to its wider error margin compared with other procedures. Another dif-

ference between ES and the others is that, it performs relatively better for smaller sample sizes.

From the Table 2.14, it is important to note that one of the worst performance is for UDS

with n∗ = 20, giving p̄ = 0.9202. Note that in this case the p̄ value is not within 2 standard errors

of the target value.

2.5 Departure from Independence

For studying the performance of the procedures against the departure from independence,

we assumed that the samples collected from each non-control population have a serial effect. The

samples from each non-control population were generated from normally distributed AR(1) model.

The first order correlation coefficients considered were 0.05, 0.1 and 0.2. The other settings of the

populations and the generation of the samples are the same as described in the third paragraph in

Section 2.4.1.

We took the starting sample size to be m = 10, P ∗ = .95, ρ = 1
4 , for TS and TSR and

j = 2 for the ES. For each population setting and each value of δ, each procedure was repeated

5000 times independently and the values of n̄, s(n̄), p̄ and s(p̄) are recorded and displayed in Tables

2.15-2.17.
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Table 2.11: Simulation Results for Asymmetric Mixture-Normal Distribution with ∆ = 2

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.9990 0.9456 15.5014 0.9520 16.6664 0.9596 10.6536 0.9564
0.03297 0.00321 0.03250 0.00302 0.03312 0.00278 0.01385 0.00289

20 20.1948 0.9468 20.4870 0.9524 21.6740 0.9538 13.7402 0.9450
0.04420 0.00317 0.04277 0.00301 0.04261 0.00297 0.02730 0.00322

25 25.4710 0.9480 25.5704 0.9460 26.6436 0.9538 17.3502 0.9462
0.05516 0.00314 0.05413 0.00320 0.05415 0.00297 0.03438 0.00319

30 30.4466 0.9460 30.4036 0.9464 31.6656 0.9550 20.7866 0.9440
0.06540 0.00320 0.06220 0.00319 0.06425 0.00293 0.04058 0.00325

50 51.3060 0.9472 49.6712 0.9416 50.6582 0.9412 35.1318 0.9518
0.11038 0.00316 0.09394 0.00332 0.09253 0.00333 0.06787 0.00303

100 102.9954 0.9516 99.8588 0.9496 100.7194 0.9480 70.6456 0.9452
0.21814 0.00304 0.13247 0.00309 0.13487 0.00314 0.13666 0.00322

200 206.2216 0.9486 199.4292 0.9494 200.6042 0.9446 141.8386 0.9486
0.43955 0.00312 0.18633 0.00310 0.18791 0.00324 0.27459 0.00312

400 414.2140 0.9534 399.7994 0.9474 401.2096 0.9468 284.7490 0.9496
0.89133 0.00298 0.26507 0.00316 0.26225 0.00317 0.55277 0.00309

800 825.7868 0.9532 799.1056 0.9460 801.0206 0.9488 568.1014 0.9514
1.77177 0.00299 0.36822 0.00320 0.37410 0.00312 1.09229 0.00304

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.3318 0.9518 15.1548 0.9488 10.7107 0.9808 11.0082 0.9576
0.02613 0.00303 0.02633 0.00312 0.01087 0.00194 0.01492 0.00285

20 20.3768 0.9498 20.1946 0.9506 12.0003 0.9782 14.1886 0.9486
0.03016 0.00309 0.03027 0.00306 0.01982 0.00207 0.02334 0.00312

25 25.3660 0.9500 25.1822 0.9498 13.6673 0.9724 17.6534 0.9524
0.03360 0.00308 0.03392 0.00309 0.02819 0.00232 0.02611 0.00301

30 30.3474 0.9536 30.1670 0.9512 15.6482 0.9758 21.1108 0.9520
0.03655 0.00298 0.03651 0.00305 0.03626 0.00217 0.02816 0.00302

50 50.3408 0.9570 50.1584 0.9546 24.7065 0.9684 34.9490 0.9538
0.04753 0.00287 0.04753 0.00294 0.06615 0.00247 0.03527 0.00297

100 100.2924 0.9522 100.1262 0.9520 48.1225 0.9604 69.5040 0.9492
0.06409 0.00302 0.06407 0.00302 0.13318 0.00276 0.04956 0.00311

200 200.1708 0.9510 200.0028 0.9508 94.3494 0.9642 138.6014 0.9500
0.09344 0.00305 0.09339 0.00306 0.26377 0.00263 0.07224 0.00308

400 400.4172 0.9562 400.2394 0.9564 187.4586 0.9558 276.4798 0.9492
0.12987 0.00289 0.12991 0.00289 0.53050 0.00291 0.09951 0.00311

800 800.2326 0.9544 800.0652 0.9544 372.1724 0.9568 552.8752 0.9514
0.18781 0.00295 0.18753 0.00295 1.07422 0.00288 0.13900 0.00304
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Table 2.12: Simulation Results for Asymmetric Mixture-Normal Distribution with ∆ = 4

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0584 0.9480 15.5240 0.9524 16.6618 0.9618 10.7760 0.9532
0.03992 0.00314 0.03900 0.00301 0.03997 0.00271 0.01616 0.00299

20 20.1360 0.9466 20.4466 0.9522 21.6662 0.9520 13.7332 0.9496
0.05456 0.00318 0.05281 0.00302 0.05263 0.00302 0.03241 0.00309

25 25.4654 0.9446 25.5932 0.9446 26.5956 0.9540 17.3372 0.9426
0.06837 0.00324 0.06604 0.00324 0.06596 0.00296 0.04150 0.00329

30 30.4174 0.9426 30.3226 0.9424 31.5922 0.9552 20.7656 0.9466
0.08043 0.00329 0.07545 0.00330 0.07787 0.00293 0.04822 0.00318

50 51.1738 0.9454 49.3676 0.9376 50.2938 0.9434 35.0508 0.9408
0.13617 0.00321 0.11709 0.00342 0.11340 0.00327 0.08241 0.00334

100 102.8406 0.9432 99.3544 0.9406 100.0428 0.9456 70.5534 0.9428
0.27067 0.00327 0.16624 0.00334 0.16970 0.00321 0.16459 0.00328

200 206.6810 0.9466 199.0426 0.9462 199.8490 0.9472 142.0886 0.9444
0.54658 0.00318 0.23671 0.00319 0.23907 0.00316 0.33338 0.00324

400 413.9704 0.9494 399.4036 0.9516 400.9342 0.9478 284.6354 0.9484
1.09602 0.00310 0.32847 0.00304 0.33439 0.00315 0.66944 0.00313

800 825.2236 0.9480 798.1866 0.9484 800.6584 0.9510 566.9474 0.9436
2.20728 0.00314 0.46344 0.00313 0.47313 0.00305 1.34515 0.00326

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.2552 0.9444 15.0760 0.9416 10.7489 0.9792 11.1102 0.9608
0.03289 0.00324 0.03282 0.00332 0.01153 0.00202 0.01719 0.00274

20 20.2482 0.9488 20.0674 0.9486 12.0293 0.9754 14.1694 0.9562
0.03838 0.00312 0.03850 0.00312 0.02158 0.00219 0.02755 0.00289

25 25.3118 0.9446 25.1252 0.9448 13.7105 0.9718 17.5474 0.9498
0.04191 0.00324 0.04210 0.00323 0.03080 0.00234 0.03079 0.00309

30 30.3240 0.9508 30.1460 0.9494 15.6616 0.9694 21.0206 0.9472
0.04563 0.00306 0.04577 0.00310 0.03989 0.00244 0.03425 0.00316

50 50.3338 0.9528 50.1580 0.9524 24.6200 0.9706 34.9104 0.9512
0.05814 0.00300 0.05852 0.00301 0.07488 0.00239 0.04328 0.00305

100 100.1100 0.9490 99.9344 0.9482 47.8133 0.9598 69.4076 0.9552
0.08201 0.00311 0.08217 0.00313 0.15291 0.00278 0.06036 0.00293

200 200.4696 0.9468 200.2942 0.9474 94.8592 0.9568 138.4360 0.9540
0.11616 0.00317 0.11615 0.00316 0.30665 0.00288 0.08577 0.00296

400 400.3050 0.9484 400.1274 0.9482 186.6472 0.9528 276.6862 0.9516
0.16205 0.00313 0.16204 0.00313 0.60866 0.00300 0.12207 0.00304

800 800.2752 0.9524 800.1032 0.9520 370.3924 0.9546 552.9212 0.9508
0.23219 0.00301 0.23227 0.00302 1.20475 0.00294 0.16864 0.00306
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Table 2.13: Simulation Results for Asymmetric Mixture-Normal Distribution with ∆ = 6

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0612 0.9464 15.5554 0.9528 16.6794 0.9572 10.8498 0.9548
0.04406 0.00319 0.04357 0.00300 0.04486 0.00286 0.01759 0.00294

20 20.1798 0.9410 20.4312 0.9508 21.6518 0.9532 13.8012 0.9444
0.06204 0.00333 0.05990 0.00306 0.06003 0.00299 0.03532 0.00324

25 25.4598 0.9398 25.6030 0.9422 26.5626 0.9516 17.3532 0.9494
0.07618 0.00336 0.07431 0.00330 0.07487 0.00304 0.04546 0.00310

30 30.3822 0.9378 30.2814 0.9392 31.5328 0.9542 20.7486 0.9452
0.09147 0.00342 0.08554 0.00338 0.08747 0.00296 0.05408 0.00322

50 51.1468 0.9406 49.1280 0.9372 50.0296 0.9430 35.0446 0.9452
0.15369 0.00334 0.13294 0.00343 0.12880 0.00328 0.09155 0.00322

100 102.7134 0.9404 98.7680 0.9404 99.4736 0.9430 70.4878 0.9414
0.30811 0.00335 0.19546 0.00335 0.19658 0.00328 0.18511 0.00332

200 206.7632 0.9424 198.5944 0.9432 199.2688 0.9502 142.1524 0.9428
0.61957 0.00330 0.27487 0.00327 0.27766 0.00308 0.37349 0.00328

400 414.3772 0.9496 398.8766 0.9490 400.4740 0.9474 284.8458 0.9474
1.22546 0.00309 0.37875 0.00311 0.38832 0.00316 0.73291 0.00316

800 823.3690 0.9440 797.4944 0.9482 800.3252 0.9528 566.7178 0.9514
2.42116 0.00325 0.53727 0.00313 0.54135 0.00300 1.44602 0.00304

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.3076 0.9554 15.1356 0.9530 10.7759 0.9802 11.1798 0.9538
0.03666 0.00292 0.03664 0.00299 0.01264 0.00197 0.01868 0.00297

20 20.1930 0.9500 20.0242 0.9478 12.0744 0.9742 14.1206 0.9518
0.04459 0.00308 0.04476 0.00315 0.02227 0.00224 0.03039 0.00303

25 25.1176 0.9438 24.9322 0.9422 13.8075 0.9716 17.5514 0.9518
0.04996 0.00326 0.05022 0.00330 0.03325 0.00235 0.03549 0.00303

30 30.2096 0.9484 30.0364 0.9476 15.7642 0.9672 20.9880 0.9526
0.05166 0.00313 0.05168 0.00315 0.04412 0.00252 0.03976 0.00301

50 50.2706 0.9554 50.0822 0.9554 24.6522 0.9622 34.8400 0.9486
0.06628 0.00292 0.06647 0.00292 0.08162 0.00270 0.04965 0.00312

100 100.1110 0.9520 99.9446 0.9508 47.9093 0.9600 69.3456 0.9524
0.09457 0.00302 0.09461 0.00306 0.16595 0.00277 0.06857 0.00301

200 200.2054 0.9528 200.0302 0.9520 94.0554 0.9570 138.2852 0.9540
0.13082 0.00300 0.13097 0.00302 0.32391 0.00287 0.09545 0.00296

400 399.9724 0.9498 399.7940 0.9494 187.9268 0.9540 276.4626 0.9478
0.18468 0.00309 0.18483 0.00310 0.66273 0.00296 0.13645 0.00315

800 800.3956 0.9522 800.2188 0.9520 371.4461 0.9496 552.8152 0.9498
0.25989 0.00302 0.25991 0.00302 1.32183 0.00309 0.19385 0.00309
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Table 2.14: Simulation Results for Asymmetric Mixture-Normal Distribution with ∆ = 6 and
Different Shapes

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.0660 0.9322 15.5220 0.9380 16.6734 0.9492 10.8728 0.9216
0.04564 0.00356 0.04484 0.00341 0.04488 0.00311 0.01800 0.00380

20 20.1914 0.9302 20.4892 0.9332 21.6518 0.9430 13.7926 0.9202
0.06138 0.00360 0.05955 0.00353 0.06003 0.00328 0.03520 0.00383

25 25.3212 0.9314 25.4654 0.9338 26.5626 0.9428 17.2530 0.9172
0.07686 0.00358 0.07415 0.00352 0.07487 0.00328 0.04607 0.00390

30 30.6708 0.9290 30.5168 0.9292 31.5328 0.9472 20.9182 0.9192
0.09407 0.00363 0.08786 0.00363 0.08747 0.00316 0.05647 0.00385

50 51.3566 0.9410 49.1114 0.9364 50.0296 0.9380 35.1454 0.9270
0.15559 0.00333 0.13145 0.00345 0.12880 0.00341 0.09296 0.00368

100 102.9644 0.9360 98.5054 0.9374 99.4736 0.9406 70.7056 0.9308
0.30669 0.00346 0.19225 0.00343 0.19658 0.00334 0.18381 0.00359

200 205.6000 0.9386 198.7860 0.9446 199.2688 0.9496 141.1410 0.9340
0.61147 0.00340 0.26723 0.00324 0.27766 0.00309 0.36576 0.00351

400 413.9356 0.9418 398.7570 0.9490 400.4740 0.9450 284.7916 0.9422
1.24298 0.00331 0.38307 0.00311 0.38832 0.00322 0.74708 0.00330

800 821.9058 0.9400 798.3420 0.9478 800.3252 0.9460 564.9754 0.9400
2.48996 0.00336 0.54640 0.00315 0.54135 0.00320 1.49379 0.00336

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.1904 0.9364 15.0148 0.9338 10.8622 0.9702 11.1686 0.9316
0.03669 0.00345 0.03666 0.00352 0.01430 0.00240 0.01837 0.00357

20 20.1610 0.9396 19.9682 0.9386 12.0838 0.9636 14.1128 0.9246
0.04422 0.00337 0.04447 0.00340 0.02545 0.00265 0.03029 0.00373

25 25.2198 0.9358 25.0288 0.9346 13.7642 0.9620 17.5412 0.9224
0.04840 0.00347 0.04859 0.00350 0.03801 0.00270 0.03557 0.00378

30 30.2824 0.9420 30.1016 0.9406 15.7479 0.9576 20.9560 0.9334
0.05198 0.00331 0.05210 0.00334 0.05050 0.00285 0.03895 0.00353

50 50.2814 0.9444 50.1074 0.9438 24.3950 0.9546 34.6928 0.9374
0.06648 0.00324 0.06651 0.00326 0.09163 0.00294 0.04910 0.00343

100 100.0222 0.9454 99.8388 0.9442 47.7278 0.9490 69.4418 0.9380
0.09311 0.00321 0.09335 0.00325 0.18546 0.00311 0.06813 0.00341

200 200.4214 0.9390 200.2434 0.9396 94.1081 0.9498 138.3922 0.9440
0.13275 0.00338 0.13271 0.00337 0.35916 0.00309 0.09704 0.00325

400 400.2520 0.9454 400.0878 0.9458 187.1722 0.9462 276.6716 0.9486
0.18486 0.00321 0.18494 0.00320 0.70431 0.00319 0.13570 0.00312

800 800.1906 0.9520 800.0170 0.9518 372.9378 0.9442 552.7680 0.9458
0.26542 0.00302 0.26560 0.00303 1.40287 0.00325 0.18876 0.00320
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The seriousness of consequences depends on the magnitude of the autocorrelation. In Table

2.15, where the correlation coefficient is only 0.05, the effect is moderate, In Table 2.17, where the

correlation coefficient is 0.2, the effect becomes obvious, with p̄ values ranging from .85 to .90.

Note that The UDS, the UPS and the ES performance better for smaller sample size than

for larger one; the PS and the PSR are on the contrary; and the performance the DS, the TS and

the TSR are almost not related with the sample size. For the ES, such performance pattern is due

to its error margin, which is larger while the sample size are small; for UDS and UPS, the extra

information from the control population aggravate the adverse; for the DS, the TS and the TSR,

they only use the standard error statistics 2 or 3 times, so the sample size will not affect them as

much as it do the PS and the PSR.

The ES performance better than all the other procedures, however, it is still not good

enough to be called robust when the independence is violated.

2.6 Discussion of Results and Conclusions

1. The sequential procedure with elimination is the best one for the partitioning problem, from

the point of view of robustness and smaller total sample size.

2. If the sequential sampling is too inconvenient to carry out, the fine tuned three-stage procedure

is the best one among the procedures we studied here.

3. If the price for sampling from control is not significant compared with the price for sampling

from non-control populations, then the total cost of sampling by using unbalanced purely

sequential procedure will be nearly the same as the sequential procedure with elimination.

4. If the sampling implementation is an issue, which means that two-stage procedures are the

only feasible procedures in this case, then the unbalanced two-stage procedure are better than

two-stage procedure in consideration of both sample size and robustness. However, when the

independence is suspect, then the two-stage procedure is better. This is because, the larger the

sample size the smaller the effect of auto correlation. The unbalanced two-stage procedure has
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Table 2.15: Simulation Result for data with correlations, AR(0.05)

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.8198 0.9314 15.3132 0.9358 16.5218 0.9554 10.5722 0.9392
0.03098 0.00358 0.03017 0.00347 0.03000 0.00292 0.01279 0.00338

20 20.0358 0.9304 20.3440 0.9360 21.4014 0.9484 13.6556 0.9272
0.04108 0.00360 0.03984 0.00346 0.03981 0.00313 0.02571 0.00367

25 25.1168 0.9328 25.2744 0.9340 26.4844 0.9484 17.1556 0.9234
0.05230 0.00354 0.05052 0.00351 0.05005 0.00313 0.03320 0.00376

30 30.1286 0.9326 30.1014 0.9332 31.3056 0.9480 20.6242 0.9294
0.06142 0.00355 0.05887 0.00353 0.05992 0.00314 0.03832 0.00362

50 50.7210 0.9354 49.3342 0.9304 50.5170 0.9384 34.7970 0.9314
0.10321 0.00348 0.08666 0.00360 0.08851 0.00340 0.06495 0.00358

100 101.9740 0.9364 99.3924 0.9340 100.4540 0.9420 70.2458 0.9360
0.20752 0.00345 0.12217 0.00351 0.12580 0.00331 0.12962 0.00346

200 204.1586 0.9330 199.2846 0.9358 200.6922 0.9372 140.4372 0.9314
0.41283 0.00354 0.17528 0.00347 0.17254 0.00343 0.25756 0.00358

400 409.4112 0.9362 399.4694 0.9390 400.3716 0.9406 281.9422 0.9316
0.82977 0.00346 0.24967 0.00338 0.25094 0.00334 0.51634 0.00357

800 816.6754 0.9360 799.0676 0.9364 800.6816 0.9378 563.0594 0.9336
1.64991 0.00346 0.34583 0.00345 0.34527 0.00342 1.04812 0.00352

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.2638 0.9420 15.0870 0.9394 10.7562 0.9738 10.9192 0.9352
0.02463 0.00331 0.02494 0.00337 0.01100 0.00226 0.01422 0.00348

20 20.2532 0.9402 20.0724 0.9368 11.9661 0.9716 14.1316 0.9376
0.02856 0.00335 0.02871 0.00344 0.01862 0.00235 0.02208 0.00342

25 25.3292 0.9368 25.1548 0.9360 13.6264 0.9640 17.5344 0.9382
0.03165 0.00344 0.03161 0.00346 0.02739 0.00263 0.02488 0.00341

30 30.3080 0.9414 30.1330 0.9404 15.5562 0.9614 21.0410 0.9432
0.03452 0.00332 0.03455 0.00335 0.03447 0.00272 0.02657 0.00327

50 50.2394 0.9404 50.0670 0.9392 24.4834 0.9584 34.8788 0.9448
0.04432 0.00335 0.04440 0.00338 0.06436 0.00282 0.03375 0.00323

100 100.3396 0.9466 100.1616 0.9472 47.5340 0.9546 69.3912 0.9340
0.06190 0.00318 0.06189 0.00316 0.13077 0.00294 0.04774 0.00351

200 200.2198 0.9434 200.0372 0.9428 93.3788 0.9524 138.3312 0.9366
0.08699 0.00327 0.08693 0.00328 0.25559 0.00301 0.06611 0.00345

400 400.5484 0.9390 400.3710 0.9388 184.8790 0.9492 276.3754 0.9348
0.12253 0.00338 0.12261 0.00339 0.51285 0.00311 0.09201 0.00349

800 800.0738 0.9410 799.8984 0.9410 368.1539 0.9486 552.8460 0.9364
0.17051 0.00333 0.17048 0.00333 1.01666 0.00312 0.13134 0.00345
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Table 2.16: Simulation Result for data with correlations, AR(0.1)

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.6634 0.9140 15.2146 0.9226 16.3924 0.9432 10.5412 0.9226
0.03089 0.00397 0.03010 0.00378 0.03033 0.00327 0.01236 0.00378

20 19.8144 0.9164 20.0518 0.9158 21.2630 0.9350 13.4914 0.9062
0.04083 0.00391 0.03965 0.00393 0.03977 0.00349 0.02583 0.00412

25 24.8466 0.9170 25.0486 0.9196 26.1660 0.9318 17.0264 0.9072
0.05198 0.00390 0.04999 0.00385 0.04892 0.00357 0.03239 0.00410

30 29.8106 0.9176 29.8234 0.9170 30.9914 0.9322 20.4668 0.9044
0.06094 0.00389 0.06001 0.00390 0.05830 0.00356 0.03923 0.00416

50 50.1878 0.9214 48.8672 0.9196 49.9824 0.9244 34.4576 0.9130
0.10261 0.00381 0.08830 0.00385 0.08852 0.00374 0.06433 0.00399

100 100.9106 0.9200 98.9784 0.9166 99.9582 0.9256 69.5706 0.9088
0.20618 0.00384 0.12622 0.00391 0.12358 0.00371 0.12857 0.00407

200 202.0468 0.9166 198.8186 0.9214 200.1706 0.9308 139.1198 0.9134
0.41137 0.00391 0.17816 0.00381 0.17946 0.00359 0.26094 0.00398

400 405.1124 0.9228 399.0918 0.9272 399.8942 0.9336 278.8278 0.9094
0.82529 0.00378 0.25283 0.00367 0.25059 0.00352 0.50009 0.00406

800 807.8902 0.9220 798.6962 0.9300 800.7510 0.9304 559.8158 0.9136
1.63932 0.00379 0.35452 0.00361 0.35583 0.00360 1.05497 0.00397

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 15.1562 0.9272 14.9702 0.9240 10.7755 0.9676 10.8878 0.9338
0.02531 0.00367 0.02541 0.00375 0.01094 0.00250 0.01407 0.00352

20 20.2304 0.9298 20.0514 0.9278 11.9544 0.9602 14.0354 0.9250
0.02829 0.00361 0.02838 0.00366 0.01885 0.00276 0.02223 0.00373

25 25.1954 0.9256 25.0186 0.9244 13.6195 0.9554 17.4954 0.9138
0.03141 0.00371 0.03160 0.00374 0.02711 0.00292 0.02426 0.00397

30 30.1668 0.9280 29.9802 0.9258 15.4877 0.9530 20.9708 0.9174
0.03405 0.00366 0.03420 0.00371 0.03467 0.00299 0.02661 0.00389

50 50.1568 0.9274 49.9826 0.9268 24.1905 0.9418 34.7198 0.9144
0.04464 0.00367 0.04477 0.00368 0.06443 0.00331 0.03360 0.00396

100 100.2350 0.9298 100.0678 0.9286 47.0807 0.9358 69.1912 0.9140
0.06011 0.00361 0.06029 0.00364 0.13201 0.00347 0.04737 0.00397

200 200.0638 0.9274 199.8910 0.9264 92.5431 0.9342 138.3886 0.9114
0.08706 0.00367 0.08713 0.00369 0.25751 0.00351 0.06536 0.00402

400 400.1608 0.9274 399.9840 0.9270 183.6118 0.9358 276.5896 0.9098
0.12041 0.00367 0.12041 0.00368 0.51031 0.00347 0.09363 0.00405

800 800.3764 0.9296 800.1906 0.9288 361.8973 0.9216 552.7104 0.9190
0.17419 0.00362 0.17410 0.00364 1.03628 0.00380 0.13133 0.00386
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Table 2.17: Simulation Result for data with correlations, AR(0.2)

DS TS TSR UDS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.3732 0.8862 14.8766 0.8986 16.0040 0.9144 10.4436 0.8838
0.03107 0.00449 0.03015 0.00427 0.03003 0.00396 0.01134 0.00453

20 19.2744 0.8812 19.6246 0.8904 20.7254 0.8982 13.2364 0.8584
0.04174 0.00458 0.04034 0.00442 0.03951 0.00428 0.02600 0.00493

25 24.1738 0.8792 24.3620 0.8844 25.4800 0.8922 16.6260 0.8578
0.05148 0.00461 0.04967 0.00452 0.04908 0.00439 0.03260 0.00494

30 29.1298 0.8746 29.1376 0.8756 30.3090 0.8958 20.0468 0.8582
0.06184 0.00468 0.05959 0.00467 0.05871 0.00432 0.03899 0.00493

50 48.9138 0.8888 47.8716 0.8868 49.0262 0.8904 33.7912 0.8572
0.10239 0.00445 0.09076 0.00448 0.09073 0.00442 0.06425 0.00495

100 98.4660 0.8800 97.6806 0.8828 98.9256 0.8966 68.1388 0.8514
0.20871 0.00460 0.13070 0.00455 0.13224 0.00431 0.13055 0.00503

200 196.8512 0.8846 197.6866 0.8882 198.9316 0.9006 136.3426 0.8590
0.41298 0.00452 0.18153 0.00446 0.18241 0.00423 0.25884 0.00492

400 394.6762 0.8806 398.1012 0.8918 399.0012 0.8986 273.3500 0.8478
0.82346 0.00459 0.26102 0.00439 0.25775 0.00427 0.51564 0.00508

800 790.5134 0.8852 797.5044 0.8934 799.2918 0.8966 548.1428 0.8494
1.62006 0.00451 0.36747 0.00436 0.36032 0.00431 1.02630 0.00506

PS PSR ES UPS

n∗ n̄ p̄ n̄ p̄ n̄ p̄ n̄ p̄
s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄) s(n̄) s(p̄)

15 14.9384 0.9018 14.7520 0.8972 10.7779 0.9538 10.7708 0.8882
0.02547 0.00421 0.02571 0.00430 0.01086 0.00297 0.01361 0.00446

20 19.8586 0.9004 19.6830 0.8972 11.9673 0.9322 13.7884 0.8694
0.03002 0.00424 0.03015 0.00430 0.01910 0.00356 0.02277 0.00477

25 24.9748 0.8938 24.7942 0.8892 13.5369 0.9204 17.2404 0.8614
0.03262 0.00436 0.03276 0.00444 0.02681 0.00383 0.02511 0.00489

30 29.9430 0.8980 29.7612 0.8958 15.3719 0.9176 20.7150 0.8660
0.03599 0.00428 0.03609 0.00432 0.03452 0.00389 0.02751 0.00482

50 49.9086 0.8916 49.7268 0.8920 23.7007 0.9090 34.5172 0.8680
0.04559 0.00440 0.04566 0.00439 0.06414 0.00407 0.03408 0.00479

100 99.9410 0.8980 99.7646 0.8976 45.8801 0.8976 69.0146 0.8708
0.06417 0.00428 0.06423 0.00429 0.13036 0.00429 0.04824 0.00474

200 199.8624 0.9016 199.6814 0.9014 89.8575 0.8864 138.0524 0.8660
0.08977 0.00421 0.08972 0.00422 0.26616 0.00449 0.06839 0.00482

400 400.1784 0.9030 400.0030 0.9022 177.6256 0.8840 276.1792 0.8724
0.12652 0.00419 0.12655 0.00420 0.52476 0.00453 0.09502 0.00472

800 799.7134 0.8972 799.5372 0.8972 350.7136 0.8792 552.6698 0.8730
0.17614 0.00430 0.17612 0.00430 1.05054 0.00461 0.13354 0.00471
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relatively smaller sample size on non-control populations, where the auto correlation exists,

hence, it will performs worse than two-stage procedure, while the independence is violated.

5. Based on the conclusions discussed above, I believe that the unbalanced sequential procedure

with elimination may be the most valuable procedures to be proposed. it will have many

advantages such as:

• robustness property along the lines of the sequential procedure with elimination proce-

dure.

• smaller total cost of sampling.
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Chapter 3

Optimal Choice of c

3.1 Introduction

This chapter is devoted to the optimal choice of c for the unbalanced purely sequential

procedure discussed earlier. The “optimal choice of c” means choosing c such that the expectation

of total cost for partitioning treatment populations is minimized. Suppose, the cost for collect-

ing a single sample form each population is known, denoted as p0, p1, · · · , pk, corresponding to

π0, π1, · · · , πk. Then the expected total cost for the unbalanced purely sequential procedure, which

collects c observations from π0, and one from π1, · · · , πk, at each step, is

C = E[N · c · p0 +N · p1 +N · p2 + · · · +N · pk]. (3.1.1)

This equals

E[N ][c · p0 +

k
∑

i=1

pi]

= E[N ][c + k · (
k

∑

i=1

pi)/(k · p0)] · p0.

Since p0 is a known constant under our setting, it does not affect the choice of c. We define the

average relative price p as

p =

∑k
i=1 pi

k · p0
. (3.1.2)

Now, (3.1.1) can be simplified as

C = E[N ] · [c+ kp] (3.1.3)
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Using Theorem 1.3.1, E[N ] = n∗
c + (ν∗ − 2)(k + c)−1 + o(1). So

C = [n∗c + (ν∗ − 2)(k + c)−1 + o(1)] · (c+ kp)

' (n∗c + (ν∗ − 2)(k + c)−1) · (c+ kp)

= [ b
2σ2

a2 + (ν2−2)
k+c ](c+ kp)

= σ2

a2 [b2 c+1
c + a2

σ2
ν2−2
k+c ](c+ kp).

Note that for given populations and given indifference-zone, σ2

a2 is constant although unknown.

Theoretically, the value of σ2/a2 affects the optimal choice of c, unless C can be expressed

as σ2

a2 · f(c, k, p), where f(·) is a function that does not depend on σ or a. Hence, it seems that

we have to fix σ2

a2 on some values and to get the optimal choice for c under these different values.

Fortunately, in practice, we do not have to do so. We only assume that σ2

a2 is very large and so is

n∗c , such that we can ignore (ν∗−2)/(k+c) compared with n∗
c . In practice, ignoring (ν∗−2)/(k+c)

is reasonable. Intuitively, it is more important to minimize the total cost when the required sample

sizes get large. That is, when we do not know how large the sample will turn out to be , it is

advisable to find an optimal choice of c under the condition that the sample size is large. Also,

−0.25 ≤ ν∗−2
k+c ≤ 0.5 for all possible combination of k and c. Therefore, under the condition that

n∗c is large, ignoring the term ν∗−2
k+c does not affect our optimal choice for c much. Under these

definition and assumption, the goal is:

minimize C =
σ2

a2
(b2

c+ 1

c
)(c+ kp).

That is, minimize:

C∗ = b2
c+ 1

c
(c+ kp) for given values of k, p. (3.1.4)

3.2 Critical Values for choosing c

Now, we consider the problem with in the range that 0 < p ≤ 10. If necessary, 10 could be

as large as 100. if larger, the numerical method may not give the reliable result. Suppose c0 is the
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optimal choice for c for given k and p, then the inequality,

b2k, c0

c0 + 1

c0
(c0 + kp) ≤ b2k, c0+1

c0 + 2

c0 + 1
(c0 + 1 + kp), (3.2.5)

holds. Fix c0 and k, the value of b will be fixed. Now the inequality can be solved for p, denote

the result as p ≤ p k, c0 . Do such calculations for k from 1 to 10 and some c’s that could be optimal

choices for p in (0,10]. Organize the results in the table below:

It is easy to show that for given k and p, if pc0−1 < p ≤ pc0 , then c0 is the optimal choice of

c for such given k and p, as long as pc0 is monotone with c0, which is the case here. From (5), when

p > p k, c0−1, C k, c0 < Ck,c0−1. And because pc0 is increasing with c0, p > p k, c′ for all 0 < c′ < c0−1.

Hence, Ck, c0 < Ck, c for all 0 < c < c0. Similarly, Ck, c0 < Ck, c0+1 because p ≤ pc0 and Ck, c0 < Ck, c

for all c > c0 because Pc0 is increasing with c0.

c
k 1 2 3 4 5 6 7 8 9

1 2.00 6.00
2 1.00 2.98 5.94 9.87
3 2.07 4.10 6.79
4 1.57 3.10 5.12 7.64
5 1.28 2.51 4.15 6.18 8.60
6 1.08 2.11 3.47 5.16 7.19 9.54
7 1.82 3.00 4.45 6.20 8.22
8 1.60 2.63 3.91 5.43 7.21 9.23
9 1.43 2.35 3.49 4.85 6.43 8.23
10 1.29 2.12 3.15 4.37 5.80 7.42 9.24

Table 3.1: Critical value for optimal choice of c

In Table 3.1, the entry corresponding to c is the critical average relative price of the treat-

ment populations, at which, the expectation of the total cost for the purely sequential procedures

with c and c+ 1 observations from π0 and one from π1, · · · , πk at each step, are the same. Under

these conditions, if the tabulated entry p k, c is the first entry that greater or equal to the given

average relative price of p in the line that corresponds to k, then the corresponding c is the optimal

choice for the unbalanced purely sequential procedure.
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3.3 Examples for Choosing the Optimal c

Now, we consider some examples to illustrate the possible use of the Table 3.1. Note that,

for k=3 p=5, the optimal choice of c is 4, and for k=7 p=9, the optimal choice of c is 9.

Also when k=5, c=2, and σ2/a2, which equal to λ=6, p k, c is the solution of the equation

below:

[
4.33199 − 2

7
+ 2.306332 3

2
](2 + 5p) = [

4.86115 − 2

8
+ 2.312472 4

3
](3 + 5p)

The parameters in this equation are obtained from the tables in Chapter 1 and the solution of this

equation is 1.28, the same as the corresponding in Table 3.1. Note that, for larger k, the σ2/a2

could be even much smaller than 36 and still p k, c be the same as the obtained from the Table 3.1

In order to obtain a more precise optimal c, the term ν∗−2
k+c should be considered. Also, note

that if the prices for collecting samples form the non-control populations differ from each other,

then the optimal choice given here is still quite reasonable when the unbalanced purely sequential

procedure are used.

51



Bibliography

[1] Aoshima, M. and Takada, Y. Second order properties of a two stage procedure for comparing
several treatments with a control. J. Japan Statist. Soc. 2000, 30(1), 27-41.

[2] Bechhofer, R. E. A single-sample multiple decision procedure for ranking means of normal
populations with known variances. Ann. Math. Statist. 1954, 25, 16-39.

[3] Chow, Y. S. and Robbins, H. On the asymptotic theory of fixed width sequential confidence
intervals for the mean. Ann. Math. Statist. 1965, 36, 457-462.

[4] Datta, S. and Mukhopadhyay, N. Second-order asymptotics for multistage methodologies
in partitioning a set of normal populations having a common unknown variance. Statist.
Decisions 1998, 16, No. 2, 1991-205.

[5] Ghosh, M., Mukhopadhyay, N. and Sen, P. K. Sequential Estimation; John Wiley: New York,
1997.

[6] Ghosh, B. K. and Sen, P. K. Handbook of Sequential Analysis; Marcel Deker, Inc., New York,
1991.

[7] Gibbons, J. D., Olkin, I. and Sobel, M. Selecting and ordering populations: A new sta-
tistical methodology; John Wiley: New York, 1977. Republished by SIAM: Philadelphia, 1999.

[8] Mahalanobis, P. C. A sample survey of acreage under jute in Bengal, with discussion on
planning of experiments. Proc. 2nd Indian Statist. Conf. 1940, statistical Publishing society,
Calcutta.

[9] Mukhopadhyay, N. and Duggan, W. T. Can a two-stage procedure enjoy second-order
properties? Sankhya, Ser. A 1997, 59, 435-448.

[10] Mukhopadhyay, N. and Duggan, W. T. On a two-stage procedure having second-order
properties with applications. Ann. Inst. Statist. Math. 1999, 51, 621-636.

52



[11] Mukhopadhyay, N. and Solanky, T. K. S. Multistage selection and ranking procedures; Marcel
Dekker: New York, 1994.

[12] Mukhopadhyay, N. and Solanky, T. K. S. Multistage methodologies for comparing several
treatments with a control. J. Statist. Plann. Inf. 2002, 100(2), 209-220.

[13] Solanky, T. K. S. A sequential procedure with elimination for partitioning a set of normal
populations having a common unknown variance. Seq. Anal. 2001, 20(4), 279-292.

[14] Sonlanky, T. S. K. and Wu, Y. On Unbalanced Multistage Methodologies for Partition
Problem, Proceedings of the International Sri Lankan Statistical Conference: Visions of
Futuristic Methodologies, Dec. 2004

[15] Solanky, T. K. S. A Two-stage procedure with elimination for partitioning a set of normal
populations with respect to a control, submitted to Seq. Anal., 2005.

[16] Srivastava, M. S. Some asymptotically efficient sequential procedures for ranking and slippage
problems. J. roy. Statist. Soc., B 1996, 28, 370-380.

[17] Starr, N. The performance of a sequential procedure for the fixed-width interval estimation of
the mean. Ann. Math. Statist. 1966, 37, 36-50.

[18] Stein, C. A two sample test for a liear hypothesis whose power is independent of the variance.
Ann. Math. Statist. 1945, 16, 243-258.

[19] Stein, C. Some problems in sequential estimation (abstract). Econometrica 1949, 17, 77-78.

[20] Tong, Y. L. On partitioning a set of normal populations by their locations with respect to a
control. Ann. Math. Statist. 1969, 40,4, 1300-1324.

[21] Woodroofe, M. Second order approximations for sequential point and interval estimation. Ann.
Statist. 1977, 5, 984-995.

53



Vita

Yuefeng was born in Nantong Jiangsu, the People’s Republic of China, on January 22, 1978.

He attended elementary schools in the Chengzhong Xiaoxue and graduated from Jiangsu Sheng

Nantong Middle School with honors in July 1996. The following September he entered Nanjing

University and in July 2000 received the degree of Bachelor of Science in Mathematics. In June

2001, he attended the Florida State University and in August 2003 received the degree of Master

of Science in Applied Mathematics. He entered the University of New Orleans in August 2003 and

is a candidate for the Master of Science Degree in Mathematics.

Permanent Address: 2000 Lakeshore Dr. 323#
New Orleans, LA 70148

This thesis was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the American

Mathematical Society. The macros used in formatting this thesis were originally written by Dinesh Das, Department

of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay, James A. Bednar, and Ayman

El-Khashab. The author of this thesis modified it to satisfy the requirement of University of New Orleans.

54


	Construction of Some Unbalanced Designs for the Partition Problem
	Recommended Citation

	Contents
	List of Tables
	Abstract
	Introduction
	Chapter 1 Unbalanced Procedures
	Chapter 2 Assessing Robustness of Procedures
	Chapter 3 Optimal Choice of c
	Bibliography

