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Abstract 
 
 
 
 
Expressions are very useful in a number of applications for describing the interest of the user in 

particular data items. Examples of such application domains include publish/subscribe, 

ecommerce, web site personalization. In recent work, database techniques have been utilized for 

efficiently matching large number of expressions with data. These techniques include storing 

expressions as data in the database and then indexing these expressions to quickly identify 

expressions that match a given data item. 

 

In this thesis a new model for expressions is presented that allows definition of richer 

expressions than provided in previous work. Implementation of this expression model is then 

described. The implementation includes sequential search as well as an indexing approach. The 

thesis then presents an experimental performance study that shows the benefit of the indexing 

approach. 
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Chapter 1 Introduction 
 

 

Expressions are very useful to describe the interest of the user. They are used in wide range of 

applications including Publish/Subscribe [5, 6], Ecommerce [7, 8], Continuous Queries [9, 10], 

Web site Personalization [11]. 

 

Let us consider a simple Example [2]: 

ON Car4Sale 

IF (Model = ‘Taurus’ and Price < 20000) 

THEN notify(‘scott@yahoo.com’) 

 

In this content based subscription system [6], user expresses his interest in Car4Sale Event. In 

this event the users interest is modeled in the Expression  

“Model =’Taurus’ and Price < 20000”. 

 

In other words, the user is looking for Taurus (Car) and the price of the Car must be less than 

20000. So in this way users express their interest in a similar fashion. Every time a event of this 

sort occurs, one has to search the database for each condition mentioned in the Expression, and 

then display the records which qualify all the conditions in the Expression. So rather than just 

querying the database every time the user expresses his interest (which would take more time), if 

we capture the interest itself and store the interest of users in database, then one could get 

quicker results. 
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This study explores the idea of capturing and storing the interest of users, which we call as 

Expressions, as a part of RDBMS, and storing them in a certain way such that it takes less time 

to get results. This study also explores previous implementation on this field, the Oracle 

approach [2], and suggests a different approach to store and handle Expressions in a RDBMS. 

Also in order to enhance the performance of evaluation of Expressions this study also suggests 

and implements an indexing technique.  

 

The work presented in this document attempts to improve the performance of Expression 

evaluation by storing the users interest as a part of the RDBMS and indexing it in order to reduce 

the time taken for the evaluation process. The rest of this thesis is organized as follows. Chapter 

2 provides an overview of Expressions, nomenclature used in this study. It also mentions the 

Previous work done in this area, the approach used to store and handle the Expressions. Chapter 

3 describes the entire process of storing and handling the Expressions used in this thesis work 

further it mentions about the indexing technique used in this study. The algorithm used for 

implementation of this work is also mentioned in this chapter. Chapter 4 mentions the system 

specifications in which the work was carried out, the test cases and discusses the results. Chapter 

5 concludes with suggestions for future work. 
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Chapter 2 Overview of Expressions and Previous work 
 

 

This chapter reviews the basic terminology used in this work. It also mentions the previous work 

done in this area, the approach defined by Oracle. The first section gives a brief overview of 

Expressions, Predicates. The later sections discusses about the approach used by Oracle to 

handle Expressions. 

 

2.1 Overview of Expressions: 

 

2.1.1 Terminology and Definitions: 

 

Expressions: 

In common words one can define Expression as something that expresses or communicates. In 

this study it is defined as a combination of one or more values, operators, and SQL functions that 

evaluate to a value. Expressions are all about patterns [1], once a pattern is described, it can be 

searched or manipulated. Patterns are important for daily work; in many areas without a specific 

pattern life would be much tougher. 

 

Expressions are nothing but Boolean conditions. They evaluate to true or false depending on the 

incoming data and the user’s interest. Conditional Expressions [2] are a useful way of describing 

the interest of a user with respect to some expected data. One Example scenario is explained 

here. 
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Consider a CarSales event, a user may express interest as: 

 

 

IF (Model = ‘Taurus’ and Price < 20000) 

THEN notify(‘scott@yahoo.com’) 

 

Here in the above case, users interest (Model = ‘Taurus’ and Price < 20000) constitutes 

Expression. It describes the users interest. The referenced variables Model and Price form the 

Evaluation Context. This study explores the idea of managing such Expressions (along with its 

Evaluation Context) as data in a relational database system. The syntax of Expressions should 

follow SQL-WHERE clause syntax. An Expression can reference any table, column, or function 

in a database. 

 

Few Examples of Expression is given below: 

 

Ex1:  (Model = ‘Taurus’ and Price < 15000 and Mileage < 2500) 

Ex2:  (Model = ‘Mustang’ and Year > 1999 and Price < 20000) 

Ex3:  (Price < 15000 and Color = ‘Red’) 

 

Data-Item: 

The data item constitutes of valid values for all the variables defined in the corresponding 

Evaluation Context. An Expression evaluates to True if the incoming data-item meets the user’s 

interest, and if the incoming data-item doesn’t meet the user’s interest then the Expression 

evaluates to False.  
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Predicate: 

A Predicate [3] is a WHERE clause that qualifies a particular set of rows within the table. For 

Example a Predicate on Zipcode column of Employer table would appear something like this: 

Employer . Zipcode  =  70122 

The above Predicate matches all the records in the Employer table where the Zipcode column 

value is 70122. ‘.’ separates Tablename from Column name. 

Other Examples of Predicates: 

Car  .  Year  =  2000 

Consumer  .  Quantity   >  200 

Car  .  Price  <  15000 

Combining Predicates on other forms of data, like functions, in a database is just a powerful way 

of expressing interest.  

 

Operator for Evaluation of Expressions: 

EVALUATE operator is introduced in SQL to evaluate an Expression for a given data-item. For 

a given input data item, EVALUATE operator checks if any Expressions evaluates to True. 

EVALUATE operator returns 1 if an Expression is evaluated to True for a given input data-item. 

It will be discussed further in the coming sections of this document.  
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2.2 Previous Study on Expressions (Oracle Approach) 

The Oracle approach proposes to store the Expressions defined for a particular Evaluation 

Context in a column of a database table. Also they introduce EVALUATE operator that operates 

on the column that stores the Expressions for a particular Evaluation Context.  

 

2.2.1 Storing Expressions as Table Data 

 

In Oracle approach, Expressions are stored in a column of a user table. Following is an Example 

of User Table, which has an Expression column (Interest) that stores all the Expressions under an 

Evaluation Context. 

 

CONSUMER Table 

Model Year Zip Code Price … Interest (Expression Column) 

        

Benz 
1992 70122 2000  

Model = ‘Taurus’ and Price < 

15000 and Mileage < 2500 

Toyota 1995 70123 3500  
Model = ‘Mustang’ and Year > 

1999 and Price < 20000 

Taurus 2001 71224 9000  
Price < 20000 and Color = 

‘Red’ 

Infiniti 2003 32256 17000  
Price > 15000 and Model = 

Toyota 

Figure 2.1 Consumer Table 
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All the Expressions related to the consumer table are stored in the Interest column of the 

Consumer Table. For all the Expressions, all the other columns constitute the Evaluation 

Context. So only the Expressions related to the Consumer Table are present here in the 

Consumer table. 

 

2.2.2 Evaluation of Expressions (EVALUATE Operator): 

 

In order to evaluate an Expression an EVALUATE Operator is used. The EVALUATE operator 

would be evaluating to 1 if an Expression is evaluated to True, 0 if it is Evaluated to False. An 

EVALUATE operator takes two arguments: the column of the conditional Expression and the 

data items for the Expression. 

Example using EVALUATE Operator: 

Ex1: Select CID From Consumer WHERE 

EVALUATE (consumer. interest,‘ Model => ‘ ‘ Mustang ‘ ‘, Price => 22000, 

Mileage => 1800,Year => 2000 ‘) = 1; 

 

2.2.3 Handling Expressions (Oracle Approach): 

 

Expressions are stored in a column of a user table and compared, using the EVALUATE 

operator, to incoming data items specified in a SQL WHERE clause or to a table of data. For an 

incoming data item, every Expression is evaluated to either True or False. If the Expression and 

the incoming data item has the Predicates on same attributes and also if the Predicates lie in the 
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same data range then the Expression evaluates to True, or else it evaluates to False. Expressions 

that evaluate to True return 1, and those which evaluate to false return 0. 

 

An Expression describes interest in an item of data using one or more variables, known as 

elementary attributes. Elementary attributes are nothing but the columns names of the existing 

data table in a RDBMS. It is also called as the Evaluation Context. A valid Expression consists 

of one or more simple conditions called Predicates. The Predicates in the Expression are linked 

by the logical operators AND and OR. Expressions must adhere to the SQL WHERE clause 

format. It is not important that an Expression uses all the attributes in the Evaluation Context; 

however, the incoming data from the incoming data item must provide a value for every attribute 

in the Evaluation Context. For those attributes for which there is no data from the incoming data 

item, null is accepted as the input value. 

For Example, the following Expression captures the interest of a user in a Car (the data item) 

with the model, price, and year as attributes. 

Model = ’Taurus’ && Price = 20000 && Year = 2000 

Now if the incoming data item looks like the following: 

Model = ‘Taurus’ and Price = 25000 

Then for the ‘Year’ attribute the EVALUATE operator assumes a null value.  

 

Expressions are stored in a column of a user table with an Expression datatype. The values 

stored in a column of this type are constrained to be Expressions. A user table can have one or 

more Expression type columns. In order to display the contents of the Expressions column user 

can use regular SQL statement. The Expressions are shown in regular string format. 
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As the Expressions are stored as a regular column in the user table they can be also inserted, 

updated or deleted with the help of standard SQL statements. All the Expressions stored in a user 

table share a common set of attributes. This set of attributes plus any functions that are used in 

the Expressions comprise the metadata for all the Expressions in a particular user table. All the 

Expressions under one user table, that share a common set of attributes form an Expression set. 

This metadata is referred to as the attribute set. The attribute set consists of the elementary 

attribute names and their datatypes and any functions used in the Expressions. In order to insert 

a new Expression or to modify an existing Expression validation is required. Validation would 

be crosschecking if the new Expression or the modifications to the existing Expression comply 

with the Expression metadata i.e. attribute set. So all the Expressions present under an 

Expression set are bound to use the attributes and functions defined under the attribute set. 

Expressions cannot contain sub queries. 

 

The Figure below shows the storage of Expressions in Consumer Table. All the Expressions are 

stored under the Interest column. CAR4SALE is the metadata for all the Expressions in that 

table. The Expressions refer the column names mentioned in the metadata, also User-defined 

functions and Built-in functions. The use of user function HorsePower can be seen in the third 

Expression in the below Fig2.2.  
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Figure 2.2 Storage of Expressions as a Column in Data Table [2] 

 

2.3 Indexing Expressions (Oracle Approach): 

 

Evaluation of an Expression condition can be done in various ways. According to Oracle 

approach, they store an Expression as a separate data column in a data table. They created a new 

data type to store Expressions. With the help of data type, they could store the whole Expression 

as a column in existing tables. 

 

As discussed above, this approach maintains metadata of the Expressions. Each user table has a 

column called Interest, where all the Expressions are stored. A new mechanism for indexing 
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conditional Expressions is introduced. This indexing mechanism is implemented as a new Index 

type, Expression Filter, to create and maintain indexes on columns storing Expressions. When 

an Expression Filter index is defined on a column storing Expressions, the EVALUATE operator 

on such column uses the index. For a large set of 

Expressions, the index can quickly eliminate the Expressions that are false for a given data item 

and return only the Expressions that evaluate to true. 

 

Expression Filter index can be created on a column storing Expressions and the EVALUATE 

operator on such column may use the index to process the Expressions efficiently. Given a large 

set of Expressions, many of them tend to have certain commonalities in their Predicates. For a 

data item, these Expressions can be evaluated efficiently if the commonalities are exploited and 

the processing cost is shared across multiple Predicates. For Example, given two Predicates with 

a common left-hand side, say Year = 1998 and Year = 1999, in most cases, the falseness or 

trueness of one Predicate can be determined based on the outcome of the other Predicate. That is, 

if the Predicate Year = 1998 is true, the other Predicate Year = 1999 cannot be true for the 

same value of the Year. 

Similar logical relationships can be formed for Predicates having common left-hand sides with 

range, not equal to and other kind of operators.  

 

For Example,  

If the Predicate Year > 1999 is true for a data item,  

Then the Predicate Year > 1998 is conclusively true. 
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An Expression Filter index is defined over a set of Expressions. It exploits the logical 

relationships between multiple Predicates by grouping them based on the commonality of their 

left-hand side values. These left-hand sides, also called the complex attributes, are arithmetic 

Expressions constituting one or more elementary attributes and user-defined functions. In the 

Expression set, these left-hand sides (complex attributes) appear in the Predicates along with an 

operator and a constant on the right-hand side (RHS). The Predicate table here in this approach 

stores the grouping information for all the Predicates of an Expression set. Each row of the 

Predicate table stores one Expression in the Expression set. 

The snapshot view of the Predicate table for the Expressions stored in the INTEREST column of 

the CONSUMER table is shown below: 
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Figure 2.3 Predicate Table in Oracle Approach[2] 

 
For each predicate in an expression, its operator and the constant on the right-hand side are 

stored under the corresponding columns of the predicate group. The predicates that do not fall 

into one of the pre-configured groups are preserved in their original form and stored in a 

VARCHAR column of the Predicate table as sparse predicates (for the above example, the 

predicates on Mileage and Year fall in this category). In order to evaluate a data item for a set of 

Expressions, the left hand side associated with each Predicate group is computed and its value is 

compared with the corresponding constants stored in the Predicate table using appropriate 

operator. Bitmap indexes are created on the {Operator, RHS} columns of few selected groups of 

the Predicate Table. In the above example three Predicate groups are shown with their respective 
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column constraints. G1 takes Predicates on ‘Model’; G2 takes Predicates on column ‘Price’ and 

so on. 

The selection of these groups is either done by the user specification or from frequency statistics. 
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Chapter 3: Approach Used in this Study 

 

 

This chapter describes the approach used in this study to store and evaluate Expressions of a 

database. It discusses the approach used for storing Expressions of a database. The initial section 

describes the storage mechanism, and the later sections describe the evaluation process. Also to 

enhance evaluation process, an indexed approach was implemented which would be discussed in 

the later section. 

 

3.1 Overview of Expression Handling and Storage 

 

3.1.1 Expression Storage 

 

 In this study a different approach of storing all the Expressions of a database is introduced and 

described. Also a different approach is introduced for the evaluation of the Expressions of the 

database by an indexed approach. An alternate technique is introduced for indexing the 

Expressions in order to enhance the evaluation process of the Expressions. 

 

Expressions: 

Here in this study, all the Expressions present in a database are stored in a separate table of the 

database. Unlike the Oracle approach, one can have Expressions that refer more than one user 

table of the same database.  In this study we call that table which stores all the Expressions of the 
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database as Expression Table. Irrespective of the Evaluation Context of the Expressions, all the 

Expressions of the database are stored in the Expression table. The respective information about 

each Expression is stored in a separate table called the Predicate table. In other words one can 

say the Evaluation Context of all the Expressions is stored in Predicate Table. Let us discuss 

about the design and structure of the Predicate table and the Expression table.  

3.1.2 Development of Predicate Table and Expression Table: 

For the progress of the work, following two tables were created. 

  

� Expression table 

� Predicate table. 

As discussed earlier, here all the Expressions are stored in a data table of the DBMS. This table 

is the called the Expression Table. So all the Expressions pertaining to a particular Database are 

stored in the Expression table itself. An Expression contains 1 or more conditional statements, 

which are nothing but the Predicates. In this study all such Predicates of all the Expressions of 

the Database are stored in the Predicate Table, which is discussed later in this section. The 

structure of the above-mentioned two tables is discussed below. 

 

EXPRESSION Table: 

The Expression table has two columns, namely the Expression ID and Predicate ID. Expression 

ID is unique id (type int) for each Expression. It acts as the primary key for the Expression table. 

So each unique Expression is assigned an ExpressionID.  
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Predicate Id is the unique id (type int) given to each Predicate. An Expression can have one or 

more than one Predicates; each Predicate is given a unique id. A Predicate can appear in more 

than one Expression. If two or more Expressions have one or more equivalent Predicates then 

they are given the same Predicate id.   

For Example: 

Let us consider the following two Expressions: 

1 = Year >1996 AND model = ‘HONDA’ 

2 = Price < 10000 AND model =’HONDA’ 

 

The above two Expressions have two Predicates each, 1 and 2 are the Expression IDs. As it can 

be observed both of them have one common Predicate (model =’HONDA’). So the Expression 

table for the above Example would look as shown below: 

Following is the snapshot view of Expression Table: 

Expression ID Predicate ID 

1 1 

1 2 

2 3 

2 2 

Table 3.1 Example of Expression Table 

 

Predicate Table: 

Each Predicate contains 4 parameters, which are: 

-- Tablename, which it references 
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-- Column Name of the referenced table 

-- Operator involved and, 

-- Value. 

Each Predicate is split into the above mentioned various fields and then it is inserted as a row in 

the Predicate table. Each Predicate is given a unique distinguishable ID called the Predicate ID, 

which is the primary key of the Predicate table. The Predicate table has primary key field as the 

PredicateID. 

Following is a snapshot of Predicate table: 

Predicate ID Table Name Column Name Operator Value 

1 Cars Model = Taurus 

2 Dealer Year = 1998 

3 Test Color = Pink 

Table 3.2 Example of Predicate Table 

 

Differences when compared to Oracle approach: 

Unlike the Oracle approach, the Expressions are not stored as a part of user tables. The storage of 

Expressions no more depends on Evaluation Context of the Expression. All the Expressions 

present in a database are stored in a single table, Expression Table. Storage of Expressions is 

totally different when compared it with Oracle approach. The main differences when compared 

to the Oracle approach are: 

• This study allows expressions to be defined over multiple tables. Oracle doesn’t support 

that. 
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• This approach doesn’t require that predicate groups be identified for index creation. With 

Oracle approach, a Database Administrator (DBA) or application developer has to do this 

addition work. 

3.2 Methodology used in this work to handle and store Expressions: 

 

Each Expression has a unique id, which is called the ExpressionID (EXPID). Each Expression 

when created in the RDBMS is assigned a new ExpressionID. All the Expressions present in a 

Database are stored in a separate table called the Expression Table.  According to this work, 

each Database has one Expression table, where all the Expressions present in that Database are 

stored.  

 

The Expression Table contains ExpressionID of each and every Expression present in the 

database. Each Expression has one or more Predicates in it. Each ExpressionID is mapped to the 

respective PredicateID’s in the Expression table i.e. each ExpressionID shows all the Predicates 

(PredicateIDs) it is associated with. 

 

Each Predicate is also assigned a unique PredicateID in order to make them distinguishable to 

other PredicateIDs. Two or more Expressions can have one or more same Predicates. Even 

though Predicates repeat in various Expressions they are uniquely identified using their 

PredicateID. 

 

3.2.1 Storage of Expressions: 

Below mentioned are the steps that are followed before storing a new Expression: 
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� Validation of the incoming Expression to find out if a similar Expression already exists in 

the database. 

�  Validation of the Predicates present in the incoming Expression to find out if similar 

Predicates are already present in the Predicate table. 

� Updating the Predicate Table by assigning appropriate PredicateIDs to the new Predicates 

(which came from the incoming Expression) 

� Updating the Expression Table by assigning appropriate ExpressionID to the new 

Expression.  

 

 

3.2.2 Validation of incoming Expression (and Predicates): 
 

On arrival of a new Expression, all its Predicates present in the arriving Expression are checked 

one by one with the existing Predicate Table. Each Predicate from the new Expression is taken 

and checked if a similar Predicate already exists in the Predicate table, if all the Predicates from 

the new Expression have a match in the Predicate Table then from the Expression Table we find 

the ExpressionID of the Expression which has the exactly the same matched PredicateIDs. So 

this implies that a similar Expression is already present in the Database, and hence the newly 

arrived Expression wont be added again to the Expression Table as a similar Expression already 

exists in the Database.  

 

3.2.3 Adding new Record in the Expression Table (and Predicate Table): 

Once the validation process is completed for the newly arrived Expression, one or more 

Predicates (those which did not have a match in the Predicate table) of the new Expression are 
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assigned new PredicateIDs and the Predicate table is updated. Also the Expression Table is 

updated with a new ExpressionID with the mappings to the new PredicateIDs. 

 

This can be shown with the following Example:  

Consider that the incoming Expression is as shown below: 

Incoming New Expression: 

 (Car.Model = ‘Toyota’ && Car.Color =’Silver’ && Dealer.Location = ‘LA’) 

Suppose the Predicate table and Expression table were as follows: 

 

Expression Table: 

ExpressionID PredicateID 

1 1 

1 2 

2 3 

3 2 

3 4 

4 2 

4 3 

4 5 

5 6 

5 1 

5 4 

Table 3.3 Expression Table 
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Let us now have a look at the Predicate table  

 

PredicateID TableName ColumnName Operator Value 

1 Car Model = Acura 

2 Insurance Period > 12 

3 Dealer Name = CogginAuto 

4 Bike Year < 2002 

5 Car Model = Toyota 

6 Bike Model = CBR 

Table 3.4 Predicate Table 

 

So the Predicates in the incoming Expression are:  

Car.Model = ‘Toyota’  

Car.Color =’Silver’  

Dealer.Location = ‘LA’ 

 

So it clearly appears from the Predicate table that there is already a record existing for the 

Predicate Car.Model=’Toyota’ in the Predicate table with PredicateID as 5. The remaining two 

Predicates are not present in the Predicate table. So now with the addition of the new Expression 

in the Expression table and the corresponding Predicates in the Predicate Table, the two tables 

appear as following: 
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Updated Expression table: 
 
ExpressionID PredicateID 

1 1 

1 2 
2 3 
3 2 

3 4 
4 2 

4 3 
4 5 
5 6 
5 1 
5 4 
6 5 
6 7 
6 8 

Table 3.5 Updated Expression Table 

Updated Predicate Table: 
 
 
PredicateID TableName ColumnName Operator Value 
1 Car Model = Acura 
2 Insurance Period > 12 
3 Dealer Name = CogginAuto 
4 Bike Year < 2002 
5 Car Model = Toyota 
6 Bike Model = CBR 
7 Car Color = Silver 
8 Dealer Location = LA 

Table 3.6 Updated Predicate Table 

 

So this is how the Expression table and the Predicate table are updated. Unlike the Oracle 

approach, this study maintains a separate table to store all the Expressions in the Database. Also 
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this approach doesn’t restrict Expressions on basis of attribute set or Evaluation Context and all 

Expressions would be present in one table. 

 
3.3 Indexing Expressions: Approach used in this study  
 

As discussed above, in this approach a separate table is maintained for storing Expressions and 

Predicates. So in order to quickly eliminate the Expressions that are false for a given data item 

and return only the Expressions that evaluate to true we can index the Expressions. As the 

Predicates of all the Expressions in the DBMS are present in the Predicate Table, so in order to 

index Expressions, it would be a good choice to create an index on the Predicate table. 

 

In this study we create a B+ Tree Index on the Predicate table in order to make the process of 

evaluation of input data-item faster.  In the process of evaluation of the input data-item, first we 

get the Predicates that satisfy the input data-item. With B+ Tree created on the Predicate table, 

the execution of this step can be made faster. 

In this case, the B+ Tree consists of BPages. Page of a B+ Tree is called BPage[4]. In other 

words, each node of B+ Tree is referred as BPage in this study. Each BPage is a combination of 

Key-value pair. In this study in each record of the Predicate table the combination of the 

TableName, ColumnName, Operator, Value act as the Key field and the PredicateID field act as 

the Value for each BPage.  

 

We use the JDBM project [4] implementation for the creation of the B+ Tree in this study. 

JDBM also provides scalable data structures, such as B+Tree, to support persistence of large 

object collections. JDBM provides an API for B+Tree, which is used in the implementation. 
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Once the B+ Tree is created, depending upon the input data-item we get all the Predicates that 

are true for the data-item. Once we have all the PredicateIDs that are True for the input data-item 

we then Evaluate all these PredicateIDs to find out all the Expressions that evaluate to true to the 

PredicateIDs that were True for the input data-item. 

The algorithm used for the entire structure is shown below. 

 
Differences when compared to Oracle approach: 

The indexing technique involved in this study is B+ tree indexing, whereas in the Oracle 

approach Bitmap indexing technique is used. There are no Predicate groups involved in this 

study; all the Predicates are stored in Predicate Table. 

 
3.3.1 Algorithm:  
 

Here two tables are used, one for storing Predicates and the other is for storing Expressions. The 

output of an input data-item to be evaluated would be the Expression-id’s of the Expression table 

that are evaluated to True.  

For Example consider the following scenario: 

Example: 

Predicate-id Table Column Operator Value 

1 Car Name = Taurus 

2 Bike Year = 1998 

3 Car   Price > 20000 

4 Flight Airways = Delta 

Table 3.7a Predicate Table: 
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Expression-id Predicate-id 

1 1 

1 3 

2 2 

3 3 

3 4 

Table 3.7b Expression Table 

 

If the user inputs the data-item to be evaluated as:  

‘EVALUATE Car name = taurus && Car price = 20000’ 

 

The output of this query would be Expression-id 1. The query is evaluated in the following 

manner: 

The input data item is split into two data-item conditions, namely ‘Car name = taurus’, ‘Car price 

= 20000’. The binary operators are stored. In this simple Example the binary operator involved 

is, ‘&&’. Input data-items are evaluated using the Predicate Table. From Figure 3.7a above, it is 

noted that for the first Input data-item Predicate-id 1 is evaluated to true and for the second Input 

data-item Predicate-id 3 is evaluated to true.  

There are two different approaches implemented to obtain the Predicate results, 

• B+-tree  

•  Sequential approach     
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For the resulting Predicates the binary operator, && is applied. For this the Expression table 

from Figure 3.7b is used. It is observed that Expression-id 1 would evaluate to true since it has 

both the resulting Predicates. 

 

When more than one binary operator is involved there is a slight difference that is explained 

below. In general the algorithm for evaluating the query is as follows: 

 

Algorithm: 

Split the entire input data-item into a set of data-items. Store the binary operators to be applied 

for the data-items. Evaluate each of the Input data-items using the Predicate table. For the 

resulting Predicates, apply the binary operators and get the resulting Expression-id’s from the 

Expression table. 

Two approaches were implemented, B+-tree Search and Sequential Search. The difference 

between these approaches is the way the input data-item is evaluated. A B+-tree index is created 

on the Predicate table to make the process faster in the B+-tree Search approach. For the 

Sequential approach the Predicate results are found by traversing the Predicate table sequentially. 

 

Implementation Details: 

The step-by-step implementation details are provided for both the approaches, the difference 

between the two being the way the Predicates are evaluated.  

 

3.3.1.1 B+-tree Search: 

A B+-tree Index is created on the Predicate Table. 
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Step 1: Evaluate the Predicates 

1.1Get the input data-item to be evaluated. 

1.2 Split the entire input data-item into individual data-items that are delimited by the binary 

operators. Store the binary operators for Step 2. 

1.3 For each individual input data-item: 

1.3.1 Each individual input data-item is in the form: ‘tablename columnname operator 

value’. Split the data-item to retrieve the tablename, columnname, operator and value. 

1.3.2 If the value in the ‘value’ column is a numeric value, then go to step (1.3.2.1) 

else go to step (1.3.2.2). Step (1.3.2.1) does range search, step (1.3.2.2) does normal 

(equality) search. 

1.3.2.1 Search in the B+-tree for the Predicates that have the tablename and 

columnname of the Input data-item being evaluated and store all such 

Predicate’s operator and value in a List. This List now contains the operator 

and value column values, split this into different lists, one containing the 

operators and the other with values. The List contains the operator and 

values sorted according to the operator. Also store the corresponding 

Predicate-id’s in a PredicateList. As the input data-item has operator ‘=’ 

then do:  

Search for the current individual data-items ‘operator’ and ‘value’ in 

the List and if a record is present in the List add that Predicate-id to the 

result. For all the values with the ‘<’ operator in the List, find all 

values that are greater than the current individual data-item’s value and 

add all such Predicate-id’s to the result. For all the values with ‘>’ 
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operator find all such values less than the current individual data-

item’s value and add all such Predicate-id’s to the result. 

1.3.2.2 Search in the B+-tree for the tablename, columnname, operator and 

value of the current individual data-item and give the corresponding 

Predicate-id of the Predicate that matches the above values as the result. 

 

1.4 After finishing step 1.3 for all the Predicates, go to step 2 to apply binary operators on 

these results to get the overall result. 

 

Step 2: Apply Binary operators 

If the entire input data-item has just two individual data-items then step 2.1 else go to step 2.2. 

 

2.1 If the query was in the form Predicate1 operator Predicate2 then the operator has to be 

applied on the Predicate results. Go to step 2.1.1. 

2.1.1 Search for all such Expression-id’s in the Expression table such that all the 

Predicates of an Expression are from the results of the two Input Predicates and also 

such that there is at least one Predicate-id from each of the Predicate’s. Output all 

such Expression-id’s. 

2.2 When the input data-item contains more than one operator, apply the first operator in step 

2.1 for the first two individual data-items. The result of this is a set of Expression-id’s. The 

second operator is applied to these Expressions-id’s and the third individual data-item’s 

result. The Predicates from the Expressions are retrieved and stored in a List. The second 
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operator now is applied to the List and the results of the third data-item as in step 2.1. This 

process continues for all the operators in the input data-item. 

 

Example 3.3.1.1: 

Input Data Item: Evaluate car color = silver && car model = acura 

Expression Table: 
 
ExpressionID PredicateID 

1 1 
1 7 
2 3 
3 2 
3 4 
4 2 
4 3 
4 5 
5 6 
5 1 
5 4 
6 5 
6 7 
6 8 

Table 3.8a Expression Table 
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Predicate Table: 

PredicateID TableName ColumnName Operator Value 

1 Car Model = Acura 

2 Insurance Period > 12 

3 Dealer Name = CogginAuto 

4 Bike Year < 2002 

5 Car Model = Toyota 

6 Bike Model = CBR 

7 Car Color = Silver 

8 Dealer Location = LA 

Table 3.8b Predicate Table 

The flow of the algorithm for the above Expression and Predicate Table scenario is as follows: 

Initially B+-tree index is created on Predicate table above. 

Step 1 

 1.1 Data Item: car color = silver && car model = acura 

 1.2 Tokenize the above data item into two data items: car color = silver and car model = acura. 

Store the operators: ‘&&’ 

 1.3 This step is for the above two data items: 

 1. Car color = silver 

 2. Car model = acura 

For each of the above: 

1.3.1 Split the data items: car, color, = , silver and car, model, =, acura 

1.3.2 Now step 1.3.2.2 since normal search (Search in the B+-tree) 
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Predicate value for ‘Car color = silver’ above: 7 

Predicate value for ‘Car model = acura’ above: 1 

 

Step 2 

 

Step 1 alone is performed as only two data items. 

1. Exp 1 will be the result that could be looked up in the Expression table above. 

 

Finally the result of the above input data item is Exp 1.  

 

3.3.1.2 Sequential Search: 

Step 1: Evaluate the data-item 

1.1 Get the input data-item to be evaluated. 

1.2 Split the entire input data-item into individual data-items that are delimited by the binary 

operators. Store the binary operators for Step 2. 

1.3 For each individual data-item: 

1.3.1 The data-item is in the form: ‘tablename columnname operator value’. Split 

each of the individual data-item to retrieve the tablename, columnname, operator and 

value. 

1.3.2 If the value in the ‘value’ column is a numeric value, then go to step (1.3.2.1) 

else go to step (1.3.2.2). Step (1.3.2.1) does range search, step (1.3.2.2) does normal 

(equality) search. 
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1.3.2.1 Search in the table sequentially reading each line, for the Predicates 

that have the tablename and columnname of the Input data-item being 

evaluated and store all such Predicate’s operator and value in a List. This 

List now contains the operator and value column values, split this into 

different lists, one containing the operators and the other with values. Also 

store the corresponding Predicate-id’s in a PredicateList. As the input data-

item has operator ‘=’ then do:   

Search for the current individual data-items ‘operator’ and ‘value’ in 

the List and if a record is present in the List add that Predicate-id to the 

result. For all the values with the ‘<’ operator in the List, find all 

values that are greater than the current individual data-item’s value and 

add all such Predicate-id’s to the result. For all the values with ‘>’ 

operator find all such values less than the current individual data-

item’s value and add all such Predicate-id’s to the result. 

1.3.2.2 Search in the file sequentially for the tablename, columnname, 

operator and value of the current individual data-item and give the 

corresponding Predicate-id of the Predicate that matches the above values as 

the result. 

 

1.4 After finishing step 1.3 for all the individual data-items, go to step 2 to apply binary 

operators on these results to get the overall result. 

 

Step 2: Apply Binary operators 
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This step is done in the same way as explained before for B+-tree Search. 

 

The above-mentioned Example (Example3.3.1.1) can be used for the Sequential Approach too. 

The flow of the algorithm is the same except that the search in the Predicate table is performed 

sequentially unlike the B+ Tree index approach. 
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Chapter 4 Results 

 

 

Results were calculated depending on the time taken for Evaluation of certain input data item 

with a varying size of Predicate table. A comparison of both the, Sequential approach and the B+ 

Tree approach, was done and the time taken for the Evaluation of the input data item. 

 

Following Test Cases were considered: 

Test Case No. Of Rows in Predicate Table Range/Equality Search 

1 5000 Range Search 

2 5000 Equality Search 

3 10000 Range Search 

4 10000 Equality Search 

5 30000 Range Search 

6 30000 Equality Search 

Table 4.1 Test Cases 

 

Let us consider each Test Case at a time. A range search and an Equality search were performed 

in each test case. In a Range search one has to find a series of records, which satisfy the given 

condition. For Example if the input data item was Car year = 2000, then not only we look for a 

Predicate that is exact match of the input data item but we also look for Predicates like ‘Car year 

> 1999, Car Year < 2001, Car Year > 1995, Car Year < 2005’ etc.  In Equality search we only 
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look for exact match of the input data item. So Equality Search is comparatively faster than the 

Range search.  

 

4.1 System Specifications: 

 

Here are the system specifications used in the development and testing of this study. 

OS/Configuration Windows XP, Pentium M 735,1.7GHz, 512MB RAM  

Language Java 1.4.2  

Editor NetBeansIDE 3.6 

Reporting tool MS Excel Professional 

Table 4.2 System Specifications 

 

The time calculated in each Test Case is in milliseconds. The time calculated here is the time 

taken for searching the Final Expressions. It doesn’t include other overhead times, like the time 

for loading the classes etc. 

 

4.2 Test Cases 

 

Case1:  

Number of Rows in Predicate table = 5000 and for an input data item where a range Search is 

done. 
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No of INPUT 
data items 

Example INPUT 
String 

Time Taken in B-TREE 
approach (ms) 

Time taken in Sequential 
approach (ms) % Faster 

1 
Car year = 2000 100 110 9.09% 

2 Car year = 2000 &&  
Car price = 10000 208 210 0.95% 

3 Car year = 2000 &&  
Car price = 10000 && 
Car miles = 5000 220 230 4.35% 

Table 4.3 Range Search on Predicate Table with 5000 rows. 

 
The graphical representation of the above results can be shown as following: 
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Figure 4.1 Graphical Representation of Range Search (5000 rows) 

 

Overview: 

As the number of rows being very less, both the approaches work in almost the same way. 
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Case 2: 

Number of Rows in Predicate table = 5000 and for an input data item where an Equality Search 

is done. 

No of INPUT 
data items Example INPUT String 

Time Taken in 
B-TREE 
approach (ms) 

Time taken in 
Sequential 
approach (ms) % Faster 

1 Train name = Train145 0 50 100.00% 

2 
Train name = Train145 &&  
          Train color = green 3 65 95.38% 

3 

 Car name = Car460 &&  
              Car color = green && 
              Car bodystyle = suv 4 90 95.56% 

Table 4.4 Equality Search on Predicate Table with 5000 rows. 

 

The graphical representation of the above results can be shown as following: 
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Figure 4.2 Graphical Representation of Equality Search (5000 rows) 

Overview: 

As it is Equality Search, so we need to search if the same Predicate is present or not. Using B 

Tree approach, it directly goes to the BPage, which has that record (if at all that record is 

present), whereas in sequential approach a row-by-row search is done which takes time. 
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Case 3: 

Number of Rows in Predicate table = 10000 and for an input data item where a range Search is 

done. 

No of 
INPUT data 
items 

Example INPUT 
String 

Time Taken in B-TREE 
approach (ms) 

Time taken in Sequential 
approach (ms) % Faster 

1 Car year = 2000 105 144.2 27.18% 

2 
   Car year = 2000 &&   
Car price = 10000 168.8 220.4 23.41% 

3 

Car year = 2000 &&  
  Car price = 10000 && 
Car miles = 5000 223 282 20.92% 

Table 4.5 Range Search on Predicate Table with 10000 rows. 

 

The graphical representation of the above results can be shown as following: 
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Figure 4.3 Graphical Representation of Range Search (10000 rows) 

Overview: 

The B+ Tree approach takes lesser time than the sequential approach. Almost a 20% increase in 

efficiency can be seen. 
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Case 4: 

Number of Rows in Predicate table = 10000 and for an input data item where an Equality Search 

is done. 

No of 

INPUT data 

items Example INPUT String 

Time Taken in B-TREE 

approach (ms) 

Time taken in Sequential 

approach (ms) % Faster 

1 Train name = Train145 4 54 92.59% 

2 
 Train name = Train145 && 
Train color = green 8 86 90.70% 

3 

     Car name = Car460 && 
  Car color = green && 
Car bodystyle = suv 8 102 92.16% 

Table 4.6 Equality Search on Predicate Table with 10000 rows 

 

The graphical representation of the above results can be shown as following: 
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Figure 4.4 Graphical Representation of Equality Search (10000 rows) 

Overview: 

As the size of the table is now 10000, the performance of Sequential Approach becomes much 

worse when compared to the B+ Tree approach. 
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Case 5: 

Number of Rows in Predicate table = 30000 and for an input data item where a Range Search is 

done. 

No of 

INPUT data 

items 

Example INPUT 

String 

Time Taken in B-TREE 

approach (ms) 

Time taken in Sequential 

approach (ms) % Faster 

1    Car year = 2000 140 255 45.10% 

2 
   Car year = 2000 &&  
Car price = 10000 246 354 30.51% 

3 

Car year = 2000 &&  
  Car price = 10000 && 
Car miles = 5000 328 418 21.53% 

Table 4.7 Range Search on Predicate Table with 30000 rows. 

 

The graphical representation of the above results can be shown as following: 
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Figure 4.5 Graphical Representation of Range Search (30000 rows) 

Overview: 

 

On an average around 30% increase in the performance can be seen with the B+ Tree approach. 

As there are 30000 rows sequential approach takes more time. 
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Case 6: 

Number of Rows in Predicate table = 30000 and for an input data item where a Range Search is 

done. 

 
No of 

INPUT data 

items Example INPUT String 

Time Taken in B-TREE 

approach (ms) 

Time taken in Sequential 

approach (ms) % Faster 

1 Train name = Train145 0 130 100.00% 

2 
Train name = Train145&& 
Train color = green 4 190 97.89% 

3 

  Car name = Car460 && 
  Car color = green && 
  Car bodystyle = suv 6 240 97.50% 

Table 4.8 Range Search on Predicate Table with 30000 rows. 

 

The graphical representation of the above results can be shown as following: 
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Figure 4.6 Graphical Representation of Equality Search (30000 rows) 

Overview: 

As the table size is 30000, the B+ Tree approach takes comparatively no time when compared to 

Sequential approach. 
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4.3 Discussion of Results: 

 

As we can see from all the above listed tables and graphs the B+ Tree approach performs better 

when compared to the Sequential approach. This Chapter enlightens the procedure involved in 

Equality search and Range Search. 

 

NOTE:  

The above results were calculated by passing a common data item several times to both the 

Sequential and B+ Tree approach, and by taking an average of those runs. A different set of 

results can be calculated by passing different input data items for a given Predicate table and by 

taking an average of all those results.  

 

4.3.1 Equality Search: 

 

When considering the Equality Searches, the B+ Tree approach performs far better than the 

Sequential Approach. This is because in the Sequential approach in order to find a particular 

record we have to go through every record from starting until or unless we reach to that 

particular record (if at all that record exists), which takes time. But when we are searching for a 

particular record using the B+ Tree search, then we directly go to the BPage that has that record. 

So it takes hardly any time to do this equality search process.  

 

As the size of the file increases the searching takes more time for the Sequential approach as it 

has to go through more number of records, and hence we can see as the file size increases the 
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time taken by the B+ Tree approach doesn’t change much but the sequential approach takes more 

time. So irrespective of the file size, in Equality Search, B+ Tree approach performs very well 

when compared to the Sequential Approach. 

 

4.3.2 Range Search: 

 

By considering the results shown above it can be easily deduced that in an overall view B+ Tree 

perform better the Sequential approach.  

As in the B+ Tree approach, index helps to get the searching process done faster when compared 

to the Sequential approach. But if the file size is less like 5000 rows then the difference can 

hardly be seen. As for small tables the sequential approach is also equally faster as the number of 

rows it has to search is very less, and hence the performance of both the approaches is almost the 

same. But as the table size increases we can see the performance of B+ Tree approach growing 

better and faster, which is because of the index. So if we can interpolate these results we can 

easily find that B+ Tree performs far better, and the index helps to get the Evaluation process 

done faster and in efficiently. 
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Chapter 5 Conclusion and Future work 
 

 

5.1 Conclusion: 

 

Expressions are used in a range of applications like Publish/Subscribe, Content based systems 

etc. as mentioned earlier in the introduction section. Use of indexing on Expressions can speed 

up all these applications. In this thesis we have defined more powerful model of storing and 

handling Expressions. The main differences from Oracle approach are: 

• Expressions in our model can be defined over multiple tables. 

• The DBA or the application developer doesn’t need to identify predicate groups. 

This study also describes how data items can be evaluated using sequential search as well as 

using a B+ Tree indexing technique. The thesis also includes a detail performance study and 

implementation of B+ Tree indexing technique and it also portrays the increase in efficiency with 

the help of B+ Tree. 

 

5.2 Future Work and possible Enhancements: 

 

Future work includes enhancement in the searching technique in B+tree. One could think of 

enhancing the search process by reducing the number of reads to B+tree root node. A possible 

enhancement in the performance can be seen if the search for Predicates is done within the sub 

tree of the qualified BPage and fetching all the qualified records in a single read. A possible 

improve in the performance can be seen if the number of reads to the B+tree are reduced. 
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An interesting item for future work is to study the use of a different indexing scheme. For 

example, Oracle creates a Bitmap index for indexing its expressions. Even though Oracle’s 

expression model is different from the expression model used in this thesis, it will be interesting 

to see how building a Bitmap index on predicates performs when compared with the B+tree 

index employed in this thesis. 
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