
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

1-20-2006

Investigation of Different Video Compression Schemes Using Investigation of Different Video Compression Schemes Using

Neural Networks Neural Networks

Prem Kovvuri
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Kovvuri, Prem, "Investigation of Different Video Compression Schemes Using Neural Networks" (2006).
University of New Orleans Theses and Dissertations. 320.
https://scholarworks.uno.edu/td/320

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/320?utm_source=scholarworks.uno.edu%2Ftd%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

INVESTIGATION OF DIFFERENT
VIDEO COMPRESSION SCHEMES

USING NEURAL NETWORKS

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science

in
Engineering

by

Prem Kovvuri

B.Eng., Osmania University, Hyderabad, 2001

August 2005

 ii

 ACKNOWLEDGMENTS

 The completion of the thesis has involved the support of many people. The first

and foremost is my thesis advisor Dr. Dimitrios Charalampidis for providing the ideas,

suggestions and motivation for my thesis work. He freely bestowed his time, guidance

and brilliance beyond his duty. He was a model in dealing the work with great

professional responsibility, professionalism and commitment. The amount of knowledge

and perception gained from him cannot be quantified. Special thanks to other members of

the thesis committee, Dr.Jilkov and Mr. Jovanovich for enriching my skills in academia

by sharing with me their intellectual curiosity , professional insight and understanding

through their courses.

 My special thanks go to Mr.Vijay Kura, a fellow graduate student and a good

friend for lending his exquisite programming skills in the beginning. And to my parents, I

owe everything; they support me in all that I do to reach new heights. I sincerely dedicate

my work to them with all respects.

 iii

TABLE OF CONTENTS

LIST OF TABLES.. iv
LIST OF FIGURES .. v
ABSTRACT.. vi
CHAPTER
1. Introduction... 1
2. Image Compression and Techniques .. 3
2.1 Lossless Compression... 4
2.1.1 Run Length Encoding ...4
2.1.2 Huffman Coding .. 5
2.1.3 Entropy Coding...6
2.1.4 Area Coding ..7
2.2 Lossy Compression..7
2.2.1 Transform coding..9
2.2.2 Vector Quantization ..10
2.2.3 Segmentation and approximation methods...12
2.2.4 Spline approximations methods..13
2.2.5 Fractal Coding...14
2.3 Efficiency and quality of lossy compression techniques ...15
2.3.1 Comparison of different compression methods ..16
3. Image/Video Compression using JPEG/MPEG Standard ...17
3.1 Need for JPEG Compression ...17
3.2 JPEG Compression and Decompression flow ...19
3.3 JPEG Applications ...26
3.4 Introduction to MPEG... 27
3.5 MPEG Compression Standards ...28
3.6 MPEG Comparison..29
3.7 Work Procedure of an MPEG..30
4. Neural Networks ..33
4.1 Use of Neural Networks...33
4.2 Human and Artificial Neurons...34
4.2.1 How the Human Brain Learns ..34
4.2.2 From Human to Artificial Neurons...35
4.2.3 A Simple Neuron ... 36
4.2.4 A More Complicated Neuron..37
4.3 Architecture of Neural Networks...38
4.3.1 Feed-forward Networks ..38
4.3.2 Feedback Networks...39
4.3.3 Network Layers...40
4.4 The Learning Process...41
4.4.1 Associative mapping...42
4.4.2 Regularity Detection ...42
4.5 Transfer Function...45
4.6 Training Algorithms for Neural Networks ..46

 iv

4.6.1 Back propagation algorithm... 47
5. Image/Video Compression using Neural Networks ..52
5.1 Back Propagation Image Compression..52
5.1.1 Back propagation Neural Network ...52
5.2 Simulation ..57
5.3 Post-processing ..58
5.4 Proposed Image Compression Architecture...58
5.4.1 Encoding ...59
5.4.2 Decoding ...59
6. Results..64
6.1 Comparison of results for various test scenarios ...64
7. Discussion and Conclusions ..77
8. References..78
9. Appendix..80
10. Vita...81

 v

LIST OF TABLES

Comparison of Compression ratios and SNR values...16
Comparison of MPEG... 30
Retraining for different nodes..69
Self-adaptive network ..72
Motion Detection for different nodes ... 74
Motion with Reatraining ... 75

 vi

LIST OF FIGURES

3.2 JPEG Compression and Decompression Flow ..19
3.7 Flow of an MPEG ..32
4.2 Components of a neuron ..35
4.2 Synapse ..35
4.2 The Neuron Model...36
4.2 A Simple Neuron. ..37
4.2 An MCP Neuron ..37
4.3 Example of a Feed-forward network ...39
4.3 Example of a complicated network..40
4.4 Weight Matrix..43
4.6 Back propagation Architecture ..48
5.1 Back propagation Neural network. ..53
5.4 Motion Detection ...60
5.4 Flow of the proposed scheme ..61
5.4 Retraining Frames..62
6.1 Performance of the Lena Image...65
6.1 Direct Simulation of Frames..66
6.1 Comparison of Hotel-golf/golf-hotel sequences..68
6.1 Retraining at regular intervals..69
6.1 Comparison between Direct simulation and Retraining ..70
6.1 Retraining every 10th frame..71
6.1 Self-Adaptive Network ..72
6.1 Motion Detection ...73
6.1 Combination of motion with retraining ...75
6.1 Comparison of Original and reconstructed Images ...76

 vii

 ABSTRACT

 Image/Video compression has great significance in the communication of motion

pictures and still images. The need for compression has resulted in the development of

various techniques including transform coding, vector quantization and neural networks.

In this thesis neural network based methods are investigated to achieve good compression

ratios while maintaining the image quality. Parts of this investigation include motion

detection, and weight retraining. An adaptive technique is employed to improve the video

frame quality for a given compression ratio by frequently updating the weights obtained

from training. More specifically, weight retraining is performed only when the error

exceeds a given threshold value. Image quality is measured objectively, using the peak

signal-to-noise ratio versus performance measure.

 Results show the improved performance of the proposed architecture compared to

existing approaches. The proposed method is implemented in MATLAB and the results

obtained such as compression ratio versus signal-to-noise ratio are pr

 1

CHAPTER 1

INTRODUCTION

Image processing is an important part of modern communications. In general,

image processing algorithms require large amounts of memory storage. As a result,

the processing time is considerable for processing still images, and even more

significant for motion pictures. Thus, the need for image/video compression arises in

the modern world of communications in order to get the desired processing times.

Various image/video compression techniques have been developed to reduce the

amount of data that needs to be processed or transmitted. This results in reduced

processing time to achieve the desired targets. There are several challenges faced

while developing any image compression technique. Two main challenges include

increasing the compression ratio by representing an image with a small number of

bits while maintaining an acceptable quality, and increasing the processing speed to

meet the real-time application requirements without compromising the image quality.

The growing world of communications is continuously increasing the demand for

efficient and effective compression schemes[1]-[36]. Thus, the development of

image/video compression algorithms is still needed.

Modern digital technology has made it possible to manipulate multi-

dimensional signals with systems ranging from simple digital circuits to advanced

parallel computers. The manipulation can be divided into three categories namely

image processing, image analysis and image understanding. In our case we restrict the

focus onto the fundamental concepts of image processing. We further restrict the

 2

study to two-dimensional (2D) image processing as most of the concepts and

techniques described can be easily extended to three or more dimensions.

An image defined in the “real world” can be considered as a function of two

real variables, say a(x, y) with ‘a’ being the amplitude (e.g brightness) of the image at

the real coordinate position (x, y) the amplitudes of a given image will almost always

be either real numbers or integer numbers. The latter is usually a result of a

quantization process that converts a continuous range (say, between 0 and 100%) to a

discrete number of levels [34]. In certain image-forming processes, however, the

signal may involve photon counting which implies that the amplitude would be

inherently quantized. In other image forming procedures, such as magnetic resonance

imaging, the direct physical measurement yields a complex number in the form of a

real magnitude and a real phase. In this thesis, we will consider amplitudes as reals or

integers.

 A digital image a [m, n] described in 2D discrete space is derived from an

analog image a(x, y) in a 2D continuous space through a sampling process that is

frequently referred to as digitization. The 2D continuous image a(x,y) is divided into

N rows and M columns. The intersection of a row and a column is termed a pixel. The

value assigned to the integer coordinates [m,n] with { m=0,1,2,...,M-1} and

{ n=0,1,2,...,N-1} is a[m,n]. In fact, in most cases a(x,y)--which we might consider to

be the physical signal that impinges on the face of a 2D sensor--is actually a function

of many variables including depth (z), color (λ), and time (t). In this work, we will

consider the case of 2D, monochromatic, static images.

 3

CHAPTER 2

IMAGE COMPRESSION AND TECHNIQUES

Image compression attempts to minimize the size, in terms of bytes of a

graphics file without degrading the quality of the image to an unacceptable level. The

reduction in file size allows more images to be stored in a given amount of disk or

memory space. It also reduces the time required for images to be sent over the

Internet or downloaded from Web pages [34], [36].

The following example illustrates the requirements for image storage and

transmission time. An image of 1024 pixel × 1024 pixel × 24 bit without compression

would require 3MB of storage and 7 minutes for transmission, utilizing a high speed,

64 Kbit/s, ISDN line. If the image is compressed at a 10:1 compression ratio, the

storage requirement is reduced to 300KB and the transmission time drops to under 6

seconds. Seven 1 MB images can be compressed and transferred to a floppy disk in

less time than it takes to send one of the original files, uncompressed, over a network.

International standards are more portable compared to proprietary high-end solutions.

Currently, JPEG is possibly the most popular industry standard technique for the

compression of continuous tone images [20].

 In this chapter, several compression schemes including lossless and lossy

compression methods will be discussed, as a background to the proposed scheme.

 4

2 Types of Compression

2.1 Lossless Compression

In lossless compression the compression ratio is relatively small since, as the

name “lossless” implies, the original data should be reconstructed without any loss. In

other words, lossless coding guaranties that the decompressed image is absolutely

identical to the image before compression. This is an important requirement for some

application domains, e.g. medial imaging, where not only high quality is in demand,

but unaltered archiving is a legal requirement. Lossless techniques can also used for

the compression of other data types where loss of information is not acceptable, e.g.

text documents and program executables [34]-[36].

Lossless Coding Techniques:

• Run length encoding.

• Huffman encoding.

• Entropy coding(Lempel/Zev)

• Area coding.

2.1.1 Run length encoding

Run length encoding is a simple method for compression of sequential data. In

many data streams, consecutive single tokens are identical. Run length encoding

checks the stream for this fact and inserts a special token each time a chain of more

than two equal input tokens are found [36]. This special input advises the decoder to

insert the particular token n times into output stream.

 5

 Following is an example of this method:

Clock Input Coder Decoder

 Output Output

1 A
2 B A
3 C B A
4 C Ø B
5 C Ø Ø
6 C Ø Ø
7 C Ø Ø
8 D %5C Ø
9 E D CCCCC
10 Ø E D
11 Ø Ø E

In the example, there are 9 tokens going into the coder, but just 7 are going

out. The effectivity of run length encoding is a function of the number of equal tokens

in a row in relation to the total number of input tokens. This relation is very high in

two tone images of the type used for facsimile. Effectivity degrades when the input

does not contain too many equal tokens. With a rising density of information, the

likelihood of two following tokens being the same does sinks significantly, as there is

always some noise distortion in the input. Run length coding is easily implemented,

either in software or in hardware. It is fast and very well verifiable, but its

compression ability is very limited [30]-[36].

 6

2.1.2 Huffman coding

This algorithm is based on the fact that in an input stream certain tokens occur

more often than others. Based on this knowledge, the algorithm builds up a weighted

binary tree according to their rate of occurrence. Each element of this tree is assigned

a new code word, whereat the length of the code word is determined by its position in

the tree [29]. Therefore, the token which is most frequent and becomes the root of the

tree is assigned the shortest code. Each less common element is assigned a longer

code word. The least frequent element is assigned a code word which may be twice as

long as the input token.

The compression ratio achieved by Huffman encoding uncorrelated data is

1:2. On slightly correlated data, as on images, the compression rate is much higher,

the absolute maximum being defined by the size of a single input token and the size

of the shortest possible output token (max. compression = token size[bits]/2[bits]).

While standard palletized images with a limit of 256 colors may be compressed by

1:4 if they use only one color, more typical images give results in the range of 1:1.2

to 1:2.5.

2.1.3 Entropy coding

The implementation of an entropy coder follows with a wide range of

modified Lempel/Ziv codings. These algorithms all have a common way of working.

The coder and the decoder both build up an equivalent dictionary of metasymbols,

each of which represents a whole sequence of input tokens. If a sequence is repeated

after a symbol was found for it, then only the symbol becomes part of the coded data

 7

and the sequence of tokens referenced by the symbol becomes part of the decoded

data later. As the dictionary is build up based on the data, it is not necessary to put it

into the coded data, as it is with the tables in a Huffman coder. This method becomes

very efficient on virtually random data. The average compression on text and

program data is about 1:2, the ratio on image data comes up to 1:8 on the average GIF

image. A high level of input noise degrades the efficiency significantly. Entropy

coders are a little tricky to implement, as there are a few tables, all growing while the

algorithm runs [28]-[36].

2.1.4 Area coding

Area coding is an enhanced form of run length coding, reflecting the two

dimensional character of images. This is a significant advance over the other lossless

methods. The algorithms for area coding try to find rectangular regions with the same

characteristics. These regions are coded in a descriptive form as an Element with two

points and a certain structure. The whole input image has to be described in this form

to allow lossless decoding.

The possible performance of this coding method is limited mostly by the very

high complexity of the task of finding largest areas with the same characteristics.

Practical implementations use recursive algorithms for reducing the whole area to

equal sized subrectangles until a rectangle fulfills the criteria defined as having the

same characteristic for every pixel. This type of coding is highly effective but it bears

the problem of a nonlinear method, which cannot be implemented in hardware.

 8

Therefore, the performance in terms of compression time is not competitive, although

the compression ratio is.

2.2 Lossy Compression

Lossy techniques cause image quality degradation in each compression/

decompression step. Careful consideration of the human visual perception ensures

that the degradation is often unrecognizable, though this depends on the selected

compression ratio. In general, lossy techniques provide far greater compression ratios

than lossless techniques [28]-[36].

In most of the applications we have no need in the exact restoration of stored

image. This fact can help to make the storage more effective, and this way we get to

lossy compression methods. Lossy image coding techniques normally have three

components:

• Image modelling which defines the transformation to be applied to the image

• Parameter quantization where the data generated by the transformation is

quantized to reduce the amount of information.

• Encoding, where a code is generated by associating appropriate code words to

the raw data produced by the quantizer.

Each of these operations are responsible for the compression. Image modelling is

aimed at the exploitation of statistical characteristics of the image (i.e. high

correlation, redundancy). Examples are transform coding methods, in which the data

is represented in a different domain (for example, frequency in the case of the Fourier

 9

Transform [FT], the Discrete Cosine Transform [DCT], the Kahrunen-Loewe

Transform [KLT], and so on), where a reduced number of coefficients contains most

of the original information. In many cases this first phase does not result in any loss

of information [30]-[33]. The aim of quantization is to reduce the amount of data used

to represent the information within the new domain. Quantization is not a reversible

operation: therefore, it belongs to the 'lossy' methods. Encoding is usually error free.

It optimizes the representation of the information (helping, sometimes, to further

reduce the bit rate), and may introduce some error detection codes.

In the following sections, reviews of the most important coding schemes for lossy

compression are discussed. Some methods are described in their canonical form

(transform coding, region based approximations, fractal coding, wavelets, hybrid

methods).

Lossy Coding Techniques:

• Transform coding(DCT/Wavelet/Gabor)

• Vector quantization.

• Segmentation and approximation methods.

• Spline approximation methods(Bilinear Interpolation/Regularization)

• Fractal Coding.

2.2.1 Transform Coding (DCT/Wavelets/Gabor)

A general transform coding scheme involves subdividing an NxN image into

smaller nxn blocks and performing a unitary transform on each subimage. A unitary

transform is a reversible linear transform whose kernel describes a set of complete,

 10

orthonormal discrete basic functions. The goal of the transform is to decorrelate the

original signal, and this decorrelation generally results in the signal energy being

redistributed among only a small set of transform coefficients. In this way, many

coefficients may be discarded after quantization and prior to encoding [35]. Also,

visually lossless compression can be achieved by incorporating the HVS contrast

sensitivity function in the quantization of the coefficients.

Transform coding can be generalized into four stages:

• Image subdivision

• Image transformation

• Coefficient quantization

• Huffman encoding.

For a transform coding scheme, logical modeling is done in two steps:

Segmentation, in which the image is subdivided in bidimensional vectors (possibly of

different sizes) and a transformation step, in which the chosen transform (e.g. KLT,

DCT, and Hadamard) is applied.

Quantization can be performed in several ways. Most classical approach is to use

'zonal coding', consisting in the scalar quantization of the coefficients belonging to a

predefined area (with a fixed bit allocation), and 'threshold coding', consisting in the

choice of the coefficients of each block characterized by an absolute value exceeding

a predefined threshold [36]. Another way to achieve higher compression factors is to

apply a vector quantization scheme to the transformed coefficients. The same type of

encoding is used for each coding method. In most cases Huffman coding can be used

 11

successfully. The JPEG and MPEG standards are examples of standards based on

transform coding.

2.2.2 Vector Quantization

A vector quantizer can be defined as a transform operator T from a K-

dimensional Euclidean space RK to a finite subset X in RK made up of N vectors. This

subset X becomes the vector codebook. The choice of the set of vectors is of major

importance [11]. The level of distortion due to the transformation T is generally

computed as the most significant error (MSE) between the "real" vector x in RK and

the corresponding vector x’ = T(x) in X. This error should be such as to minimize the

Euclidean distance d.

An optimum scalar quantiser was proposed by Lloyd and Max. Linde, Buzo and

Gray extended it to the case of a vector quantiser. The algorithm they proposed is

derived from the KNN cauterization method, and is performed by iterating the

following basic operations:

• Subdivide the training set into N groups (called 'partitions' or 'Voronoi regions'),

which are associated with the N codebook letters, according to a minimum

distance criterion.

• The centroids of the Voronoi regions become the updated codebook vectors.

• Compute the average distortion: if the percent reduction in the distortion (as

compared with the previous step) is below a certain threshold, then stop.

 12

Once the codebook has been designed, the coding process simply consists in the

application of the T operator to the vectors of the original image. In practice, each

group of n pixels will be coded as an address in the vector codebook, that is, as a

number from 1 to N.

The LBG algorithm for the design of a vector codebook always reaches a local

minimum for the distortion function. A careful analysis of the LBG algorithm's

behaviour allows to detect two critical points: the choice of the starting codebook and

the uniformity of the Voronoi regions' dimensions [11]. For this reason some

algorithms have been designed that give better performances. Initialization of LBG

algorithm with random choice of the starting codebook requires a large number of

iterations before reaching an acceptable amount of distortion. If the starting point

leads to a local minimum solution, the relative stopping criterion prevents further

optimisation steps [11].

2.2.3 Segmentation and approximation methods

With segmentation and approximation coding methods, the image is modelled

as a mosaic of regions, each one characterized by a sufficient degree of uniformity of

its pixels with respect to a certain feature (e.g. grey level, texture); each region will

have some parameters related to the characterizing feature associated with it. The

operations of finding a suitable segmentation and an optimum set of approximating

parameters are highly correlated, since the segmentation algorithm must take into

account the error produced by the reconstruction region (in order to limit this value

within determined bounds). These two operations constitute the logical modelling for

 13

this coding scheme; quantization and encoding are strongly dependent on the

statistical characteristics of the parameters of this approximation.

Examples are polynomial approximation and texture approximation. For

polynomial approximation regions are reconstructed by means of polynomial

functions in (x,y); the task of the encoder is to find the optimum coefficients. In

texture approximation, regions are filled by synthesizing a parameterized texture

based on some model (e.g. fractals, statistical methods, Markov Random Fields). In

polynomial approximations the problem of finding optimum coefficients is quite

simple (it is possible to use least squares approximation or similar exact

formulations), for texture based techniques this problem is complex [28]-[36].

2.2.4 Spline approximation methods (Bilinear Interpolation/Regularisation)

These methodologies fall in the more general category of image

reconstruction or sparse data interpolation. The basic concept is to interpolate data

from a set of points coming from original pixel data or calculated in order to match

some error criteria. The problem of interpolating a set of sparse data is generally ill

posed, so some regularization algorithm must be adopted in order to obtain a unique

solution. In order to apply this kind of technique to image coding, a good interpolant

must be used to match visual criteria. Spline interpolation provides a good visual

interpolant, which requires a great computational effort. Bilinear interpolation is easy

to implement, while maintaining a good visual quality. Regularization involves the

minimisation of an energy function in order to obtain an interpolant which presents

some smoothness constraints; it is combined with non-continuities along edges in

 14

order to preserve contour quality during reconstruction. Generally all interpolants

computations require the solution of very large linear equation sets, even if related to

very sparse matrices. This leads to the use of recursive solution such as relaxation or

to the use of gradient descent algorithm.

The use of an interpolation algorithm for image coding techniques such as two

source decomposition, where the image is modelled as the sum of two sources; one is

the stationary part (it can be considered related to the low frequency content), the

second is the residual content coming from non-stationaries such as edges. The first

source is coded by means of a prediction scheme that can be one of the previously

described interpolants. The second source (the residual) can be coded trough the use

of a classical coding method. Two source decomposition is a very effective coding

scheme as far as it shows a low tile effect that affects all block coding techniques

when compression factors become higher [28]-[36].

2.2.5 Fractal coding (texture synthesis, iterated function system [IFS])

Fractal parameters, including fractal dimension, lacunarity, and others have

the potential to provide efficient methods of describing imagery in a highly compact

fashion for both intra and inter frame applications. Fractal methods have been

developed for both noisy and noise free coding methods. Images of natural scenes are

used because of the fractal structure of the scene content, but results are reported to be

applicable to a variety of binary, monochrome, and colour scenes.

 The use of "Iterated Function System" for image compression and synthesis

using sets of affine transformations developed for a given image, and a principal

 15

result known as the "collage theorem", intraframe compressions in excess of 10,000:1

and interframe compression in excess of 1,000,000:1 were reported. The collage

theorem states that if an image can be covered (approximately) with compressed

affine transformations of itself, then the image can be (approximately) reconstructed

by computing the attractor of this set of affine transformations.

This convergence was extremely slow, about 100 hours, unless assisted by a

person and was presented as an illustration of a scientific possibility, not as a

commercial reality. To develop a product that would function in a commercial

environment the Iterated Systems had developed the patented technique called the

'Fractal Transform'. The development allowed images to be reduced to a set of fractal

equations based on the image being processed, rather than a huge library of pre-

calculated, reference, fractal patterns [32]-[34]. Image compression algorithms which

are noise free have been reported to be developed from this transform for real time

automatic image compression at ratios between 10:1 and 100:1

2.3 Efficiency and quality of different lossy compression techniques

The performances of lossy picture coding algorithms are usually evaluated on the

basis of two parameters:

• The compression factor (or analogously the bit rate) and

• The distortion produced on the reconstruction.

The first is an objective parameter, while the second strongly depends on the usage of

the coded image. A rough evaluation of the performances of a method can be made

 16

by considering an objective measure of the error, like MSE or SNR. For lossy

methods described above, average compression ratios and SNR values obtainable are

presented in the following table:

Method VQ DCT-
SQ

DCT-VQ AP SplineTSD Fractals

BitRate(bpp) 0.8-0.4 0.8-0.3 0.3-0.08 0.3-0.1 0.4-0.1 0.8-0.0
SNR(db) 36-30 36-31 30-25 Image

dependent
36-32 Image

dependent

Table 1: Comparison of Compression ratios and SNR values

2.3.1 Comparison of Different Compression Methods

During the last years, some standardisation processes based on transform

coding, such as JPEG, have been started. Performances of such a standard are quite

good if compression factors are maintained under a given threshold (about 20 times).

Over this threshold, artifacts become visible in the reconstruction and tile effect

affects seriously the images decoded, due to quantization effects of the DCT

coefficients. There are two advantages: first, it is a standard, and second, dedicated

hardware implementations exist. For applications which require higher compression

factors with some minor loss of accuracy when compared with JPEG, different

techniques should be selected such as wavelets coding or spline interpolation,

followed by an efficient entropy encoder such as Huffman, arithmetic coding or

vector quantization. Some of these coding schemes are suitable for progressive

reconstruction .This property can be exploited by applications such as coding of

images in a database, for previewing purposes or for transmission on a limited

bandwidth channel.

 17

CHAPTER 3

IMAGE/VIDEO COMPRESSION USING JPEG/MPEG STANDARD

Introduction to JPEG

JPEG stands for “Joint Photographic Experts Group” it is a group of people

(experts) working towards establishing the international digital video compression

standard for continuous-tone (multi-level) still images which include grayscale and

color. JPEG is collaboration between ISO and CCITT committees. For single-frame

image compression, the industry standard with the greatest acceptance is JPEG it

consists of a minimum implementation (called a baseline system) which all

implementations are required to support, and various extensions for specific

applications [20]. JPEG compression algorithms in software form a part of a graphics

illustration or video editing package. JPEG compression algorithms involves

eliminating redundant data, the amount of loss is determined by the compression

ratio, typically about 16:1 with no visible degradation. For more compression where

noticeable degradation is acceptable compression ratios of upto 100:1 can be employed.

 3.1 Need for JPEG Compression

For modern applications like the internet, development of video CD’s, video

conferencing etc all these applications use graphics and sound intensively and

consumes very large amount of physical storage. Example TV-quality full motion

video requires 720kb per frame displayed at 30 frames per second to get the motion

effect which means one second of motion consumes 22MB of storage, so a standard

CD-ROM with 648 MB could only provide 30 seconds of video.

 18

JPEG provides a compression method that is capable of compressing color or

gray scale continuous tone images of real world subject such as photograph, still

video or any complex graphics that resemble nature subjects. JPEG does not operate

on a single algorithm it is built up by various compression techniques which serves as

its tools. JPEG allows various configurations of these tools depending on the needs of

the user. There are two scheme of compression in JPEG [24]. One is a lossy scheme

which means compressed image when decompressed back, isn't the same. The other

is a lossless scheme which not loses any of the image data when the compressed

image is decompressed back. That is the image looks exactly the same as the original

one. But the compression achieved by lossless scheme is not high as lossy, usually

about 2:1.

JPEG is developed specifically to discard information that the human eye

cannot see. Slight changes in color are not perceived well by the human eye, while

slight changes in intensity are. Due to this fact we can see that JPEG does not

compress gray scale images as well as colored. usually about 5:1, whereas a colored

photographic-quality image maybe compressed from 20:1 to 25:1 without

experiencing any noticeable degradation in quality. The exact threshold at which

errors become visible also depend on the viewing conditions. The smaller the size of

an individual pixel, the harder it is to see an error. So errors are more visible on a

monitor 70 or so dots/inch than on a high quality color printout of 300 or more

dots/inch.

 19

Thus, most multimedia systems use compression techniques to handle

graphics, audio and video data streams and JPEG forms the important compression

standard with various compression techniques as building blocks.

3.2 JPEG Compression and Decompression flow:

 The picture below shows the basic flow diagram of a JPEG algorithm, it tells

about the compression and decompression flow in steps [20]-[27].

 Figure 1. JPEG Compression and Decompression flow

Baseline Lossy JPEG

Most currently available JPEG hardware and software handles only the Baseline

Lossy JPEG (or sequential DCT-based JPEG). The following are the processes

discussed in the flow of the algorithm steps:

Input
data

Picture
Transformations

Picture
Processing

Quantization

Entropy
Encoding

Lossy or
Lossless
Coding

Methods

Decompressed
Data

Picture
Transformations

 DCT

DeQuantization

Decoding

Picture
Processing

Color Space
Transformation

DownSampling

MCU

Compressed
Data

 20

Step1: Picture Transformation

The following activities take place in the picture transformation step:

ColorSpace Transformation

This step transforms the image into a suitable colorspace and is not necessary

for the proposed scheme because of the gray scale images. For colored images the

RGB is transformed into a luminance/chrominance colourspace (YCbCr, YUV etc.).

The luminance component is a gray scale while the other two chrominance

components are color information, after separating the image into these three

components, we will remove more information from the Chrominance (colored)

components than the luminance component(optional step). This step increase the

compression ratio as it removes unnecessary information in the chrominance

components without the human eye detecting the difference.

Downsample Color Components

Downsampling reduces the image size by one-half or one-third. It is done by

dividing the pixels of each component into groups and for each group we find their

average value, and use only one pixel of that average value to represent that whole

group. Downsampling is done only to the chrominance components, reducing them

by half horizontally and half vertically or no change for the vertical.

Minimum Coded Unit (MCU)

An image can be composed of several components, in RGB colorspace we

have RED, GREEN and BLUE components and each component is then divided into

 21

data units. In this baseline lossy mode, each data unit is made up of a block of 8*8

pixels. If we processed these data units one component by one component at a time to

display the whole image, we call it non-interleaved mode. Frame buffer is required in

non-interleaved mode to store all the pixel's values in every component except for the

very last one. Together with the values stored in the frame buffer and the pixel's

values of the last component, we will be able to determine the actual value of a

specific pixel.

Interleaving eliminates the use of frame buffer. To display an image, using

interleaved mode, we take a few blocks of data units from each component and

display them immediately. We don't wait for the whole picture to be formed in the

frame buffer. The picture is slowly built up as the blocks are processed. Interleaved

data units of different components are combined into MCU, if all components have

the same resolution, an MCU consists of exactly one data unit for each component.

The decoder displays the image MCU by MCU.For a set of color components with

different resolutions, the MCU is defined interms of frequency of the blocks.

According to the JPEG standard, up to four components can be coded using

interleaved mode. Each MCU consists of at most ten data units. Within the image,

some components can be encoded in the interleaved mode and others in the non-

interleaved mode.

 22

Step 2: Picture Processing

Discrete Cosine Transformation (DCT)

In this stage the uncompressed image samples are grouped into data units of

8*8 pixels and passed to the encoder according to the order defined by the MCU.

Then each of the 8*8 pixels' values go through a transformation performed by DCT,

using an explicit formula written in terms of the pixel values ()yxf , and the

frequency domain transform coefficients,),(yxF .

() () () ()

 +

 += ==
16

12
cos

16

12
cos,

4

1
, 0

7
0

7 vyux
xyCCvuF yxvu (3.1)

Where 2

1

, 2

1=vu CC for u, v =0; otherwise 1, =vu CC

The output of the transformation will result in the mean value, the DC coefficient is

located on the top left corner of the data unit and higher frequency coefficients will be

further away from this DC coefficient. Higher vertical frequencies will be represented

by higher row numbers where higher horizontal frequencies will be represented by

higher column numbers [25].

For reconstruction of the image, the inverse DCT formula is used:

() () () ()

 +

 +=
== 16

12
cos

16

12
cos,

4

1
,

0

7

0

7 vyux
vuFCCxy vuyx

 (3.2)

Where
2

1

, 2

1=vu CC for u, v =0; otherwise 1, =vu CC

when forward DCT is being applied for an image we can see a great reduction on the

size of the data. The transformation will result in many zero coefficients and greater

 23

concentration of non-zero values on the upper left corner of the data units. When an

inverse DCT is applied to the frequency domain we will get back the initial picture

but not a perfect exact reconstruction, as precision will be lost during the rounding off

of DCT coefficients from real to integer values (the same thing happens when inverse

DCT is applied).

Therefore if Forward Discrete Cosine Transformation (FDCT), as well as the

Inverse Discrete Cosine Transformation (IDCT), could be calculated without loss in

precision then we will be able to reproduce exactly the same data unit that we started

with. This is why DCT is considered a lossy process.

Step 3: Quantization

Quantization is used to further reduce the values of DCT coefficients in order

to produce more zero coefficients. In Baseline Lossy JPEG the stepsize is varied

according to the coefficient location and which color component is encoded [26].

The equation for quantization is:

() () ()()[]
()vuQ

uvQuvF
uvC

,

2/,,
, = (3.3)

Where C(v,u), is actually the quantized coefficient, F(v,u) is the DCT

frequency coefficient, and Q(v,u) is the quantizer stepsize for the pixel (v,u) in the

block. The sign indicates a plus for a positive DCT coefficeint, F(v,u), and a minus

for a negative DCT coefficient, F(v,u).

The inverse quantizer equation is given as:

 24

() () ()vuQvuCvuF ,,, ∗= (3.4)

Quantization is also a lossy process. In quantizing an image, the quality factor

set, will have direct effect on the amount of Quantization performed. If too much

quantization is done to the image, it will cause the final quantized image to look

"blocky". Similarly, if too little quantization is performed, it will result in coding

useless data (or noise) of the image.

Step 4: Entropy Encoding

Coding Model

Before actual entropy is performed to the quantized DCT coefficients, the

coefficients are rearranged into a one dimensional array using a zig-zag pattern by the

code model, with the lowest frequency first and highest frequency last. The zig-zag

pattern is used to increase the consecutive runs of zeros for RLE. During this stage

the quantized DC coefficient is treated separately from the AC coefficient

Differential Pulse Code Modulation (DPCM)

The DC coefficient determines the basic color of a data unit and this value

varies slightly between successive blocks. The coding of the DC coefficient is done

by Differential Pulse Code Modulation (DPCM), which codes the differential

between the quantized DC coefficient of the current block and the quantized DC

coefficient of the previous block. The formula for the DPCM code:

() () 10,00,0 −−= jj CCDPCMcode (3.5)

Where j represents the number of the quantized block being processed. The

inverse DPCM returns the current DC coefficient value of the quantized block being

 25

processed by summing the current DPCM code with the previous DC coefficient

value of the previous quantized block.

1)0,0()0,0(−+= jjj CDPCMcodeC (3.6)

The DPCM code is represented by the size of the DPCM code followed by the

significant value of the DPCM code [20]-[27].

RLE

The quantized AC coefficients usually contain a number of consecutive runs

of zeros. Therefore RLE is used to encode these zero values.

Huffman \ Arithmetic Encoding

 Huffman or Arithmetic encoding is used to transform the non-zero AC-

coefficients and the DC coefficients into a spectral representation to compress the

data even more, the number of bits required depends on the coefficient's value. A

non-zero AC-coefficient will be represented between 1 to 10 bits. For the

representation of DC-coefficients, a higher resolution of 1 bit to a maximum of 11

bits is used.

 26

3.3JPEG Applications

Baseline Lossy JPEG

• More for use of storing photograph-like images and naturalistic artworks.

• Due to its great compression efficiency, and permit the ease of exchanging

images with widely varying display hardware, it is widely used in the Usenet

and World Wide Web.

Progressive JPEG

• The advantage of Progressive JPEG is that it allows viewer to see a rough idea

of what the actual image looks like and gradually improves the quality.

Progressive JPEG is slowly gaining popularity in the World Wide Web

because of its advantage, and more and more software are starting to support it

including some WWW browser and other programs.

Motion JPEG (MPEG)

• Usually used in professional video application areas such as Non Linear

Editing Systems (NLE), Digital Disk Recorder (DDR) and Media Servers.

Here video compression is used to reduce implementation cost.

• Lossless Motion JPEG is used in areas where video quality is of primary

importance such as Digital video compositing, 3D animation and Medical

video and photography.

 27

3.4 Introduction to MPEG

MPEG stands for “Moving Pictures Exerts Group”, it is a group of people

getting together under ISO (International Standard Organization) to generate

standards for digital video (sequence of images in time) and audio compression [13].

The compression algorithms developed depends on the individual manufacturers.

MPEG defines a bit stream for compressed video and audio optimized to fit a

band width of 1.5Mbps necessary for audio CD’s and DAT’s. The standard is divided

into three parts video, audio and systems. The systems part is used to integrate the

audio and video streams with proper time stamping to allow the synchronization of

the two. MPEG involves in encoding only key frames through the JPEG algorithm

(described above) and estimates the motion changes between these key frames. Since

minimal information is sent between every four or five frames, a significant reduction

in bits required to describe the image results. Consequently, compression ratios above

100:1 are common. The MPEG encoder is very complex and places a very heavy

computational load for motion estimation. Decoding is much simpler and can be done

by desktop CPUs or with low cost decoder chips. The MPEG encoder makes a

prediction about an image and transforms and encodes the difference between the

prediction and the image. The prediction accounts for movement within an image by

using motion estimation [13], [14]. A given image's prediction may be based on

future images as well as past ones, the encoder must reorder images to put reference

images before the predicted ones. The decoder puts the images back into display

sequence. It takes in the order of 1.1-1.5 billion operations per second for real-time

MPEG encoding.

 28

3.5 MPEG Compression Standards

There are five MPEG standards that are currently being used and also under

further development. Each compression standard is designed based on a specific

application and bit rate [13]-[19].

MPEG-1(Designed for upto 1.5 Mbps): This standard is based on CD-ROM

applications and is popular for video on internet transmitted as .mpg files, level 3 of

MPEG-1 is a popular standard for digital compression of audio known as MP3, it is

also the standard of compression for video CD.

MPEG-2 (Designed between 1.5 and 15 Mbps): this standard is set for digital

television set top boxes and DVD compression. It is based on MPEG-1, but designed

for the compression and transmission of digital broadcast television. The most

significant enhancement from MPEG-1 is its ability to efficiently compress interlaced

video. MPEG-2 scales well to HDTV resolution and bit rates, obviating the need for

an MPEG-3.

MPEG-4: this standard is set for multimedia and Web compression. MPEG-4 is

based on object-based compression, similar in nature to the Virtual Reality Modeling

Language. Individual objects within a scene are tracked separately and compressed

together to create an MPEG4 file. This results in very efficient compression and is

very scalable; from low bit rates to very high. It allows developers to control objects

independently in a scene, and therefore introduces interactivity.

 29

MPEG-7: this standard is currently under development, it is called as the Multimedia

Content Description Interface. The objective is to provide a framework for

multimedia content that will include information on content manipulation, filtering

and personalization, as well as the integrity and security of the content. Contrary to

the previous MPEG standards, which described actual content, MPEG-7 will

represent information about the content.

MPEG-21: this standard is for Multimedia Framework which is under development.

MPEG-21 will attempt to describe the elements needed to build an infrastructure for

the delivery and consumption of multimedia content, and how they will relate to each

other.

3.6 MPEG Comparision

All MPEG standards are back compatible meaning MPEG-1 video sequence can

be packetized as MPEG-2 or MPEG-4 video. Similarly, MPEG-2 can be paketized as

MPEG-4 video sequence. The difference between a true MPEG-4 video and an

MPEG-4 paketized MPEG-1 video sequence is that the lower standard does not

make use of the enhanced or new features of the higher standard. Both MPEG-2 and

MPEG-4 covers a wide range of picture size and picture rates and bandwidth usage,

so MPEG-2 introduced a concept called as Profile@ Level to communicate

compatibilities among applications, example studio profile of MPEG -4 is not suitable

for PDA and vice-versa[13]-[19].

 30

The comparison of MPEG’s is given in the following table with limitations to

MPEG-1 on Constrained Parameters Bitstream (CPB), MPEG-2 on Main Profile at

mainlevel (MP@ML) and MPEG-4 on Main Profile at Level 3.

MPEG 1 2 4

Max Bit Rate (Mbps) 1,86 15 15

Picture width(pixels) 352 720 720

Picture height(pixels) 288 576 576

Picture rate (fps) 30 30 30

Table 2: Comparison of MPEG

3.7 Work Procedure of an MPEG

 An MPEG starts with a relatively low resolution video sequence (possibly

decimated from the original) of about 352 by 240 frames by 30 frames/s but with

original high (CD) quality audio. The color images are converted to YUV space, and

the two chrominance channels (U and V) are decimated further to 176 by 120 pixels.

 The basic MPEG scheme is to predict motion from frame to frame in the temporal

direction, and then use DCT's (discrete cosine transforms) to organize the redundancy

in the spatial directions. The DCT's are done on 8×8 blocks, and the motion

prediction is done in the luminance (Y) channel on 16×16 blocks.Given,the 16×16

block in the current frame of coding, we look for a close match to that block in a

previous or future frame (there are backward prediction modes where later frames are

 31

sent first to allow interpolation between frames) [15].The DCT coefficients (of either

the actual data, or the difference between this block and the close match) are

"quantized", which means we divide them by some value to drop bits off the bottom

end, many of the coefficients will then end up being zero. The quantization can

change for every "macro block" (a macro block is 16×16 of Y and the corresponding

8×8's in both U and V). The results of all of this, which include the DCT coefficients,

the motion vectors, and the quantization parameters is Huffman coded using fixed

tables. The DCT coefficients have a special Huffman table that is "two-dimensional"

in that one code specifies a run-length of zeros and the non-zero value that ends the

run. Also, the motion vectors and the DC DCT components are DPCM (subtracted

from the last one) coded.

 There are three types of coded frames. They are I, P and B. the "I" frames are called

as intra-frames, these frames are coded as a still image, not using any past history.

The "P" frames are called as predicted frames which are predicted from the most

recently reconstructed I or P frame [16], [17]. Each macro block in a P frame can

come with a vector and difference DCT coefficients for a close match in the last I or

P frames, or it can just be "intra" coded (like in the I frames) if there is no good

match. Lastly, the "B" frames which are called as the bidirectional frames, they are

predicted from the closest two I or P frames, one in the past and one in the future. We

search for matching blocks in those frames, and see which works best. The sequence

of decoded frames usually goes like:

 IBBPBBPBBPBBIBBPBBPB...

 32

 Where there are 12 frames from I to I this is based on a random access

requirement we need a starting point at least once every 0.4 seconds or so. The ratio

of P's to B's is based on experience. For the decoder to work, we send the first P

before the first two B's, so the compressed data stream ends up looking like:

 0xx312645...

 where numbers are frame numbers and xx might be nothing (if above is the true

starting point), or it might be the B's of frames -2 and -1 if we are in the middle of the

stream. We have to decode the I, then decode the P, keep both of those in memory,

and then decode the two B's. We display the I while we are decoding the P, and

display the B's as we are decoding them, and then display the P as we are decoding

the next P, and so on.

 Coding Order

 Figure 2. Flow of an MPEG

1 2 3 4 7 5 6

I B B P B B P

 33

CHAPTER 4

NEURAL NETWORKS

 Introduction to neural networks

An Artificial Neural Network (ANN) is an information processing paradigm

that is inspired by the biological nervous systems, such as the brain. The key element

of this paradigm is the structure of the information processing system. It is composed

of a large number of highly interconnected processing elements (neurones) working

in unison to solve specific problems. ANNs, like people, learn by example. An ANN

is configured for a specific application, such as pattern recognition or data

classification, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurones. This is true

of ANNs as well [2]-[12].

4.1 Use of neural networks

Neural networks, with their remarkable ability to derive meaning from

complicated or imprecise data, can be used to extract patterns and detect trends that

are too complex to be noticed by either humans or other computer techniques. A

trained neural network can be thought of as an "expert" in the category of information

it has been given to analyse. This expert can then be used to provide projections given

new situations of interest.

 Advantages:

• Adaptive learning: An ability to learn how to do tasks based on the data given

for training or initial experience.

 34

• Self-Organisation: An ANN can create its own organisation or representation

of the information it receives during learning time.

• Real Time Operation: ANN computations may be carried out in parallel, and

special hardware devices are being designed and manufactured which take

advantage of this capability.

• Fault Tolerance via Redundant Information Coding: Partial destruction of a

network leads to the corresponding degradation of performance. However,

some network capabilities may be retained even with major network damage.

4.2 Human and Artificial Neurons

4.2.1 How the Human Brain Learns?

In the human brain, a typical neuron collects signals from others through a

host of fine structures called dendrites. The neuron sends out spikes of electrical

activity through a long, thin stand known as an axon, which splits into thousands of

branches [6]. At the end of each branch, a structure called a synapse converts the

activity from the axon into electrical effects that inhibit or excite activity from the

axon into electrical effects that inhibit or excite activity in the connected neurons.

When a neuron receives excitatory input that is sufficiently large compared with its

inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs

by changing the effectiveness of the synapses so that the influence of one neuron on

another changes.

 35

 Figure 3. Components of a neuron

 Figure 4. Synapse

4.2.2 From Human Neurons to Artificial Neurons

By deducing the essential features of neurons and their interconnections. We

program a computer to simulate these features [9]. However because our knowledge

of neurons is incomplete and our computing power is limited, our models are

necessarily gross idealizations of real networks of neurons.

 36

Cell body
 Dendrites Threshold

 Axon

 Summation

Figure 5. The neuron model

4.2.3 A simple neuron

An artificial neuron is a device with many inputs and one output. The neuron

has two modes of operation; the training mode and the using mode. In the training

mode, the neuron can be trained to fire (or not), for particular input patterns. In the

using mode, when a taught input pattern is detected at the input, its associated output

becomes the current output [10]. If the input pattern does not belong in the taught list

of input patterns, the firing rule is used to determine whether to fire or not.

 37

Neuron

Neuron

 X1 Teach/Use

 X2

Inputs Output

Xn

 Teaching Input

Figure 6. A simple neuron

4.2.4 A more complicated neuron

 A more sophisticated neuron is the McCulloch and Pitts model (MCP). The

difference from the previous model is that the inputs are 'weighted', each inputs

decision making is dependent on the weight of the particular input. The weight of an

input is a number which when multiplied with the input gives the weighted input.

These weighted inputs are then added together and if they exceed a pre-set threshold

value, the neuron fires. In any other case the neuron does not fire [11].

 X1 W1 Train/Use

 X2 W2

 Output
 Input

 Xn Wn
 Training Input

 Figure 7. An MCP neuron

 38

In mathematical terms, the neuron fires if and only if;

X1W1 + X2W2 + X3W3 + ... > T (4.1)

The addition of input weights and of the threshold makes this neuron a very

flexible and powerful one. The MCP neuron has the ability to adapt to a particular

situation by changing its weights and/or threshold. Various algorithms exist that cause

the neuron to 'adapt'; the most used ones are the Delta rule and the back error

propagation. The former is used in feed-forward networks and the latter in feedback

networks.

4.3 Architecture of neural networks

4.3.1 Feed-forward networks

Feed-forward ANNs allow signals to travel one way only; from input to

output. There is no feedback (loops) i.e. the output of any layer does not affect that

same layer. Feed-forward ANNs tend to be straight forward networks that associate

inputs with outputs [2]-[12]. They are extensively used in pattern recognition. This

type of organisation is also referred to as bottom-up or top-down.

 39

Outputs

 Hidden Layer

 Inputs

 Figure 8. An example of a feedforward network

4.3.2 Feedback networks

Feedback networks can have signals travelling in both directions by

introducing loops in the network. Feedback networks are very powerful and can get

extremely complicated. Feedback networks are dynamic; their 'state' is changing

continuously until they reach an equilibrium point. They remain at the equilibrium

point until the input changes and a new equilibrium needs to be found. Feedback

architectures are also referred to as interactive or recurrent, the latter term is used to

denote feedback connections in single-layer organisations.

 40

 a1
 W2, 1 W1,6 W3,6
 W2,5 b1

 a2 W9,1
 W1,9 W6,3

 b2
 W4,9 W9,7

 a3

 W9,10

 W8,11

 a4 b3
 W11,10

 Input Neurons Hidden Neurons Output Neurons

 Figure 9. An example of a complicated network

4.3.3 Network layers

The common artificial neural network consists of three groups, or layers, of units:

a layer of "input" units connected to a layer of "hidden" units, which is connected to a

layer of " output" units.

• The activity of the input units represents the raw information that is fed into

the network.

U2

U4

U8

U11

U5

U9

U1

U6

U10

U7

U3

 41

• The activity of each hidden unit is determined by the activities of the input

units and the weights on the connections between the input and the hidden

units.

• The behaviour of the output units depends on the activity of the hidden units

and the weights between the hidden and output units.

 The hidden units are free to construct their own representations of the input. The

weights between the input and hidden units determine when each hidden unit is

active, and so by modifying these weights, a hidden unit can choose what it

represents.We also distinguish single-layer and multi-layer architectures. The single-

layer organization, in which all units are connected to one another, constitutes the

most general case and is of more potential computational power than hierarchically

structured multi-layer organizations[2]-[9]. In multi-layer networks, units are often

numbered by layer, instead of following a global numbering.

4.4 The Learning Process

The memorization of patterns and the subsequent response of the network can be

categorized into two paradigms:

• Associative mapping

• Regularity detection

 42

4.4.1 Associative mapping

The network learns to produce a particular pattern on the set of input units

whenever another particular pattern is applied on the set of input units. The

associative mapping can generally be broken down into two mechanisms:

• Auto-association: an input pattern is associated with itself and the states of

input and output units coincide. This is used to provide pattern completion, i.e

to produce a pattern whenever a portion of it or a distorted pattern is

presented. In the second case, the network actually stores pairs of patterns

building an association between two sets of patterns.

• Hetero-association: It is related to two recall mechanisms:

Nearest-neighbour: Here the output pattern produced corresponds to the

input pattern stored, which is closest to the pattern presented.

Interpolative: Here the output pattern is a similarity dependent interpolation

of the patterns stored corresponding to the pattern presented. This is a variant

associative mapping, i.e there is a fixed set of categories into which the input

patterns are to be classified.

4.4.2 Regularity detection

In regularity detection units learn to respond to particular properties of the

input patterns. Whereas in associative mapping the network stores the relationships

among patterns, in regularity detection the response of each unit has a particular

'meaning'. This type of learning mechanism is essential for feature discovery and

 43

knowledge representation. Every neural network possesses knowledge which is

contained in the values of the connections weights. Modifying the knowledge stored

in the network as a function of experience implies a learning rule for changing the

values of the weights.

 11 AW j 11AW j

 22 AW j

 . 22 AW j

 . Njk AW

 Nnj AW

Figure 10. Weight Matrix

Information is stored in the weight matrix W of a neural network. Learning is the

determination of the weights. Following the way learning is performed, we can

distinguish two major categories of neural networks:

• Fixed networks in which the weights cannot be changed, ie dW/dt=0. In such

networks, the weights are fixed a priori according to the problem to solve.

• Adaptive networks which are able to change their weights, ie dW/dt should

not be equal to 0.

 All learning methods used for adaptive neural networks can be classified into

 two major categories, namely supervised and unsupervised:

 += ∑
=

j

n

i
iij AWfAj θ

1

 44

Supervised learning: It incorporates an external teacher, so that each output unit is

told what its desired response to input signals ought to be. During the learning

process global information may be required [11]. Paradigms of supervised learning

include error-correction learning, reinforcement learning and stochastic learning

An important issue concerning supervised learning is the problem of error

convergence, ie the minimization of error between the desired and computed unit

values. The aim is to determine a set of weights which minimizes the error. One well-

known method, which is common to many learning paradigms, is the least mean

square (LMS) convergence.

Unsupervised learning: Uses no external teacher and is based upon only local

information. It is also referred to as self-organization, in the sense that it self-

organizes data presented to the network and detects their emergent collective

properties. Paradigms of unsupervised learning are Hebbian learning and competitive

learning.

 We say that a neural network learns off-line if the learning phase and the operation

phase are distinct. A neural network learns on-line if it learns and operates at the same

time. Usually, supervised learning is performed off-line, whereas unsupervised

learning is performed on-line [12].

 45

 4.5 Transfer Function

The behaviour of an ANN (Artificial Neural Network) depends on both the

weights and the input-output function (transfer function) that is specified for the units.

This function typically falls into three categories:

• Linear (or ramp)

• Threshold

• Sigmoid

For linear units, the output activity is proportional to the total weighted output.

For threshold units, the output are set at one of two levels, depending on whether the

total input is greater than or less than some threshold value. For sigmoid units, the

output varies continuously but not linearly as the input changes [2]-[12]. Sigmoid

units bear a greater resemblance to real neurons than do linear or threshold units, but

all three must be considered rough approximations.

To make a neural network that performs some specific task, we must choose how

the units are connected to one another and we must set the weights on the connections

appropriately. The connections determine whether it is possible for one unit to

influence another. The weights specify the strength of the influence.

We can teach a three-layer network to perform a particular task by using the

following procedure:

 46

• We present the network with training examples, which consist of a pattern of

activities for the input units together with the desired pattern of activities for

the output units.

• We determine how closely the actual output of the network matches the

desired output.

• We change the weight of each connection so that the network produces a

better approximation of the desired output.

4.6 Training algorithms for Neural Networks

The Neural Network has to be configured before it can be used for applications.

This configuration of neural network is called as training, in which the parameters of

the network are adjusted to the optimum values, such that the network exhibits the

desired properties [11]. The training required that the network parameters follow an

updated rule, which is called as training algorithm.

Based on the way weights are updated, training is classified in two ways:

Online or Pattern-wise training: In this mode of training the weights are updated

for each error. Starting from the first input instance of the data-set, the error for each

input is calculated as shown in the above equation. The amount weight can be given

by

w
w

∂
∂−=∆ εη (4.2)

 47

Where η is the learning rate? The procedure is repeated until the last instance of the

data-set.

Batch or epoch wise training: In this mode the weights are updated on the

calculation of the total error Totalε the weights are updated when a complete batch or

data-set are presented to the network. The amount of weight change is given by

w

w Total

∂
∂

−=∆
εη (4.3)

4.6.1 Back propagation algorithm

The backpropagation algorithm is a supervised learning method for multi-

layered feedforward neural networks using sigmoidal activation functions. It was

developed by Paul Werbosin in 1974 and was later extended by Rumelhart, Hinton

and Williams in 1986 this was the first network with more than one hidden layer. It is

a gradient descent local optimization technique, it involves backward error correction

of the network weights [28]-[36]. For non-linear applications the backpropagation

algorithm has a local minima problem, it cannot find the global minima.

Architecture of the Network

 The Backpropagation architecture consists of an input layer, a minimum of

one hidden layer and an output layer. The nodes in each layer are fully connected to

the nodes in previous and next layers. Each connection is associated with a synaptic

weight.

 48

 Input layer Hidden Layer Output layer

 Figure 11. Backpropagation architecture

The flow through the network can be described as follows:

• Input to Hidden layer: The input layer loads data from the input vector X, and

sends them to the first hidden layer.

• Hidden layer: The hidden layer units receive weighted input and transfer them

to the next hidden or output layer using one of the transfer functions

(sigmoid).

• As the information propagates through the network all the summed inputs and

output states are computed in each processing unit.

• Backpropagation from the output to the hidden layers: the scaled local error

and weighted increments or decrements are computed for each layer

backwards, starting from the output layer and ending at the first hidden layer,

and finally weights are updated this process is repeated until the error is

minimized .

 49

Computation involved in the Network:

Let us consider that the input, hidden and the output layer consists of N, K and M

Neurons respectively. Let us take the output of the m-th output node due to p-th input

pattern is given by pmO , the output of the k-th hidden node for the p-th input pattern

is given by pkO
−

 the biases k

−
θ and mθ are associated with the k-th hidden node and

the m-th ouput node respectively [28]-[36]. Let kmω be the weight between the m-th

output neuron and the k-the hidden neuron and nk

−
ω be the weight between k-th

hidden neuron and n-th input neuron. The desired output for the m-th output neuron

due to p-th input pattern is given bypmτ . The input for the n-th input neuron due to p-

th input pattern is denoted by pnx (where pnx is either 0 or 1). Using this definition

the output of the k-th node in the hidden layer is given by:

pkO
−

= f

 +∑
=

−−N

n

kpnnk x
1

θω (4.4)

Where f is the activation function (sigmoid) defined as

xexf −+= 11)((4.5)

Similarly the output of the m-th node in the output layer is given by:

pmO = f

 +∑
=

K

k

mpkkm O
1

_

θω (4.6)

We define sum of the squared error of the system to be:

 50

E = ()∑∑
= =

−
P

p

M

m
pmpm O

1 1

2

2

1 τ (4.7)

The backpropagation learning algorithm is to change the current weights

kmω and nk

−
ω iteratively such that the system error function E is minimized. The

 weight updates are proportional to the partial derivative of E with respect to kmω .

E

O

O

EE pm

pmkm ∂
∂

⋅
∂
∂=

∂
∂
ω

 (4.8)

Where pmpm
pm

O
O

E τ−=
∂
∂

 and
E

Opm

∂
∂

= () pkpmpm OOO
−

−1 ; (4.9)

And the partial derivative of E with respect to nk

−
ω is:

nk

pk

pk

pm

pm

M

m
nk

O

O

O

O

EE
−

−

−
=

−
∂

∂⋅
∂

∂
⋅

∂
∂=

∂

∂
∑

ωω 1

 (4.10)

where

pk

pm

O

O
−

∂

∂
= () kmpmpm OO ω−1 and

nk

pkO
−

−

∂

∂

ω
= pnpkpk xOO)1(

−−
− (4.11)

The weight change for the (n+1)-th iteration can be expressed as follows (where η

and α are the learning rate and the momentum of the gradient method respectively).

∑
=

+

∂
∂−=+∆

P

p
km

km
km n

E
n

1

)()1(αω
ω

ηω (4.12)

 ∑
=

−

−

−
+

∂

∂−=+∆
P

p

nk

nk

nk n
E

n
1

)()1(ωα
ω

ηω (4.13)

 51

or

 ∑
=

−
∆+=+∆

P

p
kmpkpmkm nOn

1

)()1(ωαδηω (4.14)

 where

)1()(pmpmpmpmpm OOO −−= τδ (4.15)

 ∑
=

−−−
∆+=+∆

P

p

nkpnpknk nxn
1

)()1(ωαδηω (4.16)

 where

∑
=

−−−
−=

M

m
kmpmpkpkpk OO

1

)1(ωδδ (4.17)

The biases mθ and k

−
θ are update similar to kmω and nk

−
ω using equations (4.12)-

(4.14).

 52

CHAPTER 5

 IMAGE/VIDEO COMPRESSION USING NEURAL NETWORKS

Apart from the existing technology on image compression represented by series

of JPEG, MPEG and H.26x standards, new technology such as neural networks and

genetic algorithms are being developed to explore the future of image coding. The

various architectures of neural networks discussed in the previous chapters can be

used for the compression of still images and motion pictures. Research on neural

networks of image compression is still making steady advances which could have a

tremendous impact upon the development of new technologies and algorithms in this

subject area [2]-[12]. Successful applications of neural networks to vector

quantization have now become well established, and other aspects of neural network

involvement in this area are stepping up to play significant roles in assisting with

traditional technologies.

5.1 Back-propagation image compression.

5.1.1 Back propagation Neural Network.

Back-propagation neural networks can be directly applied to image

compression coding. The neural network structure can be illustrated as three layers,

one input layer, one output layer and one hidden layer. The input layer and output

layer are fully connected to the hidden layer. Compression is achieved by designing

the value of K, the number of neurons at the hidden layer, less than that of neurons at

both input and the output layers.

 53

 X1 x1

 X2 jh

 x2

 X3 x3

 . { jiW } { ijW }

 Xn xn

 Figure 12. Back-propagation Neural Network

The input layer and output layer are fully connected to the hidden layer.

Compression is achieved by designing the value of K which is the number of neurons

at the hidden layer which must be less than that of neurons at both input and the

output layers. The input image is split up into blocks or vectors of 8×8, 4×4 or 16×16

pixels [8],[9]. When the input vector is referred to as N-dimensional which is equal to

the number of pixels included in each block, all the coupling weights connected to

each neuron at the hidden layer can be represented by {jiW , j =1, 2,…,K and i =1, 2,..,

N, which can also be described by a matrix of order KxN. From the hidden layer to

the output layer, the connections can be represented by {ijW :1 KjNi ≤≤≤≤ 1, }

which is another weight matrix of order N×K. Image compression is achieved by

training the network in such a way that the coupling weights{Wji} scale the input

vector of N-dimension into a narrow channel of K-dimension (K<N) at the hidden

layer and producing the optimum output value which makes the quadratic error

 54

between input and output minimum. In accordance with the neural network structure

shown, the operation of a linear network can be described as follows:

∑
=

=
N

i
ijij xWh

1

 Kj ≤≤1 (For encoding) (5.1)

 j

K

j
iji hWx

−

=
∑=

1

' Ni ≤≤1 (For decoding) (5.2)

 Where []1,0∈ix which means they are the normalized values for the grey scale

images with grey levels [0,255]. The reason for normalizing pixel values is neural

networks can operate more efficiently when their input and output values are limited

to a range of [0, 1]. The above linear network can be transmitted into a nonlinear one

by adding a transfer function like sigmoid to the hidden layer and the output layer.

 The back-propagation neural network compression is conducted in two phases

training and encoding. In the first phase, a set of image samples are fed to train the

network using the back-propagation learning rule which uses each input vector as the

desired output. This is equivalent to compressing the input into the narrow channel

represented by the hidden layer and then reconstructing the input from the hidden to

the output layer. The second phase involves the entropy coding of the state vector hj

at the hidden layer. In the case of adaptive training the entropy coding of these

coupling weights is required in order to catch up with some input characteristics that

are not encountered at the training stage. The entropy coding is designed as the fixed

length binary coding although many advanced variable length entropy coding

algorithms are available. One of the reasons for this is the research community is

concerned with the part played by neural networks. Therefore, the compression

performance can be assessed in terms of the compression ratio or bit rate [10], [11].

 55

For the back propagation narrow channel compression neural network, the bit rate can

be defined as follows:

 bit rate= pixelbits
nN

NKtnKT
/

+
 (5.3)

 where input images are divided into n blocks of N pixels or n N-dimensional

vectors; T and t stand for the number of bits used to encode each hidden neuron

output and each coupling weight from the hidden layer to the output layer. When the

coupling weights are maintained the same throughout the compression process after

training is completed, the term NKt can be ignored and the bit rate becomes KT/N

bits/pixel. Since the hidden neuron output is real valued, quantization is required for

fixed length entropy coding which is normally designed as 32 level uniform

quantization corresponding to 5 bit entropy coding.

This neural network development is in the direction of K-L transform

technology which actually provides the optimum solution for all linear narrow

channel type of image compression neural networks [3]. When above equations are

represented in matrix form, we have

 [h]= []TW [x] (For encoding) (5.4)

][]]['[]]['[][xWWhWx T== (For decoding) (5.5)

The K-L transform maps input images into a new vector space where all the

coefficients in the new space are de-correlated. This means that the covariance matrix

of the new vectors is a diagonal matrix whose elements along the diagonal are

eigenvalues of the covariance matrix of the original input vectors. Let ei and iλ , i=1,

2.. n, be eigenvectors and eigenvalues of xc , the covariance matrix for input vector x,

 56

and those corresponding eigenvalues are arranged in a descending order so that

1+≥ ii λλ , for i=1, 2.. n. To extract the principal components, K eigenvectors

corresponding to the K largest eigenvalues in xc are normally used to construct the K-

L transform matrix, [AK], in which all rows are formed by the eigenvectors of xc . In

addition, all eigenvectors in [AK] are ordered in such a way that the first row of [AK]

is the eigenvector corresponding to the largest eigenvalue, and the last row is the

eigenvector corresponding to the smallest eigenvalue [4],[5]. Hence, the forward K-L

transform or encoding can be defined as:

[y][KA] ([x]-[xm]) (5.6)

and the inverse K-L transform or decoding can be defined as:

[]][][x
T

K myAx +=

 −
 (5.7)

where [xm] is the mean value of [x] and [
−
x] represents the reconstructed

vectors or image blocks. Thus the mean square error between x and
−
x is given by the

following equation:

∑ ∑ ∑ ∑
= = = +=

−−
=−=−=−=

M

k

n

j

k

j

n

kj
jjjkkms xx

M
xxEe

1 1 1 1

22)(
1

}){(λλλ (5.8)

where the statistical mean value E{.} is approximated by the average value

over all the input vector samples which, in image coding are all the nonoverlapping

blocks of 4×4 or 8×8 pixels. Therefore, by selecting the K eigenvectors associated

with the largest eigenvalues to run the K-L transform over input image pixels, the

resulting errors between the reconstructed image and the original one can be

 57

minimized due to the fact that the values of s'λ decrease monotonically. From the

comparison between the equation pair (2.4) and (2.5) and the equation pair (2.6) and

(2.7), it can be concluded that the linear neural network reaches the optimum solution

whenever the following condition is satisfied:

][][]][['
K

T
K

T AAWW = (5.9)

Under this circumstance, the neuron weights from input to hidden and from hidden to

output can be described respectively as follows:

 [] 1']][[−= UAW K , (5.10)

T
K

T AUW]][[][= (5.11)

where [U] is an arbitrary KxK matrix and[U][] 1−U gives an identity matrix of

KxK. Hence, it can be seen that the linear neural network can achieve the same

compression performance as that of K-L transform without necessarily obtaining its

weight matrices being equal to []T

KA and [AK].

5.2 Simulation

 After training the network using one or more frames, we apply the

performance phase, which is here equivalent to the coding/decoding process. The

hidden layer weight matrix is multiplied by the output of the pre-processor. Then, the

bias is added and the output layer transfer function is applied to the result. This result

is the output of the hidden layer. The process is repeated to obtain the output of the

output layer with the input being the output of the hidden layer.

 58

5.3 Post-processing

 During decoding, the images are reconstructed using the coding product

associated with the input patterns, which will be the output of the hidden layer

together with the weights. The reconstructed image will be an approximation of the

original one in the decoding phase.

5.4 Proposed Image Compression Architecture.

 The proposed architecture employs an image/video compression method

which uses neural networks in combination with simple motion detection techniques

to give an overall improved performance. In general, the network is initially, trained

with some frame until the weights are adapted. The adapted weights are used for

coding the frame sequence. Since the adapted weights may not be optimal for the

particular frame sequence we may need to train the network using frames at regular

intervals and code the subsequent frames using the updated netrwork. The detailed

description of the architecture is discussed in the following sections.

 The second scheme deals with the motion detection techniques. Here, the

initial frame, say Frame1, is transmitted through the neural network to the receiving

end, while the subsequent frames are coded as follows: Each 8×8 block is compared

with the 8×8 block of the previous frame, i.e the 8×8 blocks of Frame2 are compared

with Frame1. A bit is used to inform about the existence or not of motion. The blocks

for which motion is detected are transmitted through the neural network to the

receiving end along with 1 bit. The blocks for which motion has not been detected

 59

remains the same as in the previous frame, which increases the compression ratio

without significantly affecting the frame quality.

5.4.1 Encoding

 The encoding and decoding phases are explained in terms of an example.

Consider the video sequence of “hotel” containing a set of 98 frames. The initial

frame which will be the first input is divided into an array of 8×8 blocks. Those

blocks are given as input to train the neural network architecture until the weights are

adapted. We have trained for 100,200,300,400 and 500 epochs. Then, the adapted

weights of this initial frame are used for the direct coding of subsequent frames. Thus,

the compression is achieved at the hidden layer depending on the number of neurons

in the layer and the number of quantization levels used for weights and hidden layer

outputs.

5.4.2 Decoding process

 The compressed data in the hidden layer is passed to the output layer for

reconstruction of the images. Therefore, the compressed data for all the frames

starting from frame 1 to the last frame is passed to the output layer for reconstruction.

The error for each frame is calculated by comparing the reconstructed with the

original image. These error values are used for the calculation of the signal to noise

ratio of the images for particular compression ratios.

 The advantage of the above method is that the training is not done often which

increases the technique’s processing speed while maintaining the compression ratio.

 60

Compare blocks
w.r.t position of

frame

Transmitting the motion detected between frames.

 In this scheme, we train the network using the initial frame (F1) until the

weights are adapted, the adapted weights are transmitted for direct coding of F1.

Now, at the transmitting end, frame2 (F2) is split into 8×8 blocks. In our case, since

the images are of size 512×480 we get 3840 8×8 blocks for each frame. Therefore,

the 8×8 blocks in frame2 (F2) are compared with the 8×8 blocks of frame1 (F1) and

checked for motion based on the following equation:

 M.D = abs () ()()∑∑ −
x y

nmnm YXFYXF 2
,, ,.2,.1 (5.12)

 Frame1 Frame2

Figure 13. Motion Detection

The information about the detected 8×8 blocks is stored in an array which is

sent to the receiving end. Thus, after we complete the comparison of all blocks, we

 61

Motion
Detection by
comparing
Successive

frames

 Hidden
 Nodes

 Input Layer

 Hidden
 Nodes

 Output Layer

Reconstruction
of frames

Transmit

F3

F2

F1

F98…….
.

Receive

transmit the 8×8 blocks of frame2 (F2) where motion is detected through the neural

network decoding part at the receiver which has already received the adapted weights

at the receiving end, these blocks are reordered in their original position to construct

frame2 (F2). The same process is carried out for subsequent frames (i.e. frame2 (F2)

is compared with frame3 (F3)) till the last frame of the video sequence.

 This technique has the advantage of transmitting only the motion part in

combination which gives an additional compression compared to the case where all

blocks are transmitted. This technique is helpful for motion pictures where the

change between frames is relatively small.

Figure 14. Flow of the proposed scheme

 62

Retraining Frames at regular intervals.

 In this case, we train the network using frames of the motion picture at regular

intervals. Initially, frame1 is used to train the network and obtain the first set of

weights (for 100,200 or 300 epochs). The adapted weights are used for coding of the

trained frame and the subsequent frames until a new weight update takes place. In our

case, we consider the training frequency to be four. For instance, after the first weight

update, the weights are again updated using the fifth frame. Then, the new weights

are used to code the next four frames starting from frame5. As the training frequency

decreases, the compression ratio increases and vice-versa.

 Figure 15. Retraining frames

Training of the

Network

Motion Frames

Reconstruction
of the Frames

using the
output of the

Neural
Network

Adapted Weights
for Direct
Simulation

Neural
Network for
Simulation

 63

Self-Adaptive Training:

 This is a modification of the above scheme in which, instead of training the

frames at regular intervals, we train the frames based on a threshold value. In this

case, frame1 is trained initially and then the following frames are coded using the

obtained weights. The same set of weights is used until an error-based threshold value

is reached. The threshold value is calculated based on the mean square error of the

reconstructed frame with respect to the original one. Once the threshold is reached

then the next frame in the series is used to train the network in order to obtain a new

set of weights. The updated weights are used for coding the subsequent frames. Based

on this approach, training is performed only when the quality of the reconstructed

frames is degraded significantly. This technique results in higher compression ratios

compared to the technique in which retraining is performed at regular intervals.

Proposed Technique: Here, motion is used in combination with retraining to

improve the compression ratio. The procedure followed here is similar to the motion

detection one. However, similarly to the self-adaptive training technique, when the

error for a frame exceeds a certain threshold value, retraining is performed to update

the weights. The updated weights help reducing the error for future frames, which

then results in transmitting a smaller number of blocks. This in-turn increases the

compression ratio. The proposed scheme helps in drawing some useful conclusions

with respect to compression ratio and signal-to-noise ratio.

 64

CHAPTER 6

RESULTS

 The video compression techniques presented in chapter 5 are tested and

results are presented for various scenarios using a set of 98 frames of a “hotel”

motion picture. The comparisons are made based on the signal-to-noise ratio vs

compression ratio.

6.1 Comparison of results for various test scenarios.

 Image/Video compression results are presented for various test scenarios

with the help of a motion picture containing a set of 98 frames. The set of frames are

tested for motion detection, the retraining frames method and the self-adaptive

method. The results obtained from the above tests were useful in drawing some

conclusions regarding the aforementioned techniques. The compression ratio and

peak-signal-to-noise ratios (PSNR) are calculated based on the following formulas for

all the test scenarios.

Compression ratio=
()[]

QPT

WWBRTANMLK

××
××+××++××)1()(

 (6.1)

where

K = No. of blocks transmitted.
L = No. of outputs from hidden layer
M = bits per output
N = No. of bits for mean
T = Total no. of blocks
P = No. of pixels per block
Q = No. of bits per pixel

R = 1bit per block to send the motion
information.

W = No. of weights
W1 = No. of bits per weight
A = 1, if motion is detected
A = 0, if motion is absent
B = 1, if retraining is done
B = 0, if retraining is not done

 65

PSNR=10×)/1(log10 error (6.2)

Case1: Initially, the “Lena” image is trained for different epochs (100,300,500) and

4 hidden nodes in the network. The network is also tested for a still image with the

above parameters. We can see that as the training was increased to 500 epochs, the

weights seem to be better adapted to the particular image, and thus the quality of the

reconstructed image is higher compared to the one trained for 100 or 300 epochs.

Nevertheless, training for 500 epochs has higher processing requirements compared

to the other two cases. Moreover, Figure 16 illustrates that as the compression ratio

increases; the difference in terms of PSNR between the three different cases becomes

negligible.

4 5 6 7 8 9 10 11 12 13
110

112

114

116

118

120

122

Compression Ratio

P
S

N
R

 (
dB

)

100 EPOCHS
300 EPOCHS
500 EPOCHS

 Figure 16. Performance of the Lena Image

 66

Case2: Initially, we train the network using the initial frame of a motion picture

containing a set of 98 frames of a hotel sequence. The trained weights, using the

initial frame, are used for the direct simulation of all the 98 frames. From Figure 17,

we can conclude that the video picture quality is higher for as the number of training

epochs increases. However, as in the example of Figure 16, it can be seen that the

difference in terms of PSNR decreases as the compression ratio decreases.

4 5 6 7 8 9 10 11 12 13
36

37

38

39

40

41

42

43

44

Compression Ratio

P
S

N
R

 (
dB

)

100 EPOCHS
200 EPOCHS
300 EPOCHS
400 EPOCHS
500 EPOCHS

 Figure 17. Direct Simulation of Frames.

Case3: Here two motion pictures are concatenated. These are the “hotel” sequence

which contains relatively complex images, and the “golf” sequence which contains

simple images. The initial frame of the hotel sequence is trained and these weights are

used to code the mixed video sequence i.e. frame1 to frame 98 for hotel sequence and

frame 99 to frame 149 for golf sequence. We can see from Figure 18 that there is a

sudden change in the PSNR at frame 99 because of the transition from hotel image to

golf image. In this case, the PSNR increased. Since the golf image is a simple image

 67

and the information contained in it is most probably included in the hotel sequence,

the network trained using the hotel sequence will be capable of producing a high

quality reconstruction of the frames. On the other hand, when the same experiment is

repeated by placing the golf sequence prior to the hotel sequence, there is a sudden

PSNR change at frame 51 which is the frame at which the transition from the simple

(golf) to the complex (hotel) image sequence occurs. This shows that the network

using the weights obtained after training the first frame of the golf sequence is not

capable of successfully coding the hotel sequence which contains more significant

information.

In addition to the above observations, it is important to mention that the PSNR for the

golf sequence, when the network is trained using the first frame of the hotel sequence,

is higher than the PSNR for the golf sequence when the network is trained using the

first frame of the golf sequence. This may be surprising at first, however it should be

expected. Since the hotel sequence provides a “better” set of blocks for training the

network, all frames of the golf sequence can be effectively coded. However, when the

first frame of the golf sequence is used to generate the network’s weights, the

subsequent frames of the golf sequence can not be successfully represented by the

information included in the network weights. This happens because this information

is provided by the “not so good” set of blocks of the first frame of the golf sequence.

 68

0 50 100 150
116

118

120

122

124

126

128

130

132

134

Frames

P
S

N
R

 (
dB

)

hotel-golf
golf-hotel

 Figure 18. Comparison of Hotel-golf/golf-hotel sequences

Case4: Here retraining of video frames is done at regular intervals (3, 4, 5, 6 frames)

to update the weights of the neural network for improving the quality of the video

sequence, since the initial set of weights may not be “good” for coding the frames at a

later stage. From the Figure 19, we can see that as the retraining frequency increases,

the quality of the reconstructed frame sequence increases, however the compression

ratio is decreased and more processing is required.

 69

12.735 12.74 12.745 12.75 12.755 12.76 12.765 12.77 12.775
36.68

36.69

36.7

36.71

36.72

36.73

36.74

36.75

36.76

Com press ion Ratio

P
S

N
R

 (
dB

)

3,4,5,6 RETRAINING

 Figure 19. Retraining at regular intervals

Case5: Here, retraining is done at regular intervals of 10 frames and the updated

weights are used in between the intervals (Example 15th frame). This technique is

useful when we have parallel processors where training takes place continuously and

the weights are updated while the coding takes place in parallel.

C.R(4-nodes) 12.7826 12.7878
PSNR 36.6264 36.5285
C.R(8-nodes) 7.1057 7.1074
PSNR 39.9610 39.3818
C.R(12-nodes) 4.9205 4.9213
PSNR 41.1565 40.7913

 Table 3: Retraining for different nodes

 70

0 10 20 30 40 50 60 70 80 90 100
118

118.5

119

119.5

120

120.5

121

121.5

122

122.5

Frames

P
S

N
R

 (
dB

)

RETRAINING 10 FRAMES

 Figure 20. Retraining every 10th frame

Case6: In this case there is a comparison between the direct coding and retraining

techniques. Figure 21 indicates that retraining using frames at regular intervals helps

in maintaining the quality of the video sequence with some additional overhead of 10

sets of weights.

 71

0 10 20 30 40 50 60 70 80 90 100
118

118.5

119

119.5

120

120.5

121

121.5

122

122.5

Frames

P
S

N
R

 (
dB

)

DirectSimulation

Retraining

 Figure 21. Comparison between Direct simulation and Retraining

Case7: In this method, retraining is done only when the error of the reconstructed

image exceeds certain threshold value. The network automatically retrains when the

error exceeds that threshold. This method is useful for reducing the overhead when

compared to retraining at regular intervals. The compression ratios are higher

compared to training at regular intervals.

 72

4 5 6 7 8 9 10 11 12 13
36

37

38

39

40

41

42

Compression Ratio

P
S

N
R

 (
dB

)

No-Retraining

RT-2,4,4
RT-4,8,10

RT-29,21,25

 Figure 22. Self-Adaptive Network

C.R(4-nodes) 12.7965 12.7930 12.7497
PSNR 36.3063 36.5262 36.6852
C.R(8-nodes) 7.1090 7.1068 7.0998
PSNR 39.5036 39.6193 39.8968
C.R(12-nodes) 4.9220 4.9205 4.9166
PSNR 40.6794 41.3236 41.2650

 Table 4: Self-adaptive network

Case8: Here, we apply the motion detection technique in which the frames in the

sequence are split into 8×8 blocks. These blocks are then compared to the 8×8 blocks

in the next frame, and if there is a motion detected that particular block is transmitted

through the neural network to the receiving end. The received blocks are placed in

their respective positions to construct the new frame. Thus, the frame at the receiving

 73

end is built based on the previous frames blocks and newly coded blocks. Figure 23

shows the results of this approach using 4, 8, and 12 hidden nodes. Furthermore,

different thresholds have been used for motion detection for each one of the three

cases. In this method, significantly high compression ratios are attained. Nevertheless,

as indicated from Figure 23, in certain cases, using a smaller number of hidden nodes

for increasing the compression ratio may be preferred over using the motion detection

approach. In any case, using the motion detection approach for small motion

detection thresholds (which implies that only few blocks will be considered as

showing lack of motion) increases the compression ration without affecting the

PSNR.

0 10 20 30 40 50 60
30

32

34

36

38

40

42

Compression Ratio

P
S

N
R

 (
dB

)

4-nodes

8-nodes
12-nodes

 Figure 23. Motion Detection

 74

C.R
4node

12.61 20.98 25.79 28.60 32.34 36.72 40.911 45.01 48.921 52.806 57.544

PSNR 36.19 36.22 36.06 35.53 34.30 33.11 32.191 31.47 30.939 30.519 30.171

C.R
8node

7.084 11.96 14.82 16.91 19.59 22.43 25.015 27.39 29.640 31.881 34.642

PSNR 38.73 38.77 38.21 36.29 34.34 33.02 32.104 31.42 30.91 30.523 30.202

C.R
12nod

4.925 8.285 10.46 12.12 14.10 16.14 18.000 19.66 21.232 22.724 24.616

PSNR 40.12 40.18 38.93 36.16 34.08 32.79 31.880 31.26 30.81 30.510 30.224

 Table 5: Motion Detection for different nodes

Case9: This case presents a comparison between the technique that uses motion

detection and the one that uses motion with retraining. Figure 24 and Table 6

illustrate that, for a given threshold value, the motion with retraining technique has

resulted in higher compression ratios for a given PSNR when compared to the

technique that only uses motion detection. This is because retraining updates the

weights so that the corresponding error is not allowed to increase considerably. As a

result, only few blocks are transmitted to the receiving end, due to motion detection,

which in-turn increases the compression ratio.

 75

10 15 20 25 30 35
34

34.5

35

35.5

36

36.5

Compression Ratio

P
S

N
R

 (
dB

)

motion

motion with RT

 Figure 24. Combination of motion with retraining.

Error 0.001 0.005 0.010 0.015 0.02
C.R(motion) 12.6117 20.8914 25.7960 28.6054 32.3459

PSNR 36.1964 36.2278 36.0678 35.5321 34.3099
C.R(motion,RT) 12.6100 21.6539 25.8658 28.6402 32.0302

PSNR 36.2888 36.2778 35.9758 35.2768 34.0465

Table 6: Motion with Retraining

 76

Original Image Reconstructed Image

 Figure 25: Comparison of Original and reconstructed Images

 Figure 25 presents a comparison between the original and the reconstructed image

that has gone through motion with retraining.

 77

CHAPTER 7

DISCUSSIONS AND CONCLUSIONS

 In this thesis, we have discussed various video compression schemes. The

results were useful in drawing important conclusions about those schemes. The

algorithms implemented and tested are mainly based on the idea of neural network

based image compression.

 Compared to other existing neural network schemes, the major advantage

of the proposed technique is that it provides better PSNR for a given compression

ratio. In general, it was shown that the combination of the neural network techniques

with some basic motion detection helped in achieving higher compression ratios.

Neural Network weight retraining improved the image quality compared to previous

techniques. Moreover, the Self-adaptive retraining achieved even higher PSNR for a

given compression ratio.

 Future work includes incorporation of lossless techniques to supplement

the neural network approach.

 78

REFERENCES

[1] Christopher E.Cramer and Erol Gelenbe, “Video Quality and Traffic QoS in
Learning-Based Subsampled and receiver-Interpolated Video Sequences” in
Proc. SPIE: ”Visual Communications and Image processing”,vol-
18,No.2,Feb 2000.

[2] D. Anthony ,”A comparison of image compression by a neural network and
principle component analysis,” in Proc.Int.Joint Conf. Neural networks,
1990, pp.339-344.

[3] S.Carrato,” Neural Networks for image compression” in Neural Networks:
Advances and Applications 2. Amsterdam, the Netherlands: Elsevier, 1992,
pp177-198.

[4] S.Carrato and S.Marsi “ parallel Structure based on Neural networks for
image compression,”Electron lett,vol.28,no.12,pp.1152-1153.

[5] Y.W.Chiang , “ Motion estimation using a neural network,”, In proc,IEEE
Int.symp circuitsand systems,1990,pp.2516-2519.

[6] G.W.Cottrell ,P.Munro and D.Zipser,”Image compression by
backpropagation: An example of extensional programming.”in models of
cognition:AReview of Cognition Science ,N.E.Sharky,Ed
Norwood,Ablex,1989.

[7] S.H.Courellis.”An artificial Neural Network for motion detection and speed
estimation”,in proc,Int.Joint Conf.Neural Networks.1990,pp.407-421

[8] W.C.Feng,”Real-Time neuro processor for adaptive image
compressionbased upon frequency sensitive learning” in proc, Joint
Conf.Neural Networks. 1991,pp.429

[9] E.Gelenbe ,”stability of the random neural network model”,neural
Comput,vol2,no.2,pp.239-247,1990.

[10] E.Gelenbe and M.Sungur,”Image Compression with the random neural
network”,presented at the .Int conference.Artificial neural networks, the
Netherlands,1994.

[11] R.M .Gray ,”Vector Quantization”,IEEE Acoust.,Speech,Signal Processing
Mag.,vol1,no.2,pp.4-29.

[12] R.Kohno,”Image compression using a neural network with learning
capability of variable function of the neural unit.,” in visual communication
and image processing:SPIE,1990,pp.69-75.

[13] Sikora, T.,“MPEG digital video-coding standards”, Signal Processing
Magazine, IEEE Volume 14, Issue 5, Sept. 1997 Page(s):82 - 100

[14] Pao-Chi Chang; Ta-Te Lu,“A scalable video compression technique based
on wavelet transform and MPEG coding”,Consumer Electronics, IEEE
Transactions on Volume 45, Issue 3, Aug. 1999 Page(s):788 - 793

 [15] Dapeng Wu; Hou, Y.T.; Wenwu Zhu; Hung-Ju Lee; Tihao Chiang; Ya-Qin
 Zhang; Chao, H.J.; “On end-to-end architecture for transporting MPEG-4

video over the Internet”,Circuits and Systems for Video Technology, IEEE
Transactions on Volume 10, Issue 6, Sept. 2000 Page(s):923 - 941

 79

 [16] R.Schäfer and T.Sikora, “Digital Video Coding Standards and Their Role in
Video Communications,” in Proceedings of the IEEE, vol. 83, 1995, pp.
907-923.

 [17] L.Chiariglione, “MPEG and Multimedia Communications,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 5-18, Feb.
1997.

 [18] T.Sikora, “The MPEG-4 Video Standard Verification Model,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 19-31, Feb.
1997.

 [19] T.Sikora, “MPEG-4 Very Low Bit Rate Video,” in Proc. IEEE ISCAS
Conference, Hong Kong, June 1997.

 [20] In, J.; Shirani, S.; Kossentini, F.;”JPEG compliant efficient progressive
image coding”,Acoustics, Speech, and Signal Processing, 1998. ICASSP
'98. Proceedings of the 1998 IEEE International Conference on Volume 5,
12-15 May 1998 Page(s):2633 - 2636 vol.

 [21] Rao, K.R.; Huh, Y. “JPEG 2000”,Video/Image Processing and Multimedia
Communications 4th EURASIP-IEEE Region 8 International Symposium
on VIPromCom 16-19 June 2002 Page(s):1 – 6

 [22] Leu-Shing Lan; Reed, I.S. “An improved JPEG image coder using the
adaptive fast approximate Karhunen-Loeve transform (AKLT)” Speech,
Image Processing and Neural Networks, 1994. Proceedings, ISSIPNN '94.,
1994 International Symposium on 13-16 April 1994 Page(s):160 - 163 vol.1

 [23] Wallace, G.K,”The JPEG still picture compression standard”,
 Consumer Electronics, IEEE Transactions of Volume 38, Issue 1, Feb.
1992 Page(s):xviii - xxxiv

 [24] Lakhani, G.” Modified JPEG Huffman coding” ,Image Processing, IEEE
 Transactions on Volume 12, Issue 2, Feb. 2003 Page(s):159 - 169

 [25] S.Wu and A.Gersho, “Rate-constrained picture-adaptive quantization for
JPEG baseline coders,” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, vol. 5, pp. 389-392, Apr. 1993.

 [26] A.Watson, “DCT quantization matrices visually optimized for individual
images,” Proc. SPIE Human Vision, Visual Processing, and Digital Display
IV, 1993.

 [27] M.Orchard and K.Ramchandran, “An investigation of wavelet-based image
coding using an entropy-constrained framework,” Proc. IEEE Data
Compression Conf., pp. 341-350, Mar. 1994.

 [28] www.ph.tn.tudelft.nl/Courses/FIP/frames/fip.html
 [29] www.faqs.org/faqs/jpeg-faq/part1/

 [30] www.debugmode.com/imagecmp/
 [31] www.acm.org/crossroads/xrds6-3/sahaimgcoding.html
 [32] www.faqs.org/faqs/mpeg-faq/part1/
 [33] www.autosophy.com/videcomp.htm

 [34] www.ee.bgu.ac.il/~greg/graphics/compress.html
 [35] pascalzone.amirmelamed.co.il/Graphics/JPEG/JPEG.htm
 [36] telin.rug.ac.be/~philips/elis/philips/imagecompression.shtml

 80

 APPENDIX

 MATLAB CODES

Functions used for Single-structure Neural Network compression:

• mynewff-Creates a feedforward Neural Network
• mysim-Simulates the Network and returns the output.

Functions used for proposed architecture:

• directsim-Used for the direct simulation of frames.
• retrain -Used for retraining of frames at regular intervals.
• motion-Used for motion detection between frames.

Functions both common to Neural Network and proposed architecture:

• Image_to_blocks-Breaks up the image of UxV size into zxz blocks and changes the
Dimensions.

• reconstruct- Performs inverse of image_to_block operation.

Script which executes all the three cases.

• Compute.

Test Images

 Lena.tiff and a set of 98 frames of a motion picture named hotel.seq1….98

 81

 Vita

 Prem Kovvuri was born in Tanuku, INDIA. He graduated from Helapuri

Junior College, as Juniorate in 1996 .In Fall 1997 he began studies in

Electrical/Electronics Engineering at Osmania University,Hyderabad and graduated

with a Bachelor of Engineering degree in August 2001.In the fall of 2001 he came to

the University of New Orleans to pursue graduate studies in the Electrical

Engineering Department. He worked as a Teaching Assistant in the Department of

Electrical Engineering.

	Investigation of Different Video Compression Schemes Using Neural Networks
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 IMAGE COMPRESSION AND TECHNIQUES
	CHAPTER 3 IMAGE/VIDEO COMPRESSION USING JPEG/MPEG STANDARD
	CHAPTER 4 NEURAL NETWORKS
	CHAPTER 5 IMAGE/VIDEO COMPRESSION USING NEURAL NETWORKS
	CHAPTER 6 RESULTS
	CHAPTER 7 DISCUSSIONS AND CONCLUSIONS
	REFERENCES

