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ABSTRACT

Image/Video compression has great significance in thereomication of motion
pictures and still images. The need for compressiondsadted in the development of
various techniques including transform coding, vector quardizatnd neural networks.
In this thesis neural network based methods are investigatachieve good compression
ratios while maintaining the image quality. Parts of thiestigation include motion
detection, and weight retraining. An adaptive technique EHayad to improve the video
frame quality for a given compression ratio by frequenpdating the weights obtained
from training. More specifically, weight retraining is perhed only when the error
exceeds a given threshold value. Image quality is medsinjectively, using the peak
signal-to-noise ratio versus performance measure.

Results show the improved performance of the proposéidenture compared to
existing approaches. The proposed method is implemenMAThAB and the results

obtained such as compression ratio versus signal-g&-mnaiio are pr
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CHAPTER 1

INTRODUCTION

Image processing is an important part of modern commuonmsatin general,
image processing algorithms require large amounts of meshorage. As a result,
the processing time is considerable for processingratljes, and even more
significant for motion pictures. Thus, the need forgelaideo compression arises in
the modern world of communications in order to getddx&red processing times.
Various image/video compression techniques have been devédopastiice the
amount of data that needs to be processed or transniitisdesults in reduced
processing time to achieve the desired targets. Therearkchallenges faced
while developing any image compression technique. Two maifeobak include
increasing the compression ratio by representing an imd@ge small number of
bits while maintaining an acceptable quality, and increasiagtocessing speed to
meet the real-time application requirements withommmmising the image quality.
The growing world of communications is continuously insne@ the demand for
efficient and effective compression schemes[1]-[36]. Tthes development of
image/video compression algorithms is still needed.

Modern digital technology has made it possible to maniputailti-
dimensional signals with systems ranging from sinclidéal circuits to advanced
parallel computers. The manipulation can be divided mteet categories namely
image processing, image analysis and image understahuimgr case we restrict the

focus onto the fundamental concepts of image processiaduither restrict the



study to two-dimensional (2D) image processing as mos$ieoddncepts and
techniques described can be easily extended to three odimuesions.

An image defined in the “real world” can be considered fasetion of two
real variables, sayg(y) with ‘a’ being the amplitude (e.g brightness) of timage at
the real coordinate positior, (y) the amplitudes of a given image will almost always
be either real numbers or integer numbers. The iattesually a result of a
guantization process that converts a continuous rangeb@ayeen 0 and 100%) to a
discrete number of levels [34]. In certain image-fogrpnocesses, however, the
signal may involve photon counting which implies thatahglitude would be
inherently quantized. In other image forming procedures, suctagsetic resonance
imaging, the direct physical measurement yields a conmlenber in the form of a
real magnitude and a real phase. In this thesis, weanikider amplitudes as reals or
integers.

A digital imagea [m, n] described in 2D discrete space is derived from an
analog image(x, y) in a 2D continuous space througkaapling process that is
frequently referred to as digitization. The 2D continumusgea(x,y) is divided into
N rows andM columns. The intersection of a row and a column is termpdk@. The
value assigned to the integer coordinateg]with {m=0,1,2,.. M-1} and
{n=0,1,2,..N-1} is a[m,n]. In fact, in most casexx,y)--which we might consider to
be the physical signal that impinges on the faceai gensor--is actually a function
of many variables including depth (color (1), and time {). In this work, we will

consider the case of 2D, monochromatic, static images.



CHAPTER 2

IMAGE COMPRESSION AND TECHNIQUES

Image compression attempts to minimize the sizering®f bytes of a
graphics file without degrading the quality of the image taraacceptable level. The
reduction in file size allows more images to be stoneal given amount of disk or
memory space. It also reduces the time required for isnaglee sent over the
Internet or downloaded from Web pages [34], [36].

The following example illustrates the requirements flaage storage and
transmission time. An image of 1024 pixel024 pixelx 24 bit without compression
would require 3MB of storage and 7 minutes for transmissiblizing a high speed,
64 Kbit/s, ISDN line. If the image is compressed at a 10mpeession ratio, the
storage requirement is reduced to 300KB and the transmigsierops to under 6
seconds. Seven 1 MB images can be compressed and neshsdea floppy disk in
less time than it takes to send one of the origina,fikacompressed, over a network.
International standards are more portable comparedfwigtary high-end solutions.
Currently, JPEG is possibly the most popular industigdsrd technique for the

compression of continuous tone images [20].

In this chapter, several compression schemes ingudssless and lossy

compression methods will be discussed, as a backgrouhd psdposed scheme.



2 Types of Compression
2.1 Lossless Compression

In lossless compression the compression ratio isvela small since, as the
name “lossless” implies, the original data should loemstructed without any loss. In
other words, lossless coding guaranties that the decoseprénage is absolutely
identical to the image before compression. This is @orant requirement for some
application domains, e.g. medial imaging, where not only tigtlity is in demand,
but unaltered archiving is a legal requirement. Lossletsigues can also used for
the compression of other data types where loss ofm@bon is not acceptable, e.g.

text documents and program executables [34]-[36].

Lossless Coding Techniques:

. Run length encoding.

. Huffman encoding.

. Entropy coding(Lempel/Zev)
. Area coding.

2.1.1 Run length encoding

Run length encoding is a simple method for compressiseaiential data. In
many data streams, consecutive single tokens are ideRugalength encoding
checks the stream for this fact and inserts a spe&ahteach time a chain of more
than two equal input tokens are found [36]. This special inpusesithe decoder to

insert the particular tokemtimes into output stream.



Following is an example of this method:

Clock Input Coder Decoder
Output Output
1 A
2 B A
3 C B A
4 C (0] B
5 C ] %]
6 C ] %]
7 C ] %]
8 D %5C %]
9 E D CCcccC
10 0] E D
11 0] (0] E

In the example, there are 9 tokens going into the ¢chdéjust 7 are going
out. The effectivity of run length encoding is a functaf the number of equal tokens
in a row in relation to the total number of input tokensis relation is very high in
two tone images of the type used for facsimile. Effetstidegrades when the input
does not contain too many equal tokens. With a rising dewisitfjormation, the
likelihood of two following tokens being the same doesssignificantly, as there is
always some noise distortion in the input. Run lengthngpi easily implemented,
either in software or in hardware. It is fast andywsell verifiable, but its

compression ability is very limited [30]-[36].



2.1.2 Huffman coding

This algorithm is based on the fact that in an inputstreertain tokens occur
more often than others. Based on this knowledge, theithigobuilds up a weighted
binary tree according to their rate of occurrence. Edmment of this tree is assigned
a new code word, whereat the length of the code watétexymined by its position in
the tree [29]. Therefore, the token which is most fraj@ed becomes the root of the
tree is assigned the shortest code. Each less comlemment is assigned a longer
code word. The least frequent element is assigned avaardewhich may be twice as

long as the input token.

The compression ratio achieved by Huffman encoding urlatetedata is
1:2. On slightly correlated data, as on images, the aga@m rate is much higher,
the absolute maximum being defined by the size of a simgle token and the size
of the shortest possible output token (max. compressitoken size[bits]/2[bits]).
While standard palletized images with a limit of 256 cotoes/ be compressed by
1:4 if they use only one color, more typical images gigelts in the range of 1:1.2

to 1:2.5.

2.1.3 Entropy coding

The implementation of an entropy coder follows witlvide range of
modified Lempel/Ziv codings. These algorithms all haee@mmon way of working.
The coder and the decoder both build up an equivalent digtiohanetasymbols,
each of which represents a whole sequence of input tokensequence is repeated

after a symbol was found for it, then only the symbaldmees part of the coded data



and the sequence of tokens referenced by the symbol bepames the decoded
data later. As the dictionary is build up based on the, dtas not necessary to put it
into the coded data, as it is with the tables in aidaff coder. This method becomes
very efficient on virtually random data. The averagengression on text and
program data is about 1:2, the ratio on image data cames 1:8 on the average GIF
image. A high level of input noise degrades the effigiesagnificantly. Entropy
coders are a little tricky to implement, as theeafew tables, all growing while the

algorithm runs [28]-[36].

2.1.4 Area coding

Area coding is an enhanced form of run length coding,atéflg the two
dimensional character of images. This is a signifieavance over the other lossless
methods. The algorithms for area coding try to find repikar regions with the same
characteristics. These regions are coded in a deseriptitn as an Element with two
points and a certain structure. The whole input imageédibs described in this form

to allow lossless decoding.

The possible performance of this coding method is limtedtly by the very
high complexity of the task of finding largest areas i same characteristics.
Practical implementations use recursive algorithmsdducing the whole area to
equal sized subrectangles until a rectangle fultiésdriteria defined as having the
same characteristic for every pixel. This type of cgdehighly effective but it bears

the problem of a nonlinear method, which cannot be impisden hardware.



Therefore, the performance in terms of compressioa t§ not competitive, although

the compression ratio is.

2.2 Lossy Compression

Lossy techniques cause image quality degradation in each ssiopre
decompression step. Careful consideration of the humaalyisrception ensures
that the degradation is often unrecognizable, though tpsmndis on the selected
compression ratio. In general, lossy techniques providgréater compression ratios

than lossless techniques [28]-[36].

In most of the applications we have no need in thetexstoration of stored
image. This fact can help to make the storage moretiefeand this way we get to

lossy compression methods. Lossy image coding techniquesihp have three

components:
. Image modelling which defines the transformation to be applied to thgema
. Parameter quantization where the data generated by the transformation is

guantized to reduce the amount of information.
. Encoding, where a code is generated by associating appropriate cods o

the raw data produced by the quantizer.

Each of these operations are responsible for the casipre Image modelling is
aimed at the exploitation of statistical charactessof the image (i.e. high
correlation, redundancy). Examples are transform codeignods, in which the data

is represented in a different domain (for exampleUescy in the case of the Fourier



Transform [FT], the Discrete Cosine Transform [DCRg Kahrunen-Loewe
Transform [KLT], and so on), where a reduced number efficients contains most
of the original information. In many cases this firstgghdoes not result in any loss
of information [30]-[33]. The aim of quantization is to redube amount of data used
to represent the information within the new domain. Qaatitin is not a reversible
operation: therefore, it belongs to the 'lossy' methBdsoding is usually error free.

It optimizes the representation of the informatioeling, sometimes, to further

reduce the bit rate), and may introduce some error detexbdes.

In the following sections, reviews of the most impottaoding schemes for lossy
compression are discussed. Some methods are described itanonical form
(transform coding, region based approximations, fractding, wavelets, hybrid

methods).

Lossy Coding Techniques:

Transform coding(DCT/Wavelet/Gabor)

. Vector quantization.

. Segmentation and approximation methods.

. Spline approximation methods(Bilinear Interpolation/Regzdaion)
. Fractal Coding.

2.2.1 Transform Coding (DCT/Wavelets/Gabor)
A general transform coding scheme involves subdividinidh image into
smallernxn blocks and performing @nitary transform on each subimage. A unitary

transform is a reversible linear transform whose Ketescribes a set of complete,



orthonormal discrete basic functions. The goal of thesform is to decorrelate the
original signal, and this decorrelation generally resualthe signal energy being
redistributed among only a small set of transform ddefits. In this way, many
coefficients may be discarded after quantization and fwiencoding [35]. Also,
visually lossless compression can be achieved by incdnmpgptae HVS contrast

sensitivity function in the quantization of the coménts.

Transform coding can be generalized into four stages:

. Image subdivision

. Image transformation

. Coefficient quantization
. Huffman encoding.

For a transform coding scheme, logical modeling is doteo steps:
Segmentation, in which the image is subdivided in bidsienal vectors (possibly of
different sizes) and a transformation step, in whiehdtosen transform (e.g. KLT,

DCT, and Hadamard) is applied.

Quantization can be performed in several ways. Mass@tal approach is to use
'zonal coding’, consisting in the scalar quantizatioie coefficients belonging to a
predefined area (with a fixed bit allocation), and ‘thr&khboding’, consisting in the
choice of the coefficients of each block characterizg an absolute value exceeding
a predefined threshold [36]. Another way to achieve highepoession factors is to
apply a vector quantization scheme to the transformefficerts. The same type of

encoding is used for each coding method. In most casiés&h coding can be used

10



successfully. The JPEG and MPEG standards are exaafgemdards based on

transform coding.

2.2.2 Vector Quantization

A vector quantizer can be defined as a transform opefdtom aK-
dimensional Euclidean spaB¥ to a finite subseX in R made up oN vectors. This
subsetX becomes the vector codebook. The choice of the settifrgas of major
importance [11]. The level of distortion due to the $fammationT is generally
computed as the most significant error (MSE) betweerirgal" vecto in R and
the corresponding vectar = T(x) in X. This error should be such as to minimize the

Euclidean distancd.

An optimum scalar quantiser was proposed by Lloyd and Maxge, Buzo and
Gray extended it to the case of a vector quantiseralfogithm they proposed is
derived from the KNN cauterization method, and is peréatoy iterating the

following basic operations:

« Subdivide the training set infé groups (called 'partitions’ or 'Voronoi regions’),
which are associated with thecodebook letters, according to a minimum
distance criterion.

« The centroids of the Voronoi regions become the updatgebook vectors.

« Compute the average distortion: if the percent reduatidine distortion (as

compared with the previous step) is below a certairstimid, then stop.

11



Once the codebook has been designed, the coding praopssconsists in the
application of thel' operator to the vectors of the original image. In pracgach
group ofn pixels will be coded as an address in the vector codebuatkis, as a

number from 1 td\.

The LBG algorithm for the design of a vector codebdakags reaches a local
minimum for the distortion function. A careful anat/sf the LBG algorithm's
behaviour allows to detect two critical points: the cbkaf the starting codebook and
the uniformity of the Voronoi regions' dimensions [11]r Bas reason some
algorithms have been designed that give better performaimgalization of LBG
algorithm with random choice of the starting codeboakiires a large number of
iterations before reaching an acceptable amount of tisstoff the starting point
leads to a local minimum solution, the relative ging criterion prevents further

optimisation steps [11].

2.2.3 Segmentation and approximation methods

With segmentation and approximation coding methods, thgens modelled
as a mosaic of regions, each one characterized bifi@ent degree of uniformity of
its pixels with respect to a certain feature (e.g. geegl] texture); each region will
have some parameters related to the characterizihgdeassociated with it. The
operations of finding a suitable segmentation and amapti set of approximating
parameters are highly correlated, since the segmentdtjornithm must take into
account the error produced by the reconstruction regmoar@er to limit this value

within determined bounds). These two operations constheate®gical modelling for

12



this coding scheme; quantization and encoding are syrdegendent on the

statistical characteristics of the parameters ofapgoximation.

Examples arg@olynomial approximation and texture approximation. For
polynomial approximation regions are reconstructed by megpslynomial
functions in ky); the task of the encoder is to find the optimum ficehts. In
texture approximation, regions are filled by synthesiaiggrameterized texture
based on some model (e.g. fractals, statistical metia&ov Random Fields). In
polynomial approximations the problem of finding optimurefécients is quite
simple (it is possible to use least squares approximatisimilar exact

formulations), for texture based techniques this problemngptex [28]-[36].

2.2.4 Spline approximation methods (Bilinear Interpolation/Rgularisation)
These methodologies fall in the more general categbimage
reconstruction or sparse data interpolation. The lzasicept is to interpolate data
from a set of points coming from original pixel data dcalated in order to match
some error criteria. The problem of interpolating ao$esparse data is generally ill
posed, so some regularization algorithm must be adoptadén to obtain a unique
solution. In order to apply this kind of technique to imagerapda good interpolant
must be used to match visual criteria. Spline interpaigtiovides a good visual
interpolant, which requires a great computational effditinear interpolation is easy
to implement, while maintaining a good visual quality. Regzddion involves the
minimisation of an energy function in order to obtaminterpolant which presents

some smoothness constraints; it is combined with notiregties along edges in
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order to preserve contour quality during reconstruction. aépell interpolants
computations require the solution of very large linepragion sets, even if related to
very sparse matrices. This leads to the use of recuidiviios such as relaxation or

to the use of gradient descent algorithm.

The use of an interpolation algorithm for image codimiptégues such as two
source decomposition, where the image is modelled asithef two sources; one is
the stationary part (it can be considered relatedetdoth frequency content), the
second is the residual content coming from non-statiesmauch as edges. The first
source is coded by means of a prediction scheme théecane of the previously
described interpolants. The second source (the residualjeceoded trough the use
of a classical coding method. Two source decomposgianvery effective coding
scheme as far as it shows a low tile effect thigices all block coding techniques

when compression factors become higher [28]-[36].

2.2.5 Fractal coding (texture synthesis, iterated functiosystem [IFS])

Fractal parameters, including fractal dimension, lagtypand others have
the potential to provide efficient methods of describing imagea highly compact
fashion for both intra and inter frame applicationsickal methods have been
developed for both noisy and noise free coding methaaggés of natural scenes are
used because of the fractal structure of the scenertpbut results are reported to be

applicable to a variety of binary, monochrome, and codoenes.

The use of "lterated Function System" for image cosgmo@ and synthesis

using sets of affine transformations developed for angivege, and a principal
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result known as the "collage theorem", intraframe@ssions in excess of 10,000:1
and interframe compression in excess of 1,000,000:1 wevegedpThe collage
theorem states that if an image can be covered (appatedpwith compressed

affine transformations of itself, then the image carfdpproximately) reconstructed

by computing the attractor of this set of affine transations.

This convergence was extremely slow, about 100 hours, wdsisted by a
person and was presented as an illustration of a smgrussibility, not as a
commercial reality. To develop a product that would funrctn a commercial
environment the Iterated Systems had developed the pateotetuigue called the
'Fractal Transform'. The development allowed imagé®toeduced to a set of fractal
equations based on the image being processed, rathertibge &brary of pre-
calculated, reference, fractal patterns [32]-[34]. Imagapression algorithms which
are noise free have been reported to be developed fretnahsform for real time

automatic image compression at ratios between 10:1 and 100:1

2.3 Efficiency and quality of different lossy compression témiques
The performances of lossy picture coding algorithms ardlygaluated on the

basis of two parameters:

. The compression factor (or analogously the bit ratd) an

. The distortion produced on the reconstruction.

The first is an objective parameter, while the secormhgty depends on the usage of

the coded image. A rough evaluation of the performaotasnethod can be made
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by considering an objective measure of the error, like MSENR. For lossy
methods described above, average compression ratios &haaMs obtainable are

presented in the following table:

Method VQ DCT- | DCT-VQ AP SplineTSD Fractals
SQ
BitRate(bpp) | 0.8-0.4 | 0.8-0.3 0.3-0.08 0.3-0.1 0.4-0.1 0.8-0,0
SNR(db) 36-30 36-31 30-25 Image 36-32 Image
dependent dependent

Table 1 Comparison of Compression ratios and SNR values

2.3.1 Comparison of Different Compression Methods

During the last years, some standardisation proceases! lon transform
coding, such as JPEG, have been started. Performansgshod standard are quite
good if compression factors are maintained under a ghveshold (about 20 times).
Over this threshold, artifacts become visible in #@nstruction and tile effect
affects seriously the images decoded, due to quantizatectetf the DCT
coefficients. There are two advantages: first, its¢agdard, and second, dedicated
hardware implementations exist. For applications whighire higher compression
factors with some minor loss of accuracy when compargtdIREG, different
technigues should be selected such as wavelets codingnar igptrpolation,
followed by an efficient entropy encoder such as Huffnaamhmetic coding or
vector quantization. Some of these coding schemes &ablsuior progressive
reconstruction .This property can be exploited by appdincatsuch as coding of
images in a database, for previewing purposes or for tragismign a limited

bandwidth channel.
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CHAPTER 3

IMAGE/VIDEO COMPRESSION USING JPEG/MPEG STANDARD

Introduction to JPEG

JPEG stands for “Joint Photographic Experts Group” itgsoaip of people
(experts) working towards establishing the internatiorgitalivideo compression
standard for continuous-tone (multi-level) still imagédsch include grayscale and
color. JPEG is collaboration between ISO and CCldmmittees. For single-frame
image compression, the industry standard with the grestesptance is JPEG it
consists of a minimum implementation (called a basedystem) which all
implementations are required to support, and variousigkies for specific
applications [20]. JPEG compression algorithms in softdcara a part of a graphics
illustration or video editing packag@”?EG compression algorithms involves
eliminating redundant data, the amount of loss is deternbpélde compression
ratio, typically about 16:1 with no visible degradatiBar more compression where

noticeable degradation is acceptable compressims k&tupto 100:1 can be employed.

3.1 Need for JPEG Compression

For modern applications like the internet, developmenid&o CD'’s, video
conferencing etc all these applications use graphics and satensively and
consumes very large amount of physical storage. Examplguality full motion
video requires 720kb per frame displayed at 30 frames perdsezget the motion
effect which means one second of motion consumes 22MBdge, so a standard

CD-ROM with 648 MB could only provide 30 seconds of video.
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JPEG provides a compression method that is capable of essiy color or
gray scale continuous tone images of real world subjett &s photograph, still
video or any complex graphics that resemble nature subj&tEss does not operate
on a single algorithm it is built up by various compr@stechniques which serves as
its tools. JPEG allows various configurations of thesestdepending on the needs of
the user. There are two scheme of compression in JRHGOne is a lossy scheme
which means compressed image when decompressed badkeisaime. The other
is a lossless scheme which not loses any of the imdgewth@n the compressed
image is decompressed back. That is the image lookseKaettame as the original
one. But the compression achieved by lossless schamehsgh as lossy, usually

about 2:1.

JPEG is developed specifically to discard information tatiuuman eye
cannot see. Slight changes in color are not perceivddwtdie human eye, while
slight changes in intensity are. Due to this fact wesesnthat JPEG does not
compress gray scale images as well as colored. usbally &:1, whereas a colored
photographic-quality image maybe compressed from 20:1 to 25:1 withou
experiencing any noticeable degradation in quality. The ékeethold at which
errors become visible also depend on the viewing conditibime smaller the size of
an individual pixel, the harder it is to see an error. $mre@are more visible on a
monitor 70 or so dots/inch than on a high quality colortpunof 300 or more

dots/inch.
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Thus, most multimedia systems use compression technigesidle
graphics, audio and video data streams and JPEG formmpbetant compression

standard with various compression techniques as buildingdlock

3.2 JPEG Compression and Decompression flow:
The picture below shows the basic flow diagram d?B@ algorithm, it tells

about the compression and decompression flow in step$42D]-

Input Picture Picture Entropy
data ™ Transformations [®] Processing > Quantization > Encoding
T A A
Color Space
Transformation Lossy or y
Lossless C d
- DCT ompresse
DownSampling Coding Data
Methods
MCU
Decompressed
Data
A y y y
Picture Picture P
Transformations Processing N DeQuantization I« Decoding [®

Figure 1. JPEG Compression and Decompression flow

Baseline Lossy JPEG
Most currently available JPEG hardware and softwareleamohly the Baseline
Lossy JPEG (or sequential DCT-based JPEG). The folpare the processes

discussed in the flow of the algorithm steps:
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Stepl: Picture Transformation
The following activities take place in the picture transfation step:

ColorSpace Transformation

This step transforms the image into a suitable colorspadés not necessary
for the proposed scheme because of the gray scalesnfagecolored images the
RGB is transformed into a luminance/chrominance coloeespdaCbCr, YUV etc.).
The luminance component is a gray scale while the ttleechrominance
components are color information, after separatingrntiagie into these three
components, we will remove more information from thed@ninance (colored)
components than the luminance component(optional sk step increase the
compression ratio as it removes unnecessary informatithe chrominance

components without the human eye detecting the diffetenc

Downsample Color Components

Downsampling reduces the image size by one-half ctlurek It is done by
dividing the pixels of each component into groups aneé&zh group we find their
average value, and use only one pixel of that average teatepresent that whole
group. Downsampling is done only to the chrominance coemsnreducing them

by half horizontally and half vertically or no change the vertical.

Minimum Coded Unit (MCU)

An image can be composed of several components, ind{®@Bspace we

have RED, GREEN and BLUE components and each compaen divided into
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data units. In this baseline lossy mode, each data untde up of a block of 8*8
pixels. If we processed these data units one componamntebgomponent at a time to
display the whole image, we call it non-interleaweade. Frame buffer is required in
non-interleaved mode to store all the pixel's valuesy@nyecomponent except for the
very last one. Together with the values storedenfithme buffer and the pixel's
values of the last component, we will be able to datexithe actual value of a

specific pixel.

Interleaving eliminates the use of frame buffer. To dg@n image, using
interleaved mode, we take a few blocks of data units &ach component and
display them immediately. We don't wait for the whplcture to be formed in the
frame buffer. The picture is slowly built up as thedil® are processed. Interleaved
data units of different components are combined into MCal|] domponents have
the same resolution, an MCU consists of exactlydata unit for each component.
The decoder displays the image MCU by MCU.For a seblof components with
different resolutions, the MCU is defined interms efjinency of the blocks.
According to the JPEG standard, up to four componentsecanded using
interleaved mode. Each MCU consists of at most tem wats. Within the image,
some components can be encoded in the interleaved mddleers in the non-

interleaved mode.
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Step 2: Picture Processing
Discrete Cosine Transformation (DCT)

In this stage the uncompressed image samples are groupeatatunits of
8*8 pixels and passed to the encoder according to the order definieed MCU.
Then each of the 8*8 pixels' values go through a transfasmagrformed by DCT,

using an explicit formula written in terms of the @ixvaluesf (x,y) and the

frequency domain transform coefficiergx, y) .

16 16

F(u,v)= %CUCJX:OZ:O (y, x)co{w} co{w} (3.1)

1
2

Where c, C, = % for u, v =0, otherwiseC,,C, =1

The output of the transformation will result in timean value, the DC coefficient is
located on the top left corner of the data unit laigdher frequency coefficients will be
further away from this DC coefficient. Higher vegl frequencies will be represented
by higher row numbers where higher horizontal fexgpies will be represented by

higher column numbers [25].

For reconstruction of the image, the inverse DQmfda is used:

(y,x) =% "7 cCF (u,v)co{ (lezl)u}co{ (2y +1)V} (3.2)

x=0 y=0 YV 16

NP

Where C, C, = % for u, v =0; otherwiseC,,C, =1

when forward DCT is being applied for an image &e see a great reduction on the

size of the data. The transformation will resultriany zero coefficients and greater
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concentration of non-zero values on the upper lefterashthe data units. When an
inverse DCT is applied to the frequency domain we will gek blae initial picture

but not a perfect exact reconstruction, as precisiorbeilost during the rounding off
of DCT coefficients from real to integer values (Hane thing happens when inverse

DCT is applied).

Therefore if Forward Discrete Cosine TransformatieCT), as well as the
Inverse Discrete Cosine Transformation (IDCT), could¢dleulated without loss in
precision then we will be able to reproduce exactly theesdata unit that we started

with. This is why DCT is considered a lossy process.

Step 3: Quantization
Quantization is used to further reduce the values of DETficents in order
to produce more zero coefficients. In Baseline LossYGIBE stepsize is varied

according to the coefficient location and which colmmponent is encoded [26].

The equation for quantization is:

Clv.u)= [F(v, u()?((?J(\\/,)U) 12)] (3.3)

WhereC(v,u), is actually the quantized coefficieRiy,u) is the DCT
frequency coefficient, anQ(v,u) is the quantizer stepsize for the pixely in the
block. The sign indicates a plus for a positive D&bEfficeint,F(v,u), and a minus

for a negative DCT coefficienE(v,u).

The inverse quantizer equation is given as:
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F(u,v) = C(u,v)0Q(u,v) (3.4)
Quantization is also a lossy process. In quantiamgnage, the quality factor
set, will have direct effect on the amount of Quaation performed. If too much
guantization is done to the image, it will causefihal quantized image to look
"blocky". Similarly, if too little quantization iperformed, it will result in coding

useless data (or noise) of the image.

Step 4: Entropy Encoding
Coding Model

Before actual entropy is performed to the quantR€d coefficients, the
coefficients are rearranged into a one dimensiamaly using a zig-zag pattern by the
code model, with the lowest frequency first anchesf frequency last. The zig-zag
pattern is used to increase the consecutive rumsrof for RLE. During this stage

the quantized DC coefficient is treated separdtely the AC coefficient

Differential Pulse Code Modulation (DPCM)

The DC coefficient determines the basic color déata unit and this value
varies slightly between successive blocks. Thengpdf the DC coefficient is done
by Differential Pulse Code Modulation (DPCM), whicbdes the differential
between the quantized DC coefficient of the curbdmtk and the quantized DC

coefficient of the previous block. The formula tbe DPCM code:

DPCMcode= C(00), —~C(00),, (3.5)

Where jrepresents the number of the quantized block h@miogessed. The

inverse DPCM returns the current DC coefficienteadf the quantized block being

24



processed by summing the current DPCM code with the preiGusoefficient

value of the previous quantized block.

C(00), = DPCMcode, +C (00) (3.6)

The DPCM code is represented by the size of the DPGM fadlowed by the

significant value of the DPCM code [20]-[27].

RLE
The quantized AC coefficients usually contain a numbeoagecutive runs

of zeros. Therefore RLE is used to encode these zaresval

Huffman \ Arithmetic Encoding

Huffman or Arithmetic encoding is used to transformrbe-zero AC-
coefficients and the DC coefficients into a speateplresentation to compress the
data even more, the number of bits required depends onéfeent's value. A
non-zero AC-coefficient will be represented betweéo 10 bits. For the
representation of DC-coefficients, a higher resolutibh bit to a maximum of 11

bits is used.
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3.3JPEG Applications

Baseline Lossy JPEG

. More for use of storing photograph-like images and natticaéistworks.

. Due to its great compression efficiency, and permit #se ef exchanging
images with widely varying display hardware, it is widaged in the Usenet

and World Wide Web.

Progressive JPEG

. The advantage of Progressive JPEG is that it allowseviesee a rough idea
of what the actual image looks like and gradually imprakegjuality.
Progressive JPEG is slowly gaining popularity in the WorldéWveb
because of its advantage, and more and more softwastaating to support it

including some WWW browser and other programs.

Motion JPEG (MPEG)

. Usually used in professional video application areas ssifNoa Linear
Editing Systems (NLE), Digital Disk Recorder (DDR) anédia Servers.
Here video compression is used to reduce implementat&n co

. Lossless Motion JPEG is used in areas where video qisatifyprimary
importance such as Digital video compositing, 3D animaditth Medical

video and photography.
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3.4 Introduction to MPEG

MPEG stands for “Moving Pictures Exerts Group”, it is augr of people
getting together under 1SO (International Standard Orgami)ab generate
standards for digital video (sequence of images in timg)padio compression [13].

The compression algorithms developed depends on the individualfacturers.

MPEG defines a bit stream for compressed video and audmipgd to fit a
band width of 1.5Mbps necessary for audio CD’s and DATIe standard is divided
into three parts video, audio and systems. The systems paed to integrate the
audio and video streams with proper time stamping to atevwsynchronization of
the two. MPEG involves in encoding only key frames thraihghJPEG algorithm
(described above) and estimates the motion changesdretivese key frames. Since
minimal information is sent between every four eefframes, a significant reduction
in bits required to describe the image results. Consegueampression ratios above
100:1 are common. The MPEG encoder is very complex aoeph very heavy
computational load for motion estimation. Decoding igmsimpler and can be done
by desktop CPUs or with low cost decoder chips. The MPEGdam makes a
prediction about an image and transforms and encodesffgience between the
prediction and the image. The prediction accounts forament within an image by
using motion estimation [13], [14]. A given image's pradit may be based on
future images as well as past ones, the encoder muderearages to put reference
images before the predicted ones. The decoder puts dgesnback into display
sequence. It takes in the order of 1.1-1.5 billion operapensecond for real-time

MPEG encoding.
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3.5 MPEG Compression Standards

There are five MPEG standards that are currently beind)arse also under
further development. Each compression standard is dedigised on a specific

application and bit rate [13]-[19].

MPEG-1(Designed for upto 1.5 Mbps)This standard is based on CD-ROM
applications and is popular for video on internet transohitts .mpg files, level 3 of
MPEG-1 is a popular standard for digital compression ofoakigbwn as MP3, it is

also the standard of compression for video CD.

MPEG-2 (Designed between 1.5 and 15 Mbpdghis standard is set for digital
television set top boxes and DVD compressibis based on MPEG-1, but designed
for the compression and transmission of digital brosickedevision. The most
significant enhancement from MPEG-1 is its ability tiiceently compress interlaced
video. MPEG-2 scales well to HDTV resolution and bit satdviating the need for

an MPEG-3.

MPEG-4: this standard is set for multimedia and Web comprasM®PEG-4 is
based on object-based compression, similar in natuhe tdirtual Reality Modeling
Language. Individual objects within a scene are trackedaghaand compressed
together to create an MPEGA4 file. This results in edfigient compression and is
very scalable; from low bit rates to very high. It alfbdevelopers to control objects

independently in a scene, and therefore introduces ititgnac
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MPEG-7: this standard is currently under development, it iedadls the Multimedia
Content Description Interface. The objective is to proadexmework for
multimedia content that will include information on temt manipulation, filtering
and personalization, as well as the integrity and sgoofrthe content. Contrary to
the previous MPEG standards, which described actual coMBiG-7 will

represent information about the content.

MPEG-21.: this standard is for Multimedia Framework which is undkerelopment.
MPEG-21 will attempt to describe the elements needed td aaiinfrastructure for
the delivery and consumption of multimedia content, laowl they will relate to each

other.

3.6 MPEG Comparision

All MPEG standards are back compatible meaning MPEG-1 \®@dqaence can
be packetized as MPEG-2 or MPEG-4 video. Similarly, MEEN be paketized as
MPEG-4 video sequence. The difference between a true MPE&0 and an
MPEG-4 paketized MPEG-1 video sequence is that the |deredad does not
make use of the enhanced or new features of the higinelasth Both MPEG-2 and
MPEG-4 covers a wide range of picture size and picttes end bandwidth usage,
so MPEG-2 introduced a concept calledPadfile@ Level to communicate
compatibilities among applications, example studio profilMPEG -4 is not suitable

for PDA and vice-versa[13]-[19].
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The comparison of MPEG's is given in the following &lith limitations to
MPEG-1 on Constrained Parameters Bitstream (OABEG-2 on Main Profile at

mainlevel (MP@ML) and MPEG-4 on Main Profile at Le@el

MPEG 1 2 4

Max Bit Rate (Mbps)| 1,86 15 15

Picture width(pixels) | 352/ 720 720

Picture height(pixels)| 288 576 576

Picture rate (fps) 30 30 30

Table 2: Comparison of MPEG

3.7 Work Procedure of an MPEG

An MPEG starts with a relatively low resolution videequence (possibly
decimated from the original) of about 352 by 240 frames by 3@efsés but with
original high (CD) quality audio. The color images aveverted to YUV space, and
the two chrominance channels (U and V) are decimatecefuidhl76 by 120 pixels.

The basic MPEG scheme is to predict motion frrame to frame in the temporal
direction, and then use DCT's (discrete cosine tramsfoto organize the redundancy
in the spatial directions. The DCT's are done ®& Blocks, and the motion
prediction is done in the luminance (Y) channel or1Bblocks.Given,the 3.6
block in the current frame of coding, we look for a clossch to that block in a

previous or future frame (there are backward prediction madhere later frames are
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sent first to allow interpolation between frames) [I6g DCT coefficients (of either
the actual data, or the difference between this block andldlse match) are
"quantized", which means we divide them by some value o kite off the bottom
end, many of the coefficients will then end up being zéree quantization can
change for every "macro block" (a macro block islisof Y and the corresponding
8x8's in both U and V). The results of all of this, whiaclude the DCT coefficients,
the motion vectors, and the quantization parameteétafisnan coded using fixed
tables. The DCT coefficients have a special Huffnadofetthat is "two-dimensional”
in that one code specifies a run-length of zeros amaidh-zero value that ends the
run. Also, the motion vectors and the DC DCT componar$DPCM (subtracted
from the last one) coded.

There are three types of coded frames. They arandmB. the "I" frames are called
as intra-frames, these frames are coded as a sdjgmmot using any past history.
The "P" frames are called as predicted frames whicprachcted from the most
recently reconstructed | or P frame [16], [17]. Eaclenmdolock in a P frame can
come with a vector and difference DCT coefficiemmtsd close match in the last | or
P frames, or it can just be "intra" coded (like in ktlames) if there is no good
match. Lastly, the "B" frames which are called astid@ectional frames, they are
predicted from the closest two | or P frames, orténpast and one in the future. We
search for matching blocks in those frames, and see widuidts best. The sequence
of decoded frames usually goes like:

IBBPBBPBBPBBIBBPBBPB...
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Where there are 12 frames from | to | this is based random access
requirement we need a starting point at least once &vérseconds or so. The ratio
of P's to B's is based on experience. For the decoa@riq we send the first P
before the first two B's, so the compressed data stee@siup looking like:
0xx312645...

where numbers are frame numbers and xx might bengptifiiabove is the true
starting point), or it might be the B's of frames r@l al if we are in the middle of the
stream. We have to decode the I, then decode the P, &depfithose in memory,
and then decode the two B's. We display the | whilere@lecoding the P, and
display the B's as we are decoding them, and theraglitipe P as we are decoding

the next P, and so on.

MMMMMM/

Coding Order

Figure 2. Flow of an MPEG
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CHAPTER 4

NEURAL NETWORKS

Introduction to neural networks

An Artificial Neural Network (ANN) is an informatioprocessing paradigm
that is inspired by the biological nervous systems, sat¢hebrain. The key element
of this paradigm is the structure of the informationcessing system. It is composed
of a large number of highly interconnected processing elenge@urones) working
in unison to solve specific problems. ANNSs, like peoldarn by example. An ANN
is configured for a specific application, such as pattecognition or data
classification, through a learning process. Learning irogioal systems involves
adjustments to the synaptic connections that existdeet the neurones. This is true

of ANNs as well [2]-[12].

4.1 Use of neural networks

Neural networks, with their remarkable ability to deriveaming from
complicated or imprecise data, can be used to extractnsatted detect trends that
are too complex to be noticed by either humans or otmapuater techniques. A
trained neural network can be thought of as an "expettia category of information
it has been given to analyse. This expert can then betaggovide projections given

new situations of interest.

Advantages:

. Adaptive learning: An ability to learn how to do tasks basedhe data given

for training or initial experience.
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. Self-Organisation: An ANN can create its own organsabr representation
of the information it receives during learning time.

. Real Time Operation: ANN computations may be carriedio parallel, and
special hardware devices are being designed and manufactured take
advantage of this capability.

. Fault Tolerance via Redundant Information Coding: Padgsstruction of a
network leads to the corresponding degradation of perfar@nadowever,

some network capabilities may be retained even witbmmgtwork damage.

4.2 Human and Artificial Neurons

4.2.1 How the Human Brain Learns?

In the human brain, a typical neuron collects sigfiam others through a
host of fine structures calletndrites. The neuron sends out spikes of electrical
activity through a long, thin stand known asaaan, which splits into thousands of
branches [6]. At the end of each branch, a structulexicasynapse converts the
activity from the axon into electrical effects tivatibit or excite activity from the
axon into electrical effects that inhibit or excitéiaty in the connected neurons.
When a neuron receives excitatory input that is sefiity large compared with its
inhibitory input, it sends a spike of electrical actnaiown its axon. Learning occurs
by changing the effectiveness of the synapses so thetfiience of one neuron on

another changes.
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Figure 3. Components of a neuron

Figure 4. Synapse
4.2.2 From Human Neurons to Artificial Neurons
By deducing the essential features of neurons and thefcarnnections. We
program a computer to simulate these features [9]. Haovim®meause our knowledge
of neurons is incomplete and our computing power is limwed models are

necessarily gross idealizations of real networks of meuro
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Figure 5. The neuron model

4.2.3 A simple neuron

An artificial neuron is a device with many inputs and ongutu The neuron
has two modes of operation; the training mode and thg usiae. In the training
mode, the neuron can be trained to fire (or not), foiqueat input patterns. In the
using mode, when a taught input pattern is detected atghe its associated output
becomes the current output [10]. If the input pattern doébelong in the taught list

of input patterns, the firing rule is used to determine hdveto fire or not.
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Figure 6. A simple neuron
4.2.4 A more complicated neuron
A more sophisticated neuron is the McCulloch and Pitdeh(MCP). The
difference from the previous model is that the inpués\aeighted', each inputs
decision making is dependent on the weight of the paaticaput. The weight of an
input is a number which when multiplied with the input gitles weighted input.
These weighted inputs are then added together and ieoegd a pre-set threshold

value, the neuron fires. In any other case the neures ot fire [11].

Train/Use

W
W

Output

Training Input

Figure 7. An MCP neuron
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In mathematical terms, the neuron fires if and only if;
XiW1 + XoWo + XsWs + ... > T o
The addition of input weights and of the threshold makissrteuron a very
flexible and powerful one. The MCP neuron has the abditydapt to a particular
situation by changing its weights and/or threshold. \(erialgorithms exist that cause
the neuron to 'adapt’; the most used ones are the Dieltand the back error
propagation. The former is used in feed-forward networkslam latter in feedback

networks.

4.3 Architecture of neural networks

4.3.1 Feed-forward networks

Feed-forward ANNs allow signals to travel one wayypfibm input to
output. There is no feedback (loops) i.e. the outpangflayer does not affect that
same layer. Feed-forward ANNSs tend to be straight fodwatworks that associate
inputs with outputs [2]-[12]. They are extensively used ibgpatrecognition. This

type of organisation is also referred to as bottom-upmdbown.
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Outputs

Hidden Layer

Inputs

Figure 8 An example of a feedforward network

4.3.2 Feedback networks

Feedback networks can have signals travelling in bo#ctitims by
introducing loops in the network. Feedback networks angp@werful and can get
extremely complicated. Feedback networks are dynanac; 'thate’ is changing
continuously until they reach an equilibrium point. ¥inemain at the equilibrium
point until the input changes and a new equilibrium needs found. Feedback
architectures are also referred to as interactive arneat, the latter term is used to

denote feedback connections in single-layer organisations.
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Figure 9. An example of a complicated network

4.3.3 Network layers
The common artificial neural network consists of ¢hgeoups, or layers, of units:

a layer of "input" units connected to a layer of "hidden"symithich is connected to a

layer of" output™ units.

. The activity of the input units represents the raw infaionethat is fed into

the network.
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. The activity of each hidden unit is determined by the aawitif the input
units and the weights on the connections between the amauthe hidden
units.

. The behaviour of the output units depends on the activitlyeolidden units

and the weights between the hidden and output units.

The hidden units are free to construct their own reprasens of the input. The
weights between the input and hidden units determine wiadmhé@den unit is
active, and so by modifying these weights, a hidden unitbaose what it
represents.We also distinguish single-layer and mulgrlarchitectures. The single-
layer organization, in which all units are connectedrte another, constitutes the
most general case and is of more potential computafavedr than hierarchically
structured multi-layer organizations[2]-[9]. In multi-Exynetworks, units are often

numbered by layer, instead of following a global numbering.

4.4 The Learning Process
The memorization of patterns and the subsequent respbtise network can be

categorized into two paradigms:

. Associative mapping

. Regularity detection
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4.4.1 Associative mapping
The network learns to produce a particular pattern osghef input units
whenever another particular pattern is applied on thefseput units. The

associative mapping can generally be broken down into tvetamésms:

. Auto-association:an input pattern is associated with itself and thestat
input and output units coincide. This is used to provide pattenpletion, i.e
to produce a pattern whenever a portion of it or a detiqrattern is
presented. In the second case, the network actuallys gianes of patterns
building an association between two sets of patterns.

. Hetero-association:lt is related to two recall mechanisms:
Nearest-neighbour:Here the output pattern produced corresponds to the

input pattern stored, which is closest to the pattersepted.

Interpolative: Here the output pattern is a similarity dependentpatation
of the patterns stored corresponding to the pattern peeserhis is a variant
associative mapping, i.e there is a fixed set of categarto which the input

patterns are to be classified.

4.4.2 Regularity detection

In regularity detection units learn to respond to pawicptoperties of the
input patterns. Whereas in associative mapping the netwmodsghe relationships
among patterns, in regularity detection the responsadf unit has a particular

'meaning'. This type of learning mechanism is essentid&ture discovery and
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knowledge representatioftvery neural network possesses knowledge which is
contained in the values of the connections weightsdiiving the knowledge stored
in the network as a function of experience implidésaaning rule for changing the

values of the weights.

Figure 10. Weight Matrix

Information is stored in the weight matrix W of a néumetwork. Learning is the
determination of the weights. Following the way learnggerformed, we can

distinguish two major categories of neural networks:

. Fixed networksin which the weights cannot be changed, ie dW/dt=0. In such
networks, the weights are fixed a priori according topttzblem to solve.

. Adaptive networks which are able to change their weightsj\ié/dt should
not be equal to 0.
All learning methods used for adaptive neural networks eardssified into

two major categories, namely supervised and unsupervised:
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Supervised learning:It incorporates an external teacher, so that eatgubunit is
told what its desired response to input signals ought to dx@nddthe learning
process global information may be required [11]. Paradigfrsspervised learning

include error-correction learning, reinforcement learning émchastic learning

An important issue concerning supervised learning is the pnodlerror
convergence, ie the minimization of error betweerdésred and computed unit
values. The aim is to determine a set of weights winithimizes the error. One well-
known method, which is common to many learning paradigrbgeileast mean

square (LMS) convergence.

Unsupervised learning:Uses no external teacher and is based upon only local
information. It is also referred to as self-organizatiin the sense that it self-
organizes data presented to the network and detectetheigent collective
properties. Paradigms of unsupervised learning are Hebbramligand competitive
learning.

We say that a neural network learns off-line if #erhing phase and the operation
phase are distinct. A neural network learns on-linteléglarns and operates at the same
time. Usually, supervised learning is performed off-line, nelie unsupervised

learning is performed on-line [12].
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4.5 Transfer Function
The behaviour of an ANN (Artificial Neural Network) depsron both the
weights and the input-output function (transfer fungtibmat is specified for the units.

This function typically falls into three categories:

. Linear (or ramp)
. Threshold

. Sigmoid

For linear units, the output activity is proportionaltie total weighted output.
For threshold units, the output are set at one of tweldedepending on whether the
total input is greater than or less than some thresfadlet. For sigmoid units, the
output varies continuously but not linearly as the inpanges [2]-[12]. Sigmoid
units bear a greater resemblance to real neurons tharedo d¢r threshold units, but

all three must be considered rough approximations.

To make a neural network that performs some specific vasknust choose how
the units are connected to one another and we museseetghts on the connections
appropriately. The connections determine whether it isiipedsr one unit to

influence another. The weights specify the strength@influence.

We can teach a three-layer network to perform a partitask by using the

following procedure:
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. We present the network with training examples, which sbrdia pattern of
activities for the input units together with the desiredguatbf activities for
the output units.

. We determine how closely the actual output of the netwosktches the
desired output.

. We change the weight of each connection so that th&onle produces a

better approximation of the desired output.

4.6  Training algorithms for Neural Networks

The Neural Network has to be configured before it candee for applications.
This configuration of neural network is called as trainingyhich the parameters of
the network are adjusted to the optimum values, suchh@atetwork exhibits the
desired properties [11]. The training required that the nétywarameters follow an

updated rule, which is called as training algorithm

Based on the way weights are updated, training is clabifigvo ways:

Online or Pattern-wise training: In this mode of training the weights are updated
for each error. Starting from the first input instané¢éhe data-set, the error for each

input is calculated as shown in the above equation. fioeiat weight can be given

by

Aw=-n— 4.2
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Where 7 is the learning rate? The procedure is repeated untihghenistance of the

data-set.

Batch or epoch wise training: In this mode the weights are updated on the

calculation of the total errof1y, the weights are updated when a complete batch or

data-set are presented to the network. The amount olitngignge is given by

Aw=-n Oroar (4.3)
ow

4.6.1 Back propagation algorithm

The backpropagation algorithm is a supervised learning methoaultr
layered feedforward neural networks using sigmoidal aivdunctions. It was
developed by Paul Werbosin in 1974 and was later extendedrbglRart, Hinton
and Williams in 1986 this was the first network with mtiven one hidden layer. It is
a gradient descent local optimization technique, it il®kackward error correction
of the network weights [28]-[36]. For non-linear appticas the backpropagation

algorithm has a local minima problem, it cannot finddleal minima.

Architecture of the Network

The Backpropagation architecture consists of an input lay@inimum of
one hidden layer and an output layer. The nodes in egehdee fully connected to
the nodes in previous and next layers. Each connectamsaxiated with a synaptic

weight.
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Input layer Hidden Layer Output layer

Figure 11. Backpropagation architecture

The flow through the network can be described as faliow

Input to Hidden layer: The input layer loads data fromnbet vector X, and
sends them to the first hidden layer.

Hidden layer: The hidden layer units receive weighted inpditi@msfer them
to the next hidden or output layer using one of thesfea functions
(sigmoid).

As the information propagates through the network alstiremed inputs and
output states are computed in each processing unit.

Backpropagation from the output to the hidden layers: thieddocal error
and weighted increments or decrements are computeeiadbrlayer
backwards, starting from the output layer and endingeatitst hidden layer,
and finally weights are updated this process is repeatedhagkror is

minimized .
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Computation involved in the Network:

Let us consider that the input, hidden and the output tymsists of N, K and M
Neurons respectively. Let us take the output of the outhut node due to p-th input

pattern is given byO__, the output of the k-th hidden node for the p-th input patte

pm?

is given by épk the biasesék and @, are associated with the k-th hidden node and

the m-th ouput node respectively [28]-[36]. Lag},, be the weight between the m-th

output neuron and the k-the hidden neuron éxadbe the weight between k-th
hidden neuron and n-th input neuron. The desired outputdantth output neuron

due to p-th input pattern is given by, . The input for the n-th input neuron due to p-
th input pattern is denoted by, (where x, is either O or 1). Using this definition

the output of the k-th node in the hidden layer is glwgn
- f N - -
Ow= [ZC{)nk Xon T ekJ (4.4)
n=1

Where ¢ is the activation function (sigmoid) defined as
f(x)=1/1+e™ (4.5)

Similarly the output of the m-th node in the outpyelais given by:
f(su.c
Opm: [Z Wkm Opk+ em} (46)
k=1

We define sum of the squared error of the system to be:
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E= %ii(rpm -0, (4.7)

The backpropagation learning algorithm is to change therntumeaghts

w,,, and wn iteratively such that the system error function Eisimized. The

weight updates are proportional to the gatéievative of E with respect ta),, .

0E _ OE Daopm

= (4.8)
0w, 00,, OE
oE 00 -
Where —— =0, -r,, and —2=0_,{1-0, )Ou ; (4.9)
aopm p p aE p p
And the partial derivative of E with respect dm is:
M 00, AC
oF _ > OB Pom O (4.10)
dam ™ 9Om 904 dwn

where

00 Vo - -
aO”k:opk(l—opk)xpn (4.11)

= 0,.0l-0,)u, and =
00 0 Wk

The weight change for the (n+1)-th iteration carekgressed as follows (whene

and a are the learning rate and the momentum of theigmamethod respectively).

Aw,(n+1) = —OZ[ aaE j + 0w, () (4.12)
_ P 6E _
Aww(n+1) :—/72£ - }+aa)nk(n) (4.13)
P10 wnk
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or

P _
AW, (N+1) =17 3,, Opc+ ADW,, (N) (4.14)
p=1

where

Opm = (Tpm ~Opm)Opn 1= 0y) (4.15)
_ P _ _
Aww(N+1) =) dp X, + B wn () (4.16)
p=1
where
— - - M
Ok =Op(L=0w)D. 0yl (4.17)
m=1

The biase®,, and 8y are update similar tay,,, and Wi using equations (4.12)-

(4.14).
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CHAPTER 5

IMAGE/VIDEO COMPRESSION USING NEURAL NETWORKS

Apart from the existing technology on image compressipnesented by series
of JPEG, MPEG and H.26x standards, new technology suctussl metworks and
genetic algorithms are being developed to explore the fufumeage coding. The
various architectures of neural networks discussed ipringous chapters can be
used for the compression of still images and motiorupest Research on neural
networks of image compression is still making steadwaades which could have a
tremendous impact upon the development of new technslagi algorithms in this
subject area [2]-[12]Successful applications of neural networks to vector
guantization have now become well established, and ospects of neural network
involvement in this area are stepping up to play signifioalet in assisting with

traditional technologies.

5.1 Back-propagation image compression.

5.1.1 Back propagation Neural Network.

Back-propagation neural networks can be directly appliethage
compression coding. The neural network structure canustérdted as three layers,
one input layer, one output layer and one hidden layer.iffput layer and output
layer are fully connected to the hidden layer. Compressiaohieved by designing
the value oK, the number of neurons at the hidden layer, lessttfzof neurons at

both input and the output layers.
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Figure 12 Back-propagation Neural Network

The input layer and output layer are fully connectedhéohidden layer.
Compression is achieved by designing the value which is the number of neurons
at the hidden layer which must be less than that of newabboth input and the
output layers. The input image is split up into blocksemtars of &8, 4x4 or 16<16
pixels [8],[9]. When the input vector is referred ta\adimensional which is equal to
the number of pixels included in each block, all the coupliagkts connected to
each neuron at the hidden layer can be represented/pyj &1, 2,...K andi =1, 2,..,
N, which can also be described by a matrix of okKdéd. From the hidden layer to

the output layer, the connections can be representedbyiEi < N1< j<K}

which is another weight matrix of ordekK. Image compression is achieved by
training the network in such a way that the coupling we{ihiti} scale the input
vector ofN-dimension into a narrow channelkfdimension K<N) at the hidden

layer and producing the optimum output value which makeguhdratic error
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between input and output minimum. In accordance witméwal network structure

shown, the operation of a linear network can be destebdollows:

N
h, => W, x 1< j < K (For encoding) (5.1)
i=1
_K
X =Y W h, 1<i < N (For decoding) (5.2)

Wherex, 0[01] which means they are the normalized values fogtiy scale

images with grey levels [0,255]. The reason fommaizing pixel values is neural
networks can operate more efficiently when thgwuinand output values are limited
to a range of [0, 1]. The above linear network loartrransmitted into a nonlinear one
by adding a transfer function like sigmoid to theéden layer and the output layer.
The back-propagation neural network compressianrigiucted in two phases
training and encoding. In the first phase, a sétnafje samples are fed to train the
network using the back-propagation learning ruléctviuses each input vector as the
desired output. This is equivalent to compresduegriput into the narrow channel
represented by the hidden layer and then recotisigutie input from the hidden to
the output layer. The second phase involves threyntoding of the state vectoy
at the hidden layer. In the case of adaptive imgitine entropy coding of these
coupling weights is required in order to catch ughwome input characteristics that
are not encountered at the training stage. Themntoding is designed as the fixed
length binary coding although many advanced vagidigth entropy coding
algorithms are available. One of the reasons farisithe research community is
concerned with the part played by neural networkerefore, the compression

performance can be assessed in terms of the cogigmreatio or bit rate [10], [11].
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For the back propagation narrow channel compression neetsabrk, the bit rate can
be defined as follows:

bit rate:% bits/ pixel (5.3)

where input images are divided imidlocksof N pixels orn N-dimensional
vectors;T andt stand for the number of bits used to encode &alden neuron
output and each coupling weightm the hidden layer to the output layer. Whie
coupling weights are maintained the saimeughout the compression process after
training is completed, the terNKt can be ignored and the bit rate becoéaN
bits/pixel. Since the hidden neuron output is real valued,tgadion is required for
fixed length entropy coding which is normally designed a®@@el luniform
guantization corresponding to 5 bit entropy coding.

This neural network development is in the directioKf transform
technology which actually provides the optimum solutionail linear narrow
channel type of image compression neural networks [3]. \@hewe equations are

represented in matrix form, we have

[hl= W] [x] (For encoding)  (5.4)

[X] =[W ][h] =W J[W]"[X] (For decoding) (5.5)

The K-L transform maps input images into a new vectacspvhere all the
coefficients in the new space are de-correlated. Teansithat the covariance matrix
of the new vectors is a diagonal matrix whose elermaotyy the diagonal are

eigenvalues of the covariance matrix of the origimalit vectors. Lee and A, , i=1,

2..n, be eigenvectors and eigenvaluesgfthe covariance matrix for input vectar
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and those corresponding eigenvalues are arranged in a dagoeirtter so that
A =2 A, fori=1, 2..n. To extract the principal componernisgigenvectors

corresponding to thk largest eigenvalues iq, are normally used to construct the K-

L transform matrix, AK], in which all rows are formed by the eigenvectorgafin
addition, all eigenvectors iAK] are ordered in such a way that the first rowAK]
is the eigenvector corresponding to the largest eideeyvand the last row is the
eigenvector corresponding to the smallest eigenvalue [4HE5]ce, the forward K-L
transform or encoding can be defined as:

VL A (IX4-I m, ]) (5.6)

and the inverse K-L transform or decoding can be defined as

H =[AJ Tyl +Im,] (5.7)

where [m, ] is the mean value ok] and [x] represents the reconstructed

vectors or image blocks. Thus the mean square erroebaiand x is given by the
following equation:

em:E{(x—i)z}:ﬁi(xk—ik)z:i/]j—ZAJ. :Zn:/]j (5.8)

j=k+1

where the statistical mean valeg} is approximated by the average value
over all the input vector samples which, in imagding are all the nonoverlapping
blocks of &4 or 8x8 pixels. Therefore, by selecting tkesigenvectors associated
with the largest eigenvalues to run the K-L transf@ver input image pixels, the

resulting errors between the reconstructed imagdetanoriginal one can be
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minimized due to the fact that the valuesio$ decrease monotonically. From the
comparison between the equation pair (2.4) and éné the equation pair (2.6) and
(2.7), it can be concluded that the linear neuetivork reaches the optimum solution
whenever the following condition is satisfied:

WIIWIT =[AJT[A] (5.9)
Under this circumstance, the neuron weights fropatitio hidden and from hidden to

output can be described respectively as follows:
W [=[A U1, (5.10)
WI" =[UI[A] (5.11)
where [U] is an arbitrari{xK matrix and[UIU ]'l gives an identity matrix of

KxK. Hence, it can be seen that the linear neuralar&tean achieve the same

compression performance as that of K-L transforthaut necessarily obtaining its

weight matrices being equal [AK]T and JAK].

5.2 Simulation

After training the network using one or more framee apply the
performance phase, which is here equivalent tcokéng/decoding process. The
hidden layer weight matrix is multiplied by the put of the pre-processor. Then, the
bias is added and the output layer transfer funaési@pplied to the result. This result
is the output of the hidden layer. The processpgated to obtain the output of the

output layer with the input being the output of tieden layer.
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5.3 Post-processing

During decoding, the images are reconstructed using thegcpobduct
associated with the input patterns, which will be theoubf the hidden layer
together with the weights. The reconstructed imagkebeibn approximation of the

original one in the decoding phase.

5.4 Proposed Image Compression Architecture.

The proposed architecture employs an image/video cosmnesethod
which uses neural networks in combination with simple omotiletection techniques
to give an overall improved performance. In generalngteork is initially, trained
with some frame until the weights are adapted. The adapeights are used for
coding the frame sequence. Since the adapted weightsanhbg optimal for the
particular frame sequence we may need to train the netygaorg frames at regular
intervals and code the subsequent frames using the updatedriketil he detailed

description of the architecture is discussed in thevioilg sections.

The second scheme deals with the motion detection tpasiiHere, the
initial frame, say Framel, is transmitted through tieral network to the receiving
end, while the subsequent frames are coded as folleaes: &8 block is compared
with the &8 block of the previous frame, i.e the&8blocks of Frame2 are compared
with Framel. A bit is used to inform about the existenagobof motion. The blocks
for which motion is detected are transmitted throughndural network to the

receiving end along with 1 bit. The blocks for which motias hot been detected
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remains the same as in the previous frame, which isesee compression ratio

without significantly affecting the frame quality.

5.4.1 Encoding

The encoding and decoding phases are explained in term&rémple.
Consider the video sequence of “hotel’ containing @688 frames. The initial
frame which will be the first input is divided into amayr of 8x8 blocks. Those
blocks are given as input to train the neural network @ctuire until the weights are
adapted. We have trained for 100,200,300,400 and 500 epochs. Trehgphed
weights of this initial frame are used for the direatling of subsequent frames. Thus,
the compression is achieved at the hidden layer dependiting exmmber of neurons
in the layer and the number of quantization levels usedéights and hidden layer

outputs.

5.4.2 Decoding process

The compressed data in the hidden layer is passed totfhé @yer for
reconstruction of the images. Therefore, the compdedse for all the frames
starting from frame 1 to the last frame is passed totitgut layer for reconstruction.
The error for each frame is calculated by comparingebenstructed with the
original image. These error values are used for tloellkedion of the signal to noise

ratio of the images for particular compression ratios.

The advantage of the above method is that the traigingtidone often which

increases the technique’s processing speed while mainta@rmpnpression ratio.
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Transmitting the motion detected between frames.

In this scheme, we train the network using the inftene (F1) until the
weights are adapted, the adapted weights are trandrattdirect coding of F1.
Now, at the transmitting end, frame2 (F2) is split 88 blocks. In our case, since
the images are of size 54480 we get 38408 blocks for each frame. Therefore,
the 88 blocks in frame2 (F2) are compared with th8& 8locks of framel (F1) and

checked for motion based on the following equation:

M.D = a%jZZ(Flm,n-(x’Y)‘ F2,.(X.Y))f (5.12)

Framel Frame2

NN
NN

NANANANANAN

NANANANANAN

NNANANANANAN

NN

Compare blocks

w.r.t position of
frame

Figure 13. Motion Detection

The information about the detectexBblocks is stored in an array which is

sent to the receiving end. Thus, after we completecomparison of all blocks, we
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transmit the 88 blocks of frame2 (F2) where motion is detected througmé&ural
network decoding part at the receiver which has alreachived the adapted weights
at the receiving end, these blocks are reordered indahginal position to construct
frame2 (F2). The same process is carried out for subsefjames (i.e. frame2 (F2)
is compared with frame3 (F3)) till the last frame af thdeo sequence.

This technique has the advantage of transguinly the motion part in
combination which gives an additional compression conagparéhe case where all
blocks are transmitted. This technique is helpful fotimmopictures where the

change between frames is relatively small.

Motion

mparing Hidden
_~1 Successive Nodeg

frames

Input Layer

- Hidde
Nodes . | Reconstructior|

= of frames

Output Layer

Figure 14. Flow of the proposed scheme
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Retraining Frames at regular intervals.

In this case, we train the network using frames of theom@icture at regular
intervals. Initially, framel is used to train the netkwand obtain the first set of
weights (for 100,200 or 300 epochs). The adapted weightssadefor coding of the
trained frame and the subsequent frames until a new wgiglate takes place. In our
case, we consider the training frequency to be four.rfstance, after the first weight
update, the weights are again updated using the fifth frahas, the new weights
are used to code the next four frames starting from ade the training frequency

decreases, the compression ratio increases and viEs-ver

Neural
—» Training of the Motion Frames Network for >
Network Simulation
Reconstruction
A of the Frames

using the
output of the
Neural
Network

y

Adapted Weights
for Direct
Simulation

Figure 15. Retraining frames
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Self-Adaptive Training:

This is a modification of the above scheme in whinstead of training the
frames at regular intervals, we train the framesdasea threshold value. In this
case, framel is trained initially and then the followiragnes are coded using the
obtained weights. The same set of weights is usedamatror-based threshold value
is reached. The threshold value is calculated bas#seomean square error of the
reconstructed frame with respect to the original oneeQ@ne threshold is reached
then the next frame in the series is used to traimefwork in order to obtain a new
set of weights. The updated weights are used for codingutheequent frames. Based
on this approach, training is performed only when the qudiityeoreconstructed
frames is degraded significantly. This technique resuligginer compression ratios

compared to the technique in which retraining is performeegatlar intervals.

Proposed TechniqueHere, motion is used in combination with retraining to
improve the compression ratio. The procedure followed Isesimilar to the motion
detection one. However, similarly to the self-adaptraing technique, when the
error for a frame exceeds a certain threshold valtrajmang is performed to update
the weights. The updated weights help reducing the errdutiare frames, which
then results in transmitting a smaller number of blo€kss in-turn increases the
compression ratio. The proposed scheme helps in drasimg useful conclusions

with respect to compression ratio and signal-to-n@ise.r
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CHAPTER 6

RESULTS

The video compression techniques presented in chapter Stac aad
results are presented for various scenarios using & $8tfiames of a “hotel”

motion picture. The comparisons are made based ongthal-$0-noise ratio vs

compression ratio.

6.1 Comparison of results for various test scenarios.

Image/Video compression results are presented for vaiestiscenarios
with the help of a motion picture containing a set of @8fes. The set of frames are
tested for motion detection, the retraining frames netmal the self-adaptive
method. The results obtained from the above tests usaful in drawing some
conclusions regarding the aforementioned techniquescdingression ratio and

peak-signal-to-noise ratios (PSNR) are calculated baisé¢lde following formulas for

all the test scenarios.

Compression ratio—[K x(LxM +N)+(AxT xR) + (BxW xW1)]

(6.1)
TxPxQ
where
K = No. of blocks transmitted. R = 1bit per block to send the motion
L = No. of outputs from hidden layer information.
M = bits per output W = No. of weights
N = No. of bits for mean W1 = No. of bits per weight
T = Total no. of blocks A = 1, if motion is detected
P = No. of pixels per block A = 0, if motion is absent
Q = No. of bits per pixel B = 1,ifretraining is done
B = O, ifretraining is not done
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PSNR=10x log,, (1/error) (6.2)

Casel: Initially, the “Lena” image is trained for differeapochs (100,300,500) and
4 hidden nodes in the network. The network is alsedefsir a still image with the
above parameters. We can see that as the traininghevaased to 500 epochs, the
weights seem to be better adapted to the particulayan@nd thus the quality of the
reconstructed image is higher compared to the one traandd® or 300 epochs.
Nevertheless, training for 500 epochs has higher processjuogements compared

to the other two cases. Moreover, Figure 16 illustratgsas the compression ratio
increases; the difference in terms of PSNR betweethtiee different cases becomes

negligible.
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Figure 16. Performance of the Lena Image
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CaseZ2:Initially, we train the network using the initial framéamotion picture
containing a set of 98 frames of a hotel sequence. Thedraieights, using the
initial frame, are used for the direct simulatioratithe 98 frames. From Figure 17,
we can conclude that the video picture quality is higheasahe number of training
epochs increases. However, as in the example of Figyne can be seen that the

difference in terms of PSNR decreases as the conmpmasdio decreases.

I I

100 EPOCHS
200 EPOCHS
300 EPOCHS
400 EPOCHS
500 EPOCHS

PSNR (dB)

Compression Ratio

Figure 17. Direct Simulation of Frames.

Case3:Here two motion pictures are concatenated. Thesthar‘hotel” sequence
which contains relatively complex images, and the “gs#ftjuence which contains
simple images. The initial frame of the hotel sequesi¢mined and these weights are
used to code the mixed video sequence i.e. framel to frame B8téb sequence and
frame 99 to frame 149 for golf sequence. We can see frgune=18 that there is a
sudden change in the PSNR at frame 99 because of tegitrafrom hotel image to

golf image. In this case, the PSNR increased. Sincgadligmage is a simple image
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and the information contained in it is most probablyuded in the hotel sequence,
the network trained using the hotel sequence will be capapl®diicing a high
quality reconstruction of the frames. On the other hasheén the same experiment is
repeated by placing the golf sequence prior to the hotel segjudsere is a sudden
PSNR change at frame 51 which is the frame at whictrainsition from the simple
(golf) to the complex (hotel) image sequence occurs. sifusvs that the network
using the weights obtained after training the first frane golf sequence is not
capable of successfully coding the hotel sequence wbittains more significant

information.

In addition to the above observations, it is impdrtarmention that the PSNR for the
golf sequence, when the network is trained using the fastdrof the hotel sequence,
is higher than the PSNR for the golf sequence whendtwork is trained using the
first frame of the golf sequence. This may be surprisirigsa, however it should be
expected. Since the hotel sequence provides a “betteasf Bletcks for training the
network, all frames of the golf sequence can be e¥elgtcoded. However, when the
first frame of the golf sequence is used to generatedtveork’s weights, the
subsequent frames of the golf sequence can not be sudlgesstesented by the
information included in the network weights. This happegtsause this information

is provided by the “not so good” set of blocks of the firgine of the golf sequence.
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Figure 18. Comparison of Hotel-golf/golf-hotel sequences

Case4:Here retraining of video frames is done at regularvalsr(3, 4, 5, 6 frames)
to update the weights of the neural network for improvirggguality of the video
sequence, since the initial set of weights may nogbed” for coding the frames at a
later stage. From the Figure 19, we can see that astth@ing frequency increases,
the quality of the reconstructed frame sequence insehseever the compression

ratio is decreased and more processing is required.
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Figure 19. Retraining at regular intervals

Caseb:Here, retraining is done at regular intervals of 10 fraamesthe updated

weights are used in between the intervals (Examﬁ'?e‘riame). This technique is

useful when we have parallel processors where training fa&ee continuously and

the weights are updated while the coding takes place itiglara

C.R(4-nodes) 12.7826 12.7878
PSNR 36.6264 36.5285
C.R(8-nodes) 7.1057 7.1074
PSNR 39.9610 39.3818
C.R(12-nodes) 4.9205 4.9213
PSNR 41.1565 40.7913

Table 3: Retraining fatifferent nodes
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Figure 20. Retraining every 18 frame

Case6:In this case there is a comparison between the dioelthg and retraining

techniques. Figure 21 indicates that retraining using frantegalar intervals helps

in maintaining the quality of the video sequence with sadwtional overhead of 10

sets of weights.
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Figure 21. Comparison between Direct simulation and Retraimig

Case7:In this method, retraining is done only when the errohefreconstructed
image exceeds certain threshold value. The network atitcatty retrains when the
error exceeds that threshold. This method is usefukfiucing the overhead when
compared to retraining at regular intervals. The compnesatins are higher

compared to training at regular intervals.
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Figure 22. Self-Adaptive Network

C.R(4-nodes) 12.7965 | 12.793Q 12.749)
PSNR 36.3063 | 36.5262 36.685pP
C.R(8-nodes) 7.1090 7.1068 | 7.0998
PSNR 39.5036 | 39.6193 39.8968
C.R(12-nodes) 4.9220 4.9205 | 4.9166
PSNR 40.6794 | 41.323§ 41.2650

Table 4: [Sadaptive network

Case8:Here, we apply the motion detection technique in whictirtmaes in the

sequence are split into<8 blocks. These blocks are then compared to *Beb®cks

in the next frame, and if there is a motion detedbted particular block is transmitted

through the neural network to the receiving end. The vedeblocks are placed in

their respective positions to construct the new frarhes, the frame at the receiving
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end is built based on the previous frames blocks and remaligd blocks. Figure 23
shows the results of this approach using 4, 8, and 12 hiddes. iadéhermore,
different thresholds have been used for motion detetdio@ach one of the three
cases. In this method, significantly high compressitingare attained. Nevertheless,
as indicated from Figure 23, in certain cases, usingadesnmumber of hidden nodes
for increasing the compression ratio may be preferred asing the motion detection
approach. In any case, using the motion detection appfoasinall motion

detection thresholds (which implies that only few bloakisbe considered as
showing lack of motion) increases the compressionrratithout affecting the

PSNR.
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Figure 23. Motion Detection
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C.R 12.61 | 20.98| 25.79| 28.60 32.34 36.12 40.911 45.01.9248 | 52.806 57.544
4node
PSNR 36.19 | 36.22| 36.06] 3553 3430 33.11 32191 31.47.93%0 | 30.519 30.171
C.R 7.084 | 11.96| 14.82| 16.91 19.59 22.43 | 25.015| 27.39] 29.640 31.881 34.64
8node
PSNR 38.73 | 38.77| 3821 36.29 3434 33.0232.104 | 31.42| 30.91 30.523 | 30.202
C.R 4,925 8.285| 10.46 | 12.12| 14.10| 16.14 | 18.000 | 19.66 | 21.232 22.724 | 24.616
12nod
PSNR 40.12 | 40.18 | 38.93 | 36.16 | 34.08 | 32.79 | 31.880 | 31.26 | 30.81 30.510 30.224

Table 5: Motiddetection for different nodes

Case9:This case presents a comparison between the techniqueséisanotion

detection and the one that uses motion with retrainimgréi24 and Table 6

illustrate that, for a given threshold value, the motaath retraining technique has

resulted in higher compression ratios for a given PSK&wecompared to the

technique that only uses motion detection. This is becatisening updates the

weights so that the corresponding error is not altbteencrease considerably. As a

result, only few blocks are transmitted to the receivirgdy ene to motion detection,

which in-turn increases the compression ratio.
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Figure 24. Combination of motion with retraining.

Error 0.001 0.005 0.010 0.015 0.02
C.R(motion) 12.6117| 20.8914 25.7960 28.60p4 32.3459
PSNR 36.1964| 36.2278 36.06718 35.53p1 34.3099
C.R(motion,RT) | 12.6100| 21.6539 25.8658 28.64D02 32.0302
PSNR 36.2888| 36.2778 35.9758 35.27p8 34.0465

Table 6: Motion with Retraining
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Original Image Reconstructed Image

Figure 25: Comparison of Original and reconstructed Images

Figure 25 presents a comparison between the original amddbestructed image

that has gone through motion with retraining.
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CHAPTER 7

DISCUSSIONS AND CONCLUSIONS

In this thesis, we have discussed variousovadenpression schemes. The
results were useful in drawing important conclusions atimse schemes. The
algorithms implemented and tested are mainly based addaef neural network
based image compression.

Compared to other existing neural network schemes, the adjantage
of the proposed technique is that it provides better PBBN& given compression
ratio. In general, it was shown that the combinatibtihe neural network techniques
with some basic motion detection helped in achieving highepecession ratios.
Neural Network weight retraining improved the image qualitygared to previous
techniques. Moreover, the Self-adaptive retraining achievedtegber PSNR for a
given compression ratio.

Future work includes incorporation of lossless techniquespplement

the neural network approach.
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APPENDIX

MATLAB CODES

Functions used for Single-structure Neural Network consmas

* mynewff-Creates a feedforward Neural Network
* mysim-Simulates the Network and returns the output.

Functions used for proposed architecture:
» directsim-Used for the direct simulation of frames.

* retrain-Used for retraining of frames at regular intervals.
* motion-Used for motion detection between frames.

Functions both common to Neural Network and proposedtacttre:
* Image_to_blocksBreaks up the image of UxV size into zxz blocks and geanthe
Dimensions.
* reconstruct- Performs inverse of image_to_block operation.
Script which executes all the three cases.
« Compute.

Test Images

Lena.tiff and a set of 98 frames of a motiartiype nhamed hotel.seql....98
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