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             ABSTRACT 

  Image/Video compression has great significance in the communication of motion 

pictures and still images. The need for compression has resulted in the development of 

various techniques including transform coding, vector quantization and neural networks. 

In this thesis neural network based methods are investigated to achieve good compression 

ratios while maintaining the image quality. Parts of this investigation include motion 

detection, and weight retraining. An adaptive technique is employed to improve the video 

frame quality for a given compression ratio by frequently updating the weights obtained 

from training. More specifically, weight retraining is performed only when the error 

exceeds a given threshold value. Image quality is measured objectively, using the peak 

signal-to-noise ratio versus performance measure.   

  Results show the improved performance of the proposed architecture compared to 

existing approaches. The proposed method is implemented in MATLAB and the results 

obtained such as compression ratio versus signal-to-noise ratio are pr
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CHAPTER 1 

INTRODUCTION 

Image processing is an important part of modern communications. In general, 

image processing algorithms require large amounts of memory storage. As a result, 

the processing time is considerable for processing still images, and even more 

significant for motion pictures. Thus, the need for image/video compression arises in 

the modern world of communications in order to get the desired processing times. 

Various image/video compression techniques have been developed to reduce the 

amount of data that needs to be processed or transmitted. This results in reduced 

processing time to achieve the desired targets. There are several challenges faced 

while developing any image compression technique. Two main challenges include 

increasing the compression ratio by representing an image with a small  number of 

bits while maintaining an acceptable quality, and increasing the processing speed to 

meet the real-time application requirements without compromising the image quality. 

The growing world of communications is continuously increasing the demand for 

efficient and effective compression schemes[1]-[36]. Thus, the development of 

image/video compression algorithms is still needed. 

Modern digital technology has made it possible to manipulate multi-

dimensional signals with systems ranging from simple digital circuits to advanced 

parallel computers. The manipulation can be divided into three categories namely 

image processing, image analysis and image understanding. In our case we restrict the 

focus onto the fundamental concepts of image processing. We further restrict the 



 2 
 

study to two-dimensional (2D) image processing as most of the concepts and 

techniques described can be easily extended to three or more dimensions. 

An image defined in the “real world” can be considered as a function of two 

real variables, say a(x, y) with ‘a’ being the amplitude (e.g brightness) of the image at 

the real coordinate position (x, y) the amplitudes of a given image will almost always 

be either real numbers or integer numbers. The latter is usually a result of a 

quantization process that converts a continuous range (say, between 0 and 100%) to a 

discrete number of levels [34]. In certain image-forming processes, however, the 

signal may involve photon counting which implies that the amplitude would be 

inherently quantized. In other image forming procedures, such as magnetic resonance 

imaging, the direct physical measurement yields a complex number in the form of a 

real magnitude and a real phase. In this thesis, we will consider amplitudes as reals or 

integers. 

 A digital image a [m, n] described in 2D discrete space is derived from an 

analog image a(x, y) in a 2D continuous space through a sampling process that is 

frequently referred to as digitization. The 2D continuous image a(x,y) is divided into 

N rows and M columns. The intersection of a row and a column is termed a pixel. The 

value assigned to the integer coordinates [m,n] with { m=0,1,2,...,M-1} and 

{ n=0,1,2,...,N-1} is a[m,n]. In fact, in most cases a(x,y)--which we might consider to 

be the physical signal that impinges on the face of a 2D sensor--is actually a function 

of many variables including depth (z), color (λ ), and time (t). In this work, we will 

consider the case of 2D, monochromatic, static images. 
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CHAPTER 2 

IMAGE COMPRESSION AND TECHNIQUES 

Image compression attempts to minimize the size, in terms of bytes of a 

graphics file without degrading the quality of the image to an unacceptable level. The 

reduction in file size allows more images to be stored in a given amount of disk or 

memory space. It also reduces the time required for images to be sent over the 

Internet or downloaded from Web pages [34], [36].  

The following example illustrates the requirements for image storage and 

transmission time. An image of 1024 pixel × 1024 pixel × 24 bit without compression 

would require 3MB of storage and 7 minutes for transmission, utilizing a high speed, 

64 Kbit/s, ISDN line. If the image is compressed at a 10:1 compression ratio, the 

storage requirement is reduced to 300KB and the transmission time drops to under 6 

seconds. Seven 1 MB images can be compressed and transferred to a floppy disk in 

less time than it takes to send one of the original files, uncompressed, over a network. 

International standards are more portable compared to proprietary high-end solutions. 

Currently, JPEG is possibly the most popular industry standard technique for the 

compression of continuous tone images [20]. 

 In this chapter, several compression schemes including lossless and lossy 

compression methods will be discussed, as a background to the proposed scheme. 
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2 Types of Compression 
 
2.1 Lossless Compression 

In lossless compression the compression ratio is relatively small since, as the 

name “lossless” implies, the original data should be reconstructed without any loss. In 

other words, lossless coding guaranties that the decompressed image is absolutely 

identical to the image before compression. This is an important requirement for some 

application domains, e.g. medial imaging, where not only high quality is in demand, 

but unaltered archiving is a legal requirement. Lossless techniques can also used for 

the compression of other data types where loss of information is not acceptable, e.g. 

text documents and program executables [34]-[36].  

Lossless Coding Techniques: 

• Run length encoding.  

• Huffman encoding. 

• Entropy coding(Lempel/Zev) 

• Area coding. 

2.1.1 Run length encoding 

Run length encoding is a simple method for compression of sequential data. In 

many data streams, consecutive single tokens are identical. Run length encoding 

checks the stream for this fact and inserts a special token each time a chain of more 

than two equal input tokens are found [36]. This special input advises the decoder to 

insert the particular token n times into output stream. 
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            Following is an example of this method:  

Clock      Input          Coder                    Decoder 

            Output                     Output 
 
1                  A 
2                   B                           A 
3                  C                           B                               A 
4                         C                           Ø                              B 
5                         C                           Ø                              Ø 
6                         C                           Ø                              Ø 
7                         C                           Ø                              Ø 
8                         D                           %5C                         Ø 
9                         E                            D                              CCCCC 
10                       Ø                           E                               D 
11                       Ø                           Ø                              E 

In the example, there are 9 tokens going into the coder, but just 7 are going 

out. The effectivity of run length encoding is a function of the number of equal tokens 

in a row in relation to the total number of input tokens. This relation is very high in 

two tone images of the type used for facsimile. Effectivity degrades when the input 

does not contain too many equal tokens. With a rising density of information, the 

likelihood of two following tokens being the same does sinks significantly, as there is 

always some noise distortion in the input. Run length coding is easily implemented, 

either in software or in hardware. It is fast and very well verifiable, but its 

compression ability is very limited [30]-[36]. 
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2.1.2 Huffman coding 

This algorithm is based on the fact that in an input stream certain tokens occur 

more often than others. Based on this knowledge, the algorithm builds up a weighted 

binary tree according to their rate of occurrence. Each element of this tree is assigned 

a new code word, whereat the length of the code word is determined by its position in 

the tree [29]. Therefore, the token which is most frequent and becomes the root of the 

tree is assigned the shortest code. Each less common element is assigned a longer 

code word. The least frequent element is assigned a code word which may be twice as 

long as the input token.  

The compression ratio achieved by Huffman encoding uncorrelated data is 

1:2. On slightly correlated data, as on images, the compression rate is much higher, 

the absolute maximum being defined by the size of a single input token and the size 

of the shortest possible output token (max. compression = token size[bits]/2[bits]). 

While standard palletized images with a limit of 256 colors may be compressed by 

1:4 if they use only one color, more typical images give results in the range of 1:1.2 

to 1:2.5.  

2.1.3   Entropy coding 

The implementation of an entropy coder follows with a wide range of 

modified Lempel/Ziv codings. These algorithms all have a common way of working. 

The coder and the decoder both build up an equivalent dictionary of metasymbols, 

each of which represents a whole sequence of input tokens. If a sequence is repeated 

after a symbol was found for it, then only the symbol becomes part of the coded data 
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and the sequence of tokens referenced by the symbol becomes part of the decoded 

data later. As the dictionary is build up based on the data, it is not necessary to put it 

into the coded data, as it is with the tables in a Huffman coder. This method becomes 

very efficient on virtually random data. The average compression on text and 

program data is about 1:2, the ratio on image data comes up to 1:8 on the average GIF 

image.  A high level of input noise degrades the efficiency significantly. Entropy 

coders are a little tricky to implement, as there are a few tables, all growing while the 

algorithm runs [28]-[36].  

2.1.4 Area coding 

Area coding is an enhanced form of run length coding, reflecting the two 

dimensional character of images. This is a significant advance over the other lossless 

methods. The algorithms for area coding try to find rectangular regions with the same 

characteristics. These regions are coded in a descriptive form as an Element with two 

points and a certain structure. The whole input image has to be described in this form 

to allow lossless decoding.  

The possible performance of this coding method is limited mostly by the very 

high complexity of the task of finding largest areas with the same characteristics. 

Practical implementations use recursive algorithms for reducing the whole area to 

equal sized subrectangles until a rectangle fulfills the criteria defined as having the 

same characteristic for every pixel. This type of coding is highly effective but it bears 

the problem of a nonlinear method, which cannot be implemented in hardware. 
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Therefore, the performance in terms of compression time is not competitive, although 

the compression ratio is. 

2.2 Lossy Compression 

Lossy techniques cause image quality degradation in each compression/ 

decompression step. Careful consideration of the human visual perception ensures 

that the degradation is often unrecognizable, though this depends on the selected 

compression ratio. In general, lossy techniques provide far greater compression ratios 

than lossless techniques [28]-[36].  

In most of the applications we have no need in the exact restoration of stored 

image. This fact can help to make the storage more effective, and this way we get to 

lossy compression methods. Lossy image coding techniques normally have three 

components:  

• Image modelling which defines the transformation to be applied to the image  

• Parameter quantization where the data generated by the transformation is 

quantized to reduce the amount of information. 

• Encoding, where a code is generated by associating appropriate code words to 

the raw data produced by the quantizer. 

Each of these operations are responsible for the compression. Image modelling is 

aimed at the exploitation of statistical characteristics of the image (i.e. high 

correlation, redundancy). Examples are transform coding methods, in which the data 

is represented in a different domain (for example, frequency in the case of the Fourier 
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Transform [FT], the Discrete Cosine Transform [DCT], the Kahrunen-Loewe 

Transform [KLT], and so on), where a reduced number of coefficients contains most 

of the original information. In many cases this first phase does not result in any loss 

of information [30]-[33]. The aim of quantization is to reduce the amount of data used 

to represent the information within the new domain. Quantization is not a reversible 

operation: therefore, it belongs to the 'lossy' methods. Encoding is usually error free. 

It optimizes the representation of the information (helping, sometimes, to further 

reduce the bit rate), and may introduce some error detection codes.  

In the following sections, reviews of the most important coding schemes for lossy 

compression are discussed. Some methods are described in their canonical form 

(transform coding, region based approximations, fractal coding, wavelets, hybrid 

methods). 

Lossy Coding Techniques: 

• Transform coding(DCT/Wavelet/Gabor) 

• Vector quantization. 

• Segmentation and approximation methods. 

• Spline approximation methods(Bilinear Interpolation/Regularization) 

• Fractal Coding. 

2.2.1 Transform Coding (DCT/Wavelets/Gabor) 

A general transform coding scheme involves subdividing an NxN image into 

smaller nxn blocks and performing a unitary transform on each subimage. A unitary 

transform is a reversible linear transform whose kernel describes a set of complete, 
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orthonormal discrete basic functions. The goal of the transform is to decorrelate the 

original signal, and this decorrelation generally results in the signal energy being 

redistributed among only a small set of transform coefficients. In this way, many 

coefficients may be discarded after quantization and prior to encoding [35]. Also, 

visually lossless compression can be achieved by incorporating the HVS contrast 

sensitivity function in the quantization of the coefficients.  

Transform coding can be generalized into four stages:  

• Image subdivision  

• Image transformation  

• Coefficient quantization  

• Huffman encoding. 

For a transform coding scheme, logical modeling is done in two steps: 

Segmentation, in which the image is subdivided in bidimensional vectors (possibly of 

different sizes) and a transformation step, in which the chosen transform (e.g. KLT, 

DCT, and Hadamard) is applied.  

Quantization can be performed in several ways. Most classical approach is to use 

'zonal coding', consisting in the scalar quantization of the coefficients belonging to a 

predefined area (with a fixed bit allocation), and 'threshold coding', consisting in the 

choice of the coefficients of each block characterized by an absolute value exceeding 

a predefined threshold [36]. Another way to achieve higher compression factors is to 

apply a vector quantization scheme to the transformed coefficients. The same type of 

encoding is used for each coding method. In most cases Huffman coding can be used 
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successfully. The JPEG and MPEG standards are examples of standards based on 

transform coding.  

2.2.2 Vector Quantization 

A vector quantizer can be defined as a transform operator T from a K-

dimensional Euclidean space RK to a finite subset X in RK made up of N vectors. This 

subset X becomes the vector codebook. The choice of the set of vectors is of major 

importance [11]. The level of distortion due to the transformation T is generally 

computed as the most significant error (MSE) between the "real" vector x in RK and 

the corresponding vector x’  = T(x) in X. This error should be such as to minimize the 

Euclidean distance d.  

An optimum scalar quantiser was proposed by Lloyd and Max. Linde, Buzo and 

Gray extended it to the case of a vector quantiser. The algorithm they proposed is 

derived from the KNN cauterization method, and is performed by iterating the 

following basic operations:  

• Subdivide the training set into N groups (called 'partitions' or 'Voronoi regions'), 

which are associated with the N codebook letters, according to a minimum 

distance criterion. 

• The centroids of the Voronoi regions become the updated codebook vectors.  

• Compute the average distortion: if the percent reduction in the distortion (as 

compared with the previous step) is below a certain threshold, then stop. 



 12 
 

Once the codebook has been designed, the coding process simply consists in the 

application of the T operator to the vectors of the original image. In practice, each 

group of n pixels will be coded as an address in the vector codebook, that is, as a 

number from 1 to N.  

The LBG algorithm for the design of a vector codebook always reaches a local 

minimum for the distortion function. A careful analysis of the LBG algorithm's 

behaviour allows to detect two critical points: the choice of the starting codebook and 

the uniformity of the Voronoi regions' dimensions [11]. For this reason some 

algorithms have been designed that give better performances. Initialization of LBG 

algorithm with random choice of the starting codebook requires a large number of 

iterations before reaching an acceptable amount of distortion. If the starting point 

leads to a local minimum solution, the relative stopping criterion prevents further 

optimisation steps [11].  

2.2.3  Segmentation and approximation  methods 

With segmentation and approximation coding methods, the image is modelled 

as a mosaic of regions, each one characterized by a sufficient degree of uniformity of 

its pixels with respect to a certain feature (e.g. grey level, texture); each region will 

have some parameters related to the characterizing feature associated with it. The 

operations of finding a suitable segmentation and an optimum set of approximating 

parameters are highly correlated, since the segmentation algorithm must take into 

account the error produced by the reconstruction region (in order to limit this value 

within determined bounds). These two operations constitute the logical modelling for 
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this coding scheme; quantization and encoding are strongly dependent on the 

statistical characteristics of the parameters of this approximation. 

Examples are polynomial approximation and texture approximation. For 

polynomial approximation regions are reconstructed by means of polynomial 

functions in (x,y); the task of the encoder is to find the optimum coefficients. In 

texture approximation, regions are filled by synthesizing a parameterized texture 

based on some model (e.g. fractals, statistical methods, Markov Random Fields). In 

polynomial approximations the problem of finding optimum coefficients is quite 

simple (it is possible to use least squares approximation or similar exact 

formulations), for texture based techniques this problem is complex [28]-[36].  

2.2.4 Spline approximation methods (Bilinear Interpolation/Regularisation)  

These methodologies fall in the more general category of image 

reconstruction or sparse data interpolation. The basic concept is to interpolate data 

from a set of points coming from original pixel data or calculated in order to match 

some error criteria. The problem of interpolating a set of sparse data is generally ill 

posed, so some regularization algorithm must be adopted in order to obtain a unique 

solution. In order to apply this kind of technique to image coding, a good interpolant 

must be used to match visual criteria. Spline interpolation provides a good visual 

interpolant, which requires a great computational effort. Bilinear interpolation is easy 

to implement, while maintaining a good visual quality. Regularization involves the 

minimisation of an energy function in order to obtain an interpolant which presents 

some smoothness constraints; it is combined with non-continuities along edges in 
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order to preserve contour quality during reconstruction. Generally all interpolants 

computations require the solution of very large linear equation sets, even if related to 

very sparse matrices. This leads to the use of recursive solution such as relaxation or 

to the use of gradient descent algorithm.  

The use of an interpolation algorithm for image coding techniques such as two 

source decomposition, where the image is modelled as the sum of two sources; one is 

the stationary part (it can be considered related to the low frequency content), the 

second is the residual content coming from non-stationaries such as edges. The first 

source is coded by means of a prediction scheme that can be one of the previously 

described interpolants. The second source (the residual) can be coded trough the use 

of a classical coding method. Two source decomposition is a very effective coding 

scheme as far as it shows a low tile effect that affects all block coding techniques 

when compression factors become higher [28]-[36].  

2.2.5 Fractal coding (texture synthesis, iterated function system [IFS]) 

Fractal parameters, including fractal dimension, lacunarity, and others have 

the potential to provide efficient methods of describing imagery in a highly compact 

fashion for both intra and inter frame applications. Fractal methods have been 

developed for both noisy and noise free coding methods. Images of natural scenes are 

used because of the fractal structure of the scene content, but results are reported to be 

applicable to a variety of binary, monochrome, and colour scenes.  

  The use of "Iterated Function System" for image compression and synthesis 

using sets of affine transformations developed for a given image, and a principal 
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result known as the "collage theorem", intraframe compressions in excess of 10,000:1 

and interframe compression in excess of 1,000,000:1 were reported. The collage 

theorem states that if an image can be covered (approximately) with compressed 

affine transformations of itself, then the image can be (approximately) reconstructed 

by computing the attractor of this set of affine transformations.  

This convergence was extremely slow, about 100 hours, unless assisted by a 

person and was presented as an illustration of a scientific possibility, not as a 

commercial reality. To develop a product that would function in a commercial 

environment the Iterated Systems had developed the patented technique called the 

'Fractal Transform'. The development allowed images to be reduced to a set of fractal 

equations based on the image being processed, rather than a huge library of pre-

calculated, reference, fractal patterns [32]-[34]. Image compression algorithms which 

are noise free have been reported to be developed from this transform for real time 

automatic image compression at ratios between 10:1 and 100:1  

2.3 Efficiency and quality of different lossy compression techniques 

The performances of lossy picture coding algorithms are usually evaluated on the 

basis of two parameters:  

• The compression factor (or analogously the bit rate) and  

• The distortion produced on the reconstruction.  

The first is an objective parameter, while the second strongly depends on the usage of 

the coded image. A rough evaluation of the performances of a method can be made 
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by considering an objective measure of the error, like MSE or SNR. For lossy 

methods described above, average compression ratios and SNR values obtainable are 

presented in the following table:  

Method VQ DCT-
SQ 

DCT-VQ AP SplineTSD Fractals 

BitRate(bpp) 0.8-0.4 0.8-0.3 0.3-0.08 0.3-0.1 0.4-0.1 0.8-0.0 
SNR(db) 36-30 36-31 30-25 Image 

dependent 
36-32 Image 

dependent 
 

Table 1: Comparison of Compression ratios and SNR values 
 
 

 
2.3.1 Comparison of Different Compression Methods  

During the last years, some standardisation processes based on transform 

coding, such as JPEG, have been started. Performances of such a standard are quite 

good if compression factors are maintained under a given threshold (about 20 times). 

Over this threshold, artifacts become visible in the reconstruction and tile effect 

affects seriously the images decoded, due to quantization effects of the DCT 

coefficients. There are two advantages: first, it is a standard, and second, dedicated 

hardware implementations exist. For applications which require higher compression 

factors with some minor loss of accuracy when compared with JPEG, different 

techniques should be selected such as wavelets coding or spline interpolation, 

followed by an efficient entropy encoder such as Huffman, arithmetic coding or 

vector quantization. Some of these coding schemes are suitable for progressive 

reconstruction .This property can be exploited by applications such as coding of 

images in a database, for previewing purposes or for transmission on a limited 

bandwidth channel.  
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CHAPTER 3 

IMAGE/VIDEO COMPRESSION USING JPEG/MPEG STANDARD 

Introduction to JPEG 

JPEG stands for “Joint Photographic Experts Group” it is a group of people 

(experts) working towards establishing the international digital video compression 

standard for continuous-tone (multi-level) still images which include grayscale and 

color. JPEG is collaboration between ISO and CCITT committees. For single-frame 

image compression, the industry standard with the greatest acceptance is JPEG it 

consists of a minimum implementation (called a baseline system) which all 

implementations are required to support, and various extensions for specific 

applications [20]. JPEG compression algorithms in software form a part of a graphics 

illustration or video editing package. JPEG compression algorithms involves 

eliminating redundant data, the amount of loss is determined by the compression 

ratio, typically about 16:1 with no visible degradation. For more compression where 

noticeable degradation is acceptable compression ratios of upto 100:1 can be employed. 

 3.1 Need for JPEG Compression 

For modern applications like the internet, development of video CD’s, video 

conferencing etc all these applications use graphics and sound intensively and 

consumes very large amount of physical storage. Example TV-quality  full motion 

video requires 720kb per frame displayed at 30 frames per second to get the motion 

effect which means one second of motion consumes 22MB of storage, so a standard 

CD-ROM  with 648 MB could only provide 30 seconds of video. 
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JPEG provides a compression method that is capable of compressing color or 

gray scale continuous tone images of real world subject such as photograph, still 

video or any complex graphics that resemble nature subjects. JPEG does not operate 

on a single algorithm it is built up by various compression techniques which serves as 

its tools. JPEG allows various configurations of these tools depending on the needs of 

the user. There are two scheme of compression in JPEG [24]. One is a lossy scheme 

which means compressed image when decompressed back, isn't the same. The other 

is a lossless scheme which not loses any of the image data when the compressed 

image is decompressed back. That is the image looks exactly the same as the original 

one. But the compression achieved by lossless scheme is not high as lossy, usually 

about 2:1.  

JPEG is developed specifically to discard information that the human eye 

cannot see. Slight changes in color are not perceived well by the human eye, while 

slight changes in intensity are. Due to this fact we can see that JPEG does not 

compress gray scale images as well as colored. usually about 5:1, whereas a colored 

photographic-quality image maybe compressed from 20:1 to 25:1 without 

experiencing any noticeable degradation in quality. The exact threshold at which 

errors become visible also depend on the viewing conditions. The smaller the size of 

an individual pixel, the harder it is to see an error. So errors are more visible on a 

monitor 70 or so dots/inch than on a high quality color printout of 300 or more 

dots/inch. 
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Thus, most multimedia systems use compression techniques to handle 

graphics, audio and video data streams and JPEG forms the important compression 

standard with various compression techniques as building blocks. 

3.2   JPEG Compression and Decompression flow: 

 The picture below shows the basic flow diagram of a JPEG algorithm, it tells 

about the compression and decompression flow in steps [20]-[27].  

 

  

   Figure 1.  JPEG Compression and Decompression flow 

 

Baseline Lossy JPEG 

Most currently available JPEG hardware and software handles only the Baseline 

Lossy JPEG (or sequential DCT-based JPEG). The following are the processes 

discussed in the flow of the algorithm steps: 
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Step1:  Picture Transformation 

The following activities take place in the picture transformation step: 

ColorSpace Transformation  

This step transforms the image into a suitable colorspace and is not necessary 

for the proposed scheme because of the gray scale images. For colored images the 

RGB is transformed into a luminance/chrominance colourspace (YCbCr, YUV etc.). 

The luminance component is a gray scale while the other two chrominance 

components are color information, after separating the image into these three 

components, we will remove more information from the Chrominance (colored) 

components than the luminance component(optional step). This step increase the 

compression ratio as it removes unnecessary information in the chrominance 

components without the human eye detecting the difference. 

Downsample Color Components  

Downsampling   reduces the image size by one-half or one-third. It is done by 

dividing the pixels of each component into groups and for each group we find their 

average value, and use only one pixel of that average value to represent that whole 

group. Downsampling is done only to the chrominance components, reducing them 

by half horizontally and half vertically or no change for the vertical.  

Minimum Coded Unit (MCU)  

An image can be composed of several components, in RGB colorspace we 

have RED, GREEN and BLUE components and each component is then divided into 
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data units. In this baseline lossy mode, each data unit is made up of a block of 8*8 

pixels. If we processed these data units one component by one component at a time to 

display the whole image, we call it non-interleaved mode. Frame buffer is required in 

non-interleaved mode to store all the pixel's values in every component except for the 

very last one. Together with the values stored in the frame buffer and the pixel's 

values of the last component, we will be able to determine the actual value of a 

specific pixel.  

Interleaving eliminates the use of frame buffer. To display an image, using 

interleaved mode, we take a few blocks of data units from each component and 

display them immediately. We don't wait for the whole picture to be formed in the 

frame buffer. The picture is slowly built up as the blocks are processed. Interleaved 

data units of different components are combined into MCU, if all components have 

the same resolution, an MCU consists of exactly one data unit for each component. 

The decoder displays the image MCU by MCU.For a set of color components with 

different resolutions, the MCU is defined interms of frequency of the blocks. 

According to the JPEG standard, up to four components can be coded using 

interleaved mode. Each MCU consists of at most ten data units. Within the image, 

some components can be encoded in the interleaved mode and others in the non-

interleaved mode. 
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Step 2: Picture Processing  

Discrete Cosine Transformation (DCT)  

In this stage the uncompressed image samples are grouped into data units of 

8*8 pixels and passed to the encoder according to the order defined by the MCU. 

Then each of the 8*8 pixels' values go through a transformation performed by DCT, 

using an explicit formula written in terms of the pixel  values ( )yxf ,  and the 

frequency domain transform coefficients, ),( yxF . 
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The output of the transformation will result in the mean value, the DC coefficient is 

located on the top left corner of the data unit and higher frequency coefficients will be 

further away from this DC coefficient. Higher vertical frequencies will be represented 

by higher row numbers where higher horizontal frequencies will be represented by 

higher column numbers [25].  

For reconstruction of the image, the inverse DCT formula is used:  
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Where  
2

1

, 2

1=vu CC  for u, v =0; otherwise 1, =vu CC   

when forward DCT is being applied for an image we can see a great reduction on the 

size of the data. The transformation will result in many zero coefficients and greater 
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concentration of non-zero values on the upper left corner of the data units. When an 

inverse DCT is applied to the frequency domain we will get back the initial picture 

but not a perfect exact reconstruction, as precision will be lost during the rounding off 

of DCT coefficients from real to integer values (the same thing happens when inverse 

DCT is applied).  

Therefore if Forward Discrete Cosine Transformation (FDCT), as well as the 

Inverse Discrete Cosine Transformation (IDCT), could be calculated without loss in 

precision then we will be able to reproduce exactly the same data unit that we started 

with. This is why DCT is considered a lossy process. 

Step 3: Quantization  

Quantization is used to further reduce the values of DCT coefficients in order 

to produce more zero coefficients. In Baseline Lossy JPEG the stepsize is varied 

according to the coefficient location and which color component is encoded [26].  

The equation for quantization is:  

( ) ( ) ( )( )[ ]
( )vuQ

uvQuvF
uvC

,

2/,,
, =                                         (3.3) 

Where C(v,u), is actually the quantized coefficient, F(v,u) is the DCT 

frequency coefficient, and Q(v,u) is the quantizer stepsize for the pixel (v,u) in the 

block. The sign indicates a plus for a positive DCT coefficeint, F(v,u), and a minus 

for a negative DCT coefficient, F(v,u).  

The inverse quantizer equation is given as:  
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( ) ( ) ( )vuQvuCvuF ,,, ∗=                                              (3.4) 

Quantization is also a lossy process. In quantizing an image, the quality factor 

set, will have direct effect on the amount of Quantization performed. If too much 

quantization is done to the image, it will cause the final quantized image to look 

"blocky". Similarly, if too little quantization is performed, it will result in coding 

useless data (or noise) of the image.  

Step 4: Entropy Encoding  

Coding Model  

Before actual entropy is performed to the quantized DCT coefficients, the 

coefficients are rearranged into a one dimensional array using a zig-zag pattern by the 

code model, with the lowest frequency first and highest frequency last. The zig-zag 

pattern is used to increase the consecutive runs of zeros for RLE. During this stage 

the quantized DC coefficient is treated separately from the AC coefficient  

Differential Pulse Code Modulation (DPCM)  

The DC coefficient determines the basic color of a data unit and this value 

varies slightly between successive blocks. The coding of the DC coefficient is done 

by Differential Pulse Code Modulation (DPCM), which codes the differential 

between the quantized DC coefficient of the current block and the quantized DC 

coefficient of the previous block. The formula for the DPCM code:  

( ) ( ) 10,00,0 −−= jj CCDPCMcode                                       (3.5) 

Where j represents the number of the quantized block being processed. The 

inverse DPCM returns the current DC coefficient value of the quantized block being 
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processed by summing the current DPCM code with the previous DC coefficient 

value of the previous quantized block.  

1)0,0()0,0( −+= jjj CDPCMcodeC                             (3.6) 

The DPCM code is represented by the size of the DPCM code followed by the 

significant value of the DPCM code [20]-[27]. 

RLE   

The quantized AC coefficients usually contain a number of consecutive runs 

of zeros. Therefore RLE is used to encode these zero values. 

Huffman \ Arithmetic Encoding   

  Huffman or Arithmetic encoding is used to transform the non-zero AC-

coefficients and the DC coefficients into a spectral representation to compress the 

data even more, the number of bits required depends on the coefficient's value. A 

non-zero AC-coefficient will be represented between 1 to 10 bits. For the 

representation of DC-coefficients, a higher resolution of 1 bit to a maximum of 11 

bits is used.  
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3.3JPEG Applications  

Baseline Lossy JPEG  

• More for use of storing photograph-like images and naturalistic artworks.  

• Due to its great compression efficiency, and permit the ease of exchanging 

images with widely varying display hardware, it is widely used in the Usenet 

and World Wide Web.  

Progressive JPEG  

• The advantage of Progressive JPEG is that it allows viewer to see a rough idea 

of what the actual image looks like and gradually improves the quality. 

Progressive JPEG is slowly gaining popularity in the World Wide Web 

because of its advantage, and more and more software are starting to support it 

including some WWW browser and other programs.  

Motion JPEG (MPEG)  

• Usually used in professional video application areas such as Non Linear 

Editing Systems (NLE), Digital Disk Recorder (DDR) and Media Servers. 

Here video compression is used to reduce implementation cost.  

• Lossless Motion JPEG is used in areas where video quality is of primary 

importance such as Digital video compositing, 3D animation and Medical 

video and photography. 
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3.4 Introduction to MPEG 

MPEG stands for “Moving Pictures Exerts Group”, it is a group of people 

getting together under ISO (International Standard Organization) to generate 

standards for digital video (sequence of images in time) and audio compression [13]. 

The compression algorithms developed depends on the individual manufacturers. 

MPEG defines a bit stream for compressed video and audio optimized to fit a 

band width of 1.5Mbps necessary for audio CD’s and DAT’s. The standard is divided 

into three parts video, audio and systems. The systems part is used to integrate the 

audio and video streams with proper time stamping to allow the synchronization of 

the two. MPEG involves in encoding only key frames through the JPEG algorithm 

(described above) and estimates the motion changes between these key frames. Since 

minimal information is sent between every four or five frames, a significant reduction 

in bits required to describe the image results. Consequently, compression ratios above 

100:1 are common. The MPEG encoder is very complex and places a very heavy 

computational load for motion estimation. Decoding is much simpler and can be done 

by desktop CPUs or with low cost decoder chips. The MPEG encoder makes a 

prediction about an image and transforms and encodes the difference between the 

prediction and the image. The prediction accounts for movement within an image by 

using motion estimation [13], [14]. A given image's prediction may be based on 

future images as well as past ones, the encoder must reorder images to put reference 

images before the predicted ones. The decoder puts the images back into display 

sequence. It takes in the order of 1.1-1.5 billion operations per second for real-time 

MPEG encoding. 
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3.5 MPEG Compression Standards 

There are five MPEG standards that are currently being used and also under 

further development. Each compression standard is designed based on a specific 

application and bit rate [13]-[19]. 

MPEG-1(Designed for upto 1.5 Mbps): This standard is based on CD-ROM 

applications and is popular for video on internet transmitted as .mpg files, level 3 of 

MPEG-1 is a popular standard for digital compression of audio known as MP3, it is 

also the standard of compression for video CD. 

MPEG-2 (Designed between 1.5 and 15 Mbps): this standard is set for digital 

television set top boxes and DVD compression. It is based on MPEG-1, but designed 

for the compression and transmission of digital broadcast television. The most 

significant enhancement from MPEG-1 is its ability to efficiently compress interlaced 

video. MPEG-2 scales well to HDTV resolution and bit rates, obviating the need for 

an MPEG-3. 

MPEG-4: this standard is set for multimedia and Web compression. MPEG-4 is 

based on object-based compression, similar in nature to the Virtual Reality Modeling 

Language. Individual objects within a scene are tracked separately and compressed 

together to create an MPEG4 file. This results in very efficient compression and is 

very scalable; from low bit rates to very high. It allows developers to control objects 

independently in a scene, and therefore introduces interactivity. 
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MPEG-7: this standard is currently under development, it is called as the Multimedia 

Content Description Interface. The objective is to provide a framework for 

multimedia content that will include information on content manipulation, filtering 

and personalization, as well as the integrity and security of the content. Contrary to 

the previous MPEG standards, which described actual content, MPEG-7 will 

represent information about the content. 

MPEG-21: this standard is for Multimedia Framework which is under development. 

MPEG-21 will attempt to describe the elements needed to build an infrastructure for 

the delivery and consumption of multimedia content, and how they will relate to each 

other. 

3.6 MPEG Comparision 

All MPEG standards are back compatible meaning MPEG-1 video sequence can 

be packetized as MPEG-2 or MPEG-4 video. Similarly, MPEG-2 can be paketized as 

MPEG-4 video sequence. The difference between a true MPEG-4 video and an 

MPEG-4 paketized   MPEG-1 video sequence is that the lower standard does not 

make use of the enhanced or new features of the higher standard.  Both MPEG-2 and 

MPEG-4 covers a wide range of picture size and picture rates and bandwidth  usage, 

so MPEG-2 introduced a concept called as Profile@ Level  to communicate 

compatibilities among applications, example studio profile of MPEG -4 is not suitable 

for PDA and vice-versa[13]-[19]. 
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The comparison of MPEG’s is given in the following table with limitations to 

MPEG-1 on   Constrained  Parameters  Bitstream (CPB), MPEG-2 on Main Profile at 

mainlevel (MP@ML) and MPEG-4 on Main Profile at Level 3. 

 

MPEG 1 2 4 

Max Bit Rate (Mbps) 1,86 15 15 

Picture width(pixels) 352 720 720 

Picture height(pixels) 288 576 576 

Picture rate (fps) 30 30 30 

Table 2: Comparison of MPEG 

3.7 Work Procedure of an MPEG 

 An MPEG starts with a relatively low resolution video sequence (possibly 

decimated from the original) of about 352 by 240 frames by 30 frames/s but with 

original high (CD) quality audio. The color images are converted to YUV space, and 

the two chrominance channels (U and V) are decimated further to 176 by 120 pixels.   

    The basic MPEG scheme is to predict motion from frame to frame in the temporal 

direction, and then use DCT's (discrete cosine transforms) to organize the redundancy 

in the spatial directions. The DCT's are done on 8×8 blocks, and the motion 

prediction is done in the luminance (Y) channel on 16×16 blocks.Given,the 16×16 

block in the current frame of coding, we look for a close match to that block in a 

previous or future frame (there are backward prediction modes where later frames are 
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sent first to allow interpolation between frames) [15].The DCT coefficients (of either 

the actual data, or the difference between this block and the close match) are 

"quantized", which means we divide them by some value to drop bits off the bottom 

end, many of the coefficients will then end up being zero.  The quantization can 

change for every "macro block" (a macro block is 16×16 of Y and the corresponding 

8×8's in both U and V).  The results of all of this, which include the DCT coefficients, 

the motion vectors, and the quantization parameters is Huffman coded using fixed 

tables.  The DCT coefficients have a special Huffman table that is "two-dimensional" 

in that one code specifies a run-length of zeros and the non-zero value that ends the 

run.  Also, the motion vectors and the DC DCT components are DPCM (subtracted 

from the last one) coded. 

 There are three types of coded frames. They are I, P and B. the "I" frames are called 

as intra-frames, these frames are coded as a still image, not using any past history.  

The "P" frames are called as predicted frames which are predicted from the most 

recently reconstructed I or P frame [16], [17]. Each macro block in a P frame can 

come with a vector and difference DCT coefficients for a close match in the last I or 

P frames, or it can just be "intra" coded (like in the I frames) if there is no good 

match. Lastly, the "B" frames which are called as the bidirectional frames, they are 

predicted from the closest two I or P frames, one in the past and one in the future. We 

search for matching blocks in those frames, and see which works best.  The sequence 

of decoded frames usually goes like: 

   IBBPBBPBBPBBIBBPBBPB... 
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   Where there are 12 frames from I to I this is based on a random access 

requirement we need a starting point at least once every 0.4 seconds or so.  The ratio 

of P's to B's is based on experience. For the decoder to work, we send the first P 

before the first two B's, so the compressed data stream ends up looking like: 

 0xx312645... 

 where numbers are frame numbers and  xx might be nothing (if above is the true 

starting point), or it might be the B's of frames -2 and -1 if we are in the middle of the 

stream. We have to decode the I, then decode the P, keep both of those in memory, 

and then decode the two B's.  We display the I while we are decoding the P, and 

display the B's as we are decoding them, and then display the P as we are decoding 

the next P, and so on. 

  

     

       Coding Order 

                                         Figure  2.  Flow of an MPEG 

1 2 3 4 7 5 6 

I B B P B B P 
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CHAPTER 4 

NEURAL NETWORKS 

 Introduction to neural networks 

An Artificial Neural Network (ANN) is an information processing paradigm 

that is inspired by the biological nervous systems, such as the brain. The key element 

of this paradigm is the structure of the information processing system. It is composed 

of a large number of highly interconnected processing elements (neurones) working 

in unison to solve specific problems. ANNs, like people, learn by example. An ANN 

is configured for a specific application, such as pattern recognition or data 

classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurones. This is true 

of ANNs as well [2]-[12].  

4.1 Use of neural networks 

Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that 

are too complex to be noticed by either humans or other computer techniques. A 

trained neural network can be thought of as an "expert" in the category of information 

it has been given to analyse. This expert can then be used to provide projections given 

new situations of interest. 

 Advantages:  

• Adaptive learning: An ability to learn how to do tasks based on the data given 

for training or initial experience.  
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• Self-Organisation: An ANN can create its own organisation or representation 

of the information it receives during learning time.  

• Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 

advantage of this capability.  

• Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, 

some network capabilities may be retained even with major network damage.  

4.2 Human and Artificial Neurons 

4.2.1 How the Human Brain Learns? 

In the human brain, a typical neuron collects signals from others through a 

host of fine structures called dendrites. The neuron sends out spikes of electrical 

activity through a long, thin stand known as an axon, which splits into thousands of 

branches [6]. At the end of each branch, a structure called a synapse converts the 

activity from the axon into electrical effects that inhibit or excite activity from the 

axon into electrical effects that inhibit or excite activity in the connected neurons. 

When a neuron receives excitatory input that is sufficiently large compared with its 

inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs 

by changing the effectiveness of the synapses so that the influence of one neuron on 

another changes. 
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                                        Figure 3.  Components of a neuron 

  

                                                 Figure 4.  Synapse 

4.2.2 From Human Neurons to Artificial Neurons 

By deducing the essential features of neurons and their interconnections. We 

program a computer to simulate these features [9]. However because our knowledge 

of neurons is incomplete and our computing power is limited, our models are 

necessarily gross idealizations of real networks of neurons. 
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Figure 5.  The neuron model 

 

 

4.2.3 A simple neuron   

An artificial neuron is a device with many inputs and one output. The neuron 

has two modes of operation; the training mode and the using mode. In the training 

mode, the neuron can be trained to fire (or not), for particular input patterns. In the 

using mode, when a taught input pattern is detected at the input, its associated output 

becomes the current output [10]. If the input pattern does not belong in the taught list 

of input patterns, the firing rule is used to determine whether to fire or not. 
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 X1    Teach/Use 

            X2 
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Xn         

                                                       Teaching Input 

Figure 6.  A simple neuron 

4.2.4 A more complicated neuron 

 A more sophisticated neuron is the McCulloch and Pitts model (MCP). The 

difference from the previous model is that the inputs are 'weighted', each inputs 

decision making is dependent on the weight of the particular input. The weight of an 

input is a number which when multiplied with the input gives the weighted input. 

These weighted inputs are then added together and if they exceed a pre-set threshold 

value, the neuron fires. In any other case the neuron does not fire [11].  

 

                X1                          W1                    Train/Use 
    
                X2                            W2 
 
 
         Output 
                Input  
 
                 Xn                     Wn 
                                                                               Training Input 
                                             
                                                      Figure 7.   An MCP neuron 
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In mathematical terms, the neuron fires if and only if;  

X1W1 + X2W2 + X3W3 + ... > T                                       (4.1) 

The addition of input weights and of the threshold makes this neuron a very 

flexible and powerful one. The MCP neuron has the ability to adapt to a particular 

situation by changing its weights and/or threshold. Various algorithms exist that cause 

the neuron to 'adapt'; the most used ones are the Delta rule and the back error 

propagation. The former is used in feed-forward networks and the latter in feedback 

networks.  

4.3 Architecture of neural networks 

4.3.1 Feed-forward networks 

Feed-forward ANNs  allow signals to travel one way only; from input to 

output. There is no feedback (loops) i.e. the output of any layer does not affect that 

same layer. Feed-forward ANNs tend to be straight forward networks that associate 

inputs with outputs [2]-[12]. They are extensively used in pattern recognition. This 

type of organisation is also referred to as bottom-up or top-down.  
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Outputs 
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                     Figure 8.  An example of a feedforward network 

 

4.3.2 Feedback networks 

Feedback networks can have signals travelling in both directions by 

introducing loops in the network. Feedback networks are very powerful and can get 

extremely complicated. Feedback networks are dynamic; their 'state' is changing 

continuously until they reach an equilibrium point. They remain at the equilibrium 

point until the input changes and a new equilibrium needs to be found. Feedback 

architectures are also referred to as interactive or recurrent, the latter term is used to 

denote feedback connections in single-layer organisations.  
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                 Figure 9.  An example of a complicated network 

 

4.3.3 Network layers 

The common artificial neural network consists of three groups, or layers, of units: 

a layer of "input" units connected to a layer of "hidden" units, which is connected to a 

layer of " output" units.  

• The activity of the input units represents the raw information that is fed into 

the network. 
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• The activity of each hidden unit is determined by the activities of the input 

units and the weights on the connections between the input and the hidden 

units. 

• The behaviour of the output units depends on the activity of the hidden units 

and the weights between the hidden and output units. 

 The hidden units are free to construct their own representations of the input. The 

weights between the input and hidden units determine when each hidden unit is 

active, and so by modifying these weights, a hidden unit can choose what it 

represents.We also distinguish single-layer and multi-layer architectures. The single-

layer organization, in which all units are connected to one another, constitutes the 

most general case and is of more potential computational power than hierarchically 

structured multi-layer organizations[2]-[9]. In multi-layer networks, units are often 

numbered by layer, instead of following a global numbering. 

4.4 The Learning Process 

The memorization of patterns and the subsequent response of the network can be 

categorized into two   paradigms: 

• Associative mapping 

• Regularity detection 
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4.4.1 Associative mapping  

The network learns to produce a particular pattern on the set of input units 

whenever another particular pattern is applied on the set of input units. The 

associative mapping can generally be broken down into two mechanisms:  

• Auto-association: an input pattern is associated with itself and the states of 

input and output units coincide. This is used to provide pattern completion, i.e 

to produce a pattern whenever a portion of it or a distorted pattern is 

presented. In the second case, the network actually stores pairs of patterns 

building an association between two sets of patterns.  

• Hetero-association: It is related to two recall mechanisms:  

Nearest-neighbour: Here the output pattern produced corresponds to the 

input   pattern stored, which is closest to the pattern presented. 

Interpolative:  Here the output pattern is a similarity dependent interpolation 

of the patterns stored corresponding to the pattern presented. This is a variant 

associative mapping, i.e there is a fixed set of categories into which the input 

patterns are to be classified.  

  

4.4.2 Regularity detection  

In regularity detection units learn to respond to particular properties of the 

input patterns. Whereas in associative mapping the network stores the relationships 

among patterns, in regularity detection the response of each unit has a particular 

'meaning'. This type of learning mechanism is essential for feature discovery and 
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knowledge representation.  Every neural network possesses knowledge which is 

contained in the values of the connections weights. Modifying the knowledge stored 

in the network as a function of experience implies a learning rule for changing the 

values of the weights. 
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Figure 10.  Weight Matrix  

Information is stored in the weight matrix W of a neural network. Learning is the 

determination of the weights. Following the way learning is performed, we can 

distinguish two major categories of neural networks: 

• Fixed networks in which the weights cannot be changed, ie dW/dt=0. In such 

networks, the weights are fixed a priori according to the problem to solve. 

• Adaptive networks which are able to change their weights, ie dW/dt should 

not be equal to 0. 

  All learning methods used for adaptive neural networks can be classified into  

 two major categories, namely supervised and unsupervised: 
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Supervised learning: It incorporates an external teacher, so that each output unit is 

told what its desired response to input signals ought to be. During the learning 

process global information may be required [11]. Paradigms of supervised learning 

include error-correction learning, reinforcement learning and stochastic learning 

An important issue concerning supervised learning is the problem of error 

convergence, ie the minimization of error between the desired and computed unit 

values. The aim is to determine a set of weights which minimizes the error. One well-

known method, which is common to many learning paradigms, is the least mean 

square (LMS) convergence. 

Unsupervised learning: Uses no external teacher and is based upon only local 

information. It is also referred to as self-organization, in the sense that it self-

organizes data presented to the network and detects their emergent collective 

properties. Paradigms of unsupervised learning are Hebbian learning and competitive 

learning. 

 We say that a neural network learns off-line if the learning phase and the operation 

phase are distinct. A neural network learns on-line if it learns and operates at the same 

time. Usually, supervised learning is performed off-line, whereas unsupervised 

learning is performed on-line [12]. 
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 4.5 Transfer Function 

The behaviour of an ANN (Artificial Neural Network) depends on both the 

weights and the input-output function (transfer function) that is specified for the units. 

This function typically falls into three categories:  

• Linear (or ramp) 

• Threshold 

• Sigmoid 

For linear units, the output activity is proportional to the total weighted output. 

For threshold units, the output are set at one of two levels, depending on whether the 

total input is greater than or less than some threshold value. For sigmoid units, the 

output varies continuously but not linearly as the input changes [2]-[12]. Sigmoid 

units bear a greater resemblance to real neurons than do linear or threshold units, but 

all three must be considered rough approximations. 

To make a neural network that performs some specific task, we must choose how 

the units are connected to one another and we must set the weights on the connections 

appropriately. The connections determine whether it is possible for one unit to 

influence another. The weights specify the strength of the influence. 

We can teach a three-layer network to perform a particular task by using the 

following procedure: 
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• We present the network with training examples, which consist of a pattern of 

activities for the input units together with the desired pattern of activities for 

the output units.  

• We determine how closely the actual output of the network matches the 

desired output.  

• We change the weight of each connection so that the network produces a 

better approximation of the desired output.  

4.6 Training algorithms for Neural Networks 

The Neural Network has to be configured before it can be used for applications. 

This configuration of neural network is called as training, in which the parameters of 

the network are adjusted to the optimum values, such that the network exhibits the 

desired properties [11]. The training required that the network parameters follow an 

updated rule, which is called as training algorithm. 

Based on the way weights are updated, training is classified in two ways: 

Online or Pattern-wise training: In this mode of training the weights are updated 

for each error. Starting from the first input instance of the data-set, the error for each 

input is calculated as shown in the above equation. The amount weight can be given 

by 

w
w

∂
∂−=∆ εη                                                (4.2) 
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Where  η  is the learning rate? The procedure is repeated until the last instance of the 

data-set. 

Batch or epoch wise training: In this mode the weights are updated on the 

calculation of the total error Totalε   the weights are updated when a complete batch or 

data-set are presented to the network. The amount of weight change is given by  

                                              
w

w Total

∂
∂

−=∆
εη                                              (4.3) 

4.6.1 Back propagation algorithm 

The backpropagation algorithm is a supervised learning method for multi-

layered feedforward neural networks using sigmoidal activation functions. It was 

developed by Paul Werbosin in 1974 and was later extended by Rumelhart, Hinton 

and Williams in 1986 this was the first network with more than one hidden layer. It is 

a gradient descent local optimization technique, it involves backward error correction 

of the network weights [28]-[36]. For non-linear applications the backpropagation 

algorithm has a local minima problem, it cannot find the global minima. 

Architecture of the Network 

 The Backpropagation architecture consists of an input layer, a minimum of 

one hidden layer and an output layer. The nodes in each layer are fully connected to 

the nodes in previous and next layers. Each connection is associated with a synaptic 

weight. 
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                          Input layer                      Hidden Layer                      Output layer 

                             Figure 11.  Backpropagation  architecture 

 

The flow through the network can be described as follows: 

• Input to Hidden layer: The input layer loads data from the input vector X, and 

sends them to the first hidden layer. 

• Hidden layer: The hidden layer units receive weighted input and transfer them 

to the next hidden or output layer using   one of the transfer functions 

(sigmoid). 

• As the information propagates through the network all the summed inputs and 

output states are computed in each processing unit. 

• Backpropagation from the output to the hidden layers: the scaled local error  

and weighted increments or decrements are computed  for each layer 

backwards, starting from the output layer and ending at the first hidden layer, 

and finally weights are updated this process is repeated until the error is 

minimized . 
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Computation involved in the Network: 

Let us consider that the input, hidden and the output layer consists of N, K and M 

Neurons respectively. Let us take the output of the m-th output node due to p-th input 

pattern  is given by  pmO , the output of the k-th hidden node for the p-th input pattern 

is given by  pkO
−

  the biases k

−
θ   and mθ  are associated with the k-th hidden node and 

the  m-th ouput node respectively [28]-[36]. Let kmω  be the weight between the m-th 

output neuron and the k-the hidden neuron and nk

−
ω  be the weight between k-th 

hidden neuron and n-th input neuron. The desired output for the m-th output neuron 

due to p-th input pattern is given bypmτ . The input for the n-th input neuron due to p-

th input pattern is denoted by pnx (where pnx  is either 0 or 1). Using this definition 

the output of the k-th node in the hidden layer is given by: 

pkO
−

= f 






 +∑
=

−−N

n

kpnnk x
1

θω                                   (4.4) 

Where f is the activation function (sigmoid) defined as  

xexf −+= 11)(                                               (4.5) 

Similarly the output of the m-th node in the output layer is given by: 

pmO = f 






 +∑
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_
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We define sum of the squared error of the system to be: 
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The backpropagation  learning  algorithm is to change the current weights  

kmω  and nk

−
ω  iteratively such that the system error function E is minimized. The  

            weight updates are proportional to the partial derivative of E with respect to kmω . 
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And the partial derivative of E with respect  to nk
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ω  is: 
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The weight change for the (n+1)-th iteration can be expressed as follows (where η  

and α   are the learning rate and the momentum of the gradient method respectively). 
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or    
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         where 
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The biases mθ  and k

−
θ  are update similar to  kmω  and  nk

−
ω  using equations (4.12)-

(4.14). 
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CHAPTER 5 

        IMAGE/VIDEO COMPRESSION USING NEURAL NETWORKS 

Apart from the existing technology on image compression represented by series 

of JPEG, MPEG and H.26x standards, new technology such as neural networks and 

genetic algorithms are being developed to explore the future of image coding. The 

various architectures of neural networks discussed in the previous chapters can be 

used for the compression of still images and motion pictures. Research on neural 

networks of image compression is still making steady advances which could have a 

tremendous impact upon the development of new technologies and algorithms in this 

subject area [2]-[12]. Successful applications of neural networks to vector 

quantization have now become well established, and other aspects of neural network 

involvement in this area are stepping up to play significant roles in assisting with 

traditional technologies. 

 
5.1 Back-propagation image compression. 
 
5.1.1 Back propagation Neural Network. 
 

Back-propagation neural networks can be directly applied to image 

compression coding. The neural network structure can be illustrated as three layers, 

one input layer, one output layer and one hidden layer. The input layer and output 

layer are fully connected to the hidden layer. Compression is achieved by designing 

the value of K, the number of neurons at the hidden layer, less than that of neurons at 

both input and the output layers.  
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                                    Figure 12.   Back-propagation Neural Network 

 

The input layer and output layer are fully connected to the hidden layer. 

Compression is achieved by designing the value of K which is the number of neurons 

at the hidden layer which must be less than that of neurons at both input and the 

output layers. The input image is split up into blocks or vectors of 8×8, 4×4 or 16×16 

pixels [8],[9]. When the input vector is referred to as N-dimensional which is equal to 

the number of pixels included in each block, all the coupling weights connected to 

each neuron at the hidden layer can be represented by {jiW , j =1, 2,…,K and i =1, 2,.., 

N, which can also be described by a matrix of order KxN. From the hidden layer to 

the output layer, the connections can be represented by {ijW :1 KjNi ≤≤≤≤ 1, } 

which is another weight matrix of order N×K. Image compression is achieved by 

training the network in such a way that the coupling weights{Wji} scale the input 

vector of N-dimension into a narrow channel of K-dimension (K<N) at the hidden 

layer and producing the optimum output value which makes the quadratic error 
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between input and output minimum. In accordance with the neural network structure 

shown, the operation of a linear network can be described as follows: 

∑
=

=
N

i
ijij xWh

1

                 Kj ≤≤1 (For encoding)                           (5.1) 

            j

K

j
iji hWx

−

=
∑=

1

'                  Ni ≤≤1 (For decoding)                          (5.2) 

      Where [ ]1,0∈ix   which means they are the normalized values for the grey scale 

images with grey levels [0,255]. The reason for normalizing pixel values is neural 

networks can operate more efficiently when their input and output values are limited 

to a range of [0, 1]. The above linear network can be transmitted into a nonlinear one 

by adding   a transfer function like sigmoid to the hidden layer and the output layer. 

 The back-propagation neural network compression is conducted in two phases 

training and encoding. In the first phase, a set of image samples are fed to train the 

network using the back-propagation learning rule which uses each input vector as the 

desired output. This is equivalent to compressing the input into the narrow channel 

represented by the hidden layer and then reconstructing the input from the hidden to 

the output layer. The second phase involves the entropy coding of the state vector hj 

at the hidden layer. In the case of adaptive training the entropy coding of these 

coupling weights is required in order to catch up with some input characteristics that 

are not encountered at the training stage. The entropy coding is designed as the fixed 

length binary coding although many advanced variable length entropy coding 

algorithms are available. One of the reasons for this is the research community is 

concerned with the part played by neural networks. Therefore, the compression 

performance can be assessed in terms of the compression ratio or bit rate [10], [11]. 
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For the back propagation narrow channel compression neural network, the bit rate can 

be defined as follows: 

 bit rate= pixelbits
nN

NKtnKT
/

+
                                  (5.3) 

 
  where input images are divided into n blocks of N pixels or n N-dimensional 

vectors; T and t stand for the number of bits used to encode each hidden neuron 

output and each coupling weight from the hidden layer to the output layer. When the 

coupling weights are maintained the same throughout the compression process after 

training is completed, the term NKt can be ignored and the bit rate becomes KT/N 

bits/pixel. Since the hidden neuron output is real valued, quantization is required for 

fixed length entropy coding which is normally designed as 32 level uniform 

quantization corresponding to 5 bit entropy coding. 

This neural network development is in the direction of K-L transform 

technology which actually provides the optimum solution for all linear narrow 

channel type of image compression neural networks [3]. When above equations are 

represented in matrix form, we have 

  [h]= [ ]TW [x]                                  (For encoding)            (5.4) 
 

            ][]]['[]]['[][ xWWhWx T==                (For decoding)          (5.5) 
 

The K-L transform maps input images into a new vector space where all the 

coefficients in the new space are de-correlated. This means that the covariance matrix 

of the new vectors is a diagonal matrix whose elements along the diagonal are 

eigenvalues of the covariance matrix of the original input vectors. Let ei and iλ , i=1, 

2.. n, be eigenvectors and eigenvalues of xc , the covariance matrix for input vector x, 
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and those corresponding eigenvalues are arranged in a descending order so that 

1+≥ ii λλ , for i=1, 2.. n. To extract the principal components, K eigenvectors 

corresponding to the K largest eigenvalues in xc  are normally used to construct the K-

L transform matrix, [AK], in which all rows are formed by the eigenvectors of xc . In 

addition, all eigenvectors in [AK] are ordered in such a way that the first row of [AK] 

is the eigenvector corresponding to the largest eigenvalue, and the last row is the 

eigenvector corresponding to the smallest eigenvalue [4],[5]. Hence, the forward K-L 

transform or encoding can be defined as: 

[y][ KA ] ([x]-[ xm ])                                          (5.6) 

 
and the inverse K-L transform or decoding can be defined as: 
 

[ ] ][][ x
T

K myAx +=




 −
                                  (5.7) 

where [ xm ] is the mean value of [x] and [
−
x ] represents the reconstructed 

vectors or image blocks. Thus the mean square error between x and 
−
x  is given by the 

following equation: 
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where the statistical mean value E{.}  is approximated by the average value 

over all the input vector samples which, in image coding are all the nonoverlapping 

blocks of 4×4 or 8×8 pixels. Therefore, by selecting the K eigenvectors associated 

with the largest eigenvalues to run the K-L transform over input image pixels, the 

resulting errors between the reconstructed image and the original one can be 
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minimized due to the fact that the values of s'λ  decrease monotonically. From the 

comparison between the equation pair (2.4) and (2.5) and the equation pair (2.6) and 

(2.7), it can be concluded that the linear neural network reaches the optimum solution 

whenever the following condition is satisfied: 

  ][][]][[ '
K

T
K

T AAWW =                                       (5.9) 
  

Under this circumstance, the neuron weights from input to hidden and from hidden to 

output can be described respectively as follows: 

  [ ] 1' ]][[ −= UAW K ,                                       (5.10) 
           

T
K

T AUW ]][[][ =                                       (5.11) 
 

where [U] is an arbitrary KxK matrix and[U][ ] 1−U  gives an identity matrix of  
 

KxK. Hence, it can be seen that the linear neural network can achieve the same  
 
compression performance as that of K-L transform without necessarily obtaining its  
 
weight matrices being equal to [ ]T

KA and [AK]. 
 

 
5.2 Simulation 

 After training the network using one or more frames, we apply the 

performance phase, which is here equivalent to the coding/decoding  process. The 

hidden layer weight matrix is multiplied by the output of the pre-processor. Then, the 

bias is added and the output layer transfer function is applied to the result. This result 

is  the output of the hidden layer. The process is repeated to obtain the output of the 

output layer with the input being the output of the hidden layer.  
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5.3 Post-processing 

 During decoding, the images are reconstructed using the coding product 

associated with the input patterns, which will be the output of the hidden layer 

together with the weights. The reconstructed image will be an approximation of the 

original one in the decoding phase. 

5.4 Proposed Image Compression Architecture. 

 The proposed  architecture employs an image/video compression method 

which uses neural networks in combination with simple motion  detection techniques 

to give an overall improved performance.  In general, the network is  initially, trained 

with some frame until the weights are adapted.  The adapted weights are used for 

coding the   frame sequence. Since the adapted weights may not be optimal for the 

particular frame sequence we may need to train the network using frames at regular 

intervals and code the subsequent frames using the updated netrwork.  The detailed 

description of the architecture is discussed in the following sections. 

 The second scheme deals with the motion detection techniques. Here, the 

initial frame, say Frame1, is transmitted through the neural network to the receiving 

end, while the subsequent frames are coded as follows: Each 8×8 block is compared 

with the 8×8 block of the previous frame, i.e the 8×8 blocks of Frame2 are compared 

with Frame1. A bit is used to inform about the existence or not of motion. The blocks 

for which motion is detected are transmitted through the neural network to the 

receiving end along with 1 bit. The blocks for which motion has not been detected 
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remains the same as in the previous frame, which increases the compression ratio 

without significantly affecting the frame quality. 

5.4.1 Encoding 

   The encoding and decoding phases are explained in terms of an example. 

Consider the video sequence of  “hotel” containing a set of 98 frames. The initial 

frame which will be the first input is divided into an array of 8×8 blocks. Those 

blocks are given as input to train the neural network architecture until the weights are 

adapted. We have trained for 100,200,300,400 and 500 epochs. Then, the adapted 

weights of this initial frame are used for the direct coding of subsequent frames. Thus, 

the compression is achieved at the hidden layer depending on the number of neurons 

in the layer and the number of quantization levels used for weights and hidden layer 

outputs. 

5.4.2 Decoding process 

 The compressed data in the hidden layer is passed to the output layer for 

reconstruction of the images. Therefore, the compressed data for all the frames 

starting from frame 1 to the last frame is passed to the output layer for reconstruction. 

The error for each frame is calculated by comparing the reconstructed with the 

original image.  These error values are used for the calculation of the signal to noise 

ratio of the images for particular compression ratios. 

  The advantage of the above method is that the training is not done often which 

increases the technique’s processing speed while maintaining the compression ratio. 
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Compare blocks 
w.r.t position of 

frame 

Transmitting the motion detected between frames.  

     In this scheme, we train the network using the initial frame (F1) until the 

weights are adapted, the adapted weights are transmitted for direct coding of  F1. 

Now, at the transmitting end, frame2 (F2) is split into 8×8 blocks. In our case, since 

the images are of size 512×480 we get 3840 8×8 blocks for each frame. Therefore, 

the 8×8 blocks in frame2 (F2) are compared with the 8×8 blocks of frame1 (F1) and 

checked for motion based on the following equation: 

                  M.D = abs ( ) ( )( )∑∑ −
x y

nmnm YXFYXF 2
,, ,.2,.1                       (5.12) 

 

 

                        Frame1                                                       Frame2 

 
 
 
 
 
 
 
 

Figure 13.  Motion Detection 
  
 
 

The information about the detected 8×8 blocks is stored in an array which is 

sent to the receiving end. Thus, after we complete the comparison of all blocks, we 
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transmit the 8×8 blocks of frame2 (F2) where motion is detected through the neural 

network decoding part at the receiver which has already received the adapted weights 

at the receiving end, these blocks are reordered in their original position to construct 

frame2 (F2). The same process is carried out for subsequent frames (i.e. frame2 (F2) 

is compared with frame3 (F3)) till the last frame of the video sequence. 

            This technique has the advantage of transmitting only the motion part in 

combination which gives an additional compression compared to the case where all 

blocks are transmitted.  This technique is helpful for motion pictures where the 

change between frames is relatively small. 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 14.   Flow of the proposed scheme 
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Retraining Frames at regular intervals. 
 
          In this case, we train the network using frames of the motion picture at regular 

intervals. Initially, frame1 is used to train the network and obtain the first set of 

weights (for 100,200 or 300 epochs). The adapted weights are used for coding of the 

trained frame and the subsequent frames until a new weight update takes place. In our 

case, we consider the training frequency to be four. For instance, after the first weight 

update, the weights are again updated using the fifth frame. Then, the new weights 

are used to code the next four frames starting from frame5. As the training frequency 

decreases, the compression ratio increases and vice-versa.  

             
 
 
                                          Figure 15.  Retraining frames  
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Self-Adaptive Training:  
  
             This is a modification of the above scheme in which, instead of training the 

frames at regular intervals, we train the frames based on a threshold value. In this 

case, frame1 is trained initially and then the following frames are coded using the 

obtained weights. The same set of weights is used until an error-based threshold value 

is reached.  The threshold value is calculated based on the mean square error of the 

reconstructed frame with respect to the original one. Once the threshold is reached 

then the next frame in the series is used to train the network in order to obtain a new 

set of weights. The updated weights are used for coding the subsequent frames. Based 

on this approach, training is performed only when the quality of the reconstructed 

frames is degraded significantly.  This technique results in higher compression ratios 

compared to the technique in which retraining is performed at regular intervals. 

 

Proposed Technique: Here, motion is used in combination with retraining to 

improve the compression ratio. The procedure followed here is similar to the motion 

detection one. However, similarly to the self-adaptive training technique, when the 

error for a frame exceeds a certain threshold value, retraining is performed to update 

the weights. The updated weights help reducing the error for future frames, which 

then results in transmitting a smaller number of blocks. This in-turn increases the 

compression ratio. The proposed scheme helps in drawing some useful conclusions 

with respect to compression ratio and signal-to-noise ratio. 

 



 64 
 

CHAPTER 6 

RESULTS 

 
 The video compression techniques presented in chapter 5 are tested and 

results are presented for various scenarios using a set of 98 frames of a “hotel” 

motion picture. The comparisons are made based on the signal-to-noise ratio vs 

compression ratio. 

 

6.1 Comparison of results for various test scenarios. 

 Image/Video compression results are presented for various test scenarios 

with the help of a motion picture containing a set of 98 frames. The set of frames are 

tested for motion detection, the retraining frames method and the self-adaptive 

method. The results obtained from the above tests were useful in drawing some 

conclusions regarding the aforementioned techniques. The compression ratio and 

peak-signal-to-noise ratios (PSNR) are calculated based on the following formulas for 

all the test scenarios. 

 

Compression ratio=
( )[ ]

QPT

WWBRTANMLK

××
××+××++×× )1()(

                    (6.1) 

where 
 
 
K  =   No. of blocks transmitted. 
L   =  No. of outputs from hidden layer 
M  =  bits per output 
N   =  No. of bits for mean 
T   =  Total no. of blocks 
P   =  No. of pixels per block 
Q   = No. of bits per pixel 

R  = 1bit per block to send the motion 
information. 

W   =  No. of weights 
W1 =  No. of bits per weight 
A    =  1, if motion is detected 
A    =  0, if motion is absent 
B    =   1, if retraining is done 
B    =   0, if retraining is not done 
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PSNR=10× )/1(log10 error                  (6.2) 

 

Case1:  Initially, the “Lena” image is trained for different epochs (100,300,500) and 

4 hidden nodes in the network. The network is also tested for a still image with the 

above parameters. We can see that as the training was increased to 500 epochs, the 

weights seem to be better adapted to the particular image, and thus the quality of the 

reconstructed image is higher compared to the one trained for 100 or 300 epochs. 

Nevertheless, training for 500 epochs has higher processing requirements compared 

to the other two cases. Moreover, Figure 16 illustrates that as the compression ratio 

increases; the difference in terms of PSNR between the three different cases becomes 

negligible.  
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   Figure 16.  Performance of the Lena Image 
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Case2: Initially, we train the network using the initial frame of a motion picture 

containing a set of 98 frames of a hotel sequence. The trained weights, using the 

initial frame, are used for the direct simulation of all the 98 frames. From Figure 17, 

we can conclude that the video picture quality is higher for as the number of training 

epochs increases. However, as in the example of Figure 16, it can be seen that the 

difference in terms of PSNR decreases as the compression ratio decreases. 

4 5 6 7 8 9 10 11 12 13
36

37

38

39

40

41

42

43

44

Compression Ratio

P
S

N
R

 (
dB

)

100 EPOCHS
200 EPOCHS
300 EPOCHS
400 EPOCHS
500 EPOCHS

 

            Figure 17.  Direct Simulation of Frames. 

 

Case3: Here two motion pictures are concatenated. These are the “hotel” sequence 

which contains relatively complex images, and the “golf” sequence which contains 

simple images. The initial frame of the hotel sequence is trained and these weights are 

used to code the mixed video sequence i.e. frame1 to frame 98 for hotel sequence and 

frame 99 to frame 149 for golf sequence. We can see from Figure 18 that there is a 

sudden change in the PSNR at frame 99 because of the transition from hotel image to 

golf image. In this case, the PSNR increased. Since the golf image is a simple image 
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and the information contained in it is most probably included in the hotel sequence, 

the network trained using the hotel sequence will be capable of producing a high  

quality reconstruction of the frames. On the other hand, when the same experiment is 

repeated by placing the golf sequence prior to the hotel sequence, there is a sudden 

PSNR change at frame 51 which is the frame at which the transition from the simple 

(golf) to the complex (hotel) image sequence occurs. This shows that the network 

using the weights obtained after training the first frame of the golf sequence is not 

capable of successfully coding the hotel sequence which contains more significant 

information.  

 

In addition to the above observations, it is important to mention that the PSNR for the 

golf sequence, when the network is trained using the first frame of the hotel sequence, 

is higher than the PSNR for the golf sequence when the network is trained using the 

first frame of the golf sequence. This may be surprising at first, however it should be 

expected. Since the hotel sequence provides a “better” set of blocks for training the 

network, all frames of the golf sequence can be effectively coded. However, when the 

first frame of the golf sequence is used to generate the network’s weights, the 

subsequent frames of the golf sequence can not be successfully represented by the 

information included in the network weights. This happens because this information 

is provided by the “not so good” set of blocks of the first frame of the golf sequence. 
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  Figure 18.  Comparison of Hotel-golf/golf-hotel sequences 

 

Case4: Here retraining of video frames is done at regular intervals (3, 4, 5, 6 frames) 

to update the weights of the neural network for improving the quality of the video 

sequence, since the initial set of weights may not be “good” for coding the frames at a 

later stage. From the Figure 19, we can see that as the retraining frequency increases, 

the quality of the reconstructed frame sequence increases, however the compression 

ratio is decreased and more processing is required. 
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                                       Figure 19.  Retraining at regular intervals 
 

 

Case5: Here, retraining is done at regular intervals of 10 frames and the updated 

weights are used in between the intervals (Example 15th frame). This technique is 

useful when we have parallel processors where training takes place continuously and 

the weights are updated while the coding takes place in parallel. 

 

C.R(4-nodes) 12.7826 12.7878 
PSNR 36.6264 36.5285 
C.R(8-nodes) 7.1057 7.1074 
PSNR 39.9610 39.3818 
C.R(12-nodes) 4.9205 4.9213 
PSNR 41.1565 40.7913 

                           
                                Table 3:  Retraining for different nodes    



 70 
 

0 10 20 30 40 50 60 70 80 90 100
118

118.5

119

119.5

120

120.5

121

121.5

122

122.5

Frames

P
S

N
R

 (
dB

)

RETRAINING 10 FRAMES

 

                  Figure 20.   Retraining every 10th frame 

 

 

Case6: In this case there is a comparison between the direct coding and retraining 

techniques. Figure 21 indicates that retraining using frames at regular intervals helps 

in maintaining the quality of the video sequence with some additional overhead of 10 

sets of weights. 



 71 
 

0 10 20 30 40 50 60 70 80 90 100
118

118.5

119

119.5

120

120.5

121

121.5

122

122.5

Frames

P
S

N
R

 (
dB

)

DirectSimulation

Retraining

 

  Figure 21.  Comparison between Direct simulation and Retraining 
 

 

 

Case7: In this method, retraining is done only when the error of the reconstructed 

image exceeds certain threshold value. The network automatically retrains when the 

error exceeds that threshold. This method is useful for reducing the overhead when 

compared to retraining at regular intervals. The compression ratios are higher 

compared to training at regular intervals. 
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   Figure 22.   Self-Adaptive Network 

                                         

C.R(4-nodes) 12.7965 12.7930 12.7497 
PSNR 36.3063 36.5262 36.6852 
C.R(8-nodes) 7.1090 7.1068 7.0998 
PSNR 39.5036 39.6193 39.8968 
C.R(12-nodes) 4.9220 4.9205 4.9166 
PSNR 40.6794 41.3236 41.2650 

                                         
                                         Table 4:  Self-adaptive network  

 
Case8: Here, we apply the motion detection technique in which the frames in the 

sequence are split into 8×8 blocks. These blocks are then compared to the 8×8 blocks 

in the next frame, and if there is a motion detected that particular block is transmitted 

through the neural network to the receiving end. The received blocks are placed in 

their respective positions to construct the new frame. Thus, the frame at the receiving 
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end is built based on the previous frames blocks and newly coded blocks. Figure 23 

shows the results of this approach using 4, 8, and 12 hidden nodes. Furthermore, 

different thresholds have been used for motion detection for each one of the three 

cases. In this method, significantly high compression ratios are attained. Nevertheless, 

as indicated from Figure 23, in certain cases, using a smaller number of hidden nodes 

for increasing the compression ratio may be preferred over using the motion detection 

approach. In any case, using the motion detection approach for small motion 

detection thresholds (which implies that only few blocks will be considered as 

showing lack of motion) increases the compression ration without affecting the 

PSNR. 
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                         Figure 23.  Motion Detection  
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C.R 
4node 

12.61 20.98 25.79 28.60 32.34 36.72 40.911 45.01 48.921 52.806 57.544 

PSNR 36.19 36.22 36.06 35.53 34.30 33.11 32.191 31.47 30.939 30.519 30.171 

C.R 
8node 

7.084 11.96 14.82 16.91 19.59   22.43    25.015   27.39 29.640 31.881 34.642 

PSNR 38.73 38.77 38.21 36.29 34.34 33.02   32.104   31.42   30.91 30.523    30.202 

C.R 
12nod 

4.925  8.285   10.46  12.12  14.10   16.14    18.000   19.66   21.232 22.724    24.616 

PSNR 40.12 40.18      38.93    36.16    34.08    32.79    31.880   31.26   30.81 30.510   30.224 

 

                                      Table 5:  Motion Detection for different nodes       

Case9: This case presents a comparison between the technique that uses motion 

detection and the one that uses motion with retraining. Figure 24 and Table 6 

illustrate that, for a given threshold value, the motion with retraining technique has 

resulted in higher compression ratios for a given PSNR when compared to the 

technique that only uses motion detection. This is because retraining updates the 

weights so that the corresponding error is not allowed to increase considerably. As a 

result, only few blocks are transmitted to the receiving end, due to motion detection, 

which in-turn increases the compression ratio.  
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       Figure 24.  Combination of motion with retraining. 

 

 

Error 0.001 0.005 0.010 0.015 0.02 
C.R(motion) 12.6117 20.8914 25.7960 28.6054 32.3459 

PSNR 36.1964 36.2278 36.0678 35.5321 34.3099 
C.R(motion,RT) 12.6100 21.6539 25.8658 28.6402 32.0302 

PSNR 36.2888 36.2778 35.9758 35.2768 34.0465 

 
Table 6:  Motion with Retraining  
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Original Image Reconstructed Image

 

 Figure 25: Comparison of Original and reconstructed Images 

 

     Figure 25 presents a comparison between the original and the reconstructed image 

that has gone through motion with retraining.  

 

 

 

 

 

 

 

 

 



 77 
 

 

 

CHAPTER 7 

DISCUSSIONS AND CONCLUSIONS 

         In this thesis, we have discussed various video compression schemes. The 

results were useful in drawing important conclusions about those schemes. The 

algorithms implemented and tested are mainly based on the idea of neural network 

based image compression.  

 Compared to other existing neural network schemes, the major advantage 

of the proposed technique is that it provides better PSNR for a given compression 

ratio. In general, it was shown that the combination of the neural network techniques 

with some basic motion detection helped in achieving higher compression ratios. 

Neural Network weight retraining improved the image quality compared to previous 

techniques. Moreover, the Self-adaptive retraining achieved even higher PSNR for a 

given compression ratio. 

 Future work includes incorporation of lossless techniques to supplement 

the neural network approach. 
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      APPENDIX 

          MATLAB CODES 

Functions used for Single-structure Neural Network compression: 

• mynewff-Creates a feedforward Neural Network 
• mysim-Simulates the Network and returns the output. 

 

Functions used for proposed architecture: 

• directsim-Used for the direct simulation of frames. 
• retrain -Used for retraining of frames at regular intervals. 
• motion-Used for motion detection between frames. 

 

Functions both common to Neural Network and proposed architecture: 

• Image_to_blocks-Breaks up the image of UxV size into zxz blocks and changes  the  
Dimensions. 

• reconstruct- Performs inverse of image_to_block operation. 
 

Script which executes all the three cases. 

• Compute. 

Test Images 

       Lena.tiff and a set of 98 frames of a motion picture named hotel.seq1….98 
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