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Abstract 

 

Current hard drive technology shows a widening gap between the ability to store vast 

amounts of data and the ability to process.  To overcome the problems of this secular trend, we 

explore the use of available distributed RAM resources to effectively replace a mechanical hard 

drive. 

The essential approach is a distributed Linux block device that spreads its blocks 

throughout spare RAM on a cluster and transfers blocks using network capacity.  The presented 

solution is LAN-scalable, easy to deploy, and faster than a commodity hard drive. The specific 

driving problem is I/O intensive applications, particularly digital forensics.  

The prototype implementation is a Linux 2.4 kernel module, and connects to Unix based 

clients. It features an adaptive pre-fetching scheme that seizes future data blocks for each read 

request. We present experimental results based on generic benchmarks as well as digital forensic 

applications that demonstrate significant performance gains over commodity hard drives.
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Chapter 1: Introduction 
 

One of the most important and well-known problems in digital forensics is how to handle 

large amounts of data quickly. One example is file carving, which means extracting files of 

specific types from a captured disk image. File carving applications cannot avoid sequentially 

processing the entire disk image to provide the correct results. While there is some CPU 

processing involved in such a task, there is a greater amount of I/O processing. Every application 

in digital forensics is highly I/O bound because files must be read from the disk for examination. 

Since most digital forensic tools belong in the application level inside of the system architecture 

[Figure 1.1], they cannot dramatically change the I/O performance. In order to achieve better I/O 

performance, a change in a lower level, such as the block device level, is needed. 
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ext2/3 NTFS FAT32QuickTime™ and a
 decompressor

are needed to see this picture.

Block-Level Device

Hard Drive RAM

APPLICATION LAYER

FILESYSTEM LAYER

BLOCK LAYER

HARDWARE LAYER

 

Figure 1.1 The typical architectural layering of an operating system 
 

 

1.1 Motivation 
 

Caching is a popular way to improve performance by conveniently storing data so that 

future accesses will be quicker. Internet browsers store web sites on the hard drive so the user 

won’t have to download them until it’s updated. Operating systems cache process information 

and pieces of code in RAM so they can perform frequent instructions faster and give a better 

experience to the user. CPUs work similarly by caching the most frequently accessed data, with 

speeds much greater than the Hard Drive and RAM.  Unfortunately, CPU cache has a much 

smaller capacity that RAM, and RAM has a much smaller capacity than hard drives. Figure 1.2 
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displays the tradeoff of performance cost vs. storage capacity in the 3 main caching devices on a 

computer system: CPU Cache, RAM, and the Hard Drive. 

 
 

 
 

 The performance vs. capacity tradeoff is still growing and increasingly becoming a major 

issue as Patterson [2] points out. Table 1.1 [2] shows the hard drive improvements through the 

years of 1983-2003. We can clearly see that in 1983, the bandwidth was (1/50th of capacity) per 

second, and in 2003 the bandwidth equaled (1/854th of capacity) per second. It is clear to see that 

the capacity/performance gap is increasing with time. 

 

 

 

 

 

  

Figure 1.2 A diagram showing the performance cost vs. capacity tradeoff between 
the 3 main system storage components. 

CPU Cache

RAM

Hard Drive

Capacity Performance Cost
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Hard Disk 3600 RPM 5400 RPM 7200 RPM 10000 RPM 15000 RPM 

Product CDC Wrenl 

94145-36 

Seagate 

ST41600 

Seagate 

ST15150 

Seagate ST39102 Seagate 

ST373453 

Year 1983 1990 1994 1998 2003 

Capacity 0.03 GB 1.4 GB 4.3 GB 9.1 GB 73.4 GB 

Interface ST-412 SCSI SCSI SCSI SCSI 

Bandwidth .6 MB/s 4 MB/s 9 MB/s 24 MB/s 86 MB/s 

Latency 48.3 msec 17.1 msec 12.7 msec 8.8 msec 5.7 msec 

Table 1.1 A table showing the history of hard disk trends in capacity, bandwidth, and latency 
 
 

 

Because of the performance vs. capacity tradeoff, choosing the right system device to 

implement was an important factor in building this system. Since our main goal was to perform 

faster than most hard drives, our options were down to RAM and CPU cache for storage. CPU 

cache is much too small in storage, even if distributed, to be useful for most digital forensic 

applications. RAM, which performs faster than hard drives and has larger storage than CPU 

cache is the option we chose to take. 

One approach to increasing RAM capacity without the soaring cost of upgrading a single 

machine is to distribute the RAM on an available cluster. There have been many approaches at 

pooling the RAM resources, depending on the researchers’ goals and network characteristics. 

Fortunately, commodity network speeds have been able to rapidly rise as shown in Table 1.2. 

Comparing Table 1.1 to Table 1.2, it is clear to see that with gigabit ethernet network or greater, 

the bandwidth exceeds that of a modern hard drive. 
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Local Area Network Ethernet Fast Ethernet Gigabit Ethernet 10 Gigabit Ethernet 

IEEE Standard 802.3 802.3u 802.3ab 802.3ae 

Year 1978 1995 1999 2003 

Bandwidth 10 Mb/s 100 Mb/s 1000 Mb/s 10000 Mb/s 

Latency 3000 msec 500 msec 340 msec 190 msec 

Table 1.2 A table showing the history of ethernet trends in bandwidth and latency 
 

By choosing our target application area to be digital forensics, we were left with the 

challenge of processing hard drives that grow in size much faster than the machine can handle 

them. In digital forensics, this performance gap is a very common and serious problem. 

Frequently, as a digital forensic tool starts processing, the system will quickly run out of 

memory, which causes thrashing, leading to multi-day processing. One possible approach to fix 

this problem is to use parallel applications as demonstrated in [1], but it is the vendor’s judgment 

to apply such an approach. Also, most digital forensic processing is inherently I/O bound, and all 

data on the drive must be read at least once, and often many more times to successfully gather 

relevant answers. Therefore, this provides evidence that having more RAM for caching will 

display notable performance gains, and having more CPU cycles may not yield an evident 

difference in performance. 

After searching for a readily available solution that could be easily deployed for our 

purposes, we couldn’t find one and thus we decided to make our own. By combining the 

clustered RAM approach with using the block device layer shown in Figure 1.1, we decide to 

build a distributed block level device that sends and retrieves its storage from RAM on a cluster. 
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We present this distributed block device as a practical solution that could be easily 

deployed to utilize RAM resources. In our lab, and most likely others, there have been numerous 

times when RAM is not being fully profited and part or most of the RAM just sits idle. 

Generally, the existence of idle RAM is a well-documented fact [4]. Our device will exploit this 

fact and gain storage benefit from the unused RAM resources, while using the performance of 

RAM. However, the latency of the network is still an issue, but with bandwidth speeds such as 

gigabit, an efficient gain in performance over most hard drives can still be attained. 

 

1.2 Requirements 
 

We decided to create some other requirements besides performing faster than the hard 

disk. Since Cheetah was targeted for digital forensics, we wanted investigators to be able to use 

this system on the suspect’s cluster and also the investigator’s cluster. Since we wanted to make 

it possible to run on a suspect’s network, we had to make sure that none of the persistent data, 

which might contain evidence, changed. With this kept in mind, we decided to add some 

additional requirements as well. 

 

1. LAN Scalability 

Commodity RAM on a single machine cannot store nearly as much as the hard drive 

on the machine. However, since digital forensics is our target, having enough space to fit disk 

images and other large files is required. So distributing available RAM resources on a cluster 

could allow for a large storage container necessary for digital forensic to copy their files to. 
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2. Commodity Solution 

We also wanted Cheetah to be a commodity solution so that investigators will be able 

to benefit from this project at the location of the crime scene as well as the investigator’s lab. 

Our system is a readily available solution, and expensive or rare components are not 

required. 

 

3. Lightweight 

Another important goal was to design Cheetah lightweight so it is not difficult to 

manage for an average computer user. Instructions to run Cheetah should be short and 

simple, so more time will be spent on processing from the digital forensic applications being 

used. 

 

4. Digital Forensics Support 

Lastly, we designed Cheetah for digital forensics, so we wanted support of multiple 

file systems, the ability to run from a live CD, and the opportunity to run arbitrary forensic 

tools. Developing a custom forensic file system in the file system layer could gain I/O 

performance for specific problems, but this would eliminate the ability to use other popular 

file systems such as FAT32, NTFS, and ext2/3. We wanted the option to lay a copy of a 

complete file system over Cheetah’s block device, so no requirements on the type of file 

system should be set. 

Since there are many different Linux live CDs available on the internet, Cheetah 

should be able to run on Linux, giving the option to inject a custom live CD with Cheetah’s 
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software so the investigator can efficiently carry it on the same disc as the other digital 

forensic tools. Cheetah should also be able to run arbitrary forensic tools and should not be 

limited to a certain subset of digital forensic applications. 

 

1.3 Thesis Statement 
 

Our project, Cheetah, takes advantage of available RAM on a cluster and the bandwidth of 

a gigabit network to outperform hard drives while not losing the storage capacity penalty since it 

is LAN scalable. It tightens the capacity/performance gap, allowing intensive I/O digital forensic 

applications to perform better. Cheetah contains a distributed block device that performs its 

operations on the other servers’ RAM in a cluster. The sharing of the RAM is transparent to the 

application being performed, allowing for a wide range of digital forensic tools. 

 

1.4 Thesis Organization 
 

The rest of this thesis is organized as follows: Chapter 2 reviews the current solutions to 

increase drive speed performance and drive storage scalability. Chapter 3 presents the design of 

our specific approach. Chapter 4 explains in detail the implementation of this project. Chapter 5 

displays the test results to prove that performance gain is achieved. Chapter 6 includes our 

conclusions and the ideas being developed for future work. 
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Chapter 2: Related Work 
 

Distributed RAM sharing is a well-established idea, and a number of implementations have 

been developed over the years. Generally they fall into two broad categories depending on their 

interaction with the user process. The first approach is to hide the fact that the sharing takes place 

and by tricking the application into believing that there is a greater amount of RAM available 

than there actually is. This behavior is similar to the way virtual memory works. The difference 

is that, instead of coming from the hard drive, the extra memory is physical RAM on another 

machine on the network. The second approach is to expose the sharing and give the application 

some means to control the sharing process. 

This section will discuss a few related systems such as Distributed File Systems (DFS), the 

iSCSI drive, Google FS, Network Block Device (NBD), and Remote Direct Memory Access 

(RDMA) over InfiniBand. Before summarizing these systems, we should mention that a number 

of simulation studies have been performed to explore the viability of different ways of 

distributed RAM sharing. For example, Dahlin et al [3] used a trace-driven simulation to study 

the performance benefits of cooperative file caching using several cooperative caching 

algorithms. “Cooperative caching seeks to improve network file system performance by 

coordinating the contents of client caches and allowing requests not satisfied by the cache of 

another client.” [3] This caching technique is designed to improve cache performance for system 

reads only, and does not address issues such as write performance and large file performance 

which happen to be extremely important in the digital forensics field. 

In [5], and later[6], Xiao et al. studied the impact of combining network memory and job 

migration for system scalability and throughput improvement. A Parallel Network RAM 

solution, based on global management was proposed for scientific applications. 
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2.1 Distributed File Systems 
 

A Distributed File System (DFS) is a file system that supports sharing of files and 

resources in the form of persistent storage over a network. Distributed file systems can scale very 

large, and immense disk sizes may be needed depending on what problem is trying to be solved. 

This large size capability is an advantage while the weakened performance is a disadvantage. In 

conventional systems, performance consists of a disk-access time and a small amount of CPU-

processing time.  

There is a transparency involved with distributed file systems, since the client interface 

should not make a difference for the user to read or write to local and remote files. This gives not 

only user friendliness but also allows applications to transparently read and write from the 

distributed file system even though the files processed might be on a remote server. 

In a DFS, our requirement of system layer transparency is fulfilled, but the file system 

performance is weak because not only does the normal overhead occur, but also an additional 

overhead from the network’s transmission delay. Also, this solution eliminates the possibility of 

using other file systems for digital forensics work. 

 

2.2 iSCSI 
 

iSCSI enables a machine on an IP network to contact a remote dedicated server and 

perform block input and output operations just as it would do with a local hard disk . iSCSI 

operates on top of TCP and uses longer packet headers that include additional information to 

speed up packet assembling. Scalability is available, but performance is downgraded because of 

the high latency. The main reason for the latency is because of the iSCSI protocol being layered 
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on top of TCP, and then the normal SCSI interface is on top of iSCSI. Figure 2.1 illustrated the 

layers involved to unwrap, causing the latency. 

 

 

Figure 2.1 This diagram illustrated how many layers that must be unwrapped for each packet received in the 
iSCSI session, which causes latency issues 

 
 

2.3 Google FS 
 

According to [7], Google File System (FS) is a scalable distributed file system for large 

distributed data-intensive applications. It is widely deployed within Google as the storage 

platform for the generation and processing of data, and it is also used for research and 

development efforts that require large data sets.  As shown below in Figure 2.2, Google FS is 

composed of a master and chunk servers. The master contains all the file system metadata, 

including the mappings of the files to chunks, which are stored in the chunk servers. 
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Figure 2.2 The architecture of Google File System 
 

Google FS also provides fault tolerance to a large number of clients by replicating chunks 

into separate chunk servers. While this technique might benefit the client when one of the chunk 

servers unexpectedly goes down, for large data sets it does require more chunk servers and could 

run into a non-commodity to be successfully fault tolerant. Also, Google FS is optimized for 

sequential reads/writes of files, but unfortunately in digital forensics non-sequential access is 

very common. 

 

2.4 NBD (Network Block Device) 
 

The network block device application, or commonly referred to as NBD, allows the Linux 

user to access block data from a remote server. Since it acts as a block device, the user is allowed 

to lay any file system on top of it. This allows for scalability of the device, similar to the 

distributed file systems, but now any file system can be laid on top after the nodes are ready. 

NBD does have its set of limitations. It is impossible to use it as a root file system, and it 

only allows the user to run as a read-only block device in user-land. It will also deadlock “within 

seconds” if the server and client are both on the same machine. Another drawback is the 
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performance is still hurt by the TCP overhead adding to the overhead of the disk and CPU. 

NBD’s throughput is equal the hard drive’s throughput. 

 

2.5 RDMA Over InfiniBand 
 

RDMA is a communications technique that allows data to be transmitted from the memory 

of one computer to another computer without: 

 

• Passing through either computer’s CPU 

• Needing extensive buffering 

• Calling to an operating system kernel 

 

RDMA helps gain network performance by not having to pass data through the CPUs. 

InfiniBand is an example of a form of RDMA that sends data in serial form and can carry 

multiple channels of data at the same time in a multiplexing signal. The channels are created by 

attaching host channel adapters (HCAs) and target channel adapters (TCAs) through InfiniBand 

switches. The HCAs are I/O engines located in a server. The TCAs enable remote storage and 

network connectivity into the InfiniBand interconnect infrastructure, called a fabric. InfiniBand 

architecture is capable of supporting tens of thousands of nodes in a single subnet and 

transmission rates begin at 2.5 MB/s. Figure 2.3 shows the layout of the InifiniBand 

architecture1. 

                                                           
1 Figure 2.3 is taken from http://www.oreillynet.com/pub/a/network/2002/02/04/windows.html 
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Figure 2.3 Topology of InfiniBand architecture 
 

In [8], an RDMA-optimized implementation of the MPI library is used to provide the 

transparent use of remote memory. The problem with RDMA is that it’s not a commodity, and it 

has high network latency issues. 

 

2.6 Summary 
 

Each of the described practical solutions was missing at least one of our project’s 

requirements such as higher performance over a hard drive as well as a commodity solution.  We 

found some similar projects only done as simulations such as [9] and [10], but there were no 

practical implementations to be found. Therefore we had to develop our own design to meet all 

of the criteria specified in our requirements. 
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Chapter 3: System Design 
 

In this chapter, we describe the design of the two main system components, Cheetah’s 

block device and the cache servers. In order to properly describe how these parts work, let us 

also describe the communication between them. 

Consistent with our goals for a simple system that can easily be deployed, we have opted 

for a design that is minimally invasive to the system software and is fairly portable. The basic 

architecture of Cheetah, shown in Figure 3.1, consists of a set of user-level RAM server 

processes that provide local RAM access to a central RAM client. The different types of shaded 

boxes represent certain sections of blocks, and the diagram shows the mappings of their locations 

in the client host to their locations in the RAM server hosts. 

 

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

 

Figure 3.1 The architecture of Cheetah 
 
 

 
 

The central RAM client, consisting of the block device, sends and receives all of the 

block data from different server hosts, which hold the blocks in each of their local RAM. Since 
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RAM is volatile, any data transferred through the network or stored in RAM will disappear once 

powered off, leaving the hard drives and other non-volatile storage on all of the server hosts in 

tact. 

 

3.1 Block Device Module 
 

There were 2 choices in designing this component of Cheetah: 

 

1) The first choice is to implement file system level caching, which would allow 

optimizations based on the logical structure of the file system, but would also break 

one of our requirements by making it file system dependent. 

 

2) The other option is to implement a block level device that does not have the benefit of 

knowing about files and directories (and likely access patterns) but would work with 

any file system. 

 

Our decision of using the block level device was based on two factors. The first one is that for 

our specific application domain, digital forensics, unlike in most other domains, the applications 

do care about unallocated space and preserving the original block-level layout of the file system 

is necessary. The other factor is that operating systems already do a very good job of laying out 

files sequentially so simple read-ahead optimizations may well be enough to achieve good 

performance.  
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 The block device is a Linux module that runs on any Linux 2.4 kernel. The kernel can be 

compiled on a bootable live CD, allowing the module to be also installed on the bootable CD, for 

a portable usage. The device is the first thing to be initialized and manages all the blocks of 

storage as long as Cheetah is running. 

 

3.2 Cache Servers 
 

The cache servers run on any Unix type platform such as Linux, Mac OS X, Solaris, and 

FreeBSD. The cache servers can also run on any live bootable Linux CDs. These servers should 

start up after the Cheetah module is loaded and ready. There is no particular order to start each of 

the cache servers, but the order in which they are started is the same order of where the blocks 

will be stored. For instance, if server A was started first sharing 180000 1KB blocks, then A will 

contain blocks 1-180000. 
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Here is a diagram showing how the blocks are stored from each cache server: 

 

ext2/3 NTFS FAT32
QuickTime™ and a

 decompressor
are needed to see this picture.

Block-Level Device

RAM

APPLICATION LAYER

FILESYSTEM LAYER

BLOCK LAYER

HARDWARE LAYER

RAMRAM

0-15000 15001-450000 450001-465000

 

Figure 3.2 A diagram showing how the different cache servers are distributed and connected to the block 
level device. 

 

 

To describe how Cheetah works, let us point out the 3 step process involved in the 

communication between system layers: 

 

1) An application makes operating system calls to operate on the file system 

layer. 

2) The file system determines what to do based upon the given operations. If 

there is reading or writing involved, it most likely calls the block level device 

in the block layer, which ends up to be Cheetah’s block device. 
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3) On the block device, the mapping of where blocks are stored on the cache 

servers is transparent to the file system level and above levels in the system 

architecture. The device connects to one of the cache servers, specifically 

RAM in one of the cache servers, which is in the hardware layer. 

 

To get worthwhile speed results, the block device and cache servers must be on the same 

LAN, preferably with gigabit speeds. If the network speed is not fast enough, the bandwidth will 

be noticeably downgraded. The network bandwidth does play an important role in the 

architecture, especially since for every block written and read, it must go through the network 

first. After data is sent through the network, the overhead of the disk and CPU must then be 

accounted for also. 

One drawback to the cache servers is that allocated memory cannot be locked into RAM so there 

is the possibility of the memory getting swapped out with other memory via the paging system. 

Our rationale, supported by our experience, is that for an idle system the user will be able to fill 

up the memory in RAM since there will be no competition of who gets to be in RAM. The 

amount of RAM to share on each of the cache servers should be chosen dependent upon the 

amount of free RAM available on the servers. If a cache server starts another process that 

happens to be memory-hungry, then performance will notably suffer. 

 

3.3 Communication 
 

We use an application-level protocol to perform service discovery and to exchange block 

read/write operations over TCP socket connections. TCP/IP processing overhead is a well-known 
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source of inefficiency, especially for high-speed communication networks. For a commodity 

solution seeking the lowest common denominator, the only other realistic options are UDP and 

Ethernet frames. Evidently these would need separate reliable transmissions mechanisms, very 

similar to the one already provided by TCP. In initial testing, we did not find any appreciable 

difference between a TCP version and a UDP one (without a reliability mechanism). For our first 

version, presented here, we decided to go with the basic TCP solution and revisit the issue, if the 

performance is unsatisfactory. 

Another argument supporting TCP/IP is that IT users have been very reluctant to adopt 

more efficient (but less widely accepted as standards) solutions designed to take advantage of 

more efficient communication technologies (e.g., InifiniBand). As a result, many vendors are 

providing TCP/IP emulation that enables users to take advantage of most optimization without 

parting with the “good old” TCP/IP sockets. Specialized Ethernet “accelerators” are emerging 

with TCP/IP implementations on a chip. Even SMP machines (e.g. from IBM) come with 

TCP/IP emulation so that the same code could be run on a cluster and on an SMP machine with 

shared memory. In other words, we have good reason to believe that TCP/IP is not going away 

anytime soon even for high-performance computing and that, in many cases, TCP-based solution 

would be able to directly benefit from hardware improvements. 

 

3.4 Adaptation Scheme 
 
 

Even though our project was tested on a gigabit network, TCP did tend to slow 

performance down to about the same as a hard drive. We used 1KB block transfers that 

comfortably fit into an Ethernet frame, which seemed logical.  However, real numbers showed a 

less than 5% improvement over our hard drive.  This kind of performance isn’t acceptable since 
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one of the main goals of Cheetah’s device is end-to-end latency improvement.  Subsequent 

experiments confirmed that, for large files, simply pushing the transfer (read-ahead) unit to 100 

KB yielded substantial performance improvements over the hard drive. For small files, that is 

clearly too expensive. 

We implemented an adaptive read-ahead scheme to accommodate the conflicting 

requirements of large and small files. This adaptation technique works as a 3 step process: 

 

1) The initial read-ahead transfer unit is set to the minimum, 4KB 

2) If a successful block request is adjacent to the previous block transferred, the size of 

the transfer unit is doubled subject to a maximum parameter, 128KB 

3) If the user stops reading blocks sequentially, then the number of read ahead blocks 

resets back to the minimum, 4 KB 

 

Since the number of blocks to be read ahead keeps adapting to whatever the user is doing, this 

technique proved to increase performance dramatically. This scheme is quite similar to the TCP 

slow-start algorithm – every adjacent block request is treated as a “success” leading to the 

doubling of the transfer window, while every non-adjacent one is treated as a failure (akin to 

packet loss) and the window is shrunk. The minimum of 4KB was picked because it is typically 

used by operating systems as the minimum allocation unit. The maximum of 128KB was picked 

after testing identified it as the point of the diminishing returns. Further increases beyond 128KB 

yielded only marginal improvements in performance. The presented adaptive scheme is 

somewhat similar to the one used by the Linux kernel in version 2.6 (which has its own issues 

[6]). There are at least two notable differences: 
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1) In the block device level we simply do not know about files, so file-based 

optimization is not possible. 

2) Our read ahead is more aggressive and works along the file system read-ahead. 
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Chapter 4: Implementation 
 
 

In this chapter we describe the implementation of our prototype that allows Cheetah’s 

distributed block device to perform faster than a hard drive. This prototype also allows users to 

keep adding cache servers to gain the desired size of the virtual drive and the ability to lay any 

file system that Linux can read on top of the device.  

 

4.1 Technology Used 
 
 
We implement our system around the GNU/Linux operating system for three main 

reasons. The first is because since the entire kernel is open source, there are a great number of 

free resources that made the module development process quick. The second reason for 

developing a Linux module is so the user can lay any file system (FAT, NTFS, ext2/3, 

ReiserFS…) that the Linux Virtual File System can read on top of the block device. Other 

operating systems such as Microsoft Windows XP do not allow such a wide variety of file 

systems to be mounted. The third reason is to give forensics support by putting the module on 

one of many different Linux bootable CDs. The CDs allow forensic investigators to stealthily use 

Cheetah on any network of workstations without modifying any of the non-volatile devices on 

the network. 

 

4.2 The Module 
 

Cheetah’s block device is a 2.4.x Linux kernel module written in C using the kernel 

headers. We added a script for user-friendliness that will re-compile the module to a specified 

Linux kernel version. For example, if launch the module on a 2.4.31 kernel, but the module is 
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currently compiled for 2.4.18, then the user can just type the command “./k linux-2.4.31” which 

will re-compile the kernel. The device can be loaded and unloaded with root permission. The 

user has an option to load the module manually or with another script “./s”. This script will not 

only load the module but also start the block device at /dev/cheetah. At this point all of the cache 

servers can be started and the /dev/cheetah block device will incrementally add more block 

space. There is a thread running in the module that continually looks for cache servers until the 

device is mounted. In order to achieve this dynamic effect for users to add cache servers at any 

time after the device starts, Cheetah re-initializes the device while saving some of the data 

variables that hold information about the past blocks. 

Support for developing a normal Linux kernel block device can be found in many places 

including books and on the web. Even though Cheetah’ distributed block device is a “special” 

block device, these resources shortened the time needed to make the “normal” block device work 

and gave us more time that was needed to bring the “distributed RAM” block device to life. 

 

4.3 The Cache Servers 
 

 
The cache servers are also written in C, and they use the normal UNIX networking 

library for communication calls. Since the source code for the cache server is short and simple, it 

wouldn’t be difficult to port to a Windows machine. The cache servers can be started with two 

parameters: 

 

1) The IP address of the machine loaded with Cheetah’s distributed block device 

2) The number of 1KB blocks to share from that local machine 
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The number of blocks should be carefully picked because it can hog the machine’s RAM, 

periodically freezing the operating system. Also, if another process starts to need more memory, 

then thrashing could occur. Enough memory should be left free to make the machine at least 

somewhat usable. We tested machines with 2GB of total RAM and shared 1800000 blocks, or 

1.8GB. 

 

4.4 User Interaction 
 

This section describes how to start the block device and cache servers. The block device 

must be started first with the following 2 commands: insmod and mknod: 

$ insmod cheetah.o 

The insmod command inserts the compiled block device module object file (named 

cheetah.o) in the Linux kernel. This will also create a new block device that can be reference in 

Linux with a major number 254. This number is used in the next step. 

$ mknod /dev/cheetah b 254 0 

mknod’s first parameter is the path of the new device that you want to create. The 

second parameter, “b” is for a block device type. 254 is the major number that was created in 

step 1 and 0 is the minor number, a number that references different devices if more than 1 are 

created. 

Now since the block device is started, all of the cache servers can be initialized with a 

specific amount of memory blocks to share by using this command: 

$ ./c 10.0.0.1 1800000 
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c is the binary executable that shares a specified amount of 1KB blocks of RAM (in this 

case 1800000, or 1.8 GB). The first parameter is the IP address of the machine containing the 

distributed block device. 

 As each cache server starts to share empty blocks in their local RAM, the block device 

will continuously sum up the total blocks from the previous cache servers. After the last cache 

server is started, the block device will be loaded with as many blocks as the total amount of 

blocks that the cache servers are sharing. It is important to note that all of the blocks shared by 

the block device are empty, which allows any file system to be layered on top, or even a single 

file as well. In order to lay a file system on top it must be mounted properly by following Linux 

Virtual File System (VFS) specifications. 

 

4.5 Communication Protocol 
 

 
The communication protocol that Cheetah uses is TCP for reliability. UDP was tested but 

showed many problems. The following diagram shows the steps of typical transferring in 

Cheetah: 
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Client Cache Server ABlock Device Cache Server B

read()
Request blocks 20-40

Here are blocks 20-40

write()
Write data to blocks 5-11

read()
Request blocks 220-355

Here are blocks 220-355

 

 

 

Figure 4.1 shows how the block device will execute commands to more than one cache 

server, in a synchronous order caused from TCP stream communications. When a client executes 

a read() command for a file, the block device first figures out which cache server and which local 

blocks to read from that cache server. Then it requests from the cache server the right amount of 

local blocks. When a write() command is executed, the block device figures out which cache 

server and which blocks on that cache server to write to. It then sends the data and the location of 

which blocks to write the data to.  

In UDP, the ordering of packets arriving, or the knowledge if packets ever arrived, is not 

implemented. So for example we used UDP, and modifying the order in Figure 4.1, let’s say we 

to do a write to blocks 35-50 in between the first request and response of blocks to read. This 

means that we requested blocks 20-40 to read, wrote new data into 35-50, and then read 20-40, 

with 5 changed blocks, giving back the incorrect result. The communication of commands 

Figure 4.1 A flow chart showing some examples of communication between the cache servers and the 
block device. 
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getting executing in Cheetah is just as important and reasonably has the same focus as read/write 

concurrency in operating system memory management.  

The blocks were being requested too fast and some requested blocks were either not 

coming back to the module or out of order.  Since this project is set to be a digital forensics 

solution, the forensics rule of preserving data is vital for this project. So a reliability 

implementation was needed, and the basic TCP fits our problem precisely. 
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Chapter 5: Evaluation 
 

 

 Throughout our design and implementation process, we have targeted the development of a 

practical solution that can benefit users. Therefore, a principal question for our testing 

methodology was the selection of test cases that best represent typical access patterns. After 

considering our goals, we concluded that the main measure of success is the ability to speedup 

sequential access patterns. The rationale here is twofold: 

 

1.  It is the best side of hard drive performance – randomized patterns clearly kill HDD 

performance and play to our strengths. 

2.  Today, non-sequential access patterns are not the norm, but the aberration. 

 

 For example, Google FS [7] does not even attempt to optimize for non-sequential access. 

Applications that do need to access large amounts of data with potentially randomized patterns 

explicitly manage their I/O requests to improve performance (DBMS are an obvious example). A 

common exception from these cases is file servers: due to concurrent independent requests, the 

block requests could become really scattered. This, however, should naturally favor solution over 

a mechanical drive. 

 We wanted to evaluate our block device performance by using both a disk benchmarking 

tool and various digital forensic applications. The reason for using the benchmarking software is 

to test the true I/O performance, and get results such as how fast the reads/writes from the 

operating system are without having to worry about interference from other resources. Since we 

focus on digital forensics, it makes sense to see how forensic applications perform using 
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Cheetah. 

 

5.1 Hardware Setup 
 

All testing was done in the NSSAL lab at UNO. There were 6 Dell Workstations used, 

each with 2 GB of RAM and 3.0GHz processors. One of the machines ran the module while the 

other 5 machines acted as cache servers. The machine that ran the module also gave up 1GB of 

its RAM also acting as a cache server. Since the 1GB was on the same machine as the module, 

the performance was very fast when those blocks inside the dedicated 1GB were being accessed. 

It made sense to use the local RAM wisely. This machine with the module was running Red Hat 

9 on a compiled 2.4.31 Linux kernel. The other 5 machines were booted with KNOPPIX live 

CD, which also ran a Linux kernel, but in its original KNOPPIX version. Since the purpose of 

the live CD is to run the kernel and file system only in RAM, then some memory had to be left 

free for the operating system to remain stable. Therefore out of 2 GB total RAM, 1.8 GB was 

taken and used for each of the 5 cache servers. The diagram in Figure 5.1 shows our hardware 

setup for testing. 
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Cache Server
Sharing 1.8GB

Linux Block Device
Sharing 1GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB  

Figure 5.1 A diagram representing our block device connecting to our 5 cache servers that were used for 
testing 

 

 

Summing the cache servers’ total memory shared, we end up with a total of 10 GB (5x1.8+1) of 

free memory allocated for Cheetah’s block device to use. 

The HDD used in the block device’s machine for comparison with Cheetah was a 

randomly picked 60 GB Hitachi IDE drive from our lab and was directly attached to the host 

executing the applications. For testing, we used the complete content of two randomly chose 

hard disks from our general purpose lab, 4.3 GB and 6.4 GB, respectively. For the network 

experiments, the test images were preloaded onto the distributed RAM drive. Before running the 

tests, we benchmarked both the HDD and the network as follows: 
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Network: End-to-end sustained bulk IP network transfer observed by processes: 

100MB/s. This was higher than our expectations so we performed the same experiment 

with two other switches – bigger and much more expensive – and they established similar 

results. 

HDD: Sustained file system level bulk transfer (mass sequential copy): 24MB/s. 

 

These baseline results show that the commodity network has the clear potential to beat the 

commodity HDD for bulk transfers, which is the strong suit of the hard drive. For random 

access, we would expect the performance gap to widen considerably. 

 

5.2 Software Setup 
 

 IOzone (http://www.iozone.org/) is a file system benchmark tool for Linux. It has a 

number of different options including 15 different tests that can be run: read, write, re-read, re-

write, read backwards, read strided, fread, fwrite, random read/write, pread/pwrite variants, 

aio_read, aio_write, and mmap. While testing we used a record size of 4 KB and a maximum test 

file size of 8 GB due to a limited 10 GB of total RAM space available on our LAN setup. 

We also wanted to get results using applications that people use commonly and applications that 

forensics investigators might use. md5sum proved to have one of the best results, and it 

displayed to have much more disk use in the application rather than CPU usage. tar also proved 

worthy since it also is disk intensive. tar was tested by compressing many small files (images) 

into a tar file and then extracting them.  
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There were two forensic applications used. The first was from Sleuthkit, a free Linux digital 

forensics tool set. The tool used from this set is named Sorter. Sorter looks into a disk image, and 

carves out various known formats such as Microsoft Office documents, text files, pictures, sound 

files and so forth. Sorter also has many options available, such as multiple file system support, 

md5sum checking, sha1 checking, html output, an option to list the files and not extract them, 

and many other options. Sorter is a great tool to use, but unfortunately Sorter proved to have the 

least best results because it is not as disk intensive as the other applications and is more CPU 

intensive. The results will be explained in further detail in the following section. 

Disk images can be saved in raw format into a single file using the dd tool. These dd 

made images are very popular and used commonly in digital forensic applications.  On hand we 

had one NTFS 4.3 GB image and another NTFS 6.4 GB image to run experiments with.  

 

5.3 Results 
 

Below, we summarize the benchmark results, as well as some digital forensic tools. Since 

our project is focused on digital forensics, and since we focus on lowering latency, the selected 

applications were highly I/O intensive. We examined the general intensity by monitoring the 

CPU, disk, and network usage by simply using the built in resource monitoring application in 

Red Hat 9. Sorter was the only application that was not as high disk-intensive as the others, and 

this tool was selected to show that results are still not downgraded with Cheetah if the 

application uses other I/O resources as well as the disk. 

 



 34

5.3.1 IOzone 
 

 
Since IOzone is a disk benchmarking tool, it has much more I/O intensive operations than 

the other test applications selected. Because of this, the improvement of performance results is 

far more apparent. Below is Table 5.1 that displays them summary of numeric results and brief 

descriptions of the IOzone benchmark measurements. 

 

HDD RAM disk
Write 24,026 92,309 284%

Rewrite 25,788 92,628 259%
Read 26,568 88,768 234%

Reread 26,487 88,357 234%
Random Read 396 9,065 2189%
Random Write 495 10,501 2021%

Backwards Read 5,071 18,216 259%
Strided Read 5,243 7,834 49%

Performance (KB/s)Test Relative 
Speedup

 

Table 5.1  A table that shows Cheetah's percent increases over the hard drive 
 
 
 

• Write: Sequential writing to a new file 

• Re-Write: Sequential writing to an existing file 

• Read: Sequential reading of an existing file 

• Re-Read: Sequential reading of a file that has already been read 

• Random Read: Reading from random locations with a file 

• Random Write: Writing to random locations with a file 

• Backwards Read: Sequential backwards reading of a file 

• Strided Read: Reading a file with a strided access, e.g., a 4KB read followed by 

200KB sequential seek, another 4KB read, and so on 
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Cheetah was able to achieve 88-92% of the sustainable IP bulk transfer rate over our 

network. Clearly, the write performance is not a function of any optimizations on our part but is 

an artifact of the ability of TCP to sustain the measured rate. In the other hand, the read 

performance demonstrates that our aggressive adaptive scheme is able to feed enough data to 

keep TCP busy at close to that same rate. 

Figure 5.2 shows the Write/Read and Re-Write/Re-Read performance results. We can 

clearly see that Cheetah performs substantially better than our hard drive using these common, 

basic file system operations. The distributed RAM disk performed about 3.5 times faster than the 

IDE drive used. Recall that, from the initial benchmarking, the raw network transfer rate (our 

practical limit) was 4 times the HDD one. 
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Figure 5.2 IOzone's read/write and re-read/re-write performance results 
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Figure 5.3 shows us the results of random writing/reading on both the hard drive and 

Cheetah’s block device. The RAM disk showed an average improvement of 22 times over the 

mechanical drive. At the same time, the observed transfer rate (~10 MB/s) was 10% of the 

maximum, whereas for the hard drive that number is well under 2%. 

 
 
 

 
Figure 5.3 IOzone’s random read/write performance results 

  
 
 
 

Figure 5.4 shows the results of two types of reading, backwards and striding. The 100% 

improvement of backwards read over random read for Cheetah’s RAM disk is entirely due to the 

read-ahead policy of the kernel – we did not tweak our read-ahead algorithm to handle this the 

way we handle forward read for the sake of the test. We find the result interesting as it gives an 

idea of the relative effects of file system read-ahead and block device read-ahead policies. 
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One relatively minor discrepancy are the stride read results for the RAM drive – they are 

somewhat lower than the random access results, which we would expect that to be the absolute 

floor of performance. Since the block device does not do anything differently, our best guess is 

that the file system issues read-ahead requests that are eventually not used and not counted by the 

benchmark application. 

 
 
 
 
 

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

KB/sec

Backwards Read Stride Read
Test Performed

Hard Drive
Cheetah

 
Figure 5.4 IOzone’s backwards and strided read results 

  
 
 
 

 

5.3.2 Tar 
 

Figure 5.5 shows that the standard Unix archiving utility, tar, has good performance in 

Cheetah. tar was not performed on the 6.4 GB disk image target, but only the 4.3 GB target. The 
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reason is that our setup provided only 10 GB total, while tar needed 12 GB to successfully 

perform the archive operation on the 6 GB disk image. 

 

 

 
 

5.3.3 Sorter 
 

Sorter is a Perl script that analyzes a file system to organize the allocated and unallocated 

files by file type, and is found in the digital forensics Sleuth Kit package. It is clear to see in 

Figure 5.6 that Sorter does not have as great of improvements as the other test applications, but 

this is because Sorter uses utilizes more of the CPU resource than the disk resource. The reason 

Figure 5.5 A chart comparing the time to complete an operation of creating a tar archive using the standard 
tar tool 
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for presenting this result is to show that even under the condition that the application is more 

CPU bound than I/O bound, the application’s performance will not worsen. 

 
 
 
 
 

5.3.4 Scalpel 
 

Scalpel is a digital forensics file carver [11], similar to sorter. The main difference for our 

testing purposes is that Scalpel showed signs of higher disk intensity from the resource monitor. 

This allowed Cheetah to outperform the hard drive rather well. The reason why the two disk 

images have different performance increases (156% and 80%), is that for the 6 GB disk image, 

different parameters were used since the two disk images are totally different in both the amount 

Figure 5.6 A chart comparing the results of two disk images using the Sorter tool, taken from the digital 
forensics Linux Sleuthkit. 
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of files, and the types of files contained on each of the images. Figure 5.7 shows the results of 

Scalpel. 

 

 

 

 
 
 

5.3.5 MD5Sum 
 

Here we test using the Unix MD5Sum application. In digital forensics, it is very common 

to use this tool to both 

  

Figure 5.7 A chart showing the performance comparisons from using the Unix MD5Sum tool 
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1. Identify and give file signatures easily and, 

2. Accurately checks to see if a file or disk image was modified from the start of the 

investigation. 

 

The results, displayed in Figure 5.8, were at first glance very interesting to us. MD5Sum 

revealed to be strongly utilizing the disk resource much greater than the CPU.  

 

 
 
 
 
 

5.3.6 Results Correlation 
 

The IOzone benchmarking results showed to have a better performance increases than the test 

applications. This proves that Cheetah’s increase in performance is most apparent for 

Figure 5.8 A chart showing the performance comparisons from using the Unix MD5Sum tool 
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applications that are highly I/O bound. The test applications had trivial increases in performance 

by using Cheetah, but results clearly showed that these applications were using other resources 

as well as the disk. 

 
 

5.3.7 Comparative Evaluation 
 

To place our results in the context of previous work we compare them with respect to 

NRD [9], which has the closest goals and performance metric to ours. A direct head-to-head 

comparison is not possible due to the varying technologies used, so our main basis for 

comparison is efficiency. One way to measure efficiency is to compare how well does each of the 

two implementations realize that available network bandwidth. 

For sequential read/write operations, Cheetah utilizes 71 and 74%, respectively, of the 

theoretical maximum of 1GB/s. On the other hand, the respective numbers for NRD we derive to 

be 22 and 25%, for the 10 Mb/s Ethernet quoted.  We deduce the sequential NRD read 

throughput from the performance for the “find” tool presented in Table 2 [9]; a 28 MB read is 

completed in 104 seconds (~276KB/s). The sequential write performance comes from Figure 11 

[9], which shows a 30 MB sequential IOzone write to take about 100 seconds (~307 KB/s). 

Clearly, other factors play into these end-to-end performance measurements – quality of 

hardware, NIC drivers, TCP/IP stack, etc. However, they cannot account for the threefold 

improvement in efficiency. Further proof can be found in the fact that NRD achieved only 25% 

improvement in sequential read performance relative to the hard drive. If we extrapolate for a 

network that is 4 times faster than the HDD (our setup) the speedup would not exceed 100%, 

whereas ours stands at 234%. 
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5.3.8 Summary 
 

Our benchmark results have shown that the typical read() and write() file system calls can be 

sped up about 3.5 times faster than a commodity IDE hard drive. By running these tests on a 

commodity gigabit network, we have achieved speeds that were approximately 90% of what was 

achievable on our network’s bandwidth. We have successfully manage to meet our original 

requirements: 

 

1. LAN Scalable 

This requirement was met by using RAM from all of the available machines in our lab 

together to form the block device. 

 

2. Commodity Solution 

Since our entire hardware setup consisted of a commodity gigabit switch and commodity 

machines, this requirement was clearly met. 

 

3. Lightweight 

The user manual for using Cheetah consists of only 2 commands for starting the block 

device, and one command for starting the cache servers. If desired, a Unix script can be 

written to perform these operations automatically. Thus, Cheetah is very lightweight and 

easy to deploy. 

 

4. Digital Forensics Support 
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The distributed block device is below the file system layer in the system architecture and 

its implementation details are transparent to the file system layer, allowing for multiple 

file system support. Forensic applications are also not limited, since the device details are 

transparent to them as well. 
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Chapter 6: Conclusion and Future Work 
 

In this thesis, we presented a practical solution for sharing of RAM resources on a 

commodity gigabit cluster. The solution is based on a system containing a distributed block-level 

device and its connected cache servers called Cheetah. Unlike previous work, our solution is 

targeted at improving sequential read/write operations, which are the dominant disk access 

pattern. Our experiments show that sequential read/write operations can be sped up 

approximately 3.5 times relative to a commodity IDE hard drive.  Furthermore, this speedup is 

approximately 90% of what is practically achievable for the tested system. To achieve this 

performance, we employ an adaptive read-ahead scheme that exponentially expands the read-

ahead window during sequential reads. 

Relative to previous work, our system is approximately 3 times more efficient in its 

ability to use available network bandwidth and is able to utilize 71-74% of the theoretical LAN 

capacity. For random access patterns, the measured speedup is over 20 times. Thus, for mixed 

loads, such as the ones experienced on a server, the speedup can significantly exceed the baseline 

3.5 factor. 

From these results, we show the effectiveness in digital forensics of Cheetah achieving a 

higher performance than the average hard drive. This is the most important goal of Cheetah, and 

the main purpose of the project. A popular problem that digital forensic investigators often 

encounter is that there is a great amount of precious time wasted while waiting for the digital 

forensic application to finish processing a disk, but due to thrashing and heavy loaded resources, 

performance penalties become apparent quickly. The only results available are the ones after the 

processing is done, and they could arrive too late. We wanted to downsize the time waiting for 

results by lessening the end-to-end latency for disk processing. 
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Theoretically, Cheetah’s block device can be scaled up to a 2 TB maximum size, 

although this has not been tested since our lab only had around 10GB of free RAM.  Otherwise, 

the amount of RAM available on the LAN determines the maximum space allocated for the 

distributed block device. RAM is a commodity piece of hardware, its speeds are much faster than 

disk speeds, and its capacity is larger than CPU cache, making RAM a very useful resource in 

our system. The problem of small capacity in RAM can be solved by distributing all of the 

available RAM on the network, which could lead up to a much bigger storage domain. Networks 

that have high-speed clusters greatly benefit in Cheetah’s architecture. In order to achieve 

efficient performance, a gigabit network is needed. Fortunately, gigabit LAN speeds are getting 

more common and cheaper among households, businesses and institutions.  

Cheetah is lightweight and designed to operate without difficulty for an average computer 

user. One of the main goals from the start of the project was to give digital forensic investigators 

less time trying to figure out how to use our system and more time using it to efficiently solve 

digital forensic cases. 

With the capability of handling multiple file systems and the support to run any 

application, this should give many options to investigators. Since Cheetah deals only with the 

block device layer in the operating system architecture, it is completely transparent to any 

applications on the application layer. 

 

 

 

 

 



 47

Future Work 
 

Since Cheetah is only a prototype, there can be many improvements for future work. 

Some improvements include robustness, multi-threaded reads, a forensic file system, and an 

upgrade for the 2.6 Linux kernel.  Also, more testing of the system is necessary for use in fields 

other than digital forensics. 

The robustness of Cheetah is presently not up to par for commercial use. If one of the 

cache servers shuts down while in use, then the module will likely crash and freeze the Linux 

kernel. All of the cache servers must be shut down before the module is restarted. 

The adaptation of block reading gains performance in some tests, but overall performance 

can be greatly improved if the module didn’t have to wait to get the blocks back. If there were a 

thread that retrieved and queued blocks together, then sending them to the system, the module 

would never have to wait for anything thus improving speeds. 

When reading sequential blocks, the device really has no idea which file it is currently 

processing and thus has no idea of how many bytes remaining in the file. If the block device 

knew more about the files it was processing (where the next blocks are, size of file, etc.), then 

there would be greater performance because the device could just cache the rest of the file 

depending on the file size. A forensic file system would greatly benefit the device, linking the 

block device layer with the file system layer. 

Cheetah was developed for any 2.4.x kernel, while the current popular Linux kernel is the 

2.6 series. Since the small number of changes between block device drivers are widely known, it 

would not be a difficult task to upgrade Cheetah for the 2.6 Linux kernel. Many Linux users 

argue that the 2.4 kernel is more stable for servers than the current 2.6 version, but it would still 
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be reasonable to make the change since many popular Linux distributions are now designed 

around the 2.6 kernel. 

We have tested with multiple applications including digital forensic tools, but it would be 

comforting to test with many other applications, including more forensic applications. These 

applications should be disk intensive to achieve the highest results. Some possible application 

areas include Bioinformatics and Geographic Information Systems (GIS). By testing more it is 

possible to find more audiences who could find Cheetah to be useful in their work. 
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