
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

1-20-2006

Cheetah: An Economical Distributed RAM Drive Cheetah: An Economical Distributed RAM Drive

Daniel Tingstrom
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Tingstrom, Daniel, "Cheetah: An Economical Distributed RAM Drive" (2006). University of New Orleans
Theses and Dissertations. 323.
https://scholarworks.uno.edu/td/323

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/323?utm_source=scholarworks.uno.edu%2Ftd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

CHEETAH: AN ECONOMICAL DISTRIBUTED RAM DRIVE

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Daniel James Tingstrom

B.S, University of New Orleans, 2004

December 2005

 ii

Dedication

To my grandfather Hugh.

I miss you.

 iii

Acknowledgements

I want to express gratitude to my advisor Dr. Vassil Roussev for his unlimited support

and guidance. Whenever I was out of ideas, his ideas always came through. During the aftermath

of Hurricane Katrina, Dr. Roussev kindly offered his assistance with my thesis even though his

home was one of the many unfortunate flooded ones.

Thanks to Dr. Golden Richard III for his support and knowledge. I have never met

anyone so smart and so friendly. His interesting ways remind me that creativity and originality

still exist. He proved to be not only an entertaining teacher but also an excellent one.

In addition, I would like to thank Dr. Fu for being on my thesis defense committee and

for always being there to count on for help. His patience and kindness is honorable. Also, his

talent for solving algorithms is unmatched.

I want to thank my sister Jessica for the encouragement and patience she has given me all

my life. With so many astonishing achievements, her future is limitless.

I would like to especially thank Nazrin, because without her I wouldn’t have started

graduate school and accomplished so much. She means the world to me and I owe her

everything. “And the wonder of it all, is that you just don’t realize how much I love you.”

The most special acknowledgment goes to my parents, Randy and Denise, who have

pointed me in the best direction for every fork in my life. I am very grateful for the excellent life

they have given to me.

 iv

Table of Contents

List of Figures...vi

List of Tables...vii

Abstract ..viii

Chapter 1: Introduction..1

1.1 Motivation ..2
1.2 Requirements..6
1.3 Thesis Statement...8
1.4 Thesis Organization..8

Chapter 2: Related Work ...9

2.1 Distributed File Systems...10
2.2 iSCSI ..10
2.3 Google FS...11
2.4 NBD (Network Block Device) ...12
2.5 RDMA Over InfiniBand...13
2.6 Summary ..14

Chapter 3: System Design ...15

3.1 Block Device Module...16
3.2 Cache Servers ...17
3.3 Communication ..19
3.4 Adaptation Scheme...20

Chapter 4: Implementation ..23

4.1 Technology Used..23
4.2 The Module ..23
4.3 The Cache Servers ..24
4.4 User Interaction ..25
4.5 Communication Protocol..26

Chapter 5: Evaluation ..29

5.1 Hardware Setup ..30
5.2 Software Setup..32
5.3 Results ..33

5.3.1 IOzone ...34
5.3.2 Tar..37
5.3.3 Sorter ...38
5.3.4 Scalpel ...39
5.3.5 MD5Sum ...40
5.3.6 Results Correlation ..41
5.3.7 Comparative Evaluation ..42
5.3.8 Summary..43

Chapter 6: Conclusion and Future Work ...45

Future Work...47

 v

References ...50

Vita ..52

 vi

List of Figures

Figure 1.1 The typical architectural layering of an operating system..2
Figure 1.2 A diagram showing the performance cost vs. capacity tradeoff between the 3 main system storage
components..3
Figure 2.1 This diagram illustrated how many layers that must be unwrapped for each packet received in the iSCSI
session, which causes latency issues..11
Figure 2.2 The architecture of Google File System...12
Figure 2.3 Topology of InfiniBand architecture ..14
Figure 3.1 The architecture of Cheetah ...15
Figure 3.2 A diagram showing how the different cache servers are distributed and connected to the block level
device...18
Figure 5.1 A diagram representing our block device connecting to our 5 cache servers that were used for testing....31
Figure 5.2 IOzone's read/write and re-read/re-write performance results..35
Figure 5.3 IOzone’s random read/write performance results...36
Figure 5.4 IOzone’s backwards and strided read results ...37
Figure 5.5 A chart comparing the time to complete an operation of creating a tar archive using the standard tar tool
...38
Figure 5.6 A chart comparing the results of two disk images using the Sorter tool, taken from the digital forensics
Linux Sleuthkit. ...39
Figure 5.7 A chart showing the performance comparisons from using the Unix MD5Sum tool.................................40
Figure 5.8 A chart showing the performance comparisons from using the Unix MD5Sum tool.................................41

 vii

List of Tables

Table 1.1 A table showing the history of hard disk trends in capacity, bandwidth, and latency4
Table 1.2 A table showing the history of ethernet trends in bandwidth and latency ...5
Table 5.1 A table that shows Cheetah's percent increases over the hard drive ...34

 viii

Abstract

Current hard drive technology shows a widening gap between the ability to store vast

amounts of data and the ability to process. To overcome the problems of this secular trend, we

explore the use of available distributed RAM resources to effectively replace a mechanical hard

drive.

The essential approach is a distributed Linux block device that spreads its blocks

throughout spare RAM on a cluster and transfers blocks using network capacity. The presented

solution is LAN-scalable, easy to deploy, and faster than a commodity hard drive. The specific

driving problem is I/O intensive applications, particularly digital forensics.

The prototype implementation is a Linux 2.4 kernel module, and connects to Unix based

clients. It features an adaptive pre-fetching scheme that seizes future data blocks for each read

request. We present experimental results based on generic benchmarks as well as digital forensic

applications that demonstrate significant performance gains over commodity hard drives.

 1

Chapter 1: Introduction

One of the most important and well-known problems in digital forensics is how to handle

large amounts of data quickly. One example is file carving, which means extracting files of

specific types from a captured disk image. File carving applications cannot avoid sequentially

processing the entire disk image to provide the correct results. While there is some CPU

processing involved in such a task, there is a greater amount of I/O processing. Every application

in digital forensics is highly I/O bound because files must be read from the disk for examination.

Since most digital forensic tools belong in the application level inside of the system architecture

[Figure 1.1], they cannot dramatically change the I/O performance. In order to achieve better I/O

performance, a change in a lower level, such as the block device level, is needed.

 2

ext2/3 NTFS FAT32QuickTime™ and a
 decompressor

are needed to see this picture.

Block-Level Device

Hard Drive RAM

APPLICATION LAYER

FILESYSTEM LAYER

BLOCK LAYER

HARDWARE LAYER

Figure 1.1 The typical architectural layering of an operating system

1.1 Motivation

Caching is a popular way to improve performance by conveniently storing data so that

future accesses will be quicker. Internet browsers store web sites on the hard drive so the user

won’t have to download them until it’s updated. Operating systems cache process information

and pieces of code in RAM so they can perform frequent instructions faster and give a better

experience to the user. CPUs work similarly by caching the most frequently accessed data, with

speeds much greater than the Hard Drive and RAM. Unfortunately, CPU cache has a much

smaller capacity that RAM, and RAM has a much smaller capacity than hard drives. Figure 1.2

 3

displays the tradeoff of performance cost vs. storage capacity in the 3 main caching devices on a

computer system: CPU Cache, RAM, and the Hard Drive.

 The performance vs. capacity tradeoff is still growing and increasingly becoming a major

issue as Patterson [2] points out. Table 1.1 [2] shows the hard drive improvements through the

years of 1983-2003. We can clearly see that in 1983, the bandwidth was (1/50th of capacity) per

second, and in 2003 the bandwidth equaled (1/854th of capacity) per second. It is clear to see that

the capacity/performance gap is increasing with time.

Figure 1.2 A diagram showing the performance cost vs. capacity tradeoff between
the 3 main system storage components.

CPU Cache

RAM

Hard Drive

Capacity Performance Cost

 4

Hard Disk 3600 RPM 5400 RPM 7200 RPM 10000 RPM 15000 RPM

Product CDC Wrenl

94145-36

Seagate

ST41600

Seagate

ST15150

Seagate ST39102 Seagate

ST373453

Year 1983 1990 1994 1998 2003

Capacity 0.03 GB 1.4 GB 4.3 GB 9.1 GB 73.4 GB

Interface ST-412 SCSI SCSI SCSI SCSI

Bandwidth .6 MB/s 4 MB/s 9 MB/s 24 MB/s 86 MB/s

Latency 48.3 msec 17.1 msec 12.7 msec 8.8 msec 5.7 msec

Table 1.1 A table showing the history of hard disk trends in capacity, bandwidth, and latency

Because of the performance vs. capacity tradeoff, choosing the right system device to

implement was an important factor in building this system. Since our main goal was to perform

faster than most hard drives, our options were down to RAM and CPU cache for storage. CPU

cache is much too small in storage, even if distributed, to be useful for most digital forensic

applications. RAM, which performs faster than hard drives and has larger storage than CPU

cache is the option we chose to take.

One approach to increasing RAM capacity without the soaring cost of upgrading a single

machine is to distribute the RAM on an available cluster. There have been many approaches at

pooling the RAM resources, depending on the researchers’ goals and network characteristics.

Fortunately, commodity network speeds have been able to rapidly rise as shown in Table 1.2.

Comparing Table 1.1 to Table 1.2, it is clear to see that with gigabit ethernet network or greater,

the bandwidth exceeds that of a modern hard drive.

 5

Local Area Network Ethernet Fast Ethernet Gigabit Ethernet 10 Gigabit Ethernet

IEEE Standard 802.3 802.3u 802.3ab 802.3ae

Year 1978 1995 1999 2003

Bandwidth 10 Mb/s 100 Mb/s 1000 Mb/s 10000 Mb/s

Latency 3000 msec 500 msec 340 msec 190 msec

Table 1.2 A table showing the history of ethernet trends in bandwidth and latency

By choosing our target application area to be digital forensics, we were left with the

challenge of processing hard drives that grow in size much faster than the machine can handle

them. In digital forensics, this performance gap is a very common and serious problem.

Frequently, as a digital forensic tool starts processing, the system will quickly run out of

memory, which causes thrashing, leading to multi-day processing. One possible approach to fix

this problem is to use parallel applications as demonstrated in [1], but it is the vendor’s judgment

to apply such an approach. Also, most digital forensic processing is inherently I/O bound, and all

data on the drive must be read at least once, and often many more times to successfully gather

relevant answers. Therefore, this provides evidence that having more RAM for caching will

display notable performance gains, and having more CPU cycles may not yield an evident

difference in performance.

After searching for a readily available solution that could be easily deployed for our

purposes, we couldn’t find one and thus we decided to make our own. By combining the

clustered RAM approach with using the block device layer shown in Figure 1.1, we decide to

build a distributed block level device that sends and retrieves its storage from RAM on a cluster.

 6

We present this distributed block device as a practical solution that could be easily

deployed to utilize RAM resources. In our lab, and most likely others, there have been numerous

times when RAM is not being fully profited and part or most of the RAM just sits idle.

Generally, the existence of idle RAM is a well-documented fact [4]. Our device will exploit this

fact and gain storage benefit from the unused RAM resources, while using the performance of

RAM. However, the latency of the network is still an issue, but with bandwidth speeds such as

gigabit, an efficient gain in performance over most hard drives can still be attained.

1.2 Requirements

We decided to create some other requirements besides performing faster than the hard

disk. Since Cheetah was targeted for digital forensics, we wanted investigators to be able to use

this system on the suspect’s cluster and also the investigator’s cluster. Since we wanted to make

it possible to run on a suspect’s network, we had to make sure that none of the persistent data,

which might contain evidence, changed. With this kept in mind, we decided to add some

additional requirements as well.

1. LAN Scalability

Commodity RAM on a single machine cannot store nearly as much as the hard drive

on the machine. However, since digital forensics is our target, having enough space to fit disk

images and other large files is required. So distributing available RAM resources on a cluster

could allow for a large storage container necessary for digital forensic to copy their files to.

 7

2. Commodity Solution

We also wanted Cheetah to be a commodity solution so that investigators will be able

to benefit from this project at the location of the crime scene as well as the investigator’s lab.

Our system is a readily available solution, and expensive or rare components are not

required.

3. Lightweight

Another important goal was to design Cheetah lightweight so it is not difficult to

manage for an average computer user. Instructions to run Cheetah should be short and

simple, so more time will be spent on processing from the digital forensic applications being

used.

4. Digital Forensics Support

Lastly, we designed Cheetah for digital forensics, so we wanted support of multiple

file systems, the ability to run from a live CD, and the opportunity to run arbitrary forensic

tools. Developing a custom forensic file system in the file system layer could gain I/O

performance for specific problems, but this would eliminate the ability to use other popular

file systems such as FAT32, NTFS, and ext2/3. We wanted the option to lay a copy of a

complete file system over Cheetah’s block device, so no requirements on the type of file

system should be set.

Since there are many different Linux live CDs available on the internet, Cheetah

should be able to run on Linux, giving the option to inject a custom live CD with Cheetah’s

 8

software so the investigator can efficiently carry it on the same disc as the other digital

forensic tools. Cheetah should also be able to run arbitrary forensic tools and should not be

limited to a certain subset of digital forensic applications.

1.3 Thesis Statement

Our project, Cheetah, takes advantage of available RAM on a cluster and the bandwidth of

a gigabit network to outperform hard drives while not losing the storage capacity penalty since it

is LAN scalable. It tightens the capacity/performance gap, allowing intensive I/O digital forensic

applications to perform better. Cheetah contains a distributed block device that performs its

operations on the other servers’ RAM in a cluster. The sharing of the RAM is transparent to the

application being performed, allowing for a wide range of digital forensic tools.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 reviews the current solutions to

increase drive speed performance and drive storage scalability. Chapter 3 presents the design of

our specific approach. Chapter 4 explains in detail the implementation of this project. Chapter 5

displays the test results to prove that performance gain is achieved. Chapter 6 includes our

conclusions and the ideas being developed for future work.

 9

Chapter 2: Related Work

Distributed RAM sharing is a well-established idea, and a number of implementations have

been developed over the years. Generally they fall into two broad categories depending on their

interaction with the user process. The first approach is to hide the fact that the sharing takes place

and by tricking the application into believing that there is a greater amount of RAM available

than there actually is. This behavior is similar to the way virtual memory works. The difference

is that, instead of coming from the hard drive, the extra memory is physical RAM on another

machine on the network. The second approach is to expose the sharing and give the application

some means to control the sharing process.

This section will discuss a few related systems such as Distributed File Systems (DFS), the

iSCSI drive, Google FS, Network Block Device (NBD), and Remote Direct Memory Access

(RDMA) over InfiniBand. Before summarizing these systems, we should mention that a number

of simulation studies have been performed to explore the viability of different ways of

distributed RAM sharing. For example, Dahlin et al [3] used a trace-driven simulation to study

the performance benefits of cooperative file caching using several cooperative caching

algorithms. “Cooperative caching seeks to improve network file system performance by

coordinating the contents of client caches and allowing requests not satisfied by the cache of

another client.” [3] This caching technique is designed to improve cache performance for system

reads only, and does not address issues such as write performance and large file performance

which happen to be extremely important in the digital forensics field.

In [5], and later[6], Xiao et al. studied the impact of combining network memory and job

migration for system scalability and throughput improvement. A Parallel Network RAM

solution, based on global management was proposed for scientific applications.

 10

2.1 Distributed File Systems

A Distributed File System (DFS) is a file system that supports sharing of files and

resources in the form of persistent storage over a network. Distributed file systems can scale very

large, and immense disk sizes may be needed depending on what problem is trying to be solved.

This large size capability is an advantage while the weakened performance is a disadvantage. In

conventional systems, performance consists of a disk-access time and a small amount of CPU-

processing time.

There is a transparency involved with distributed file systems, since the client interface

should not make a difference for the user to read or write to local and remote files. This gives not

only user friendliness but also allows applications to transparently read and write from the

distributed file system even though the files processed might be on a remote server.

In a DFS, our requirement of system layer transparency is fulfilled, but the file system

performance is weak because not only does the normal overhead occur, but also an additional

overhead from the network’s transmission delay. Also, this solution eliminates the possibility of

using other file systems for digital forensics work.

2.2 iSCSI

iSCSI enables a machine on an IP network to contact a remote dedicated server and

perform block input and output operations just as it would do with a local hard disk . iSCSI

operates on top of TCP and uses longer packet headers that include additional information to

speed up packet assembling. Scalability is available, but performance is downgraded because of

the high latency. The main reason for the latency is because of the iSCSI protocol being layered

 11

on top of TCP, and then the normal SCSI interface is on top of iSCSI. Figure 2.1 illustrated the

layers involved to unwrap, causing the latency.

Figure 2.1 This diagram illustrated how many layers that must be unwrapped for each packet received in the
iSCSI session, which causes latency issues

2.3 Google FS

According to [7], Google File System (FS) is a scalable distributed file system for large

distributed data-intensive applications. It is widely deployed within Google as the storage

platform for the generation and processing of data, and it is also used for research and

development efforts that require large data sets. As shown below in Figure 2.2, Google FS is

composed of a master and chunk servers. The master contains all the file system metadata,

including the mappings of the files to chunks, which are stored in the chunk servers.

 12

Figure 2.2 The architecture of Google File System

Google FS also provides fault tolerance to a large number of clients by replicating chunks

into separate chunk servers. While this technique might benefit the client when one of the chunk

servers unexpectedly goes down, for large data sets it does require more chunk servers and could

run into a non-commodity to be successfully fault tolerant. Also, Google FS is optimized for

sequential reads/writes of files, but unfortunately in digital forensics non-sequential access is

very common.

2.4 NBD (Network Block Device)

The network block device application, or commonly referred to as NBD, allows the Linux

user to access block data from a remote server. Since it acts as a block device, the user is allowed

to lay any file system on top of it. This allows for scalability of the device, similar to the

distributed file systems, but now any file system can be laid on top after the nodes are ready.

NBD does have its set of limitations. It is impossible to use it as a root file system, and it

only allows the user to run as a read-only block device in user-land. It will also deadlock “within

seconds” if the server and client are both on the same machine. Another drawback is the

 13

performance is still hurt by the TCP overhead adding to the overhead of the disk and CPU.

NBD’s throughput is equal the hard drive’s throughput.

2.5 RDMA Over InfiniBand

RDMA is a communications technique that allows data to be transmitted from the memory

of one computer to another computer without:

• Passing through either computer’s CPU

• Needing extensive buffering

• Calling to an operating system kernel

RDMA helps gain network performance by not having to pass data through the CPUs.

InfiniBand is an example of a form of RDMA that sends data in serial form and can carry

multiple channels of data at the same time in a multiplexing signal. The channels are created by

attaching host channel adapters (HCAs) and target channel adapters (TCAs) through InfiniBand

switches. The HCAs are I/O engines located in a server. The TCAs enable remote storage and

network connectivity into the InfiniBand interconnect infrastructure, called a fabric. InfiniBand

architecture is capable of supporting tens of thousands of nodes in a single subnet and

transmission rates begin at 2.5 MB/s. Figure 2.3 shows the layout of the InifiniBand

architecture1.

1 Figure 2.3 is taken from http://www.oreillynet.com/pub/a/network/2002/02/04/windows.html

 14

Figure 2.3 Topology of InfiniBand architecture

In [8], an RDMA-optimized implementation of the MPI library is used to provide the

transparent use of remote memory. The problem with RDMA is that it’s not a commodity, and it

has high network latency issues.

2.6 Summary

Each of the described practical solutions was missing at least one of our project’s

requirements such as higher performance over a hard drive as well as a commodity solution. We

found some similar projects only done as simulations such as [9] and [10], but there were no

practical implementations to be found. Therefore we had to develop our own design to meet all

of the criteria specified in our requirements.

 15

Chapter 3: System Design

In this chapter, we describe the design of the two main system components, Cheetah’s

block device and the cache servers. In order to properly describe how these parts work, let us

also describe the communication between them.

Consistent with our goals for a simple system that can easily be deployed, we have opted

for a design that is minimally invasive to the system software and is fairly portable. The basic

architecture of Cheetah, shown in Figure 3.1, consists of a set of user-level RAM server

processes that provide local RAM access to a central RAM client. The different types of shaded

boxes represent certain sections of blocks, and the diagram shows the mappings of their locations

in the client host to their locations in the RAM server hosts.

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

Figure 3.1 The architecture of Cheetah

The central RAM client, consisting of the block device, sends and receives all of the

block data from different server hosts, which hold the blocks in each of their local RAM. Since

 16

RAM is volatile, any data transferred through the network or stored in RAM will disappear once

powered off, leaving the hard drives and other non-volatile storage on all of the server hosts in

tact.

3.1 Block Device Module

There were 2 choices in designing this component of Cheetah:

1) The first choice is to implement file system level caching, which would allow

optimizations based on the logical structure of the file system, but would also break

one of our requirements by making it file system dependent.

2) The other option is to implement a block level device that does not have the benefit of

knowing about files and directories (and likely access patterns) but would work with

any file system.

Our decision of using the block level device was based on two factors. The first one is that for

our specific application domain, digital forensics, unlike in most other domains, the applications

do care about unallocated space and preserving the original block-level layout of the file system

is necessary. The other factor is that operating systems already do a very good job of laying out

files sequentially so simple read-ahead optimizations may well be enough to achieve good

performance.

 17

 The block device is a Linux module that runs on any Linux 2.4 kernel. The kernel can be

compiled on a bootable live CD, allowing the module to be also installed on the bootable CD, for

a portable usage. The device is the first thing to be initialized and manages all the blocks of

storage as long as Cheetah is running.

3.2 Cache Servers

The cache servers run on any Unix type platform such as Linux, Mac OS X, Solaris, and

FreeBSD. The cache servers can also run on any live bootable Linux CDs. These servers should

start up after the Cheetah module is loaded and ready. There is no particular order to start each of

the cache servers, but the order in which they are started is the same order of where the blocks

will be stored. For instance, if server A was started first sharing 180000 1KB blocks, then A will

contain blocks 1-180000.

 18

Here is a diagram showing how the blocks are stored from each cache server:

ext2/3 NTFS FAT32
QuickTime™ and a

 decompressor
are needed to see this picture.

Block-Level Device

RAM

APPLICATION LAYER

FILESYSTEM LAYER

BLOCK LAYER

HARDWARE LAYER

RAMRAM

0-15000 15001-450000 450001-465000

Figure 3.2 A diagram showing how the different cache servers are distributed and connected to the block
level device.

To describe how Cheetah works, let us point out the 3 step process involved in the

communication between system layers:

1) An application makes operating system calls to operate on the file system

layer.

2) The file system determines what to do based upon the given operations. If

there is reading or writing involved, it most likely calls the block level device

in the block layer, which ends up to be Cheetah’s block device.

 19

3) On the block device, the mapping of where blocks are stored on the cache

servers is transparent to the file system level and above levels in the system

architecture. The device connects to one of the cache servers, specifically

RAM in one of the cache servers, which is in the hardware layer.

To get worthwhile speed results, the block device and cache servers must be on the same

LAN, preferably with gigabit speeds. If the network speed is not fast enough, the bandwidth will

be noticeably downgraded. The network bandwidth does play an important role in the

architecture, especially since for every block written and read, it must go through the network

first. After data is sent through the network, the overhead of the disk and CPU must then be

accounted for also.

One drawback to the cache servers is that allocated memory cannot be locked into RAM so there

is the possibility of the memory getting swapped out with other memory via the paging system.

Our rationale, supported by our experience, is that for an idle system the user will be able to fill

up the memory in RAM since there will be no competition of who gets to be in RAM. The

amount of RAM to share on each of the cache servers should be chosen dependent upon the

amount of free RAM available on the servers. If a cache server starts another process that

happens to be memory-hungry, then performance will notably suffer.

3.3 Communication

We use an application-level protocol to perform service discovery and to exchange block

read/write operations over TCP socket connections. TCP/IP processing overhead is a well-known

 20

source of inefficiency, especially for high-speed communication networks. For a commodity

solution seeking the lowest common denominator, the only other realistic options are UDP and

Ethernet frames. Evidently these would need separate reliable transmissions mechanisms, very

similar to the one already provided by TCP. In initial testing, we did not find any appreciable

difference between a TCP version and a UDP one (without a reliability mechanism). For our first

version, presented here, we decided to go with the basic TCP solution and revisit the issue, if the

performance is unsatisfactory.

Another argument supporting TCP/IP is that IT users have been very reluctant to adopt

more efficient (but less widely accepted as standards) solutions designed to take advantage of

more efficient communication technologies (e.g., InifiniBand). As a result, many vendors are

providing TCP/IP emulation that enables users to take advantage of most optimization without

parting with the “good old” TCP/IP sockets. Specialized Ethernet “accelerators” are emerging

with TCP/IP implementations on a chip. Even SMP machines (e.g. from IBM) come with

TCP/IP emulation so that the same code could be run on a cluster and on an SMP machine with

shared memory. In other words, we have good reason to believe that TCP/IP is not going away

anytime soon even for high-performance computing and that, in many cases, TCP-based solution

would be able to directly benefit from hardware improvements.

3.4 Adaptation Scheme

Even though our project was tested on a gigabit network, TCP did tend to slow

performance down to about the same as a hard drive. We used 1KB block transfers that

comfortably fit into an Ethernet frame, which seemed logical. However, real numbers showed a

less than 5% improvement over our hard drive. This kind of performance isn’t acceptable since

 21

one of the main goals of Cheetah’s device is end-to-end latency improvement. Subsequent

experiments confirmed that, for large files, simply pushing the transfer (read-ahead) unit to 100

KB yielded substantial performance improvements over the hard drive. For small files, that is

clearly too expensive.

We implemented an adaptive read-ahead scheme to accommodate the conflicting

requirements of large and small files. This adaptation technique works as a 3 step process:

1) The initial read-ahead transfer unit is set to the minimum, 4KB

2) If a successful block request is adjacent to the previous block transferred, the size of

the transfer unit is doubled subject to a maximum parameter, 128KB

3) If the user stops reading blocks sequentially, then the number of read ahead blocks

resets back to the minimum, 4 KB

Since the number of blocks to be read ahead keeps adapting to whatever the user is doing, this

technique proved to increase performance dramatically. This scheme is quite similar to the TCP

slow-start algorithm – every adjacent block request is treated as a “success” leading to the

doubling of the transfer window, while every non-adjacent one is treated as a failure (akin to

packet loss) and the window is shrunk. The minimum of 4KB was picked because it is typically

used by operating systems as the minimum allocation unit. The maximum of 128KB was picked

after testing identified it as the point of the diminishing returns. Further increases beyond 128KB

yielded only marginal improvements in performance. The presented adaptive scheme is

somewhat similar to the one used by the Linux kernel in version 2.6 (which has its own issues

[6]). There are at least two notable differences:

 22

1) In the block device level we simply do not know about files, so file-based

optimization is not possible.

2) Our read ahead is more aggressive and works along the file system read-ahead.

 23

Chapter 4: Implementation

In this chapter we describe the implementation of our prototype that allows Cheetah’s

distributed block device to perform faster than a hard drive. This prototype also allows users to

keep adding cache servers to gain the desired size of the virtual drive and the ability to lay any

file system that Linux can read on top of the device.

4.1 Technology Used

We implement our system around the GNU/Linux operating system for three main

reasons. The first is because since the entire kernel is open source, there are a great number of

free resources that made the module development process quick. The second reason for

developing a Linux module is so the user can lay any file system (FAT, NTFS, ext2/3,

ReiserFS…) that the Linux Virtual File System can read on top of the block device. Other

operating systems such as Microsoft Windows XP do not allow such a wide variety of file

systems to be mounted. The third reason is to give forensics support by putting the module on

one of many different Linux bootable CDs. The CDs allow forensic investigators to stealthily use

Cheetah on any network of workstations without modifying any of the non-volatile devices on

the network.

4.2 The Module

Cheetah’s block device is a 2.4.x Linux kernel module written in C using the kernel

headers. We added a script for user-friendliness that will re-compile the module to a specified

Linux kernel version. For example, if launch the module on a 2.4.31 kernel, but the module is

 24

currently compiled for 2.4.18, then the user can just type the command “./k linux-2.4.31” which

will re-compile the kernel. The device can be loaded and unloaded with root permission. The

user has an option to load the module manually or with another script “./s”. This script will not

only load the module but also start the block device at /dev/cheetah. At this point all of the cache

servers can be started and the /dev/cheetah block device will incrementally add more block

space. There is a thread running in the module that continually looks for cache servers until the

device is mounted. In order to achieve this dynamic effect for users to add cache servers at any

time after the device starts, Cheetah re-initializes the device while saving some of the data

variables that hold information about the past blocks.

Support for developing a normal Linux kernel block device can be found in many places

including books and on the web. Even though Cheetah’ distributed block device is a “special”

block device, these resources shortened the time needed to make the “normal” block device work

and gave us more time that was needed to bring the “distributed RAM” block device to life.

4.3 The Cache Servers

The cache servers are also written in C, and they use the normal UNIX networking

library for communication calls. Since the source code for the cache server is short and simple, it

wouldn’t be difficult to port to a Windows machine. The cache servers can be started with two

parameters:

1) The IP address of the machine loaded with Cheetah’s distributed block device

2) The number of 1KB blocks to share from that local machine

 25

The number of blocks should be carefully picked because it can hog the machine’s RAM,

periodically freezing the operating system. Also, if another process starts to need more memory,

then thrashing could occur. Enough memory should be left free to make the machine at least

somewhat usable. We tested machines with 2GB of total RAM and shared 1800000 blocks, or

1.8GB.

4.4 User Interaction

This section describes how to start the block device and cache servers. The block device

must be started first with the following 2 commands: insmod and mknod:

$ insmod cheetah.o

The insmod command inserts the compiled block device module object file (named

cheetah.o) in the Linux kernel. This will also create a new block device that can be reference in

Linux with a major number 254. This number is used in the next step.

$ mknod /dev/cheetah b 254 0

mknod’s first parameter is the path of the new device that you want to create. The

second parameter, “b” is for a block device type. 254 is the major number that was created in

step 1 and 0 is the minor number, a number that references different devices if more than 1 are

created.

Now since the block device is started, all of the cache servers can be initialized with a

specific amount of memory blocks to share by using this command:

$./c 10.0.0.1 1800000

 26

c is the binary executable that shares a specified amount of 1KB blocks of RAM (in this

case 1800000, or 1.8 GB). The first parameter is the IP address of the machine containing the

distributed block device.

 As each cache server starts to share empty blocks in their local RAM, the block device

will continuously sum up the total blocks from the previous cache servers. After the last cache

server is started, the block device will be loaded with as many blocks as the total amount of

blocks that the cache servers are sharing. It is important to note that all of the blocks shared by

the block device are empty, which allows any file system to be layered on top, or even a single

file as well. In order to lay a file system on top it must be mounted properly by following Linux

Virtual File System (VFS) specifications.

4.5 Communication Protocol

The communication protocol that Cheetah uses is TCP for reliability. UDP was tested but

showed many problems. The following diagram shows the steps of typical transferring in

Cheetah:

 27

Client Cache Server ABlock Device Cache Server B

read()
Request blocks 20-40

Here are blocks 20-40

write()
Write data to blocks 5-11

read()
Request blocks 220-355

Here are blocks 220-355

Figure 4.1 shows how the block device will execute commands to more than one cache

server, in a synchronous order caused from TCP stream communications. When a client executes

a read() command for a file, the block device first figures out which cache server and which local

blocks to read from that cache server. Then it requests from the cache server the right amount of

local blocks. When a write() command is executed, the block device figures out which cache

server and which blocks on that cache server to write to. It then sends the data and the location of

which blocks to write the data to.

In UDP, the ordering of packets arriving, or the knowledge if packets ever arrived, is not

implemented. So for example we used UDP, and modifying the order in Figure 4.1, let’s say we

to do a write to blocks 35-50 in between the first request and response of blocks to read. This

means that we requested blocks 20-40 to read, wrote new data into 35-50, and then read 20-40,

with 5 changed blocks, giving back the incorrect result. The communication of commands

Figure 4.1 A flow chart showing some examples of communication between the cache servers and the
block device.

 28

getting executing in Cheetah is just as important and reasonably has the same focus as read/write

concurrency in operating system memory management.

The blocks were being requested too fast and some requested blocks were either not

coming back to the module or out of order. Since this project is set to be a digital forensics

solution, the forensics rule of preserving data is vital for this project. So a reliability

implementation was needed, and the basic TCP fits our problem precisely.

 29

Chapter 5: Evaluation

 Throughout our design and implementation process, we have targeted the development of a

practical solution that can benefit users. Therefore, a principal question for our testing

methodology was the selection of test cases that best represent typical access patterns. After

considering our goals, we concluded that the main measure of success is the ability to speedup

sequential access patterns. The rationale here is twofold:

1. It is the best side of hard drive performance – randomized patterns clearly kill HDD

performance and play to our strengths.

2. Today, non-sequential access patterns are not the norm, but the aberration.

 For example, Google FS [7] does not even attempt to optimize for non-sequential access.

Applications that do need to access large amounts of data with potentially randomized patterns

explicitly manage their I/O requests to improve performance (DBMS are an obvious example). A

common exception from these cases is file servers: due to concurrent independent requests, the

block requests could become really scattered. This, however, should naturally favor solution over

a mechanical drive.

 We wanted to evaluate our block device performance by using both a disk benchmarking

tool and various digital forensic applications. The reason for using the benchmarking software is

to test the true I/O performance, and get results such as how fast the reads/writes from the

operating system are without having to worry about interference from other resources. Since we

focus on digital forensics, it makes sense to see how forensic applications perform using

 30

Cheetah.

5.1 Hardware Setup

All testing was done in the NSSAL lab at UNO. There were 6 Dell Workstations used,

each with 2 GB of RAM and 3.0GHz processors. One of the machines ran the module while the

other 5 machines acted as cache servers. The machine that ran the module also gave up 1GB of

its RAM also acting as a cache server. Since the 1GB was on the same machine as the module,

the performance was very fast when those blocks inside the dedicated 1GB were being accessed.

It made sense to use the local RAM wisely. This machine with the module was running Red Hat

9 on a compiled 2.4.31 Linux kernel. The other 5 machines were booted with KNOPPIX live

CD, which also ran a Linux kernel, but in its original KNOPPIX version. Since the purpose of

the live CD is to run the kernel and file system only in RAM, then some memory had to be left

free for the operating system to remain stable. Therefore out of 2 GB total RAM, 1.8 GB was

taken and used for each of the 5 cache servers. The diagram in Figure 5.1 shows our hardware

setup for testing.

 31

Cache Server
Sharing 1.8GB

Linux Block Device
Sharing 1GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB

Cache Server
Sharing 1.8GB

Figure 5.1 A diagram representing our block device connecting to our 5 cache servers that were used for
testing

Summing the cache servers’ total memory shared, we end up with a total of 10 GB (5x1.8+1) of

free memory allocated for Cheetah’s block device to use.

The HDD used in the block device’s machine for comparison with Cheetah was a

randomly picked 60 GB Hitachi IDE drive from our lab and was directly attached to the host

executing the applications. For testing, we used the complete content of two randomly chose

hard disks from our general purpose lab, 4.3 GB and 6.4 GB, respectively. For the network

experiments, the test images were preloaded onto the distributed RAM drive. Before running the

tests, we benchmarked both the HDD and the network as follows:

 32

Network: End-to-end sustained bulk IP network transfer observed by processes:

100MB/s. This was higher than our expectations so we performed the same experiment

with two other switches – bigger and much more expensive – and they established similar

results.

HDD: Sustained file system level bulk transfer (mass sequential copy): 24MB/s.

These baseline results show that the commodity network has the clear potential to beat the

commodity HDD for bulk transfers, which is the strong suit of the hard drive. For random

access, we would expect the performance gap to widen considerably.

5.2 Software Setup

 IOzone (http://www.iozone.org/) is a file system benchmark tool for Linux. It has a

number of different options including 15 different tests that can be run: read, write, re-read, re-

write, read backwards, read strided, fread, fwrite, random read/write, pread/pwrite variants,

aio_read, aio_write, and mmap. While testing we used a record size of 4 KB and a maximum test

file size of 8 GB due to a limited 10 GB of total RAM space available on our LAN setup.

We also wanted to get results using applications that people use commonly and applications that

forensics investigators might use. md5sum proved to have one of the best results, and it

displayed to have much more disk use in the application rather than CPU usage. tar also proved

worthy since it also is disk intensive. tar was tested by compressing many small files (images)

into a tar file and then extracting them.

 33

There were two forensic applications used. The first was from Sleuthkit, a free Linux digital

forensics tool set. The tool used from this set is named Sorter. Sorter looks into a disk image, and

carves out various known formats such as Microsoft Office documents, text files, pictures, sound

files and so forth. Sorter also has many options available, such as multiple file system support,

md5sum checking, sha1 checking, html output, an option to list the files and not extract them,

and many other options. Sorter is a great tool to use, but unfortunately Sorter proved to have the

least best results because it is not as disk intensive as the other applications and is more CPU

intensive. The results will be explained in further detail in the following section.

Disk images can be saved in raw format into a single file using the dd tool. These dd

made images are very popular and used commonly in digital forensic applications. On hand we

had one NTFS 4.3 GB image and another NTFS 6.4 GB image to run experiments with.

5.3 Results

Below, we summarize the benchmark results, as well as some digital forensic tools. Since

our project is focused on digital forensics, and since we focus on lowering latency, the selected

applications were highly I/O intensive. We examined the general intensity by monitoring the

CPU, disk, and network usage by simply using the built in resource monitoring application in

Red Hat 9. Sorter was the only application that was not as high disk-intensive as the others, and

this tool was selected to show that results are still not downgraded with Cheetah if the

application uses other I/O resources as well as the disk.

 34

5.3.1 IOzone

Since IOzone is a disk benchmarking tool, it has much more I/O intensive operations than

the other test applications selected. Because of this, the improvement of performance results is

far more apparent. Below is Table 5.1 that displays them summary of numeric results and brief

descriptions of the IOzone benchmark measurements.

HDD RAM disk
Write 24,026 92,309 284%

Rewrite 25,788 92,628 259%
Read 26,568 88,768 234%

Reread 26,487 88,357 234%
Random Read 396 9,065 2189%
Random Write 495 10,501 2021%

Backwards Read 5,071 18,216 259%
Strided Read 5,243 7,834 49%

Performance (KB/s)Test Relative
Speedup

Table 5.1 A table that shows Cheetah's percent increases over the hard drive

• Write: Sequential writing to a new file

• Re-Write: Sequential writing to an existing file

• Read: Sequential reading of an existing file

• Re-Read: Sequential reading of a file that has already been read

• Random Read: Reading from random locations with a file

• Random Write: Writing to random locations with a file

• Backwards Read: Sequential backwards reading of a file

• Strided Read: Reading a file with a strided access, e.g., a 4KB read followed by

200KB sequential seek, another 4KB read, and so on

 35

Cheetah was able to achieve 88-92% of the sustainable IP bulk transfer rate over our

network. Clearly, the write performance is not a function of any optimizations on our part but is

an artifact of the ability of TCP to sustain the measured rate. In the other hand, the read

performance demonstrates that our aggressive adaptive scheme is able to feed enough data to

keep TCP busy at close to that same rate.

Figure 5.2 shows the Write/Read and Re-Write/Re-Read performance results. We can

clearly see that Cheetah performs substantially better than our hard drive using these common,

basic file system operations. The distributed RAM disk performed about 3.5 times faster than the

IDE drive used. Recall that, from the initial benchmarking, the raw network transfer rate (our

practical limit) was 4 times the HDD one.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

KB/sec

Write Re-write Read Re-read
Test Performed

Hard Drive
Cheetah

Figure 5.2 IOzone's read/write and re-read/re-write performance results

 36

Figure 5.3 shows us the results of random writing/reading on both the hard drive and

Cheetah’s block device. The RAM disk showed an average improvement of 22 times over the

mechanical drive. At the same time, the observed transfer rate (~10 MB/s) was 10% of the

maximum, whereas for the hard drive that number is well under 2%.

Figure 5.3 IOzone’s random read/write performance results

Figure 5.4 shows the results of two types of reading, backwards and striding. The 100%

improvement of backwards read over random read for Cheetah’s RAM disk is entirely due to the

read-ahead policy of the kernel – we did not tweak our read-ahead algorithm to handle this the

way we handle forward read for the sake of the test. We find the result interesting as it gives an

idea of the relative effects of file system read-ahead and block device read-ahead policies.

0

20000

40000

60000

80000

100000

120000

KB/sec

Random Read Random Write
Test Performed

Hard Drive
Cheetah

 37

One relatively minor discrepancy are the stride read results for the RAM drive – they are

somewhat lower than the random access results, which we would expect that to be the absolute

floor of performance. Since the block device does not do anything differently, our best guess is

that the file system issues read-ahead requests that are eventually not used and not counted by the

benchmark application.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

KB/sec

Backwards Read Stride Read
Test Performed

Hard Drive
Cheetah

Figure 5.4 IOzone’s backwards and strided read results

5.3.2 Tar

Figure 5.5 shows that the standard Unix archiving utility, tar, has good performance in

Cheetah. tar was not performed on the 6.4 GB disk image target, but only the 4.3 GB target. The

 38

reason is that our setup provided only 10 GB total, while tar needed 12 GB to successfully

perform the archive operation on the 6 GB disk image.

5.3.3 Sorter

Sorter is a Perl script that analyzes a file system to organize the allocated and unallocated

files by file type, and is found in the digital forensics Sleuth Kit package. It is clear to see in

Figure 5.6 that Sorter does not have as great of improvements as the other test applications, but

this is because Sorter uses utilizes more of the CPU resource than the disk resource. The reason

Figure 5.5 A chart comparing the time to complete an operation of creating a tar archive using the standard
tar tool

0
50

100
150
200
250
300
350

Time To
Complete
(Seconds)

4GB Image
Size Of Image

Hard Drive
Cheetah

 39

for presenting this result is to show that even under the condition that the application is more

CPU bound than I/O bound, the application’s performance will not worsen.

5.3.4 Scalpel

Scalpel is a digital forensics file carver [11], similar to sorter. The main difference for our

testing purposes is that Scalpel showed signs of higher disk intensity from the resource monitor.

This allowed Cheetah to outperform the hard drive rather well. The reason why the two disk

images have different performance increases (156% and 80%), is that for the 6 GB disk image,

different parameters were used since the two disk images are totally different in both the amount

Figure 5.6 A chart comparing the results of two disk images using the Sorter tool, taken from the digital
forensics Linux Sleuthkit.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Time To
Complete
(Seconds)

4GB Image 6GB Image
Size Of Image

Hard Drive
Cheetah

 40

of files, and the types of files contained on each of the images. Figure 5.7 shows the results of

Scalpel.

5.3.5 MD5Sum

Here we test using the Unix MD5Sum application. In digital forensics, it is very common

to use this tool to both

Figure 5.7 A chart showing the performance comparisons from using the Unix MD5Sum tool

0
200
400
600
800

1000
1200
1400
1600

Time To
Complete
(Seconds)

4GB Image 6GB Image
Size Of Image

Hard Drive
Cheetah

 41

1. Identify and give file signatures easily and,

2. Accurately checks to see if a file or disk image was modified from the start of the

investigation.

The results, displayed in Figure 5.8, were at first glance very interesting to us. MD5Sum

revealed to be strongly utilizing the disk resource much greater than the CPU.

5.3.6 Results Correlation

The IOzone benchmarking results showed to have a better performance increases than the test

applications. This proves that Cheetah’s increase in performance is most apparent for

Figure 5.8 A chart showing the performance comparisons from using the Unix MD5Sum tool

0

50

100

150

200

250

300

Time To
Complete
(Seconds)

4GB Image 6GB Image
Size Of Image

Hard Drive
Cheetah

 42

applications that are highly I/O bound. The test applications had trivial increases in performance

by using Cheetah, but results clearly showed that these applications were using other resources

as well as the disk.

5.3.7 Comparative Evaluation

To place our results in the context of previous work we compare them with respect to

NRD [9], which has the closest goals and performance metric to ours. A direct head-to-head

comparison is not possible due to the varying technologies used, so our main basis for

comparison is efficiency. One way to measure efficiency is to compare how well does each of the

two implementations realize that available network bandwidth.

For sequential read/write operations, Cheetah utilizes 71 and 74%, respectively, of the

theoretical maximum of 1GB/s. On the other hand, the respective numbers for NRD we derive to

be 22 and 25%, for the 10 Mb/s Ethernet quoted. We deduce the sequential NRD read

throughput from the performance for the “find” tool presented in Table 2 [9]; a 28 MB read is

completed in 104 seconds (~276KB/s). The sequential write performance comes from Figure 11

[9], which shows a 30 MB sequential IOzone write to take about 100 seconds (~307 KB/s).

Clearly, other factors play into these end-to-end performance measurements – quality of

hardware, NIC drivers, TCP/IP stack, etc. However, they cannot account for the threefold

improvement in efficiency. Further proof can be found in the fact that NRD achieved only 25%

improvement in sequential read performance relative to the hard drive. If we extrapolate for a

network that is 4 times faster than the HDD (our setup) the speedup would not exceed 100%,

whereas ours stands at 234%.

 43

5.3.8 Summary

Our benchmark results have shown that the typical read() and write() file system calls can be

sped up about 3.5 times faster than a commodity IDE hard drive. By running these tests on a

commodity gigabit network, we have achieved speeds that were approximately 90% of what was

achievable on our network’s bandwidth. We have successfully manage to meet our original

requirements:

1. LAN Scalable

This requirement was met by using RAM from all of the available machines in our lab

together to form the block device.

2. Commodity Solution

Since our entire hardware setup consisted of a commodity gigabit switch and commodity

machines, this requirement was clearly met.

3. Lightweight

The user manual for using Cheetah consists of only 2 commands for starting the block

device, and one command for starting the cache servers. If desired, a Unix script can be

written to perform these operations automatically. Thus, Cheetah is very lightweight and

easy to deploy.

4. Digital Forensics Support

 44

The distributed block device is below the file system layer in the system architecture and

its implementation details are transparent to the file system layer, allowing for multiple

file system support. Forensic applications are also not limited, since the device details are

transparent to them as well.

 45

Chapter 6: Conclusion and Future Work

In this thesis, we presented a practical solution for sharing of RAM resources on a

commodity gigabit cluster. The solution is based on a system containing a distributed block-level

device and its connected cache servers called Cheetah. Unlike previous work, our solution is

targeted at improving sequential read/write operations, which are the dominant disk access

pattern. Our experiments show that sequential read/write operations can be sped up

approximately 3.5 times relative to a commodity IDE hard drive. Furthermore, this speedup is

approximately 90% of what is practically achievable for the tested system. To achieve this

performance, we employ an adaptive read-ahead scheme that exponentially expands the read-

ahead window during sequential reads.

Relative to previous work, our system is approximately 3 times more efficient in its

ability to use available network bandwidth and is able to utilize 71-74% of the theoretical LAN

capacity. For random access patterns, the measured speedup is over 20 times. Thus, for mixed

loads, such as the ones experienced on a server, the speedup can significantly exceed the baseline

3.5 factor.

From these results, we show the effectiveness in digital forensics of Cheetah achieving a

higher performance than the average hard drive. This is the most important goal of Cheetah, and

the main purpose of the project. A popular problem that digital forensic investigators often

encounter is that there is a great amount of precious time wasted while waiting for the digital

forensic application to finish processing a disk, but due to thrashing and heavy loaded resources,

performance penalties become apparent quickly. The only results available are the ones after the

processing is done, and they could arrive too late. We wanted to downsize the time waiting for

results by lessening the end-to-end latency for disk processing.

 46

Theoretically, Cheetah’s block device can be scaled up to a 2 TB maximum size,

although this has not been tested since our lab only had around 10GB of free RAM. Otherwise,

the amount of RAM available on the LAN determines the maximum space allocated for the

distributed block device. RAM is a commodity piece of hardware, its speeds are much faster than

disk speeds, and its capacity is larger than CPU cache, making RAM a very useful resource in

our system. The problem of small capacity in RAM can be solved by distributing all of the

available RAM on the network, which could lead up to a much bigger storage domain. Networks

that have high-speed clusters greatly benefit in Cheetah’s architecture. In order to achieve

efficient performance, a gigabit network is needed. Fortunately, gigabit LAN speeds are getting

more common and cheaper among households, businesses and institutions.

Cheetah is lightweight and designed to operate without difficulty for an average computer

user. One of the main goals from the start of the project was to give digital forensic investigators

less time trying to figure out how to use our system and more time using it to efficiently solve

digital forensic cases.

With the capability of handling multiple file systems and the support to run any

application, this should give many options to investigators. Since Cheetah deals only with the

block device layer in the operating system architecture, it is completely transparent to any

applications on the application layer.

 47

Future Work

Since Cheetah is only a prototype, there can be many improvements for future work.

Some improvements include robustness, multi-threaded reads, a forensic file system, and an

upgrade for the 2.6 Linux kernel. Also, more testing of the system is necessary for use in fields

other than digital forensics.

The robustness of Cheetah is presently not up to par for commercial use. If one of the

cache servers shuts down while in use, then the module will likely crash and freeze the Linux

kernel. All of the cache servers must be shut down before the module is restarted.

The adaptation of block reading gains performance in some tests, but overall performance

can be greatly improved if the module didn’t have to wait to get the blocks back. If there were a

thread that retrieved and queued blocks together, then sending them to the system, the module

would never have to wait for anything thus improving speeds.

When reading sequential blocks, the device really has no idea which file it is currently

processing and thus has no idea of how many bytes remaining in the file. If the block device

knew more about the files it was processing (where the next blocks are, size of file, etc.), then

there would be greater performance because the device could just cache the rest of the file

depending on the file size. A forensic file system would greatly benefit the device, linking the

block device layer with the file system layer.

Cheetah was developed for any 2.4.x kernel, while the current popular Linux kernel is the

2.6 series. Since the small number of changes between block device drivers are widely known, it

would not be a difficult task to upgrade Cheetah for the 2.6 Linux kernel. Many Linux users

argue that the 2.4 kernel is more stable for servers than the current 2.6 version, but it would still

 48

be reasonable to make the change since many popular Linux distributions are now designed

around the 2.6 kernel.

We have tested with multiple applications including digital forensic tools, but it would be

comforting to test with many other applications, including more forensic applications. These

applications should be disk intensive to achieve the highest results. Some possible application

areas include Bioinformatics and Geographic Information Systems (GIS). By testing more it is

possible to find more audiences who could find Cheetah to be useful in their work.

 49

References

[1] V. Roussev and G. Richard. “Breaking the Performance Wall: The Case for Distributed
Digital Forensics”. In Proceedings of the Fourth Digital Forensics Research Workshop,
(DFRWS) 2004.

[2] D. Patterson, “Latency Lags Bandwidth”, Communications of the ACM, 47(10), 2004.

[3] M. Dahlin et at. “Cooperative caching: Using remote client memory to improve file system
performance”. In Proceedings of the First Symposium on Operating Systems Design and
Implementation, 1994.

[4] A. Acharya and S. Setia. “Availability and utility of idle memory in workstation clusters”. In
Proceedings of the 1999 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, 1999.

[5] L. Xiao, X. Zhang, and S. A. Kubricht. “Incorporating Job Migration and Network RAM to
Share Cluster Memory Resources”. In Proceedings of the Ninth IEEE International Symposium
on High Performance Distributed Computing, 2000.

[6] J. Oleszkiewicz, L. Xiao, and Y. Liu. “Parallel Network RAM: Effectively Utilizing Global
Cluster Memory RAM: Effectively Utilizing Global Cluster Memory”, In Proceedings of the
33rd International Conference on Parallel Processing, 2004.

[7] S. Ghemawat, H. Gobioff, and S. Leung. “The Google File System”, In Proceedings of 19th
ACM Symposium on Operating Systems Principles, 2003.

[8] J. Liu, J. Wu, and D.K. Panda. “High Performance RDMA-Based MPI Implementation over
InfiniBand”. International Journal of Parallel Programming, 32(3), 2004.

[9] M. Flouris and E. Markatos. “The Network RamDisk: Using remote memory on
heterogeneous NOWs”. Journal of Cluster Computing, 2(4): 281-293, 1999.

[10] Kangho Kim, Jin-Soo Kim, and Sung-In Jung. “GNBD/VIA: A Network Block Device
over Virtual Interface Architecture on Linux”. Proceedings of the 16th International Parallel and
Distributed Processing Symposium, 2002.

[11] G. Richard and V. Roussev. “Scalpel: A Frugal, High Performance File Carver”, In
Proceedings of the Fifth DFRWS, 2005.

[12] S. Liang, R. Noronha and D.K. Panda. “Swapping to remote memory over InfiniBand: An
Approach using a High Performance Network Block Device”, Proceedings of the IEEE Cluster
Computing, 2005.

 50

[13] L. Iftode and J. Singh. “Shared Virtual Memory: Progress and Challenges”, In Proceedings
to the IEEE, Vol 87(3), 1999.

 51

Vita

Daniel Tingstrom was born in Thibodaux, Louisiana in 1982. He received his Bachelor

Degree in Computer Science from University of New Orleans in May 2004. He started his

graduate program in June 2004 and became a teaching assistant instructing labs (CSCI 1581 and

CSCI 2121) and also a lecture course (CSCI 1583). He completed his studies in August 2005,

and currently does research at ATC-NY in Ithaca, New York as a Computer Scientist.

	Cheetah: An Economical Distributed RAM Drive
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: System Design
	Chapter 4: Implementation
	Chapter 5: Evaluation
	Chapter 6: Conclusion and Future Work
	References

