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ABSTRACT 
 

A nested three dimensional numerical modeling application was developed to determine 

the fate of pathogen indicators in Lake Pontchartrain discharged from its tributaries. To 

accomplish this, Estuarine, coastal and ocean model with sediment (ECOMSED) was 

implemented to simulate various processes that would determine the fate and transport of fecal 

coliform bacteria in the lake. The processes included hydrodynamics, waves, sediment transport, 

and the decay and transport of the fecal coliforms. Wind and tidal effects were accounted along 

with the freshwater inflows. All the components of the modeling application were calibrated and 

validated using measured data sets. Field measurements of the conventional water quality 

parameters and fecal coliform levels were used to calibrate and validate the pathogen indicator 

transport. The decay of the fecal coliforms was based on the literature and laboratory tests. The 

sediment transport module was calibrated based on the satellite reflectance data in the lake. The 

north shore near-field model indicated that the fecal coliform plume can be highly dynamic and 

sporadic depending on the wind and tide conditions. It also showed that the period of impact due 

to a storm event on the fecal coliform levels in the lake can be anywhere from 1.5 days for a 

typical summer event to 4 days for an extreme winter event. The model studies showed that the 

zone of impact of the stormwater from the river was limited to a few hundred meters from the 

river mouth. Finally, the modeling framework developed for the north shore was successfully 

applied to the south shore of Lake Pontchartrain to simulate fate and transport of fecal coliforms 

discharged through the urban stormwater outfalls. 
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1. INTRODUCTION 
 

1.1 Background 

Lake Pontchartrain is a shallow brackish estuarine lake located in southeastern Louisiana 

to the north of New Orleans.  It is connected to Lake Maurepas at its western end and with the 

Gulf of Mexico at its eastern end through Lake Borgne. Together, Lakes Maurepas, Borgne and 

Pontchartrain form one of the largest estuaries in the United States.  

 

Lake Pontchartrain has an area of 630 sq mi (1,630 sq km) approximately. It has an 

average depth of 3.7 m. Figure 1.1 shows the bathymetry and features of the lake. It is 41 mi (66 

km) long in east-west direction and 25 mi (40 km) wide in north-south direction. Typical east to 

west salinities in the lake range from 1 ppt to 4 ppt. Tidal exchange occurs through two passes 

and a man-made channel namely Rigolets, Chef Menteur, and Inner Harbor Navigational Canal 

(IHNC). Tchefuncte River, Tangipahoa River, the Lake Maurepas basin, and the storm water 

outfalls in the south shore and direct rainfall on the lake surface constitute the major sources of 

fresh water into the lake. Also, occasionally, the lake receives fresh water input from the 

diversion of Mississippi River water through Bonnet Carré spillway. The average annual 

precipitation in the Lake is approximately 1.6 m. Since the lake is wide and shallow, the 

evaporation is high and is nearly equal to the average annual precipitation and is about 1.4 m 

(McCorquodale et al., 2001).  

 

The proximity of the Pontchartrain estuary to the Gulf of Mexico results in a humid, 

subtropical climate. Seasonal variation exists in the precipitation and evapotranspiration 
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mechanisms and the resulting runoff. In summer the southerly winds provide abundant moisture 

from the Gulf of Mexico causing favorable conditions for intense isolated afternoon storms. In 

winter, the cold fronts moving over the area cause strong, area-wide precipitation. The period 

May through October has been designated as the summer season and November through April as 

the winter (Cruise and Arora, 1990). The average temperature in New Orleans is 77.6 oF (25.33 

oC) in summer and 58.6 oF (14.78 oC) in winter. The average precipitation is 31.2 inches (792.5 

mm) in summer and 30.6 inches (777.2 mm) in winter. 

 

The summer season is generally characterized by high recreational use and by summer 

storm activity.  Historically, Lake Pontchartrain has been popular for swimming, fishing, 

boating, and other recreational activities, especially in the summer season. Over the past several 

decades, the water quality of the lake has deteriorated. In mid 80’s, Louisiana Department of 

Health and Hospitals (LDHH) issued an advisory discouraging swimming and other primary 

contact recreation (PCR) activities on the south shore of the lake as the concentration of  fecal 

coliform exceeded the state water quality standards. The rivers in the north shore frequently 

exceeded the federal and state limits on the concentration of total coliform for PCR. US 

Environmental Protection Agency (EPA) and other regional environmental agencies such as 

Louisiana Department of Environmental Quality (LDEQ) have been using total coliform levels 

as the indicator for pathogen concentrations. 
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Figure 1.1 Location and bathymetry of Lake Pontchartrain  
 

The degradation of the water quality of Lake Pontchartrain can be attributed to the 

anthropogenic alterations to the environment.  The watersheds in the north shore of Lake 

Pontchartrain have diverse land use. Not all the runoff from these agricultural lands, pastures, 

dairy farms, forests, wetlands, camping grounds, and constructed urban areas is treated before it 

drains into the lake (Barbé et al. 1999). In addition to that, in the recent past, there has been a 

rapid development along the north shore of the lake.   

 

Unlike the north shore, contamination in the south shore is a result of stormwater runoff 

from the Greater New Orleans area. Since the average elevation in New Orleans is several feet 

below sea level, levees have been constructed to protect the City from flooding. Most stormwater 

runoff must be pumped to Lake Pontchartrain via drainage canals. Although the sanitary and 
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stormwater sewer systems in New Orleans are separate, age and high subsidence rates in the area 

result in damaged pipes that allow cross-flow and contamination of the storm runoff. There is 

evidence of cross-contamination between the sanitary sewers and storm drains caused because of 

sanitary sewer overflows during a storm event (Georgiou and Tittlebaum, 2001).  

 

All the rivers in the north shore of the lake, Bogue Falaya, Tchefuncta, Tangipahoa, and 

the drainage canals discharging into the Lake Pontchartrain in Jefferson and Orleans Parishes 

were listed in the revised 2004 303(d) list of impaired waters released by the LDEQ for non-

attainment of the Total Fecal Coliform for PCR. In addition, many bayous and creeks draining 

into the lake such as Bayou Bonfouca, Bayou Lacombe, Salt Bayou, and Bayou Cane etc. were 

reported for non-attainment because of high fecal coliform levels (LDEQ, 2004). 

 

In the recent past, there is evidence that overall water quality of the lake has improved 

significantly. The weekly sampling conducted by the Lake Pontchartrain Basin Foundation 

(LPBF) in the lake and its surroundings indicated fewer violations of the fecal coliform limits in 

the recent months (Bourgeois-Calvin and Dufrechou, 2003). As a result, some beaches along the 

south shore were opened to public in 2004. 

 

1.2 Problem Statement 

The recreational use of Lake Pontchartrain is currently limited due to elevated fecal 

coliform counts. In the recent past there has been an upsurge in the number of people returning to 

the lake. However, the public needs to be advised about the suitability of the lake water for safe 

recreational activities without any health risk. Currently fecal coliform levels in the lake are 
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estimated by collecting samples and performing laboratory analysis. Since the laboratory 

analysis to measure indicators is a 48-hour process it provides only a two-day old “snapshot” of 

the water quality. Since the indicator bacteria levels deteriorate with time, these “snapshots” are 

rarely representative of the environment when the data are reported. There is a need for a reliable 

tool to predict the bacteria levels in the recreational waters, promptly and precisely, in addition to 

the conventional methods.  

 

The concentration of the pathogen indicators at any given location depends on the 

strength of the sources, hydrodynamics of the receiving water, dilution, and the decay of the 

indicator organisms between the source and the receiving waters. Previous studies have shown 

that resuspended bed sediments can be a source of the fecal coliform (Van Donsel and Geldreich 

1971, Grimes 1975, Gary and Adams 1985).  

 

Quick and accurate prediction of the areas with potential health risks can be achieved by 

developing a numerical model that can account for hydrodynamics, transport, waves, sediment 

dynamics and the fate of the pathogens in the lake. 

 

1.3 Objectives 

The specific objectives of this study are as follows: 

• Develop a Lake-wide model to simulate the hydrodynamics and wave dynamics based on 

the wind and tide. 

• Develop a sediment transport model for Lake Pontchartrain. 
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• Develop a Near-field model to simulate sediment dynamics, transport and the fate of 

fecal coliform in the north shore of Lake Pontchartrain. 

• Apply the Near-field model to the south shore of Lake Pontchartrain. 

• Study the residence times and shoreline impact of the fecal coliform plumes. 

 

1.4 General Methodology 

A brief outline of the procedure followed to meet the objectives is as follows: 

1. The literature related to the problem in the study area was reviewed. 

2. Water and sediment samples were collected to measure the fecal coliform levels and 

other conventional water quality parameters in the vicinity of the Tchefuncte River and 

the stormwater outfalls in Jefferson Parish during wet weather and dry weather. 

3. Fecal coliform loading from the rivers and the stormwater canals was estimated using the 

field data and the data collected by Lake Pontchartrain Basin Foundation (LPBF). 

4. A 3-D numerical model capable of simulating hydrodynamics, sediment dynamics, fate 

and transport of the fecal coliform was selected and customized for Lake Pontchartrain to 

simulate hydrodynamics and wave dynamics due to wind and tide. 

5. The water levels in the Lake-wide model were calibrated using the information from the 

stage gages in the Lake Pontchartrain. The tracer transport was calibrated using the 

reflectance images of the 1997 Bonnet Carré spillway opening event. 

6. The same 3-D model was used to set up Near-field models to simulate sediment 

resuspension and deposition, and transport and fate of the fecal coliform in the study 

areas on high resolution grids. 
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7. The sediment model was calibrated using the reflectance imagery from NASA 

Terra/Aqua satellites. 

8. The Near-field model for the north shore of Lake Pontchartrain was calibrated and 

validated based on the measured water quality data. 

9. Various scenarios were simulated to study the residence times and shoreline impact of the 

fecal coliform plumes. 

10. The Near-field model was applied to the south shore of Lake Pontchartrain and was 

calibrated and validated based on the measured water quality data. 
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2. LITERATURE REVIEW 
 

2.1 Hydrodynamic and Transport Modeling in Lake Pontchartrain 

A two-dimensional, depth-averaged model used by Gael (1980) to study the water 

circulation patterns was the first modeling effort in Lake Pontchartrain.  Hamilton et al. (1982) 

used a two-dimensional, depth-averaged model to simulate the wind and tide effects on the 

circulation patterns in Lake Pontchartrain. Both studies indicated that the dominant circulation in 

the lake is largely dependent on wind shear. A double gyre pattern was observed in the lake 

circulation when wind stresses were applied. This trend was also reported by Stone et al. (1972) 

by studying the surface currents using dye tests in the Lake Pontchartrain. It was identified that 

the tidal effects are dominant when the wind speeds are less than 2 m/s, when the speeds are 

greater than 3 m/s wind controls the circulation, while wind and tide have equal effects on 

circulation for wind speeds between 2 to 3 m/s. 

 

McAnally and Berger (1996) developed the first 3-dimensional hydrodynamic model 

(RMA10 - WES) for the Lake Pontchartrain system to simulate the salinity changes that might 

occur in Biloxi marshes due to the proposed diversion of fresh water from the Mississippi River 

through the Bonnet Carré spillway. The model showed that the Mississippi River Gulf Outlet 

(MRGO) contributes significantly to the salinity regime in Lake Pontchartrain. The model also 

indicated long response times for the changes in the lake due to freshwater inputs.  

 

In a U.S. Geological Survey (USGS) study, Signell (1996, 1997) configured a 3-

dimensional model to study the physical processes in Lake Pontchartrain. A modified version of 
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the Estuary, Coastal and Ocean Model (ECOM) as described in Blumberg and Mellor (1987), 

ECOM-si was used to simulate wind driven circulation processes in the lake. It was concluded 

that water levels in Mississippi Sound influence the circulation patterns in the eastern part of the 

lake, while wind forcing dominates in the western end (Signell and List, 1997). Figure 2.1 shows 

the depth-averaged circulation in Lake Pontchartrain for a southeasterly wind of 5 m/s. 

 

Figure 2.1 Depth-averaged circulation in Lake Pontchartrain due to a southeasterly wind of 5m/s 
(Signell and List, 1996) 

 

A two-dimensional depth-averaged finite element hydrodynamic and transport model 

(RMA2/RMA4) was used by Haralampides (2000) to study the response of freshwater inputs 

from the tributaries, diversion from Bonnet Carré spillway, and saltwater inputs from the Inner 

Harbor Navigational Canal (IHNC)/MRGO in the Lake Pontchartrain system. The model 

simulated the 1997 Bonnet Carré spillway opening event accurately and predicted double gyre 

circulation pattern in both Lake Pontchartrain and Lake Maurepas (Figure 2.2). The field 
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measurements showed that drought-like conditions can increase the salinities in the lake and 

indicated a slow return to normal salinities after the diversion.  

 

 

Figure 2.2 Depth-averaged circulation due to southeasterly wind at 6 ms-1 (Haralampides, 2000) 
 

Georgiou (2002) developed a three-dimensional hydrodynamic and transport model for 

Lake Pontchartrain based on the Princeton Ocean Model (Blumberg and Mellor, 1987) to 

simulate the circulation patterns and saltwater intrusion into Lake Pontchartrain (Figure 2.3). 

Salinity stratification in Lake Pontchartrain near the IHNC was studied and it was observed that 

the density gradients caused the saltwater wedge to propagate large distances into the lake 

developing favorable conditions for hypoxia (Figure 2.4).  It was also identified that relatively 

small diversions from the Mississippi River into the lake would result in a stable and acceptable 

salinity gradient from west to east and would suppress the intrusion at IHNC. In addition, the 
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model showed that the freshwater plume from the west trapped inside an eddy and has high 

residence times due to limited transport and mixing. 
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Figure 2.3 Depth-averaged circulation from a southeasterly wind at 5 m s-1 (Georgiou, 2002) 
 

17
16 15

14

19

Distance from South (Km)

D
ep

th
be

lo
w

su
rfa

ce
(m

)

10 15 20

-4

-3

-2

-1

0

162 hours

Contourlines are
Salinity in (ppt)

IHNC Lake Pontchartrain

South to North Section at the IHNC

Wind 5 ms-1

 

Figure 2.4 A side view of the velocity profile and salinity distribution at the IHNC due to a 
northerly wind at 5ms-1 (Georgiou, 2002) 
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2.2 Studies Related to Fecal Coliform Levels in Water Column and 

Bottom Sediments 

Barbé and Francis (1992) developed a statistical model to estimate fecal coliform 

concentrations in the lower Tchefuncte River as a function of the river discharge.   The study 

identified that the fecal coliform counts are significantly different between summer and winter 

seasons. Later, Barbé et al. (1999) developed a statistical model to estimate fecal coliform 

concentrations in the Bogue Falaya and Tchefuncte Rivers as a function of basin average 

precipitation. The study found that fecal coliform counts in the Bogue Falaya River were 

independent of the season whereas, in the Tchefuncte, they were seasonally dependent. Also, the 

analysis of precipitation data over 104 years showed that the amount of precipitation in southeast 

Louisiana is not strongly seasonal. 

 

Barbé et al. (2001) tested for correlation between fecal coliform and parameters such as 

rainfall up to four days prior to the fecal coliform measurement, salinity, water temperature and 

average daily wind speed in a shoreline study on the south shore of Lake Pontchartrain. Fecal 

coliform concentrations were found to be wet weather dependent. The study identified an active 

continuous source of fecal coliform near the IHNC. For the remaining area fecal coliform levels 

were found to increase only after a pumping event. It was also found that the fecal coliform 

levels were a function of both rainfall amounts and salinity levels; a direct relationship exists 

between fecal coliform levels and precipitation while an inverse relationship exists between fecal 

coliform and salinity.  
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In environments similar to Lake Pontchartrain there is significant evidence to verify the 

presence of fecal coliform in the bottom sediments (McCorquodale et al. 2004, Englande et al. 

2002, Goyal et al. 1977). The data collected by LaBelle and Gerba (1979) indicated that the 

degree of adsorption of enteric viruses to marine sediments was very high. LaBelle et al. (1980) 

showed that the number of viruses found in sediment was strongly correlated to the number of 

fecal coliform found in sediment.  

 

Several studies showed that the survival rates were significantly higher in sediments with 

predominantly clay-sized particles than in coarser sediments (Howell et al. 1996, Burton et al. 

1987). Davies et al. (2000) compared the effectiveness of constructed wetlands and water 

pollution control ponds to remove the stormwater associated bacteria. It was concluded that 

wetlands were far more effective than pollution control ponds in bacteria removal. The reason 

attributed to this was the inability of the pond system to retain the fine clay particles (<2microns) 

to which the bacteria were largely adsorbed. Adsorption of bacteria to particles allows them to 

persist in aquatic environments as they are: 1) protected from factors like solar radiation, 

starvation and attack by bacteriophages and protozoa and 2) fed by the organic material and 

nutrients present in the sediment (Roper and Marshall 1974, Gerba and McLeod 1976, 

Gonazalez et al. 1990, Davies et al. 1995).  

 

McCorquodale et al. (2003) observed that the mortality rates of coliform bacteria were 

lowest in the sandy beach sediments along the south shore of Lake Pontchartrain. The sediments 

collected from the stormwater canals on the south shore had 82.5% sand, and the highest organic 

content and nutrients among all the samples collected. It was also observed that the bacteria die-
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off rate was highest in the canal sediments. It was concluded that the relative organic and 

nutrient content of the sediment may not play an important role in the survival of the organisms 

adsorbed to the sediment in the south shore of Lake Pontchartrain. 

 

There is sufficient evidence in the literature to safely assume that bacteria-adhered-

sediment resuspension would release some of the adsorbed bacteria back into the water column, 

making it an important source of fecal coliform. Following are a few cases to illustrate this point:  

 

Van Donsel and Geldreich (1971) observed 100 to 1000 times more fecal coliform in 

mud than in overlying water and found the mud-water interface to be dynamic and speculated the 

re-entrainment of fecal coliform by resuspension. Grimes (1975) saw a significant increase in 

fecal coliform concentrations in the immediate vicinity of a dredging operation in the Mississippi 

River. It was concluded that the disturbance and relocation of the bottom sediments by dredging 

released the associated fecal coliform. During a study of a stream, Gary and Adams (1985) found 

fecal coliform levels in water column almost doubled after disruption of the stream sediment 

bed. Pettibone et al. (1996) found that the concentration of fecal coliform along with total 

suspended solids (TSS) increased in the water column immediately after a ship passed through a 

channel. Crabill et al. 1998 showed that sediment agitation by recreational activities and storm 

surges associated with the summer storm season were responsible for the increase of fecal 

coliform counts. Le Fevre and Lewis (2003) suggested that wave action was the main cause of 

resuspension of sediment-bound enterococci in a small urban bay in New Zealand. 

 



 15

In a study conducted on fecal coliform levels in the Thames River sediments, Babinchak 

et al. (1977) identified that although the bacteria levels were high in the Thames River prior to 

dredging, the concentration of bacteria did not increase in the dump site sediments after the 

deposition of dredge materials. This indicated that bacteria were presumably present in the upper 

layer of the sediment.  

 

Roper and Marshall (1974), while studying the effects of electrolyte concentration on 

bacterial sorption-desorption processes in sediments, found that fecal coliform desorbs under the 

conditions of reduced salinity. 

 

Jamieson et al. (2005) used Escherichia coli (E. coli) bacteria to investigate the 

resuspension and persistence of sediment-associated bacteria in a small alluvial stream. The 

study was conducted in Swan Creek, located within the Grand River watershed of Ontario, 

Canada. The study has illustrated that the bacteria can survive in bed sediments for up to 6 weeks 

and that decay of the bacteria resembled typical first-order decay. The critical shear stress for E. 

coli resuspension in Swan Creek ranged from 1.5 to 1.7 Nm-2, which was similar to the critical 

shear stresses for erosion of cohesive sediments. Further, it was concluded that the bacteria 

resuspension was primarily limited to the rising limb of storm hydrographs implying that a finite 

supply of sediment-associated bacteria were available for resuspension during individual storm 

events. 
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2.3 Fecal Coliform Modeling in Lake Pontchartrain 

Carnelos (2003) used the modified Princeton Ocean Model to develop a forecasting 

model to predict the pathogen indicator levels in the recreational waters receiving contaminated 

stormwater from multiple outfalls (McCorquodale et al., 2004) in the south shore of Lake 

Pontchartrain. The framework consisted of a nested lake wide hydrodynamic model (Georgiou, 

2002) and a high resolution near field bacteria fate – transport sub-model. The model was 

calibrated based on the field studies on the south shore of the lake. The model verified the 

observed two to three day impact period associated with stormwater discharges and highly 

variable wind-driven plume migration patterns often characterized by shore attachment (Figure 

2.5). The study illustrated a potential risk pertaining to the entrainment of the high bacteria levels 

in the bottom sediments of the lake by resuspension.  

 

Jin et al. (2003) in a study to assess the impact of rainfall events on Lake Pontchartrain 

water quality found that the drainage canals constitute a significant microbial loading to lake 

waters. The concentration of the indicator microbes in water column was observed to decrease 

significantly in two to three days after storm pumping events into the lake. A simple two-

dimensional mathematical model incorporating the advection and dispersion processes was 

developed. The hydrodynamics were derived from the field data. The model results 

underestimated the concentration of the fecal coliform. The authors suggested that resuspension 

of sediment and re-introduction of indicator organisms that attached to the sediment back into the 

water column could be the reason. Jin et al. (2004) indicated that the attachment of microbial 

indicators to suspended matter and subsequent sedimentation as a significant fate mechanism in 

Lake Pontchartrain. It was also noted that, with a slower decay rate of indicator organisms in the 
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bottom sediment, there is a potential threat of recontamination of overlaying waters due to 

resuspension. 

 

 

Figure 2.5 Three-day simulation of fecal coliform plumes for an average pump event with north 
winds of 2.5 m/s (Carnelos, 2003) 

 

2.4 Wave and Sediment Transport Studies in Lake Pontchartrain  

USGS conducted a study to understand sediment resuspension and transport processes in 

Lake Pontchartrain during 1995 – 1998. The study included synoptic measurement of velocities, 

water levels, waves, and turbidity at two locations in the lake. In addition to the circulation 
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model mentioned earlier, a wave prediction model was developed to study the potential sediment 

resuspension (Signell et al. 2001, List and Signell 2001). A steady-state wave model Hindcasting 

Shallow Water Waves (HISWA) was employed to compute wave heights and corresponding 

orbital velocities. Wave climates in 128 simulations (eight wind speeds and sixteen wind 

directions) were executed. Figure 2.6 shows the comparison of model predicted significant wave 

heights and periods with the observed values in Lake Pontchartrain. There was an excellent 

match between the modeled wave climate and the field data with a correlation of 80 %. It was 

observed that waves lag the wind by approximately two hours. The field measurements indicated 

strong correlation between turbidity and bottom currents.   

 

 

Figure 2.6 Comparison of observed and modeled significant wave heights and wave periods in 
Lake Pontchartrain. The predicted values are shown in yellow and the observed values in cyan 

(List and Signell, 2001) 
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2.5 Review of Numerical Models 

Several numerical models were considered prior to selecting the suitable one for the 

present study. A brief review of the available models and their feasibility in current scenario is 

presented below. 

 

2.5.1 RMA2/RMA4/RMA10 

RMA2 and RMA4 (Resource Management Associates) are US Army Corps of 

Engineers’ two-dimensional depth-averaged finite element hydrodynamic and contaminant 

transport models and RMA10 is a three dimensional hydrodynamic and transport model 

(USACE – WES, 1997). The package was successfully employed to simulate the two-

dimensional hydrodynamics and transport processes in Lake Pontchartrain (Haralampides, 

2000).  The model’s ability to use unstructured grids is offset by the excessive computational run 

times required. The model’s inherent numerical diffusion in the region of advancing front can 

induce errors in the prediction of contaminant concentrations (Haralampides, 2000) and can be 

problematic for the nature of the current study. Also the RMA2 and RMA4 are not fully public 

domain models and RMA10 is only available through a cooperative agreement with US Army 

Engineer Research and Development Center (USACE-ERDC). 

 

2.5.2 A Coupled and Hydrodynamical-Ecological Model for Regional and Shelf 

Seas (COHERENS) 

COHERENS is a three-dimensional hydrodynamic and transport multi-purpose model for 

coastal and shelf seas and is coupled to biological, resuspension and contaminant models (Luyten 

et al. 1998, 1996). The modular structure of the model is convenient to enable only the necessary 
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process modules. COHERENS offers a wide variety of turbulence schemes ranging from simple 

algebraic formulas to one- or two-equation turbulence energy models, such as the Mellor-

Yamada (1982) and the k-ε turbulence energy schemes (Rodi, 1984, Luyten et al., 1996). The 

biological and sediment modules work together to simulate internal non-conservative biological 

or chemical processes and photosynthesis by the absorption of PAR (photosynthetically active 

radiation) and transported by advection and diffusion. Deposition and erosion processes occur 

via a “fluff” layer. Although the model has necessary biological, resuspension and transport 

capabilities, it would not serve the given purpose due to its inability to simulate the crucial non-

conservative contaminants in its current version.  

 

2.5.3 TELEMAC 

TELEMAC modeling system is an integrated tool to simulate free surface flows. It 

contains finite element based two- and three-dimensional hydrodynamic and transport models. It 

also includes two-dimensional water quality and sediment transport model. The three-

dimensional model was observed to have relatively long run times and moreover, it is not a 

public domain model, thus not serving the research objectives of this project (Galland 1991, 

Janin et al. 1997). 

 

2.5.4 H3D 

H3D is a three-dimensional Cartesian finite-difference hydrodynamic and transport 

model based on a model called GF8 (Stronach et al. 1993). The model has capabilities to 

simulate sediment and pollution transport. The model’s external gravity wave computation is 

implicit allowing large time steps. The model is better suited for the processes whose time scale 
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is similar to or longer than tidal periods. The horizontal eddy coefficient is taken as constant and 

the vertical eddy viscosity is assumed to depend on vertical shear and the Richardson number. 

Although the model is suitable for the present study, it is subject to limited distribution and has 

not been tested as extensively as some of the other models. 

 

2.5.5 Princeton Ocean Model (POM) 

Princeton Ocean Model (Blumberg and Mellor, 1987) is a three-dimensional, sigma 

coordinate, free surface ocean model with an embedded turbulence closure sub model. It has 

been used extensively in modeling of lakes, estuaries, coasts, and oceans. It has been used to 

study hydrodynamic and transport processes in Lake Pontchartrain (Georgiou 2002). Although 

POM was successfully implemented to simulate fate of pathogens in Lake Pontchartrain 

(Carnelos, 2003), the need for modeling sediment processes in the current study prevented its use 

since it does not have a sediment transport model. 

 

2.5.6 Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED)  

ECOMSED is a three-dimensional hydrodynamic and sediment transport model with an 

ability to transport both conservative and non-conservative contaminants (Blumberg and Mellor 

1987) based on POM. It includes separate modules for the computation of hydrodynamics, wind 

induced waves, sediment transport, transport of salinity, temperature, conservative and non-

conservative tracer, heat flux calculations, and particle tracking. ECOMSED allows the use of 

orthogonal curvilinear grids in the horizontal direction and is based on the sigma coordinate 

system in the vertical, making it suitable for coastal applications. However, the standard release 

version of ECOMSED does not allow simulating the wetting and drying of the grid cells in 
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intertidal marshes and tidal flats. The model formulation uses the finite control volume principle. 

The model has a two time step solution scheme. The horizontal (external) free surface mode 

solves the depth-average surface wave equation using a small time step. The internal mode 

solves the three-dimensional part using a much larger time step of the order of 40 times the 

external time step. It is a three time level model and time stepping is accomplished by the leap 

frog scheme.  

 

Sediment module of ECOMSED allows to model cohesive and non-cohesive sediment 

transport including the combined effect of currents and waves. This makes ECOMSED ideal to 

model fate and transport of pathogens including the contribution of fecal coliform from the 

sediment. 

 

2.5.7 Finite-Volume Coastal Ocean Model (FVCOM) 

FVCOM is a prognostic, unstructured grid, finite-volume, free-surface, three-dimensional 

primitive equations ocean model developed by Chen et al. (2003a). FVCOM combines the best 

attributes such as simple computational efficiency of finite-difference methods and geometric 

flexibility in finite element methods. It allows the use of unstructured grids in horizontal 

direction and has an improved sigma level model for the vertical. It includes multiple turbulence 

closure schemes from simple Richardson number parameterization to Mellor Yamada 2.5 level 

(Mellor and Yamada 1982) to k-ε turbulent model (Rodi 1980), for parameterization of vertical 

eddy viscosity. FVCOM discretizes the integral form of the governing equations. It has a 

wetting-drying option which is important to accurately simulate the hydrodynamics in estuarine 

environments with intertidal marshes and tidal flats. FVCOM includes biological and water 
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quality sub-models. A simple three-dimensional sediment suspension and tracer tracking model 

with settling, sedimentation, and resuspension processes is included. FVCOM is advantageous 

over ECOMSED because of unstructured grids and multiple turbulence closure schemes. Other 

than that most of the physics are similar in both the models. FVCOM was available only recently 

as a public domain model. This allows it to be the ideal choice for future modeling efforts in 

Lake Pontchartrain system and surrounding coastal basins. 

 

2.6 ECOM/ECOMSED Applications 

Signell and Harris (1999) used ECOMSED to test the hypothesis that tidally-averaged 

residual fields lead to the formation of sandbanks in the vicinity of coastal headlands. An 

idealized symmetrical coastline geometry and tidal forcing that represents conditions similar to 

regions where these tidal sandbanks were known to occur was chosen for the model simulations. 

Symmetric sandbanks were observed to form in both suspended and bedload simulations. The 

patterns of shear stress and sediment flux that occur over the course of tidal cycle and the 

sediment supply available were found to be the important factors in controlling the nature of the 

resulting sandbanks. 

 

ECOMSED have been used in a number of sediment transport studies, including: 

Pawtuxet River in Rhode Island (Ziegler and Nisbet, 1994), Watts Bar Reservoir in Tennessee 

(Ziegler and Nisbet, 1995), Green Bay in Wisconsin (Shrestha et al., 2000) , Lower Fox River in 

Wisconsin (Gailani et al. 1991), Buffalo River in New York (Gailani et al. 1996) etc. Lick et al. 

(1994) used ECOMSED to simulate the resuspension and transport of fine-grained sediments in 

Lake Erie for a variety of wind conditions. The study found that major storms, despite their 
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infrequent occurrence, contribute for most of the resuspension and transport of fine-grained 

sediments in Lake Erie. 

 

Blumberg et al. (1993) described the application of ECOM to Massachusetts Bay. The 

modeling addressed issues such as tidal and subtidal currents, the causes of the counterclockwise 

currents in the Bay, and outfall plume dynamics. Blumberg et al. (1996) compared ECOM 

predictions in the vicinity of the proposed outfall with EPA’s ULINE, a near field plume dilution 

model. It was shown that the model comparisons for height of plume rise and initial dilution 

were in general agreement. 

 

Both the near field and far field behavior of the Sand Island, Hawaii, and ocean outfall 

plume were modeled by Connolly et al. (1999). The three-dimensional circulation and water 

quality model ECOM was applied to predict the fate of pathogenic organisms in the vicinity of 

the outfall. Two numerical grids were generated for this application: one for the circulation 

model that extended around the island, and a grid for the fate and transport model that was more 

local in extent. The more extensive circulation model grid was needed in order to correctly 

simulate the observed circulation patterns in Mamala Bay. A conclusion of the study was that the 

Sand Island discharge was a primary contributor of observed fecal coliform levels on eastern 

recreational beaches. Other sources were identified as important for other beaches, and during 

storm events. The contribution of sediment as a fecal coliform source was neglected in this 

study. 
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Blumberg et al. (2001) described a regional scale modeling system developed and 

calibrated for the Northern Gulf of Mexico, that is, for the Mississippi Bight/Sound and 

adjoining Mobile Bay, Biloxi Bay, Bay St. Louis, and Lake Borgne using ECOMSED. The 

modeling system provides a reliable means to forecast littoral circulation, sediment suspension 

and transport, surface waves and conservative and non-conservative water quality constituents. 

The modeling framework adopted a high-resolution orthogonal curvilinear grid, which 

accurately resolved bathymetric and coastline features of the region, especially in the vicinity of 

the barrier islands. This modeling system was the highest horizontal resolution part of a triply 

nested series of three dimensional circulation models ranging from the North Atlantic Ocean to 

the Gulf of Mexico to the Mississippi Bight/Sound.  
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3. FIELD STUDIES 
 

3.1 Objectives of the Field Study 

The purpose of the field study was to quantify fecal coliform levels and the general water 

quality parameters in the study area;  specifically, to identify the source concentrations and to 

obtain information on the plume migration patterns and the dilution/die-off that occurs under 

varying climatic conditions. The measured fecal coliform data were used to estimate decay rates 

in both the water column and bottom sediments which were used in the numerical models. In 

addition, the data were used to confirm whether the fecal coliform levels in the lake were 

increased by the storm water discharges in the event of wet weather in the region. And, finally 

the data were used to calibrate and validate the Near-field numerical models. Figure 3.1 show the 

locations of various stage, flow and weather gages from which the boundary conditions for the 

model were derived. 

 

3.2 Methodology of the Field Study 

A fixed sampling grid was designed to take the measurements along north shore of Lake 

Pontchartrain in the vicinity of the Tchefuncte River (Figure 3.2). Two types of field samplings 

were performed. A "background" survey was performed to characterize the fecal coliform levels 

during dry weather conditions and to identify the base conditions in the lake. A minimum period 

of three days of dry weather prior to sampling was required to qualify as a background survey. 

The other type of field sampling was a “rain event”, which was performed when there was more 

than 0.5 in rain in the region to characterize the wet weather effects on the levels of pathogen 
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indicators. The water samples were collected from the lake and the Tchefuncte River in the north 

shore in sterilized polyethylene bottles. Three individual estuarine sediment grab samples were 

collected using an Eckman dredge from the locations shown in Figure 3.2 to quantify the fecal 

coliform levels in the bottom sediments. All samples were preserved on ice prior to 

transportation to the laboratory for microbial, physical and chemical analyses. Fecal coliform, 

nutrients, salinity, temperature, dissolved oxygen, secchi disk, turbidity, TSS, pH were some of 

the parameters measured. The reader is referred to Leal (2004) for complete details of the field 

study. 

 

 

Figure 3.1 Features of Lake Pontchartrain Estuary – Lakes, Tidal passes, Rivers, and Location of 
Stage and Weather Gages (Filled Red Circles) 
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Figure 3.2 North shore Field Sampling Grid 
 

3.3 Results from the Field Study 

Figure 3.3 shows the average water quality parameters in the river, at the mouth of the 

river and in the lake for both wet and dry conditions. It was observed that the salinity tends to 

increase from the Hwy 22 Bridge to the lake. A dilution effect was apparent in the other 

parameters from the Hwy 22 Bridge to the lake. The statistical analysis of the data showed that 

there was a wet weather effect on all the parameters. However, the nutrient levels were 

consistently low during both dry and wet weather in the lake waters (below 0.2 mg/l). Most 

importantly, the wet weather effect on the fecal coliform levels was very obvious.  
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Figure 3.3 Mean water quality parameters for dry and wet weather samples from the north shore 

field study 
 

Figure 3.4 shows a time series of geometric mean of fecal coliform levels observed in the 

lake during the two rain events: September 5th to 9th 2003, April 27th and 28th 2004. Since the 

storm water runoff takes approximately one day to reach the lake (“Day 1” being the first day 

after the storm), the initial fecal coliform levels correspond to dry weather.  In general, fecal 

coliform levels were observed to peak during the second and third day after the rainfall event. 

Figure 3.5 shows a sequence of plume patterns observed during the September rain event in the 

north shore of Lake Pontchartrain. The first plot shows the fecal coliform levels on the first day 

after the storm has begun and indicates background conditions in the lake. The second plot 
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shows the elevated levels in both the river and the lake indicating the arrival of the storm runoff 

by the time the measurements were taken on the third day. The third plot shows the data 

collected on the fifth day after the storm has begun. It can be seen that fecal coliform levels in 

the lake water have returned to the background levels. 
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Figure 3.4 Time Series of geometric means of fecal coliform levels measured in the lake for two 

rain events (September data was not certified by the lab because of QA/QC concerns) 
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Figure 3.5 Fecal coliform levels observed during September 2003 rain event in the north shore of 
Lake Pontchartrain 

 

A statistical comparison among wet and dry weather fecal coliform counts in the lake 

indicated a significant difference in the log weighted means 95% of the time. Even though the 

wet weather fecal coliform levels in the lake were generally less than 200 MPN/100mL, the fecal 

coliform in the river plumes were an order of magnitude higher than the dry weather counts. 
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Figure 3.6 Probability of Exceedance of Fecal Coliform Levels near the Hwy 22 Bridge and at 
the Mouth of the Tchefuncte River for All Weather Conditions 

 

Frequency analysis was performed on the data collected by Louisiana Department of 

Environmental Quality (LDEQ), Lake Pontchartrain Basin Foundation (LPBF) and the data from 

this field study. The probability of exceedance of the maximum allowable fecal coliform levels 

(200 MPN/100 ml) by the LDEQ for PCR at the Hwy 22 Bridge was found to be 31 % and 23% 

at the mouth of Tchefuncte River (Figure 3.6) for all weather conditions. Figure 3.7 shows the 

wet weather probability of exceedance of the LDEQ limit to be about 38 % at the mouth of the 

Tchefuncte River. The dry weather levels near the mouth of the river were found to satisfy the 

LDEQ criteria regularly. A more detailed discussion and the results from the field study were 

reported by Leal (2004). 
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Figure 3.7 Probability of Exceedance of Fecal coliform Levels at the Mouth of the Tchefuncte 
River for the Wet and Dry Weather Conditions 

 

3.4 Estimation of the Fecal Coliform Source Levels for the Tchefuncte 

River 

Due to restricted resources, the field program was designed to obtain data for only two 

rain events. The amount of good quality data obtained from these two rain events was 

insufficient to accurately identify the fecal coliform data at the source. So the data collected by 

LPBF in the Tchefuncte River was used to supplement the data from this field study to estimate 

the source concentration. All of the available fecal coliform data were sorted based on the day of 

sampling relative to the start of the rising limb of the storm hydrograph. This process made sure 

all the data points associated with wet weather events fell into various bins corresponding to the 

number of days after beginning of storm runoff. The entire data were then plotted as shown in 
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Figure 3.8. The mean, maximum and minimum value for each bin was obtained and trend lines 

were plotted. The trend lines were then extrapolated to zero days, i.e. to the beginning of the 

storm runoff to obtain the source concentration. Thus three types of loading were defined: Mean 

load, High load and Low load for the Tchefuncte River. The upper envelope is used as the peak 

value in the pollutograph when there is a rainfall of 1 inch or more. The mean value is used when 

the rainfall is between 0.5 and 1 inch. The low loading is used when there is 0 to 0.5 in of 

rainfall.  
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Figure 3.8 Estimation of fecal coliform source concentration near the Hwy 22 Bridge in the 

Tchefuncte River 
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4. MODEL DEVELOPMENT 
 

4.1 Model Selection 

The selection of the model that is apt for a given system is influenced by factors such as 

the scale and geometry of the system, the time scale of the processes, the driving forces in the 

system, and the physical processes occurring in the system.  

 

A brief review of the various models considered for this study was given in Chapter 2.  

After the review, ECOMSED was selected based on the following criteria. ECOMSED is an 

improved version of the POM customized for its applicability to the estuarine environments 

similar to Lake Pontchartrain. As noted earlier, its predecessor POM was successfully applied by 

Georgiou (2002) and a semi-implicit version of the hydrodynamic module of ECOMSED, 

ECOM-si, was successfully implemented by Signell and List (1997) to the Lake Pontchartrain 

system. Moreover, ECOMSED was made available as a public domain model at the start of the 

study. Considering the ability of ECOMSED to simulate all the necessary processes in the 

present study and detailed knowledge of the physics of the model led to the selection of 

ECOMSED over the other models. 

 

4.2 Description of ECOMSED 

ECOMSED is a sigma coordinate, free surface model, designed to realistically simulate 

time-dependent distribution of waters levels, currents, temperature, salinity, tracers, cohesive and 

non-cohesive sediments and waves in marine and freshwater systems. It is based on the 
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Princeton Ocean Model developed by Alan Blumberg and George Mellor (1987) with 

modifications for its applicability in estuaries and coastal oceans (Blumberg 1996) and 

subsequent additions from many other contributors.  

 

4.2.1  Hydrodynamic Module 

The hydrodynamic module ECOM is a three-dimensional coastal ocean model, 

embedding a turbulence closure sub-model to provide a realistic parameterization of the vertical 

mixing processes. The turbulence sub-model is a 2.5 level model that uses a prognostic equation 

for turbulence kinetic energy and turbulence macroscale (Mellor and Yamada, 1982). The 

prognostic variables are the three components of velocity, temperature, salinity, turbulence 

kinetic energy, and turbulence macroscale. The momentum equations are nonlinear and 

incorporate a variable Coriolis parameter. Prognostic equations governing the thermodynamic 

quantities, temperature, and salinity account for water mass variations brought about by highly 

time-dependent coastal upwelling/downwelling processes as well as horizontal advective 

processes. Free surface elevation is also calculated prognostically, with only some sacrifice in 

computational time so that tides and storm surge events can also be simulated. Other computed 

variables include density, vertical eddy viscosity, and vertical eddy diffusivity. The modeling 

system also accommodates realistic coastline geometry and bottom topography by the use of 

orthogonal curvilinear grids and sigma coordinate system.  

 

The sigma coordinate system, shown in Figure 4.1, allows for user defined logarithmic 

refinement of the bottom and surface boundaries while letting the vertical layers follow the 

bathymetry.  This option is useful for the modeling of stratified flows (surface or bottom), water 
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elevations (surface), and boundary layers. This coordinate system is a necessary attribute in 

dealing with significant topographical irregularities such as those in estuaries, continental shelfs 

and slopes. Together with the turbulence sub-model, it produces realistic bottom boundary layers 

that are important to coastal waters and tidally driven estuaries (Oey et al., 1985 a, b) 

 

η

σ =  −1

σ =  0z = 0

z = H(x,y)

 
  

 

 

Figure 4.1 The sigma coordinate system 
 

The governing equations of the model contain propagation of fast moving external 

gravity waves and slow moving internal gravity waves. For computational efficiency the 

vertically integrated equations of the external mode are separated from the vertical structure 

equations of the internal mode. The governing external and internal mode equations in (x, y, σ, t) 

coordinate system are shown below (Blumberg and Mellor, 1987). 

 

The Continuity Equation: 

∂DU
∂x

 +  
∂DV
∂y

 +  
∂ω
∂σ

 +  
∂η
∂ t

 =  0                     (1) 
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The Reynolds Momentum Transport Equations: 
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Temperature Transport Equation: 
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Salinity Transport Equation: 
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Equation of the state for the computation of density: 

S),(θρρ =
   (6) 

 

22584586.0814876577.048249614.4676786136.6 23
1 −∗+∗−−∗−= SSESEρ      (6a) 
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( )θθθρρ ∗−+∗−−∗−∗= 5803.17164.88667.1 23
12 EEE           (6b) 

 

θθθρρ ∗−−∗−+∗−−+= 3786.458185.960843.11 23
23 EEE           (6c) 

 

( )2895414.3814876577.048249614.4676786136.6 23
3 −+∗+∗−−∗−∗= ESSESEρρ  

       (6d) 

 

Turbulent Kinetic Energy Transport Equation: 
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Turbulent Macroscale Transport Equation: 
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where, U is the x velocity, V the y velocity, ω the z velocity, η is the water elevation, f is the 

Coriolis force, D is the water depth, g is the acceleration of gravity, ρο is the mean density, ρ is 

the density, S is the salinity, T is the local temperature, θ is the potential temperature (local 

temperature for shallow water applications) σ is the vertical dimension (sigma levels), q2 is the 
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turbulent kinetic energy, and l is the mixing length. The density ρ is computed according to an 

equation of state as shown in equation (6). The equations (6a) to (6d) show the actual 

computation steps as given by Fofonoff (1962). 

 

The horizontal diffusion and viscosity terms are defined according to: 
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                                         (13 a,b) 

and where φ represents T, S, q2 and q2l (l is the mixing length).  

 

The subgrid scale processes are parameterized by the horizontal mixing coefficients. 

ECOMSED uses the parameterization suggested by Smagorinsky (1963) to compute the 

diffusivity and has the following form: 
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Recommended value of α is 0.1 and can range from 0.01 and 0.5 for various applications.  

 

4.2.1.1 Boundary Conditions 

4.2.1.1.1  Surface Boundary Conditions 

The boundary conditions at the free surface include the surface wind stress, the heat flux, 

fresh water surface mass flux due to the net evaporation – precipitation combined with surface 

salinity, and the turbulent kinetic energy due to the surface wind stress. The mixing length is 

assumed to be zero at the surface. The vertical component of the velocity at the surface is 

computed using Equation (15). 

ty
V

x
UW

∂
∂

+
∂
∂

+
∂
∂

=
ηηη                                              (15) 

 

4.2.1.1.2 Bottom Boundary Conditions 

The bottom frictional stress is determined by matching velocities with the logarithmic 

law of the wall and the turbulence kinetic energy due to the bottom stress comprise the bottom 

boundary conditions. In addition, the normal gradients of θ and S are set to zero on the side walls 

and bottom of the basin so that there are no advective and diffusive heat and salt fluxes across 

these boundaries.  Further the mixing length is assumed to be zero at the bottom. The vertical 

component of the velocity is computed by Equation (16). For a more detailed description of the 

surface and bottom boundary conditions the reader is referred to Blumberg and Mellor (1987). 
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4.2.1.1.3 Open Boundary Conditions 

Temperature and salinity are prescribed for inflow conditions; and for outflow 

boundaries, Equation (17) is solved. 

( ) ( ) 0,, =
∂
∂

+
∂
∂ S

n
US

t n θθ                                              (17) 

where U is the velocity, θ is the potential temperature, S is the salinity, and subscript n is the 

coordinate normal to the boundary.  

 

In case of the open lateral velocity boundary conditions, ECOMSED allows the user to 

specify the normal component of the velocity in terms of flow, and a free slip condition is used 

for the tangential component at the open boundary node. 

 

For water levels, ECOMSED allows several types of boundary conditions. They include: 

• Clamped Boundary Condition – the water level along the boundary grid is prescribed by 

the user either from observed data or tidal harmonics. However, this kind of boundary 

condition is considered rigid and does not allow long wave energy to radiate in or out of 

the model domain. 

• Reid and Bodine Boundary Condition – To allow long wave to radiate, the model uses an 

open boundary condition developed by Reid and Bodine (1968) of the form,  

D
g
U ntλ

ηη += 0                                        (18) 
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 η is the sea level at the boundary and η0 is the known water level. Un is the model 

predicted velocity perpendicular to the open boundary, g is the acceleration due to 

gravity, and D is the depth of the grid cell. λt is Lagrange  multiplier and is obtained at 

every time step to allow modification of sea level base on the difference between 

computed elevation and the forced elevation at the boundary node.  

• Optimized Clamped Boundary Condition – It can be defined by Equation (18) and is 

based on work by Shulman (1995). In this, the Lagrange multiplier is computed by 

solving optimization problems that minimize the difference between the model computed 

and the forced boundary values under certain integral constraints representing energy, 

momentum, and mass fluxes on the open boundary.  

 

4.2.2 Wave Module 

The Wave Module in ECOMSED computes the amplitudes and periods of wind-driven 

surface gravity waves based on the formulations in the SMB (Sverdrup, Munk and 

Bretschneider) hindcasting method (USACE 1984). Surface wind waves can significantly 

increase bed shear stresses (van Rijn 1993) and further effect the sediment resuspension and 

deposition processes. Bed shear stresses due to combined effects of waves and currents can result 

in stresses that are two orders of magnitude higher than stresses due to currents alone. 

ECOMSED accounts for the increase in the bed shear stress using the Grant-Madsen wave-

current model (Grant and Madsen 1979, Glenn and Grant 1987). 
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4.2.3 Sediment Transport Module 

The SED module is a three-dimensional sediment transport model that realistically 

simulates resuspension, transport and deposition of both cohesive (< 75 microns) and non-

cohesive (75 – 500 microns) sediments. Bed load transport which includes particle diameters 

greater than 500 microns is not included in this model. The cohesive sediment processes are 

based on the concepts developed by Lick et al. (1984) and the resuspension of non-cohesive 

sediments is based on van Rijn’s suspended load theory (1984, 1993). The model requires 

experimental data in the computations of resuspension and deposition. The prognostic variables 

include concentrations of two fractions in water column, mass of sediment deposited/eroded, and 

subsequent changes in bed elevation.  

 

The three-dimensional advection-dispersion equation for transport of sediment of size 

class k (cohesive: (k = 1), non-cohesive: (k=2)) is as shown in the Equation (19). 
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where Ck is suspended sediment concentration of size class k; U, V, ω are velocities in x, y and z 

directions; AH is horizontal diffusivity; KH is vertical eddy diffusivity; D is the total depth of the 

water column (=H+η, H: depth, η: surface elevation) ; FCk includes the horizontal viscosity or 

diffusion/source-sink terms as shown in Equations (12) and (13); Ek, Dk are respectively 
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resuspension and deposition fluxes of size class k; η is water surface elevation above a specified 

datum; and H is the depth below datum. 

 

4.2.3.1 Computation Philosophy  

• To begin with, bottom shear stresses due to currents and waves are estimated since the 

resuspension and deposition mechanisms depend upon the shear stress induced at the 

sediment-water interface.  

• Resuspension of cohesive sediments is modeled based on the formulation developed by 

Gailani et al. (1991). The amount of fine-grained sediment resuspended from a cohesive 

sediment bed is given as:  
n
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cb
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dT
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



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 −
=

τ
ττ

ε 0     (20) 

where ε is the resuspension potential (mg cm-2); a0 is a constant depending upon the bed 

properties; Td is the time after deposition (days); τb is the applied bed shear stress (dynes 

cm-2); τc is the critical shear stress for erosion (dynes cm-2); and m, n are constants 

dependent upon the depositional environment. The parameters in the Equation (20) are 

determined from shaker studies (Tsai and Lick, 1987) on the bottom sediments. 

• Deposition of cohesive sediments in the water column is modeled as a function of 

flocculation. The effect of internal shear rates and water column concentrations on 

flocculation is implicitly defined in the settling velocity formulation of Krone (1962). 

The fraction of settling sediments that are incorporated into the bed is estimated using 

methods proposed by either Krone (1962) or Partheniades (1992). 
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• To account for the consolidation of sediments with time, the bed is vertically discretized 

into seven layers as shown in Figure 4.2. Each layer of bed is characterized by the dry 

density, the deposition thickness, and the critical shear stress for erosion. The time after 

deposition for each layer increases linearly from one day at the surface, which has freshly 

deposited material, to seven days in the bottom layer. The layered bed model conserves 

the mass of the resuspended and deposited sediments. 

• The resuspension of non-cohesive sediments is calculated using the procedure developed 

by van Rijn (1984). Bed armoring is accounted for by the procedure outlined by Karim 

and Holly (1986). 

• Settling of non-cohesive sediments is assumed to be discrete, without interaction with 

other particles. The non-cohesive depositional sediment flux is estimated by the product 

of user specified settling velocity and the near-bed suspended sediment concentration. 

 

 

Figure 4.2 Schematic of Sediment Bed Model. (Hydroqual, Inc., 2002) 
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4.2.4 Pathogen Model 

ECOMSED transports pathogens as a non-conservative tracer. The governing equation is 

shown below. 
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where C is the fecal coliform concentration; FC includes the horizontal diffusivity or 

diffusion/source-sink terms as shown in Equations (12) and (13). 

 

Following the transport, pathogen concentrations are decayed to determine their fate. 

Field data suggested that bacteria die-offs follow first-order kinetics. Laboratory data also 

indicated that the overall inactivation kinetic rate, K, is a function of salinity, temperature, light, 

turbidity, and sedimentation. The different components of the overall decay rate are calculated 

based on the equations given by Mancini (1978) as shown in Equation 22.  
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where K is overall decay rate of the pathogen; Kd is the decay rate for natural mortality, in dark 

which is a function of temperature, salinity and predation; Ki is the decay rate due to irradiance 

or light; Ks is the decay rate due to sedimentation; all the decay rates have day-1 units. S is the 

salinity in ppt at a given node in the modeling domain; SSEA is the salinity of sea water (35 ppt); 
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T is the temperature in degrees Celsius at a given node in the modeling domain; Ke is the 

extinction coefficient and is measured in m-1 units; Io is the average daily solar (surface) 

radiation in langleys/hr; Z is the depth at which decay is applied in m; α is proportionality 

constant and is generally equal to one; Vs is the net loss rate in m/day of the particulate bacterial 

forms. After determining the transport and fate of fecal coliform, a correction based on the field 

measurements of bed sediment fecal coliform counts is applied to account for the re-entrained 

bacteria in the water column due to resuspension. 

 

4.2.5 Spatial and Temporal Schemes 

ECOMSED formulation uses the finite control volume principle to discretize the model 

equations over a staggered or Arakawa C-grid. The model has three available advection 

discretization schemes: central difference, upwind, and the Multidimensional Positive Definite 

Advection Transport Algorithm (MPDATA) (Smolarkiewicz, 1984). MPDATA applies a 

recursive correction to the first-order truncation error after an initial upwind step by reapplying 

the upwind algorithm using an anti-diffusion velocity based on the local first-order truncation 

error. This allows in the minimizing of the numerical diffusion induced by the upwind scheme. 

Depending on the nature of the process to be simulated one can choose the most suitable method.  

 

The model has a two time step solution scheme. The horizontal (external) free surface 

mode solves the depth-integrated three-dimensional transport equation using a small time step to 

compute water surface elevation and the depth-averaged velocities. The internal mode solves the 

three-dimensional transport equations using a much larger time step of the order of 40 times the 

external time step computing and updating U, V, W, T, S, the turbulence quantities and other 
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transport variables such as sediment and tracers concentrations. It is a three time level model and 

time stepping is accomplished by the leap frog scheme. A weak filter removes the time splitting 

fluctuations, where the solution is smoothed at each time step according to: 

( )1-1  + 2 - 
2

 = n
s

nnnn
s FFFFF ++

α
       (23) 

where Fs is the smoothed solution and α is a constant with a typical value of 0.05.  

 

Momentum is always advected by central difference in the ECOMSED assuring second 

order accuracy. The conservation of energy, salinity, and mass is second order accurate in time 

and space except while the uncorrected upwinding is used which yields a first-order accurate 

solution in ECOMSED. 

 

4.2.6 Stability Constraints 

Finally, the computational stability condition for the vertically integrated, external mode 

and transport equations is the Courant-Friedrichs-Levy (CFL) condition, which limits the time 

step according to: 
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2 UgHCt += ; Umax is the expected maximum average velocity.  

 

For the internal mode the criteria is analogous to that of the external mode and is: 
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where CT = 2C + Umax; C is the maximum internal gravity wave speed and is of the order of 2 

m/s and Umax is the maximum advective speed. 

 

Another constraint based on diffusion needs to be considered for the internal time step 

when the grid Reynolds number is of the order 1 and is 
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4.3 Description of the Sediment and Pathogen Indicator Model for 

Lake Pontchartrain 

To accurately simulate the fate and transport of pathogen indicators near the shoreline of 

Lake Pontchartrain a Near-field model cannot resolve the large scale circulation due to wind and 

tide. On the other hand, the Lake-wide model cannot resolve the geometry around the rivers and 

outfall canals. Thus the current situation necessitates the use of a nested modeling system. A 

high resolution Near-field model to simulate local hydrodynamics, sediment transport, nutrient 

loading, and fecal coliform loading is required to be nested with a low resolution Lake-wide 

model driven by tides and wind that can simulate waves. 
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Figure 4.3 Computational grid for the Lake-wide model 
 

4.3.1 Computational Grid Design 

A Cartesian grid with a horizontal resolution of approximately 400 m (Figure 4.3), and 7 

equally spaced vertical layers was used for the Lake-wide model. The Near-field grid has 

approximately 100 m resolution in the horizontal direction and 7 equally spaced vertical layers 

(Figure 4.4).  

 

 

Figure 4.4 Computational grid for the north shore Near-field model (each cell represents 4 cells) 
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4.3.2 Modeling Methodology 

The wind and tide induced hydrodynamics and circulation were simulated using the 

Lake-wide model. Moreover, the wind generated surface waves were simulated in the Lake-wide 

model since the fetch would be misrepresented in the Near-field model. Salinity, temperature, 

water surface elevation, depth-averaged velocities along the Near-field boundary and the wave 

field for the entire Near-field model domain were stored at every hour during the Lake-wide 

simulation. The stored data were then interpolated onto the Near-field grid.  

 

 

Figure 4.5 Modeling Methodology 
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ECOMSED was modified to accept hourly forcing of depth-averaged velocities, water 

surface elevations, salinity and temperatures along the southern open boundary for the north 

shore Near-field model. The Near-field model was driven with wind, waves, flows and time-

dependent fecal coliform levels for the rivers in the north shore. In addition, hourly water surface 

elevations, depth-averaged velocities, salinity and temperatures extracted from the Lake-wide 

model and interpolated onto the southern open boundary of the north shore domain, were forced. 

Figure 4.5 shows the described modeling methodology. 

 

4.3.3 Model Inputs 

4.3.3.1 Initial Conditions 

The Lake-wide model was initiated with background salinity and temperature values. The 

salinity values were interpolated over the model domain between the values observed at the 

LUMCON gage and the Rigolets gage. Water temperatures obtained from the Midlake gage were 

forced throughout the lake. The locations of these gages are shown in the Figure 3.1. The water 

surface elevation and currents were set to zero. The entire model forcing functions were ramped 

from zero to their full values in one day. The Near-field model was started with the initial 

conditions interpolated from the Lake-wide model onto the Near-field grid. 
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Figure 4.6 Comparison of water surface elevations observed at the Rigolets gage and the 
Seabrook gage for January 27th to December 31st, 1997 period 

 

4.3.3.2 Boundary Conditions 

The surface boundary conditions for the Lake-wide model were prescribed using the 

hourly wind speed, wind direction, heat flux, precipitation, and evaporation data obtained from 

the LUMCON gage or the National Weather Service (NWS) Midlake gage. Water surface 

elevations, salinity and temperatures obtained from the USGS Rigolets gage were used to force 

the tide at Rigolets, Chef Menteur Pass, and IHNC tidal open boundaries. A comparison of the 

24-hour average of the tide observed at the Rigolets gage and the Seabrook gage for the year 

1997 is shown in the Figure 4.6. A statistical analysis performed on the water surface elevation 

data from the USGS gage at the Rigolets and the gage at Seabrook Bridge on the IHNC for the 
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year 1997 showed that the tide was similar at both the locations. However, due to the lack of 

measured elevation data at the Chef Menteur Pass, the Rigolets data were used. The inflow open 

boundaries data were prescribed using the discharge, salinity and temperature data obtained from 

the USGS gages near Covington, Robert, and Denham Springs for Tchefuncte, Tangipahoa, and 

Amite rivers respectively. The locations of these gages are shown in the Figure 3.1.The 

Tchefuncte flow obtained from the Covington was transformed into the flow at the mouth of the 

Tchefuncte River based on a correlation developed by performing water shed analysis as 

described in Leal (2004). Figure 4.7 shows the time series of the river flows and water surface 

elevations used in the Lake-wide model for the calibration simulation. 
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Figure 4.7 Flow and tidal boundary conditions for the Lake-wide model for the calibration 
simulation (April 24th – 30th, 2004) (Data source: USGS) 
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The meteorological data and the rivers inflow data used in the Lake-wide model were 

applied as the surface and inflow boundary conditions for the Near-field model as well (Figure 

4.8). The interpolated hourly water surface elevations, depth-averaged velocities, salinity and 

temperature from the Lake-wide model were forced along the southern open boundary in the 

Near-field model. In addition, the surface wind waves’ data interpolated from the Lake-wide 

model was forced hourly into the Near-field model to use it in the sediment transport 

computations. The sediment characteristics of Lake Pontchartrain, including resuspension and 

deposition have been documented by Haralampides (2000) and USGS (2001). Data from these 

authors were used to initialize and describe the settling and depositional properties of the Lake 

sediments. The coefficients required for the sediment model were derived from the shaker tests 

performed on the Lake sediments by these authors and are shown in Table 4.1. 

 

Table 4.1 Values used in the sediment transport model for various model parameters 
Critical bed shear 
stress (dynes/cm2) 

Coefficient a0 in 
Equation 20 

Coefficient n in 
Equation 20 

Exponent m in 
Equation 20 

1.0 2.05 0.4228 0.5 
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Figure 4.8 Flow and fecal coliform loadings used in the north shore Near-field model for the 
calibration simulation (April 24th – 30th, 2004) 
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5. MODEL CALIBRATION, TESTING and SENSITIVITY 
ANALYSIS 

 

5.1 Lake-wide Model Calibration 

5.1.1 Hydrodynamics 

5.1.1.1 Inter-model Comparison 

The hydrodynamics simulated by the Lake-wide model (Figure 5.1) were compared to 

the results obtained from models by other researchers such as Georgiou (2002) (Figure 5.2), 

Haralampides (2000) (Figure 5.3), and Signell and List (1997) (Figure 5.4). The circulation 

patterns, water surface elevations and currents predicted by ECOMSED were in good agreement 

with these models under the same external forcing. 

 

 

Figure 5.1 Depth-averaged circulation for a southeasterly wind at 5 m s-1 predicted by the Lake-
wide model 
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Figure 5.2 Depth-averaged circulation in Lake Pontchartrain due to southeasterly wind at 5 m s-1 
using POM (Georgiou, 2002) 

 

 

Figure 5.3 Depth-averaged circulation in Lake Pontchartrain due to southeasterly wind at 6 m s-1 
using RMA2 (Haralampides, 2000) 
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Figure 5.4 Simulated depth-averaged circulation in Lake Pontchartrain due to a southeasterly 
wind of 5 m s-1 using ECOM-si (Signell and List, 1996) 

 

5.1.1.2 Water Surface Elevation Calibration 

The free surface water level component of the model was calibrated with observed data 

from the five USGS monitoring stations (East Lake, Mandeville, Mid-Lake, Westend and West 

Lake) located as shown in Figure 3.1. Figure 5.5 shows a comparison of the predicted and 

measured lake water levels at the Westend station for a period that included wind and barometric 

effects from the Gulf of Mexico as well as normal tidal conditions. The performance of the 

model in comparison with the stage data at the Mandeville gage is shown in the Figure 5.6.  

 

The simulated water levels match very well with the measured stages in both the cases. 

The same is shown in the scatter plots between observed and modeled elevation data in Figures 

5.7 and 5.8. Table 5.1 gives the root mean square (RMS) values of the modeled and measured 

water surface elevations and their corresponding root mean square errors (RMSE) at various 
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locations in the model domain. The RMS values for simulated and measured water levels were 

very close; the difference was less than 0.02 ft.  
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Figure 5.5 Water surface elevation calibration at the Westend gage 
 

Table 5.1 RMS and RMSE values of simulated and measured water surface elevations 
 

RMS Water Level, ft
Site 

Measured Modeled

RMS Error in 
Measured Vs Modeled 

Water Levels, ft 
Mandeville 0.46 0.44 0.17 
Westend 0.50 0.49 0.13 
LUMCON 0.46 0.44 0.14 
Midlake 0.45 0.44 0.12 
Pass Manchac 0.44 0.44 0.13 
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Figure 5.6 Water surface elevation calibration at the Mandeville gage 
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Figure 5.7 Comparison of measured and modeled water surface elevations at the Westend gage 
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Figure 5.8 Comparison of measured and modeled water surface elevations at the Mandeville 
gage 

 

5.1.1.3 Depth-averaged Currents Calibration 

Model computed depth-averaged currents were compared with the velocity values 

measured by USGS in Lake Pontchartrain 1998 (USGS, 2001) at Mid Lake and South Lake sites. 

Figures 5.9 and 5.10 show the comparison of measured and simulated depth-averaged ‘U’ and 

‘V’ velocity components for the south shore location respectively. The model captured the 

overall trend of variations in the currents fairly well. Table 5.2 gives the RMS values of the 

modeled and measured depth-averaged velocities at both locations and corresponding RMSE 

values at the South Lake and the Mid Lake sites (Locations A and D in the Figure 5.29). Again, 

it can be observed that the difference between RMS values of the measured and modeled 

velocities were less than ~7 mm/s. The root mean square error accentuates the phase difference 

between two signals, if there is any. Small phase differences between the modeled and measured 
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velocities were inherent as the wind field imposed in the model was assumed to be spatially 

constant and was interpolated temporally. Figures 5.11 and 5.12 show the scatter in the observed 

and the modeled data for the two velocity components. 
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Figure 5.9 Calibration of U-component of the depth-averaged velocity at the south lake site for 
the period of March 1st to March 31st, 1998 (Source: USGS, 2001) 

 

Table 5.2 RMS and RMSE values of simulated and measured depth-average velocities 
 

RMS depth-averaged velocity, m/s RMS Error, m/s 
U V Site 

Measured Modeled Measured Modeled 
U V 

South lake 0.05 0.058 0.025 0.019 0.045 0.0195 
Mid lake 0.025 0.028 0.028 0.024 0.037 0.027 
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Figure 5.10 Calibration of V-component of the depth-averaged velocity at the south lake site for 
the period of March 1st to March 31st, 1998 (Source: USGS, 2001) 
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Figure 5.11 Comparison of measured and modeled U-component of the depth-averaged velocity 
at South Lake site (Source: USGS, 2001) 
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Figure 5.12 Comparison of measured and modeled V-component of the depth-averaged velocity 
at South Lake site (Source: USGS, 2001) 

 

5.1.2 Transport Calibration 

The transport component of the model was calibrated using the 1997 Bonnet Carré 

Spillway Opening dataset. The 1997 spillway opening was simulated by transporting a tracer 

representing the turbidity. Actual flow, tide, and wind forcing data corresponding to the 

simulation period were used. The turbidity plume simulated by the model was compared to the 

satellite reflectance images obtained from NOAA Advanced Very High Resolution Radiometer 

(AVHRR) data (Stumpf, 2001) and water surface temperature images obtained from the 

Southern Regional Climate Center at LSU. Figures 5.13 to 5.26 present the comparison of the 

satellite reflectance images of the Mississippi River plume and the model predicted turbidity 

plume over a period of 20 days beginning on March 21st to April 9th, 1997.  
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Figure 5.13 Surface water temperature image of Mississippi River plume during the 1997 Bonnet 
Carré Spillway opening on March 21st, 1997. 

 

 

 

Figure 5.14 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.13 
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Figure 5.15 Satellite reflectance image of Mississippi River plume during the 1997 Bonnet Carré 
spillway opening on March 23rd, 1997. 

 

 

 

Figure 5.16 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.15 
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Figure 5.17 Satellite reflectance image of Mississippi River plume during the 1997 Bonnet Carré 
spillway opening on March 26th, 1997. 

 

 

 

Figure 5.18 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.17 
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Figure 5.19 Surface water temperature image of Mississippi River plume during the 1997 Bonnet 
Carré spillway opening on March 27th, 1997. 

 

 

 

Figure 5.20 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.19 
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Figure 5.21 Satellite reflectance image of Mississippi River plume during the 1997 Bonnet Carré 
spillway opening on April 6th, 1997. 

 

 

 

Figure 5.22 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.21 
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Figure 5.23 Satellite reflectance image of Mississippi River plume during the 1997 Bonnet Carré 
spillway opening on April 7th, 1997. 

 

 

 

Figure 5.24 Model predicted Mississippi River turbidity plume for the same period shown in the 
Figure 5.23 
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Figure 5.25 Surface water temperature image of Mississippi River plume during the 1997 Bonnet 
Carré spillway opening on April 9th, 1997. 

 

 

 

Figure 5.26 Model predicted Mississippi River turbidity plume for the period shown in the 
Figure 5.25 

 

The extent of the turbidity plume predicted by the model was in very good agreement 

with the plume observed in the satellite images for the entire period. The model under-predicted 
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the extent of the freshwater plume, initially. This may be attributed to the fact that there was 

significant amount of leakage flow from the spillway before it was officially opened.  

 

Although forcing a spatially constant wind field captured the trend of the Mississippi 

River plume, it was necessary to apply a spatially variable wind field to reproduce some of the 

circulation features observed in satellite images. The observed wind data at 6 stations were 

interpolated using the inverse distance weight approach to determine the spatially variable wind 

field. A micro-circulation was observed in the mid-lake region. This circulation helped the plume 

to migrate northward. A detailed description about the effect of spatially variable wind is 

provided in Chapter 7.  

 

5.1.3 Calibration of the Wave Model 

The wave model was initially calibrated by visually comparing the results generated by 

the Lake-wide model with the results predicted by a wave model developed and calibrated for 

Lake Pontchartrain by List and Signell (1997). The contour plots of the wave heights generated 

by the two models for a southwesterly wind of 5 m s-1 were compared as shown in the Figures 

5.27 and 5.28. There was a reasonable agreement between the results of the two models. 

However, the Lake-wide model slightly under-predicted the wave heights compared to the List 

and Signell Model. 
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Figure 5.27 Significant wave heights simulated by the Lake-wide model for a constant 
southeasterly wind of 5 m s-1 

 

 

Figure 5.28 Significant wave heights simulated by the HISWA model for a constant southerly 
wind of 5 m s-1 (List and Signell, 1997) 
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Further, the wave model was calibrated based on the wave data collected by Signell and 

List for USGS (USGS, 2001) in Lake Pontchartrain during the period January to May, 1995. The 

location of the stations is shown in the Figure 5.29. The data used for calibration was collected 

from the location marked as ‘A’ in the Figure 5.29. The Lake-wide model was simulated using 

the existing wind and tide conditions from May 1st to May 31st, 1995. 

 

 

Figure 5.29 Location of the moorings setup to collect the wave data in Lake Pontchartrain by 
Signell and List for USGS (USGS, 2001) 

 

The time series of the modeled significant wave heights were then compared to the 

observed values at the station ‘A’ as shown in the Figure 5.30. There was a reasonable agreement 

between the two data sets. However, the model seemed to slightly under-predict what was 

observed. This may be attributed to the fact that SMB wave model used in ECOMSED does not 

account for the wave transformation and other non-linear processes. The RMS value of the 

observed wave heights was found to be 34.25 cm and that of the predicted to be 33.91 cm, thus 

indicating a reasonably good performance by the model.  

A
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Figure 5.30 Comparison of measured and simulated significant wave heights in the lake at the 

location A in the Figure 5.27 for the period indicated (Field data source: USGS, 2004) 
 

5.1.4 Calibration of the Sediment Transport Model 

Data obtained from Haralampides (2000) and USGS (2001) were used for an initial 

calibration. The final calibration of the sediment model was achieved by comparing sediment 

concentrations predicted by the model with the TSS data obtained from NASA MODIS Terra 

satellite images based on a correlation developed by Miller and McKee (2004) for the period of 

May 15-23, 2002. The MODIS image for May 15, 2002 was used to define the initial conditions 

for the model. The remaining images were used for calibration and validation. Limited temporal 

field data are sufficient for initial calibration and parameter initialization; however, spatial as 

well as temporal TSS data, such as those obtained from MODIS, are essential for the dynamic 
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calibration of the model. The coefficients and exponents that affect the depositional and 

erosional properties of sediments in the model were adjusted. Model refinement was conducted 

until the observed pattern was sufficiently reproduced by the model. Figure 5.31 shows the TSS 

data obtained from a satellite reflectance image and corresponding model generated surface 

sediment concentration on May 22nd and 23rd, 2002. The concentrations in both cases are 

comparable.  

 

 

 

Figure 5.31 Comparison of simulated and observed TSS for May 22nd and 23rd, 2002 
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5.2 Near-field Model Calibration 

5.2.1 Hydrodynamics 

The hydrodynamics in the Near-field model were validated by comparison with the Lake-

wide model. Figure 5.32 show the depth-average circulation patterns in the north shore predicted 

by the Near-field model and the Lake-wide model when driven with the same boundary 

conditions. The Near-field model captures the large scale circulation features as observed in the 

Lake-wide model results both in terms of magnitude and direction (Length of the vectors indicate 

magnitude).  
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Figure 5.32 Comparison of depth-averaged circulation patterns predicted by the Lake-wide and 

Near-field models 

 
It was necessary to prescribe the depth-averaged velocities and water surface elevations 

at the southern open boundary of the Near-field domain, in addition to the surface wind forcing, 
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to obtain the necessary equivalency in the hydrodynamics between the two models. Moreover, 

the coefficient α in the Smagorinsky formulation (Equation 14) which controls the horizontal 

diffusion was increased to 0.75, from a value of 0.1 (used for the Lake-wide model) so as to 

achieve a stable solution. 

 

5.2.2 Transport Calibration 

Transport of conservative tracer was simulated in the Near-field model for the April 24th 

to 30th, 2004 period. The dissolved inorganic nitrogen (DIN) levels measured in the field were 

compared with the tracer concentrations predicted by the model at each sampling grid location 

(Figure 5.33). It was assumed that DIN is nearly conservative over a period of 24 hours.   
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Figure 5.33 Comparison of the simulated and the observed DIN at various sampling locations for 
April 2004 rain event 
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To verify if the model was generating similar DIN concentrations as those observed in 

the field, independent of spatial location, the DIN concentrations from the field and the model 

were sorted separately and were plotted against each other (Figure 5.34).  This was a check on 

the mass conservation of the nutrient loading. Moreover, if there was any difference in the 

orientation of the predicted plume and the plume observed in the field, this check would verify 

whether the model can actually predict the concentrations observed in the field.  
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Figure 5.34 Comparison of the simulated and the observed DIN for April 2004 rain event 
independent of location 

 

On the 27th there was a good agreement between the model and the field DIN 

concentrations; however, the model over-predicted DIN on the April 28th. This could be 

attributed to the fact that the time series data at the source was very limited. The source DIN was 
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interpolated temporally to fill the gaps in the available time series data. The forcing used in the 

model may have failed to capture the fluctuations in the DIN loading thus causing a 

disagreement. 

 

5.2.3 Fate and Transport Calibration of Fecal Coliform 

The April 2004 rain event data set was used to calibrate the pathogen indicator model. 

The Near-field model was simulated for a period of seven days from April 24th to 30th, 2004. The 

model was initialized with the mean background levels and was ramped up for one day. Due to 

the limited amount of data available at the source, the fecal coliform loading pollutograph for the 

simulation period was synthesized. The value obtained for the “high loading” was used as the 

peak concentration of the pollutograph as the measured rainfall for this event was 1.1 inches. The 

falling limb of the pollutograph was modeled exponentially as shown in the Figure 4.8. The 

curve of the pollutograph was fitted to pass through the few available data points. A check was 

made to ensure that the mass of the load was at least equal to the mass observed in the receiving 

water.  

 

The fecal coliform levels from the field and the model were plotted for each sampling 

location. The levels matched fairly well as shown in the Figure 5.35. Moreover, as described in 

the transport calibration section, a plot to verify that the mass loading was conserved in the 

model was developed as shown in the Figure 5.36. The simulated and observed data were in 

good agreement for both days; however, a small error in the pollutograph at the source could 

have caused the model to slightly under-predict the fecal coliform levels on April 27th. 
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Figure 5.35 Comparison of the simulated and the observed fecal coliform levels for April 2004 
rain event independent of location 

 

A student t-test was employed to make sure the means of the predicted and observed 

values were not significantly different. It was found that 95 % of the times, the difference 

between the predicted and the observed means was insignificant for both April 27th and 28th. 

Moreover, it was observed that the extent of the plume predicted by the model was similar to that 

observed in the field as shown in the Figure 5.37.  
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Figure 5.36 Comparison of the simulated and the observed fecal coliform levels for April 2004 
rain event independent of location 
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Figure 5.37 Comparison of the observed and simulated extents of the fecal coliform plumes for 
April 2004 rain event 

 

5.3 Model Testing and Sensitivity 

5.3.1 Effect of Various Horizontal Resolutions 

The ability of the Lake-wide model to simulate the observed water surface elevation for 

various horizontal grid sizes (1200 m, 800 m, 400 m, and 300 m) was tested. The water levels 

predicted using the four grids were compared to the observed data at the Mandeville gage. The 

simulated data matched with the observed water levels very well and with equal precision in the 

four cases indicating that the model was independent of the grid size.  
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Figure 5.38 Comparison of the water levels at the Mandeville gage for various grid sizes for 

November 25th to December 6th, 2003 period 
 

Further, the depth averaged currents simulated by the Lake-wide model using various 

grids were compared (Figure 5.39). Again, the results show that the currents simulated by the 

300 m, 400 m, and 800 m grids were very similar. However, the 1200 m grid slightly under-

predicts the currents when compared to other grids. The difference in the water levels and 

currents simulated using 400 m and 300 m grids was insignificant proving that the model was 

grid independent. The 400 m resolution was used as the final grid for the Lake-wide model. The 

root mean square difference (RMSD) values were computed for the currents simulated in the 300 

m, 800 m and 1200 m cases with respect to the results in the 400 m case (Table 5.3). It was 



 87

observed that the 300 m case has the least difference whereas the 1200 m resolution resulted in a 

higher value. 

 

Table 5.3 Root mean square difference in depth-averaged currents for 300 m, 800 m and 1200 m 
resolution grids compared to the 400 m resolution grid case 

 
Grid Size, m 300 800 1200 
RMSD, cm/s 0.28 0.72 2.68 
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Figure 5.39 Comparison of the depth averaged currents at the Mandeville gage for various grid 

sizes 
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5.3.2 Effect of Various Time Steps used in the Model 

The water levels predicted by the model at the Westend gage were simulated for various 

time steps of 3 s, 2 s, 1 s and 0.5 s and were compared with the actual record as shown in Figure 

5.40. The results in all the four cases were in very good agreement with the observed values. 

Moreover, comparing the simulated depth averaged velocities (Figure 5.41) also indicated that 

the difference among the solutions generated using these four time steps was trivial. Thus it was 

concluded that the model was independent of the time step used. Although 3 s produced equally 

good results as in the case of 2 s, the model generated small oscillations near the regions of 

higher currents when a time step of 3 s was used. Consequently, an external mode time step of 2 

s was used for all purposes in the Lake-wide model. Table 5.4 shows the RMSD values for the 

modeled currents in 0.5 s, 1 s and 3 s cases with respect to 2 s results. 
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Figure 5.40 Comparison of the water levels at the Westend gage for various time steps 
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Table 5.4 Root Mean Square difference in depth-averaged currents for 3 s, 1 s and 0.5 s time 
steps compared to the 2 s time step case 

 
Time Step 3 s 1 s 0.5 s 

RMSD, cm/s 0.36 0.24 0.28 
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Figure 5.41 Comparison of the depth averaged currents at the Westend gage for various time 
steps 

 

5.3.3 Effect of Various Vertical Resolutions 

The sensitivity of the model to the number vertical layers used was tested for 10, 7 and 3 

layers. The variation in the water levels simulated in the three cases was negligible. All the 

results were in good agreement with the observed values as shown in the Figure 5.42. This was 

unlike what was observed when the simulated depth averaged currents were compared in the 
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three cases. In the three layers case the model under-predicted the currents as can be seen in the 

Figure 5.43. This was especially true when the currents were higher during which additional 

vertical resolution was required. As the results generated in 7 and 10 layers cases were very 

similar, 7 layers were used for modeling purposes. Table 5.5 shows the RMSD values for the 

modeled currents in 10 and 3 vertical layers cases with respect to 7 layers case results. 
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Figure 5.42 Comparison of the water levels at the Westend gage for various vertical resolutions 

 

Table 5.5 Root Mean Square difference in depth-averaged currents for 3 and 10 vertical layer 
cases compared to the 7 layers case 

 
Vertical Layers 3  10 
RMSD, cm/s 5.19 2.15 
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Figure 5.43 Comparison of the depth averaged currents at the Westend gage for various vertical 
resolutions 

 

5.3.4 Effect of Various Bed Roughness Heights 

The performance of the Lake-wide model for various bed roughness height values (0 cm, 

1 cm, 2 cm, and 3 cm) was tested. ECOMSED uses bed roughness height to compute the bed 

friction. The model assumes a specified minimum bed friction value (0.0025) when the user 

specified bed roughness height is 0 cm, i.e. hydraulically smooth. The model results in each case 

seemed to be in general agreement with other cases and with the observed water levels (Figure 

5.44). The water levels simulated in the 0 cm case were under or over the observed data. The 

high frequency fluctuations were smoothened in the 2 cm and 3 cm cases.  
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Figure 5.44 Comparison of the water levels at the Westend gage for various bed roughness 

heights 
 

Further, the depth averaged currents produced in the four cases were compared as shown 

in the Figure 5.45. The merit of each solution was more visible in this case. As was observed 

previously, the currents simulated in the 0 cm case were unfeasibly higher. The currents in the 2 

cm and 3 cm cases were damped when compared to those in the 1 cm case. Thus a bed roughness 

height of 1 cm, which allowed the model to perform well and which further provides a closer 

representation of the conditions in the Lake Pontchartrain due to the presence of clams was used 

in the Lake-wide model for this study. Table 5.6 shows the RMSD values for the modeled 

currents in 0 cm (smooth bed), 2 cm and 3 cm bed roughness cases with respect to 1 cm 

roughness case results. 
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Figure 5.45 Comparison of the depth averaged currents at the Westend gage for various bed 

roughness heights 
 

Table 5.6 Root Mean Square difference in depth-averaged currents for 0 cm (smooth), 2 cm and 
3 cm bed roughness cases compared to the 1 cm bed roughness case 

 
Bed Roughness 0 cm 2 cm 3 cm 

RMSD, cm/s 11.70 3.53 4.45 
 

5.3.5 Effect of Various Horizontal Diffusivities 

As stated earlier ECOMSED uses Smagorinsky’s formulation to compute horizontal 

mixing coefficients. The horizontal diffusivity in the model can be modified by varying the α 

parameter (HORCON) in the Equation 14. Increasing the value of HORCON would increase the 

diffusivity and vice versa. The model performance for various diffusivities was tested. The 
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model simulation failed when the HORCON value was outside the range of 0.02 to 0.4. When 

the value was out of this range the model failed near the IHNC. Figure 5.46 shows the 

comparison of the simulated water level elevations and the observed values at the Westend gage. 

The simulated water levels were fairly insensitive to the various HORCON values used and were 

in good agreement with the observed water levels. 
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Figure 5.46 Comparison of the water levels at the Westend gage for various horizontal 

diffusivities 
 

A comparison among the depth averaged currents generated by the model for various 

HORCON values helped to zero on the best suited value for the Lake-wide model. The currents 

in the 0.02 case were generally higher than those observed in the other cases. Moreover, there 
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was a pronounced disparity when the velocities were high. Although the currents generated in 

the cases of 0.1, 0.25, 0.4 HORCON were found to be agreeing with each other, in the cases of 

0.25 and 0.4 as the HORCON value increased the peaks were smoothed down as shown in the 

Figure 5.47. For the current study a HORCON value of 0.1 was used in the Lake-wide model. 

Table 5.7 shows the RMSD values for the modeled currents in the 0.02, 0.25 and 0.40 HORCON 

cases with respect to 0.10 HORCON case results. 

 

Table 5.7 Root Mean Square difference (RMSD) in depth-averaged currents for 0.25, 0.40 and 
0.02 HORCON values compared to the 0.1 HORCON case 

 
HORCON 0.25 0.40 0.02 

RMSD, cm/s 1.81 2.54 4.12 
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Figure 5.47 Comparison of the depth averaged currents at the Westend gage for various 
horizontal diffusivities 
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5.3.6 Sensitivity of the Near-field Model to the Horizontal Diffusivity 

Although sensitivity testing was performed using various HORCON values in the Lake-

wide model, considerable effort was put in to identify the specific HORCON value suitable for a 

stable Near-field model. To remind the reader, Smaogorinsky formulation shown in the Equation 

14 is used to estimate the horizontal mixing/diffusion coefficient which would define the mixing 

characteristics of the sub-grid scale processes. Hence, as the grid size reduces one would expect 

the α value to decrease in the Equation 14 since the high resolution grid can capture the 

processes that were at a sub-gird scale in a lower resolution grid. To the contrary, it was found 

that the Near-field model which has four times higher resolution than the Lake-wide model, 

would not produce stable results for a smaller HORCON than the value used for the Lake-wide 

model. Even 0.4, which was the maximum HORCON value suitable for the Lake-wide model, 

was also insufficient. Instead, it required a HORCON value of 0.75 for the model to produce 

stable results. Although the reason was not quite clear, Berntsen (2002) suggested the use of 

HORCON values of the order of 1 in the Smagorinsky formulation for high resolution grids.    

 

To demonstrate the above discussion, a comparison of the salinity fields, currents and 

circulation patterns is shown in the Figure 5.48. Figure 5.48 (a) shows the salinity field, currents 

and the circulation patterns as predicted by the calibrated Lake-wide model in the north shore of 

Lake Pontchartrain at 75 hours. Figure 5.48 (b) shows the results predicted by the Near-field 

model with a HORCON value of 0.10 at 75 hours. Comparing visually with the Figure 5.48 (a), 

the patterns in the Figures 5.48 (b), (c) consists of clustering type instabilities and do not agree. 

Whereas, Figure 5.48 (d) and (e) agree well with 5.48 (a).  
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Figure 5.48 (a) Snapshot of Lake-wide model currents and the salinity levels at 75 hours 
 

 

Figure 5.48 (b) Snapshot of Near-field model currents and the salinity levels at 75 hours with a 
HORCON value of 0.10 

 

 

Figure 5.48 (c) Snapshot of Near-field model currents and the salinity levels at 75 hours with a 
HORCON value of 0.25 
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Figure 5.48 (d) Snapshot of Near-field model currents and the salinity levels at 75 hours with a 
HORCON value of 0.50 

 

 

Figure 5.48 (e) Snapshot of Near-field model currents and the salinity levels at 75 hours with a 
HORCON value of 0.75 
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Figure 5.49 Comparison of water surface elevations predicted by the Near-field model for 
various HORCON values 

 

Further, water surface elevations simulated by the Near-field model with various 

HORCON values were compared with that predicted by Lake-wide model at the location A as 

shown in the Figure 5.49. The plot suggested that the value of HORCON used in the Near-field 

model has no effect on the water surface elevation computations. This was confirmed by the 

scatter plot shown in the Figure 5.50. 
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Figure 5.50 A scatter plot of the water surface elevations predicted by the Near-field model for 
various HORCON values and the Lake-wide model 

 

However, this was not the case when the depth-averaged currents from the Near-field 

model were compared with those observed in the Lake-wide model. It was found that the Near-

field model results do not agree with the Lake-wide model when HORCON values of 0.1 and 

0.25 were used as shown in the Figure 5.51. There was very good agreement between the Lake-

wide data and the Near-field data as shown in the Figure 5.52, when the HORCON values of 0.5 

and 0.75 were used. In addition, it was found that the model was more stable when the 

HORCON value of 0.75 was used.  
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Figure 5.51 A scatter plot of the depth averaged currents predicted by the Near-field model for 
HORCON values of 0.1 and 0.25 and the Lake-wide model 
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Figure 5.52 A scatter plot of the depth averaged currents predicted by the Near-field model for 
HORCON values of 0.5 and 0.75 and the Lake-wide model 
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5.3.7 Sensitivity of the Near-Field Model to Various Advection Schemes 

The performance of the Near-field model with various advection schemes available in 

ECOMSED was tested. As noted earlier, ECOMSED allows the user to choose from CENTRAL, 

UPWIND, SMOLAR2 and SMOLAR_R advection schemes. The CENTRAL option represents 

the central difference scheme which is second-order accurate. Moreover, it does not generate any 

numerical diffusion. However, it can sometimes cause the over- and under-shooting of the scalar 

variables transported.  The UPWIND option represents the upwind differences which are 

positive definite. However, it is only first-order accurate and can introduce significant numerical 

diffusion. SMOLAR2 and SMOLAR_R represent two versions of the advection schemes 

developed by Smolarkiewicz (1984). Both the schemes use upwind differences and a recursive 

correction is applied to remove the numerical diffusion induced by the upwind. In SMOLAR2, 

the correction is applied twice and in SMOLAR_R case a single formulation of antidiffusion 

velocities is used. The Smolarkewicz schemes are positive definite and are second order 

accurate. 

 

The Near-field model was simulated for 24th to 30th April 2004 period. Keeping other 

conditions the same, the response of the model to various advection schemes was investigated. 

Figure 5.53 shows the fecal coliform plume generated by the model at 100 hours for various 

advection schemes. The shape of the plume generated in each case was different from one 

another. The CENTRAL and SMOLAR_R schemes allow the sharp fronts in the plume to 

persist, whereas the UPWIND was the most diffusive of all the four as expected. The plume 

diffuses further offshore into the Lake in the UPWIND and SMOLAR2 cases. Although a 

definite improvement can be seen, the antidiffusive correction applied in the SMOLAR2 case 
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was insufficient to curb the numerical diffusion due to upwinding. The SMOLAR_R scheme was 

devoid of any numerical ripples upstream of the front interface unlike in the CENTRAL case. 

The fecal coliform plume at 145 hours for the four discretization schemes are shown in the 

Figure 5.54. There was a better agreement among all the cases indicating a convergence of the 

solution in the later part of the simulation. For operational purposes, the effect of advection 

scheme used would have a little effect on the quality of results obtained. 

 

 

Figure 5.53 Comparison of the fecal coliform plumes generated by the Near-field model for 
various advection schemes at 100 hours into the simulation 
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Figure 5.54 Comparison of the fecal coliform plumes generated by the Near-field model for 
various advection schemes at 145 hours into the simulation 

 

Further, the fecal coliform levels predicted by each of the four schemes were compared 

quantitatively. Fecal coliform data was extracted along the Transect 1 shown in the Figure 5.55 

at different simulation times in the above stated simulation. The predicted fecal coliform levels 

were plotted on the y-axis with distance from the mouth of the river on the x-axis as shown in the 

Figure 5.56. Figure 5.56 (a), (b), (c) and (d) show the results at 80 hours, 90 hours, 100 hours and 

105 hours respectively. There was a difference of approximately 200 MPN/100 mL between the 



 105

central and upwind results at 80 hours closer to the mouth of the river where the concentrations 

were higher. The four cases agree well at 105 hours. The results were found to converge as the 

time progresses and the distance from the mouth increases.  
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Figure 5.55 Map showing the location of the Transect 1 
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Figure 5.56 Comparison of fecal coliform levels at various simulation times for different 
advection schemes 
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6. MODEL APPLICATION 
 

6.1 Shoreline Impact Area Assessment 

Model simulations of fecal coliform loadings of various intensities can be used to 

develop an impact area database to assist in the risk management for the recreational zones in the 

Lake Pontchartrain.  
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Figure 6.1 Boundary conditions for the flows and fecal coliform levels used in the summer and 
winter simulations of the north shore Near-field model 

 

The Near-field model was simulated for two cases:  a typical high fecal coliform loading 

event observed during the summer and an extreme event that could possibly occur in the winter 

conditions. The river discharges in each case correspond to typical summer and winter flows. 

The fecal coliform levels in the winter season can be an order of magnitude higher than those 
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observed in the summer season in the Tchefuncte River (Source: LPBF - 2003 Tchefuncte River 

Water Quality Survey Data). The river hydrographs and pollutographs used for the simulations 

are shown in the Figure 6.1. The model was run for a total of seven days with one day used for 

ramping the model forcing conditions to their full values.  

 

A snap shot of the simulated “high risk fecal coliform plume” – plume containing fecal 

coliform concentrations of 200 MPN/100 mL or more, are shown in the Figure 6.2 for the two 

cases at 97 hours from the start of the simulation. The high risk plume was observed to reside in 

the lake for about 34 hours (~ 1.5 days) from the time it arrived at the mouth of the river in the 

case of the summer loading. The residence period for the high risk plume in the extreme winter 

loading scenario was observed to be 94 hours (~ 4days).  

 

 

Figure 6.2 Simulated high risk fecal coliform plumes at 97 hours: (a) Summer Scenario; (b) 
Winter Scenario 

 

The extent of area impacted by these high risk plumes were plotted with respect to the 

simulation time as shown in the Figure 6.3. During the period of simulation the maximum extent 
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of the impact area in the lake was found to be ~ 0.5 km2 in the summer scenario and about 9.5 

km2 in the winter scenario. Moreover, the maximum distance along the shoreline that was 

impacted was found to be approximately 6.35 km in the winter scenario and 371 m in case of the 

summer scenario. 
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Figure 6.3 Time series of the areas of impact due to the high risk fecal coliform plume with 

concentrations more than 200 MPN/100 mL for the summer and winter scenarios 
 

Figure 6.4 shows a plot of maximum fecal coliform levels observed at various radial 

distances from the mouth of the river over the simulation period for the winter event. A similar 

plot for the summer scenario is shown in the Figure 6.5.  
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Figure 6.4 Maximum fecal coliform levels at various radial distances from the mouth of the 
Tchefuncte River over the simulation period for the extreme winter scenario 

 

Plots similar to those shown here can be generated for other typical wind and tide 

conditions in the area. This would help to quantify the potential risk at any given location along 

the shoreline of Lake Pontchartrain due to the presence of a high risk fecal coliform plume with 

counts more than 200 MPN/100 mL, identifying the areas safe for the recreational activities at 

any given time. 
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Figure 6.5 Maximum fecal coliform levels at various radial distances from the mouth of the 
Tchefuncte River over the simulation period for the typical summer scenario 

 

6.2 Application of the Near-field Model to the South Shore of Lake 

Pontchartrain 

The Near-field model developed for the north shore of Lake Pontchartrain was applied 

for the south shore of the lake to determine the fate and transport of the fecal coliform bacteria. 

The stormwater drainage outfall canals discharging the urban runoff into the lake comprise the 

dominant source of fecal coliforms in the south shore of the lake.  
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6.2.1 Grid Development 

A Cartesian computational grid with a horizontal resolution of approximately 100 m and 

7 equally spaced vertical layers was designed for the south shore Near-field model (Figure 6.6). 

The grid covers the entire south shore from the Lincoln beach in the east to the west of the 

Bonnet Carré Spillway. The grid includes all the major stormwater canals in the Orleans and 

Jefferson Parishes and the Inner Harbor Navigational Canal. Although there were quite a few 

inactive cells in the grid, the Cartesian grid was selected to keep the process of interpolation of 

the boundary conditions and the wave field data from the Lake-wide grid to the south shore grid, 

simple. 

 

 

Figure 6.6 Computational grid for the south shore Near-field model (each cell represents 16 
cells) 

 

6.2.2 Initial and Boundary Conditions 

The initial salinity and temperature for the south shore model were interpolated from the 

initial conditions of the Lake-wide model. The stormwater canals shown in the Figure 6.6 were 

the inflow open boundaries with intermittent discharges during the pumping events. The 

discharge hydrographs for these canals were collected from the pumping stations.  The IHNC is 

the tidal open boundary in the domain. The elevation data obtained from the Rigolets gage which 
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were forced in the Lake-wide model were forced here too. In addition, water surface elevations, 

depth averaged velocities, salinity and temperatures from the Lake-wide grid were interpolated 

spatially and temporally along the northern open boundary of the south shore grid. This was done 

to ensure that the south shore model captured the Lake-wide processes due to the wind and tidal 

effects. Further, the wave data simulated in the Lake-wide model were interpolated spatially and 

temporally over the south shore grid. Due to the large extent of the area covered in the south 

shore model, surface wind data along with other meteorological parameters were applied. 

 

6.2.3 Validation of the South shore Model 

The hydrodynamics in the south shore model were validated by comparison of the 

currents and the circulation patterns with those observed in the Lake-wide model. Figure 6.7 

shows the depth-average circulation patterns predicted by the south shore model and the Lake-

wide model when driven with same boundary conditions. It can be noted that the south shore 

model captures the large scale circulation features as observed in the Lake-wide model 

accurately both in terms of magnitude and direction (Length of the vectors indicate magnitude). 

Unlike the north shore model where the HORCON value was increased to keep the model stable, 

the stability in the south shore model was achieved by upwinding the mass transport. This was 

required because of the strong currents produced by the IHNC. 
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(a) Lake-wide Model

(a) South shore Model
 

Figure 6.7 Comparison of depth averaged circulation patterns predicted by the Lake-wide model 
and the South shore model 

 

For the purpose of validating the fecal coliform transport component of the south shore 

model, field sampling was performed in the vicinity of the Bonnabel Canal in Jefferson Parish at 

the locations shown in Figure 6.8. During a pumping event water samples were collected just 

downstream of the pumping station (Location 16 in the Figure 6.8) at frequent intervals to 

characterize the source concentration. Samples were collected for three consecutive days 

following the pumping event at predetermined locations along the shoreline of the lake between 

the 17th Street Canal and the Suburban Canal. These data provided information regarding the 

plume patterns and the kinetics of the bacteria. For a detailed description of the field study in the 

south shore, the reader is referred to Martinez (2005). 

 

The data from the third wet weather sampling event from 5th to 9th April, 2005 were used 

to validate the fate and transport of the fecal coliform in the south shore model. A six day 

simulation was setup from the 4th April to the 9th April. The inflow and tidal boundary conditions 

used in the Lake-wide model for this simulation are shown in the Figure 6.9. 
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Figure 6.8 Sampling locations for the south shore field study 
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Figure 6.9 Flow and elevation data used in the Lake-wide model for the calibration simulation 
(April 4th – 9th, 2005) (Data source: USGS) 

 

The flow data for the canals during simulation period were obtained from the pumping 

stations. The detailed pumping records for the calibration period are provided in the Table A1 of 

Appendix A. The elevation data for the tidal passes were obtained from the USGS gage at the 

Rigolets. The wind data were obtained from the LUMCON gage. Previous study by Carnelos 

(2003) in the south shore of Lake Pontchartrain, the storm water canals in the Orleans Parish, i.e. 
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London, Orleans, and the 17th Street Canals were found to discharge similar concentrations of 

total coliform as those observed in the Bonnabel Canal. Hence the same total coliform data were 

used as the source for all the canals in the south shore model. The complete information about 

the total coliform levels forced at each canal is provided in the Table A2 of Appendix A. 
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Figure 6.10 Comparison of the observed and modeled total coliform levels at various sampling 

locations along the south shore of Lake Pontchartrain 
 

The modeled total coliform levels at various locations were compared to the observed 

field values for April 7th, 8th, and 9th as shown in the Figure 6.10. The simulated values match the 

measured values fairly well. A scatter plot between the observed and simulated values is shown 
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in the Figure 6.11. Although there was a good concurrence overall, the agreement was better on 

the 2nd and 3rd day of the sampling.  
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Figure 6.11 Comparison of the observed and modeled total coliform levels in the south shore of 
Lake Pontchartrain 

 

A sequence of images showing the simulated total coliform plumes at various hours, for 

the calibration event, are shown in the Figure 6.12. It was found that the bacteria levels did not 

return to the background levels within the period of simulation, i.e. within 88 hours after 

pumping.  
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Figure 6.12 Simulated fecal coliform plumes in the south shore of Lake Pontchartrain for period 
April 7th to April 9th 
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7. DISCUSSION 
 

7.1 Field Studies 

Accurate and ample field data are necessary for adequate calibration of a numerical 

model. The field sampling performed in the north shore of Lake Pontchartrain provided the 

required water quality data to calibrate the near field model. The data indicated the presence of 

fecal coliform plume associated with the wet weather.  However, the fecal coliform data 

collected in the river to quantify the source was rather too little.  

 

The fecal coliform levels in the water column and sediments were found to be highly 

variable spatially and temporally. Results from a study conducted by Doyle et al. (1992) in an 

environment similar to that of Lake Pontchartrain indicated that both water and sediment fecal 

coliform populations were highly variable over the time. This is especially true in the case of 

rivers, where there would be continuous mixing and transport of contaminants along with the 

flow. Therefore collecting a single daily sample in the river would not adequately characterize 

the source, as was the case in the north shore study.  

 

In a similar study in the south shore of Lake Pontchartrain, Martinez (2005) found the 

standard deviation of the e coli samples collected at the Bonnabel Canal during a pumping event 

to be 45%. It was concluded that, to estimate the source with reasonable accuracy, a minimum of 

six samples were required at a location at any given storm runoff event. Further it was found that 

the samples were to be collected at a high frequency in order to reduce the error due to the 

temporal variability in the data. 
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Due to the insufficient fecal coliform data available at the source in the north shore, the 

fecal coliform loading was corrected based on the mass of the contaminant observed in the lake. 

The amount of mass introduced into the lake due to the forced fecal coliform loading was equal 

or greater than what was observed in the lake. This process would introduce uncertainty in the 

results predicted by the model. To avoid or to minimize this uncertainty due to the source, high 

frequency sampling is necessary in the river. 

 

7.2 Modeling Framework 

As described earlier, a nested framework was developed to include the effect of wind and 

tide on the whole lake, in the Near-field model. So as to successfully transfer the features of the 

Lake-wide circulation into the Near-field model, a number of possible boundary conditions were 

considered. In a similar model developed by Carnelos (2003), depth-averaged currents and the 

water surface elevations from the Lake-wide model were forced along the western and eastern 

boundaries of the Near-field model respectively. The north boundary was set to radiate any 

gravity waves generated in the domain.  

 

In the north shore model, in order to reproduce the hydrodynamics observed in the Lake-

wide model, water surface elevations and depth-averaged currents were forced along the 

southern open boundary in the Near-field model. A component of the depth-averaged currents 

which was computed based on the existing gradient in the forced and computed elevations at the 

boundary nodes was also included to safely radiate any shocks generated due to this gradient. In 

addition to these boundary conditions, surface wind forcing was necessary due to the substantial 
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area in the Near-field modeling domain. This process assured the Near-field model to predict the 

water surface elevations accurately. However, the currents and the circulation features were not 

in agreement with Lake-wide model. To avoid the occurrence of the clustering type instabilities, 

it was found that the horizontal diffusivity had to be increased by a significant amount. In the 

model the amount of horizontal diffusivity available is controlled by the HORCON value 

(parameter α in Equation 14) specified by the user. By default, a low value of 0.1 was used for 

HORCON as recommended for ECOMSED. However, this value was increased to 0.75 to get 

the stable and consistent results compared to the Lake-wide model. This modification finally 

allowed the Near-field model to successfully replicate the Lake-wide hydrodynamics accurately. 

Berntsen (2002) noted that in similar cases with small horizontal grid spacing values and in areas 

with high variability, the HORCON value of the order of 1 should be used in order to avoid 2∆X 

oscillations. 

 

In the case of the south shore model, a similar set of boundary conditions were forced at 

the northern boundary of the domain along with the wind. However, the high density gradients 

and currents at the IHNC in the south shore model may have induced oscillations in the solution 

making the model unstable.  Generally, to reduce the oscillations and to make the model stable, 

higher diffusion is induced into the model. However, the model failed to run when the higher 

HORCON values similar to those in the north shore model were used. The reason for this 

inconsistency in the amount of horizontal diffusivity to be used between the two Near-field 

models was unclear. However, it may be attributed to the presence of higher velocities of the 

order of 1 m s-1 in the south shore model near the IHNC which may have generated unusually 

high horizontal mixing coefficients.  Since the Smagorinsky formulation (Equation 14) used to 
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compute the horizontal mixing coefficient depends on the horizontal velocity gradients and the 

grid size, the high velocities at the IHNC may have lead to the failure of the south shore model, 

when higher HORCON values such as 0.75 were used.  

 

The south shore model was found to generate similar clustering type instabilities as 

observed in the north shore model when lower HORCON values were used. Finally, a simple 

first order upwind scheme without any correction for the numerical diffusion was used for 

advection of salinity and other mass variables, in order for the south shore model to run without 

any instabilities and to successfully replicate the hydrodynamics in the Lake-wide model. 

However, the upwind scheme is only first order accurate and can cause numerical diffusion and 

under-predict the total coliform levels when the concentrations are high, e.g. in the vicinity of the 

mouth of the canals as was observed in the case of north shore model (Figure 5.56). 

 

Thus it may be deduced that higher diffusion was required for the mass transport when 

the grid size was smaller as was the case in both the Near-field models. It could be induced either 

by using a higher HORCON value in the Equation 14 (north shore model) or by using a diffusive 

advection scheme for mass transport (south shore model). This may not be true for the 

momentum transport. The north shore Near-field model was stable although higher diffusivity 

was used for the momentum transport. However, lower diffusion values were necessary in the 

south shore model where the currents were higher.  
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7.3 Wind Forcing 

The 1997 Bonnet Carré spillway opening event was used to calibrate the mass transport 

component of the Lake-wide model. As mentioned earlier, when a spatially variable wind 

forcing was used, the model was found to generate few circulation features which were absent 

when a spatially constant wind was used. These circulation patterns were in better agreement 

with the satellite reflectance images which were used in the calibration process. To demonstrate 

this, the turbidity plumes generated by the models with and without spatially variable wind 

forcing were compared to the satellite reflectance images. Figure 7.1 shows the satellite 

reflectance image of the turbidity in Lake Pontchartrain on 26th March, 1997. The model results 

for this day when spatially constant wind and variable wind were forced are shown in the Figures 

7.2 and 7.3 respectively. 

 

 

Figure 7.1 Satellite reflectance image of the Lake Pontchartrain during the1997 Bonnet Carré 
spillway opening on 26th March, 1997 
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Figure 7.2 Modeled turbidity plume in the Lake Pontchartrain during the1997 Bonnet Carré 
spillway opening simulation with spatially constant wind for 26th March, 1997 

 

 

Figure 7.3 Modeled turbidity plume in the Lake Pontchartrain during the1997 Bonnet Carré 
spillway opening simulation with spatially variable wind for 26th March, 1997 

 

It can be noticed from the reflectance image in the Figure 7.1, the turbid water from the 

Mississippi River reached the eastern embayment of the Lake Pontchartrain on the 26th March. 

The model result showed in the Figure 7.2 although indicates an eastward movement of the 

turbidity plume, it does not reach the eastern embayment as observed in the satellite image. 

However, when synoptic wind was used the plume indeed reached the eastern embayment of the 
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Lake Pontchartrain, as shown in the Figure 7.3. This occurred due to a counter clockwise 

circulation in the wind field near the middle of the lake which pushed the plume migrating 

northward to eastward. This circulation was absent when a spatially constant wind field was 

used. 

 

 

Figure 7.4 Water surface temperature image of the Lake Pontchartrain during the1997 Bonnet 
Carré spillway opening on 27th March, 1997 

 

 

Figure 7.5 Modeled turbidity plume in the Lake Pontchartrain during the1997 Bonnet Carré 
spillway opening simulation with spatially constant wind for 27th March, 1997 

 



 125

In a similar observation on the 27th March, 1997, a satellite image of the temperature field 

in Lake Pontchartrain (Figure 7.4) indicated the northward migration of the fresh water plume 

from the Mississippi River. This feature was again captured by the model only when a spatially 

variable wind (Figure 7.6) was forced as opposed to a spatially constant wind (Figure 7.5). Over 

all, the residence times of the Mississippi River plume in the lake were predicted by the model 

equally well immaterial of a spatially constant or a variable wind field, except for these 

circulation features. 

 

 

Figure 7.6 Modeled turbidity plume in the Lake Pontchartrain during the1997 Bonnet Carré 
spillway opening simulation with spatially variable wind for 27th March, 1997 

 

7.4 Wave Model 

The wave model used in the ECOMSED was based on the SMB (Sverdrup, Munk and 

Bretschneider) hindcasting method (USACE, 1984). Traditionally, this method was mainly used 

in the designing areas in the marine field, thus modeling waves during less frequent – high 

intensity events.   The model was found to successfully predict the wave periods and height 
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observations taken during Tropical Storm Isidore in Lake Pontchartrain on September 27th 2002. 

The wave heights of ~1 m at periods of ~4.5 s for northerly winds of 18 m s-1 were consistent 

with observations made during the Tropical Storm Isidore at the London Canal on the south 

shore of Lake Pontchartrain (McCorquodale, 2002).  

 

In addition, the model has performed reasonably well when compared to the calibrated 

wave model results by Signell and List (1997) for smaller and more frequent everyday 

conditions. However, the model does not include the effects of the radiation stresses due to the 

wave breaking, which can be critical for the resuspension of the sediments in shallow water 

environments such as Lake Pontchartrain. Moreover, it does not account for any non-linear wave 

transformations such as shoaling, refraction, diffraction etc. The latter may not be as critical as 

the former. ECOMSED allows user to supply the wave data from a more comprehensive external 

wave model such as WAM or SWAN.  

 

It was found that the mean wave height of the highest one-tenth waves (H10) would 

produce better results for the resuspension of the sediments rather than the significant wave 

heights (HS) generated using the SMB model, during the calibration of the sediment transport 

model. On an average, a 27 % increment was found in the amount of resuspended sediment when 

H10 was used instead of HS in the computation of waves induced bed shear in the sediment 

transport model.  The idea behind using H10 was that there is a higher probability for a sediment 

particle to be resuspended initially by the wave with maximum height instead of the HS. This 

argument is in line with the findings by Clarke et al. (1982) which indicated that the sediment 
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particles are primarily suspended by the bursts of turbulence related to peak values of the 

envelope of surface waves. 

 

7.5 Sediment Transport Model 

Lake Pontchartrain is dominated by cohesive bed sediments except for a small number of 

isolated areas near the mouths of the rivers, spillway and the shoals near the eastern embayment. 

For this reason, only the cohesive sediment transport was implemented in the present study. The 

resuspension potential is dependent on the bed shear stress due to the combined effect of currents 

and waves. When this bed shear stress exceeds a critical value the resuspension of the sediments 

would initiate. It was observed that wind speeds of 6 knots, with maximum wave heights of ~ 20 

cm and periods of about 1.75 s, would initiate the resuspension in Lake Pontchartrain very close 

to the shore where the lake is shallow. However, wind speeds reaching 8 knots producing wave 

heights of ~ 25 to 30 cm and periods of about 2.1 s would induce significant resuspension 

starting along the shoreline extending slowly into middle of the lake over the time. When the 

wind speeds were below 6 knots, there is negligible resuspension in the lake except for the areas 

near the tidal passes. A very small amount of sediment was found to be resuspended at the tidal 

passes when the wind speeds were smaller. The resuspended sediments were found to settle very 

quickly after the cessation of the wind. 
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Figure 7.7 Forces induced by wind that cause resuspension of bed sediment (Laenen and 
LeTourneau, 1996) 

 

The computation of the bed shear due to the combined effect of waves and currents (τCW) 

was based on the methodology developed by Grant and Madsen (1979) and Glenn and Grant 

(1987). In the process of calibration of the sediment transport model, an improvisation over this 

method was used. In the default method, τCW was computed by finding the magnitude of the 

resultant of the friction velocities due to waves and currents. However, the stresses induced due 

to waves and currents can be either additive or subtractive as shown in the Figure 7.7. Hence τCW 

estimated by the default method may be under-predicted. To assure that maximum possible bed 

shear was computed, a vector addition of the friction velocities due to waves and currents was 

performed for the two possible cases. Then τCW was estimated by using the magnitude of the 

maximum resultant of the friction velocities.  

 

 

Bottom Currents
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8. CONCLUSIONS 
 
 

The major results of this study include: 

• A Lake-wide model capable of simulating water surface elevations, currents, 

transport of contaminants, and waves was developed, calibrated and validated for 

Lake Pontchartrain. 

• The Lake-wide model successfully predicts the presence of two gyre circulation 

patterns in Lake Pontchartrain. 

• The results from the 1997 Bonnet Carré spillway opening simulation indicated that 

forcing spatially variable wind was necessary in order to capture certain circulations 

patterns. 

• A statistical analysis performed on the water surface elevation data from the USGS 

gage at the Rigolets and the USACE gage at Seabrook Bridge on the IHNC for the 

year 1997 showed that the tide was similar at both the locations.   

• It was found that the bed roughness had little effect on quality of the water surface 

elevations predicted by the Lake-wide model. However, there was considerable effect 

on the currents. 

• The Lake-wide model was found to be stable only when the α value in Equation 14 

which controls the horizontal diffusivity in the Smolarkewicz’s formulation, was in 

the range of 0.02 and 0.4. In this range the effect of  α value on the model results was 

insignificant. Model was found to be stable when an external mode time step of 2 s 

was used. 
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• The wave model successfully predicted the wave heights and the periods observed 

during the Tropical Storm Isidore near the London canal in the Lake Pontchartrain. 

• A Lake-wide sediment transport model for Lake Pontchartrain was developed and 

calibrated. 

• The sediment resuspension was initiated when the wind speeds were over 6 knots. 

The sediments near the shoreline were resuspended first and then the offshore 

sediments. 

• It was found that the sediment model predicts better results when mean wave height 

of the highest one-tenth waves (H10) was used in the computation of bed shear stress 

instead of the significant wave heights (HS) generated using the SMB model.  

• The Near-field model capable to simulate hydrodynamics, sediment transport, and 

fate and transport of fecal coliform was successfully developed and nested with the 

Lake-wide model for the north shore of Lake Pontchartrain.  The Near-field model 

was calibrated and validated based on the measured fecal coliform data from the field. 

• The Near-field model was found to be stable when the α value was ranging between 

0.5 and 0.75. Further, the model was stable when an external mode time step of 0.75 s 

was used. 

• From operational point of view, advection scheme used in the north shore model 

would have very little effect on the results.  

• The north shore model indicated that the fecal coliform plume can be highly dynamic 

and sporadic depending on the wind and tide conditions. It also showed that the 

impact of a storm event on the fecal coliform levels in the lake can be anywhere from 

1.5 day for a typical summer event to 4 days for an extreme winter event. 
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• The modeling framework developed for the north shore was successfully applied to 

the south shore of Lake Pontchartrain to simulate fate and transport of fecal coliforms 

discharged through the urban stormwater outfalls. 
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9. RECOMMENDATIONS 

 

When compared to a single model, making a nesting application operational is harder. 

However, a nested application was developed as it was computationally very expensive to have a 

Lake-wide Cartesian grid whose horizontal resolution is limited by the canal widths. In the 

future, numerical models that allow the use of unstructured grids such as FVCOM (Chen et al., 

2003a) should be evaluated. Thus a nested application can be avoided since the unstructured 

grids allow using variable grid size while allowing mass conservation. 

 

A better wave model which includes the important factors such as the radiation stresses 

and the various wave transformations would be necessary to simulate the wave data more 

accurately. 

 

The sediment transport model in the current state provides results with reasonable 

accuracy. However, a comprehensive sediment transport modeling study would be required to 

further calibrate this model. High frequency suspended data at various locations in the lake 

would be useful in addition to the satellite reflectance images currently used. Moreover, 

provisions should be made in model to vary the bed properties such as critical shear stress for 

resuspension, the time of consolidation etc., spatially. Currently, ECOMSED allows the user to 

specify a node to be either non-cohesive or cohesive. Modifications are required to allow the 

presence of both the materials at any given node. 
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In regards to modeling of the sediment bound fecal coliform, currently it is being 

assumed that all the sediment bound fecal coliforms are released into the water column as soon 

as the sediment is resuspended. However, this may not be completely realistic. Hence to better 

quantify the fraction of bacteria released, further studies are required. Relationship between the 

applied bottom shear stress and the fecal coliforms released into the water column should be 

explored.  

  

Although not significant in the current study, future models with the ability to simulate 

wetting and drying processes should be pursued. This feature can prove to be important while 

simulating the Lake-wide hydrodynamics in estuarine environments such as Lake Pontchartrain 

which are surrounded by inter-tidal flats and wetlands. 
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APPENDIX A 
 
 

Table A1 Pump discharges at each canal for the south shore calibration event from April 4th to 
9th, 2005 

Flows (m3/s) 

Simulation 
Hour 

St. Charles 
Parish Line 
Canal 

Duncan 
Canal 

Elmwood 
Canal 

Suburban 
Canal 

Bonnabel 
Canal 

17th 
Street 
Canal 

Orleans 
Outfall 
Canal 

London 
Canal 

54.5 32 0 0 0 0 0 0 2 
55.0 32 32 0 0 0 0 0 2 
55.5 32 32 0 0 0 0 0 2 
56.0 42 32 32 0 0 0 0 2 
56.5 42 42 32 0 0 0 0 2 
57.0 42 42 32 55 8 0 0 0 
57.5 42 42 42 55 8 0 0 0 
58.0 13 42 42 55 8 31 0 31 
58.5 17 13 42 55 30 31 16 31 
59.0 17 17 42 55 30 31 44 31 
59.5 17 17 13 55 30 31 44 31 
60.0 17 17 17 55 30 31 16 31 
60.5 4 17 17 25 0 31 16 31 
61.0 0 4 17 25 8 31 16 31 
61.5 0 0 17 25 8 31 0 31 
62.0 0 0 4 25 8 31 0 31 
62.5 0 0 0 25 8 31 16 31 
63.0 0 0 0 8 0 31 0 31 
63.5 0 0 0 0 0 31 0 0 
64.0 0 0 0 0 0 31 0 0 
64.5 0 0 0 0 0 31 0 0 
65.0 0 0 0 0 0 31 0 0 
65.5 0 0 0 0 0 31 0 0 
66.0 0 0 0 0 0 31 21 0 
66.5 0 0 0 0 0 31 6 0 
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Table A2 Total coliform levels forced at each canal for the south shore calibration event from 
April 4th to 9th, 2005 

Total Coliform Levels (MPN/100 mL) 

Simulation 
Hour 

St. Charles 
Parish Line 
Canal 

Duncan 
Canal 

Elmwood 
Canal 

Suburban 
Canal 

Bonnabel 
Canal 

17th 
Street 
Canal 

Orleans 
Outfall 
Canal 

London 
Canal 

54.5 2100 0 0 0 0 0 0 4000 
55.0 55972 2100 0 0 0 0 0 4000 
55.5 62750 55972 0 0 0 0 0 4000 
56.0 80875 62750 2100 0 0 0 0 4000 
56.5 78938 80875 55972 0 0 0 0 4000 
57.0 90750 78938 62750 800 1250 0 0 0 
57.5 111313 90750 80875 160000 3667 0 0 0 
58.0 60188 111313 78938 160000 22313 5938 0 2100 
58.5 35729 60188 90750 160000 75000 7625 2100 160000
59.0 15133 35729 111313 160000 67500 9313 50000 160000
59.5 15671 15133 60188 160000 101250 11000 160000 160000
60.0 16235 15671 35729 160000 161250 12688 160000 160000
60.5 18197 16235 15133 80000 0 14375 50000 160000
61.0 0 18197 15671 80000 11125 16063 50000 160000
61.5 0 0 16235 16375 11275 17750 0 160000
62.0 0 0 18197 16250 11325 19438 0 160000
62.5 0 0 0 16125 11456 21125 50000 160000
63.0 0 0 0 16074 0 26895 0 160000
63.5 0 0 0 0 0 32665 0 0 
64.0 0 0 0 0 0 38435 0 0 
64.5 0 0 0 0 0 44205 0 0 
65.0 0 0 0 0 0 49974 0 0 
65.5 0 0 0 0 0 55744 0 0 
66.0 0 0 0 0 0 61514 2100 0 
66.5 0 0 0 0 0 67284 2100 0 
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