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ABSTRACT 

 It is estimated that less than ten percent of the world’s species have been discovered and 

described. The main reason for the slow pace of new species description is that the science of 

taxonomy, as traditionally practiced, can be very laborious: taxonomists have to manually gather 

and analyze data from large numbers of specimens and identify the smallest subset of external 

body characters that uniquely diagnoses the new species as distinct from all its known relatives. 

The pace of data gathering and analysis can be greatly increased by the information technology. 

In this paper, we propose a content-based image retrieval system for taxonomic research. The 

system can identify representative body shape characters of known species based on digitized 

landmarks and provide statistical clues for assisting taxonomists to identify new species or 

subspecies. The experiments on a taxonomic problem involving species of suckers in the genera 

Carpiodes demonstrate promising results. 

 

Keywords: Content-based image retrieval, shape analysis, feature selection, image classification, 

taxonomic research 
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INTRODUCTION 

 
The AI technology can be defined as: attempting to build artificial systems that will 

perform better on tasks that humans currently do better [1]. However, since computer is naturally 

better than people in the field of processing huge amount of data, AI is becoming more and more 

popular today and has expanded from identifying customers by their voices to automatic pattern 

classification. Successful retrieval of relevant images from large-scale image collections is one 

of the current problems to AI.  

One intuitive solution to image retrieval is text-based annotations and indexing. The 

indexing process for large image collections is time consuming. Also, text-based indexing for 

images only provides hit-or-miss type searching. If the user does not specify the right keywords, 

the desired images may be forever unreachable [2]. To overcome these disadvantages, 

researchers developed content-based image retrieval (CBIR), which is the set of techniques for 

retrieving images from an image database based on automatically-derived image features [3]. 

This technology can be used to discover unknown species – It is estimated that less than ten 

percent of the world’s species have been discovered and described. The main reason for the slow 

pace of new species description is that the science of taxonomy, as traditionally practiced, can be 

very laborious: taxonomists have to manually gather and analyze data from large numbers of 

specimens, often from broad geographic areas, and identify the smallest subset of external body 

characters that uniquely diagnoses the new species as distinct from all its known relatives. The 

pace of data gathering and analysis in taxonomy can be greatly increased by the development of 

information technology. The Internet is being used to link taxonomists, taxonomic literature and 

specimen databases in different parts of the globe, and hence enables the development of tools 
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for remote study of specimens archived as digital images. In this thesis, we propose a content-

based image retrieval system for taxonomic research. The system has a learning component that 

can identify representative body shape characters of known species based on digitized landmarks. 

The system can also provide statistical clues for assisting taxonomists to identify new species or 

subspecies. The experiments on a taxonomic problem involving species of suckers in the genera 

Carpiodes demonstrate promising results. 

The rest of this thesis is organized as follows. In Chapter 2, we introduce related work 

done within the field of image retrieval system. Chapter 3 describes the background information 

on a taxonomic problem in the fish genus Carpiodes. Chapter 4 introduces the feature extraction 

process. Chapters 5 and 6 presents a joint feature selection and classification approach for 

semantic classification based on 1-norm support vector machines (SVMs) and a similarity 

matching scheme based on the distance in the overall shape space and semantic classification. 

Three other classifiers are tested. Chapter 7 demonstrates extensive experiments on a data set of 

Carpiodes and discusses the results. Conclusions and possible future work are given in Chapter 7. 

 

Keywords 

Content-based image retrieval, shape analysis, feature selection, image classification, taxonomic 

research 
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Related Work 

Image retrieval algorithms roughly fall to two categories, depending on the query format: 

text-based approaches and content-based methods. The analysis of user needs in the photo 

archives embracing a variety of subject areas (e.g. museums, advertising mass communications) 

suggests that text-based methods will remain the basic access method in the foreseeable future 

[4]. The text-based approaches are based on the idea of storing a keyword, a set of keywords, or 

a textual description of the image content, created and entered by a human annotator, in addition 

to a pointer to the location of the raw image data. Image retrieval is then shifted to standard 

database management capabilities combined with information retrieval techniques. As pointed 

out by Svenonius [27] and Enser [28], text-based retrieval of images is a vicarious access method, 

while visual access methods have a high potential to enhance retrieval capabilities.  

The main goal of CBIR is to let the computer identify the descriptions of images: high 

level concept such as sunset, human or mountain. It leads to a problem: how can the computer 

link the nature of digital images, arrays of numbers, to the semantic words? Currently, CBIR 

assumes that semantically relevant images have similar visual features, and uses these features, 

such as color, texture, and shape to store, identify and search images. This method retrieves 

images based on information automatically extracted from pixels. Initially, researchers focused 

on querying by image example, where a query image or sketch is given as input by a user [8, 17, 

23, 6, 10, 15, 16, 5, 9, 3, 4, 14]. Later systems incorporated feedback from users in an iterative 

refinement process [25, 30, 7]. From a computational perspective, a typical CBIR system views 

the query image and images in the database (i.e., target images) as a collection of features. It 

ranks the relevance between the query and any target image in proportion to a similarity measure 

calculated from the features. In this sense, these features, or signatures of images, characterize 
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the content of images. And the similarity measure quantifies the resemblance in content features 

between a pair of images [21].  

This “bridging the semantic gap” (Zhao & Grosky, 2001) problem is considered one of the 

greatest challenges to computer vision scientists. Years of experience in the world gives human 

beings the ability to distinguish objects -- people exam a picture from several aspects to decide 

what it is. A number of general purpose image retrieval engines have been developed, people 

still know little about how to effectively and efficiently select and use primitive features to 

identify general images. For instance, figure 1 shows that “beach” and “dessert” are viewed 

similar by a CBIR system. 

 

  

            (a)                                      (b) 

Figure1. Both (a) and (b) are formed by yellow (brown) region and blue region, which makes 

them similar to the CBIR system, while actually (a) is beach and (b) is dessert. 

In the commercial domain, IBM QBIC [5] is one of the earliest systems. Recently, 

additional systems have been developed at IBM T.J. Watson [10], VIRAGE [11], NEC AMORA 

[13], Bell Laboratory [14], and Interpix. In the academic domain, MIT Photobook [15], [17], [12] 

is one of the earliest. Berkeley Blobworld [16], Columbia VisualSEEK and WebSEEK [21], 

CMU Informedia [23], UCSB NeTra [11], UCSD [18], University of Maryland [21], Stanford 

EMD [22], and Stanford WBIIS [23] are some of the recent CBIR systems.  
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Figure 2: The structure of the CBIR system 

However, CBIR is a good solution to specific kind of images, such as medical diagnostics 

and fingerprints. Even this kind of pictures is “worse” than ordinary real-life pictures, such as 

they often look the same from each others to untrained eyes, this restriction still can effectively 

make the algorithm better because: 

1. Color is not as important. The color feature can either be treated as discrete values or 

colored regions. As shown in Figure1, it is clear that the color feature confuses the 

CBIR – if it is understood as discrete values, brown and yellow sand would be identified 

different; if it is understood as regions, blue sky and blue water would be identified the 

same. 

2. Structure of the image is one of the most important features, which makes it possible to 

define the features by geometrical functions.  

3. The amount of image semantic contents is limited. Figure 3 shows an example of 

finger ridges. Representations predominantly based on ridge endings or bifurcations 

[31]. Except really special cases, these two classes can represent all kinds of finger 

ridges. 
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Figure 3: Ridge ending and ridge bifurcation. 

A query can be made by an example image and applying partial-match methods to rank retrieved 

photos into some calculated similarity order.  

So far, CBIR system has been widely utilized in the field of digital forensics, but few 

works have been done to apply it to taxonomic research. We know that approximately 1.4 

million species are known to science. However, estimates based on the rate of new species 

discovery place the total number of species on earth about 10- 30 times of this number. Most 

unrecognized species are in poorly studied groups (e.g., insects) occurring in unexplored habitats 

(e.g., remote tropical forests). However, a surprising number of new species are still being 

discovered in developed countries with long histories of taxonomic research. Human population 

expansion and habitat destruction are causing extinctions of both known and yet to be discovered 

species. The accelerated pace of species decline has fueled the current biodiversity crisis [18], in 

which it is feared that many of the earth’s species will be lost before they can be discovered and 

described. 

 The thesis proposed a CBIR system that can be used to assist taxonomists in discovering 

new fish species. 
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Background Knowledge 

1. Dataset 

The image database used in this thesis comprises digital photographs of suckers of genus 

Carpiodes. However, our approach can be applied to any fish populations. The genus Carpiodes, 

as currently recognized, comprises three widely distributed species: the river carp-sucker 

Carpiodes carpio (C. carpio); the quillback Carpiodes cyprinus (C. cyprinus), and the highfin 

carp-sucker Carpiodes velifer (C. velifer). Figure 4 shows representative images of specimens of 

the three species. Most taxonomists regard each of these species as a complex of multiple 

biological species in need of revision [24]. The goal of the taxonomic revision in this case is 

to identify and formally describe the unrecognized species. 

 

 

Figure 4: Images of specimens from three species of the genus Carpiodes: C. Carpio, C. 

cyprinus, and C. velifer. 
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2. Geometric Morphometrics 

Over the past decade, geometric morphometric techniques have been developed for 

analyzing variation in body shape using a collection of coordinates of biologically definable, 

homologous landmarks along the body outline [1]. Figure 5 shows 15 homologous landmarks 

digitized on a specimen using the TpsDIG software tool developed by F. James Rohlf of SUNY 

Stony Brook2. The analysis methods accompanying the software focus on the landmark 

coordinates and geometric information about their relative positions. Through the alignment of 

landmarks and statistical analysis of the derived shape variables, groups of specimens may be 

identified as distinct in overall shape space. Unfortunately, the current geometric morphometric 

methods have two major limitations that hinder successful applications in taxonomic revision 

tasks: 

• Groups of specimens are distinguished from other populations based on a small set of 

derived variables, which are usually functions (in their simplest form, linear 

combinations) of all shape variables. As such, derived variables are difficult to 

interpret in terms of particular body characters that taxonomists commonly use in 

diagnosing new species. 

 

• Shape variation of specimens from closely related species or subspecies may not be 

discernible in overall shape space. Therefore, current geometric morphometric methods 

may generate misleading results (see the example to be presented next).  
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Figure 5: Plot of 650 Carpiodes specimens representing three distinct morphotypes on the first 

two canonical variate axes based on derived shape variables from geometric morphometric 

analysis of landmark data. 

Over the years since [24] was published, Dr. Bart has examined shape and DNA 

sequence variation in all Carpiodes populations. Figure 5 shows the results of an analysis of 

overall body shape based on a geometric morphometric technique using canonical variate 

analysis (CVA). CVA grouped specimens from the Rio Grande (squares), upper Colorado River 

(stars), and other western Gulf Slope rivers with C. carpio specimens (circles) from the 

Mississippi River Basin. However, a surprising finding from the DNAsequence analysis was that 

the forms in Rio Grande and upper Colorado River system of Texas do not agree at all with C. 

carpio. Rather, they are closely related to C. cyprinus, which was not known to occur on the 

western Gulf Slope. Careful inspection of Carpiodes specimens in the Rio Grande and upper 

Colorado River system reveals that they lack the protuberance (“nipple”) on the lower lip, which 
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is diagnostic of C. carpio and C. velifer. They also have a relatively large head and a long snout, 

characters seen only in C. cyprinus. However, specimens from these populations also have an 

elongate and slender body, and it is these characters that cause them to be erroneously classified 

as C. carpio based on overall body shape analysis. It took Dr. Bart three years of careful study of 

over 1000 Carpiodes specimens to determine that Rio Grande and upper Colorado River 

populations were misdiagnosed as C. carpio, and instead represented a new species related to C. 

cyprinus. The question this thesis addresses next is: Can CBIR based on shape features be 

applied in a way that diagnoses taxonomic groups in genus Carpiodes more quickly and 

accurately?  
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The CBIR System 

1. An Overview of Our System 

The nature of taxonomic research brings the following requirements to the design of an 

image retrieval system:  

• Text query: Images of specimens from a natural history museum (i.e., the image 

database) almost always have textual annotations, e.g., location and date of capture, size 

of specimen, species, etc. Therefore, the image retrieval system should support text-

based searches.  

• Query by example: A typical usage scenario of the system is to find specimens in the 

database that are “semantically similar” to the query specimen based on the query image. 

This is clearly a query by example situation. From a taxonomic research point of view, 

the image semantics is defined as groupings of related specimens at different 

hierarchical levels, which, in the science of taxonomy, are referred to as taxa of varying 

rank, i.e., families, genera, species complexes, species, and subspecies.  

• Learning component: For the query by example process, the system needs certain 

mechanisms to associate feature similarity with semantic similarity, i.e., bridging the 

semantic gap. One possible way is to include a learning component capable of 

identifying the feature characters that unite populations within each semantic class as 

well as distinguishing among semantic classes.  

 

In this thesis, we focus on the CBIR part of the system. Specifically, we propose a 

computational framework for categorizing semantic classes of populations based on body shape 

features, and retrieving images of specimens accordingly. The proposed framework can benefit 
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the taxonomic research in the following ways:  

• It provides taxonomists a tool of efficient searching, browsing, and retrieving images of 

specimens archived in natural history museums at distant locations.  

• It automatically identifies an “optimal” set of body characters that unites populations 

within species, as well as distinguishes among species. Hence it can provide statistical 

clues in assisting the discovery of new species or subspecies.  

As shown in Figure 6, the system has three major components: Feature Extraction, 

Semantic Classification, and Similarity Measure.  

 

 

 

Figure 6: CBIR Data Flow Diagram. 

 

Training 
Data
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Extraction 

Similarity 
Measure 

Visualization 
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Figure 7: CBIR can be trained by the user 

Most learning algorithms should be able to be taught by the user. The CBIR calculates 

the similarity between the query image and images in its database, returns the neighbors by the 

order of their distances. As shown in figure 7, if the system is given the result 1,2,3,4 and the 

user knows that the current answer should be 1,3,2,4, he can tell this to the learning algorithm, 

which would learn this issue and rebuild the classifiers. However, this function has not been 

realized in our system since a species is just a species. It does not make sense to say that one 

velifer is closer to the query velifer than another velifer. 

 

 

 

 

CBIR System 

Feedback
Query 
Image 
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2. Feature Extraction 

 

 

Figure 6: Digitized 15 homologous landmarks using TpsDIG Version 1.4 (2004 by F. James 

Rohlf ). 

We focus on the digitized images of specimens with landmarks specified as in Figure 3. 

Let LMj, j = 1, · · · , 15, be the coordinates of landmarks on a specimen. We used the technique of 

Generalized Procrustes Analysis [12] to remove non-shape related variation in landmark 

coordinates. Specifically, the centroid of each configuration (based on the 15 landmarks 

associated with each specimen) was translated to the origin, and configurations were scaled to a 

common unit size. We computed 12 features, x1, · · · , x12, for each specimen using the 15 

landmarks. These features correspond to different shape characters that taxonomists use to 

describe species. The description of each feature is given in Table 1. These features are divided 

into two groups:  
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• x1–x7: They describe shape characters that can be easily identified visually, for example, 

the size of head, the length of body, the distance between the tip of the snout and the 

nostril, the size of head in proportion of body size, etc.  

• x8–x12: They can be easily evaluated from the landmark coordinates, but may not have a 

straightforward visual interpretation. These are the features that a domain expert may 

not identify easily, but are candidates of good indicators. 

 

All 12 features were normalized across the specimens via translation and scaling. 

Table 1: Features describing shape characters. Non-shape related variation has been removed 

from LMi, the landmark coordinates. 

x1 The distance between the tip of the snout and the naris, computed as the distance 

between LM1 and LM2. 

x2 The slope of the line connecting the tip of the snout and the naris, computed as the 

angle between the vertical axis and the line connecting LM1 and LM2. 

x3 The distance between the naris and the back of the mouth, computed as the distance 

between LM2 and LM14. 

x4 The slope of the line connecting the naris and the back of the mouth, computed as the 

angle between the vertical axis and the line connecting LM2 and LM14.  

x5 The size of head in proportion of the size of the body, computed as the area of the 

head polygon (vertices defined in sequence by LM1, LM2, LM3, LM13, LM12, and 

LM14) divided by the area of the body polygon (vertices defined in sequence by LM3, 

LM4, LM5, LM6, LM7, LM8, LM9, LM10, LM11, LM12, and LM13) 

x6 The length of the head in proportion of the length of the body, computed as the 
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distance between LM1 and LM13 divided by the distance between LM13 and LM7. 

x7 The distance between LM7 and LM8.  

x8 The sum of the distance between LM3 and LM13, the distance between LM12 and 

LM13, and the distance between LM1 and LM13 divided by the distance between 

LM13 and LM7.  

x9 The distance between the naris and the tip of the snout in proportion to the distance 

between the naris and the eye, computed as the distance between LM1 and LM2 

divided by the distance between LM2 and LM15  

x10 The distance between LM4 and LM11 divided by the distance between LM13 and 

LM7.  

x11 The distance between LM3 and LM4 divided by the distance between LM13 and LM7. 

x12 The angle between the vertical axis and the line connecting LM10 and LM5.  

Table 1, cont. 
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Semantic Classification  

1. Binary Classifiers 

Semantic classification in our CBIR system targets the following taxonomic problem: 

given a collection of labeled specimens ( sxi ' ) represented in a feature space, identify features 

and construct classifiers based on the selected features to distinguish among the known 

categories (or species). This problem is closely related to taxonomic revision: if the classifiers 

indeed capture the shape properties describing the known species, the classifiers will be helpful 

in discovering new species whenever there is shape variation between the new species and all the 

known species. For example, if the classifiers assign a group of unlabeled specimens, which are 

believed to be taken from the same (but unknown) species, to several known species without a 

strong preference on a particular species, it is likely that the unlabeled specimens belong to a 

new species in need of description.  

The classification of ix is clearly a multi-class problem. We propose to use a tree 

structure to organize binary classifiers into a multi-class classifier. For example, Figure 8 shows 

a hierarchical classifier consisting of two binary classifiers for the identification of all three 

known species in Carpiodes genus. Finding an “optimal” structure is an interesting research 

topic for its own sake, but is beyond the scope of this thesis. Here we assume the structure is 

determined beforehand.  

For a given collection of samples ix  with the corresponding labels }1,1{−∈iy , designing 

a binary classifier can be solved by any conventional supervised learning algorithm. However, 

we argue that feature selection is indispensable in our system for the following reasons. From a 

taxonomic viewpoint, it is desirable to use a small number of body shape characters to uniquely  
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Figure 8: A hierarchical classifier for Carpiodes genus. 

diagnose a species as distinct from its known relatives. The feature selection procedure can 

identify those “most” diagnostic features (in this case, body shape characters). From a machine 

learning viewpoint, constraining the number of selected features is an effective way to avoid 

overfitting. The experimental results in the following section also demonstrate the efficacy of 

feature selection in avoiding potential overfitting. 

2. Feature subset Selection 

Feature subset selection is a well-researched topic in the areas of statistics, machine 

learning, and pattern recognition [13, 28]. Existing selection approaches generally fall into two 

categories: filter and wrapper [13, 28]. Some filter methods such as ranking through correlation 

coefficients or through Fisher scores tend to select inter-correlated features and does not 

guarantee an acquisition of a good classifier. On the contrary, wrappers include the desired 

classifier as a part of their performance evaluation, which is a joint feature selection and 

Classifier 1 

C.velifer 

C.cyprinus

Classifier 2 

C. carpio 
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classification approach. They tend to produce better generalization but may require expensive 

computational cost. 

2.1 Introduction to Supervised Learning and SVM Algorithm 

Supervised learning is a machine learning technique for creating a function from training 

data (from Wikipedia.org). The training data consist of vectors (data) and class labels. The 

function predicts the value of any valid input object after having learned a number of training 

examples. It is a global model that maps input objects to desired outputs. 

A support vector machine is a supervised learning algorithm developed over the past 

decade by Vapnik and others (Vapnik, Statistical Learning Theory, 1998). SVM algorithm 

addresses the general problem of learning to discriminate between positive and negative 

members of a given class of n-dimensional vectors [33].  

The main idea of this algorithm is to do classification by building a hyperplane in the 

NR space and checking at which side the vector (sample) stays.  It can be described as finding a 

hyperplane at that space separating the positive from the negative samples. As shown in figure 9, 

there may be many separating planes. The statistical learning theory suggests that, for some 

classes of well-behaved data, the choice of the maximum margin hyperplane tends to lead to 

good generalization when predicting the classification of previously unseen examples (Vapnik, 

Statistical Learning Theory, 1998). Sometimes, there is no separating hyperplane, which makes 

the “maximum margin” algorithm unusable. Corinna Cortes and Vapnik suggested a modified 

idea that allows for mislabeled examples in 1995, which is called soft margin.  

-- The margin is understood as the distance from the plane to both classes’ closest data points. 

These closest data points are called support vectors. 
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Figure 9: the SVM chooses the plane that maintains a maximum margin from any point in the 

training set 

This operation may be described by decision function )( bxwsigny T += , where w is the 

vector orthogonal to hyperplane, b is the distance from hyperplane to the origin.  In figure 9, 

hyperplane A (B) is 1−=+ bxwT ( 1=+ bxwT ). SVM calculates (w,b) from the training data to 

achieve the maximum margin w/2  and would like there is no data points between A and B – no 

data points between A and B means 1)( ≥+ bxwy T .  

Unfortunately, it might be impossible to find a linear solution in the original input space. 

The SVM algorithm then uses kernel functions to map the data points to a higher-dimensional 

space and find a hyperplane there. Intuitively we can image this transformation would bring 

more candidate-hyperplanes, which means higher overfitting risk, but the “maximum margin” 

would overcome this problem.  

  

Maximum 
Margin 

A 

B 
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Figure 10: SVM maps the data points to a higher-dimensional feature space 

The relationship between the kernel function K and the mapping 

(.)φ is >=< )(),(),( yxyxK φφ . Intuitively, K(x,y) represents the similarity between x and y. The 

great thing here is that we can directly compute K(x,y) without going through the map )(xφ , 

while the only requirement of this trick is that there is a )(xφ  to this kernel.   

In many real-world problems such as our CBIR system, the number of negative (positive) 

samples is much larger than the number of positive (negative) samples, which would over-train 

the classifier – the classifier would treat the weaker class as noise. In our system, we give 

different weights to the training data and test data. Also, since our system is a multi-class case 

and SVM can only handle one-on-one problem, we use a “one against others” structure as it is 

shown figure 8.  

2.2 SVM Classifier 

The proposed approach is a wrapper model based on 1-norm SVM. Consider the problem 

of finding a linear classifier  

)( bxwsigny T +=  

where w and b are model parameters. The SVM approach constructs classifiers based on 

hyperplanes by minimizing a regularized training error errorR +⋅][λ , where ][⋅R  is a 
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regularization operator, λ  is called the regularization parameter, and error is commonly defined 

through a hinge loss function 

}0),(1max{ bxwy T +−=ε  

When an optimal solution w is obtained, the magnitude of its component kw indicates the 

significance of the effect of the k-th feature on the classifier. Those features corresponding to a 

non-zero wk are selected and used in the classifier.  

The regularization operator in standard SVMs is the 2-norm of the weight vector w, 

which formulates SVMs as quadratic programs (QP). Solving QPs is typically computationally 

more expensive than solving linear programs (LPs). SVMs can be transformed into LPs as in 

[31]. This is achieved by regularizing with a sparse-favoring norm, i.e., the 1-norm of w,  

∑= k kww
1

 

Thus 1-norm SVM is also referred to as sparse SVM and has been similarly applied to other 

practical problems such as drug discovery in [2].  

Many practical problems in image classification relate to imbalances in samples, i.e., the 

number of negative samples is much larger than the number of positive samples. To tackle this 

imbalanced issue and make classifiers biased towards the minority class, we penalize differently 

on errors produced respectively by positive samples and by negative ones.  

Rewrite kkk vuw −=  where 0, ≥kk vu . If either ku or kv  has to equal to 0, then kkk vuw += . 

The LP is formulated in variable },,,,{ ηενµθ b=  as 
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where +
ix  and −

jx  denote a positive sample and a negative sample, respectively, ε  and η  are 

hinge losses, 0 <u < 1 is a constant penalizing the errors from positive and negative samples, 

)( −+ ll  is the number of positive (negative) samples. 
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Similarity Matching 

The image similarity measure consists of two parts. The first part corresponds to the 

semantic similarity, which is determined by semantic classifier in previous section. If two 

specimens belong to the same semantic class, their similarity is the maximum, otherwise the 

similarity is zero. Specifically, the semantic similarity between two specimens ix  and jx  is 

defined as  

⎩
⎨
⎧

=
otherwise

classsametheinarexandx
xxs ji

ji 0

1
),(1  

 

The second part reflects the overall shape similarity, and is defined as 

2

2

),(2
δ

ji xx

ji exxs
−

−
=  

where σ2 is chosen to be the sample variance of the overall shape distance. Note that ji xx −  is 

the distance in the shape space, hence describes the overall shape difference between two 

specimens. The similarity measure is then defined as a convex combination of semantic 

similarity and overall shape similarity: 

),()1(),(),( 21 jijiji xxsxxsxxs ⋅−+⋅= αα  

where ]1,0[∈α  is a parameter specified by a user. In general, a small distance in overall shape 

does not necessarily imply semantic similarity because the semantic classification is based on a 

small number of selected shape characters rather than the overall shape. The above definition 

gives a user freedom in retrieval. If α  is selected to be large (close to 1), the CBIR system will 
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mainly return images that are semantically similar to the query, i.e., specimens in the same group. 

If the user is looking for specimens similar in overall shape, α should be set small (close to 0). 
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Experimental Results 

We test the proposed CBIR system on the specimens from the three Carpiodes 

morphotypes: C. carpio, C. cyprinus, and C. velifer. The current database contains only 600 

images of Carpiodes specimens. However, the proposed computational framework can be 

applied to any number of images at any level of fish taxonomy. We are working to expand the 

database by including images of specimens of a related group of suckers in the genus Ictiobus. 

Our experiment consists of two steps:  

• Demonstrating the efficacy of semantic classification by identifying features (or body 

characters) for distinguishing among the three Carpiodes morphotypes; 

• Applying the system to a taxonomic revision problem involving populations from 

Colorado River in Texas and Rio Grande and comparing the results with those based 

on the DNA analysis. 

 

1. Experiment based on known fish  

The images within each class are randomly divided into a training set and a test set of 

equal size. The hierarchical classifier first separates C. velifer-like specimens from specimens of 

other species. It then distinguishes C. carpio from C. cyprinus. 

We apply the 1-norm SVM to select features and build classifiers simultaneously. The 

binary classifiers are organized as in Figure 7. Two parameters,λ and µ , need to be specified for 

1-norm SVM. We setµ  to be the percentage of negative training samples to balance the training 

errors on positive and negative samples. The regularization parameter λ  is selected such that at 

most three features are selected. This is based upon the fact that taxonomists rarely use more 

than three body shape characters to describe the difference among closely related species or 
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subspecies.  

If the query image is in the training database, the system gives the results by 

calculating ),()1(),(),( 21 jijiji xxsxxsxxs ⋅−+⋅= αα , where ),(1 ji xxs equals 0 or 1. 

If the query image is not in the training database, ),(1 ji xxs has to be calculated 

by )( bxwsigny T += . 

            Our proposed algorithm is a wrapper, i.e., the feature selection step is combined with the 

classifier. 
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A suitable regularization operator that penalizes large variations of w can reduce 

overfitting. In the linear problem above, it makes some of ]12,1[,0 ∈= kwk  to do the feature 

selection, and it is intuitive that the larger theλ , the fewer features would be selected. There is 

no particular way to calculate theλ , we have to try several values to achieve our goals (to select 

a certain number of features). 

The error rate is defined as the number of misclassified samples over the total number of 

samples.  
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Performance based on 2 features: 

Table 2: Results from Semantic Classifier based on 2 features 

Class Selected Features  Training Error Test Error 

C.velifer / the rest 1110 , xx  10% 11.7% 

C.carpio / C.cyprinus 74 , xx  12.9% 13.9% 

 

From the results above, we can see that different classifiers need different features (since 

we are using a wrapper). The best sub-feature space for distinguishing C.velifer and the rest is 

1110 , xx , and the best sub-feature space for distinguishing C.carpio and C.cyprinus is  74 , xx . 

Performance based on 3 features: 

Table3. Results from Semantic Classifier based on 3 features   

Class Selected Features  Training Error Test Error 

C.velifer / the rest 41110 ,, xxx  10.2% 11.8% 

C.carpio / C.cyprinus 374 ,, xxx  13.1 % 14% 

We observe that the performance based on three selected features is similar to that based 

on two selected features. Moreover, we should notice that one more feature does not mean lower 

error rates – it may result in larger errors. 

Performance based on all features: 

Table4. Results from Semantic Classifier based on 12 features 

Class Selected Features  Training Error Test Error 

C.velifer / the rest All 12 features 9.1% (Linear) 9.5% 

C.carpio / C.cyprinus All 12 features 16.9% (Gaussian)  17.5% 
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C.velifer / the rest All 12 features 8.9% (Linear) 9.8% 

C.carpio / C.cyprinus All 12 features 16.5% (Gaussian) 17.3% 

Table 4, cont. 

From the results above, we can see that all 12 features lead to better performance to 

distinguish C.velifer and the rest, but worse performance to distinguish C.carpio and C.cyprinus.  

From the results above, we can say that using 12 features cannot guarantee the best result. 

However, this conclusion is incomplete since we have not use the classifiers to test suspicious 

examples (may be C.velifer, C.carpio, C.cyprinus or other species).  

 

2. Experiment with suspicious fish 

Test our CBIR system based on 53 specimens from upper Colorado River in Texas and 

the Rio Grande. They were traditionally recognized as C. carpio, yet recent DNA evidence 

suggests that both populations are more closely related to C. cyprinus. So we view these 53 

specimens as “suspicious” populations. Each “suspicious” specimen is submitted to the system 

as a query image. The predicted class label of the query is determined by the majority class 

among the top k retrieved images (specimens). We observed that the results are robust for k 

varying from 10 to 60. So we pick k = 20. We first set the parameter α in the similarity measure 

(1) 0.1. This corresponds to retrieving specimens that are similar to the query based on the 

overall shape. It turns out that 52 out of the 53 suspicious specimens are recognized as C. carpio, 

and only 1 specimen is identified as C. cyprinus. In other words, the overall shape suggests that 

the “suspicious” specimens should be classified as C. carpio. Next, we increase α to 0.9, i.e., the 

decision is based mainly on the semantic classifiers. In this case, 23 “suspicious” specimens are 

classified as C. carpio, while the remaining 30 specimens are classified as C. cyprinus. We get 
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identical results for α = 1.0. Although the hierarchical classifier can distinguish the three species 

with reasonable accuracy using only four body shape characters, it has difficulty categorizing the 

specimens from Colorado River in Texas and Rio Grande as either C. carpio or C. cyprinus; 

43.4% of the “suspicious” specimens are assigned to C. carpio, and 56.6% to C. cyprinus. At the 

same time, the retrieved images based on overall shape identify 52 out of 53 specimens as C. 

carpio. These contradictory results can be viewed as an indication that the suspicious specimens 

represent a new species. It is very interesting that overall shape analysis and the DNA analysis 

give similar results: the suspicious specimens are more similar to C. carpio than to C. cyprinus in 

terms of the overall shape, yet they are genetically closer to C. cyprinus. Note that our CBIR 

system can easily obtain a similar conclusion by adjusting the value of parameter α. 

3. Experiment with Suspicious Fish using Other Pattern Classification Techniques 

These techniques are different from the algorithm introduced above. They simply build 

classifiers that identify all 3 classes simultaneously. We use these classifiers to identify the 

suspicious images and evaluate the results. Among the suspicious samples, if 

1. None of these percentage values are much larger than the other two or two of them are 

much larger than the other one. Since we know these suspicious samples are from one 

class, we can make a decision that these fish are not from C.velifer, C.carpio or 

C.cyprinus. They are from a new species.  

2. One of them is much larger than the other two. Since we know these suspicious 

samples are from one class, we can know these fish are from the class with the largest 

percentage value. 

3. Two of these percentage values are larger but not much larger than the other two (e.g. 

45%, 45%, 10%). We know they are from a new species. 
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3.1 Linear Regression of an Indicator Matrix 

Under the assumption that the decision boundaries are linear, we can consider the 

probability of an input x of being classified into class m as xxf T
mmm ββ += 0.)( . X would be 

labeled as class m if dixfxf im ,...,1),()( => , where d is the number of classes. For every two 

classes, there is a separating hyperplane in the input space. 

 The basic idea of is “Linear Regression of an Indicator Matrix” is to code each response 

category via an indicator variable. For example, if we have 4 training examples belongs to class 

1, 2, 3, 4, the indicator matrix is  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

Y , then xxf T
mmm ββ += 0.)( can be rewritten as m

T
m xxf β],1[)( = , 

where m
TT

m yXXX 1)( −=β . 

Since )|1Pr(0*)|0Pr(1*)|1Pr()|( xXYxXYxXYxXYE kkkk =====+==== , we can 

simply compute BxT ],1[ , where YXXXB TT 1)( −= . The result is a row vector of d elements and 

the largest one represents the class on which x lies.   

Since the problem is to identify the suspicious images, we use all known images as the 

training data and the 53 fish as the test data. Since “Linear Regression of an Indicator Matrix” is 

also a linear classifier, we used the features selected for the semantic classifier. Note that these 

sub-features may not be the optimal one, but it is a workable one since it is selected linearly. The 

results from Linear Regression of an Indicator Matrix are listed below. 

Table5. Results from Linear Regression of an Indicator Matrix 

Selected Features  How many [C.carpio, How many Test data’s 
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C.cyprinus, C.velifer] 

were misclassified to 

other species. 

suspicious fish were 

classified to  

[C.carpio, 

C.cyprinus, C.velifer]

percentage-values of 

[C.carpio, 

C.cyprinus, C.velifer]

All 12 features [20.31%, 1.68%, 

2.32%] 

[50, 3, 0] [94.34%, 5.66%, 0] 

74 , xx  [99.22%, 2.02%, 

15.12%] 

[0, 47, 6] [0, 88.68%, 11.32%] 

1110 , xx  [72.66%, 13.13%, 

12.21%] 

[44, 9, 0] [0, 83.02%, 16.98%] 

111074 ,,, xxxx  [28.90%, 3.37%, 

5.23%] 

[45, 8, 0] [0, 84.91%, 15.09%] 

Table 5, cont. 

From this table, we can observe:  

1. Using 12 features, the classifier is not good at identifying C. carpio and identifies the 53 fish 

as C.carpio..  

2. The classifier gives totally different result with different feature selection. 

Given the result that the suspicious fish are from a new species, we know that Linear 

Regression of an Indicator Matrix cannot solve the problem correctly.  

 

3.2 Linear Discriminant Analysis (LDA) 

Since
∑
=

=

kg

gxpgp
gxpgpxgp

,...1

)|()(
)|()()|( , under the assumption that the class conditional 
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distributions are Gaussian densities
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classes is a hyperplane. These linear discriminant functions 
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Since the problem is to identify the suspicious images, we use all known images as the 

training data and the 53 fish as the test data. Since this classifier is not time-consuming, we tried 

all combinations of any 2 features to achieve the best result. The results from Linear Regression 

of an Indicator Matrix are listed below. 

Table6. Results from LDA 

Class Selected Features Training Error Test Error Suspicious Fish 

C.velifer / the rest 210 , xx  6.0% 8.6% 0 velifer 

C.carpio / C.cyprinus 71 , xx  10.3% 20.1% 21 Cyprinus, 31 Carpios

C.velifer / the rest All 12 features  5.1% 8.0% 0 velifer 

C.carpio / C.cyprinus All 12 features 10.2% 20.1% 52 Carpios, 1 Cyprinus 
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Same as the semantic classification, the classifier identifies the suspicious fish as a new species if 

we select features. With all 12 features, the LDA classifies most of the samples to carpio. 

Furthermore, as we tried different training/test bipartitions, the LDA selected different sub-

features to achieve the best result. We observe that feature 10 will always be used to distinguish 

velifer/ the rest and feature 7 will always be used to distinguish carpio/cyprinbus. 

 

3.3 Boosting 

Boosting was formulated based on an interesting result from machine learning: learners, 

each performing only slightly better than random guess (“week learners”), can be combined to 

form an arbitrary “strong” classifier. 

The AdaBoost algorithm is: 

Given training data ),(),...,,( 11 mm yxyx where }1,1{, −∈∈ ii yXx . Initialize miD /1)(1 = , 

For t=1,…,T 

1. Train weak learner h1:X->{1,-1} using distribution Dt. 

2. Compute error ∑
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, where Zt is a normalization factor (chosen so 

that Dt+1 will be a distribution). 

This algorithm would build a final classifier: ))(()(
1
∑
=

=
T

t
tt xhsignxH α  The distribution (or 

weights) of the training data in round t is given by Dt. tα  is the weight for weak learner ht. From 



 35

step 3, we can observe that a smaller error corresponds to a larger tα , which means a stronger 

weaker classifier is “heavier” in the final decision. Also, in each round, step 4, the sample 

distribution is also updated. The weights for all misclassified samples are increase, while the 

weights for the rest samples are reduced. Intuitively, the misclassified samples will receive 

higher attention in the next learning iteration. 

This algorithm will generate 3 relatively good classifiers from the weak LDA classifier. 

Each classifier can only recognize one class (one against others). 

The first one is to distinguish C.carpio / the rest 

Table7. Boosting Classifier to classify C.carpio / the rest 

Selected Features  Training Error  

[t=1,…,t=10] (%) 

Test Data   

(with best T) 

[C. carpio, the rest] 

Percentage-values of 

[C.carpio, the rest] 

All 12 features [14.91, 7.70, 5.86, 

6.03, 6.36, 6.19, 6.03, 

6.19, 6.19, 6.19] 

[53, 0] [100%, 0] 

71 , xx  [21.44, 20.26, 11.39, 

11.39, 9.38, 9.04, 

9.21, 9.04, 9.04, 

9.04] 

[26,27] [49.06%, 50.94%] 

210 , xx  [17.42, 10.05, 10.72, 

9.55, 8.37, 8.04, 8.04, 

8.04, 8.04, 8.04] 

[0,53] [0, 100%] 
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Following is the classifier 2, which identifies C.cyprinus / the rest. 

Table8. Boosting Classifier to classify C.cyprinus / the rest 

Selected Features  Training Error  

[t=1,…,t=10] (%) 

Test Data   

(with best T) 

[C. carpio, the rest] 

Percentage-values of 

[C.carpio, the rest] 

All 12 features [2.68, 1.67, 1.34, 

1.17, 1.17, 1.17, 1.34, 

1.34, 1.34, 1.34] 

[41, 12] [77.36%, 22.64%] 

71, xx  [7.53, 6.70, 6.53, 

6.03, 6.03, 6.19, 6.19, 

6.19, 6.19, 6.19] 

[25, 28] [47.17%, 52.83%] 

210 , xx  [25.29, 25.46, 25.12, 

24.28, 2.84, 2.84, 

2.84, 2.84, 2.84, 

2.84] 

[25, 28] [47.17%, 52.83%] 

 

Following is the classifier 2, which identifies C.cyprinus / the rest. 

Table9. Boosting Classifier to classify C.velifer / the rest 

Selected Features  Training Error  

[t=1,…,t=10] (%) 

Test Data   

(with best T) 

[C. velifer, the rest] 

Percentage-values of 

[C.carpio, the rest] 

All 12 features [3.01, 3.01, 4.69, 

4.69, 4.69, 4.69, 4.35, 

[0, 53] [0, 100%] 
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4.18, 4.18, 3.85] 

71 , xx  [28.98, 25.63, 22.45, 

16.75, 17.76, 17.92, 

17.76, 17.76, 17.76, 

17.59] 

[30, 23] [56.60%, 43.40%] 

210 , xx  [12.73, 13.40, 11.55, 

11.72, 11.56, 11.39, 

11.39, 11.39, 11.39, 

11.39] 

[0, 53] [0, 100%] 

Table 9, cont. 

The classifiers achieved totally different results with different feature selections. 

However, since the features we used are from a wrapper feature selection algorithm, the result 

with 12 features is more reliable. From classifier C.carpio / the rest, we know that 100% 

suspicious fish are from C.carpio. From classifier C.cyprinus / the rest, we know that 77.36% 

suspicious fish are from C.cyprinus. From classifier C.velifer / the rest, we know that none of the 

suspicious fish are from C.velifer. The contradictory from the first 2 classifiers and classifier 3’s 

result both show that these fish are from a new species. 
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System Interface and Conclusion 

1. System Interface 

The system has a simple CGI-based query interface. Users can either enter the ID of an 

image as the query or submit any image (along with a file containing the landmarks) via the 

Internet. Figure 6 shows the 25 thumbnails returned by the system where the query image (C. 

Cyprinus) is on the top left. The parameter α in (1) was chosen to be 0.8. Below each thumbnail 

are image ID and the name of its taxonomic category. Users can start a new query search by 

submitting a new image ID or image files. 

 

Figure 18: The interface of the CBIR system 

2. Conclusion of the Feature Selection 

For the SVM based algorithm, we did experiments to see whether feature selection is 

indispensable in semantic classification. The semantic classification results are in the previous 
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section. We tested two classifiers, namely, linear SVM and SVM with Gaussian kernel. All the 

classifiers were constructed using half of the 600 specimens and tested over the remaining 300 

specimens. The 12-feature classifiers generate significantly different predictions on the 53 

“suspicious” specimens from the selected-feature classifiers. Both classifiers assign the majority 

of the 53 specimens to C. carpio, which contradicts the results generated by 1-norm SVM. An 

interesting question arises: which results should we trust, those based on the selected features or 

those using all the features? We argue that feature selection is indispensable for the following 

reasons: 

• From a taxonomic viewpoint, it is desirable to use a small number of body shape 

characters to describe a species as distinct from its known relatives. The feature 

selection procedure can identify those “most” diagnostic features (or body shape 

characters). 

• From a machine learning viewpoint, constraining the number of selected features is an 

effective way to avoid overfitting. One may reason that the above conflicting result for 

Colorado River and Rio Grande specimens is due to overfitting, i.e., the models trained 

on all 12 features overfit the data. 

For the other 3 pattern classification techniques, Linear Regression of an Indicator Matrix and 

Linear Discriminant Analysis (LDA) do not work well on this problem. AdaBoost is good at 

improving the performance of LDA and produced a classifier that can identify all four classes 

(C.carpio, C.cyprinus, C.velifer and suspicious fish) correctly with 12 features. However, since 

“from a taxonomic viewpoint, it is desirable to use a small number of body shape characters to 

describe a species as distinct from its known relatives”, we cannot say that it will work on more 

species. 
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3. Thesis Conclusion 

In this thesis, we proposed a content-based image retrieval approach for taxonomic 

research. The system has a learning component that automatically identifies the semantic class of 

a query based on digitized landmarks. We applied the system to a taxonomic problem in genus 

Carpiodes. The results are promising: the proposed framework not only learned classifiers that 

well separated the three known species in Carpiodes using only a few body shape features, but 

also recognized “suspicious” specimens that could not be identified previously without the aid of 

DNA analysis. Therefore, our framework provides a powerful tool for assisting the diagnosis of 

new species and increasing the pace of taxonomic research. As continuations of this work, 

several directions may be pursued. Our system can be linked to the Internet so that taxonomists 

around the globe can not only retrieve specimens from the system, but can contribute images to 

expand the database. The learning component in the system can potentially be extended to any 

taxonomic problem involving a large data set and a significant percentage of unknown 

specimens in a semi-supervised learning framework. An important future direction of this 

research is to automatically build a classification tree of recognized taxa (species). 
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