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ABSTRACT 

 

 This research work focuses on studying the four micromagnetic fields, exchange field, 

anisotropy field, demagnetization field and applied field. Based on the related algorithms for 

programming given, a set of software for micromagnetics calculation is developed successfully 

in C++. Several attempts are also made to reduce the calculation complexity.. 

 

 Finally this program is verified with standard problem 3 from the mumag (or 

micromagnetics) society. It was also used to simulate a process with a specific initial state with 

spins pointing each other, and the result is discussed following.  

 

 This program can also display the dynamic process of the simulation in MATLAB, which 

gives the information inside the material. More, this whole work is expected to be modified in 

order that it can easily take advantage of software platforms for parallel workstation, such as 

CACTUS for sharing the computer resource for further investigation. 
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Chapter 1  Introduction 

1.1 Objectives 

The aim of the micromagnetic simulation is to get information about the magnetic spin 

orientation of magnetic domains for micron sized objects under different conditions, such as 

sample size, shape or externally applied magnetic fields. Moreover, the micromagnetic 

simulation can also describe the extra internal magnetic configuration knowledge by 

comparison to experiment measurements. 

1.2 History 

Magnetics and micromagnetics have been explored for many centuries. The ancient 

Greeks and Chinese are the first to find and use naturally occurring iron ore. The key to their 

discovery was the observations that a magnet is able to attract other iron bearing materials. 

The earliest application of this permanent magnet material was in the mariner's compass 

before A.D.1274 [1]. During the twelfth and thirteenth centuries, this application was popular 

all over the world. 

Around 1600 William Gilbert, a physician, published his results on observed magnetic 

phenomena.  He was the first to apply scientific methods into the study of magnetism. 

Gilbert is also credited as the first to discover that the earth is a giant magnet [2]. In 1785, 

Charles Coulomb published the inverse square law of attraction and repulsion between 

magnetic poles. This is also another milestone in the field of magnetism. 

In 1892, Sir James Alfred Ewing tried to explain the phenomena of ferromagnetic 

ordering and he coined the term hysteresis [3] [4]. Hysteresis is a property of systems that do 

not response the applied external forces instantly, but react slowly, or do not restore 

completely to their original state. In other words, the system state depends on the immediate 

history of the sample.  
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In 1907, Pierre Weiss explained the phenomena of ferromagnetic ordering qualitatively, 

by introducing the postulate of an internal field which tries to align the magnetic dipoles of 

the atoms against thermal fluctuations [3][5]. This is the first modern theory that regards 

magnets as composed of tiny individual magnetic domains. In the domain, the magnetization 

Ms is constant in magnitude and direction under some state of the system. 

It’s observed that even for a homogenous material, the saturation magnetization varies 

from one domain to another. This is the result of long-range interactions between the domains 

which will minimize the overall energy of the system. This understanding led to the domain 

wall concept introduced in 1931 by Thessen and Bitter independently [5].  

Modern micromagnetics starts from 1935 with a publication by Landau and Lifshitz on 

the structure of a wall between two anti-parallel domains. In the 1960’s, micromagnetics 

became a substitute for the domain wall theory. The first complete formation of the 

micromagnetic method was exploited by William F. Brown. A detailed book for 

micromagnetics was written by William Brown in 1963[4]. The concept is based on the fact 

that the magnitude of the saturation magnetization, Ms, is constant for each elementary cell 

but the orientation of the spin changes with position from cell to cell, which is in accord with 

the theory of Landau and Lifshitz. It was later modified by T. L. Gilbert. 

In the mid-1980s the micromagnetics field developed quickly with tremendous 

contribution from the computer power. In modern micromagnetics, large-scale computation 

for realistic problems can be simulated and compared with the experimental data. 

Nowadays, the numerical investigation includes two parts; one part is an energy 

minimization procedure which can be used to determine the nucleation field but can not 

necessarily predict the system state after the magnetization reversal, the other part is a 

dynamic approach based on the Landau-Lifshitz-Gilbert equation[3][6]. 

Several public software packages for micromagnetics modeling are available online. 

Besides the Java MicroMagnetics (http://jamm.uno.edu), one of the most popular is Object 

Oriented Micromagnetics Framework (OOMMF) from the National Institute of Standards 
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and Technology (NIST http://math.nist.gov/oommf). All the results from this simulation work 

are compared with oommf [7]. 

1.3 Properties of Micromagnetics 

The magnetic moment, m, originates from the unpaired electrons in the inner electron 

shells of atoms. The concept of the magnetic moment was derived in the first half of the 

twentieth century. Mainly the moment is determined by the combined effect of the quantum 

mechanical exchange interaction, crystal-field interaction, relativistic spin-orbit coupling, 

thermal fluctuation field and Zeeman field, which will be outlined in a later section.  

The total energy can be written as a sum of several energy contributions 

zeemandemagansiextot EEEEE +++=              (1.1) 

The thermal energy is assumed to be Gaussian white noise which is irrelevant to the 

spatial coordinates or time. This work neglects calculating the thermal field during the 

dynamic approach to a metastable state or a local minimum energy point since it’s much 

weaker than other four fields [8] [9]. 

The typical natural length scale for a micromagnetic simulation is about 10nm; 

meanwhile the large domain magnets may have around 1 micron diameter. Thus a typical 

simulation involves thousands of magnetic cells. This size of simulation can be conducted by 

computer power. The work reported here is to be adaptive for this range on a single 

workstation. 

The saturation magnetization, Ms, the anisotropy constants K1, K2, and the exchange 

stiffness A are intrinsic magnetic properties (discussed below), must be      

given before starting the simulation; the remanence, M, and the coercivity Hc are extrinsic 

properties and varied during the simulation procedure. 
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1.4 Applications and Future Vision 

With the rapid development of high-speed computers, it’s possible to make the 

micromagnetics simulation on the micron scale in three dimensions. This simulation method 

has been proposed to predict the shape effect on the induced magnetic reversal which can be 

used to store digital information [10] and it also provides the optimal grids for recording media, 

soft magnetic thin films, and allows study of the nucleation and expansion of reversed 

domains in hard magnetic materials [11]. 

In the future, a better understanding of the turbulence in the magnetic core of the earth 

can be simulated using a parallel calculation technique on an array of processor which would 

provide a simulation of the magnetic field inside and around the earth with greater detailed 

and accuracy [12]. 
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Chapter 2 Micromagnetic Model 

2.1 Targets 

In micromagnetics, the magnetic spin is represented by a continuous function of location. 

The magnetic sample under study is subdivided into thousands of computational cells. The 

computational cell is chosen small enough so that the hundreds of spins in the cell can be 

reasonably modeled by a single magnetic spin for the entire cell. The magnetic spin of the 

cell becomes fixed in space and is only a function of the rotation of the spin. Each individual 

magnetization, the spin for each cell, is denoted as sMmM ⋅= vv
, where Ms is the saturation 

magnetization and mv  is the direction of the magnetic moment. The target of this work is to 

determine the magnetization directions over all the domains under various effective magnetic 

fields. 

2.2 Numerical Micromagnetics 

There are two ways to calculate the magnetization direction distribution of the 

elementary cells for the modeling material: the Static Method and the Dynamic Method. 

2.2.1 Static Method 

Static Method is also known as Brown’s Static Equation [4]. In this method, each 

individual magnetization spin rotates gradually to the direction of the effective field at each 

relative position. The process of rotating the magnetization vectors subsequently in each 

elementary cell through the ensemble is kept going until the maximum angle is smaller than 

the required tolerance for all elementary cells throughout the material. The system total 

energy decreases for each iteration. This micromagnetic formulation was first used by 

LaBonte and Hubert [13]. 
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2.2.2 Dynamic Method (Landau-Lifshitz-Gilbert Equation of Motion) 

 The torque formulation of the magnetization dynamics was described by Landau and 

Lifshitz. Later on Gilbert modified this equation by including the damping constant term as in 

the following equation.  

     
)(

→→→→→
→

××−×−= HMM
Ms

HM
d
Md γαγ
τ                   (2.1) 

 *All the vector T related in the LLG equation are in cgs unit instead of SI unit, however, 

the whole LLG is reduced into the reduced unit in the later calculation part, so I just leave it 

here. 

→

M  and 
→

H  are vectors. M represents the spin magnetization and H is the effective field 

based on the combined effect of the four fields referred in Chapter 1. γ  is the gyromagnetic 

ratio which is a dimensionless unit. It represents the ratio of the magnetic dipole moment to 

the angular momentum of an elementary particle or atomic nucleus, 
m

eg
2

0μγ = . The 

gyromagnetic ratio determines the frequency of precession of a particle in a magnetic field. 

α  is the dimensionless damping constant in this work. It is usually set as from 0.5 to 1.0 to 

reach the minimized energy point. τd  is the time step. 

This equation includes two terms. The first term is the precession term which rotates the 

spins to change the angular momentum associated with the torque due to the field 
→

H  acting 

on the magnetic moment 
→

M . As in the figure 1, 

→→→

×= HMTTorque 1:             (2.2) 

The second term is an empirical damping term that directing the spin rotates to its field 

axis.  
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Figure 1. Related vectors in LLG equation 

(Cited from “Numerical Investigation of micromagnetic structures”, 

Chap 3 “Theoretical Background”, Attila Kakay) 

All the vectors in equation (2.1) are shown in the Figure 1: the 
→

M  and 
→

H , the 

derivative of magnetization to time τ ,
τd
Md
→

, the torque T1 in equation (2.2) and the damping 

term T2. 

)(2

→→→→

××= HMM
M

T
s

αγ            (2.3) 

The torque T1 is perpendicular to the plane containing 
→

M  and 
→

H  and leads the 

dissipative precession of 
→

M  around the effective field 
→

H . The second term of vector T2 is 

perpendicular to the plane of vector T1 and 
→

M , which directs the change of 
→

M  towards the 

effective field 
→

H . So the T2 is trying to align the 
→

M  along the effective field 
→

H . Term  
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τd
Md
→

 lies in the plane (abcd) perpendicular to the 
→

M , then LLG equation gives the change 

of 
→

M  which directs itself to the effective field but by a dissipative precession. 

To get a simpler LLG equation with dimensionless units, we need reduce the spin and the 

field by the material own saturation magnetization as following: 

sM
Mm
r

r
=                             (2.4) 

sM
Hh
r

r
=                 (2.5) 

Obviously, the equation (2.6) comes out since the absolute magnetization, || M
r

, is 

constant and is equal to the saturation magnetization. 

1|| 2=mr                              (2.6) 

 Time is also reduced as equation (2.7) 

τγ sMt =                  (2.7) 

 Further, the energy density, E, can also be reduced to  

    2
0

2
0

)(

ss M
E

VM
Energye

μμ
==             (2.8) 

From equation (2.4) to (2.8), it should be realized that the saturation magnetization, Ms, 

varies for different materials, so all the reduced units must also be varied in each case. 
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Recalling the LLG equation in (2.1), we can rewrite it in the dimensionless form: 

    
)(

→→→→→
→

××−×−= HMM
Ms

HM
d
Md γαγ
τ  

left hand side  = dt
mdM

M
td

mdM
d
Md

s

s

s
rrr

2γ

γ
τ

==  

right hand side  = )(22 hmmMhmM ss

rrrrr
××−×− γαγ  

))((2 hmmhmM s

rrrrr
××+×−= αγ  

)( hmmhm
dt
md rrrrr
r

××−×−=⇒ α             (2. 9) 

The discretized form for equation (2.9) is  

)( hmmhm
t
m rrrrr
r

××−×−=
Δ
Δ α                 (2.10) 

By the Euler’s theorem, we can integrate the mr  by time t. 

dt
mdtmm ttt
r

rr
Δ+=Δ+              (2.11) 

It is worth to point out each new step result ttm Δ+r  need to be normalized to 1 according 

to the equation (2.6), because the magnitude of magnetization is constant. 

   
|| tt

tt
tt

m
mm Δ+

Δ+
Δ+ = r

r
r

             (2.12) 

For the time being, the next spin direction can be deduced from the most previous spin 

state based on LLG equation and Euler’s theorem. By much iteration from the initial  
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configuration given before the calculation starting, the numerical simulation is expected to 

reach the metastable state where the total energy reaches a local minimum point. 

To confirm the calculation reaches the metastable state, the spins must satisfy equation 

(2.13) according to Brown’s magneto static equation: 

0=× HM
rr

              (2.13) 

 *Equation (2.13) is also in the cgs unit. 

 So in this dynamic method, a convergence criterion is also required to stop this loop 

based on this equation. This criterion is equal to the maximum torque over all the elementary 

spins under the present effective field must be less than a predefined tolerance value in order 

to terminate the simulation. In another words, the direct integration of the LLG equation will 

be carried out until the torque of each spin under the current field is smaller than the tolerance 

set initially. This valve value is usually between 10-6 and 10-5. If this value set too big, the 

iteration may be stopped with the system at an “unstable” metastable status; if it is set to 

small the simulation fail to converge in a reasonable length of time. 

 In this work, all the micromagnetics calculations were carried out using the second 

method. 

2.3 The Algorithms of Magnetic Energy and Fields 

Recalling equation (1.1), the total energy density is 

zeemandemagansiextot EEEEE +++=              (1.1) 

 This work considers only four fields to evaluate the local effective field (in SI unit), H
r

, 

in equation (2.1) and (2.9) by neglecting the thermal fluctuations. These four fields are 

exchange field (Chapter 2.3.1), anisotropy field (Chapter 2.3.2), demagnetization field or 

magnetostatic field (Chapter 2.3.3), and applied field or Zeeman field (Chapter 2.3.4) The 

thermal field can be neglected since its effects changes lead to fluctuations of the average 
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magnetization about 1% under normal conditions[14]. An analytical discussion about the 

thermal fluctuation field strength is given in the reference [9]. 

 The differential magnetic energy can be related to the magnetic field by equation (2.14). 

∫ ⋅=
V

dMdVBEnergyd )(                   (2.14) 

 For constant volume, we have the energy density E as the following, 

EdMB
dV

Energyd

V

=⋅= ∫
)(

           (2.15) 

 Now we can derive the magnetic field from the cgs unit into the SI unit and then get the 

equation (2.16) 

H
M
E r
r 0μ−=∂

∂              (2.16) 

 For the dimensionless formula, equation (2.16) can be further deduced as the following 

from (2.4) and (2.5). 

    hM
m
E

s

r
r

2
0μ−=∂

∂    

Considering the equation (2.8), obtains 

    h
m
e r
r −=

∂
∂  or 

m
E

M
h

s
r

r

∂
∂

−= 2
0

1
μ

          (2.17) 

2.3.1 Exchange Field 

Exchange interaction directs the cooperative magnetic ordering. The exchange energy 

can be scaled with the exchange integral J by Heisenberg interaction. 

      jiije SSJE
vv

−=   

where iS
v

 and jS
v

 are the vector magnetizations of two spins on different location.  
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A positive J indicates ferromagnetic materials and the materials generate atomic 

magnetic fields aligning them parallel to external fields. This creates a greater magnetic field 

inside the material. A negative J gives antiferromagnetic materials, which are composed of 

multi-sublattices with opposite orientations. 

 

    a)            b) 

Figure 2.  a) Ferromagnetic ordering 

   b) Antiferromagnetic ordering 

This exchange interaction is also a behavior of the Coulomb interaction between electron 

charges and Pauli principle.  

The exchange energy density can be calculated between two spins i and j by the equation 

(2.18) [15] [16], 

2

2

, ||
||

ji

ji
ijje RR

mm
AE

−

−
=                       (2.18) 

where A is the exchange stiffness of the material under study. 

Recalling the equation (2.8), (2.18) becomes a dimensionless formula as following: 

2

2

2
0

, ||
||

ji

ji

s

ij
je RR

mm
M
A

e
−

−
=
μ

           (2.19) 
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The total energy at ith cell position is given by a continuous integration function 

   dVmmmAE
V

zyxije ∫ ∇+∇+∇= ])()()[( 222        (2.20) 

where V is the volume of the sample. 

In this work, the discretized integration for the ith cell by equation (2.21) is given by 

∑
+= −

−
=

N

ij ji

ji
ije RR

mm
Ae

1
2

2

||
||

2
1                  (2.21) 

where N is the total number of cells. 

Since exchange energy is isotropic in nature, the calculated energy will be split into two 

parts evenly and distributed to the two spins (i and j) during the summation. 

By the equation (2.8) and (2.17), we can derive the exchange field by the differential of 

equation (2.19). 

   
m

mm
RRM

A
m

e
h ij

jis

ijje
e r

rr

r
r

∂

−∂

−
−=

∂

∂
−=

2

22
0

, ||
||μ

 

)(
||

2
22

0
ji

jis

ij
e mm

RRM
A

h vvr
−

−
−=
μ

              (2.22) 

The reduced exchange constant aij is introduced for each domain, which is calculated in 

the initial part of the simulation and stored separately as a public variable, as equation (2.23). 

All the aij’s are equal in the homogenous case. 

22
0 ||

2

jis

ij
ij RRM

A
a

−
−=
μ

           (2.23) 
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Putting the exchange constant into equation (2.21), the reduced exchange energy is 

calculated by 

∑
+=

−=
N

ij
jiije mmae

1

2||
4
1            (2.24) 

2.3.2 Anisotropy Field 

Anisotropy energy depends on the spin orientation of the magnetization with respect to 

the crystallographic axes of the material. This field results from the spin-orbit interaction [17]. 

There is a strong coupling between the spin and the orbital angular momentum at atomic 

level. Because the atomic orbital is usually not spherical but more elliptical, the spin-orbit 

coupling causes the spin to prefer to lie along some crystallographic direction. This direction 

is termed the easy axis for the magnetization. The rotation of the magnetization away from 

these easy axes is taken account for by the anisotropy energy and field. Also, according the 

number of easy axis in the lattice, lattice structures can be classified as uniaxial, biaxial, cubic 

and higher order anisotropy. 

2.3.2.1 Uniaxial Anisotropy 

All the spins prefer to align in on direction parallel to the only easy axis in this case to 

minimize the energy. The general form for the energy density can be written as equation (2.25) 

as follows: 

∑=
j

j
ja KE θ2

 Uniaxial sin  

θθ 4
2

2
10 sinsin KKK ++≅             (2.25) 

where Kj’s are the anisotropy constants which are temperature dependent; and θ is the polar 

angle for the magnetization, M
v

, relative to the easy axis.  
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The index for the “sinθ” term is always an even number because the energy surface is 

symmetric upon rotation. This work neglects the higher order for j larger than 2. Also, K0 is 

the zeroth order energy for all the spins are oriented along the crystalline axis.  

Recalling the equation (2.4), 

sM
Mm
r

r
=                              (2.4) 

Since the mr  just represents the spin direction, introducing the unitless easy axis  av , 

the “sin2θ” term can be expressed in two different ways using trigonometric identities 

θθ coscos|||| ==⋅ amam vr  

22 )(1sin am vr
⋅−=θ                         (2.26) 

Bringing this equation back into (2.25), (2.27) is obtained. 

   22
2

2
10 Uniaxial ])(1[])(1[ amKamKKEa

vrvr
⋅−+⋅−+=       (2.27) 

As discussed before, the K0 cannot be negative, so when is K1 positive, the energy 

minimum occurs when the spin is parallel to the easy axis, so K0 will be zero. Equation (2.27) 

becomes, 

   22
2

2
1 Uniaxial ])(1[])(1[ amKamKEa

vrvr
⋅−+⋅−=  (K1 non-negative)   

                       (2.28) 

When the K1 negative, the energy minimum will occur when the direction of the spin is 

perpendicular to the easy axis, where K0 = -K1, so equation (2.27) becomes,  

22
2

2
11 Uniaxial ])(1[])(1[ amKamKKEa

vrvr
⋅−+⋅−+−=    

22
2

2
1 Uniaxial ])(1[)( amKamKEa

vrvr
⋅−+⋅−=   (K1 negative)    (2.29) 
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By equation (2.17) 

m
E

M
h

s
r

r

∂
∂

−= 2
0

1
μ

             (2.17) 

The dimensionless anisotropy field is expressed by differential (2.28) and (2.29) in terms 

of mr  and av . 

From equation (2.28): 

]})(2][)(1[2])([2{1

}])(1[])(1[{1

2
212

0

22
2

2
1

2
0

 Uniaxial

aamamKaamK
M

m
amKamK

M
h

s

s
a

vvrvrvvr

r

vrvrr

⋅−⋅−+⋅−−=

∂
⋅−+⋅−∂

−=

μ

μ

 
aamam

M
K

M
K

amKK
M

aam

ss

s

vvrvr

vr
vvr

)]}()(1[42{

]})(1[42{)(

2
2

0

2
2

0

1

2
212

0

⋅⋅−+=

⋅−+
⋅

=

μμ

μ
      

From equation (2.29): 

]})(2][)(1[2])[(2{1

}])(1[)({1

2
212

0

22
2

2
1

2
0

 Uniaxial

aamamKaamK
M

m
amKamK

M
h

s

s
a

vvrvrvvr

r

vrvrr

⋅−⋅−+⋅−−=

∂
⋅−+⋅−∂

−=

μ

μ
 

aamam
M
K

M
K

amKK
M

aam

ss

s

vvrvr

vr
vvr

)]}()(1[42{

]})(1[42{)(

2
2

0

2
2

0

1

2
212

0

⋅⋅−+=

⋅−+
⋅

=

μμ

μ
       

Therefore, regardless of the sign of the first anisotropy constant, the formula for the 

anisotropy field is the same. We simplify the anisotropy field as the equation (2.30). 
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where 2
0

2

s

i
i M

Kk
μ

=  i = 1, 2              (2.31) 

 According to the above equation, the energy density can also be simplified from (2.28) 

and (2.29) to obtain the dimensionless ea by equation (2.8). 
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        (2.32) 

2.3.2.2 Cubic Anisotropy 

 The cubic anisotropy field has three orthogonal crystal easy axes, av (parallel to x axis), 

b
v

(parallel to y axis), cv (parallel to z axis), respectfully.  

0
0
1

=av   
0
1
0

=b
v

  
1
0
0

=cv    

The cubic anisotropy energy density is basically expressed by equation (2.33). 

  222
2

222222
1 )( zyxzyzxyxaCubic mmmKmmmmmmKE +++=       (2.33) 

Where mx, my, mz are the magnetization components along the av , b
v

, and cv  axes, 

respectively. Ki is the i-th order anisotropy constant. Here the higher order anisotropy 

constant terms will also be neglected.  
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Recalling equation (2.26), (2.33) can be rewritten as the following. 

γβαγβγαβα 222
2

222222
1 coscoscos)coscoscoscoscos(cos KKEaCubic +++=

222
2

222222
1 )()()(])()()()()()[( cmbmamKcmbmcmambmamKEaCubic

vvvvvvvvvvvvvvvvvv ⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅=   

                 (2.34) 

 Refer to equation (2.8) to get the dimensionless formula for cubic energy density. 
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⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅
=

μ  

                  (2.35) 

where ki also obeys the rule of equation (2.31). 

 Same way as uniaxial the cubic anisotropy field is obtained by equation (2.17). 
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Now considering the dot product of the magnetization and the axis,  

z

y

x

m
m
m

m =v     and  
0
0
1

=av  
0
1
0

=b
v

  
1
0
0

=cv  
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xzyx mmmmam =×+×+×=⋅ 001vv  

yzyx mmmmbm =×+×+×=⋅ 010
vv  

zzyx mmmmcm =×+×+×=⋅ 100vv  

Calculating cubic anisotropy from energy density gives, 
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            (2.36) 

 Here we have presented expressions for uniaxial and cubic anisotropy. Other anisotropy 

types are less common and not carried out in this work. 

2.3.3 Magnetostatic or Demagnetization Field 

  The demagnetization energy will be minimized when the spins stay in a “head-tail” 

configuration, which also termed as vortex state. Figure 3 is a typical result when only the 

demagnetization field is included in the calculation. 
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    Figure 3.  “head-tail” configuration resulting  

by including demagnetization field only 

2.3.3.1 Theory for Demagnetization Field and Energy calculation 

 The magnetostatic self energy is given in equation (2.37) [6] [18]. 

ijijijd MMNE
vv~

2
1

0, μ=      
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By equation (2.16), the magnetostatic field given as 

     iijijd MNH
vv

⋅−= ~
,       

ijN~  is demagnetizing tensor depending on the shape of the sample and depends on the 

relative position for two spins i and j.  

Reducing the demagnetization energy and field into dimensionless by equation (2.4), (2.5) 

and (2.8), gives 

ijijijd mmNe vv~
2
1

0, μ=           (2.37) 

     jijijd mNh vvv
⋅−=,            (2.38) 

 The assumption for equation (2.37) and (2.38) is that the material has uniformly 

distributed saturation magnetization, Ms. Otherwise multiple 
is

js
M

M
,

,  must be added on the 

right hand side. 

There several methods to evaluate this tensor such as by the Fast Multipole method [19] [20] 

[21], but the most accurate was given by Andrew Newell [22] in 1993. In Cartesian coordinates, 

the tensor for dipole-dipole approximation is given by the following, 

     

zzzyzx

yzyyyx

xzxyxx

NNN
NNN
NNN

N =
r

        (2.39)  

The calculation for each element in this matrix is divided by two parts. This first step is 

to calculate the element on the diagonal Nxx, Nyy, Nzz: 

)],,(),,(),,(2[
4

1),,( ZYxXFZYxXFZYXF
V

ZYXNxx Δ−−Δ+−=
π

  (2.40) 

where X, Y, Z are the coordinates differences between two spins; Δx, Δy, Δz are the cubic cell 

side length in this work; V is the cell volume as 3)( xzyx Δ=Δ⋅Δ⋅Δ  for cube. 
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 F(X, Y, Z) is given by equation (2.40) recursively. 

),,(),,(),,(),,(),,( 1111 ZYXFZyYXFzZYXFzZyYXFZYXF +Δ+−Δ+−Δ+Δ+=  

                   (2.41) 

 F1(X, Y, Z) is given by equation (2.41) recursively. 

),,(),,(),,(),,(),,( 22221 zZyYXFzZYXFZyYXFZYXFZYXF Δ−Δ−+Δ−−Δ−−=   

                   (2.42) 

F1(X, Y, Z) is given by equation (2.42) recursively. 

)0,0,()0,,(),0,(),,(),,(2 XfYXfZXfZYXfZYXF +−−=      

                   (2.43) 

f(X, Y, Z) is given by equation (2.43) recursively. 

Rzyx
xR
yzXYZ

ZY
ZXYZ

ZX
YXZYZYXf

)2(
6
1)(tan

)(sin)(
2

)(sin)(
2

),,(

2221

22

122

22

122

−−+−

+
−+

+
−=

−

−−

  

                  (2.44) 

where 222 ZYXR ++= . 

 So far, we have the first element Nxx in the object matrix. This work calculates the other 

two diagonal elements by technically permuting variables by calling the same function Nxx(X, 

Y, Z, dx, dy, dz). For instance, to calculate Nxx by calling Nxx(xi, yi, zi, dx, dy, dz), then get 

the Nyy by calling Nxx(yi, xi, zi,, dy, dx, dz) and Nzz by calling Nxx(zi, yi, xi, dz, dy, dx). 
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The second step is to calculate the elements in the tensor matrix off-diagonal. 

Component Nxy is given as: 

)],,(),,(),,(),,([
4

1),,( ZyYxXGZyYXGZYxXGZYXG
V

ZYXN xy Δ+Δ−+Δ+−Δ−−=
π

 

                   (2.45) 

G(X, Y, Z) is given by equation (2.46) recursively. 

),,(),,(),,(),,(),,( 1111 zZyYXGzZYXGZyYXGZYXGZYXG Δ−Δ−+Δ−−Δ−−=   

                    (2.46) 

G(X, Y, Z) is given by equation (2.47) recursively. 

),,(),,(),,(),,(),,( 22221 ZYXGzZYXGZYxXGzZYxXGZYXG +Δ+−Δ+−Δ+Δ+=  

                    (2.47) 

 

G(X, Y, Z) is given by equation (2.48) recursively. 

)0,,(),,(),,(2 YXgZYXgZYXG −=          (2.48) 

 (X, Y, Z) is given by equation (2.49) recursively. 

3
)(tan

6

)(tan
2

)(tan
2

)(sin)3(
6

)(sin)3(
6
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3

1
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1
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22

1
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ZXYZZYXg
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+
=
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−−−

−−

 

                 (2.49) 

 Using the same permuting technique as for diagonal elements, we can calculate all the 

other five off-diagonal components.  
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2.3.3.2 Techniques in Demagnetization calculation 

 The most outstanding feature for this field is that it has a natural long range interaction 

for all the cells in the magnetic sample. This suggests all the spins will be correlated with 

each other through the demagnetization interaction. For example, in a computational box 

containing n unit cells, the magnetostatic energy term for each cell will include interaction 

with all the other cells, so the total calculation will involve O(n2) complexity. In contrast, for 

exchange and anisotropy energy, the calculation only involves a single spin and is O(n). 

Obviously the demagnetizing energy term makes the heaviest demands on the CPU and 

memory.  

 From equation (2.44) and (2.49), the demag tensors have some symmetry characteristics. 

All the diagonal elements are even functions, and the off-diagonal elements are odd function. 

For example, Nxx is an even function of (X, X): 

 
),,(),,(),,(),,(

),,(),,(),,(),,(
ZYXNZYXNZYXNZYXN

ZYXNZYXNZYXNZYXN

xxxxxxxx

xxxxxxxx

−−−=−−=−−=−−=
−=−=−=

 

                   (2.50) 

For Nxy which is odd function of (X, Y): 

),,(),,(),,(),,(

),,(),,(),,(),,(

ZYXNZYXNZYXNZYXN

ZYXNZYXNZYXNZYXN

xyxyxyxy

xyxyxyxy

−−−=−−−=−−−=−−=

−=−−=−−=
 

                   (2.51) 

 According to this feature, two methods were tried to reduce the calculation complexity. 

Technique 1: This work initially calculates all the tensors only for one corner cell and 

stores this array as public variables. As shown in figure 4, this program calculates the cell[0]’s 

demag tensors from cell[i] (i varies from “0” to “24”), and stores the result as “public 

tensor[x][y]”, a two dimension array, where “x” and “y” are the sequence in x and y axes. 
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20 21 22 23 24 

15 16 17 18 19 

10 11 12 13 14 

5 6 7 8 9 

0 1 2 3 4 

Figure 4. An example for technique 1  

applied in demagnetization field calculation 

Further, when the program requested the new tensor for any two cell[i] and cell[j] (i, j are 

in the range of “0” to “24”), another function will select the proper tensor from the previous 

public array based on the tensor’s properties: all elements are odd functions of their subjects.  

If (X<0) then NXY = -NXY; NXZ = -NXZ;  

If (Y<0) then NXY = -NXY; NYZ= -NYZ;  

If (Z<0) then NXZ = -NXZ; NYZ= -NYZ;  

                  (2.52) 

For instance, to pick up the proper tensor from “public tensor[x][y]” for cell[16] and 

cell[8]. Because the difference in x-coordinate is -2, and difference in y-coordinate is 2 for 

these two cells, the tensors must have the same absolute values as the sensor for cell[0] and 

cell[12], “public tensor[2][2]”. More, by the algorithm of equation (2.52), only the Nxy and 

Nxz change sign while other four components keep the same. Since the calculated public array 

is from a corner cell, its range will cover the combinations for any two cells. 

    Using this technique, the calculation of the demagnetization tensors is done only once at 

the beginning of the calculation and is not done during each iteration of the LLG loop. 

This technique doesn’t reduce the complexity, which is still O(n), however it reduces the 

calculations in each LLG iteration. 

X 

Y 
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Technique 2: The Fast Fourier Transform (FFT) is a way to compute the Fourier 

transform of a convolution in time O(nlogn) instead of O(n2) using the direct method. The 

FFT can be used with when the number of cells, n, is a power of 2.  

The premise for the FFT method is the Convolution Theorem. f(r) and h(r) are two 

discrete sequences and they have the convolution relationship such as given equation (2.53). 

   ∑ −=
r

r

rrfrghf
'

)'()'(*            (2.53) 

 It has been proven that if two functions are convolved in the spatial domain, their FFT 

transformed functions in the momentum, or q domain, are a simple product. This product is 

only relative to O(n) complexity, however the FFT transform is O( n2log ) complexity, so the 

total complexity is reduced from O( 2n ) to O( nn 2log ). Note that the demagnetization 

calculation involves a convolution of the demagnetization tensor, Nij, and the magnetization 

vector, Mj, as shown in Equation (2.38). Thus, calculation of the demagnetization field, Hd,ij, 

can be speeded up by using the FFT method. 

 The main idea of this technique is given as the following frame, figure 5. 

 

     Figure 5. The FFT method in micromagnetics 

Recall equation (2.38) which calculate the demagnetization field from cell j on cell i,  

     jijijd mNh vvv
⋅−=,  

  

Compute demag 
tensor, Nij(r) 

 Compute 
magnetization, 

Nij(r)*m(r) 

Nij(q) M(q) Nij(q)·m(q) 

Spatial 
Domain 

Momentum  
Domain

F F-1 F F-1 F F-1 
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To get the total demagnetization field of the i-th cell from the whole box, we need sum 

up equation (2.38) over all cells, so it comes out as,  

     ∑ ⋅−=
N

j
jijid mNh vvv

,            (2.54) 

Expending the vectors, we get three individual equations for three dimensions. 

∑ ×+×+×−=
N

j
jijjijjijid zmNxzymNxyxmNxxxh )...(.,     (2.55)

 ∑ ×+×+×−=
N

j
jijjijjijid zmNyzymNyyxmNxyyh )...(.,     (2.56) 

∑ ×+×+×−=
N

j
jijjijjijid zmNzzymNyzxmNxzzh )...(.,     (2.57) 

 The application of the FFT method to micromagnetics, therefore, is accomplished as 

follows. During the initialization of the program the demag tensor elements are calculated in 

the spatial domain and FFT transformed to the momentum domain and stored. During each 

iteration in the LLG method the current estimate for the magnetization components, mjx, mjy 

and mjz, are FFT transformed into the momentum domain and then the product of Nij and mj 

is carried out in the momentum domain.  The demag field is therefore obtained in the 

momentum domain as given in equation (2.55), (2.56) and (2.57). The demag field is then 

inverse FFT transformed back into the spatial domain so that it is in the same domain as the 

other fields and energy terms. 

 In spite of the fact that a FFT code is generated and verified successfully, the FFT 

method was not carried out in this work. The FFT code in C++ is attached in Appendix 3. 

2.3.4 Zeeman Field 

 Zeeman field arises from any applied magnetic field on the system. The Zeeman field 

acts on each spin. The magnitude and direction of the applied field is given by users during 



 28

the initialization part of the program. The dimensionless field is given by the equation (2.58). 

    
s

z
z M

Hh
v

v
=              (2.58) 

 Applying integral on equation (2.17) 

h
m
e r
r −=

∂
∂              (2.17) 

∫∫ ∂⋅−=∂ mhe vr
 

    mhe vr
⋅−=⇒             (2.59) 
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Chapter 3  Micromagnetics Program Scheme and Verification 

3.1 Micromagnetics Program Scheme 

 Most this code is done by Microsoft Visual Studio, VC++ except the display part by 

MATLAB 7.0. The following figure is the flow chart of this work. 

 

     Figure 6. Micromagnetics software Flow Chart 
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The codes for the four modules part (1) in Figure 6 are attached in Appendix 1 and the 

codes for part (2) are in Appendix 2.  

3.2 Micromagnetics Program verification 

3.2.1 Verification of Problem #3 

 The mumag (or micromagnetics) society has developed several “standard problems” to 

ensure that micromagnetics programs from various researchers produce consistent and correct 

results. This work is verified against mumag Standard Problem #3 which is available at 

http://www.ctcms.nist.gov/~rdm/mumag.org.html.  This problem involves calculating the 

stable magnetic domains that occur in a cubic sample as a function of the size of the cube 

with given magnetic parameters. The sample parameters are summarized as the following, 

K1 (J/m3) A (J/m) 
damping 

constant α
Ms 

ensemble 

size (nm) 
cell size (nm) 

6.28315e4 1.7735e-12 0.75 10e6 454545 ×× 5.45.45.4 ××  

    Table 1. Sample Parameters set in Problem 3 

Previous researchers have shown that when the edge length of the cube is large a closure 

domain or vortex state is the stable state.  This state is shown below in Figure 11.  As the 

edge length is reduced at some point the exchange energy dominates and the flower state 

becomes the stable state.  The flower state has all of the spins aligned along the easy axis 

except at the opposite edges of the cube where the demag field forces the spins to point 

slightly outward, towards the corners of the cube.  This transition is called the single domain 

limit.  The single domain limit is the length of the sample at which the vortex and flower 

states have exactly the same energy. Previous researchers have shown that when the 

mKAsizesample /8≈ , the system holds the same energy for vortex and flower states. This 

work tested problem #3 starting from the parallel state and finally transformed to the flower 

state. Our code gives the estimate of the critical edge length as 47.8
/

≈
mKA

sizecell
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It falls in the range reported by other groups, 8.47 (Hubert, Favian and Rave), 8.4687 

(Ribeiro, Paulo Freitas, and José Luís Martins) and 8.52 (Hertel and Kronmuller). 

Result of this work in intrinsic units: 

 
Result of 

this work 
Rave Hertel Martins 

E 0.29094 0.3027 0.3027 0.3026 

Ea 0.05561 0.0783 0.0830 0.0521 

Ee 0.163506 0 .1723 0.1696 0.1724 

Ed 0.071825 0.0521 0.0830 0.0780 

     Table 2. Result comparison for Problem 3 

Our results are consistent with those previously reported and the figure shown in 

MATLAB is consistent with that reported by other researchers. Figure 7 is the initial state 

and Figure 8 is the final state with the torque is less than 10-5
 for any spin in 2D. 

 

       Figure 7. Initial state for Problem 3 
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 The figure 8 is a 2D display which shows the top of this cubic sample of Figure 9. 

 

Figure 8. Final state for Problem 3 

 

Figure 9 Vortex State in 3D display  

(cited from http://www.ctcms.nist.gov/~rdm/mumag.org.html) 
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Chapter 4  Application 

This work can easily set the spins to some state, while this is difficult for OOMMF, 

which stands for Object Oriented Micromagnetics Software and is available from 

http://math.nist/gov/oommf . 

4.1 One Example 

 The initial configuration is in the state of either “head-to-head” or “tail-to-tail” each other 

one by one, refer to the Figure 10. OOMMF supplies several general initial states however it 

does not supply this starting point. 

The sample parameters are summarized as the following, 

K1 (J/m3) A (J/m) 
damping 

constant α 
Ms 

ensemble size 

(nm) 

cell size 

(nm) 

500 13e-12 0.5 8e5 20200200 ××  202020 ××

    Table 3. Sample Parameters set in Problem 3 

 

    Figure 10. Initial state for an example of 10×10 cells 
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 The configuration parameters are set as Table 3. Figure 11 shows how to set up these 

values in a head file of this C++ program. 

 

 Figure 11. Setting for the head file “StaticVariables.h” in this work 

 Figure 12 gives the final result for this example which shows that the sample forms a 

vortex state. The various energy terms in units of J/m3 terms are given in Table 4. 

 

    Figure 12. Final state for an example of 10×10 cells 
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  Initial State Final State 

E 441161 28754 

Ea 0 9920 

Ed 441161 14098.8 

Ee 0 4735 

     Table 4. Result for final energy terms 

 From Figure 11, the final state is a vortex which means the demagnetization energy 

reaches a minimum point. The decrease in the demagnetization energy is offset by an increase 

in the exchange energy from 0 to 4735 J/m3 since all the spins are not parallel to each other 

and not all of the spins lie along the easy axis (1, 0, 0) resulting in a non-zero value for the 

anisotropy energy from 0 to 9920 J/m3.   

 The total energy is also decreased from 441161 to 28754 J/m3 with the maximum torque 

is only -6109.8075× . This value of the torque suggests that the ensemble reaches a 

metastable state. 
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Chapter 5  Conclusions 

 A micromagnetics modeling program for use on a single computer has been successfully 

developed in C++. This simulation results for this program have been verified by comparison 

to mumag Standard Problem #3. Such a modeling program can be used for simulating the 

domain patterns and reversal process of magnetic materials. This program can simulate a 3D 

ensemble of spins up to 105 cells based upon a single workstation with 512M of memory. 

 This work can also provide a visualization of the magnetic domain information inside the 

material using a module in the program which allows the program to use MATLAB for 3D 

display.  Finally, this program allows the user to easily set the initial state including initial 

orientation of the spins. 

 Future work should include modification of the code so that it can easily take advantage 

of software platforms for parallel workstation, such CACTUS which was designed for 

scientists and engineers [23]. CACTUS has a central core code which connects to the 

application modules (thorns) through a standard interface. Therefore, the program presented 

here can be recompiled as a thorn for micromagnetics calculation and then be easily ported to 

a parallel architecture. By assuming such an architecture the program can share computer 

resource, such as additional processors and memory, with a CACTUS server. With sufficient 

resources the program can be used to model very large magnetic systems, such as the 

magnetic field inside and around the Earth and can provide a dynamic model of field 

reversing of the Earth’s magnetic field. 
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Appendices 

Appendix A Calculation Algorithms for four fields 

Appendix A.1 Exchange Field 

double ExchangeEnergyCaculator(Cell_Structure cell1,Cell_Structure cell2, double A) 

{ 

 double temp; 

 C_Vector tempMagnetization;  

 tempMagnetization.x=cell2.M.x-cell1.M.x; 

 tempMagnetization.y=cell2.M.y-cell1.M.y; 

 tempMagnetization.z=cell2.M.z-cell1.M.z; 

 temp=0.25*A*Norm(tempMagnetization)*Norm(tempMagnetization); 

 return(temp); 

} 

C_Vector ExchangeFieldCaculator(Cell_Structure cell1,Cell_Structure cell2, double A) 

{ 

 C_Vector temp; 

 C_Vector tempMagnetization; 

 tempMagnetization.x=cell2.M.x-cell1.M.x; 

 tempMagnetization.y=cell2.M.y-cell1.M.y; 

 tempMagnetization.z=cell2.M.z-cell1.M.z; 

 temp.x=A*tempMagnetization.x; 

 temp.y=A*tempMagnetization.y; 
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 temp.z=A*tempMagnetization.z; 

 return(temp);} 

void CaculationForExchange(Cell_Structure Cell[N],double ExchangeConst1) 

{ 

 C_Vector tempi; 

 double tempEnergyDensity; 

 for(int i=0;i<N;i++) 

  { 

  Cell[i].Ee=0; 

  Cell[i].He=Initialization(Cell[i].He); 

  } 

 

 for(int i=0;i<N;i++) 

  { for(int j=i+1;j<N;j++) 

   { 

    if(Distance(Cell[i].R,Cell[j].R)<=1.5*CellSpace) 

    { 

    tempi=ExchangeFieldCaculator(Cell[i],Cell[j],ExchangeConst1); 

    Cell[i].He.x=Cell[i].He.x+tempi.x; 

    Cell[i].He.y=Cell[i].He.y+tempi.y; 

    Cell[i].He.z=Cell[i].He.z+tempi.z; 

    Cell[j].He.x=Cell[j].He.x-tempi.x; 

    Cell[j].He.y=Cell[j].He.y-tempi.y; 

    Cell[j].He.z=Cell[j].He.z-tempi.z; 
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 tempEnergyDensity=ExchangeEnergyCaculator(Cell[i],Cell[j],ExchangeConst1); 

    Cell[i].Ee=Cell[i].Ee+tempEnergyDensity; 

    Cell[j].Ee=Cell[j].Ee+tempEnergyDensity; 

    } 

   } 

} 

 

Appendix A.2 Anisotropy Field 

void CaculationForAnisotropy(Cell_Structure Cell[N])//Only for uniaxial case and K1>0; 

{ 

  

 double k1,k2; 

 double tempdotMa,tempdotMb,tempdotMc; 

 double aCoefficient,bCoefficient,cCoefficient; 

 double tempdot=0,tempdot1=0; 

 for(int i=0;i<N;i++) 

 { 

  Cell[i].Ea=0; 

  Cell[i].Ha=Initialization(Cell[i].Ha); 

 } 

 if(IsCubicAnisotropy) 

 {   C_Vector a;    //the direction of easy axis 

  a.x=EasyAX; 
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  a.y=EasyAY; 

  a.z=EasyAZ; 

  a=normalize(a); 

  C_Vector b;    //the direction of easy axis 

  b.x=EasyBX; 

  b.y=EasyBY; 

  b.z=EasyBZ; 

  b=normalize(b); 

  C_Vector c;    //the direction of easy axis 

  c.x=EasyCX; 

  c.y=EasyCY; 

  c.z=EasyCZ; 

  c=normalize(c); 

  for(int i=0;i<N;i++) 

  { 

   k1=GetConversionk1(Cell[i].Ms); 

   k2=GetConversionk2(Cell[i].Ms); 

   tempdotMa=ProductofDot(Cell[i].M,a); 

   tempdotMb=ProductofDot(Cell[i].M,b); 

   tempdotMc=ProductofDot(Cell[i].M,c); 

  
 Cell[i].Ea=k1/2*(tempdotMa*tempdotMa*tempdotMb*tempdotMb+tempdotMa*tempdotMa*tempdotMc
*tempdotMc+tempdotMc*tempdotMc*tempdotMb*tempdotMb)+k2/2*(tempdotMa*tempdotMb*tempdotMc*t
empdotMa*tempdotMb*tempdotMc); 

  
 aCoefficient=-(tempdotMb*tempdotMb+tempdotMc*tempdotMc)*k1-tempdotMb*tempdotMb*tempdotM
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c*tempdotMc*k2; 

  
 bCoefficient=-(tempdotMa*tempdotMa+tempdotMc*tempdotMc)*k1-tempdotMa*tempdotMa*tempdotM
c*tempdotMc*k2; 

  
 cCoefficient=-(tempdotMa*tempdotMa+tempdotMb*tempdotMb)*k1-tempdotMa*tempdotMa*tempdotM
b*tempdotMb*k2; 

   Cell[i].Ha.x=aCoefficient*a.x+bCoefficient*b.x+cCoefficient*c.x; 

   Cell[i].Ha.y=aCoefficient*a.y+bCoefficient*b.y+cCoefficient*c.y; 

   Cell[i].Ha.z=aCoefficient*a.z+bCoefficient*b.z+cCoefficient*c.z; 

  } 

 } 

 else  

 { C_Vector a;    //the direction of easy axis 

  a.x=EasyAX; 

  a.y=EasyAY; 

  a.z=EasyAZ; 

  a=normalize(a); 

 if(K1>=0) 

 { 

  for(int i=0;i<N;i++) 

  { 

  k1=GetConversionk1(Cell[i].Ms); 

  k2=GetConversionk2(Cell[i].Ms); 

  tempdot1= ProductofDot(Cell[i].M,a); 

  tempdot=tempdot1*tempdot1; 
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  Cell[i].Ea=0.5*(k1*(1-tempdot)+k2*(1-tempdot)*(1-tempdot)); 

 

  Cell[i].Ha.x=(k1+2*k2*(1-tempdot))*tempdot1*a.x; 

  Cell[i].Ha.y=(k1+2*k2*(1-tempdot))*tempdot1*a.y; 

  Cell[i].Ha.z=(k1+2*k2*(1-tempdot))*tempdot1*a.z; 

  } 

 } 

 else 

 { 

  for(int i=0;i<N;i++) 

  { 

  k1=GetConversionk1(Cell[i].Ms); 

  k2=GetConversionk2(Cell[i].Ms); 

  tempdot1= ProductofDot(Cell[i].M,a); 

  tempdot=tempdot1*tempdot1; 

 

  if(k1<0)Cell[i].Ea=0.5*(-k1*tempdot+k2*(1-tempdot)*(1-tempdot)); 

  else Cell[i].Ea=0.5*(k1*(1-tempdot)+k2*(1-tempdot)*(1-tempdot)); 

 

  Cell[i].Ha.x=(k1+2*k2*(1-tempdot))*tempdot1*a.x; 

  Cell[i].Ha.y=(k1+2*k2*(1-tempdot))*tempdot1*a.y; 

  Cell[i].Ha.z=(k1+2*k2*(1-tempdot))*tempdot1*a.z; 

  } 
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 } 

 } 

} 

Appendix A.3 Demagnetization Field 

void CaculationForDemag(Cell_Structure Cell[N],Demag_Tensor 
TensorFromCode[Thickness][Width][Length]) 

{ 

 for(int i=0;i<N;i++) 

 { 

  Cell[i].Ed=0; 

  Cell[i].Hd.x=0; 

  Cell[i].Hd.y=0; 

  Cell[i].Hd.z=0; 

 } 

 C_Vector temph; 

  

 for(int i=0;i<N;i++)//Caculation for the demag from other cells 

 { 

  for(int j=i+1;j<N;j++) 

  { 

  double xx=(Cell[j].R.x-Cell[i].R.x)/CellSpace, yy=(Cell[j].R.y-Cell[i].R.y)/CellSpace, 
zz=(Cell[j].R.z-Cell[i].R.z)/CellSpace; 

   

  Demag_Tensor tensor = TensorFromCode[int(abs(zz)+0.1)][int(abs(yy)+0.1)][int(abs(xx)+0.1)]; 

  double NXX=tensor.Nxx, NXY=tensor.Nxy, NXZ=tensor.Nxz; 
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  double NYY=tensor.Nyy, NYZ=tensor.Nyz, NZZ=tensor.Nzz; 

 

  if (xx<0) { NXY=-NXY; NXZ=-NXZ; } 

  if (yy<0) { NXY=-NXY; NYZ=-NYZ; } 

  if (zz<0) { NXZ=-NXZ; NYZ=-NYZ; } 

   

  temph.x=-Cell[j].Ms/Cell[i].Ms*(NXX*Cell[j].M.x+NXY*Cell[j].M.y+NXZ*Cell[j].M.z); 

  temph.y=-(NXY*Cell[j].M.x+NYY*Cell[j].M.y+NYZ*Cell[j].M.z); 

  temph.z=-(NXZ*Cell[j].M.x+NYZ*Cell[j].M.y+NZZ*Cell[j].M.z); 

   

  Cell[i].Hd.x=Cell[i].Hd.x+temph.x; 

  Cell[i].Hd.y=Cell[i].Hd.y+temph.y; 

  Cell[i].Hd.z=Cell[i].Hd.z+temph.z; 

 
 Cell[i].Ed=Cell[i].Ed-0.5*ProductofDot(Cell[i].M,temph);//4.22e5*Cell[j].Ms/Cell[i].Ms*ProductofDot(C
ell[i].M,temph); 

   

  temph.x=-(NXX*Cell[i].M.x+NXY*Cell[i].M.y+NXZ*Cell[i].M.z); 

  temph.y=-(NXY*Cell[i].M.x+NYY*Cell[i].M.y+NYZ*Cell[i].M.z); 

  temph.z=-(NXZ*Cell[i].M.x+NYZ*Cell[i].M.y+NZZ*Cell[i].M.z); 

 

  Cell[j].Hd.x=Cell[j].Hd.x+temph.x; 

  Cell[j].Hd.y=Cell[j].Hd.y+temph.y; 

  Cell[j].Hd.z=Cell[j].Hd.z+temph.z; 
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 Cell[j].Ed=Cell[j].Ed-0.5*ProductofDot(Cell[j].M,temph);//4.22e5*Cell[i].Ms/Cell[j].Ms*ProductofDot(C
ell[j].M,temph); 

  } 

 } 

  

 for(int i=0;i<N;i++)//Caculation for self-demag 

  {   

  double NXX=0.333333333333333, NXY=0, NXZ=0; 

  double NYY=0.333333333333333, NYZ=0, NZZ=0.333333333333333; 

 

  temph.x=-(NXX*Cell[i].M.x+NXY*Cell[i].M.y+NXZ*Cell[i].M.z); 

  temph.y=-(NXY*Cell[i].M.x+NYY*Cell[i].M.y+NYZ*Cell[i].M.z); 

  temph.z=-(NXZ*Cell[i].M.x+NYZ*Cell[i].M.y+NZZ*Cell[i].M.z); 

 

  Cell[i].Hd.x=Cell[i].Hd.x+temph.x; 

  Cell[i].Hd.y=Cell[i].Hd.y+temph.y; 

  Cell[i].Hd.z=Cell[i].Hd.z+temph.z; 

  Cell[i].Ed=Cell[i].Ed-0.5*ProductofDot(Cell[i].M,temph);//4.22e5*ProductofDot(Cell[i].M,temph);
  

  } 

} 

Appendix A.4 Zeeman Field 

void CaculationForZeeman(Cell_Structure Cell[N]) 

{ 

 C_Vector ExternalHz; 
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 ExternalHz.x=ExternalHzX; 

 ExternalHz.y=ExternalHzY; 

 ExternalHz.z=ExternalHzZ; 

 

 for(int i=0;i<N;i++) 

 { 

  Cell[i].Hz.x=ExternalHz.x/Cell[i].Ms; 

  Cell[i].Hz.y=ExternalHz.y/Cell[i].Ms; 

  Cell[i].Hz.z=ExternalHz.z/Cell[i].Ms; 

 

 Cell[i].Ez=-(Cell[i].Hz.x*Cell[i].M.x+Cell[i].Hz.y*Cell[i].M.y+Cell[i].Hz.z*Cell[

i].M.z);  

 } 

} 
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Appendix B Calculation Algorithms for LLG equation 

 

C_Vector k; 

 C_Vector CrossProduct1; 

 C_Vector CrossProduct2; 

 double maxtorque; 

  

 FILE *fp2D=fopen( "mydata_2d.dat", "w" ); 

 FILE *fp3D=fopen( "mydata_3d.dat", "w" ); 

 FILE *fpE=fopen( "energy.dat", "w" ); 

 

 do{ 

  maxtorque = 0; 

  CaculationForExchange(Cell,ExchangeConst); 

  CaculationForAnisotropy(Cell); 

  CaculationForDemag(Cell,DemagTensor); 

  CaculationForZeeman(Cell); 

 

  for(int i=0;i<N;i++) 

  { 

   Cell[i].Etotal=Cell[i].Ee+Cell[i].Ea+Cell[i].Ed+Cell[i].Ez; 

   Cell[i].Htotal.x=Cell[i].He.x+Cell[i].Ha.x+Cell[i].Hd.x+Cell[i].Hz.x; 

   Cell[i].Htotal.y=Cell[i].He.y+Cell[i].Ha.y+Cell[i].Hd.y+Cell[i].Hz.y; 
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   Cell[i].Htotal.z=Cell[i].He.z+Cell[i].Ha.z+Cell[i].Hd.z+Cell[i].Hz.z; 

  } 

 

  for(int i=0;i<N;i++) 

  { 

   CrossProduct1=ProductofCross(Cell[i].M,Cell[i].Htotal); 

   Cell[i].torque=Norm(CrossProduct1); 

   if(maxtorque<Cell[i].torque) maxtorque=Cell[i].torque; 

 

   CrossProduct2=ProductofCross(Cell[i].M,CrossProduct1); 

   k.x=-CrossProduct1.x-ConstRetarder*CrossProduct2.x; 

   k.y=-CrossProduct1.y-ConstRetarder*CrossProduct2.y; 

   k.z=-CrossProduct1.z-ConstRetarder*CrossProduct2.z; 

 

   //The adaptive timestep should be set up here, need further work 

   Cell[i].M.x=Cell[i].M.x+k.x*timestep; 

   Cell[i].M.y=Cell[i].M.y+k.y*timestep; 

   Cell[i].M.z=Cell[i].M.z+k.z*timestep; 

   Cell[i].M=normalize(Cell[i].M); 

   if(ntime%5000==0)//Write a data into the recording file every 5000 iteratives 

   { 

    fprintf(fp3D, " %e %e %e %e %e %e\n", 
Cell[i].R.x*MS,Cell[i].R.y*MS,Cell[i].R.z*MS,Cell[i].M.x,Cell[i].M.y,Cell[i].M.z); 

    fprintf(fp2D, " %e %e %e %e\n", Cell[i].R.x*MS,Cell[i].R.y*MS,Cell[i].M.x,Cell[i].M.y);
   } 
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  printf("Cell[%d] M is(%g %g %g)\n",i,Cell[i].M.x,Cell[i].M.y,Cell[i].M.z); 

  }  

  if(ntime%1000==0)//Write a data into the recording file every 1000 iteratives 

   {  

    sumTotalE=0; 

    for(int i=0;i<N;i++) {sumTotalE=sumTotalE+Cell[i].Etotal;} 

    ii++;fprintf(fpE, " %d %e\n",ii, sumTotalE*(1./1000)*U0*MS*MS);  

   } 

  printf("Present maxium torque is %e\n",maxtorque); 

  printf("No. of Iteration is %e\n\n",time); 

  time=time+timestep; 

  ntime--; 

 }while(maxtorque>1e-5&&ntime>0); 
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Appendix C Fast Fourier Transform 

 

long FFTLengthMax; 

Complex * OmegaFFT; 

Complex * ArrayFFT0, * ArrayFFT1; 

Complex * ComplexCoef;  

double FFTSquareWorstError; 

long AllocatedMemory; 

 

/*Initialization*/ 

void InitializeFFT(long MaxLength) 

{ 

  long i; 

  double Step; 

 

  FFTLengthMax = MaxLength; 

  OmegaFFT = (Complex *) malloc(MaxLength/2*sizeof(Complex)); 

  ArrayFFT0 = (Complex *) malloc(MaxLength*sizeof(Complex)); 

  ArrayFFT1 = (Complex *) malloc(MaxLength*sizeof(Complex)); 

  ComplexCoef = (Complex *) malloc(MaxLength*sizeof(Complex)); 

  Step = 2.*PI/(double) MaxLength; 

  for (i=0; 2*i<MaxLength; i++) { 

    OmegaFFT[i].R = cos(Step*(double)i); 
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    OmegaFFT[i].I = sin(Step*(double)i); 

  } 

  FFTSquareWorstError=0.; 

  AllocatedMemory = 7*MaxLength*sizeof(Complex)/2; 

} 

 

/*do recursion of FFT*/ 

void RecursiveFFT(Complex * Coef, Complex * FFT, long Leng, long Step, long Sign) 

{ 

  long i, OmegaStep; 

  Complex * FFT0, * FFT1, * Omega; 

  double tmpR, tmpI; 

 

  if (Leng==2) { 

    FFT[0].R = Coef[0].R + Coef[Step].R; 

    FFT[0].I = Coef[0].I + Coef[Step].I; 

    FFT[1].R = Coef[0].R - Coef[Step].R; 

    FFT[1].I = Coef[0].I - Coef[Step].I; 

    return; 

  } 

 

  FFT0 = FFT; 

  RecursiveFFT(Coef,FFT0,Leng/2,Step*2,Sign); 

  FFT1 = FFT+Leng/2; 
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  RecursiveFFT(Coef+Step,FFT1,Leng/2,Step*2,Sign); 

 

  Omega = OmegaFFT; 

  OmegaStep = FFTLengthMax/Leng; 

  for (i=0; 2*i<Leng; i++, Omega += OmegaStep) { 

    /* Recursion formula for FFT : 

       FFT[i]          <-  FFT0[i] + Omega*FFT1[i] 

       FFT[i+Length/2] <-  FFT0[i] - Omega*FFT1[i], 

       Omega = exp(2*I*PI*i/Length) */ 

    tmpR = Omega[0].R*FFT1[i].R-Sign*Omega[0].I*FFT1[i].I; 

    tmpI = Omega[0].R*FFT1[i].I+Sign*Omega[0].I*FFT1[i].R; 

    FFT1[i].R = FFT0[i].R - tmpR; 

    FFT1[i].I = FFT0[i].I - tmpI; 

    FFT0[i].R = FFT0[i].R + tmpR; 

    FFT0[i].I = FFT0[i].I + tmpI; 

  } 

} 

 

/* Compute the complex Fourier Transform of Coef into FFT*/ 

void FFT(double *Coef,long Leng, Complex *FFT,long NFFT) 

{ 

  long i; 

  /* Transform array of real coefficient into array of complex  */ 

  for (i=0; i<Leng; i++) { 
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    ComplexCoef[i].R = Coef[i]; 

    ComplexCoef[i].I = 0.; 

  } 

  for (; i<NFFT; i++) 

    ComplexCoef[i].R = ComplexCoef[i].I = 0.; 

  RecursiveFFT(ComplexCoef,FFT,NFFT,1,1); 

} 

 

void InverseFFT(Complex * FFT, long NFFT, double * Coef, long Leng) 

{ 

  long i; 

  double invNFFT = 1./(double) NFFT, tmp; 

  RecursiveFFT(FFT, ComplexCoef, NFFT, 1, -1); 

  for (i=0; i<Leng; i++) { 

    /* Closest integer to ComplexCoef[i].R/NFFT */ 

    tmp = invNFFT*ComplexCoef[i].R; 

    Coef[i] = tmp; 

    //if ((tmp-Coef[i])*(tmp-Coef[i])>FFTSquareWorstError) 

      //FFTSquareWorstError = (tmp-Coef[i])*(tmp-Coef[i]); 

  } 

} 
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Appendix 4  Units for Magnetic Properties in cgs emu and SI system 

From R. B. Goldfarbt, Department of Commerce, National Bureau of Standards. 1985.  

 Symbol Gauss & cgs emua 
Conversion 

Factor 
SI & rationalized mksc 

Magnetic flux density, magnetic induction B Gauss (G)d 10-4 tesla (T), Wb/m2 

Magnetic flux Φ 
Maxwell (Mx), 

G·cm2 
10-8 

weber (Wb), volt second 

(V·s) 

Magnetic potential difference, magnetomotive force U, F Gilbert (Gb) 10/4π ampere (A) 

Magnetic field strength, magnetizing force H 
Oersted (Oe), e 

Gb/cm 
103/4π A/mf 

(Volume) magnetization M emu/cm3h 103 A/m 

(Volume) magnetization 4πM G 103/4π A/m 

Magnetic polarization, intensity of magnetization J, I emu/cm3 4π × 10-4 T, Wb/m2i 

(Mass) magnetization σ, M emu/g 

1 

4π × 10-7 

A·m2/kg 

Wb·m/kg 

Magnetic moment m emu, erg/G 10-3 A·m2 , joule per tesla (J/T) 

(Volume) susceptibility χ, κ 
dimensionless, 

emu/cm3 

4π 

(4π)2 × 10-7 

dimensionless 

henry per meter (H/m), 

Wb/(A·m) 

(Mass) susceptibility χρ, κρ cm3/g, emu/g 

4π × 10-3 

(4π)2 × 10-10 

m3/kg 

H·m2/kg 

(Molar) susceptibility χmol, κmol cm3/mol, emu/mol 

4π × 10-6 

(4π)2 × 10-13 

m3/mol 

H·m2/mol 

Permeability µ dimensionless 4π × 10-7 H/m, Wb/(A·m) 

Relative permeability µr not defined — dimensionless 

(Volume) energy density, energy product W erg/cm3 10-1 J/m3 
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