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Abstract 

 
Dry abrasive blasting is one of the most widely used methods of surface preparation. Air 

emissions from this process include particulate matter (PM) and metals. Spent abrasive generated 

from this process may be hazardous in nature. With increasing concern on health effects due to 

silica emissions from sand, use of alternative materials is suggested by health and regulatory 

agencies.  

 

The objective of this research was to evaluate performance of expendable abrasives and 

determine PM emission factors. Dry abrasive blasting was performed in an enclosed chamber 

and total PM samples were collected. Three commonly used expendable abrasives, coal slag, 

copper slag and specialty sand, were used to evaluate cleaner alternatives. Blast pressure and 

abrasive feed rate, two important process conditions were varied to study their effect on 

performance of an abrasive. Productivity, consumption and emission factors (performance 

parameters) were calculated and their variation with pressure and feed rate was evaluated. Two 

dimensional and three dimensional predicted models were developed to estimate the 

performance at intermediate blast pressure and feed rate conditions. Performance of the three 

abrasives was compared with respect to emission potential, productivity and consumption.  

 

Emission factors developed in this research will help in accurate estimation of total PM 

emissions and to select cleaner abrasives and optimum process conditions that will results in 

minimum emissions and reduced health risk. 
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The productivity and consumption models will help is estimating life cycle costs including 

material cost, equipment cost, energy cost, labor costs, waste disposal cost, and compliance 

costs. Consumption models will also help in determining the quantity of spent abrasive 

generated, identify abrasives with lower material consumption, and identify process conditions 

that generate minimum spent abrasives. In addition, these models will help industries in making 

environmentally preferable purchasing (EPP), which results in pollution prevention and cost 

reduction. 
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1. Introduction 

 Dry abrasive blasting is one of the widely used methods of surface preparation for steel 

or metal surfaces. This process is used to create a rough profile and to remove contaminants such 

as rust or old coating before applying a new coating to ensure proper bonding between the 

surface and coating. Several industries such as aerospace, automobile, bridge construction, metal 

finishing, shipbuilding and ship repair use dry abrasive blasting for preparation and maintenance 

of steel or other metal surfaces (U.S. ACE 1995, U.S. EPA 1997a). In this process, abrasive 

materials are propelled at high velocities with the aid of compressed air. The energy transfer 

between the abrasive grains and base plate results in removal of contaminants and creation of 

rough profile (U.S. ACE 1995).  

 Some of the commonly used abrasives are coal slag, copper slag, garnet, silica sand, 

specular hematite (barshot), steel grit, steel shot, aluminum oxide, silicon carbide etc. (U.S. EPA, 

1997a). Dry abrasive blasting process results in air emissions (particulate matter and metals) and 

spent blast media which may be harmful to human health and environment (U.S. EPA 1997b). 

Silica sand has been widely used as an abrasive material due to its low cost and abundant 

occurrence in nature. However, silica dust emissions from abrasive blasting with silica sand have 

been of great concern due to adverse health effects on workers upon exposure to these emissions. 

Thus, use of alternative materials to silica sand is suggested by several health organizations and 

environmental agencies (NIOSH 1998, Abrasive Blasting, 1995) to protect worker health as well 

as the environment. 

 In addition, owing to the environmental impacts of the process and waste management 

challenges faced for safe disposal of the wastes, United States Environmental Protection Agency 

(US EPA) encourages industries, businesses, and institutions to make environmentally preferable 
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purchasing (EPP), which means considering the environmental impacts (air and water pollution, 

toxic wastes), energy-efficient technologies and material performance prior to purchasing 

materials. This will result in resource conservation, waste minimization, minimization of energy 

consumption, and extension of landfill capacity. In addition, costs incurred due to material 

purchase, energy consumption, waste management and disposal can be reduced by EPP (U.S. 

EPA 1994, U.S. EPA 2001). 

 In order to address and achieve the above mentioned objectives, namely, protect worker 

health, environment and make EPP, it is important to evaluate waste generation potential (air 

emissions and spent abrasive) and performance of alternate abrasive materials as well as 

understand the effect of various parameters that affect performance and waste generation 

potential. Performance of abrasive in dry abrasive blasting depends on properties of abrasive 

material (size, shape, hardness, and chemical composition), blast pressure, abrasive feed rate, 

nozzle size, base plate (substrate), surface contamination, quality of desired finish and others 

(U.S. ACE 1995). While some abrasives can be reused in abrasive blasting, others can not be 

reused due to their properties such as hardness and dust generation rate. These materials are 

called expendable or non-reusable abrasives. The goal of this research was to evaluate 

performance of expendable abrasives to identify cleaner alternatives and process conditions that 

will result in pollution prevention and cost reduction. 
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2. Scope and Objectives 
 

 Existing literature provides limited data on performance, process conditions and test 

procedures adopted for evaluating the performance of alternative materials for dry abrasive 

blasting. This research was focused on evaluating performance of three of the most commonly 

used expendable (single use) abrasive materials, namely coal slag, copper slag and specialty 

sand, on painted mild steel surfaces.  

 The primary objectives of this research were: 

Objective 1:  The first objective of this research was to determine emission factors for   

  total particulate matter (TPM). Emission factors help in quantifying the   

  emissions released from a process and these are important input    

  parameters in developing emission inventories. 

Objective 2: The second objective of this research was to determine productivity. Productivity 

(or cleaning rate) determines how fast the surface can be cleaned (area cleaned 

per unit time). The higher the productivity, the faster the cleaning rate and less 

consumption of energy. Higher productivity also results in reduced labor and 

energy costs. 

Objective 3: The third objective of this research was to determine consumption.  Consumption 

is the amount of material used to clean a unit area. Lower consumption results in 

better conservation of resources, reduced amounts of wastes generated and 

efficient use of landfills for waste disposal. In addition, lower consumption results 

in reduced material costs, waste management and disposal costs. 

Objective 4: The fourth objective of this research was to identify optimum process   

  conditions (blast pressure and abrasive feed rate) to minimize total PM   
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  emissions and abrasive consumption, and maximize productivity. Since   

  the performance of an abrasive depends of process conditions, it is    

  important to study the variation of performance with process conditions to   

  achieve maximum efficiency through process optimization. 

Objective 5: The fifth objective of this study was to develop predictive mathematical   

  models to estimate total PM emission factors, productivity and    

  consumption at intermediate operating conditions for a specific abrasive   

  material. These models will help industries and regulatory agencies in   

  determining accurate TPM emissions and assist in life cycle cost and   

  assessment methodologies with more accurate data on productivity and   

  consumption. 

Objective 6: The sixth objective of this research was to compare the three abrasives   

  based on emission factors, productivity and consumption. 
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3. Literature Review 

3.1. Dry Abrasive Blasting 
 
 Surface preparation methods are used to remove impurities such as rust, corrosion, and 

old coatings from a substrate and create a rough profile (or anchor pattern) that will help better 

adhesion of new coating as well as improve the performance of new coating. Some of the most 

commonly used methods are dry abrasive blasting, wet abrasive blasting, hydro blasting (water 

blasting), chemical stripping, and vacuum blasting. Dry abrasive blasting is one of most effective 

and widely used methods of surface preparation. In this method, an abrasive material is mixed 

with compressed air and this mixture is projected onto the surface. The pressurized air 

(compressed air) imparts high velocities to the abrasive particles. The mass of abrasive particles 

and high velocity imparted by the compressed air create kinetic energy, which is given by ½ 

mV2, where m is the mass and V is the velocity of the abrasive material. The energy transfer 

between the abrasive material and the surface is responsible for removing the contaminants and 

creating the required profile (U.S. ACE 1995, U.S. EPA 1997a). The equipment used in this 

process is discussed in the Methodology Section.  

3.2. Pollutant Outputs and Their Effects on Health and Environment 

3.2.1. Air Emissions 

 The abrasive particles, when bombarding the surface at high velocities, remove the 

contaminants and breakdown into smaller particles. This process releases particulate matter (PM) 

that includes blast material as well as contaminants removed (U.S. ACE 1995, U.S. EPA 1997a, 

NIOSH 1998). These particles vary in size and may contain metals such as arsenic, cadmium, 

chromium (trivalent and hexavalent), lead, manganese, nickel, and titanium (NIOSH 1998, 
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NSRP 1999, Vallyathan et al 1999, Conroy et al 1996, MacKay et al 1980). Particulate 

emissions are of great concern due to the health effects, visibility impairment, ecosystem 

imbalance and aesthetic damage. Fine particulates can be carried over long distances and settle 

on ground or water. This may make lakes and streams acidic, change nutrient balance is coastal 

waters, and deplete nutrients in soil. Inhalation of particulate matter causes respiratory problems, 

asthma, chronic bronchitis, and decreased lung function (U.S. EPA, Dockery et al 1993, 

Oberdorster 1995, Pope et al 1995). Recent studies (Wilson et al 1985, Daigle et al 2003, U.S. 

EPA, 2004a, U.S. EPA, 2004b, Voutilainen et al 2004) on health effects of PM show that fine 

(PM less than 2.5 μm in diameter) and ultrafine particles (PM less than 0.1 μm in diameter) have 

significantly greater effects on respiratory systems and lung functions because finer particles are 

absorbed into the respiratory system and lungs as compared with coarser particles. Moreover, 

ultrafine particles deposited in lungs release toxic compounds (associated with PM) faster than 

fine and coarse particles. The emissions may be toxic due to heavy metals present in airborne 

particulates and exposure to these emissions may cause adverse health effects (specific) (Hubbs 

et al 2001, Vallyathan et al 1999, Conroy et al 1996, MacKay et al 1980, NIOSH 2001). Most 

importantly, exposure to silica dust emitted from sandblasting, abrasive blasting with silica sand, 

causes silicosis (NIOSH 1974, Lipton and Herring 1996, Rappaport et al 2003). 

3.2.2. Solid/ Hazardous Waste 

 While lighter particles get airborne, heavier particles fall off and this waste (spent 

abrasive) contains both abrasive materials and contaminants removed such as rust or paint chips. 

The waste may be toxic if the abrasive material or surface contamination contains heavy metals 

such as arsenic, lead, chromium, and others (NFESC 1996, Townsend 1997, NAVFAC 1998, 

Angie and Wayne 1999). In case of removal of coatings that contain lead or antifouling agents, 
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the waste generated may be hazardous (U.S. EPA 1997b). The spent abrasive media may be 

recycled or reused for blasting operations or other purposes if the material is clean enough and 

meets the regulatory requirements for recycling and reusing options. If the spent abrasive cannot 

be recycled or reused, it must be disposed of as a solid or hazardous waste in landfills depending 

on the toxic characteristics of the waste, which are determined by Toxicity Characteristic 

Leaching Procedure (TCLP) tests (Townsend 1997, NFESC 1996, Angie and Wayne 1999).  

3.3. Important Parameters in Dry Abrasive Blasting 

3.3.1. Abrasive Material 

 Proper selection of abrasive material is essential to achieve maximum efficiency in dry 

abrasive blasting. Some of the important parameters are: abrasive cost, abrasive type, 

characteristics of the material, surface to be cleaned, contaminants to removed, level of 

contamination, surface finish desired (cleanliness and profile), waste generation potential, 

consumption rate, reusability, and others. Significance of some of these parameters is discussed 

in this section. 

 3.3.1.1. Abrasive type 

 Abrasive materials are generally categorized into slag abrasives, metallic abrasives, 

natural abrasives, and synthetic abrasives. The slag abrasives are by-products from smelting and 

combustion processes. Coal slag, copper slag, and nickel slag are some of the most widely used 

slag abrasives. These abrasives have high breakdown rates and thus, slag abrasives are generally 

not reused. Due to their dark color, these materials may leave dark residue on the blasted surface. 

Metallic abrasives such as steel grit, steel shot, and cast iron are manufactured abrasives. These 

abrasives are hard and can be reused many times. Natural abrasives include silicates (sand, 

garnet, olivine), hematite and others. The abrasive properties of these naturally occurring 
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materials are enhanced by washing and grading the material. Synthetic abrasives include 

aluminum oxides, aluminum silicates, calcium silicate, crushed glass, glass beads, and others. 

The performance of these abrasives depends on the surface type and contamination to be 

removed (U.S. EPA 1997a, Paddison 2000, Hansink 2000) 

 3.3.1.2. Abrasive particle size 

 Particle size of abrasive material is an important factor in selection of abrasives. The size 

of abrasive particles varies widely between 0.06 to 2 mm. Too fine or coarse particles may not be 

effective in removing contamination and creating the desired profile. While larger particles cut 

deep into the surface and create deep surface profile, smaller particles create shallow profiles. In 

addition, if the particle size is too high, a smaller number of particles impact the surface which 

increases material consumption and decreases productivity as compared to smaller particles that 

result in greater number of impacts per unit surface area. Since abrasive particles breakdown into 

smaller particles upon striking the surface, too fine abrasive materials may release very fine PM, 

which is of great concern due to associated health effects. While a mixed size of particles may 

result in better performance, particle size is important when selecting reusable or expendable 

(single use) abrasives. In case of reusable abrasives, it is important to select an abrasive particle 

size which results in efficient size of reusable abrasive material after breaking down into smaller 

particles (U.S. ACE 1995, Paddison 2000, Hansink 2000). 

 3.3.1.3. Abrasive particle shape 

 The shape of abrasive particles is important in determining the surface profile required. 

While angular particles cut the surface, round particles peen the surface. Thus, round particles 

such as steel shot and glass beads are effective for removing mill scale and angular particles such 
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as steel grit, slags, and other metallic grits are effective for creating a rough profile (U.S. ACE 

1995, Hansink 2000). 

 3.3.1.4. Hardness 

 Hardness of an abrasive material indicates its resistance to abrasion by other materials. 

Hardness of abrasives is measured on Mohs scale of hardness. Metallic and slag abrasives have 

higher hardness (6 – 8 Mohs) and cut deeper and faster than soft or brittle abrasives such as 

organic or plastic abrasive media (2 – 4 Mohs) reducing their cleaning efficiency (U.S. ACE 

1995, Paddison 2000, Hansink 2000). 

 3.3.1.5. Specific gravity 

 As mentioned earlier in Section 3.1, the kinetic energy of the abrasive particles is given 

by ½ mV2. Mass of abrasive material, m, is proportional to specific gravity (SG) of the abrasive 

particles. Abrasives with higher SG are more efficient and clean faster, which increase 

productivity (Paddison 2000, Hansink 2000). 

 3.3.1.6. Density 

 Density of abrasive material is important in selecting the size of blast pot and storing the 

abrasive material. Since lower density abrasives occupy more volume for the same mass, bigger 

blast pot and greater storage area are needed as compared to abrasives with higher density, which 

occupy less volume and need smaller blast pots and storage areas (Hansink 2000). 

3.3.2. Process Parameters and Equipment 

 3.3.2.1. Blast pressure 

 Blast pressure determines the velocity of abrasive particles and hence kinetic energy 

acquired by the particles. Thus, increase in pressure increases the kinetic energy of particles and 

hence the impact on a surface. This results in higher productivity. However, at very high 
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pressures, the particles may suffer more damage due to collision of these particles with 

rebounding particles before striking the surface and reduce productivity, increase consumption, 

and results in higher emissions.  In addition, blasters may not be able to handle these high 

pressures and must be provided with additional protection. At very low pressures, the velocity of 

particles is less and the particles may not strike the surface with sufficient impact to remove 

contaminants and create required profile. This will result in decreased productivity and increased 

consumption since more material is required to clean a unit surface area. Very low pressures may 

also result in fewer emissions due to less breakdown rate at lower velocities (Clemco Industries 

1989, Hansink 1995, Holt and Austin 2001, Paddison 2000, Seavey 1985). Thus, it is important 

to select an optimum pressure that results in high productivity, low consumption, and low 

emissions while providing a safe working environment for workers. 

 3.3.2.2. Abrasive feed rate  

 Feed rate determines the mass flow rate of abrasive. Very low feed rates may result in 

uneven distribution of particles and decrease productivity while consuming more material. As 

the feed rate is increased, more abrasive is released which increases productivity and more 

number of abrasive particles breakdown, causing increase in emissions. However, at very high 

feed rates, the same effect may not be observed because abrasive particles collide with 

rebounding particles and decrease productivity while consuming more material. An increase in 

emissions may occur at very high feed rates due to more number of particles participating in the 

abrading action (Clemco Industries 1989, Hansink 1995, Paddison 2000). Thus, it is important to 

regulate the flow of material to achieve maximum efficiency from a given mass of abrasive 

while reducing emissions. 
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3.3.2.3. Nozzle size 

 Nozzle sizes used in abrasive blasting typically range from 1/8 inch to 1/2 inch orifice 

diameter. While larger nozzles may increase productivity by increasing the number of impacts 

per unit time by allowing more abrasive to flow through the nozzle, smaller nozzles may also 

increase productivity due to increase in blast pressure. However, for the same volume of air, 

larger nozzles require high capacity compressors to provide required blast pressure to achieve 

higher productivity (U.S. ACE 1995, Gorripati 2000). Thus, selecting the proper size of nozzle is 

important in maintaining required blast pressure and determining the capacity of air compressor. 

 3.3.2.4. Nozzle type 

 Venturi and straight-bore nozzles are two types of nozzles used in abrasive blasting 

process. Venturi nozzles converge to specified orifice diameter at the center of the nozzle and 

then diverge. This enables an increase of exit velocity of abrasive particles and thus increases the 

productivity. Straight-bore nozzles have uniform diameter throughout the length of the nozzle. 

Thus, venturi nozzles provide higher cleaning rate as compared to straight-bore nozzles. Blast 

nozzles are available in various lengths, diameters and lining materials. The life of a nozzle 

depends on the lining materials. Nozzles lined with tungsten or boron carbides have longer life 

than the nozzles lined with ceramic or cast iron (U.S. ACE 1995, Gorripati 2000). 

 3.3.2.5. Angle of deflection 

 Angle of deflection or angle of attack is the angle of the nozzle with respect to the work 

piece or surface being blasted. This parameter depends on the surface contamination being 

removed and varies between 45 to 90 degrees. While for removing rust and mill scale, angle of 

deflection may vary from 80 to 90 degrees whereas for removing old coatings, it may vary from 
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45 to 60 degrees (U.S. ACE 1995). In some cases, nozzles held at an angle of greater or lesser 

than 90 degrees may scour the surface (Gorripati 2000). 

 3.3.2.6. Stand-off distance 

 Stand-off distance is the distance between the nozzle and the work piece or surface. This 

may vary from 6 to 24 inches (15 to 60 cm). The closer the distance, the smaller the blast pattern. 

In case of removing mill scale or heavy levels of contamination, a lesser stand-off distance 

creates greater impact and increases cleaning power. However, this may reduce productivity due 

to decreased blast pattern. For removing smaller levels of contamination, this distance may be 

increased to increase the blast pattern and thus achieve higher productivity. Hence, optimum 

stand-off distance is important since it affects the blast pattern, productivity and impact of the 

abrasive material (U.S. ACE 1995, Gorripati 2000). 

 3.3.2.7. Dwell time 

 Dwell time is the amount of time spent cleaning a particular area on the surface to 

achieve required cleanliness and profile. For removing lightly adhered contaminants or smaller 

levels of contamination, shorter periods will achieve the desired finish. When removing tightly 

adhered contaminants or greater levels of contamination, it may take longer time to clean the 

surface. In addition, if the nozzle is held close to the surface, lesser dwell time is required as 

compared to when nozzle is held far from the surface. Thus, angle of deflection and stand-off 

distance also affect dwell time (Gorripati 2000, Technology Publishing Company 1999). 

3.3.3. Initial Surface Contamination 

 Performance of an abrasive also depends on the type of contamination to be removed. For 

heavy levels of contamination, it may take longer time and consume more material to clean a 

unit surface area. This will decrease productivity, increase consumption and waste quantities 
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generated. The type of contamination being removed such as rust, mill scale or paint determines 

the toxic characteristics of the emissions and spent abrasive generated. In the case of removing 

lead-based paints, resulting wastes may be toxic due to the presence of lead.  

In addition, depending on the properties of abrasive such as particle size, shape and 

hardness, a particular abrasive may be more effective in removing rust while another abrasive 

may be more effective in removing paint. Thus, it is important to determine level and 

composition of the contaminants being removed to achieve maximum efficiency from an 

abrasive material and the dry abrasive blasting process. 

3.3.4. Desired Surface Finish  

 Proper adhesion of new coating is important to its life and effectiveness.  Thus, the 

surface must be free of underlying dust and contamination. In addition, surface roughness or 

profile is important for the new coating to adhere to the surface since it provides more surface 

area for adhesion. For commercial steel structures, the Society of Protective Coatings provides 

surface preparation standards in terms of quality of the finish. For example, SP-5 refers to a 

white metal blasting, which involves removal of all visible rust, mill scale, paint and 

contaminants, leaving the metal uniformly white or gray in appearance. SP-6 refers to a 

commercial blast cleaning. According to this standard, all oil, grease, dirt, rust scale, old paint 

and foreign matter must be completely removed from the surface except for slight shadows, 

streaks or discolorations caused by rust stain, mill scale oxides, or slight, tight resides of paint or 

coating that remain. SP-10 refers to brush-off blast finish. This standard requires removal of all 

oil, grease, dirt, mill scale, rust, corrosion products, paint, or other foreign matter, except for very 

light shadows, very slight streaks or slight discolorations caused by rust stain, mill scale oxides, 

or slight residues of paint or coating. At least 95% of each square inch of surface area shall be 
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free of all visible residues (SSPC). The higher the quality of surface finish, the higher abrasive 

consumption will be, air emissions, quantity of spent abrasive, and the lower productivity will be 

since more material and time are consumed to clean a unit surface area. Thus, desired surface 

finish or degree of cleaning is an important factor that must be considered while selecting an 

abrasive material, process conditions and evaluating performance of abrasive materials. 

3.3.5. Waste Generation Potential 

 Waste generation potential of an abrasive is important to evaluate health, safety and 

environmental impact of the material as well as environmental compliance and waste disposal 

costs in dry abrasive blasting. This depends on a number of factors including breakdown rate, 

dust generation rate, and chemical composition. Abrasives with smaller particle size and brittle 

properties generate more dust since they breakdown easily into very fine particles. In addition, 

composition of the abrasive material such as metals, free silica content and other toxic chemicals 

is important to assess the toxicity of both air emissions and spent abrasives. With increasing 

concern on health effects due to silica emissions, abrasives with less free silica content (<1%) 

must be used to protect worker health. Abrasive materials with less potential for waste 

generation and decreased health risk due to exposure to toxic emissions, reduce the quantities 

and concentrations of hazardous waste generated. Industries can reduce the costs incurred due to 

environmental compliance and waste disposal (U.S. ACE 1995, NIOSH 1998, Appleman et al. 

1998). 

3.3.6. Reusability 

 Based on the reusability of abrasives, they can be categorized into reusable and non-

reusable or expendable abrasives. Abrasive properties such as particle size, hardness and 

breakdown rate determine reusability of an abrasive. If the particle size of abrasive material is 
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too low or if the breakdown rate abrasive is too high, the spent abrasive generated may be too 

fine to create the desired surface finish. And abrasives with high breakdown rates generate 

significant amounts of dust, decrease productivity and increase abrasive consumption. Slag 

abrasives such as coal slag and copper slag generate high dust and breakdown easily. Thus, the 

materials are not reused. Harder abrasives such as steel grit and garnet may be reused for a 

number of times based on their particle size and breakdown rate (U.S. ACE 1995, Paddison 

2000, Hansink 2000). While non-reusable abrasives are cheaper than reusable abrasives, overall 

costs incurred due to reuse of abrasives and cost of recycling the spent abrasive for reuse must be 

considered while selecting an abrasive. 

3.4. Regulations 

3.4.1. Federal Regulations 

 3.4.1.1. Clean Air Act (CAA) 

 The Clean Air Act and the Clean Air Act Amendments (CAAA) of 1990 are intended to 

protect and enhance the nation’s air resources, promote public health, and protect the 

environment. Ambient air quality is regulated by the National Ambient Air Quality Standards 

(NAAQS), established for six criteria pollutants: carbon monoxide, lead, nitrogen dioxide, 

ozone, PM, and sulfur dioxide (U.S. EPA 2004). Of the six criteria pollutants, particulates and 

lead (in case of lead-based paints) can be generated during dry abrasive blasting. Particulate 

matter (PM) is a mixture of solid and liquid particles suspended in air. PM may be directly 

emitted from industrial processes and motor vehicles. PM may also be formed in atmosphere due 

to chemical reaction of pollutants from these sources.  
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 The size and composition of PM varies widely and particulates less than 10 micrometers 

in diameter (PM10) cause serious health effects. Larger particles cause irritation to eyes, nose, 

and throat (U.S. EPA, 2003). Exposure to PM has been associated with various health effects 

including asthma, chronic bronchitis, premature death, decreased lung function, and severe 

respiratory problems (U.S. EPA 2003, Pope et al. 1995, Atkinson et al. 2001, Schwartz 2004, 

Dockery et al. 1993). Thus, in order to regulate these PM concentrations, NAAQS established 

new standards for PM10, PM2.5. Two types of standards, primary standards and secondary 

standards are developed to protect public health, and to prevent environmental damage 

respectively. Current NAAQS for PM10, PM2.5, and lead are shown in Table 1. 

Table 1: NAAQS for PM10 and PM2.5 
Pollutant Primary Standard Secondary Standard Averaging Time 

PM10 50 µg/m3 Same as Primary Annual 

 150 µg/m3  24-hour 

PM2.5 15.0 µg/m3 Same as Primary Annual 

 65 µg/m3  24-hour 

Lead (Pb) 1.5 µg/m3 Same as Primary Quarterly 

 

 In addition, EPA initiated “Particulate Matter Research Program” to understand the 

relationships between sources, exposure mechanisms and health effects of PM (U.S. EPA 2004). 

EPA and state environmental regulatory agencies are required to maintain and implement these 

standards. If ambient air concentrations exceed the NAAQS, regulatory agencies may impose 

stringent emission limits for industrial sources. Emission factors developed in this research will 

greatly help in determining the PM emission quantities and the effect of an abrasive blasting 

source on ambient air can be studied by atmospheric dispersion modeling. By carefully selecting 
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an abrasive and process conditions, PM emissions can be reduced thereby attaining the emission 

limits and NAAQS. 

 3.4.1.2. Resource Conservation and Recovery Act (RCRA) 

 Resource Conservation and Recovery Act regulates the waste generated from industrial 

processes. Based on the characteristics of the waste, it is categorized as solid waste or hazardous 

waste. Removal of coating may result in hazardous waste based on composition of the coating. 

In case of hazardous waste, waste must be properly contained and disposed of to comply with the 

generator, transporter, treatment, storage, and disposal (TSD) regulations. Facilities that generate 

at least 100 kilograms of hazardous waste per month must comply with the hazardous waste 

generator requirements according to 40 CFR Part 262 (PCRC, U.S. EPA, 1997b). Some of 

sources of hazardous waste in dry abrasive blasting are toxic metals and blast media 

contaminated with paint chips. Based on the consumption of abrasive materials, industries will 

be able to estimate the quantities of spent abrasives and hazard wastes generated. With proper 

selection of materials and process conditions, waste generation and costs incurred due to waste 

management can be minimized. 

 3.4.1.3. Clean Water Act (CWA) 

 Clean Water Act regulates discharges of wastewater streams containing heavy metals, 

toxic organics, and conventional pollutants. If the wastewater is discharged into rivers, lakes or 

oceans, the facilities must comply with effluent limits according to National Pollutant Discharge 

Elimination System (NPDES). Facilities that discharge wastewater streams into Publicly Owned 

Treatment Works (POTW) must meet the effluent limits in their POTW agreements. Blast media 

and residue from coating removal may contaminate waster streams or during clean up operations. 

Some of the regulated pollutants such as lead, cadmium, zinc, total suspended particles may be 
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present in the wastewater generated from dry abrasive blasting. Facilities must periodically 

monitor the wastewater to demonstrate compliance with the regulations. In case of exceeding the 

effluent limits, facilities must treat the wastewater prior to final discharge (PCRC, Shipbuilding 

Sector Notebook). Material substitution and process optimization will help in minimizing both 

quantities and characteristics of wastewater generated and storm water contamination during 

abrasive blasting. 

 3.4.1.3. Occupational Safety and Health Administration (OSHA) 

 In order to protect worker health from exposure to PM, silica dust, lead and other toxic 

emissions, the Occupational Safety and Health Administration regulates health hazards due to 

abrasive blasting. Abrasives with higher free silica content generate silica dust, which is 

associated with acute silicosis, bronchitis, and lung cancer. OSHA enforces permissible exposure 

limits (PEL) to reduce exposure of workers to respirable silica emissions. OSHA also suggests 

using abrasives with less free silica contents. Other health hazards regulated by OSHA include 

metal emissions, noise, and mechanical hazards during abrasive blasting. Abrasive blasting at 

very high pressures may cause severe damage to workers limbs. Proper personal protective 

equipment, engineering controls, worker training, and periodic medical examinations must be 

employed to comply with the OSHA regulations (PCRS, NIOSH 1998). Emission potential of an 

abrasive material can be determined by emission factors. Selecting a material with less emission 

potential will reduce the emissions as well as exposure of workers to hazardous emissions. In 

addition, selecting process condition to achieve maximum productivity will reduce the exposure 

time and health risk associated with longer exposure time.  
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3.4.2. State Regulations and Guidelines 

 Due to significant hazards from silica-based abrasives and enormous amounts of dust 

generated during abrasive blasting, many state agencies restrict the use of silica sand for outdoor 

blasting and suggest using alternative materials to reduce silica emissions and their health effects 

on workers and public. Regulations and guidelines by some of the state environmental agencies 

are discussed in this section. 

 3.4.2.1. Bay Area Air Quality Management District (BAAQMD) 

 BAAQMD protects public health environment in San Francisco Bay region. BAAQMD 

provides permit requirements, and performance standards for facilities that carry out abrasive 

blasting operations (BAAQMD 1990, BAAQMD 1998). Abrasive materials used for unconfined 

blasting operations must comply with particle size standards. According to these standards,  

before blasting “Before blasting, the abrasive shall not contain more than 1% by weight material 

passing a #70 U.S. Standard sieve when tested in accordance with “Method of Test for Abrasive 

Media Evaluation,” Test Method No. California 371-A. Certified abrasives re-used for dry 

unconfined blasting must conform with Section 12-4-305.1”. In order to control size of PM 

emissions after blasting, “the abrasive shall not contain more than 1.8% by weight material five 

micron or smaller when tested in accordance with “Method of Test for Abrasive Media 

Evaluation”, Test Method No. California 371-A. Certified abrasives re-used for dry unconfined 

blasting are exempt from Section 12-4-305.2”. All abrasive materials used for unconfined 

blasting must be certified by California Air Resources Board (CARB). Confined blasting shall be 

used for all abrasive blasting operations except when (a) using steel grit, steel shot, iron grit or 

iron shot, (b) When the structure or item being blasting exceeds 8 feet in height, 8 feet in width, 

or 10 feet in length, and (c) When the structure is at its permanent location. 
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3.4.2.2. Louisiana Department of Environmental Quality (LDEQ) 

 LDEQ regulates environmental quality of Louisiana State to protect the environment, 

public health, and safety. Steel fabrication, shipbuilding, metal cleaning and any activity that 

uses abrasives blasting must comply with regulations specified in LAC 33:III.1305.3 (LDEQ 

1998). Some of the applicable regulations are discussed in this section. In case of outdoor 

blasting, shrouds must be used at all the times during blasting to confine air emissions from 

escaping into atmosphere. These shrouds (a) must be placed close to blast area to prevent 

dispersion of emissions in larger areas, (b) must have overlapping seams to prevent leakage of 

PM emissions, and (c) must repair tears greater than one foot in length before blasting is carried 

out. Industries must use abrasives that contain less than 1% (by mass) of fines that would pass 

through a No.80 sieve. Abrasive with less dust generation rates must be used. Materials derived 

from hazardous, toxic, medical or municipal wastes are prohibited from use as abrasive 

materials. In case of indoor blasting, the blast cabinets must be equipped with exhaust systems 

and emission control equipment. 

 Industries must maintain a daily record of actual operating times and monthly records of 

abrasive material usage with percentage mass of fines as specified by the manufacturer. During 

blasting, precautions must be taken to prevent PM from becoming airborne. To minimize 

hazardous waste generation, personnel must maintain optimum blast pressure levels, minimize 

contamination of abrasive materials with hazardous wastes or lead paints, and remove spent 

abrasives prior to working with surface that contain lead-based coatings. 

3.4.2.3. Texas Natural Resource Conservation Commission (TNRCC) 
 
 TNRCC’s Air Permits Division provides permit application information and applicable 

regulations for facilities that perform dry abrasive blasting (TNRCC 2001). Facilities must 
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submit information on type abrasive blasting, abrasive materials and quantities used, size of blast 

cabinet (in case of enclosed blasting), control equipment data, exhaust system data and methods 

of disposal of wastes generated in order to obtain an operating permit (TNRCC 1993). 

 Facilities must estimate hourly and annual TSP and PM10 emissions using emission 

factors specified by TNRCC. In addition, off-property concentrations of all chemicals must be 

estimated. The off-property concentrations of PM cannot exceed 400 μg/m3 for any one-hour 

period and cannot exceed 200 μg/m3 for any three-hour period. In addition, the facilities must 

comply with NAAQS for PM10, PM2.5, and lead emissions. 

3.5. Available Data for Emission Factors 

 Emission inventories are important tools for air quality management. These are used to 

determine applicability of permitting programs, identify major sources of pollutants, and develop 

emission control technologies. Emission factors (EF) are key input parameters for developing 

emission inventories. Since 1972, U.S. EPA has been compiling and publishing emission factors 

for various pollutants from a variety of stationary point and area sources in AP-42 documents 

(U.S. EPA 1997c). An emission factor is defined as the quantity of pollutant released to the 

atmosphere from a source in relation to an activity. Generally, emission factors are expressed in 

terms of weight of pollutant emitted per unit weight, duration, volume or distance of the activity 

that emits the pollutant. Usually, emission quantities are estimated using Equation 1 given 

below: 
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where:  E = emissions, A = activity rate, EF = uncontrolled emission factor, and ER = overall 

emission reduction efficiency, %. 
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 Emission factors can be developed using mass-balance approach, emissions monitoring, 

engineering calculations, or a combination of these methods. AP-42 documents provide emission 

factor ratings to indicate the robustness, or appropriateness of emission factors based on source 

operation, sampling procedures, sampling and process data, analysis and calculations. These 

ratings are given from A through E.  

 A = Excellent. 

 B = Above average. 

 C = Average. 

 D = Below average. 

 E = Poor. 

 Since emission factors represent average emission rate for an entire process or source 

category, actual emissions may vary widely from one source to another. 

3.5.1. U.S. EPA Emission Factors 

 Section 13.2.6, Emission Factor Documentation for AP-42, provides emission factor data 

applicable for abrasive blasting processes (U.S. EPA 1997a). Emissions factors for TPM, PM10 

PM2.5, derived from various studies conducted on sand and garnet are compiled in this document. 

The test conditions and data quality ratings of these studies are shown in Table 2. The average 

emission factors provided U.S. EPA, from these studies are shown in Table 3. These EFs are 

given a rating of E, which means a poor quality. Since these EFs are based on wind velocity, 

emissions from enclosed blasting operations may vary significantly from these values. In 

addition, emission potential depends on abrasive material used, surface contamination being 

removed, method of abrasive blasting, and other factors discussed in Section 3.3. Hence, 

estimating emissions from this data may not represent actual emissions.
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Table 2: Summary of Test Data for Abrasive Blasting Operations 

 

Source: U.S. EPA, AP-42 
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(Table 2 continued..) 

 
TP = total particulate matter. RP = respirable particulate matter (# 3.5 µmA) as determined using a 10-mm nylon cyclone followed by a 37-mm filter cassette. 
Source: U.S. EPA, AP-42 
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Table 3: Particulate Emissions Factors for Abrasive Blasting 

 

Source: U.S. EPA, AP-42 
 

3.5.2. Emission Factors from State/ Environmental Agencies 

Available emission factors from environmental agencies from various states (TNRCC, 

BAAQMD, SCAQMD, SDAPCD) are shown in Table 4. National Shipbuilding Research 

Program developed emission factors for coal slag, copper slag, garnet, hematite, and sand at blast 

pressures of 80 and 122 PSI for PM1, PM2.5, PM4, and PM10.  The disadvantages of available 

data on emission factors are some of the data are very general and do not provide process 

condition information. While NSRP provided more information on process conditions, the data is 

not continuous. Thus emissions cannot be estimated at intermediate operating conditions. 

Moreover, these were based on mass-balance methods and may not represent true quantities of 

emissions. 
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Table 4: Available Emission Factors for PM 

Agency Abrasive Material PM Size 
EF (lbs/lb of 

abrasive) 
TPM 0.0059 Sand 

 PM10 0.0014 
TPM 0.00286 

TNRCC (2001) 
 
 
 

Coal Slag 
 PM10 0.00034 

 
Sand PM10 0.041 
Grit PM10 0.01 
Shot PM10 0.004 

Glass bead PM10 0.01 

BAAQMD 
(1998) & 

SCAQMD 
(1989) 

 
 
 
 

Other PM10 0.01 

 
Aluminum Oxide PM10 0.0075 

Copper Slag PM10 0.005 
Garnet PM10 0.004 

Glass Bead PM10 0.0075 
Silica Sand PM10 0.0125 
Steel Grit PM10 0.0038 
Steel Shot PM10 0.005 

Walnut Shells PM10 0.0075 

SDAPCD 

Miscellaneous 
Media 

PM10 0.005 

 

3.6. Available Data for Productivity and Consumption 

 Material suppliers often provide average or wide-ranging values for productivity and 

consumption of abrasives. Some of the research studies performed on evaluating various 

abrasives also provide productivity and consumption data for various abrasives. In order to 

protect worker health from exposure to silica emissions, NIOSH evaluated the performance of 

substitute materials in abrasive blasting (NIOSH, 1998). This study involved testing various 

commonly used abrasives, both expendable and reusable, for industrial hygiene concentration 
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levels of various pollutants. This study also provides productivity, abrasive flow rate, and 

cleanup costs. For example, productivity of coal slag varied from 29.5 to 42.0 square feet/hour 

with a 1/4 inch nozzle. With increase in nozzle size to 3/8 inch, the productivity of coal slag 

increased to 94.8 square feet/hour. In case of silica sand, productivity varied from 26.6 to 39.0 

square feet/hr with a 1/4 inch nozzle. For copper slag, the productivity varied from 32.7 to 91.6 

square feet/hour. These tests were conducted at a blast pressure of 100 PSI with a feed valve of 

1/2 inch, except for some tests. Since these were conducted at a single blast pressure condition, it 

is not feasible to determine productivity and clean up costs at other blast pressure or feed rate 

conditions, which may be more economic and faster. 

 NSRP studied emission factors of PM for abrasive materials commonly used in 

shipbuilding sector (NSRP 1999). This study also provides information on productivity and 

consumption of coal slag, copper slag, hematite, garnet, and sand. The blasting operations were 

performed at 80 and 100 PSI with varying feed rates from 3 to 8 turns of opening of feed valve. 

However, only a single test run was performed for each operating condition. Thus, these results 

may not provide truly representative data for productivity and consumption. In addition, this 

study does not help in determining productivity and consumption at intermediate blast pressures.  

 Productivity and consumption rates of typical abrasives are given by U.S. ACE (1995). 

For example, coal slag has a productivity of 0.36 m2/min and consumption rate of 15.62 kg/m2. 

Copper slag has a productivity of 0.40 m2/min and consumption rate of 15.13 kg/m2, while silica 

sand has a productivity of 0.44 m2/min and consumption rate of 12.69 kg/m2. This data is 

provided only as an example of effect of abrasive materials on productivity and consumption. 

Often material and equipment suppliers provide an average value or a range of productivity and 

consumption data (Virginia Materials Inc). Some of the data in these studies provide insufficient 
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information on process conditions and there is limited information on effect of varying pressure, 

feed rate on productivity and consumption. 

3.7. Previous Studies at UNO 

 Previous research performed at the University of New Orleans focused on evaluating 

productivity, consumption and total PM emission factors for coal slag, garnet (Datar 2003), 

specialty sand and steel grit (Silvadasan 2004) for removal of flash rust. These studies did not 

distinguish between expendable and reusable abrasives. Since some industries may not have 

equipment to clean the abrasives for reuse, or it may not be a cost-effective option to reuse, it is 

important to study the performance of expendable abrasives for a better assessment. Other 

limitations of these studies were:  

• Effect of pressure and feed rate for removing paints was not studied 

• Physical effect of blast pressure and feed rate on performance was not explained 

• Simultaneous effect of blast pressure and feed rate were not studied or modeled. 
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4. Methodology 

4.1. Abrasive Materials 

 Shipyard survey results showed that coal slag comprise 68%, copper slag comprise 20%, 

steel grit/shot comprise 6%, sand comprise 4% and miscellaneous abrasives comprise 2%  of the 

industrial consumption of abrasives (National Steel and Shipbuilding Company 1999). The 

objective of this research was to evaluate the performance of non-reusable, or expendable 

abrasives. Thus, from the literature review, three most commonly used expendable abrasive 

materials were selected for this research: coal slag, copper slag, and specialty sand. The 

characteristics of these materials are discussed in this section. 

4.1.1. Coal Slag 

 Coal slag is a by-product of the combustion of coal in coal-fired utility boilers. The 

molten slag from the combustion of coal is quenched in water and the rapid cooling breaks the 

slag into rough angular particles. The quality of this material is often improved by crushing and 

screening followed by magnetic separation. Some of the other characteristics of coal slag such as 

noncrystalline hardness, uniform density, low friability, and low free silica content are very 

effective in removing heavy rust and providing a high profile finished surface. Coal slag, 

commercially known as Black Beauty TM or Black Diamond TM, is thus used by many industries 

for dry abrasive blasting. Average productivity of coal slag is 100 sq.ft/hr and density is 90 

lbs/ft3. These values may vary from one supplier to another. Coal slag may contain high levels of 

heavy metals such as arsenic, beryllium, chromium, nickel, lead as well as iron, and aluminum 

(NIOSH 1998, Paddison 2000, NFESC 1996, Virginia Materials Inc., Chesapeake Specialty 

Products, Inc., Reed Minerals).  
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The MSDS sheet in Appendix C provides detail information. Coal slag has been 

replacing sand because of the health effects associated with silica dust from sandblasting. A 

survey of U.S. shipyards showed that coal slag is a predominantly used abrasive on the East 

Coast and the Gulf of Mexico (JPCL 2000). A medium grade coal slag was used in this research. 

4.1.2. Copper Slag 

 Copper slag is a by-product of copper smelting industry. The molten slag from the 

smelter is quenched in water and quick cooling of this slag results in an amorphous, 

noncrystalline particulates. Some of the characteristics of copper slag such as hardness, high 

density, and low free silica content are useful in removing heavy rust and providing a high 

profile surface finish. Kleen Blast TM and Tru-Grit TM are two of the commercially available 

copper slag abrasives. Average density of copper slag is 100 lbs/ft3.The composition of copper 

slag may vary from one manufacturer to other, but can contain arsenic, beryllium, chromium, 

nickel, lead, and copper (Paddison 2000, Appleman 1998, Hansink 2000, Obery and 

Wayne1999). The MSDS sheet in Appendix C provides detail information. Copper slag is a 

predominantly used abrasive in shipyards on the West Coast (JPCL 2000). A medium grade 

copper slag was used in this research. 

4.1.3. Specialty Sand 

 Due to its low cost, natural occurrence and abrasive properties such as high hardness, 

sand is still being used by many industries.  However, the quality of sand can be improved to 

increase productivity, decrease consumption and breakdown rate sand. Specialty sand supplied 

by Pontchartrain Materials Corporation was used in this study. Raw sand was hydraulically 

dredged, washed twice, and passed through a rotary kiln. This process removes most of the 

volatile impurities from sand. This was then passed through a single-deck screen filter system 
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with a flat 0.25” screen. Special properties of this sand include purity, inertness, hardness, 

resistance to high temperatures, grain size, and color make it useful to a variety of industrial 

applications. Medium grade specialty sand was used in this research and average density is 100 

lbs/ft3. The MSDS sheet in Appendix C provides detail information. 

4.2. Equipment 

 In order to carry out enclosed abrasive blasting operations and collect PM emissions from 

these operations, an emissions test facility was constructed at north side of the engineering 

building on the main campus of the University of New Orleans (UNO). This facility was 

equipped with test chamber, blasting equipment, test plates, exhaust duct, stack sampling system, 

and particulate collection system. Figure 1 shows a sketch of the emissions test facility. The 

details of this equipment are discussed in this section. 

 

Figure 1: Emissions Test Facility 
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4.2.1. Test Chamber 
 An enclosed test chamber of 3.7 m length, 3 m width and 2.5 m height (12 x 10 x 8 feet) 

was constructed using plastic sheets to contain the particulate emissions and protect the 

environment and prevent excessive duct discharge into atmosphere during strong winds. These 

plastic sheets were firmly riveted to the wooden floor, made of seasoned wood and treated with 

waterproofing material. In order to prevent seepage of water into the test chamber, the gaps in 

the floor were sealed with silicon. A wooden ramp was constructed to smoothly move the test 

plates cart in and out of the chamber before and after blasting. An exhaust window was located at 

one end of the test chamber to provide for make-up air and vent PM emissions through an 

exhaust dust for sampling. The test chamber was also provided with internal lighting for 

visibility. 

4.2.2. Blasting Equipment 

 Blasting equipment consists of a blast pot, blast nozzle, air hose, blast hose, secondary-air 

supply unit, moisture separator, and personal protective equipment. 

 4.2.2.1. Blast pot 

 Compressed air pressure systems are widely used in shipyards, refineries and other large-

scale blasting operations. This system typically consists of a blast pot, an abrasive hopper, air 

inlet and outlet valves, an air filter, an easily opened hand hole, and a metering valve. The 

abrasive is contained in the blast pot and compressed air hose is connected to both the top (inlet) 

and bottom (outlet) of the blast pot. This enables maintaining equal pressures at the top and 

bottom of the blast pot. Abrasive material flows by gravity. Blast pots are available in various 

sizes based on abrasive capacity and as portable or mounted on wheels. A smaller blast pot needs 

more frequent filling of abrasive materials than a larger blast pot (U.S. ACE 1995, U.S. EPA, 

1997a).  
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 The hopper located at the top of the blast pot serves as an opening for easy feeding the 

blast material. An automatic filling valve at the center of the hopper seals (pops up) when 

compressed air supplied and opens when the compressor is turned off. The hand hole on the side 

of the blast pot allows easy access for cleaning and removal of any foreign objects fallen into the 

blast pot. Conical bottom of the blast pot enables a smooth flow of material. A metering valve, or 

feed valve, fixed at the bottom of the blast pot allows control of material flow for abrasive 

blasting. These valves vary in size and material flow is controlled by turning the valve. While 

some blast pots readily come with a feed valve, others may need a separate feed valve (U.S. ACE 

1995, U.S. EPA, 1997a). In this research, a 273 kg (600 lbs) capacity Abec© blast pot, mounted 

on wheels was used. A Schmidt feed valve was used to control the abrasive material flow. Figure 

2 shows the blast pot and its important components. 
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Hole Air 

Hose
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Feed Valve

Air 
Filter

Blast 
Hose

Blast Hopper

Hand 
Hole Air 
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Figure 2: Blast Pot 
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 4.2.2.2. Blast nozzle 

 Blast nozzle are identified by the inside diameter on the orifice and measured in 

sixteenths of an inch (3/16-inch, 5/10-inch). These nozzles are assigned a number based on the 

diameter. Selection on nozzle diameter depends on the capacity of air compressor and blast 

pressure required. If the nozzle is too large, more volume of air must be supplied to achieve 

required blast pressure. A Bazooka No.6 venturi type blast nozzle (3/8-inch or 9.5 mm diameter) 

was used in this research. 

 4.2.2.3. Air hose and blast hose 

 The air hose is used to connect the compressor to the blast plot. The diameter of the hose 

must be sufficient in preventing frictional losses and pressure drops, which decrease the process 

efficiency. The blast hose is used to connect the blast pot to the blast nozzle and it carries both 

abrasive material and compressed to the nozzle. This hose must be strong enough to carry the 

material at high pressures.  

 4.2.2.4. Other blasting equipment 

 A secondary air supply unit was used to provide air to the blaster and moisture separators 

were used to remove moisture from compressed air and secondary air supply. Personal protective 

equipment included a respirator, helmet and heavy duty shoes. 

4.2.3. Test Plates 

 Mild steel test plates of 2.5 x 1.5 m (8 x 5 feet) were used as base plates. The steel plates 

were coated with a 1:1 volume mixture of commercially available Rust Oleum© Safety Yellow 

paint and a thinner. Average thickness of the coating was calculated to be 0.73 mills assuming 

average transfer efficiency of 50%. To support these plates during the experiment a panel cart 

was used. The mount was also used to move the panels in and out of the test chamber. 
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4.2.4. Air Compressor 

 The air compressor provides the blast pressure required in dry abrasive blasting. The 

compressor must be able to provide required blast pressures to achiever maximum productivity. 

Sullair Model 375H© and Ingersoll Rand (power rating: 125-130 hp) compressors were used as 

compressed air sources, which were able to provide a maximum blast pressure 150 PSI. 

4.2.5. Exhaust Duct System 

 The exhaust duct system consisted of an exhaust duct and a fan. This system was used to 

vent the emissions from the blasting operations in the test chamber to a particulate collection 

system. Another important use of this systems was to collect sample PM emission factors. The 

entrance of the duct system was fitted with a mesh to prevent too coarse particles from entering 

the duct. The duct was 0.30 m (1 foot) in diameter with smooth inner surface to avoid 

disturbances in the flow and designed according to EPA Method 1 (U.S. EPA 1997d). An 

exhaust fan with maximum capacity of providing a volumetric flow of 5000 cfm was used to 

vent the emissions by suction. An average of 3000 cfm was used in this research to vent 

emissions from the test chamber. A sampling port was located on the exhaust duct to draw 

sample exhaust gas for determining PM emission factors (Figure 3).  
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Figure 3: Exhaust Duct System (top left: From inside the test chamber, top right: from outside 

the test chamber, bottom: duct connected to exhaust fan) 
 

4.2.6. Stack Sampling System 

 U.S. EPA approved stack sampling system was used in this research. Components of this 

system are mentioned in this section. The purpose of these components is discussed with the 

sampling procedure. 

   4.2.6.1. Sampling train 

 The sampling train consisted of a tapered nozzle, sampling probe, filter holder, and a 

series of four impingers, all of which are connected by connectors. The nozzle is used to draw 

exhaust gas for PM sampling. For the sample to be representative, it must be drawn at isokinetic 

conditions, i.e., the velocity of the gas in the stack and the velocity of the gas in the nozzle of the 

sampling probe should be equal. Following the guidelines specified by U.S. EPA for stack 

sampling, various nozzles were tested for isokinetic conditions and a nozzle with diameter of 



 37

4.57 mm (0.18 inch) was selected in this research. The sampling probe has nozzle on one end 

and the other end is connected to filter holder at the top. An S-type pitot tube and a thermocouple 

are attached to the sampling probe. The exhaust gas from nozzle flows through the filter holder 

which holds a filter paper. The bottom of the filter holder is connected to a series of four 

impingers, kept in a cold box. The first two impingers are filled with 100 ml water. The third 

impinger is left dry and empty. Fourth impinger contains a measured quantity of silica gel.  

 4.2.6.2. Dry gas meter system 

 Dry gas meter (DGM) system consists of various components: pyrometer, vacuum gauge, 

an air tight pump, dry gas meter, and an orifice meter. The outlet of the fourth impinger is 

connected to DGM for measuring sample gas temperature and pressure.  

4.2.7. Particulate Collection System 

 In order to collect emissions effectively and control their discharge into the atmosphere, a 

two-stage particle collection system was installed downstream of the fan. The first stage 

consisted of changing the direction of flow to collect particles in a drum. The coarse particles are 

settled in the drum due to gravity and change of direction. In order to collect fine particles that 

do not settle during the first stage, an outlet from the drum was connected to fabric filter system. 

The fine particles In the second stage, a fabric filter was used to collect fine particles. In the 

study, four filter panels were used. The drum and the fabric filter system were periodically 

cleaned to maintain their efficiency. Each filter panel consisted of five individual filters. Clean 

air from the fabric filters was then released into air. This two-stage particle collection system is 

shown in Figure 4. 
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Figure 4: Two-Stage Particle Collection System (left: drum, right: fabric filter system) 

4.3. Experimental Parameters 

As mentioned in Section 3.3.2, blast pressure and abrasive feed rate are important process 

parameters in dry abrasive blasting. Three most commonly used non-reusable abrasives were 

selected to study the effect of blast pressure and feed rate on performance of the abrasive 

materials. Based on literature review, it was evident that many industrial processes use blast 

pressures ranging from 80 to 120 PSI. Selection of feed rate depends on the valve size and 

abrasive material. Thus, from recommendations of equipment and material suppliers, feed rates 

ranging from 3 to 5 turns were selected. A detailed list of experimental parameters is given 

below: 

4.3.1. Variable Parameters 

• Abrasive Material: Coal Slag, Copper Slag, and Specialty Sand 

• Blast Pressure: 80 PSI, 100 PSI, and 120 PSI 

• Feed Rate: 3, 4, and 5 turns of opening of Schmidt feed valve 

4.3.2. Constant Parameters 

• Abrasive Grade: Medium grade 
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• Blast Nozzle: Bazooka No.6 nozzle with 9.5 mm diameter (venturi nozzle) 

• Angle of Deflection: 900 (Nozzle held perpendicular to surface) 

• Stand-off Distance: 12” was maintained between the test plate and the blast nozzle 

• Exhaust Flow Rate: 3000 cfm (average volumetric flow rate) 

• Surface Contamination: Paint with average thickness of 0.73 mill 

• Surface Finish: Near-white finish (SP-10) 

 
4.4. Experimental Procedure 

 The experimental procedure is explained in two sections: abrasive blasting and PM 

sampling. PM sampling was performed while abrasive blasting was being carried out. 

4.4.1. Abrasive Blasting 

 The test plates were coated with a 1:1 mixture of commercially available Rust Oleum© 

Safety Yellow paint and a thinner. The paint was allowed to dry for 24 hours. Upon drying these 

plates were moved inside the test chamber with the help of a cart. The inside of the blast pot was 

checked for any foreign materials. Blast hose and air hose were connected to the blast pot and 

feed valve was closed tightly. Stack sampling equipment was assembled. A measured quantity of 

abrasive material (100 lbs in most cases) was added. Prior to adding, it was made sure that the 

material was free of lumps and moisture. In case of presence of moisture, the material was well 

dried and then added into the blast pot. Presence of lumps or moisture results in clogging the 

valve and non-uniform flow of material.  

 The compressor was turned on and the blasting pressure was set to desired setting (80, 

100, or 120 PSI). The Schmidt feed valve was adjusted to a desired number of turns (3, 4, or 5). 

These blast pressure and feed rate settings were randomly chosen. The exhaust fan was turned on 

to draw the emissions from the chamber. Blaster, provided with professional training for abrasive 
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blasting, then carried out blasting inside the chamber. During the whole time of abrasive 

blasting, the test chamber was kept enclosed. Blasting was carried out until the blast pot was 

emptied. The blaster visually ensured that the dwell time was sufficient to achieve a near-white 

surface finish. The compressor was then turned off and feed valve was closed. The time taken for 

each test run was recorded using a stopwatch and the area cleaned was measured using a 

measuring tape. For each combination of pressure and feed rate, three test runs were carried out 

to minimize experimental errors and test the repeatability of the results. Thus a total number of 

27 experiments were performed for each material. 

4.4.2. PM Sampling 

 As the blasting was carried out inside the chamber, samples were drawn isokinetically 

through the sampling probe. A brief procedure for PM sampling is discussed in this section and a 

detailed procedure is available at http://www.epa.gov/ttn/emc. 

 4.4.2.1. Selection of sampling ports and traverse points 

 Based on the guidelines provided in EPA Method 1 (U.S. EPA 1997d), in order to 

minimize the effect of flow disturbances on sampling, a sampling port was located at point at 

least 8 diameters upstream (test chamber) and 2 diameters downstream (exhaust fan). For a 

circular duct with a diameter between 0.30 and 0.61 meter (12 and 24 inches), a total of eight 

traverse points must be selected. The location of these traverse points, along the plane 

perpendicular to direction of flow of exhaust gas, was calculated as per the guidelines and 

marked on sampling probe with a heat resistant tape to denote the distance into the duct for each 

traverse point. The purposes of sampling at various locations in the duct were to measure average 

stack gas velocity and obtain a representative sample for PM emissions.  

 

http://www.epa.gov/ttn/emc
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 4.4.2.2. Stack gas velocity and flow rate measurements 

 The average gas velocity in the duct was determined from measurement of average 

velocity head with the S-type pitot tube attached to the sampling probe. A temperature sensor 

attached to the sampling probe was used to measure the exhaust gas temperature at the traverse 

points. Atmospheric pressure was recorded from a nearby National Weather Service station. 

Leak checks were performed once the sampling train was assembled. The sample probe was 

sufficiently heated to prevent condensation of moisture present in the exhaust gas. At each 

traverse point, exhaust gas sample was collected for two minutes. Thus, total sampling time was 

sixteen minutes for each of the test runs. At the end of 16 minutes, sampling probe was 

withdrawn, and the exhaust fan was turned off. The measurements made at each traverse point, 

according EPA Method 2 (U.S. EPA 1997e), and equations used to calculate the stack gas 

velocity and flow rate for each experiment are given in Appendix A.  

 4.4.2.3. Determination of moisture content 

 The moisture content in the exhaust was determined according to the guidelines in EPA 

Method 4 (U.S. EPA 1997f). The exhaust gas, after passing through the filter paper is passed 

through a series of four impingers (first two filled with 100 ml water, third left empty and fourth 

filled with measured quantity of silica gel) to collect moisture present in the exhaust gas. These 

impingers were placed in an ice bath containing crushed ice, which helps in condensing the 

moisture. The weights of four impingers were recorded before and after each experiment. The 

increase in weight of each impinger was used to calculate weight of water collected. The exhaust 

gas was then passed through dry gas meter to determine volume and temperature of the gas. 

Moisture content was calculated using the equations given in EPA Method 4. These equations 

and calculations for each experiment are presented in Appendix A. 
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 4.4.2.4. Determination of PM emissions 

 The particles were collected on a pre-weighed Whatman No. 10 filter paper that was 

already desiccated to eliminate moisture. The filter assembly box was maintained at a 

temperature of 120 ± 15°C to collect particulate matter from the sample gas stream while 

preventing moisture condensation. Once the sample was collected, the filter paper was removed 

from the filter box and placed in a dessicator. PM from the probe was collected in a beaker by 

rinsing the probe with acetone. The final weights of PM in filter paper and beaker were recorded 

after dessicating them for 24 hours. The sum of the weights of both containers was used to 

determine the actual mass of emissions in the stack gas using the equations in EPA Method 5 

(U.S. EPA 1997g). The actual mass of PM collected in sample exhaust gas, equations used and 

total mass of PM in the exhaust gas for each experiment are presented in Appendix A. 

4.5. Statistical Analysis 

The data collected from field measurements was transferred in Excel for analysis. Mean 

and standard deviation of three experimental runs were calculated were for each combination of 

blast pressure and feed rate. This data is presented in Section 5. In order to develop predictive 

models to estimate emission factors, productivity and consumption (performance parameters) at 

intermediate blast pressure and feed rate conditions (process parameters), multiple regression 

analysis was performed. Two-dimensional and three dimensional models were developed. Two-

dimensional models were used to study the effect of a single process condition on performance 

parameter. In addition, these models were used compare the performance of the three abrasive 

materials at various operating conditions. DataFit@, a curve fitting application, was used for 

developing three-dimensional models. These models were used to study the simultaneous effect 

of process parameters on performance parameters.  
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The best-fit models were selected based on the physical phenomenon discussed in 

Literature Review, R2, and continuity of the curve (in case of 3-D models). The R² value, also 

known as the Coefficient of Determination, is an indicator that ranges in value from 0 to 1. This 

coefficient reveals how closely the estimated values for the regression correspond to the actual 

data. A regression is most reliable when its R² value is at or near 1 (Kleinbaum 1992, McBean 

and Rovers 1998). The value for R² was determined using the following equations: 

 

Residual = (Yi – Ŷi) 

Sum of Residuals = ∑ (Yi – Ŷi) 

Average Residual = ∑ (Yi – Ŷi) / n 

Residual Sum of Squares, SSE = ∑ (Yi – Ŷi)2 

Regression Sum of Squares, SSR, ∑ (Ŷi -Yi)2 

Total Sum of Squares, SST = SSE + SSR, 

Coefficient of Multiple Determination, R2 = SSR / SST 

 

Two-way ANOVA was used to test the significance of the regression model. F static was 

calculated for H0 : a = 0, b = 0, c = 0, d = 0, e = 0, and f = 0, where a, b, c, d, e, and f  are 

coefficients in the regression model. Null hypothesis (H0) was rejected if Prob(F) < 0.025. 

Prob(F) = 0 means the probability of obtaining data equal to more extreme under the null 

hypothesis is zero. In addition, t static was calculated for H0: a = 0, b = 0, c = 0, d = 0, e = 0, or f 

= 0 to test the significance of each coefficient. Null hypothesis was rejected if Prob(t) < 0.05.  
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Since the analysis was performed assuming normal distribution of the data, residual plots 

were used check this assumption. The following scatter diagrams were plotted to check the 

normal distribution of the data: 

• Residuals vs. Predicted Y: the residuals should not show any pattern or structure 

for normally distributed data. 

• Residual Normality Plot: The plot must be a straight line for normally distributed 

data. 

In addition, predicted values of performance parameters were plotted with observed 

values. 

Detailed results of the statistical analysis of the data, ANOVA table, confidence intervals, 

and scatter diagrams are included in Appendix B. The Results and Discussion section includes 

the 2-D and 3-D models which will help understanding the effect of process parameters on 

performance parameters and compare the performance of three abrasive materials. The equations 

developed for calculating emission factors, productivity, and consumption at intermediate blast 

pressure and feed rate are presented in Section 5 along with the R2 values and coefficients for 

99% confidence levels. The confidence intervals are presented in Appendix B. 
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5. Results and Discussion 
 

The fundamental goals of this study was to evaluate the performance of three non-

reusable abrasives and study the effect of blast pressure and feed rate on performance of each 

material. In order to achieve these goals, the following parameters were calculated for each 

experiment performed: 

• Emission Factors: 

o kg TPM per unit area cleaned: Mass of TPM emitted (kg) / Area cleaned 

(m2) 

o kg TPM per unit mass of abrasive: Mass of TPM emitted (kg) / Quantity 

of abrasive used (kg) 

• Productivity: 

o Area cleaned per unit time: Area cleaned (m2) / Blasting time (hr) 

• Consumption: 

o Mass of abrasive per unit area: Quantity of abrasive used (kg) / Area 

Cleaned (m2) 

It must be noted that the emission factors determined in this research correspond to 

uncontrolled emissions since samples were collected prior to applying any emission controls. 

Predictive mathematical models were developed to determine these parameters based on blast 

pressure and abrasive feed rate. Detailed information on the data collected, and calculation PM 

emissions is presented in Appendix A. The detailed results of statistical analysis performed for 

this data is presented in Appendix B. The results of the experiments, variation of performance of 

each abrasive with respect to blast pressure and feed rate, and predictive models developed are 

presented in this section. 
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Table 5: Experimental Results for Coal Slag 

Pressure 
Feed 
Rate 

Abrasive 
Quantity

Blasting 
Time 

Area 
Cleaned

TPM 
Emissions Productivity Consumption

Emission 
Factor 1 

Emission 
Factor 2 

PSI Turns lbs min ft2 g m2/hr kg/m2 kg/m2 kg/kg 
120 3 100 6 13.0 3604 12.08 37.57 2.984 0.0794 
120 3 100 6 12.0 3590 11.15 40.70 3.221 0.0791 
120 3 100 6 12.0 3562 11.15 40.70 3.195 0.0785 
120 4 100 5 17.0 3349 18.95 28.73 2.121 0.0738 
120 4 100 6 17.5 3388 16.26 27.91 2.084 0.0747 
120 4 100 6 17.0 3371 15.79 28.73 2.135 0.0743 
120 5 150 7 17.0 5526 13.54 43.10 3.499 0.0812 
120 5 150 7 18.0 5839 14.33 40.70 3.492 0.0858 
120 5 150 7 18.0 5780 14.33 40.70 3.456 0.0849 
100 3 100 7 13.0 2849 10.35 37.57 2.358 0.0628 
100 3 100 7 12.5 2693 9.95 39.07 2.319 0.0594 
100 3 100 8 12.5 2785 8.71 39.07 2.398 0.0614 
100 4 120 5 12.5 2345 13.94 46.88 2.019 0.0431 
100 4 120 7 18.0 3327 14.33 32.56 1.990 0.0611 
100 4 120 7 17.0 3172 13.54 34.48 2.009 0.0583 
100 5 120 6 12.0 3372 11.15 48.84 3.025 0.0619 
100 5 80 4 8.0 2368 11.15 48.84 3.186 0.0652 
100 5 120 6 12.5 3499 11.61 46.88 3.013 0.0643 
80 3 30 4 6.0 1045 8.36 24.42 1.875 0.0768 
80 3 100 11 15.0 2679 7.60 32.56 1.922 0.0590 
80 3 70 6 9.5 1634 8.83 35.98 1.851 0.0514 
80 4 100 7 16.5 2003 13.14 29.60 1.307 0.0441 
80 4 100 7 16.0 2041 12.74 30.52 1.373 0.0450 
80 4 120 11 24.0 2912 12.16 24.42 1.306 0.0535 
80 5 100 7 13.0 3004 10.35 37.57 2.488 0.0662 
80 5 100 7 12.0 2689 9.56 40.70 2.412 0.0593 
80 5 80 5 9.5 2160 10.59 41.13 2.448 0.0595 
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Table 6: Mean and Standard Deviation (SD) of Experimental Results for Coal Slag 

Pressure 
Feed 
Rate Productivity Consumption Emission Factor 1 Emission Factor 2 

PSI Turns m2/hr Mean SD kg/m2 Mean SD kg/m2 Mean SD kg/kg Mean SD 
120 3 12.08 37.57 2.984 0.0794
120 3 11.15 40.70 3.221 0.0791
120 3 11.15 

11.46 0.54
40.70 

39.65 1.81
3.195 

3.133 0.130
0.0785

0.0790 0.0005

120 4 18.95 28.73 2.121 0.0738
120 4 16.26 27.91 2.084 0.0747
120 4 15.79 

17.00 1.71
28.73 

28.45 0.47
2.135 

2.113 0.026
0.0743

0.0743 0.0004

120 5 13.54 43.10 3.499 0.0812
120 5 14.33 40.70 3.492 0.0858
120 5 14.33 

14.07 0.46
40.70 

41.50 1.38
3.456 

3.483 0.023
0.0849

0.0840 0.0024

100 3 10.35 37.57 2.358 0.0628
100 3 9.95 39.07 2.319 0.0594
100 3 8.71 

9.67 0.86
39.07 

38.57 0.87
2.398 

2.358 0.040
0.0614

0.0612 0.0017

100 4 13.94 46.88 2.019 0.0431
100 4 14.33 32.56 1.990 0.0611
100 4 13.54 

13.94 0.40
34.48 

37.97 7.78
2.009 

2.006 0.015
0.0583

0.0541 0.0097

100 5 11.15 48.84 3.025 0.0619
100 5 11.15 48.84 3.186 0.0652
100 5 11.61 

11.30 0.27
46.88 

48.19 1.13
3.013 

3.075 0.097
0.0643

0.0638 0.0017

80 3 8.36 24.42 1.875 0.0768
80 3 7.60 32.56 1.922 0.0590
80 3 8.83 

8.26 0.62
35.98 

30.99 5.94
1.851 

1.883 0.036
0.0514

0.0624 0.0130

80 4 13.14 29.60 1.307 0.0441
80 4 12.74 30.52 1.373 0.0450
80 4 12.16 

12.68 0.49
24.42 

28.18 3.29
1.306 

1.329 0.039
0.0535

0.0475 0.0052

80 5 10.35 37.57 2.488 0.0662
80 5 9.56 40.70 2.412 0.0593
80 5 10.59 

10.17 0.54
41.13 

39.80 1.94
2.448 

2.449 0.038
0.0595

0.0617 0.0039
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Table 7: Experimental Results for Copper Slag 

Pressure 
Feed 
Rate 

Abrasive 
Quantity

Blasting 
Time 

Area 
Cleaned

TPM 
Emissions Productivity Consumption

Emission 
Factor 1 

Emission 
Factor 2 

PSI Turns lbs min ft2 g m2/hr kg/m2 kg/m2 kg/kg 
120 3 100 7 8.5 2060 6.77 57.46 2.609 0.0454 
120 3 100 8 9.0 2165 6.27 54.26 2.589 0.0477 
120 3 50 5 6.0 1431 6.69 40.70 2.567 0.0631 
120 4 150 10 20.0 2725 11.15 36.63 1.466 0.0400 
120 4 100 6 12.0 1754 11.15 40.70 1.573 0.0387 
120 4 50 4 8.0 1163 11.15 30.52 1.565 0.0513 
120 5 120 6 10.0 2823 9.29 58.61 3.039 0.0518 
120 5 80 4 7.0 1962 9.75 55.82 3.017 0.0540 
120 5 100 4 7.3 2053 10.10 67.36 3.048 0.0452 
100 3 100 8 13.5 2463 9.41 36.17 1.964 0.0543 
100 3 50 4 7.0 1256 9.75 34.89 1.932 0.0554 
100 3 75 6 10.3 1859.5 9.58 35.53 1.948 0.0548 
100 4 150 7 18.0 2946 14.33 40.70 1.762 0.0433 
100 4 150 7 17.8 2938 14.18 41.13 1.775 0.0432 
100 4 120 6 15.0 2438 13.94 39.07 1.749 0.0448 
100 5 120 8 15.8 3105 10.97 37.21 2.122 0.0570 
100 5 50 4 8.0 1538 11.15 30.52 2.070 0.0678 
100 5 50 4 8.0 1518 11.15 30.52 2.043 0.0669 
80 3 50 6 6.0 1560 5.57 40.70 2.800 0.0688 
80 3 50 7 6.5 1581 5.18 37.57 2.618 0.0697 
80 3 50 6 6.5 1591 6.04 37.57 2.634 0.0701 
80 4 150 12 19.0 3729 8.83 38.56 2.113 0.0548 
80 4 100 6 9.8 1861 9.06 50.09 2.055 0.0410 
80 4 125 9 14.4 2795 8.94 44.33 2.084 0.0479 
80 5 80 8 9.0 2957 6.27 43.41 3.537 0.0815 
80 5 80 6 7.0 2306 6.50 55.82 3.546 0.0635 
80 5 80 7 8.0 2631.5 6.39 49.62 3.541 0.0725 
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Table 8: Mean and Standard Deviation (SD) of Experimental Results for Copper Slag 

Pressure 
Feed 
Rate Productivity Consumption Emission Factor 1 Emission Factor 2 

PSI Turns m2/hr Mean SD kg/m2 Mean SD kg/m2 Mean SD kg/kg Mean SD 
120 3 6.77 57.46 2.609 0.0454
120 3 6.27 54.26 2.589 0.0477
120 3 6.69 

6.58 0.27
40.70 

50.81 8.90
2.567 

2.588 0.021
0.0631

0.0521 0.0096

120 4 11.15 36.63 1.466 0.0400
120 4 11.15 40.70 1.573 0.0387
120 4 11.15 

11.15 0.00
30.52 

35.95 5.12
1.565 

1.535 0.059
0.0513

0.0433 0.0069

120 5 9.29 58.61 3.039 0.0518
120 5 9.75 55.82 3.017 0.0540
120 5 10.10 

9.72 0.41
67.36 

60.60 6.02
3.048 

3.035 0.016
0.0452

0.0504 0.0046

100 3 9.41 36.17 1.964 0.0543
100 3 9.75 34.89 1.932 0.0554
100 3 9.58 

9.58 0.17
35.53 

35.53 0.64
1.948 

1.948 0.016
0.0548

0.0548 0.0006

100 4 14.33 40.70 1.762 0.0433
100 4 14.18 41.13 1.775 0.0432
100 4 13.94 

14.15 0.20
39.07 

40.30 1.08
1.749 

1.762 0.013
0.0448

0.0437 0.0009

100 5 10.97 37.21 2.122 0.0570
100 5 11.15 30.52 2.070 0.0678
100 5 11.15 

11.09 0.10
30.52 

32.75 3.86
2.043 

2.078 0.040
0.0669

0.0639 0.0060

80 3 5.57 40.70 2.800 0.0688
80 3 5.18 37.57 2.618 0.0697
80 3 6.04 

5.60 0.43
37.57 

38.61 1.81
2.634 

2.684 0.101
0.0701

0.0695 0.0007

80 4 8.83 38.56 2.113 0.0548
80 4 9.06 50.09 2.055 0.0410
80 4 8.94 

8.94 0.12
44.33 

44.32 5.77
2.084 

2.084 0.029
0.0479

0.0479 0.0069

80 5 6.27 43.41 3.537 0.0815
80 5 6.50 55.82 3.546 0.0635
80 5 6.39 

6.39 0.12
49.62 

49.62 6.20
3.541 

3.541 0.004
0.0725

0.0725 0.0090
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Table 9: Experimental Results for Specialty Sand 

Pressure 
Feed 
Rate 

Abrasive 
Quantity

Blasting 
Time 

Area 
Cleaned

TPM 
Emissions Productivity Consumption

Emission 
Factor 1 

Emission 
Factor 2 

PSI Turns lbs min ft2 g m2/hr kg/m2 kg/m2 kg/kg 
120 3 50 6 11.5 3034 10.68 21.23 2.840 0.1337 
120 3 100 8 15.0 4242 10.45 32.56 3.044 0.0935 
120 3 50 3 5.8 1615 10.68 42.47 3.024 0.0712 
120 4 50 4 10.0 4005 13.94 24.42 4.311 0.1766 
120 4 50 3 7.8 3611 14.40 31.51 5.015 0.1592 
120 4 100 9 22.0 9578 13.63 22.20 4.687 0.2111 
120 5 100 7 22.5 8042 17.92 21.70 3.847 0.1772 
120 5 100 5 15.0 5161 16.72 32.56 3.704 0.1137 
120 5 100 6 18.8 6586 17.42 26.05 3.781 0.1452 
100 3 50 4 10.5 1298 14.63 23.26 1.330 0.0572 
100 3 50 4 10.0 1365 13.94 24.42 1.469 0.0601 
100 3 50 3 7.5 681 13.94 32.56 0.976 0.0300 
100 4 50 4 11.8 3214 16.37 20.78 2.944 0.1417 
100 4 50 4 12.0 3298 16.72 20.35 2.958 0.1454 
100 4 100 7 21.5 6165 17.12 22.71 3.087 0.1359 
100 5 50 4 6.5 2148 9.06 37.57 3.556 0.0947 
100 5 50 3 5.3 1977 9.75 46.51 4.054 0.0871 
100 5 100 10 17.0 5722 9.48 28.73 3.623 0.1261 
80 3 50 4 8.8 846 12.19 27.91 1.041 0.0373 
80 3 100 8 14.5 1500 10.10 33.68 1.114 0.0331 
80 3 100 8 15.0 1679 10.45 32.56 1.204 0.0370 
80 4 50 4 8.8 1116 12.19 27.91 1.373 0.0492 
80 4 50 5 10.0 1449 11.15 24.42 1.560 0.0639 
80 4 100 8 18.0 2464 12.54 27.13 1.474 0.0543 
80 5 50 5 7.1 1480 7.94 34.27 2.236 0.0652 
80 5 50 5 8.0 1824 8.92 30.52 2.453 0.0804 
80 5 100 8 13.8 3228 9.58 35.52 2.526 0.0711 
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Table 10: Mean and Standard Deviation (SD) of Experimental Results for Specialty Sand 

Pressure 
Feed 
Rate Productivity Consumption Emission Factor 1 Emission Factor 2 

PSI Turns m2/hr Mean SD kg/m2 Mean SD kg/m2 Mean SD kg/kg Mean SD 
120 3 10.68 21.23 2.840 0.1337
120 3 10.45 32.56 3.044 0.0935
120 3 10.68 

10.61 0.13
42.47 

32.09 10.63
3.024 

2.969 0.113
0.0712

0.0995 0.0317

120 4 13.94 24.42 4.311 0.1766
120 4 14.40 31.51 5.015 0.1592
120 4 13.63 

13.99 0.39
22.20 

26.04 4.86 
4.687 

4.671 0.352
0.2111

0.1823 0.0264

120 5 17.92 21.70 3.847 0.1772
120 5 16.72 32.56 3.704 0.1137
120 5 17.42 

17.35 0.60
26.05 

26.77 5.46 
3.781 

3.777 0.072
0.1452

0.1454 0.0317

100 3 14.63 23.26 1.330 0.0572
100 3 13.94 24.42 1.469 0.0601
100 3 13.94 

14.17 0.40
32.56 

26.75 5.07 
0.976 

1.259 0.254
0.0300

0.0491 0.0166

100 4 16.37 20.78 2.944 0.1417
100 4 16.72 20.35 2.958 0.1454
100 4 17.12 

16.74 0.37
22.71 

21.28 1.26 
3.087 

2.996 0.079
0.1359

0.1410 0.0048

100 5 9.06 37.57 3.556 0.0947
100 5 9.75 46.51 4.054 0.0871
100 5 9.48 

9.43 0.35
28.73 

37.60 8.89 
3.623 

3.744 0.270
0.1261

0.1026 0.0207

80 3 12.19 27.91 1.041 0.0373
80 3 10.10 33.68 1.114 0.0331
80 3 10.45 

10.92 1.12
32.56 

31.38 3.06 
1.204 

1.120 0.082
0.0370

0.0358 0.0024

80 4 12.19 27.91 1.373 0.0492
80 4 11.15 24.42 1.560 0.0639
80 4 12.54 

11.96 0.73
27.13 

26.49 1.83 
1.474 

1.469 0.093
0.0543

0.0558 0.0074

80 5 7.94 34.27 2.236 0.0652
80 5 8.92 30.52 2.453 0.0804
80 5 9.58 

8.81 0.82
35.52 

33.44 2.60 
2.526 

2.405 0.151
0.0711

0.0723 0.0076



 52

5.1. Emission Factors 

5.1.1. Emission Factors in kg/m2 

 5.1.1.1. Variation of emission factors (kg/m2) with pressure 

 Velocity of abrasive particles is determined by blast pressure. Higher the pressure, greater 

will be the velocity and hence greater impact on base plate. Although this may increase 

productivity, at very high velocity, the abrasive particles suffer more damage, thus breakdown 

into smaller particles. This causes increased emissions at high pressure. Figure 5 shows the 

variation of emission factors (kg/m2) with pressure at 3 turns of feed rate. It was observed that 

emission factors increased with pressure for coal slag and specialty sand. This may be due to 

more number of particles undergoing damage with increase in pressure.  

Variation of Emission Factors (kg/m2) with Pressure at 3 Turns

Coal Slag
y = 0.0004x2 - 0.0446x + 3.0329

R2 = 0.98
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Figure 5: Variation of Emission Factors (kg/m2) with Pressure at 3 Turns 

 

 In case of copper slag, emission factors decreased with increase in pressure from 80 PSI 

to 100 PSI and then increased with further increase in pressure. This may be because at lower 

pressure, although emissions may be less, emission factors will be high because of less 
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productivity and more consumption at lower velocity. It can be observed from the graph that at 

lower pressure, emission factors varied significantly from one material to another, highest being 

copper slag. At very high pressure, all three materials have less comparable emission factors, 

especially for coal slag and specialty sand. The regression equations developed and 

corresponding R2 values are shown in Figure 5. 

 Variation of emission factors (kg/m2) with pressure at 4 turns of feed rate is shown in 

Figure 6. Emission factors for coal slag and specialty sand increased with pressure similar to the 

variation at 3 turns. However, for copper slag, emission factors decreased with increase in 

pressure.  

Variation of Emission Factors (kg/m2) with Pressure at 4 Turns
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Figure 6: Variation of Emission Factors (kg/m2) with Pressure at 4 Turns 

 

 It can be observed from Figure 6 that increase in emission factors for specialty sand was 

significantly higher while in case of coal slag and copper slag, a slight variation of emission 

factors was observed. R2 values obtained for the three materials were very close (0.98 and 0.99) 
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 Figure 7 shows the variation of emission factors with pressure at 5 turns of feed rate. The 

variation emission factors at 5 turns were observed to be similar to the variation at 3 turns. While 

copper slag has highest emission factors at 80 PSI, with increase in pressure, emission factors 

were observed to be lesser than coal slag and specialty sand. The regression equations to 

calculate emission factors at intermediate blast pressures ranging from 80 to 120 PSI are also 

shown in Figure 10. R2 value for specialty sand (0.95) was lesser as compared to coal slag and 

copper slag (0.99).  

Variation of Emission Factors (kg/m2) with Pressure at 5 Turns
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Figure 7: Variation of Emission Factors (kg/m2) with Pressure at 5 Turns 
 
 5.1.1.2. Variation of emission factors (kg/m2) with feed rate 

 Controlling feed rate is an important factor in abrasive blasting since it determines the 

mass of abrasive released from the nozzle.  Figures 8, 9, and 10 show the variation of emission 

factors with feed rate at 80, 100, and 120 PSI for coal slag, copper slag, and specialty sand. It can 

be observed that for coal slag and copper slag, the emission factors initially decreased with 

increase in feed rate and then increased with further increase in feed rate. This may be due to 

more material consumption at lower feed rate to clean a unit area. i.e., at lower feed rate, less 
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number of particles impacts the unit surface and consumes more material to achieve desired 

surface finish. 

Variation of Emission Factors (kg/m2) with Feed Rate at 80 PSI
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Figure 8: Variation of Emission Factors (kg/m2) with Feed Rate at 80 PSI 

 

 With increase in feed rate, more uniform flow of material occurs and less material is 

consumed to clean a unit area, thus resulting in less emission factors. However, at very high feed 

rates, the particles traveling from the nozzle interact with the rebounding particles from the base 

plate and breakdown resulting in higher emissions and consuming more material. In addition, at 

high feed rates, flow of material may turbulent rather than uniform. This increases emission 

factors with increase in feed rate. 
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Variation of Emission Factors (kg/m2) with Feed Rate at 100 PSI

Coal Slag
y = 0.7104x2 - 5.3253x + 11.941

R2 = 0.99

Copper Slag
y = 0.2512x2 - 1.9443x + 5.5209

R2 = 0.97

Specialty Sand
y = -0.4948x2 + 5.2012x - 9.8918

R2 = 0.97
0.0

1.0

2.0

3.0

4.0

5.0

2 3 4 5 6

Feed Rate (number of turns)

E
m

is
si

on
 F

ac
to

rs
 (k

g/
m

2 )

Coal Slag
Copper Slag
Specialty Sand

 
Figure 9: Variation of Emission Factors (kg/m2) with Feed Rate at 100 PSI 

 

Variation of Emission Factors (kg/m2) with Feed Rate at 120 PSI
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Figure 10: Variation of Emission Factors (kg/m2) with Feed Rate at 120 PSI 

 

 Emission factors for specialty sand were observed to increase with feed rate at 80 and 

100 PSI. This may be due to higher breakdown rate of abrasive particles at higher feed rate. At 

120 PSI, the emission factors increased with feed rate from 3 to 4 turns and then decreased with 

increase in feed rate to 5 turns. Specialty sand may have more uniform flow of material at higher 
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pressure and feed rate conditions, resulting in lower emissions which can be observed from 

Figures 7 and 10. At 80 PSI, copper slag has higher emission factors than coal slag and at 100 

and 120 PSI, copper slag has lower emission factors than coal slag. In case of sand, lower 

emission factors were observed at low pressure (80 PSI). The regression equations to determine 

emission factors at intermediate feed rates for blast pressures of 80, 100, and 120 PSI are also 

shown in Figures 8, 9, and 10 respectively. 

 5.1.1.3. Variation of emission factors (kg/m2) with pressure and feed rate 

 The variations and equations discussed above depict either effect of pressure on 

emissions at a given feed rate or effect of feed rate at a specific pressure. In order to study 

simultaneous effects of both, pressure and feed rate on emissions, three-dimensional models 

were developed. Datafit © curve fitting application was used for regression analysis and for 

plotting three-dimensional charts. Figure 11, 12, and 13 demonstrates the variation of emission 

factors with pressure and feed rate for coal slag, copper slag, and specialty sand respectively. 

 
Figure 11: Coal Slag - Variation of Emission Factors (kg/m2) with Pressure and Feed Rate 
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Figure 12: .Copper Slag - Variation of Emission Factors (kg/m2) with Pressure and Feed Rate 

 

 
Figure 13: Specialty Sand - Variation of Emission Factors (kg/m2) with Pressure and Feed Rate 
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 The regression model developed to determine emission factors at intermediate pressure 

and feed rate is: 

)**()*()*()*()*( 22 FPfFePdFcPbaEF +++++=     (2) 

Where, 

 EF = Emission Factor in kg/m2, 

 P = Blast Pressure in PSI, (80 to 120 PSI), 

 F = Feed Rate in Number of Turns of Schmidt Feed Valve (3 to 5), and 

 a, b, c, d, e, and f are coefficients, given in Table 11. 

Table 11: Coefficients for Emission Factors in (kg/m2) for Equation 2 
Abrasive 
Material a b c d e f R2 
Coal Slag 9.61E+00 7.18E-02 -6.58E+00 -1.75E-04 8.90E-01 -2.67E-03 0.97

Copper Slag 2.92E+01 -3.13E-01 -6.07E+00 1.62E-03 8.52E-01 -5.14E-03 0.86
Specialty Sand -1.41E+01 4.30E-02 5.36E+00 1.72E-04 -5.00E-01 -5.97E-03 0.86

 

5.1.2. Emission Factors in kg/kg 

 5.1.2.1. Variation of emission factors (kg/kg) with pressure 

As mentioned earlier, abrasive particles breakdown at higher rate with increase in pressure 

due to greater impact with which they strike the base plate. Thus, emissions increase with blast 

pressure. This trend can be observed for coal slag and specialty sand in Figure 14 at 3 turns of 

feed rate. However, in some cases, at higher pressure, the self abrasion of particles causes 

breakdown of particles before striking the plate. Because smaller particles may not be efficient in 

removing the paint from the surface, more material is required to achieve required finish. This 

results in decrease of emission factors per unit mass of abrasive consumed. This trend is 

observed in case of copper slag. At 80 and 100 PSI, coal slag, copper slag, and specialty sand 

have comparable emission factors while at higher pressure, copper slag resulted in significantly 
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lesser emission factors. The R2 values obtained from the regression analysis were lower for coal 

slag and specialty sand. 

Variation of Emission Factors (kg/kg) with Pressure at 3 Turns
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Figure 14: Variation of Emission Factors (kg/kg) with Pressure at 3 turns 

 

 Figure 15 shows the variation of emission factors with pressure at 4 turns of feed rate. 

Similar to variation at 3 turns, emission factors for coal slag and specialty sand. Increase in 

emission factors for specialty sand was considerably higher as compared to coal slag. 

In case of copper slag, emission factors decreased with increase in blast pressure, which may be 

sue to the effect of self abrasion of particles as explained earlier. At 80 PSI, all three materials 

were observed to have almost same emission factors. With increase in pressure, emission factors 

for specialty sand increased significantly than for coal slag and copper slag. At 120 PSI, copper 

slag was observed to have the lowest emission factors and specialty sand, highest emission 

factors. Regression equations to calculate emission factors at intermediate blast pressure are also 

given in Figure 15. Copper slag had notably lower R2 (0.48) compared to coal slag and specialty 

sand. 
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Variation of Emission Factors (kg/kg) with Pressure at 4 Turns
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Figure 15: Variation of Emission Factors (kg/kg) with Pressure at 4 turns 

 

Variation of Emission Factors (kg/kg) with Pressure at 5 Turns
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Figure 16: Variation of Emission Factors (kg/kg) with Pressure at 5 turns 

  

Variation of emission factors with pressure at 5 turns of feed rate Figure 15 was similar to 

the variation at 4 turns. Specialty sand had higher emission factors at higher blast pressure. 

Emission factors for copper slag decreased with increase in pressure. Regression equations for 
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determining emission factors at intermediate feed rates are also shown in Figure 16. R2 values for 

copper slag and specialty sand were 0.73, and higher for coal slag, 0.95. 

5.1.2.2. Variation of emission factors (kg/kg) with feed rate 

 At higher feed rates, the particles traveling from the nozzle interact with the rebounding 

particles from the base plate and breakdown resulting in higher emissions. In addition, higher 

feed rates may result in turbulent flow which results in self-abrasion of particles and reduction in 

velocity. Thus, a uniform flow results in less emissions while cleaning more area and consuming 

less material. 

Variation of Emission Factors (kg/kg) with Feed Rate at 80 PSI
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Figure 17: Variation of Emission Factors (kg/kg) with Feed Rate at 80 PSI 

  

 The effect of feed rate on emission factors at 80 PSI is shown in Figure 17. At 3 turns of 

feed rate, copper slag had highest emission factors and specialty sand had lowest emission 

factors. However, with increase in feed rate, all three materials had comparable average emission 

factors. In case of copper slag, emission factors decreased with increase in feed rate from 3 to 4 

turns and then increased with further increase in feed rate. This may be due to uniform flow and 

effective cleaning at 4 turns of feed rate. For coal slag, although average emission factor showed 
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similar trend as copper slag, the variation was not significant. In case of specialty sand, emission 

factors increased with increase in feed rate, which may be due to self-abrasion of particles and 

non-uniform flow of material at higher feed rates. The regression equations for estimating 

emission factors at intermediate feed rates for blast pressure of 80 PSI are also shown in Figure 

17. R2 values obtained for these variations were less than 0.90. 

Variation of Emission Factors (kg/kg) with Feed Rate at 100 PSI
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Figure 18: Variation of Emission Factors (kg/kg) with Feed Rate at 100 PSI 

  

 Figures 18 and 19 show the variation of emission factors with feed rate at 100 and 120 

PSI respectively. Coal slag showed an insignificant variation in emission factors with feed rate. 

Copper slag emission factors decreased with increase in feed rate and then increased at 100 PSI 

similar to the variation at 80 PSI, which may be due to more uniform flow at 4 turns. However, 

at 120 PSI, this variation was not significant. This may be because of lesser effect of feed rate at 

higher pressures. In case specialty sand, emission factors increased with increase in feed rate 

from 3 to 4 turns and then decreased with further increase in feed rate. A more uniform flow and 

less consumption of material at higher feed rates may have resulted in decreased emission factors 
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at 100 and 120 PSI. The equations to determine emission factors at intermediate feed rates for 

100 and 120 PSI are also shown in Figures 18 and 19. 

Variation of Emission Factors (kg/kg) with Feed Rate at 120 PSI
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Figure 19: Variation of Emission Factors (kg/kg) with Feed Rate at 120 PSI 

 
5.1.2.3. Variation of emission factors (kg/kg) with pressure and feed rate 

 Figures 20, 21, and 22 show variation of emission factors with both pressure and feed 

rate. The regression model developed to determine emission factors at intermediate pressure and 

feed rate is: 

 )**()*()*()*()*( 22 FPfFePdFcPbaEF +++++=    (3) 

Where, 

 EF = Emission Factor in kg/kg, 

 P = Blast Pressure in PSI, (80 to 120 PSI), 

 F = Feed Rate in Number of Turns of Schmidt Feed Valve (3 to 5), and 

 a, b, c, d, e, and f are coefficients, given in Table 12. 
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Table 12: Coefficients for Emission Factors in (kg/kg) for Equation 3 
Abrasive 
Material a b c d e f R2 
Coal Slag 2.38E-01 -2.20E-03 -5.37E-02 1.46E-05 7.32E-03 -2.47E-05 0.94

Copper Slag 3.48E-01 -5.15E-04 -1.31E-01 8.93E-08 1.65E-02 9.52E-06 0.83
Specialty Sand -7.90E-01 1.26E-03 3.49E-01 2.29E-06 -4.23E-02 1.18E-04 0.82

 

 
Figure 20: Coal Slag - Variation of Emission Factors (kg/kg) with Pressure and Feed Rate 
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Figure 21: Copper Slag - Variation of Emission Factors (kg/kg) with Pressure and Feed Rate 

 

 
Figure 22: Specialty Sand - Variation of Emission Factors (kg/kg) with Pressure and Feed Rate 
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5.2. Productivity 
 
5.1.1. Variation of Productivity with Pressure 

 The variation of productivity with pressure at 3, 4, and 5 turns of feed rate is shown in 

Figures 23, 26, and 25, respectively. Productivity of coal slag increased with increase in pressure 

at 3, 4, and 5 turns. An increase in pressure results in higher velocities and a significant increase 

in the kinetic energy of abrasive particles since kinetic energy imparted to the abrasive material 

is proportional to square of the velocity (V2) of the material. Thus, a greater impact is created 

upon striking the plate resulting in lesser dwell time to remove paint from the surface. Hence, 

productivity increased with increase in blast pressure. While this trend was observed for copper 

slag and specialty sand from blast pressures 80 to 100 PSI, the productivity decreased with 

further increase in pressure to 120 PSI at 3 and 4 turns. At very high pressures, the particles 

undergo more damage due to self-abrasion of abrasive particles and impact of rebounding 

particles causes loss of energy. Thus, kinetic energy of particles striking the plate decreases, 

resulting in decreased productivity at very high pressures. In addition, worker fatigue at high 

blast pressures causes decrease in productivity. 

At 5 turns of feed rate, while coal slag and copper slag followed similar trends as at 3 and 

4 turns, productivity of sand increased with increase in pressure. This may be due to lesser effect 

of self-abrasion and rebounding particles and greater abrasive flow rate at 5 turns, which resulted 

in more number of particles impacting the surface with higher kinetic energy. Specialty sand was 

more effective in removing paint at a faster rate than coal slag and copper in most cases.  Higher 

hardness of sand grains due to improved abrasive qualities by processing from the suppliers may 

have resulted in higher productivity. While coal slag and copper slag had approximately same 
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productivity at 100 PSI, coal slag resulted in higher productivity than copper slag at 80 and 120 

PSI for 3, 4, and 5 turns of feed rate. 

Variation of Productivity (m2/hr) with Pressure at 3 Turns

Coal Slag
y = 0.0005x2 - 0.0144x + 6.3985

R2 = 0.85

Copper Slag
y = -0.0087x2 + 1.7718x - 80.233

R2 = 0.98

Specialty Sand
y = -0.0085x2 + 1.6955x - 70.219

R2 = 0.89
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Figure 23: Variation of Productivity with Pressure at 3 Turns 

 

Variation of Productivity (m2/hr) with Pressure at 4 Turns
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y = 0.001x2 - 0.1252x + 16.016

R2 = 0.94
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y = -0.0103x2 + 2.1082x - 94.018
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Figure 24: Variation of Productivity with Pressure at 4 Turns 
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Variation of Productivity (m2/hr) with Pressure at 5 Turns

Coal Slag
y = 0.0018x2 - 0.2708x + 20.044

R2 = 0.95

Copper Slag
y = -0.0076x2 + 1.6026x - 73.203

R2 = 0.99

Specialty Sand
y = 0.0091x2 - 1.6135x + 79.433

R2 = 0.98
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Figure 25: Variation of Productivity with Pressure at 5 Turns 

 
5.1.2. Variation of Productivity with Feed Rate 

 Variation of productivity with feed rate at 80 PSI is shown in Figure 26. It can seen from 

the figure that productivity increased with feed rate from 3 to 4 turns and then decreased. With 

increase in feed rate more number of particles per unit area strikes the plate, increasing the 

productivity. However, at very high feed rates, the velocity of particles is decreased due to over 

burdening of the air with more number of particles. In addition, with more particles released 

from the nozzle, self-abrasion of particles causes damage to the particles. Thus, productivity 

decreased with increase in feed rate from 4 to 5 turns.  

Copper slag resulted in lowest productivity compared to coal slag and specialty sand. 

While productivity of specialty sand was higher than that of coal slag at 3 turns, with increase in 

feed rate, productivity of these two materials was comparable. 
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Variation of Productivity (m2/hr) with Feed Rate at 80 PSI

Coal Slag
y = -3.466x2 + 28.68x - 46.583

R2 = 0.94

Copper Slag
y = -2.9503x2 + 23.998x - 39.844
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y = -2.096x2 + 15.717x - 17.372
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Figure 26: Variation of Productivity with Feed Rate at 80 PSI 

 

 Variation of Productivity (m2/hr) with Feed Rate at 100 PSI

Coal Slag
y = -3.4479x2 + 28.399x - 44.494

R2 = 0.94

Copper Slag
y = -3.8157x2 + 31.28x - 49.919

R2 = 0.995

Specialty Sand
y = -4.9405x2 + 37.155x - 52.834

R2 = 0.99
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Figure 27: Variation of Productivity with Feed Rate at 100 PSI 

 
Similar to variation at 80 PSI, the productivity of coal slag, copper slag, and specialty 

sand at 100 PSI increased with increase in feed rate to an optimum value and then decreased with 

further increase in feed rate (Figure 27). Coal slag and copper slag showed almost the same 

productivity, while productivity of specialty was observed to be considerably higher from 3 to 4 
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turns. The equations to estimate productivity at intermediate feed rates are shown in also shown 

in Figure 27. 

The variation of productivity of three materials with feed rate at 120 PSI is shown in 

Figure 28. While coal slag and copper slag showed a similar trend as previous two pressure 

conditions with change in feed rate, productivity of specialty sand did not show the decreasing 

trend at higher feed rates. This may be due to combined effect of higher pressure and feed rate 

conditions, resulting greater velocity and higher number of particles participating in abrading 

action for specialty sand compared to coal slag and copper slag. Lowest productivity was 

observed for copper slag. Coal slag showed higher productivity than specialty sand at 4 turns, but 

lower at 5 turns. 

Variation of Productivity (m2/hr) with Feed Rate at 120 PSI
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Figure 28: Variation of Productivity with Feed Rate at 120 PSI 

5.1.3. Variation of Productivity with Pressure and Feed Rate 

 Figures 28, 30, and 31 show simultaneous effect of blast pressure and feed rate on 

productivity for coal slag, copper slag, and specialty sand respectively. 
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Figure 29: Coal Slag - Variation of Productivity with Pressure and Feed Rate 

 

 
Figure 30: Copper Slag - Variation of Productivity with Pressure and Feed Rate 
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Figure 31: Specialty Sand - Variation of Productivity with Pressure and Feed Rate 

 
 The regression model developed to determine productivity at intermediate pressure and 

feed rate is: 

 )*/()/()/()/()/(Pr 22 FPfFePdFcPbaoductivity +++++=    (4) 

Where, 

 Productivity in m2/hr 

 P = Blast Pressure in PSI, (80 to 120 PSI), 

 F = Feed Rate in Number of Turns of Schmidt Feed Valve (3 to 5), and 

 a, b, c, d, e, and f are coefficients, given in Table 13. 

Table 13: Coefficients for Productivity (m2/hr) for Equation 4 
Abrasive 
Material a b c d e f R2 
Coal Slag -1.85E+00 -6.33E+03 4.14E+02 2.44E+05 -8.31E+02 1.29E+03 0.94

Copper Slag -1.05E+02 1.51E+04 3.33E+02 -7.99E+05 -7.27E+02 4.03E+03 0.99
Specialty Sand -2.73E+00 -1.38E+02 1.65E+02 -2.00E+05 -5.65E+02 1.33E+04 0.58
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5.3. Consumption 

5.3.1. Variation of Consumption with Pressure 

 The variation of abrasive consumption with pressure at 3 turns of feed rate is shown in 

Figure 32. Consumption of copper slag and specialty sand decreased with increase in blast 

pressure and then increased with further increase in pressure. Due to lower velocity at low 

pressure, the kinetic energy possessed by the abrasive particles is less. Thus, more material was 

required to remove paint and achieve desired profile. With increase in blast pressure, kinetic 

energy increased, which resulted a decrease in consumption. However, at very high pressures, 

particles undergo more damage at higher velocities due to self-abrasion., which resulted in 

increased consumption for coal slag and copper slag.  

 

Variation of Consumption (kg/m2) with Pressure at 3 Turns

Coal Slag
y = -0.004x2 + 0.9377x - 15.043

R2 = 0.73

Copper Slag
y = 0.0293x2 - 5.4216x + 285.05

R2 = 0.98

Specialty Sand
y = 0.0133x2 - 2.7635x + 167.62

R2 = 0.46
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Figure 32: Variation of Consumption with Pressure at 3 Turns 

 

 Although an increase in consumption of specialty sand was observed with increase 

pressure from 100 to 120 PSI, the variation was not significant. Minimum consumption of 

material was observed in case of specialty sand at 3 turns. While coal slag and copper slag 
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consumed comparable quantities of material from 80 to 100 PSI, at higher pressure, copper slag 

showed a significant increase in consumption. This may be due to greater damage of particles for 

copper slag compared to coal slag. R2 value obtained for specialty sand was considerably lower 

than the values for coal slag and copper slag at 3 turns. 

Variation of Consumption (kg/m2) with Pressure at 4 Turns

Coal Slag
y = -0.013x2 + 2.607x - 97.174

R2 = 0.63
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y = -0.0004x2 - 0.1288x + 57.205
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Figure 33: Variation of Consumption with Pressure at 4 Turns 

 
  

 Figure 33 shows the variation of consumption with pressure at 4 turns. It can be observed 

from the figure that effect of pressure on consumption was not significant in case of all three 

materials, which may be due to more uniform flow of material at turns. However, consumption 

of copper slag was higher than coal slag and specialty sand. Minimum material was consumed in 

case of specialty sand. The equations to determine material consumption for coal slag, copper 

slag, and specialty sand are shown in Figure 33 and lower R2 values (<0.80) were obtained for all 

three materials. 
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Variation of Consumption (kg/m2) with Pressure at 5 Turns

Coal Slag
y = -0.0189x2 + 3.8128x - 144.58

R2 = 0.89

Copper Slag
y = 0.0559x2 - 10.902x + 564.12

R2 = 0.87

Specialty Sand
y = -0.0298x2 + 5.8009x - 239.67

R2 = 0.71
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Figure 34: Variation of Consumption with Pressure at 5 Turns 

 
 

 An increase pressure at 5 turns showed varying effects on the abrasive materials. Increase 

in pressure from 80 to 100 PSI resulted in decreased consumption and with further increase in 

pressure, consumption of more material in case of copper slag (Figure 34). As explained earlier, 

this may be due to increasing velocity effect from 80 to 100 PSI and effect of damage of particles 

at higher pressure. An opposite effect of pressure was observed for consumption of coal slag and 

specialty sand. However, the variation was not as significant for specialty sand as for coal slag. 

5.3.2. Variation of Consumption with Feed Rate 

 The variation of consumption with feed rate at 80, 100, and 120 PSI are shown in Figures 

35, 36, and 37, respectively. The consumption of abrasive initially decreased with increased feed 

rate and then increased with further increase in feed rate in most of the cases for coal slag and 

specialty sand. This is because of more uniform flow of abrasive at 4 turns than at 3 or 5 turns. In 

addition, very high feed rates cause self-abrasion of particles and uneven distribution of material 

due to turbulent flow and thus require more material to remove paint from a unit area.  
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Variation of Consumption (kg/m2) with Feed Rate at 80 PSI

Coal Slag
y = 6.9721x2 - 53.015x + 130.57

R2 = 0.89

Copper Slag
y = -0.2116x2 + 7.1955x + 18.928

R2 = 0.55

Specialty Sand
y = 5.9249x2 - 46.371x + 117.17

R2 = 0.66
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Figure 35: Variation of Consumption with Feed Rate at 80 PSI 

 

Variation of Consumption (kg/m2) with Feed Rate at 100 PSI

Coal Slag
y = 9.8605x2 - 74.075x + 172.05

R2 = 0.98

Copper Slag
y = -6.1569x2 + 47.867x - 52.658

R2 = 0.73
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Figure 36: Variation of Consumption with Feed Rate at 100 PSI 

  

However, in case of copper slag, average consumption increased with in feed rate at 80 

PSI. This may be due to overload of abrasive particles at this lower pressure, which caused a 

decrease in velocity of particles, and hence the kinetic energy of the particles. At 100 PSI, 

consumption of copper slag increased with feed rate from 3 to 4 turns and then decreased. With 
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increase in feed rate, more number of particles participated in abrading action per unit area, 

which may have resulted in decrease of consumption at higher feed rate for 100 PSI. 

 

Variation of Consumption (kg/m2) with Feed Rate at 120 PSI
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Figure 37: Variation of Consumption with Feed Rate at 120 PSI 

  

 Copper slag resulted in higher consumption than coal slag and specialty sand at 80 and 

120 PSI.  While minimum consumption was observed for specialty sand at 80 and 120 PSI, the 

consumption of abrasives demonstrated a mixed effect at 100 PSI for the three materials. The 

equations and R2 values obtained from regression analysis for these variations are shown in the 

figures above. 

5.3.3. Variation of Consumption with Pressure and Feed Rate 

 The variation of consumption with both pressure and feed rate for coal slag, copper slag, 

and specialty sand are shown in Figures 38, 39, and 40. 
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Figure 38: Coal Slag - Variation of Consumption with Pressure and Feed Rate 

 

 
Figure 39: Copper Slag - Variation of Consumption with Pressure and Feed Rate 
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Figure 40: Specialty Sand - Variation of Consumption with Pressure and Feed Rate 

 

 The regression model developed to determine consumption at intermediate pressure and 

feed rate is: 

  )*/()/()/()/()/( 22 FPfFePdFcPbanConsumptio +++++=   (5) 

Where, 

 Consumption in kg/m2 

 P = Blast Pressure in PSI, (80 to 120 PSI), 

 F = Feed Rate in Number of Turns of Schmidt Feed Valve (3 to 5), and 

 a, b, c, d, e, and f are coefficients, given in Table 14. 

 
Table 14: Coefficients for Consumption (kg/m2) for Equation 5 

Abrasive 
Material a b c d e f R2 
Coal Slag 7.13E+01 2.73E+04 -1.27E+03 -1.20E+06 2.54E+03 -1.26E+04 0.86

Copper Slag 4.25E+02 -5.38E+04 -7.55E+02 2.70E+06 1.66E+03 -1.61E+04 0.51
Specialty Sand 1.34E+02 -7.91E+01 -8.25E+02 1.47E+05 1.69E+03 -9.43E+03 0.30
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6. Conclusions and Recommendations 

 Performance of coal slag, copper slag, and specialty sand for removal of paint from mild 

steel surfaces was evaluated in this research. While several factors affect the performance of an 

abrasive, blast pressure and feed rate are two important process conditions that can be optimized 

easily to achieve maximum efficiency from an abrasive material. Thus, effect of two important 

process parameters, namely, blast pressure (80 -120 PSI) and feed rate (3 – 5 turns of opening of 

Schmidt feed valve) on productivity, consumption and total PM emission factors (performance 

parameters) was studied to evaluate the performance. Two dimensional and three dimensional 

models were developed to estimate the performance parameters at intermediate blast pressure 

and feed rate conditions.  

 Based on the overall performance, the three abrasive materials are ranked as follows: 

• Emission Factors in kg/m2: 

  Copper Slag < Coal Slag < Specialty Sand 

• Emission Factors in kg/kg: 

  Copper Slag < Coal Slag < Specialty Sand 

• Productivity: 

  Copper Slag < Coal Slag < Specialty Sand 

• Consumption:  

  Specialty Sand < Coal Slag < Copper Slag 

 

 At a specific blast pressure and feed rate condition, the materials may not follow the same 

order. In order to determine these performance parameters at a specific blast pressure and feed 

rate condition, the regression models were developed: 
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 )**()*()*()*()*( 22 FPfFePdFcPbaEF +++++=  
    )*/()/()/()/()/( 22 FPfFePdFcPbaY +++++=  
  

 Where, 

  EF = Emission Factor in kg/m2 or kg/kg 

  Y = Productivity in m2/hr or Consumption in kg/m2 

  P = Blast Pressure in PSI, (80 to 120 PSI) 

  F = Feed Rate in Number of Turns of Schmidt Feed Valve (3 to 5) 

  a, b, c, d, e, and f are coefficients, which vary for each material and performance  

  parameter. 

 Due caution must be employed while using these equations. The results are valid within 

the tested ranges of blast pressure and feed rate. 

 Emission quantities and health risk can be estimated using the emission factors developed 

in this research. Spent abrasive quantities can be estimated by estimating the quantity of abrasive 

used from the consumption models developed in this research. With additional information on 

specific costs, emission factors, productivity and consumption models can be used to determine 

material costs, labor costs, equipment costs, energy costs, emission control & compliance costs, 

waste disposal costs, and health risk costs. An example of application of these equations in cost 

calculations is shown in Appendix D. 

 It is evident from the above results that specialty sand is cost-effective with respect to 

production costs due to highest productivity and lowest consumption. However, it also has 

highest emission potential, which increases emission control and compliance costs, health risk to 

workers. Moreover, emissions from sand are of great concern due to silicosis caused by silica 
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emissions and many health and regulatory agencies require the use of substitute materials to 

reduce the risk of silicosis. 

 While coal slag has higher emission factors than copper slag, overall life cycle costs may 

be lower than copper slag because of higher productivity and lower consumption of coal slag. 

With increasing concern on environmental and health effects due to PM emissions, it is 

important to evaluate pollution prevention, cost reduction options and health risk of alternative 

materials prior to selecting an abrasive. 

 Size distribution and metal analysis of total PM emissions will greatly enhance the health 

risk evaluation due to metal and particulate emissions. This research was focused on effect of 

blast pressure and feed rate on performance of medium grade, non-reusable abrasives. It is 

recommended to study the effect of other parameters such as nozzle size, and abrasive grade on 

the performance. 

 The exhaust flow rate is important when emissions are estimated. With higher flow rate, 

more particles get airborne due to higher suction in the test chamber. Thus, emission factors may 

be higher. Effect of exhaust flow rate on emission factors may be studied in future research. 

Since thickness of surface contamination affects the performance of an abrasive, effect of 

varying paint thickness may be studied. 

 Since the blasting operations were carried in an enclosed chamber emission factors 

developed in this research must be extrapolated for other sizes of blast chambers and open-air 

blasting due to effect of wind velocity in case of outdoor blasting. 
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Table: Coal Slag: CO 120-4-1 Field Observations 
 Date 6/14/2004         
 Type of Abrasive = Coal Slag   Mass of Abrasive = 100 lbs   
 Area Cleaned = 17 sqft  Blast Time = 5 mins   

 Finish = 
Near 

White   Abrasive Grade = Medium    
 K factor = 1.13   Blast Pressure = 120 psi   
 Run No = 1   Abrasive feed rate = 4 # turns of on Schmidt valve 
 Initial meter reading = 161.81         

Stack Temp Vacuum 
Traverse 

Pt 
Meter 

Reading Delta P Delta H DGM in 
DGM 
Out 

Avg Meter 
Temp (oF) oC oF   

Hot Box 
Temp 
(oF) 

Cold Box 
Temp (oF) 

1 162.51 0.37 0.418 107 105 106 27 80.6 3 190 50 
2 163.18 0.39 0.440 106 104 105 27 80.6 3 210 48 
3 163.86 0.38 0.429 104 102 103 26 78.8 3 210 48 
4 164.51 0.38 0.429 104 102 103 26 78.8 3 205 48 
5 166.28 0.6 0.677 103 101 102 26 78.8 3 200 46 
6 168.15 0.61 0.688 103 101 102 26 78.8 4 190 44 
7 169.17 1.1 1.241 103 101 102 26 78.8 5 175 45 
8 170.02 0.99 1.117 103 102 102.5 26.5 79.7 5 165 45 

V dgm = 8.21                     

  Average = 0.603 0.680   
Avg 

Temp = 103.1875   79.3625       
            

Impinger Data 
Impinger 

1 
Impinger 

2 
Impinger 

3 
Impinger 

4  Particulate Mass Collected   

        
(Silica 
Gel)    Filter  Beaker  

Final 530 549 433.5 544.5  Initial Mass (g) 0.8242 112.7509  
Initial 528 548 433.5 543  Final mass (g) 0.8298 113.5333  

           Mass Collected 0.0056 0.7824  
Difference 2 1 0 1.5  Total  0.7880 g  

Volume of Water 
Condensed, Vwc 3 ml         

Mass increase in Silica 
gel, (mf-mi) 1.5 g         
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Symbol Description Comments Units Value 
V1 Initial Meter Reading   dcf 161.810 
V2 Final Meter Reading   dcf 170.020 

Vm 
Actual Volume of gas 
measured by the DGM (Final-Initial) meter reading dcf 8.210 

Tstd Standard Temperature 25oC = 298oK R 536.690 

  
Conversion factor (in.of Hg to 
mm.of Hg)     25.400 

Y 
Y(DGM correction factor: 
0.95-1.05)     0.990 

PB Barometric Pressure Assumed to be 30.06 in Hg 30.060 
∆ P Average ∆ P   in. H20 0.603 

     = 0.763/13.6 in Hg 0.044 
Pstd Standard Pressure   in Hg 29.920 
∆ H@ Reference ∆ H From DGM Calibration in. H20 1.80 

K  K Factor for ∆ H Assuming Pdgm ~ Pbar   1.13 
∆ H Average ∆ H K*∆ P in. H20 0.68 

Pdgm Pressyre of the DGM  PB + (∆ P/13.6) in Hg 30.104 
Tdgm Temperature of the DGM   F 103.188 

     R 562.878 

Vdgm(std)  
Volume of gas at standard 
conditions 

Vdgm*Y*(Pdgm*Tstd)            
(Pstd*Tdgm) 

 SCF 7.797 

Vwc 
Volume of water vapor 
condensed From Impingers 1, 2, & 3 ml 3.000 

Vwc(std) 
Volume of water vapour at 
Standard Conditions K1*(Vw) where K1=0.04707   0.141 

mf - mi  Mass increase in Silica Gel From Impinger 4 g 1.500 

Vwsg(std) 
Volume of vapor absorbed 
onto the silica gel K2*(mf - mi) where K2=0.04715  ml 0.071 

BH2O Mole fraction of dry gas 

[Vwc(std) + Vwsg(std)] X 100         
[Vwc(std) + Vwsg(std) + Vdgm(std)] % 2.646 

PMOS       0.974 
Mdry Molecular Weight Dry Gas Assumed to be 28.6   28.600 

Mgas 
Total Molecular Weight of 
Gas 

 Mgas = Mdry X (1-BH2O) + (18 X 
BH2O)   28.320 

DPS √(∆P)   in H20 0.776 
TS Average Stack Temp   DEG F 79.363 
      R 539.053 

PS  
Stack Pressure Absolute 
(Pstat)  PB + (∆ H/13.6) in Hg 30.109 

Cp Pitot Tube Coeff     0.840 

VS Average Stack Gas Velocity 
Kp * Cp* sqrt(Tgas*∆ P/(Pstat 

*Mgas) where Kp = 85.49* 60  fpm 2659.199 
Dia(stack) Inside Diameter of Stack   in 12.000 

AS Stack Area(sq.in)   sq in. 113.097 
AS Stack Area(sq ft)   sq.ft 0.785 
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Symbol Description Comments Units Value 

Qs, actual 
Stack Flow Rate Actual 
Conditions VS X AS cfm 2088.530 

Qs, std, dry 
Stack Flow Rate Dry, Std 
Conditions 

 
 vs * As * (1 - BH2O) * (Pstat * Tstd) 

(Pstd * Tgas) 
 dscfm 2037.124 

TT = Ө Net time of run 
sampling time = (2min*8 

traverse points) min 16.000 
Dia(nozzle) Nozzle Diameter   in 0.180 

An Nozzle Area   sqft 0.0002 

vn Nozzle average velocity 

 
     Vdgm * Y * Pdgm * Tgas        

Tdgm * Pstat *Ө * An  * (1-BH2O) 
 fpm 2827.39 

Qn  Nozzle flow rate vn * An cfm 0.50 

Qn, std, dry 
Nozzle flow rate at standard 
conditions 

 
Qn * Pdgm * Tstd               

Pstd * Tdgm 
 dscfm 0.48 

% Iso-
Kinetic Percent Isokinetic 

 
Vdgm,std * Pstd * Tgas *100       

Tstd * vs * Ө * An * Pstat * (1-BH2O) 
 % 106.325 

Pmass Particulate Weight ( Total) 
On the Filter Paper + In the 

beaker g 0.7880 

TPM Total Particulate Emissions 

 
Qs, std, dry  * Pmass             

Qn, std, dry  
 g 3348.952 

BT Blasting Time   min 5.00 
Mabrasive Mass of abrasive   lb 100.00 

Area 
cleaned   5' X 2' 9" sqft 17.00 

Total Gas 
Sampled 

Flow rate in the nozzle * 
Sampling time Qn, std dry * Ө dscf 7.99 

    dscm = dscf * 0.02832 dscm 0.23 
Total 

exhaust 
gas from 

emissions 
test 

chamber 
Flow rate in the stack * 
Sampling time Qs, std dry * Ө dscf 32593.98 

    dscm = dscf * 0.02832 dscm 923.06 
EF 

(mg/sq.ft) 
Emission factor for TPM (per 
unit area cleaned) TPM *1000 / Area cleaned mg/sq.ft 196997.18 

EF (lb/ton) 
Emission factor for TPM (per 
ton of abrasive used) (TPM / 453.59) * 2000 / 100 lb/ton 147.66 
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Regression Analysis for Two Dimensional Analysis 
 
DataFit Results for Feed Rate vs. Productivity of Copper Slag at 120 PSI 
 
Number of observations = 9    
Number of missing observations = 0   
Solver type: Nonlinear    
Nonlinear iteration limit = 250    
Diverging nonlinear iteration limit =10   
Number of nonlinear iterations performed = 11  
Residual tolerance = 0.0000000001   
Sum of Residuals = -3.64153152077051E-14  
Average Residual = -4.04614613418946E-15  
Residual Sum of Squares (Absolute) = 0.474333333333334 
Residual Sum of Squares (Relative) = 0.474333333333334 
Standard Error of the Estimate = 0.281168197980418  
Coefficient of Multiple Determination (R^2) = 0.9857525041 
Proportion of Variance Explained = 98.57525041%  
Adjusted coefficient of multiple determination (Ra^2) = 0.9810033388 
Durbin-Watson statistic = 2.00819864136802  
      
Regression Variable 
Results          

Variable Value 
Standard 
Error t-ratio Prob(t)  

a -3.005 0.198816 -15.1145 0.00001  
b 25.60833 1.594664 16.05876 0  
c -43.2033 3.084318 -14.0074 0.00001  
      
68% Confidence 
Intervals          

Variable Value 68% (+/-) 
Lower 
Limit 

Upper 
Limit  

a -3.005 0.215516 -3.22052 -2.78948  
b 25.60833 1.728616 23.87972 27.33695  
c -43.2033 3.343401 -46.5467 -39.8599  
      
90% Confidence 
Intervals          

Variable Value 90% (+/-) 
Lower 
Limit 

Upper 
Limit  

a -3.005 0.386339 -3.39134 -2.61866  
b 25.60833 3.098751 22.50958 28.70708  
c -43.2033 5.993447 -49.1968 -37.2099  
      
95% Confidence 
Intervals          

Variable Value 95% (+/-) 
Lower 
Limit 

Upper 
Limit  

a -3.005 0.486483 -3.49148 -2.51852  
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b 25.60833 3.901984 21.70635 29.51032  
c -43.2033 7.547018 -50.7504 -35.6563  
      
99% Confidence 
Intervals          

Variable Value 99% (+/-) 
Lower 
Limit 

Upper 
Limit  

a -3.005 0.73709 -3.74209 -2.26791  
b 25.60833 5.912058 19.69628 31.52039  
c -43.2033 11.4348 -54.6381 -31.7685  
      
Variance Analysis           

Source DF 
Sum of 
Squares 

Mean 
Square F Ratio Prob(F) 

Regression 2 32.81807 16.40903 207.5633 0
Error 6 0.474333 7.91E-02     
Total 8 33.2924       
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Residuals for Two Dimensional Analyses for Feed Rate vs. Productivity of Copper 
Slag 

 
Feed Rate 

(No. of 
turns) 

Observed 
Productivity 

(m2/hr) 
Predicted 

Productivity Residual % Error 
Absolute 
Residual 

Min. 
Residual

Max. 
Residual

3 6.77 6.576666667 0.193333 2.855736 0.193333 -0.42333 0.386667
3 6.27 6.576666667 -0.30667 -4.89102 0.306667     
3 6.69 6.576666667 0.113333 1.694071 0.113333     

4 11.15 11.15
-5.33E-

15
-4.78E-

14 5.33E-15     

4 11.15 11.15
-5.33E-

15
-4.78E-

14 5.33E-15     

4 11.15 11.15
-5.33E-

15
-4.78E-

14 5.33E-15     
5 9.29 9.713333333 -0.42333 -4.55687 0.423333     
5 9.75 9.713333333 0.036667 0.376068 0.036667     
5 10.1 9.713333333 0.386667 3.828383 0.386667     

 
 

 
Residual Scatter Diagram 
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Residual Normal Probability Plot 
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Regression Analysis for Three Dimensional Analysis 
 

DataFit Results for Productivity of Copper Slag 
Equation ID: a+b/x1+c/x2+d/x1^2+e/x2^2+f/(x1*x2)    
Model Definition:      
Y = a+b/x1+c/x2+d/x1^2+e/x2^2+f/(x1*x2)    
Number of observations = 27     
Number of missing observations = 0     
Solver type: Nonlinear     
Nonlinear iteration limit = 250     
Diverging nonlinear iteration limit =10     
Number of nonlinear iterations performed = 6    
Residual tolerance = 0.0000000001     
Sum of Residuals = 8.33999536098418E-13    
Average Residual = 3.08888717073488E-14    
Residual Sum of Squares (Absolute) = 2.44553862036037   
Residual Sum of Squares (Relative) = 2.44553862036037   
Standard Error of the Estimate = 0.341253893775823    
Coefficient of Multiple Determination (R^2) = 0.9865185275   
Proportion of Variance Explained = 98.65185275%    
Adjusted coefficient of multiple determination (Ra^2) = 0.983308653   
Durbin-Watson statistic = 1.62549133011123    
       
Regression Variable 
Results           

Variable Value 
Standard 
Error t-ratio Prob(t)   

a -104.87 4.711905267 -22.25645432 0   
b 15069.92 729.7634256 20.65042365 0   
c 332.959 19.58728221 16.9987317 0   
d -798827 33658.0845 -23.73357482 0   
e -727.367 33.78241194 -21.53092763 0   
f 4025.994 697.3742432 5.773074636 0.00001   
       
68% Confidence 
Intervals           
Variable Value 68% (+/-) Lower Limit Upper Limit   
a -104.87 4.799546705 -109.669851 -100.0707576   
b 15069.92 743.3370253 14326.58688 15813.26093   
c 332.959 19.95160566 313.0073495 352.9105608   
d -798827 34284.12487 -833110.7915 -764542.5418   
e -727.367 34.4107648 -761.7774315 -692.9559019   
f 4025.994 710.3454041 3315.648151 4736.338959   
       
90% Confidence 
Intervals           
Variable Value 90% (+/-) Lower Limit Upper Limit   
a -104.87 8.107775394 -112.9780797 -96.76252894   
b 15069.92 1255.703926 13814.21998 16325.62783   
c 332.959 33.7038365 299.2551186 366.6627916   
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d -798827 57915.466 -856742.1327 -740911.2007   
e -727.367 58.12939622 -785.4960629 -669.2372705   
f 4025.994 1199.97186 2826.021695 5225.965415   
 
       
95% Confidence 
Intervals           
Variable Value 95% (+/-) Lower Limit Upper Limit   
a -104.87 9.798878194 -114.6691825 -95.07142614   
b 15069.92 1517.61602 13552.30789 16587.53992   
c 332.959 40.73371209 292.225243 373.6926672   
d -798827 69995.35253 -868822.0192 -728831.3141   
e -727.367 70.25390386 -797.6205705 -657.1127628   
f 4025.994 1450.259476 2575.734079 5476.253031   
       
99% Confidence 
Intervals           
Variable Value 99% (+/-) Lower Limit Upper Limit   
a -104.87 13.34128857 -118.2115929 -91.52901576   
b 15069.92 2066.252163 13003.67174 17136.17607   
c 332.959 55.45943086 277.4995243 388.418386   
d -798827 95299.50046 -894126.1671 -703527.1662   
e -727.367 95.65152115 -823.0181878 -631.7151455   
f 4025.994 1974.545432 2051.448123 6000.538987   
       
Variance Analysis            

Source DF 
Sum of 
Squares Mean Square F Ratio Prob(F)  

Regression 5 178.9544243 35.79088487 307.338668 0  
Error 21 2.44553862 0.11645422      
Total 26 181.399963        
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Residuals for Three Dimensional Analyses for Productivity of Copper Slag 

Pressure 
(PSI) 

Feed Rate 
(No. of 
turns) 

Productivity 
(m2/hr) 

Predicted 
Productivity Residual % Error

Absolute 
Residual 

Min. 
Residual

Max. 
Residual 

120 3 6.77 6.589 0.181 2.667 0.181 -0.525 0.655
120 3 6.27 6.589 -0.319 -5.095 0.319     
120 3 6.69 6.589 0.101 1.503 0.101     
120 4 11.15 11.405 -0.255 -2.288 0.255     
120 4 11.15 11.405 -0.255 -2.288 0.255     
120 4 11.15 11.405 -0.255 -2.288 0.255     
120 5 9.29 9.445 -0.155 -1.673 0.155     
120 5 9.75 9.445 0.305 3.124 0.305     
120 5 10.1 9.445 0.655 6.481 0.655     
100 3 9.41 9.534 -0.124 -1.318 0.124     
100 3 9.75 9.534 0.216 2.215 0.216     
100 3 9.58 9.534 0.046 0.480 0.046     
100 4 14.33 13.791 0.539 3.764 0.539     
100 4 14.18 13.791 0.389 2.746 0.389     
100 4 13.94 13.791 0.149 1.072 0.149     
100 5 10.97 11.495 -0.525 -4.789 0.525     
100 5 11.15 11.495 -0.345 -3.098 0.345     
100 5 11.15 11.495 -0.345 -3.098 0.345     

80 3 5.57 5.630 -0.060 -1.075 0.060     
80 3 5.18 5.630 -0.450 -8.684 0.450     
80 3 6.04 5.630 0.410 6.791 0.410     
80 4 8.83 9.048 -0.218 -2.465 0.218     
80 4 9.06 9.048 0.012 0.137 0.012     
80 4 8.94 9.048 -0.108 -1.204 0.108     
80 5 6.27 6.249 0.021 0.332 0.021     
80 5 6.5 6.249 0.251 3.859 0.251     
80 5 6.39 6.249 0.141 2.204 0.141     
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Residual Scatter Diagram for Productivity of Copper Slag 
Residual Scatter Diagram
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Residual Normality Probability Plot for Productivity of Copper Slag 
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Observed vs. Predicted values of Productivity for Copper Slag at 120 PSI 

Observed Vs Predicted Productivity for Copper Slag at 120 PSI
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MSDS for Coal Slag 

 
MATERIAL SAFETY DATA SHEET 

 
SECTION I – GENERAL 
 
Reed Minerals, Harsco Corporation Product Name:    Black Beauty Abrasives and Reed Minerals Roofing  
P.O. Box 0515           Products 
Camp Hill, PA  17001-0515   CAS Number:       68476-96-0 
Emergency Telephone Number Common Name:  Slag, Coal     
(717) 763-4200      Date:                    August 05, 2005 
      
 
SECTION II – PRODUCT COMPOSITION 
 
Component  Normal Composition (WT %) Range CAS Number OSHA PEL 
(mg/m3) 
 
Silicon Dioxide [SiO2]  41-53%                7631-86-9  80 mg/m3 

         %SiO2 
 
Quartz    <0.1%   14808-60-7  10 mg/m3       

[Respirable Dust]         %SiO2+2 
 
Cristobalite   ND   14464-46-1  30 mg/m3      [Quartz 

Total Dust]          %SiO2+2 
 
Tridymite   ND   15468-32-3  80 mg/m3       

[Respirable Dust]         %SiO2 
 
Aluminum Oxide [Al2O3]  17-25%   1344-28-1  15 mg/m3       
Calcium Oxide [CaO]  3-15%   1305-78-8  5 mg/m3        
Magnesium Oxide [MgO]  0-4%   1309-48-4  15 mg/m3 (Fume)  
Iron Oxide [FeO]   7-31%                1309-37-1  10 mg/m3        
Potassium Oxide [K2O]  0-3%   12136-45-7  NE 
Titanium Dioxide [TiO2]  0-2%   13463-67-7  15 mg/m3       
ND - Not Detectable 
NE - Not Established 
 
SECTION III – PHYSICAL DATA 
 
Physical Form:   Solid (Angular Granules) 
Boiling Temperature:  N/A 
Melting Temperature:  > 2500° F 
Vapor Pressure/Density: N/A 
Evaporation Rate:  N/A 
Specific Gravity:  2.7 g/cc Typical 
Water Solubility:  Negligible 
Color:    Black Coarse Solid 
Odor:    None 
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SECTION IV – FIRE/EXPLOSION/ REACTIVITY DATA 
 
Product is nonflammable, non-explosive and stable under normal conditions of use, storage and 
transportation. 
 
SECTION V – HEALTH HAZARD DATA 
 
EXPOSURE LIMITS:  Refer to Section II which highlights the Permissible Exposure Limit 
(PEL).  This limit is published and enforced by OSHA as a legal standard.  Most PELs are expressed as 
eight hour average airborne concentrations.  The nuisance dust exposure standard should be followed if 
exceeded than the appropriate respiratory protection equipment should be worn. 
 
ACUTE and CHRONIC TOXICITY: Exposure to and contact from dust may irritate the respiratory 
system, eyes, or skin.  Coal slag is not listed on the NTP, IARC, or OSHA list of carcinogens.  If ingested it 
may cause nausea and vomiting. 
 
FIRST AID:   
 
 1.  Eye Contact – Immediately flush eyes thoroughly with water or an ophthalmic saline solution.* 
 2.  Skin Contact – Wash skin with soap and water if irritation occurs.* 
 3.  Inhalation – Remove affected person(s) to fresh air source.* 
 4.  Oral intake – Rinse mouth out with water.* 
 
*Note:  if symptoms persist, contact a physician or other medical personnel. 
 
SECTION VI – CONTROL MEASURES 
 
RESPIRATOR PROTECTION:     If airborne concentrations exceed recommended exposure limits, a 
suitable NIOSH/MSHA approved filter respirator should be worn.  General ventilation or local exhaust is 
normally adequate to control dust emissions, if not engineering controls should be utilized. 
 
EYE: Safety glasses with side shields should be worn as minimum protection from impact. Dust goggles 
should be worn when excessively dusty conditions are present or anticipated. 
 
GENERAL:  The use of hard hats and hard toe shoes is recommended.  Gloves may be worn to protect 
from abrasion as well as long sleeve shirts to minimize dermal exposure and potential skin irritation.  
 
SECTION VII – SPILL, LEAK, AND DISPOSAL PROCEDURES 
 
No special procedures required for clean-up, but it is recommended that this is done mechanically or 
through the use of hand tools.  Wetting with water will reduce any airborne dust.  Uncontaminated product 
does not exceed Toxicity Characteristic Leaching Procedure (TCLP) limits and may be disposed of as an 
inert material in an appropriate solid waste landfill according to applicable Federal, State and Local 
regulations. 

 
Disclaimer 

 
The opinions expressed herein are those of competent personnel within Harsco Corporation.  Harsco 
believes that the information contained herein is current and accurate for the normal and intended use of 
this product as of the date of this Material Safety Data Sheet.  Since the use of this information and of those 
opinions or the conditions of use of the product are not within the control of Harsco Corporation, it is the 
user's obligation to determine and observe the conditions of safe use and disposal of the product by their 
operations.  Harsco Corporation will not be liable for any loss, damage or injury arising out of the use 
thereof. 
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MSDS for Copper Slag 
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MSDS for Specialty Sand 
 
1. PRODUCT/COMPANY IDENTIFICATION  

Manufacturer’s Name & Address:  

Titan America LLC  

1151 Azalea Garden Rd.  

Norfolk, VA 23502  

Telephone Number for Information:  

1.800.468.7622  

Emergency Telephone:  

1.757.858.6500  

2. COMPOSTION INFORMATION  

Chemical Name CAS Registry Number % (approx.)  

Natural Sand* NA 100  

*May contain crystallline silica 14808-60-7 >1  

3. PHYSICAL/CHEMICAL CHARACTERISTICS  

Boiling Point N/A  

Specific Gravity (H2O = 1) 2.55-2.80  

Vapor Pressure (mm Hg) N/A  

Melting Point N/A  

Vapor Density (AIR-1) N/A  

Evaporation Rate N/A  

Solubility in Water Not soluble  

Appearance & Odor Fine grains, yellow to white in color; no odor.  
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4. FIRE AND EXPLOSION HAZARD DATA  

Flash Point N/A  

Extinguishing Media N/A  

Special Fire Fighting Procedures None  

Unusual Fire & Explosion Hazards None  

Flammable Limits N/A  

LEL N/A  

UEL N/A  

Trade Name:  

Sand  

Chemical Name and Synonyms  

Natural Sand*, Construction Aggregate  

Department of Transportation Identification No.:  

None  

*Composition varies naturally, typically contains crystalline silica  

5. REACTIVITY DATA  

Stability: Stable. Avoid contact with incompatible materials.  

Incompatibility: Contact with powerful oxidizing agents such as fluorine, boron 

trifluoride, chlorine trifluoride,  

manganese trifluoride, and oxygen difluoride may cause fire and/or explosions. Silica 

dissolves in hydrofluoric acid producing a corrosive gas-silicon tetrafluoride.  

Hazardous Decomposition or Byproducts: Respirable dust particles may be generated 

when sand is moved or ground.  
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Hazardous Polymerization: Will not occur. No conditions to avoid.  

6. HEALTH HAZARD DATA AND FIRST AID  

EXPOSURE LIMITS:  

Unless specified otherwise, limits are expressed as a time-weighted average (TWA) 

concentration for an 8-hour work shift of a 40-hour workweek. Limits for cristobalite and 

tridymite (other forms of crystalline silica) are equal to one-half the limits for quartz.  

ABBREVIATIONS:  

ACGIH TLV: Threshold limit value of the American Conference of Governmental 

Industrial Hygienists (ACGIH).  

mg/m3: Milligrams of substance per cubic meter of air.  

NIOSH REL: Recommended exposure limit of the National Institute for Occupational 

Safety and Health (NIOSH), expressed as a TWA  

concentration for up to a 10-hour work-day during a 40-hour workweek.  

OSHA PEL: Permissible exposure limit of the federal Occupational Safety and Health 

Administration (OSHA).  

Crystalline Silica SiO2: OSHA PELs (respirable fraction) [10 mg/m3 ÷ (% SiO2+2)], 

(total dust) [30 mg/m3 ÷ (% SiO2+2)]; ACGIH TLV (respirable  

fraction) 0.05 mg/m3, NIOSH REL (respirable fraction) 0.05 mg/m3.  

Other Particulates: OSHA PEL (total particulate, not otherwise regulated) 15 mg/m3, 

(respirable particulate, not otherwise regulated) 5 mg/m3,  

ACGIH TLV (nuisance particulates) 10 mg/m3 (inhalable), 5 mg/m3 (respirable).  

HEALTH HAZARDS:  

Primary Route(s) of Entry:  
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Inhalation: Yes  

Skin: No  

Ingestion: No  

Acute:  

Eye Contact: Minor irritation to the eyes or nose.  

Inhalation: Dusts may irritate the nose, throat, and respiratory tract by mechanical 

abrasion. Coughing, sneezing, and shortness of breath may occur following exposures in 

excess of appropriate exposure limits.  

Skin Contact: Direct contact may cause irritation by mechanical abrasion.  

Ingestion: Expected to be practically non-toxic. Ingestion of large amounts may cause 

gastrointestinal irritation and blockage.  

Chronic:  

Inhalation: Chronic exposure to respirable dust in excess of appropriate exposure limits 

may cause lung disease. Silicosis may result from excessive exposure to respirable silica 

dust for prolonged periods. Not all individuals with silicosis will exhibit symptoms. 

Silicosis is progressive and symptoms can appear at any time, even after exposure has 

ceased. Symptoms may include shortness of breath, coughing, or right heart enlargement 

and/or failure. Persons with silicosis have an increased risk of pulmonary tuberculosis 

infection. Tobacco smoking may increase the risk of developing lung disorders, including 

emphysema and lung cancer.  

Carcinogenicity: Crystalline silica is classified by the International Agency for Research 

on Cancer (IARC) as a carcinogenic to humans (Group 1). The National Toxicology 
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Program (NTP) has characterized respirable silica as “known to be a human carcinogen”. 

Prolonged and repeated breathing of silica may cause lung cancer.  

Signs & Symptoms of Exposure: Dust irritation of eyes and/or respiratory system.  

Medical Conditions Generally Aggravated by Exposure: Inhaling respirable dust may 

aggravate existing respiratory system disease(s) and/or dysfunctions such as emphysema 

or asthma. Exposure may aggravate existing eye conditions.  

EMERGENCY & FIRST AID PROCEDURES:  

Eyes: Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while 

holding the eyelid(s) open. Beyond flushing, do not attempt to remove material from the 

eye(s). Contact a physician if irritation persists or later develops.  

Inhalation: Remove to fresh air. Dust in throat and nasal passages should clear 

spontaneously. Contact a physician if irritation persists or later develops.  

Skin: Wash with soap and water. Contact a physician if irritation persists or later 

develops.  

Ingestion: If person is conscious, give large quantity of water and induce vomiting; 

however, never attempt to make an unconscious person drink or vomit. Get immediate 

medical attention.  

7. PERSONAL PROTECTION AND CONTROL MEASURES  

Ventilation: Local exhaust or general ventilation adequate to maintain exposures below 

appropriate exposure limits.  

Other: Respirable dust and silica levels should be monitored regularly. Dust and silica 

levels in excess of appropriate exposure limits should be reduced by all feasible 
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engineering controls, including (but not limited to) wet suppression, ventilation, process 

enclosure, and enclosed employee work stations.  

Respiratory Protection: When dust or silica levels exceed or are likely to exceed 

appropriate exposure limits, follow MSHA or OSHA regulations, as appropriate, for use 

of NIOSH-approved respiratory protection equipment.  

Skin Protection: Protective gloves should be worn to prevent mechanical injury.  

Eye Protection: Safety glasses with side shields should be worn as minimum protection. 

Dust goggles should be worn when excessive (visible) dust conditions are present or 

anticipated. Contact lenses should not be worn when working with this product.  

Hygiene: Ordinary personal hygiene.  

8. STORAGE AND HANDLING PRECAUTIONS  

Respirable silica and dust may be generated during processing, handling, and storage. 

The personal protection and controls identified in Section VII of the MSDS should be 

applied as appropriate.  

9. SPILL, LEAK AND DISPOSAL PRACTICES  

The personal protection and controls identified in Section VII of the MSDS should be 

applied as appropriate.  

Steps to Be Taken if Material Is Released or Spilled: Spilled materials, where dust can be 

generated, may overexpose cleanup personnel to respirable silica and dust. Wetting of 

spilled material and/or use of respiratory protective equipment may be necessary. Do not 

dry sweep spilled material.  

Waste Disposal Method: Dispose of waste materials only in accordance with applicable 

federal, state, and local laws and regulations.  
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NOTICE: Based on research of available data, Titan America LLC believes that the 

information contained in this Material Safety Data Sheet is accurate. The suggested 

procedures are based on data and experience as of the date of preparation of the MSDS. 

The suggestions should not be confused with nor followed in violation of applicable laws, 

regulations, rules or insurance requirements. Titan America LLC’s voluntary preparation 

of this MSDS should not be construed, in any way, as an agreement to be subject to 

OSHA jurisdiction. 
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APPENDIX D: Example for Calculation of Blasting Costs 
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Blasting costs include abrasive material cost, labor cost, equipment cost, emission control 

cost, cleanup cost, waste disposal cost, emission fees, and other costs. Productivity and 

consumption are two important parameters in calculating the blasting costs. Emission factors 

help in determining the emission quantities and thus compliance costs and emission fees. The 

regression equations developed in this research will help in determining productivity, 

consumption, and emission factors at a given blast pressure and feed rate condition for three 

abrasives: coal slag, copper slag, and specialty sand. These values may then be used to calculate 

the blasting costs in order to select a better abrasive material that will result in minimum costs. . 

Abrasive cost, labor cost, equipment cost, clean up cost, and other were obtained from various 

sources and average of these values were used in the calculations. The following table shows unit 

costs used in the calculations. 

Table: Unit Costs 

Item  Units 
Avg., 
$ Remarks 

Coal Slag 1000 kg 55   
Copper Slag 1000 kg 70   
Specialty Sand 1000 kg 40   

Labor hr 25
Labor cost includes, hourly pay rates and 
benefits 

Power kWh 0.1
Typical energy costs paid by industries in the 
US 

Equipment Depreciation  hr 1.66

A total of $ 10,000 assumed towards blast pot, 
hoses, secondary air supply unit, and other 
peripherals; Life of equipment assumed: 4000 
hours 6000 hours 

Shrouds  m2 15

Includes scaffolding, screens, installation 
labor, and dismantling labor; 2 sqft screen 
required for 1 sqft cleaned; $ 0.75/ sqft for 
screens or $1.50/sqft area cleaned; higher side 
cost of $1.70/sqft; highly subjective based on 
work setting. 

Cleanup costs 1000 kg 16   
Disposal costs 1000 kg 40   
Emission Fee 1000 kg 8000   
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First, emission factors, productivity, and consumption are calculated for the three 

materials using equations 2, 4, and 5 and their coefficients respectively. These values and unit 

costs were then used to determine blasting costs per 1000 m2 area cleaned. The following table 

shows the calculation methods and blasting costs. From this example, it evident that copper slag 

results in minimum costs. Material cost, labor cost, emission costs etc. vary from one supplier to 

another and one state to another. Using the actual costs and including addition costs incurred by 

the industries, more accurate costs can be estimated. This will greatly help industries in material 

selection and process optimization. 
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Table: Calculation of Blasting Costs 

Variable Units 
Avg. Unit 

Cost, $ Remarks 
Coal 
Slag 

Copper 
Slag 

Specialty 
Sand 

Productivity m2/hr NA From Equation 4 and Table 11 14.04 13.99 15.08
Abrasive Consumption kg/m2 NA From Equation 5 and Table 12 33.57 31.75 23.71
PM Emissions kg/m2 NA From Equation 2 and Table 9 1.89 1.40 2.97
              
Abrasive Purchase 
Cost $/1000 m2 

From Unit 
Costs Table 

(Abrasive Cost/1000) *Consumption * 
1000 1846.35 1746.25 1304.00

Power Consumption $/1000 m2 $ 0.11/ kWh 
((Power Rating * Unit Power Cost) / 
Productivity) *1000 783.48 786.42 729.44

Labor $/1000 m2 $30/ hr (Unit Labor Cost / Productivity) *1000 2136.75 2144.77 1989.39
Equipment Capital 
Cost $/1000 m2 $2.08/ hr 

(Unit Equipment Cost / Productivity) 
*1000 148.15 148.70 137.93

Shrouds Cost $/1000 m2 $15/ m2 Unit Shroud Cost * 1000 15000.00 15000.00 15000.00
Used Abrasive Cleanup 
Costs $/1000 m2 $16/ 1000 kg 

(Unit Cleanup Cost/1000) 
*Consumption * 1000 537.12 508.00 379.34

Used Abrasive 
Disposal Costs $/1000 m2 $40/ 1000 kg 

(Unit Disposal Cost/1000) 
*Consumption * 1000 1342.80 1270.00 948.36

Emissions Fee $/1000 m2 
$8000/ 1000 
kg 

(Emission Factor * Unit Emission Fee 
/1000) *1000 15136.00 11200.00 23760.00

              

Total Cost $/1000 m2     36,931 32,804 44,248
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