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Abstract

This dissertation consists of two parts. The first part deals with the performance appraisal of

estimation algorithms. The second part focuses on the application of estimation algorithms

to target tracking.

Performance appraisal is crucial for understanding, developing and comparing various

estimation algorithms. In particular, with the evolvement of estimation theory and the

increase of problem complexity, performance appraisal is getting more and more challenging

for engineers to make comprehensive conclusions. However, the existing theoretical results

are inadequate for practical reference. The first part of this dissertation is dedicated to

performance measures which include local performance measures , global performance

measures and model distortion measure .

The second part focuses on application of the recursive best linear unbiased estimation

(BLUE) or lineae minimum mean square error (LMMSE) estimation to nonlinear measure-

ment problem in target tracking. Kalman filter has been the dominant basis for dynamic

state filtering for several decades. Beyond Kalman filter, a more fundamental basis for the

recursive best linear unbiased filtering has been thoroughly investigated in a series of papers

by Dr. X. Rong Li. Based on the so-called quasi-recursive best linear unbiased filtering

technique, the constraints of the Kalman filter Linear-Gaussian assumptions can be re-
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laxed such that a general linear filtering technique for nonlinear systems can be achieved.

An approximate optimal BLUE filter is implemented for nonlinear measurements in target

tracking which outperforms the existing method significantly in terms of accuracy, credibility

and robustness.
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Chapter 1

Introduction

This dissertation consists of two parts. The first part deals with the performance appraisal

of estimation algorithms. The goal is to explore and initiate systematic, comprehensive and

scientifically defensible performance appraisal approaches. The second part is an application

of estimation algorithms to target tracking. The goal is to promote the application of the

recursive best linear unbiased estimation or linear minimum mean square error(LMMSE)

estimation technique. We will apply the recursive best linear unbiased filtering method to

handle nonlinear measurements in target tracking.

1.1 Appraisal of Estimation Performance

The ability to meaningfully assess the performance of an estimation algorithm is crucial for

development and comparison of practical systems. With evolution and proliferation of esti-

mation methods, such as least squares, the method of moments, maximum likelihood method,

Bayes and empirical Bayes procedures, uniformly minimum variance unbiased estimation,

risk-reduction approaches, robust technique and resampling technique, various algorithms

have been developed. In addition, as estimation problems and the related systems of in-

terest are getting more and more complex, huge difficulties are encountered for reconciling

various measures of performance, effectiveness and robustness.

For example, study on performance metrics for target discrimination and tracking is a
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research focal point sponsored by several agencies of the U.S. Department of Defense. Also,

as pointed out in [58], the emergence of fusion strategies such as adaptive fusion and fu-

sion management requires that Measures of Performance (MoPs), Effectiveness (MoEs), and

Robustness (MoRs) to be examined with greater seriousness. Huge difficulties are encoun-

tered. Further, the optimization of an algorithm with respect to one particular criterion will

frequently result in performance deterioration as measured by another criterion. Because

of this, one might be led to define “global” metrics which measure the overall effectiveness

of an algorithm. One could, for example, try to measure composite algorithm competence

using some ad hoc weighted average of local metrics. In practice, however, such compos-

ite metrics are very difficult to interpret. U.S. Navy investigators on the (Joint Operational

Tactical System) JOTS program concluded after extensive research on practical performance

evaluation techniques that [59]:

“Examination of the host of MoEs as presented earlier does not always provide clear cut

objective distinction of good versus poor performance. During the course of the evaluation,

attempts were made to establish a single MoE as a composite [i.e. weighted sum] of correlator

performance .... several problems were encountered with this MoE, however.... Clearly

a better method of combining MoEs is required .... Such an approach should codify the

philosophy of differing severity of the various types of errors, and nonlinearly increasing cost

associated with those errors as they increase and confusion compounds.”

Therefore, a systematic, comprehensive and scientifically defensible performance ap-

praisal is clearly needed. Towards this goal, we identify important performance aspects

and explore feasible performance appraisal measures. The first part of the dissertation will

be dedicated to theoretical investigations of this topic.

The analysis and comparison of estimation performance have two main aspects.

One is to investigate the properties of estimators and to measure the information ex-

tracted from the corrupted data or observations, such as precision, unbiasedness, efficiency,

2



consistency, credibility and so on [21, 3, 57, 53, 13]. These investigations will provide a profile

of estimation performance which is mainly determined by the formulation of the problem.

For example, the performance bound depends on the likelihood function or the posterior

distribution. The unbiasedness could be either a requirement of problem formulation or a

desired property. These topics have been thoroughly addressed in the subject of statistics.

The other focuses on performance requirements for application purposes or meaningful

interpretation of estimation results. It emphasizes the methods to measure the goodness

of an estimation result relative to the application requirements. In contrast to the former,

existing work dealing with the latter is quite limited, although substantial work has been

done on performance metrics for evaluation of target tracking and data fusion algorithms

[15, 58, 16, 36, 35].

We will focus on the following four topics which are organized as follows.

In Chapter 2, the characteristics of parameter inference are presented. The inherent

gap between estimation problem formulation and application requirements is clarified. A

brief discussion on estimation criteria versus estimation measures is presented. A general

formulation of performance measures is introduced.

In Chapter 3, a group of local performance measures is introduced or proposed. The

pros and cons of most popularly used measures are investigated. New performance measures

are introduced, such as relative error measures, frequency count-type measures and pairwise

comparison measures.

Chapter 4 focuses on global performance measures. In this chapter, the interaction be-

tween estimation criteria and estimator is examined. The performance spectrum is proposed

to reveal such interrelationship. The desired estimation error probability density function

(PDF) is introduced to provide a more comprehensive characterization of the estimation per-

formance requirements. The performance measures relative to the desired PDF is proposed.

Chapter 5 is dedicated to a model distortion measure. In parameter estimation and state
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filtering, model approximation is quite common in engineering research and development. It

heavily affects estimation performance. And it is of great interest to have a model distortion

measure to indicate the divergence or difference between the original model and the approx-

imated one. The significance of a model distortion measure is illustrated by its application

to two important problems—model set design and model probability behavior—associated

with the multiple model (MM) algorithm.

The related work on local and global performance measures has been published in [38,

34, 33, 35, 36, 37, 64]. The main results on model distortion measure have been appeared in

[65, 63].

1.2 Application of Estimation Algorithm to Target

Tracking

The second part of the dissertation focuses on the application of the recursive best linear

unbiased estimation (BLUE) to target tracking with nonlinear measurements. The Kalman

filter has been popularly used for state estimation for several decades. Beyond the Kalman

filter, a more fundamental basis is the recursive best linear unbiased filtering which has been

thoroughly investigated in a series of papers by Dr. X. Rong Li [69, 45, 29, 46, 32, 30, 31, 24].

Based on the so-called quasi-recursive best unbiased linear filtering technique, the Kalman

filter’s Linear-Gaussian assumptions can be relaxed such that a general linear filtering

scheme for nonlinear systems could be obtained.

In target tracking, target dynamics is usually modelled in the Cartesian coordinates,

while the measurements are directly available in the original sensor coordinates which are

highly nonlinear with respect to the target state. For a long while, this problem has been

handled by various algorithms based on the Kalman filter but with serious flaws [2, 20, 47,

48, 49, 50, 55, 56]. An approximate BLUE filter is implemented to target tracking with

nonlinear measurements which outperforms the existing method significantly in terms of

4



accuracy, credibility and robustness without increase in computation. This part is mainly

based on our published papers [67, 66, 68].

In Chapter 6, we present the BLUE filtering technique. Its significance and contribution

are addressed.

In Chapter 7, we apply the BLUE filtering technique to target tracking with nonlinear

measurements. The fundamental flaws of existing measurement conversion methods are in-

vestigated. An approximate implementation of the BLUE filter is presented. The simulation

studies are illustrated. We conclude that the BLUE filter is more fundamental than the

Kalman filter. It outperforms the existing methods significantly.

Chapter 8 concludes the dissertation and provides directions to future work.

1.3 Contributions of the Dissertation

The contributions of this dissertation are summarized as below.

First, a thorough examination of the pros and cons of the most often used local per-

formance measures is conducted. The theoretical and practical justifications and interpre-

tations of these measures are clarified. In particular, the misinterpretation of the most

popularly used root mean square error is elucidated. This part is mainly based on the

papers [38, 34, 33, 35, 36].

Second, we initiate a systematic study for comprehensive and global estimation per-

formance appraisal. A new interpretation of the optimality of the Bayesian estimator is

presented which has a similarity to the lever principle. The interrelationship between the

estimator and estimation criterion is revealed which can help to produce new optimal esti-

mators with predictable estimation performance. Accordingly, an estimation performance

spectrum is proposed for estimation performance comparison. Also, the desired estimation

error probability density function is proposed such that various application concerns and

requirements can be taken into account. The concentration and dispersion levels of an esti-
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mation error distribution relative to the desired one can be measured as well by the proposed

concentration and dispersion measures.

Third, a model distortion measure for statistical inference is proposed to indicate the

model difference between the original model and the approximated one. The distortion mea-

sure turns out to be the Kullback-Leibler divergence. This measure is highly related to the

behavior of the multiple model algorithm. It can be applied to the model set design problem

for multiple model estimation. Based on the behavior of model probability of the multi-

ple model estimation, the model probability update structure is extended to the multiple

hypotheses comparison such that an online structure is proposed to carry out the multiple

estimators’ performance comparison and fusion. The illustrative example is demonstrated

as well.

Fourth, we apply the recursive linear minimum mean square error estimation to target

tracking with measurements in polar and spherical coordinates. An approximate LMMSE fil-

ter is achieved which outperforms the existing methods significantly in terms of the accuracy,

robustness and credibility.
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Part I

Performance Appraisal of Estimation

Algorithms
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Chapter 2

On Estimation Performance Measures

2.1 Parameter Estimation

Estimation theory is concerned with inferring the value of a quantity of interest from indi-

rect, inaccurate and uncertain observations. It consists of four components: parameter space,

observation space, probabilistic relation between the parameter space and the observation

space, estimation criteria [57]. The probabilistic relation between parameter space and ob-

servation space determines the formulation of the problem. The parameter is estimated from

observations based on the probabilistic relation, most often, through optimization procedure

with an objective function defined by estimation criterion.

We demonstrate the inference structure by the following diagram.

The complete information on the uncertainty of parameter or state is carried by the

posterior probability density function or likelihood function. For Bayesian estimation, the

prior information of parameter is updated by using observation through Bayesian formula

to obtain the posterior PDF. The estimator is a special point within the domain of the

parameter or state which replaces its posterior PDF with estimation errors. This special

point is determined through optimization procedure. In other words, from a posterior PDF

to an estimator through optimization procedure, we obtain one possible value at the cost of

losing the complete information and producing estimation errors. For classical estimation,

the complete information about the parameter or state is represented by the likelihood

8



 Parameter Space X

 x1

 x2

 Observation Space Z

 z1

 z2

 Probabilistic  Relation

 Estimation Criterion

 Estimator  Function  Z−>X

Fig. 2.1: Estimation Diagram

function. Usually, the maximum likelihood principle is employed to determine the estimator.

Again, the likelihood function is replaced by a point with associated estimation errors.

For estimation, besides the estimator itself it is also necessary to measure or specify

estimation error in a meaningful and comprehensive manner.

The estimation criterion serves to locate the optimal estimator. It needs to meet two

objectives. First, it should measure the practical requirements adequately. Second, it should

lend itself most easily to manipulation and computation from a technical and mathematical

viewpoint. Most often, an estimation criterion is a compromise of these two objectives and

mainly determined by the second one. It is even more instructive to retrospect the history

of the minimum mean square error (MMSE) as an estimation criterion proposed by Gauss

as follows [17]:

... The integral
∫∞
−∞ x2φ(x)dx, i.e., the average value of x2, seems very suitable for

defining and measuring, in a general way, the uncertainty of a system of observations.

If one objects that this convention is arbitrary and does not appear necessary, we readily

9



agree. The question which concerns us here has something vague about it from its very

nature, and can not be made really precise except by some principle which is arbitrary to a

certain degree.

It is clear to begin with that the loss should not be proportional to the error committed, for

under this hypothesis, since a positive error would be considered as a loss, a negative error

would be considered as a gain; the magnitude of loss ought, on the contrary, to be evaluated

by a function of the error whose value is always positive. Among the infinite number of

functions satisfying this condition, it seems natural to choose the simplest, which is, without

doubt, the square of the error, and is the way proposed above.

Clearly, according to the arguments given by Gauss, the selection of estimation criterion

is arbitrary to a certain degree and can not reflect most of the application concerns. In

order to evaluate the estimation errors or performance for application purposes, we need use

performance measures. We discuss estimation criterion, estimation performance measures

and performance analysis in details next.

2.2 Criteria vs. Measures

Performance optimization, performance evaluation, and performance analysis are closely

related but different. Simply put, performance optimization is based on a theoretical criterion

(objective function); performance evaluation is usually done in terms of some performance

measures; and performance analysis aims at developing a performance model.

Practical measures for performance evaluation of estimation algorithms are closely re-

lated with theoretical criteria for performance optimization. They both should reflect the

performance and fit well with the intended applications. However, they are not to be con-

fused with each other. A performance measure is a ruler/metric that quantifies or sizes up

the performance of the algorithm, while a criterion defines the optimality of the solution

to the problem in some sense. Loosely speaking, most estimation criteria are theoretical

10



performance measures that serve as the objective functions for the estimation algorithms to

optimize. As a result, a criterion should be tractable in that it lends itself to easy mathemat-

ical manipulations, rather than merely a meaningful performance measure. In other words,

a criterion formulates the estimation problem as a tractable optimization problem and serves

as the basis for algorithm development. While mathematical tractability is a highly desir-

able property for an optimality criterion—an intractable criterion is hardly useful—it is not

an important consideration for a performance measure. Compared to estimation criterion,

estimation performance measure only concerns the fitness of an estimator to application

requirements. It can be very complex and comprehensive.

There is also a significant difference between performance analysis and performance eval-

uation. Performance analysis focuses on relationships between the performance and its key

factors and hence relies heavily on analytic tools. This is not the case for performance evalu-

ation, which simply evaluates or appraises the performance. Our focal point is performance

evaluation, not performance analysis. Tractability of a performance measure is an important

consideration in performance analysis, but not in performance evaluation, since a highly com-

plex performance measure would most likely render performance analysis intractable, but it

can only make performance evaluation costlier.

2.3 Formulation of Performance Measures

The following notational convention will be maintained throughout this dissertation. We

refer to any quantity to be estimated as an estimatee. It can be a time-invariant (or slowly

varying) parameter, a (deterministic or random) process or signal, in particular, the state

of a (deterministic or random) system. We will use the term estimator to mean both a

parameter estimator and a filter. The measures are presented in a form suitable for parameter

estimators directly, but are applicable to filters at any given time in a straightforward way.

The estimatee, its estimate, and estimation error are denoted by x, x̂, and x̃ or x, x̂ and

11



x̃, respectively. They are always assumed to be n-dimensional unless otherwise is stated

explicitly. Subscript i stands for quantities pertaining to the ith run of a Monte-Carlo

simulation. It is always assumed that x̃i and x̃j are independent for i 6= j. All default

vectors are column vectors. The Euclidean norm of a vector a is denoted as

‖a‖ = (a′a)1/2

where a′ stands for the transpose of the column vector a.

An estimator is a function of observations which provides a technical guess of a parameter

or state. Since it is data-dependent, its performance is random and should be evaluated in

a statistical sense. In other words, we need to know which estimator is more accurate or

closer to the true value on average than the other. In order to meaningfully quantify such

closeness for comparison purpose, the performance appraisal has to answer the following two

questions:

1. How to quantify the distance between an estimatee and its estimator given each piece

of data?

2. How to measure the performance difference statistically in terms of either marginal

distribution or joint distribution when comparing multiple estimators?

Next, a general formulation of performance measure which incorporates the above two

questions is presented.

First, we give the general performance measure for a single estimator. Define the perfor-

mance measure of a classical estimator as below,

M = Ez [m(x, x̂)] =

∫

m(x, x̂)f(z;x)dz

=< m(x, x̂), f(z;x) >

where parameter x is constant, f(z;x) is the likelihood function of x, m(x, x̂) is the

measure function of the difference between estimatee x and estimator x̂, and usually is a

quantification of accuracy, concentration probability or costs.

12



Similarly, a performance measure of a Bayesian estimator can be defined as

M = Ex,z[m(x, x̂)]

=

∫ ∫

m(x, x̂)f(x, z)dxdz

=

∫

M̂1(z)f(z)dz

=

∫

M̂2(x)f(x)dx

where M̂1 =
∫ ∫

m(x, x̂)f(x|z)dxf(z)dz and M̂1 =
∫ ∫

m(x, x̂)f(z|x)dzf(x)dx, f(x, z) is

the joint PDF of x and z, again, m(x, x̂) is the deviation quantification function. Clearly,

the Bayesian estimator’s performance measure M is determined by m(x, x̂) and f(x, z).

M̂1(z) is the performance measure based on the posterior PDF f(x|z), while z is given;

M̂2(x) is the performance measure based on the likelihood function f(z|x) conditioned on

x.

Second, when comparing multiple estimators, the difference between estimators relative

to the true estimatee can be measured directly. In other words, how often or how much

one estimator is better than the other relative to the true parameter x will be counted.

In this case, the joint distribution information of estimators and estimatee is taken into

consideration [17]. Here, we only stress pairwise comparisons.

The performance measure can be defined for direct pairwise comparison of two classical

estimators relative to the parameter itself as

M(x̂i : x̂j;x) = E [m(x̂i : x̂j;x)]

=

∫

m(x̂i : x̂j;x)f(z;x)dz

and for direct pairwise comparison of two Bayesian estimators as

M(x̂i : x̂j;x) = Ex,z[m(x̂i : x̂j;x)]

=

∫ ∫

m(x̂i : x̂j;x)f(x, z)dxdz

13



where m(x̂i : x̂j;x) is the difference between x̂i and x̂j relative to the true estimatee x,

i, j ∈ {1, 2} and i 6= j. For example, for pairwise comparison, a meaningful measure could

be Pitman Closeness

m(x̂i : x̂j;x) =











1 if x̂i

x≻ x̂j

0.5 if x̂i
x
= x̂j

0 if x̂i

x≺ x̂j

where x̂i

x≻ x̂j and x̂i

x≺ x̂j denotes that x̂i prefers to x̂j and x̂j prefers to x̂i relative to

x, respectively. If M(x̂i : x̂j;x) is larger than 0.5, we say x̂i is better than x̂j. A detailed

discussion will be given in next chapter.

Usually, the analytical form of performance measures can not be obtained and computer

simulations are resorted to. The use of computer simulations for assessing estimation per-

formance, although quite valuable for gaining insight and motivating conjectures, is hardly

conclusive. Nevertheless, when the performance of some particular scenarios is of interest,

simulation studies can provide a more direct comparison. Therefore, on the one hand, com-

puter simulations are scenario-dependent; on the other, they also give a direct evaluation

under a specific scenario.

When Monte Carlo simulation is employed, all the performance measures simply become

M = E[m(∗)] =
1

N

N
∑

i=1

ml(∗)

where mi(∗) is the measure of the difference between x and its estimator x̂ or the difference

between x̂i and x̂j relative to the true estimatee x, i, j ∈ {1, 2} and i 6= j on the lth run of

N Monte Carlo runs.

Local performance measures, global performance measures and model distortion measure

all follow this general formulation. They differ from each other in the specific definitions of

mi(∗) so as to emphasize different aspects of estimation performance concerns.
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Chapter 3

Local Performance Measures

This chapter deals with performance measures that are local in the sense that they rely

on relatively local characteristics (e.g., moments) of the distribution of the estimation er-

ror. Interpretation of existing performance measures will be examined and new performance

measures will be proposed. They are classified into the following four categories: absolute

error measures (without a reference), relative error measures (with a reference), frequency

counts (of some events), and pairwise comparison measures. The first three categories are

devised to measure the performance of a single estimator. The last category is for compar-

ison purpose where the joint distribution of the two estimators relative to the parameter is

involved.

This Chapter is organized as follows. In Sec. 3.1, we first discuss several measures of

absolute error of estimation, including the root-mean-square error (RMSE) and what we

called average Euclidean error (AEE). Their pros and cons are presented. It is advocated

that the widely-used RMSE should be replaced by AEE in many applications. Also, two

new measures of absolute error—geometric average error and harmonic average error—are

introduced. Secs. 3.2 and 3.3 are dedicated entirely to new measures. In Sec. 3.2 we

present several measures of relative error in that they are normalized estimation errors with

respect to three references, respectively: magnitude of the estimatee, error of prior mean, and

measurement error. We propose in Sec. 3.3 three new metrics—success rate, failure rate, and
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concentration probability—of an estimation algorithm, which measure how concentrated the

estimates are around the estimatee. They stem from frequency counts of estimates within

some neighborhood of the estimatee, especially within what we called success region and

feasible region. They are complementary to the error measures and are useful for some

applications. Measures for pairwise comparison—Pitman closeness measure, loss measure

and gain measure—are provided in Sec. 3.4. They compare two estimators relative to

the estimatee case by case directly. The performance difference of these two estimators is

concluded by counting on the difference in each case. Illustrative examples are presented in

Sec. 3.5. Sec. 3.6 is concluding remarks.

3.1 Absolute Error Measures0

3.1.1 RMS Error and Average Euclidean Error

RMSE. By far the most popular measure of estimation error is the root-mean-square (RMS )

error, or RMSE for short, defined by

RMSE(x̂) =

(

1

M

∑M

i=1
‖x̃i‖2

)1/2

(3.1)

where ‖x̃i‖ = (x̃′
ix̃i)

1/2.

The main nice feature of RMSE is that it is the finite-sample approximation of the

standard error
√

E[x̃′x̃], which is closely related with standard deviation. For scalar unbiased

estimators, it is actually the most natural finite-sample approximation of standard deviation

of estimation error. Since standard deviation is an important parameter for probabilistic

analysis, RMSE is useful for probabilistic analysis in the scalar case. For example, if x̃

is scalar, zero-mean, and Gaussian distributed with variance σ2, then P{|x̃| < RMSE} ≈

P{|x̃| < σ} = 0.683.

0 c© [2006] IEEE. Reprinted, with permission, from X. R. Li, Z. L. Zhao, “Evaluation of Estimation
Algorithms Part I: Local Performance Measures”. IEEE Transactions on Aerospace and Electronic Systems,
vol. 42, Jul. 2006.
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AEE. An emphasis of this chapter is a proposal to replace in many situations the use of

RMSE with the following average Euclidean error (AEE):

AEE(x̂) =
1

M

∑M

i=1
‖x̃i‖ (3.2)

The term “Euclidean error” stems from the concept of Euclidean distance or Euclidean norm.

AEE (in the scalar case) is sometimes called mean absolute error (MAE), but this is not

recommended because the term “absolute error” is ambiguous for a vector. Also, it may

have a misleading implication that it is an absolute error, as opposed to a relative error.

Denote by e = ‖x̃‖ the Euclidean norm of the estimation error, which is a random

variable, and let ē and σ2
e be the mean and variance of e. Then

E[AEE(x̂)] = ē, var[AEE(x̂)] = σ2
e/M (3.3)

where σ2
e = var(e) = E(e2)− ē2 = tr(Σ)+µ′µ− ē2, and µ and Σ are the mean and covariance

of estimation error x̃.

The mean Euclidean error ē is clearly a good indicator for the estimation error and, albeit

unknown, it can be estimated. Since AEE and ē are respectively the sample average and

the true mean of ‖x̃‖, AEE is the most natural approximation/estimator of ē.

RMSE vs. AEE. RMSE and AEE focus on large errors in that their values are domi-

nated by the large error terms. For example, if all 100 terms are around 1 except that one

term is 400, then AEE would be about 5, but RMSE would be approximately 400, that is,

determined by one term while all the other 99 terms are essentially ignored! We say that such

measures are pessimistic since they pay so much attention to how bad the performance is.

Clearly, RMSE is much more pessimistic than AEE. This example also reveals that RMSE

could be very unreasonable since it is highly distorted—it penalizes too severely on large

errors (i.e., bad behavior) and virtually ignores small errors (i.e., good behavior). This is

highly undesirable or even unacceptable for many applications, particularly as a performance

measure. This is part of the reason why a special treatment is needed while using RMSE in
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the case involving a few huge errors due to, say, filtering divergence: What is the RMSE of

a filter if it diverges on one or few of many runs?

Geometrically speaking, AEE(x̂) is the arithmetic average of the Euclidean distance

between x and x̂, while RMSE(x̂) = 1√
M

(
∑M

i=1 ‖x̃i‖2)1/2 is one
√

Mth of the Euclidean

distance between the (Mn)-dimensional vectors [x′
1, x

′
2, . . . , x

′
M ]′ and [x̂′

1, x̂
′
2, . . . , x̂

′
M ]′, which

hardly has a physical interpretation, where xi and x̂i are the estimatee and estimator on

run i. As such, AEE is truly the average distance between the estimate and the estimatee

in our physical (i.e., Euclidean) space. By contrast, RMSE does not have a simple physical

interpretation—it is not actually an average distance in our Euclidean space, although it is

often so interpreted incorrectly. Clearly, an erroneous interpretation invites confusion and

mistakes.

Consider the case of a scalar measurement z with mean z̄. Mean deviation E[|z − z̄|] is

no doubt the most natural abstraction of the practical concept of measurement error since

measurement errors in most situations are actually average absolute errors. This should be

clear from the calibration process of a measurement instrument. On the other hand, RMSE

reflects the standard error (or standard deviation
√

E[(z − z̄)2] in the unbiased case). Due

to the popularity of standard deviation, measurement errors are more often expressed in

terms of RMSE or standard deviation than mean deviation. This is mainly because an

analysis based on the former is more tractable mathematically than on the latter. A

problem in practice is that many practitioners do not understand or are not even aware of

the difference—the former is also interpreted as the average error in magnitude.

The popularity of RMSE arises mostly from the fact that it is in general the best finite-

sample approximation of the standard error, which is the most popular optimality criterion

in terms of error. The widespread use of standard error (in fact, MSE) as a theoretical

criterion is well justified by its mathematical tractability. Such a justification is invalid

as far as practical metrics for performance evaluation are concerned since mathematical
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tractability is no longer a concern here. Instead, a clear and correct interpretation of the

metrics is essential.

It follows from the Kolmogorov strong law of large numbers, RMSE2 and AEE tend

(almost surely) to mean-square error E(e2) and mean Euclidean error ē, respectively, as

M → ∞. They are consistent estimators of E(e2) and ē, respectively.

In the scalar Gaussian case, the mean deviation ē = E[|x̃|] and the standard deviation σ

are related by E[|x̃|] = σ
√

2/π ≈ 0.8σ. Given an AEE in such a case, it can be converted

to RMSE and thus a probabilistic analysis can still be carried out since such an analysis

almost always assumes a Gaussian error. Note that for the vector case, it is usually not

straightforward to carry out a probabilistic analysis based on RMSE without additional

assumptions, even in the Gaussian case.

It is well known [23] that the conditional mean and median (i.e., the mean and median of

the posterior distribution) minimizes, respectively, MSE and mean Euclidean error and hence

RMSE and AEE. Consequently, the use of RMSE implicitly favors the conditional mean (i.e.,

MMSE) based estimators rather than any other estimator. This is usually a weakness for

performance evaluation, but could be a strength for some other purposes, especially for

verifying that an MMSE-based algorithm is properly designed and/or implemented. By

contrast, AEE favors estimators that minimize mean Euclidean error, which is, however,

rarely used as an optimality criterion due to the difficulty involved.

On the basis of the above arguments, we recommend that RMSE be replaced by AEE

when one is mainly concerned with the magnitude of the estimation errors, since the latter

has a more direct and natural interpretation. When a probabilistic analysis is needed, the

RMSE is usually more convenient.
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3.1.2 Harmonic Average Error

As explained before, RMSE and AEE are dominated by their large individual terms and

hence focus on bad behavior. In this sense they are pessimistic measures. However, we may

want to pay more attention to good behavior in some situations, that is, to use optimistic

measures.1 For this purpose, we propose the following harmonic average error (HAE):

HAE(x̂) =

(

1

M

∑M

i=1
‖x̃i‖−1

)−1

=
M

1/‖x̃1‖ + · · · + 1/‖x̃M‖ (3.4)

based on the well-known harmonic average. Clearly, HAE is dominated by the small error

terms and hence is an optimistic measure. It focuses on how good (rather than how bad,

as with a pessimistic measure) the performance of an estimator is.

Harmonic average has the following minmax property. Consider the problem of ap-

proximating (estimating) the true error e = ‖x̃‖ that is bound to be within the in-

terval [a, b]. Denote by ê an approximate of e. Then the harmonic average H(a, b)

of a and b yields the minimum of the greatest possible relative error |e − ê|/e, that

is, H(a, b) = arg mina≤ê≤b maxa≤e≤b(|e − ê|/e), while the arithmetic average A(a, b) of

a and b yields the minimum of the greatest possible absolute error, that is, A(a, b) =

arg mina≤ê≤b maxa≤e≤b |e − ê| [9].

3.1.3 Geometric Average Error

Neither RMSE and AEE nor HAE is good as a balanced measure for performance evaluation

and, in particular, as a metric for “average” error in magnitude. As far as the average error

in magnitude is concerned, for many problems it is reasonable to expect that any large error

(bad behavior) should be possibly balanced by a sufficiently small error (good behavior) and

vice versa. From this standpoint, the use of the arithmetic average as an average error in

1From the Bayesian estimation viewpoint, the MAP and maximum likelihood (ML) estimation minimizes
an optimistic measure—the expected value of a small (infinitesimal in theory) “golf hole” of estimation error
[23]. This is in contrast to MMSE and least-squares estimation that minimizes a pessimistic measure, that
is, the quadratic error.

20



magnitude is flawed. For example, assume AEE is equal to a. Then, an error that is larger

than 2a cannot be balanced by any sufficiently small error. The situation is reversed for

HAE.

In view of the above, we propose the following geometric average error (GAE):

GAE(x̂) =
(

∏M
i=1 ‖x̃i‖

)1/M

based on the well-known geometric average, which is better

computed recursively

GAEM(x̂) = GAEM−1(x̂) [‖x̃M‖/GAEM−1(x̂)]1/M

or through its logarithm for numerical reasons

log[GAE(x̂)] =
1

M

∑M

i=1
log ‖x̃i‖ (3.5)

GAEM(x̂) is defined as zero if one or more ‖x̃i‖ is zero. Clearly, it does not suffer from the

flaw mentioned above—any large error can be balanced by a sufficiently small error and vice

versa.

Denote by e = ‖x̃‖ the random variable that is the Euclidean norm of the estimation

error. It follows from Hölder’s inequality that [18]

ē = E[AEE(x̂)] = E[GAE1(x̂)] ≥ E[GAEM(x̂)] ≥ E[GAEL(x̂)] ≥ GM(e), L > M > 1

with all inequalities strict if ē < ∞ and GM(e) > 0, where GM(e) = exp[E(ln ‖x̃‖)] is the

geometric mean of the Euclidean norm ‖x̃‖ of the random error x̃ in theory. As shown in

[10], if e = ‖x̃‖ has zero probability outside the interval [a, b] then σ2
e/b ≤ ē− GM(e) ≤ σ2

e/a,

where σ2
e = var(e). Also, by the Kolmogorov strong law of large numbers, GAE(x̂) tends

(almost surely) to GM(e) as M → ∞. In other words, GAE(x̂) has an expected value

that converges monotonically to GM(e) from above as the number M of Monte-Carlo runs

increases, and thus it is a consistent, albeit biased, estimator of the geometric mean. In

addition, the application of the central limit theorem to log ‖x̃1‖, . . . , log ‖x̃M‖ implies that

log[GAE(x̂)] is asymptotically Gaussian (normal) with N (E(log ‖x̃‖),var(log ‖x̃‖)/M) as

M → ∞ and hence GAE(x̂) is asymptotically log-normal.
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3.2 Relative Error Measures0

A relative error is one that is relative to some reference. There are many choices for the

reference. Relative error often reveals better the inherent error characteristics of an estimator

than the absolute error. For example, it is usually reasonable to expect that relative error

of an estimator is less variant than the absolute error as the magnitude of the estimatee

varies. Given two estimators and their performance for two different problems, respectively,

it would be misleading to use any absolute error measure for their performance comparison,

but relative error measures can be used. For such reasons, we recommend evaluating the

performance of estimators in terms of a relative error in most cases, although the literature

is full of performance evaluation in terms of absolute error.

Clearly, estimation error x̃ depends on the magnitude of the estimatee x and the accuracy

of the data (measurements) z (as well as the prior distribution of x for a Bayesian estimator)

as the input to the estimator x̂(z). As a result, probably the most natural relative error is

x̃/‖x‖ or ‖x̃‖/‖x‖. Another good choice of the reference is the measurement error; that is,

we express the estimation error x̃ in terms of the measurement error. We deal with measures

for such relative errors in this section.

3.2.1 Estimation error relative to estimatee

All the measures discussed in the previous section were given in terms of the absolute error

x̃. This is often not desirable. For instance, an absolute error of x̃ = 1 is only 1% for an

estimatee of x = 100 but 50% for an estimatee of x = 2.

The relative error x̃/‖x‖ versions of the measures discussed in the previous section are

simply given by their corresponding formulas with x̃i replaced by x̃i/‖xi‖. The absolute

error norm ‖x̃i‖ used in these measures are replaced by the relative error norm ‖x̃i‖/‖xi‖.
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For example, the RMS relative error (RMSRE) and average relative error (ARE) are

RMSRE(x̂) =

(

1

M

M
∑

i=1

‖x̃i‖2/‖xi‖2

)1/2

(3.6)

ARE(x̂) =
1

M

M
∑

i=1

‖x̃i‖/‖xi‖ (3.7)

where xi is the estimatee on run i (i.e., the ith realization of the estimatee x). Such measures

are very simple but limited. Relative measures presented below are more appealing.

Improvement of posterior over prior. We now introduce a metric of relative error

for Bayesian (and recursive) estimation. We call it Bayesian estimation error quotient

(BEEQ). It quantifies the improvement, in terms of error, of a Bayesian estimator x̂ over

the prior mean x̄ or of the updated estimate x̂ of a recursive estimator over the predicted

estimate x̄. We define it as

r∗(x̂) =
AEE(x̂)

AEE(x̄)
=

∑M
i=1 ‖xi − x̂i‖

∑M
i=1 ‖xi − x̄‖

(3.8)

where xi and x̂i are the ith realizations of x and x̂, respectively, and x̄ is the prior

mean (or prediction) of x. We do not recommend the use of RMSE here, such as

r∗(x̂) = RMSE∗(x̂)
RMSE∗(x̄)

=
(

∑M
i=1 ‖xi − x̂i‖2/

∑M
i=1 ‖xi − x̄‖2

)1/2

, because of the shortcomings of

the RMSE (e.g., undue dominance of large terms and lack of a natural interpretation) and

the fact that merits of RMSE are largely irrelevant here.

One may be tempted to define BEEQ as 1
M

∑M
i=1 ri, that is, the arithmetic average of

individual error quotients ri = ‖xi − x̂i‖/‖xi − x̄‖. This definition is not appropriate. As for

any arithmetic average of a positive quantity, particularly a ratio, the average will be dom-

inated by its large terms (i.e., by the cases in which errors are amplified). In other words,

good (small) terms should be counted but would be essentially ignored in this definition.

What is much worse and in fact fatal is that, as a result of this drawback, this measure is

significantly greater than 1 even for many optimal estimators, which is misleading and unac-

ceptable since a good estimator should have a BEEQ significantly smaller than 1. Instead,
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the geometric average is much more appropriate here and thus BEEQ is better defined as

r(x̂) =
(

∏M
i=1 ri

)1/M

, which is better computed through its logarithm for numerical reasons:

log[r(x̂)] =
1

M

M
∑

i=1

log ri, ri =
‖xi − x̂i‖
‖xi − x̄‖ (3.9)

Error amplification and error reduction are thus balanced.

BEEQ quantifies the contribution of the data to Bayesian (and recursive) estimation.

As the error ‖x − x̄‖ increases, an approximately constant BEEQ indicates that data has

an insignificant contribution to estimation, because the measurement error is in effect much

larger than ‖x− x̄‖; the degree of drop in BEEQ reflects that of increase in the contribution

of the data; BEEQ will not increase unless an increase in ‖x− x̄‖ will lead to an even larger

increase in the measurement error.

It follows from the properties of arithmetic and geometric averages (see, e.g., [9])

that BEEQ is always bounded by the smallest and largest individual error quotients:

rmin ≤ r(x̂) ≤ rmax, rmin ≤ r∗(x̂) ≤ rmax, where rmin = min{r1, . . . , rM} and rmax =

max{r1, . . . , rM}.

3.2.2 Estimation Error Relative to Measurement Error

Clearly, the estimation accuracy depends on the accuracy of the data (measurements) as the

input to the estimator. In fact, a primary benefit of estimation is that estimates are more

accurate than measurements (after they are converted to the same space). As a measure of

this accuracy improvement, we introduce a metric, named estimate-measurement error

ratio (EMER).

Assume that a (vector-valued) measurement z is related to the estimatee x by z = g(x, v),

where v is the measurement error. Let h(x) = E[g(x, v)|x] = E[z|x]. For the additive zero-

mean noise case with z = a(x) + v, we have h(x) = a(x). Then, EMER is defined by

ρ∗(x̂) =
AEE∗(h(x̂))

AEE∗(z)
=

∑M
i=1 ‖h(xi) − h(x̂i)‖
∑M

i=1 ‖h(xi) − zi‖
(3.10)
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where AEE∗ represents AEE in the measurement space:

AEE∗(h(x̂)) =
1

M

M
∑

i=1

‖h(xi) − h(x̂i)‖

AEE∗(z) =
1

M

M
∑

i=1

‖h(xi) − zi‖

That is, EMER is defined as—after converting x and x̂ to the measurement space—the ratio

of the average distance between x and x̂ over the average distance between x and z. Note

that the use of AEE∗ is preferable to that of RMSE∗ since RMSE is too much dominated

by the large error terms, although measurement errors are often given in terms of standard

deviation.

Similar to BEEQ, the geometric average of individual estimate-measurement error ratios

is more appealing and thus EMER ρ(x̂) is better defined by:

log[ρ(x̂)] =
1

M

M
∑

i=1

log ρi, ρi =
‖h(xi) − h(x̂i)‖
‖h(xi) − zi‖

(3.11)

Also similar to BEEQ, EMER is always bounded by the smallest and largest individual

error ratios: ρmin ≤ ρ(x̂) ≤ ρmax, ρmin ≤ ρ∗(x̂) ≤ ρmax, where ρmin = min{ρ1, . . . , ρM} and

ρmax = max{ρ1, . . . , ρM}.

Clearly, we expect that EMER < 1 for a good estimator and the smaller the EMER the

better the estimator.

The ultimate goal of estimation is usually to approximate the estimatee as closely as

possible. The closeness is usually better measured in the estimatee space directly, rather

than in the measurement space, as the above EMER does. In some situations, such as

positioning or localization applications, the mapping h(·) defined above is invertible; that is,

the mapping h−1(·) from the measurement space to the estimatee space is known. Then, a

better definition of EMER is

log[ρx(x̂)] =
1

M

M
∑

i=1

log ρx
i , ρx

i =
‖xi − x̂i‖

‖xi − h−1(zi)‖
(3.12)
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or alternatively

ρ∗
x(x̂) =

AEE(x̂)

AEE(h−1(z))
=

∑M
i=1 ‖xi − x̂i‖

∑M
i=1 ‖xi − h−1(zi)‖

(3.13)

where AEE(h−1(z)) = AEE(x̂)|x̂=h−1(z). It quantifies the amount of improvement an estima-

tor has on the estimate provided by the measurement directly.

3.3 Frequency Counts of Concentration0

Simply put, each metric discussed so far provides a ruler to measure how large the estimation

error is: those of Sec. 3.2 are normalized with respect to a variety of references, while those of

Sec. 3.1 are not normalized. In contrast with these error measures, the performance measures

introduced in this section stem from counting the occurrence of some events.

3.3.1 Success Region and Success Rate

Recall that the least-squares (LS) estimation and MMSE estimation differ from the maximum

likelihood (ML) estimation and MAP estimation in their underlying ideas. The former seeks

an estimator that has the smallest error, while the latter uses the “most frequently occurred”

value of the estimatee as the estimator. As such, ML and MAP estimators may have larger

average errors but a higher probability of staying close to the true estimatee. This has

important implications. This fundamental difference should be kept in mind while deciding

on which estimation method to employ for a particular application.

Take the problem of estimation for interception/weapon control as an example. Here what

is important is that the estimates should be within a close neighborhood of the estimatee

(the kill zone of the weapon) such that the target can be destroyed, rather than the average

distance between them. Consider two estimators. The first delivers most estimates within

the kill zone but has some really bad misses. The second misses the kill zone quite often but

has few really bad misses and thus has a smaller average error (squared). Clearly, it is the

first estimator, not the second one, that should be chosen for this application. This example
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clearly demonstrates another important point: Use of RMSE alone for a comparison between

MMSE (or LS) and MAP (or ML) estimators could be quite unfair, which is unfortunately

quite common in practice. In fact, it should be clear that the use of RMSE to evaluate

estimators for such applications as weapon control and interception is not so appropriate.

With such applications in mind, we introduce a concept of a success of an estimate and a

corresponding region named success region. An estimator has a success given a particular

set of data if its estimate falls inside the success region Rs. Clearly, a good example of a

success region is the kill zone of a weapon, say, a missile—a region in which a target will be

destroyed by the missile. If an estimate is in the success region, a missile detonated at the

location of the estimate will destroy the target, hence a success.

The actual success region is clearly application dependent. We introduce the following

general definition of a success region for the cases when the actual success region is not

known for the application at hand. The success region Rs of an estimator x̂ is a function

of the estimatee x and data z defined by

Rs = {x̂i : ρi(x̂i) ≤ δs} (3.14)

where ρi = ‖h(xi) − h(x̂i)‖/‖h(xi) − zi‖ is the individual estimate-measurement error ratio

(or better use ρx
i = ‖xi − x̂i‖/‖xi − h−1(zi)‖ if h(·) is invertible) for some small δs (say,

δs = 0.1). Loosely speaking, for a given x a success region is a ball ‖x̃‖ ≤ δs‖h(x) − z‖ of a

radius δs‖h(x) − z‖ centered at x, meaning that an estimate with an error at most δs times

the measurement error is treated as a success (e.g., a hit). For a random x, the center of the

ball is also random.

This definition of success region certainly has drawbacks. For instance, it depends on

data z, while for some applications, e.g., the above interception problem, the success region

should not depend on the data. However, to expect a high success rate of any estimator

based on a set of poor data is unrealistic. This definition is recommended only when the

actual success region is not known.
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The success rate of an estimator is defined as the frequency (percentage) that its

estimates x̂i are inside the corresponding success region. It is a finite-sample approximation

of the success probability P{x̂ ∈ Rs}.

3.3.2 Feasible Region and Failure Rate

Similarly, it is also beneficial to introduce the concept of failure for an estimator. We say an

estimator has a failure if its estimate falls outside a region called feasible region. A feasible

region Rf is one (in the estimatee space) that an estimate falling outside it would result in

a serious consequence—the estimator would usually not be able to recover by itself (due to,

e.g., divergence). For example, in radar tracking, the so-called radar gate is a region (in the

measurement space) in which a target can be tracked in the track mode (rather than the

search mode) of the radar. It can be treated as the feasible region because the target will

be lost if its state estimate falls outside it.

Clearly, the actual feasible region is also application dependent. We introduce the

following general definition of a feasible region for the cases when the actual feasible region

is not known for the application at hand. The feasible region Rf of an estimator x̂ is a

function of the estimatee x and data z defined by

Rf = {x̂i : ρi(x̂i) ≤ δf} (3.15)

for some large δf (say, δf = 10). Loosely speaking, a feasible region is a ball ‖x̃‖ ≤ δf‖h(x)−

z‖ of a radius δf‖h(x)− z‖ centered at x, meaning that an estimate with an equivalent error

in the measurement space greater than δf times the measurement error is treated as a failure.

Note that the complement (outside) of the feasible region is deemed the failure region.

The failure rate of an estimator is defined as the frequency (percentage) that its esti-

mates x̂i are outside the corresponding feasible region. It is a finite-sample approximation

of the failure probability P{x̂ /∈ Rf}.
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3.3.3 Concentration Region and Probability

The success (or failure) rate is with respect to a specified success (or feasible) region. It

is sometimes more convenient to examine how large the “success” region of an estimator is

given a required success rate. Consider the region

Rδ = {x̂i : ρi(x̂i) ≤ δ} (3.16)

If δ > 0 is such that, say, 80% of the estimates fall inside Rδ, then we can refer to Rδ as

the (normalized2) 80% concentration region of the estimator and δ as the 80% radius.

As such, an estimator with a smaller radius δ for a given required success rate (say, 80%)

delivers estimates closer to the estimatee. Given an arbitrary region Rδ, P{x̂ ∈ Rδ} is

the concentration probability of the estimator on Rδ. Its finite-sample approximation is

the concentration percentile. Note that although somewhat similar to the concept of a

confidence interval, the concentration region relies on the (individual) estimate-measurement

error ratio.

3.4 Measures for Pairwise Comparison

When two estimators are employed simultaneously for competition, e.g., in a game, their

preference will depend on the pairwise comparison in all cases. In other words, their perfor-

mance difference involves the joint information of these two estimators relative to the truth.

If using measures involves only the marginal information of each estimate, the conclusions

could be misleading. For example when two absolute estimation error sequence are given as

x̃1 = [1 2 3] and x̃2 = [2 3 1], no matter which of the performance measures in Secs. 3.1, 3.2

and 3.3 is used, the difference can not be discriminated. The need for performance measures

for pairwise comparison arises in such situations.

2Normalized in the sense that they are relative to the measurement error since a ratio is used.
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3.4.1 Pitman Closeness Measure

The Pitman closeness measure (PCM) is based on the probabilities of the relative

closeness of competing estimators to the parameter [17]. We explain it next. Let m(x̂1 : x̂2;x)

denote the measure of the difference between x̂1 and x̂2 relative to the parameter x, and

m(x̂1 : x̂2;x) =







1 if x̂1 ≻ x̂2

0.5 if x̂1 = x̂2

0 if x̂1 ≺ x̂2

,

where x̂1 ≻ x̂2 means that x̂1 is preferred to x̂2 relative to x, for example, ||x̂1−x|| < ||x̂2−x||.

The Pitman closeness measure of x̂1 superior to x̂2 relative to x, is defined as follows

PCM(x̂1 : x̂2;x) = E [m(x̂1 : x̂2;x)]

= Pr(x̂1 ≻ x̂2) + 0.5 ∗ Pr(x̂1 = x̂2)

where E[∗] stands for the expectation of ∗ and Pr(∗) is the probability of ∗. Clearly

PCM(x̂1 : x̂2;x) = 1 − PCM(x̂1 : x̂2;x)

When PCM(x̂1 : x̂2;x) > 0.5 or equivalently PCM(x̂1 : x̂2;x) >PCM(x̂1 : x̂2;x), we say x̂i

is better than x̂j. Pitman closeness measure is the relative frequency in which the estimator

x̂1 will be superior to its competitor x̂2.

PCM is generally applicable and robust against the choice of error measure function.

More specifically, the Pitman closeness always exists; it does not change when different mea-

sures, say the Lp norms, of the estimation error are used. It uses the joint information of two

competing estimators, and more information can be extracted. Some peculiar phenomena

about the Pitman closeness have been observed by Rao [17]. He successfully argued for

the Pitman closeness as an intrinsic measure of acceptability and presented many diverse

univariate examples in which shrinking the MSE of an unbiased estimator to an MMSE esti-

mator did not yield a better estimator in the sense of Pitman closeness [17]. Therefore, the

Pitman closeness reveals some deep insights about the estimation performance which can
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not be revealed by MSE. Also, it can discriminate two estimators that are indistinguishable

by measures based on individual information.

However, because PCM is based on the joint information of pairwise estimators, this

invokes some deficiencies [17, 51, 53]. For example, they may take into account a subset of

the sample space that occurs only with probability slightly greater than 0.5; the “winner”

can then be arbitrarily bad when the observation does not belong to this subset. In other

words, they ignore many cases that are still relevant. Due to this peculiarity, they are not

transitive. In other words, if x̂1 is better than x̂2 and x̂2 is better than x̂3, according to PCM,

we can not conclude x̂1 is better than x̂3. Consequently, when more than two estimators are

compared, it might be that none is dominant in the sense of PCM, even though under some

special conditions, the transitiveness does hold. The details can be found in [17, 51].

3.4.2 Loss Measure and Gain Measure

Based on the total probability theorem, a more specified measure with different costs under

conditions of “winning”, “losing” and “even”, respectively, can be defined as below

M(x̂1 : x̂2;x) = Pr(x̂1 ≺ x̂2)E(m(x̂1 : x̂2;x)|x̂1 ≺ x̂2)

+ Pr(x̂1 ≻ x̂2)E(m(x̂1 : x̂2;x)|x̂1 ≻ x̂2)

+ Pr(x̂1 = x̂2)E(m(x̂1 : x̂2;x)|x̂1 = x̂2),

where m(x̂1 : x̂2;x) is the difference measure between x̂i and x̂j relative to x, i, j ∈

{1, 2} and i 6= j, E(m(x̂1 : x̂2;x)|x̂1 ≺ x̂2) is the expectation of m(x̂1 : x̂2;x) conditioned on

x̂1 ≺ x̂2. Then , given

m(x̂1 : x̂2;x) =

{

l(x, x̂1, x̂2) if x̂1 ≺ x̂2

0 if x̂1 � x̂2
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we have the loss measure (LM) under condition that x̂1 is inferior to x̂2 relative to x as

below:

LM(x̂1 : x̂2;x) = Pr(x̂1 ≺ x̂2)E(l(x, x̂1, x̂2)|x̂1 ≺ x̂2),

where l(x, x̂1, x̂2) is the penalty for x̂1 to be inferior to x̂2. The smaller LM(x̂1 : x̂2;x) is,

the better the estimator x̂1 is.

Similarly, the gain measure (GM) that x̂1 is superior to x̂2 relative to x can be defined

as

GM(x̂1 : x̂2;x) = Pr(x̂1 ≻ x̂2)E(g(x, x̂1, x̂2)|x̂1 ≻ x̂2),

where g(x, x̂1, x̂2) is the reward for x̂1 to be superior to x̂2. The larger G(x̂1 : x̂2;x) is, the

better the estimator x̂1 is. Obviously, when g(x, x̂1, x̂2) ≡ 1, this measure reduces to the

PCM.

The estimators compete against each other case by case directly. The joint information of

the estimators and estimatee is involved, more aspects of the difference between estimators

is revealed.

The loss measure and gain measure can greatly alleviate the peculiarity of the PCM that

“the winner can then be arbitrarily bad when the observation does not belong to this subset”.

Because they still depends on the joint information of estimators, generally speaking, they

are still not transitive.

3.5 Illustrative Examples

Example 1. In this example, we focus on demonstrating that error measures and frequency

counts are complementary.

Given a single linear noisy measurement z of an estimatee x:

z = x + v with v ∼ N (0, 1)
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The maximum likelihood (ML) estimator is x̂ML = z. Assume that x is an exponentially

distributed random variable with prior pdf f(x) = λe−λx1(x), where 1(x) is the unit step

function. It can be shown [23] that two classes of MAP and MMSE estimators, respectively,

with different values of λ, are given by

x̂MAP(λ) = max(z − λ, 0)

x̂MMSE(λ) = (
√

2π[1 − Φ(λ − z)])−1e−(z−λ)2/2 + z − λ

where Φ(·) is the standard Gaussian cumulative distribution function.

A simulation with 100, 000 Monte Carlo runs was conducted in which x was generated

as a random variable with the true density f(x) = e−x1(x) (i.e., λ = 1). In the following

plots, the x-axis is the λ values assumed in the MAP and MMSE estimators, while the true

λ is always equal to 1.
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(a) λ = 1 (b) λ = 1.8

Fig. 3.1: Empirical probability densities of estimation errors of MAP and MMSE estimators.

Fig. 3.1 shows the empirical error pdfs of the MAP and MMSE estimators, each for the

two cases of λ = 1 and 1.8, respectively. Note that the estimation errors of the MAP

estimators are

x̃MAP = x − x̂MAP = x − max(x + v − λ, 0) =

{

λ − v z > λ
x z ≤ λ
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They are highly non-Gaussian. Their density functions are made by cutting and pasting a

Gaussian pdf N (x̃; λ, 1)/c and a mixture of an exponential pdf and a Gaussian pdf. Those

of the MMSE estimators, albeit non-Gaussian, are not far from Gaussian because they are

the sum of a Gaussian variable and something complex:

x̃MMSE(λ) = x(1) − x̂MMSE(λ) = x(1) − (z(1) − λ) − (
√

2π[1 − Φ(λ − z)])−1e−(z−λ)2/2

= λ − v − (
√

2π[1 − Φ(λ − z)])−1e−(z−λ)2/2

≈ λ − v − [0.661|λ − z| + 0.3999
√

(λ − z)2 + 5.51]

where use has been made of the following approximation (see, e.g., [21])

Φ(x) ≈ 1 − e−x2/2/
√

2π

0.661x + 0.3999
√

x2 + 5.51
, x ≥ 0

Fig. 3.2 shows the success rates for the success region defined by (3.14) with several

δ2
s values, and the failure rates for the feasible region (3.15) with δf = 10. It can be

seen that x̂MAP(λ = 1) has about highest success rate among MAP estimators. However,

its success rate is lower than those of the MMSE estimators with large λ values. This is

understandable from the error distribution given in Fig. 3.1 because these MMSE estimators

have a greater probability (larger area) for a small error. However, in the limit as δs → 0, the

x̂MAP(λ = 1) would have a greater probability of an extremely small error than that of the

MMSE estimators, as the theory predicts.3 In fact, the error pdfs of the MMSE estimators

do not peak at zero, but as the assumed λ increases, the peak moves towards zero and thus

the success rate is higher. This example demonstrates that caution should be exercised when

using success rate if the estimation errors are not Gaussian distributed. However, we believe

it is generally safe in the Gaussian case.

Fig. 3.2(d) shows that the MAP estimators have worse failure rates than the MMSE

estimators. This is understandable: The MAP estimators in theory should have higher

3The peak of the empirical density of x̃MAP(λ = 1) would be higher if more bins were used in generating
and plotting the density.
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Fig. 3.2: Success rate and failure rate of MAP and MMSE estimators vs. assumed δ values.
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success rate (i.e., more small error), but larger average errors, and thus also more very bad

errors, which implies a higher failure rate. It is also interesting to note that both failure

rates increase with λ.

Example 2. In this example, we demonstrate that RMSE, AEE, PCM and LM are

complementary. Given the noisy measurements zn= (z1, ..., zn) of an estimatee x, where

zi = x+vi, v ∼ N (0, σ2
v) i = 1, ..., n

Assume that x is a ternary random variable with point masses P{x = −1} = P{x =0} =

P{x =1} = 1/3 and uncorrelated with v.

It can be shown [23] that two classes of MAP and MMSE estimators, respectively, with

different values of σ2
v , are given by

x̂MAP (σ2
v)=







−1 ẑ ≤ −0.5
0 −0.5< ẑ ≤ −0.5
1 ẑ >0.5

x̂MMSE(σ2
v) = c(z)[exp(−(1 − ẑ)2

2σ2
ẑ

) − exp(−(−1 − ẑ)2

2σ2
ẑ

)]

where ẑ = 1
n

∑n
i=1 zi, σ2

ẑ = σ2
v

n
, c(z) = exp(− (1−ẑ)2

2σ2
ẑ

) + exp(− (−1−ẑ)2

2σ2
ẑ

) + exp(− ẑ2

2σ2
ẑ

).

A simulation with 100,000 Monte Carlo runs was conducted in which x was generated

as a random variable. In this example, the loss measure is defined in terms of the absolute

estimation error.

Table 3.1. shows the RMSE, AEE, PCM and LM of the MAP and MMSE estimators

at σv = 2, σv = 6 and σv = 10, respectively. The RMSE of the MMSE estimator is always

smaller than that of the MAP estimator since MMSE estimator minimizes MSE, but it does

not minimize the mean error and hence AEE.

For σv = 2, the AEE of the MAP estimator is smaller than that of the MMSE estimator.

As we know, the MMSE estimator places “undue emphasis on large deviations which may

occur with small probability”— this happens here. From PCM it is clear that the former is

better than the latter in 74.54 percent of cases. The LM indicates that although large errors
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Table 3.1: RMSE, AEE, PCM and LM of MAP and MMSE estimators at σv = 2, σv = 6 and

σv = 10.

σv σv = 2 σv = 6 σv = 10
x̂MMSE x̂MAP x̂MMSE x̂MAP x̂MMSE x̂MAP

RMSE 0.4776 0.5506 0.7506 0.9798 0.7910 1.1040
AEE 0.3635 0.2914 0.6459 0.6736 0.6786 0.7955
PCM 25.46% 74.54% 47.30% 52.70% 54.47% 45.53%
LM 0.1345 0.0663 0.1702 0.2914 0.1543 0.4120

happen in the cases that MAP estimator is inferior to MMSE estimator, its average loss is

still smaller than that caused by MMSE estimator. Therefore, in this case, we conclude that

the MAP estimator is better than MMSE estimator.

For σv = 6, although the MMSE estimator is better than the MAP estimator in terms

of RMSE, AEE and LM, the latter is more often superior to the former. The large absolute

errors of the MAP estimator result in that its average error is larger than that of the MMSE

estimator.

For σv = 10, the MMSE estimator is better than the MAP estimator in terms of all above

measures. And we can conclude that in this case the MMSE estimator is preferred.

Figs. 3.3 and 3.4 show the concentration probabilities (CP) of the MMSE estimator and

MAP estimator versus the absolute estimation error range c at σv = 2 and 6, respectively.

Here the CP is simply the CDF of the absolute estimation error. Because the MAP estimator

can only have an absolute estimation error c of 0, 1 or 2, the CP of the MAP estimator is a

step function vs. c. However, the c of the MMSE estimator is continuous, and its CP is also

continuous. Obviously, neither of them can dominate the other. For example, while σv = 2

and c < 0.503, the MAP estimator has the higher concentration probability. Whereas for

0.503 < c < 1, the MMSE estimator’s CP is higher. From Figs. 3.3 and 3.4, we can easily
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Fig. 3.3: CP vs. c (σv = 2)
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Fig. 3.4: CP vs. c (σv = 6)

tell which estimator is more concentrated for a given c.

In Figs. 3.5 and 3.6, the RMSE and AEE vs. the noise deviation σv are shown. Clearly,

the RMSE of the MMSE estimator is always smaller than that of the MAP estimator.

However, for σv < 5.3, the AEE of the MAP estimator is smaller than that of the MMSE

estimator.

As is clear from Fig. 3.7, for the Pittam Closeness measure of the MAP estimator relative

to. MMSE estimator vs. σv, for σv < 7.3, the MAP estimator is better than the MMSE

estimator. In Fig. 3.8 (LMMAP − LMMMSE), the MAP estimator outperforms the MMSE
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Fig. 3.5: RMSE vs. σv
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Fig. 3.6: AEE vs. σv

estimator for σv < 3.7.

Except the RMSE measure, all the others give a quite reasonable conclusion from different

aspects and tradeoffs. This makes a lot of sense because the MAP estimator as a hard

decision here is better than the MMSE estimator when the noise is small, while the noise

become bigger the hard decision will take a much greater risk, and consequently, the MMSE

estimator becomes better.
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3.6 Concluding Remarks

A variety of new practical metrics for measuring performance of estimation algorithms has

been proposed and justified. They are presented in four groups: (a) absolute error measures,

including average Euclidean error (AEE), geometric average error (GAE), harmonic average

error (HAE), median and mode of error norm, as well as root-mean-square error (RMSE);

(b) relative error measures, including Bayesian estimation error quotient (BEEQ), estimate-

measurement error ratio (EMER), and relative RMSE, AEE; (c) frequency counts, including

success rate, failure rate, and concentration probability; (d) measures for pairwise compar-
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ison, including Pitman closeness, loss measure and gain measure. These metrics are useful

for measuring or comparing different aspects of the performance of estimation algorithms.

It is an illusion that performance evaluation can be done completely fairly and impartially.

This is partly because simple metrics cannot capture a complete picture of the performance of

an estimation algorithm and those that are more complete (e.g., empirical error distribution

functions) are more complex and subject to subjective interpretations. More specifically, use

of any metric in performance evaluation implicitly favors the estimator that tries to optimize

this same metric. Nevertheless, all is not lost. What one should do is to choose the metrics

that are more relevant to the case under consideration. That is also the value of having a

wide spectrum of metrics available, along with a good understanding of them. While it is

certainly superior in theory to have a unified metric, to be discussed in next chapter, specific

metrics can be significantly more useful for particular applications.
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Chapter 4

Global Performance Measures

Local performance measures are good at indicating local statistical performance concerns

but not global ones. For example, they can not reflect the performance preference shift in a

spectrum of metrics. A comprehensive view about estimation performance is clearly desired.

In particular, the insights into the global performance need to be explored. This chapter is

dedicated to two types of global performance measures.

The first one pinpoints the interaction between estimation criteria and optimal estimation

such that what is called performance spectrum is proposed accordingly. The location of

estimator within the domain of estimatee is determined by the estimation criterion. When

estimation criterion changes, the location my also shift. Insight into such interaction will

help elucidate performance prediction for producing new estimators and change of preference

in performance comparison.

The second one identifies and specifies the connotation of comprehensive performance

requirements such that what is called the desired estimation error PDF is proposed.

The desired error PDF can provide a more comprehensive characterization of the performance

requirements. Various performance concerns can be taken into account as well with ease.

The performance measures associated with the desired error PDF are also proposed.

This Chapter is organized as follows. In Sec. 4.1, we investigate the relationship and

interaction among estimator, estimation criterion and performance measures. Accordingly,
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the performance spectrum is proposed, along with the discussion of its properties. In Sec. 4.2,

we introduce the desired estimation error PDF to characterize the application requirements.

New performance measures are proposed to indicate the dispersion or convergence level of

estimation error PDF relative to the desired error PDF. Examples for both measures are

illustrated in Sec. 4.3. Conclusions are given in Sec. 4.4.

4.1 Estimation Performance Spectrum

The performance spectrum is designed to display the performance preference shift when es-

timation error is measured in different norms. We first investigate the procedure of Bayesian

point estimation so as to show the interaction between estimators and estimation criteria.

4.1.1 Bayesian Point Estimation

Given a joint probability density function of f(x, z) and observation z, Bayesian estimation

is to infer the random variable x of interest from z based on f(x, z) by optimizing a cost or

gain function. For example, assuming g(·) is a cost function, the corresponding estimator x̂

is defined by

x̂ = arg min
x̂

E [g(x̃)|z]

where x̃ = x− x̂, E [g(x̃)|z] is the conditional expectation of cost g(x̃). g(x̃) needs to satisfy

some admissibility conditions which include g(x̃) = g(−x̃) and g(x̃) is a convex function.

Note the complete information of x is carried by its posterior PDF f(x|z) and the Bayesian

estimator is the location in the support set of x which follows the estimation criterion.

After we obtain the estimator x̂, this special point serve as a representative of the posterior

PDF of x. In other words, from a posterior PDF to an estimator through the optimization

procedure, we obtain one possible value at the price of losing the complete information and

producing the estimation errors. For estimation purpose, it is also necessary to quantify the

estimation error or performance.
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Towards a comprehensive view of the estimation performance, we further investigate the

procedure of producing an estimator so as to gain a physical interpretation on the relationship

between an estimator and an estimation criterion.

4.1.2 A Physical Interpretation

First, we consider the scalar case. Assume g(e), e ≥ 0, is a nondecreasing function and first

order differentiable, i.e., g′(e) ≥ 0. The estimator is defined by

x̂ = arg min
x̂

E [g(||x − x̂||)|z]

Note that

E [g(||x − x̂||)|z] =

∫ ∞

−∞
g(||x − x̂||)f(x|z)dx

=

∫ x̂

−∞
g(x̂ − x)f(x|z)dx +

∫ ∞

x̂

g(x − x̂)f(x|z)dx (4.1)

Following Leibniz’s rule of differentiation

d

dy

∫ b(y)

a(y)

g(x, y)dx =

∫ b(y)

a(y)

∂

∂y
g(x, y)dx +

db(y)

dy
g(b(y), y) − da(y)

dy
g(a(y), y) (4.2)

and taking derivative of E [g(||x − x̂||)|z] with respect to x̂ yield:

dE [g(||x − x̂||)|z]

dx̂
=

∫ x̂

−∞
g′(x̂ − x)f(x|z)dx −

∫ ∞

x̂

g′(x − x̂)f(x|z)dx (4.3)

A necessary condition for x̂ to be the optimal estimator is

dE [g(||x − x̂||)|z]

dx̂
= 0

i.e.,
∫ x̂

−∞
g′(x̂ − x)f(x|z)dx =

∫ ∞

x̂

g′(x − x̂)f(x|z)dx (4.4)

Let t = x̂ − x, we have

∫ ∞

0

g′(t)f(x̂ − t|z)dt =

∫ ∞

0

g′(t)f(x̂ + t|z)dt (4.5)
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(4.5) says that g′(t) acts upon f(x̂ − t|z) and f(x̂ + t|z), t ≥ 0, respectively, and f(x|z) is

balanced at x = x̂, i.e.,

〈g′, fx̂−t〉 = 〈g′, fx̂+t〉

where 〈·, ·〉 denotes the inner product in the Hilbert space. This is similar to the lever

principle: An equilibrium is established when the moment of the force acting in a clockwise

direction is equal to the moment of the force acting in a counterclockwise direction. In physics

the product of a force by its effort arm is called a moment of the force. The lever principle

is simply

F1 · L1 = F2 · L2

where F1 and F2 are two forces, L1 and L2 are their effort arms. The estimator minimizing

the mean g(e) error is a balance pivot for the “force” of g′(t) acting upon two sides of a

“lever” of f(x|z). This gives a “physical” interpretation about the relationship between

estimator and estimation criterion.

Moreover, if g(e) is a second order differentiable concave function, i.e., g′′(e) > 0, we have

d2E [g(||x − x̂||)|z]

dx̂2
=

∫ x̂

−∞
g′′(x̂ − x)f(x|z)dx +

∫ ∞

x̂

g′′(x − x̂)f(x|z)dx > 0 (4.6)

at the balance point. Thus, the balance pivot minimizes the cost function and is the esti-

mator.

For the vector case and the cost function

g(x − x̂) =
∑n

i=1
g(||xi − x̂i||) (4.7)

where xi is the ith element of x and x̂i is the estimator of xi, because

min
x̂

E

[

n
∑

i=1

g(||xi − x̂i||)|z
]

≥
n
∑

i=1

min
xi

E [g(||xi − x̂i||)|z] (4.8)

where the equality holds for the optimal estimator x̂∗= (x̂∗
1,...,x̂

∗
n) with x̂∗

i being the marginal

defined by x̂∗
i = arg minx̂ E [g(||xi − x̂i||)|z], x̂∗. Therefore, the vector optimal estimator
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consists of the marginal optimal estimators of each dimension and it is still an equilibrium

along each dimension.

Moreover, from (4.5), we have

∫ ∞

0

g′(t)(f(x̂ − t|z) − f(x̂ + t|z))dt = 0

Property 1. If there exists a point x̂ that satisfies

f(x̂ − t|z) − f(x̂ + t|z) = 0 (4.9)

for all t ≥ 0, this symmetrical point x̂ of the posterior PDF will always be the optimal

estimator regardless which Bayes admissible criterion is used. In other words, if the posterior

density satisfies (4.9), the estimates will be optimal for a large class of cost functions. Clearly,

if the posterior density function is Gaussian, it satisfies the above condition. In this case, all

admissible criteria lead to the same estimator, which is the conditional mean. However, the

performance of the estimation still needs to be measured by the estimation measures from

different aspects of practical requirements such as concentration probability.

Property 2. For an x̂, if f(x̂ − t|z) − f(x̂ + t|z) < 0 (or > 0) for all t ≥ 0, because

g′(e) ≥ 0, e ≥ 0,
∫∞

0
g′(t)(f(x̂ − t|z) − f(x̂ + t|z))dt < 0 (or > 0), this point x̂ can not be

an optimal estimator regardless which admissible criterion is used. Therefore, a necessary

condition that a point x̂ can be an optimal estimator is f(x̂− t|z)− f(x̂ + t|z) ≥ 0 for some

t and f(x̂ − t|z) − f(x̂ + t|z) ≤ 0 for others. We say these points are admissible. The set of

all these points is the admissible region. Only an admissible point can be a balance pivot.

4.1.3 Optimal Estimator Locations and p-power Error Costs

In this section, we investigate the interaction between the estimator locations and p-power

error costs. Define the p-power error cost function as g(x̃) = ||x̃||p, p ≥ 1.

Theorem 1. For a posterior PDF, if x̂1 and x̂2 are two optimal estimators corresponding

to the p-power error cost functions with p = p1 and p2, respectively, any point x̂∗ between x̂1
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and x̂2 is an optimal estimator that minimizes the average p-power error with a suitable p∗

between p1 and p2. In particular, any point between the posterior mean x̄ and median x1/2

is an optimal estimator w.r.t. a p-power error cost with 1 < p < 2.

Proof: For any point x̂ = x̂∗ between x̂1 and x̂2, we only need to show that there exists

an appropriate p, which is between p1 and p2, and x̂ = x̂∗ minimizes

E [|x̂ − x|p|z] =

∫ x̂

−∞
(x̂ − x)pf(x|z)dx +

∫ ∞

x̂

(x − x̂)pf(x|z)dx (4.10)

Let

c(p, x̂)
△
=

dE [|x̂ − x|p|z]

dx̂

=

∫ x̂

−∞
p(x̂ − x)p−1f(x|z)dx −

∫ ∞

x̂

p(x − x̂)p−1f(x|z)dx (4.11)

Taking derivative of c(p, x̂) with respect to x̂ yields:

dc(p, x̂)

dx̂
=

∫ x̂

−∞
p(p − 1)(x̂ − x)p−2f(x|z)dx +

∫ ∞

x̂

p(p − 1)(x − x̂)p−2f(x|z)dx (4.12)

Note that for p ≥ 1 each term in (4.12) is nonnegative; if dc(p,x̂)
dx̂

is equal to zero, both terms

have to be zero. Under the condition of p > 1, x − x̂ would be equal to zero except over a

zero-measure set, i.e. x = x̂ almost surely. Otherwise,

dc(p, x̂)

dx̂
> 0 (4.13)

Therefore, for any given p > 1, E [|x̂ − x|p|z] is a strictly convex function and c(p, x̂) is

strictly increasing in x̂.

Let x̂ = x̂∗ be between x̂1 and x̂2. Without loss of generality assuming x̂1 < x̂∗ < x̂2, we

have

c(p1, x̂∗) > c(p1, x̂1) = 0 (4.14)

and

c(p2, x̂∗) < c(p2, x̂2) = 0 (4.15)
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Since the integrant of c(p, x̂) is differentiable with respect to p, c(p, x̂) is continuous in p.

Therefore, (4.14) and (4.15) guarantee that there exists p = p∗ to make c(p∗, x̂∗) = 0 where

p∗ is between p1 and p2. Further, c(p, x̂) is monotonic in x̂, so x̂ = x̂∗ is the unique minimum

point of E [|x̂ − x|p∗|z]. The uniqueness also indicates the balance point is unique in this

case. Similarly, for x̂1 > x̂2, we have the same conclusion.

Obviously, when c(1, x̂) = 0,
∫ x̂

−∞ f(x|z)dx =
∫∞

x̂
f(x|z)dx and x̂ is the median; when

c(2, x̂) = 0, x̂ =
∫∞
−∞ xf(x|z)dx and x̂ is the posterior mean. Then, according to the above

conclusion, any point between the posterior mean and median will be an optimal estimator

corresponding to an appropriate p-power error cost function with 1 < p < 2. This completes

the proof.

Theorem 1 gives a very general and intuitive characterization of the interaction between

the locations of the estimators and corresponding p-power error costs. Next, we see the

reverse of the theorem also holds for a large class of posterior PDFs.

Theorem 2. Assume for a given posterior PDF f(x|z) and any value x̂ of x, there exists

at most one Tx̂ > 0 such that

{

f(x̂ − t|z) ≥ f(x̂ + t|z) when t > Tx̂

f(x̂ − t|z) ≤ f(x̂ + t|z) when t < Tx̂
(4.16)

or
{

f(x̂ − t|z) ≤ f(x̂ + t|z) when t > Tx̂

f(x̂ − t|z) ≥ f(x̂ + t|z) when t < Tx̂
(4.17)

and assume c(p1, x̂1) = c(p2, x̂2) = 0 for some pi ≥ 1, i=1,2, and x̂1, x̂2. Given p∗, 1 ≤ p1 <

p∗ < p2, then there exists x̂∗ between x̂1 and x̂2 such that c(p∗, x̂∗) = 0.

(4.16) and (4.17) characterize a large class of unimodal PDFs of a moderate asymmetry,

such as the chi-square distributions, exponential and log-normal distributions.

Proof: Without loss of generality, assume for any x̂ that the condition (4.16) holds. Then
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for p > p1,

c(p, x̂1) =p

∫ ∞

0

tp−1(f(x̂1 − t|z) − f(x̂1 + t|z))dt

=p

∫ Tx̂

0

tp−p1tp1−1(f(x̂1 − t|z) − f(x̂1 + t|z))dt

− p

∫ ∞

Tx̂

tp−p1tp1−1(f(x̂1 + t|z) − f(x̂1 − t|z))dt

<p

∫ Tx̂

0

T p−p1

x̂ tp1−1(f(x̂1 − t|z) − f(x̂1 + t|z))dt

− p

∫ ∞

Tx̂

T p−p1

x̂ tp1−1(f(x̂1 + t|z) − f(x̂1 − t|z))dt

=pT p−p1

x̂ c(p1, x̂1) = 0 (4.18)

Similarly, for p < p2

c(p, x̂2) =

∫ ∞

0

tp−1(f(x̂2 − t|z) − f(x̂2 + t|z))dt

> T p−p2

x̂ c(p2, x̂2) = 0 (4.19)

According to (4.13), c(p, x̂) is continuous and monotonically increasing in x̂. Therefore, for

any p∗, 1 ≤ p1 < p∗ < p2, (4.18) and (4.19) guarantee that there exists a point x̂∗ between

x̂1 and x̂2 that is the optimal estimator w.r.t. the p∗-power error cost.

Similarly, for condition (4.17), x̂1 > x̂2, we have the same conclusion. This completes the

proof.

For the vector case with a cost function (4.7), although Theorem 1 and Theorem 2 do

not hold, each dimension of the estimator does because the optimal estimator consists of the

marginal optimal estimators of each dimension. Along each dimension, each element of the

vector-valued estimator is still an equilibrium.

4.1.4 Estimation Performance Spectrum

The previous analysis on characteristics of estimation and its performance evaluation can be

summarized as follows.
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First, the estimation criterion is a compromise between application requirements and

mathematic tractability. Most often, the estimation criterion is determined by mathematical

tractability such as the MSE. As we have pointed out, the estimator is just a balance point

in the support set. On the one hand, many estimation criteria may lead to the same point;

on the other, an estimation criterion easy to handle can greatly facilitate the estimation

procedure. This justifies the feasibility to pick a simple cost function as estimation criterion.

Second, the optimal estimator is a balance point only for the given cost function. By

no means could an optimal estimator with respect to one particular estimation criterion be

always the “best” estimator for all purposes. In practical problems, it is still necessary to

know its behavior in terms of other performance measures.

Third, Many estimation requirements could be equivalent to some suitable Lp norm costs

in the sense that the estimation requirement and one particular Lp norm cost may share the

same optimal estimator.

Accordingly, we propose the estimation performance spectrum as below,

Sp = (E (||x̃||p))1/p ≈
(

1

N

∑N

i=1

∣

∣

∣

∣x̃i
∣

∣

∣

∣

p
)1/p

p > 0

where x̃ is the scalar or vector estimation error, superscript i stands for quantities pertaining

to the ith run of a Monte-Carlo simulation.

The performance spectrum can provide the following insights and information for perfor-

mance comparison of several estimators. First, Sp=1 and Sp=2 are the AEE and root MSE,

and these two points are of particular interest in most cases. For a posterior PDF with the

properties defined in Theorem 2, the magnitudes of Sp of different estimators at p = 1 and

p = 2 can also indicate the relative position relationship to the median and mean. The

smaller Sp=1 is, the closer the corresponding estimator is to the median. The smaller Sp=2

is, the closer the corresponding estimator is to the mean. Second, the preference of one

estimator along the p-power axis can also be available. Third, because Sp depends more on

the large values of ||x̃|| as p increases, the degree of concentration can be revealed by check-
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ing the slope dSp

dp
. As p increases, if the slope of an estimator is sharper than the other, its

estimation error PDF has a heavier tail. Fourth, according to Theorem 1, for the scalar case,

every point between two estimators is another estimator which is a compromise between the

two estimation criteria. For the vector case, a convex combination of two estimators may

not be optimal w.r.t. any p-power error criterion. However, it is still a compromise between

the given estimation criteria along each dimension. Also, we have a rough idea about the

performance of the combined estimator.

Therefore we can have a comprehensive view on the performance shift along with the

p-power error costs of these estimators. And moreover, it is possible to construct new

estimators from the given ones. An illustrative example is presented later in Sec. 4.3.

4.2 Desired Error PDF and Performance Measures

In this part, we argue that the estimation requirements can be more comprehensively char-

acterized by an error PDF. And the performance relative to the desired estimation error

PDF is proposed as well.

4.2.1 The Desired Error PDF

In practice, the relationship between the estimation final goal and the estimation error

distribution is, most often, not straightforward. For example, in speech signal processing,

the mean opinion score is used to evaluate the performance, and the error criterion which

can best fit people’s listening comfort is still unclear. Based on MSE or AEE, the conclusion

could be far from satisfactions. For another example, given a real system with an unknown

parameter, an efficient way to quantify the cost or loss of the system caused by the estimation

error of the parameter is usually not straightforward.

We simply apply the philosophy coined centuries ago by Descartes:“... when it is not

in our power to know what is true, we ought to do what is more probable.” As estimation
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error is inevitable, the practical performance requirements and concerns can be much more

easily characterized by an estimation error PDF rather than by MSE, AEE or concentration

probability. Using error PDF can integrate various application concerns and requirements,

in particular, when some prior knowledge need to be taken into considerations. For example,

the estimation error PDF of an unknown parameter that a stochastic system can tolerate

gives a clear picture on the performance requirements. Therefore, we propose the desired

error PDF to characterize the application requirements and concerns.

The shape of a desired PDF to characterize application requirements and concerns is

determined by each application. Generally speaking, the more concentrated the desired

PDF is, the more desired it is. The ideal error PDF is a Delta function δ(x̃) which does

not tolerate any error. However, except for the asymptotical case, none of estimators can

satisfy this requirement. Another candidate is the Gaussian distribution with zero mean and

a specified covariance because it is not unreasonable to assume many effects can affect the

parameter of interest and a Gaussian distribution of the error due to these effects is natural

according to the central limit theorem. Its covariance defines the tolerance of the system,

and the zero mean specifies the requirement of unbiasedness. Of course, some other specific

distributions can also be alternative candidates.

If one objects the proposed desired PDF to be too arbitrary, ”we readily agree this

convention is arbitrary and does not appear necessary to some degree. The question which

concerns us here has something vague about it from its very nature.” We only use a simple

form of PDF to characterize the desired properties. Hopefully, it can capture these major

desired properties of requirements for estimation errors.

We stress that even though we only use a Gaussian distribution as the desired PDF, we

compare the PDF of estimation error with the whole desired distribution rather than only

the first and second moments. The shape of the whole distribution is taken into account.

The concentration or dispersion measure w.r.t. the desired error PDF will be defined to
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indicate estimation performance relative to the desired error PDF.

4.2.2 Relative Concentration and Dispersion Measures

In order to measure the concentration or dispersion level of an estimation error PDF relative

to the desired one, we propose the following measures. For simplicity, we use x and y but

not x̃ and ỹ for estimation errors in this section.

Given x ∼ f(x) = N(x; m,P ), where

N(x; m,P ) = |2πP |− 1
2 exp(−(x − m)′P−1(x − m)/2)

from the density function we observe that the equal-height contours are defined by the

relation [57]

t2 = (x − m)′P−1(x − m) (4.20)

which is the description for an ellipsoid. The ellipsoid expands monotonically as t increase,

and the cumulative probability Pr(t > T ) of being outside the ellipsoid T 2 = (x−m)′P−1(x−

m) is only a function of T

Pr(t > T ) =
k

2k/2Γ(k/2 + 1)

∫ ∞

T

xk−1e−x2/2dx (4.21)

where k = dim(x).

Similarly, the concentration probability associated with the ellipsoid (4.20) is Pr(t <

T ) = 1 − Pr(t > T ). We let Pr(t > T ) and Pr(t < T ) be the concentration level and

dispersion level of each point on the ellipsoid (4.20), respectively.

Fig. 4.1 shows the probability density at k = 2, and the concentration level and dispersion

level for k = 1 is shown in Fig. 4.2.

Once the concentration or dispersion level of each point is quantified, the overall relative

concentration and dispersion measures can be defined in the following two different manners.
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Fig. 4.1: 2D Gaussian Density
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Fig. 4.2: 1D Concentration and Dispersion Levels

Concentration and Dispersion Measures of Combinatorially independent Yi.

When Yi, i = 1, ..., N , are combinatorially independent to reach their own estimation results,

their averaged concentration or dispersion measure can be their arithmetic mean of each Y ’
i s

concentration or dispersion level according to the Addition Principle in combinatorics. The

Addition Principle in combinatorics can be simply explained as that the total is produced

by the addition of each relevant quantities, which is the defining reason to use addition

operation.

We define the concentration measure for a combinatorially independent error population
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Yi, i = 1, ..., N , relative to x ∼ N(x; m,P ) as below

CMI(y : x) = Ey(Pr(t > T (y))) ≈ 1

N

∑N

i=1
Pr(t > T (Yi))

or the dispersion measure as

DMI(y : x) = Ey(Pr(t < T (y))) ≈ 1

N

∑N

i=1
Pr(t < T (Yi))

where T 2(Y i) =(Yi − m)′P−1(Yi − m), Pr(t > T (Yi)) is relative to f(x).

Concentration and Dispersion Measures of Combinatorially Dependent Yi.

When Yi, i = 1, ..., N , are combinatorially dependent to affect the final result, their average

concentration or dispersion measure can be their geometric mean of all Y ’
i s concentration or

dispersion levels according to the Multiplication Principle in combinatorics. The Multipli-

cation Principle says: assuming that a procedure consists of k series steps, and each step j

has nj methods to perform regardless of the choices made on the previous steps. The total

number of methods to perform the entire procedure is n1n2···nk.

We define the concentration measure for a combinatorially dependent population Yi,

i = 1, ..., N , relative to x ∼ N(x; m,P ) as below

CMD(y : x) = eEy(ln(Pr(t>T (y)))) ≈ e
1
N

PN
i=1 ln(Pr(t>T (Yi)))

or the dispersion measure as

DMD(y : x) = eEy(ln(Pr(t<T (y)))) ≈ e
1
N

PN
i=1 ln(Pr(t<T (Yi)))

CMI(x : x), DMI(x : x), CMD(x : x) and DMD(x : x) have the following property.

Lemma 1: CMI(x : x) = DMI(x : x) = 1
2
; CMD(x : x) = DMD(x : x) = e−1. 2

Therefore, when CMI(y : x) > 1
2
, we say f(y) is more concentrated than the desired f(x);

conversely, when CMI(y : x) < 1
2
, f(y) is less concentrated than the desired f(x) in terms of

CMI. Similarly, when CMD(y : x) > 0.368, we say the sequence of Yi is more concentrated
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than the desired; conversely, when CMD(y : x) < 0.368, the estimation error sequence Yi is

less concentrated.
Comments: Given m = 0 and k = 2n, since Pr(t > T ) = e−T 2/2

∑n
i=1

2−i+1

Γ(i)
T 2(i−1),

CMD(y : x) = e(− trace(CP−1)
2

+Ey(ln
Pn

i=1
2−i+1

Γ(i)
T 2(i−1)))

where C is the MSE corresponding to the estimation error with PDF f(y). The term

L = −trace(CP−1)
2

plays an important role on the geometric mean of the dispersion level of

each Yi relative to f(x). When k = 2, CMD(y : x) = eL. L quantifies the concentration

measure completely. L < −1 indicates that f(y) is less concentrated than f(x); otherwise,

f(y) is more concentrated than f(x). In particular, when P = C, L = −1 and we say an

unbiased estimator with MSE=C has the same dispersion level as a Gaussian distribution

N(x; 0, C) .

In view of the above, first, the MSE of an estimator carries important information associ-

ated with a Gaussian distribution with zero mean and the covariance of the MSE to indicate

how concentrated the error PDF is. Second, the above measures provide more information

than MSE itself about the concentration or dispersion information of f(y) relative to f(x).

This will be illustrated in the following section.

4.3 Illustrative Examples

Example 1. For Estimation Performance Spectrum

We use the first example in Sec. 3.5 again (refer to page 38) to illustrate the application

of performance spectrum. Given x̂MAP and x̂MMSE, there exists an approximate relation-

ship among mean, median and mode for unimodal probability density function of moderate

asymmetry [54]:

mean − mode ≈ 3(mean − median)

Thus

median ≈ 2

3
mean +

1

3
mode (4.22)
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We fuse x̂MAP and x̂MMSE according to (4.22) and we can expect the fused estimator is near

the median and is superior to the other two in terms of Sp=1. We compare their estimation

performance spectra.

A simulation with 100, 000 Monte Carlo runs was conducted in which x was generated

as a random variable with the density f(x) = e−x1(x).
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Fig. 4.3: Estimation Performance Spectrum p > 0.1

Fig. 4.3 shows the estimation performance spectrum Sp of x̂MAP, x̂MMSE and the fused

one for 0.1 < p < 2. x̂MMSE dominates x̂MAP. This indicates that x̂MMSE is more concentrated

than x̂MAP. The slope of x̂MAP is sharpest, and this indicates its estimation error is more

dispersed than the other two. The slope of the fused estimator is also sharper than that

of x̂MMSE, this indicates the fused one’s estimation error is distributed with a heavier tail.

Although, theoretically speaking, x̂MAP should have larger concentration probability within

a small region, its superiority as p becomes small is quite negligible in this situation. Its

large dispersion results from the location of the MAP estimator is on the boundary of the

admissible region and even the support set. In this case, most often we say x̂MAP is less

desirable.

As we expected, the fused estimator has smallest Sp at p = 1, which indicates it is close
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to the median. Moreover, because the Sp of the fused one is the smallest as p < 1.2, the

estimation error of the fused one is also more concentrated but with a heavier distribution

tail than x̂MMSE, which is verified by Fig. 4.4.
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Fig. 4.4: Empirical PDF of ||x̃||

Example 2. For the Desired PDF

As pointed out in [35], the estimation performance is most completely described by the

estimation error PDF. In the following example, we directly show how the above measures

reveal the difference among the following error PDFs. In Fig. 4.5, we illustrate the following

five error PDFs, all with the zero mean and unity covariance.

f1(x̃) =N(x̃; 0, 1)

f2(x̃) =U(x̃;−
√

12,
√

12)

f3(x̃) =αN(x̃;−5, 0.22) + βN(x̃; 0, 0.22) + αN(x̃; 5, 0.22)

f4(x̃) =0.5N(x̃;−0.9, 0.19) + 0.5N(x̃; 0.9, 0.19)

f5(x̃) =0.5N(x̃; 0, 0.1) + 0.5N(x̃; 0, 1.9)

where α = 0.0192, β = 1 − 2α, and p∗(x̃) = N(x̃; 0, 0.5) is the desired PDF. According to

MSE, there is no difference among the above five PDFs . However, as is clear from Fig. 4.5,
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they are quite different.
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Fig. 4.5: Five PDFs with the same Mean and Covariance

Given the desired error PDF f∗(x̃) = N(x̃; 0, P ), P = 0.5 : 0.1 : 0.8, we examine CMIs

and CMDs of the above five PDFs in Figs. 4.6 and 4.7 by generating 3000 samples from

each PDF.
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Fig. 4.6: CMI
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Fig. 4.7: CMD

According to CMI, f3(x̃) has the highest concentration level; the next place is f5(x̃); and they

are more concentrated than the desired one. f4(x̃) is the least concentrated one, followed

by f2(x̃) and f1(x̃), and they are all less concentrated than the desired one. It is also clear

that CMI of the desired error PDF w.r.t. itself is around 0.5. Similar to CMI, the preference

level of these five PDFs are in the order of f3(x̃) ≻ f5(x̃) ≻ f1(x̃) ≻ f2(x̃) ≻ f4(x̃). However,

because less concentrated samples have a larger effect on CMD than on CMI, except for

f3(x̃), all others are less concentrated than the desired one as P < 0.65. Until the tolerance

level P > 0.65, f3(x̃) starts to become more concentrated. It is also clear that CMD of the

desired error PDF is around 0.37. Both CMI and CMD will increase as the tolerance level

P goes up.

4.4 Conclusions

The performance spectrum and the desired estimation error PDF with associated perfor-

mance measures are proposed in this chapter. Both of them are designed to provide a global

view on estimation performance.

The performance spectrum is based on the discussion on the interaction between
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estimators and estimation criteria. A comprehensive view on the relationship among esti-

mator, estimation criterion, and performance measures is achieved. It can be summarized

as below:

• The estimation criterion is a compromise between the estimation requirements and

mathematical tractability. There exists a gap between the estimation criterion and

the application requirements. The estimation performance should be examined by the

application requirements.

• The optimal estimator has a vivid physical interpretation: it is an equilibrium to bal-

ance the effects generated by the cost function. Each balance point could correspond to

many different effects. From this viewpoint, using a commensurate estimation criterion

easy to handle may significantly simplify the optimization procedure.

• We propose the estimation performance spectrum to compare estimators. Compared

to the existing isolated and independent performance evaluation, we can gain a com-

prehensive view about the behavior of these estimators.

• Theorem 1 and Theorem 2 provide theoretical insights to fuse estimators with different

estimation criteria into a new one with a predictable compromised performance.

The desired error PDF gives a more comprehensive characterization of application

requirements. The proposed relative concentration measure and dispersion measure can

reveal the concentration and dispersion level relative to the desired PDF. They provide the

more detailed and comprehensive discriminations among error PDFs. The Lemma 1 also

gives a reference that can indicate an estimation error PDF of an estimator with MSE C is

more or less concentrated or dispersed than a Gaussian PDF with zero mean and covariance

C. For example, when CMI > 1
2
, we say the examined error PDF will be more concentrated

than the Gaussian PDF with zero mean and the specific covariance in the sense of the CMI.
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Chapter 5

Model Distortion Measure and

Multiple Model Algorithm

In parameter estimation and state filtering, model approximation is quite common in en-

gineering research and development. It heavily affects estimation performance and it is of

great interest to have a model distortion measure to indicate the divergence or difference

between the original model and the approximate one. This Chapter is dedicated to the

model distortion measure.

For model approximation, various strategies have been employed [52]. Local linearization

of the model around the “best” point or simplification conditioned on past data is often

the first choice. Another choice is to approximate the model by its finite-order expansion,

which usually is optimal in the sense of the expansion criteria, of the measurement model or

probabilistic model. For example, Taylor series expansion is quite often used to approximate

a nonlinear function, which is optimal in the sense of the least-squares among all polynomial

expansions at the working point; Gram-Charlie expansions of probability densities have

been employed for state estimation. In contrast to the above approaches, approximating the

posterior density is another choice. This type of methods includes point-mass approximation,

gaussian density mixture, and spline approximation. These methods have good accuracy but

high complexity.

For the above model approximation approaches, the deviation of the approximate model
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from the original one seems little understood. Moreover, these approximations distort the

original relation between the parameter of interest and the observation and cause perfor-

mance deterioration. For example, the optimality of Taylor series expansion does not guar-

antee a good approximation quality. The divergence and credibility of the extended Kalman

filter are serious problems in practice.

Once the original model has been approximated, the inference will completely depend

on the approximate model. The deviation of approximate model from the original one is

often not taken into account. As a result, it gives little idea about the consequences of the

approximation. In order to analyze performance deterioration and develop new algorithms,

it is quite crucial to have a measure to indicate the quality of these approximations.

Towards this goal, we analyze the setup and modeling of parameter inference and clarify

its inherent vagueness. Accordingly, we draw the connection between model distortion and

the difference between two probability density functions. We work out a distortion measure,

and it turns out that the Kullback-Leibler (K-L) divergence, which has many nice properties,

can serve this purpose.

We apply the K-L divergence to multiple model estimation. Two important problems

associated with multiple model estimation are discussed. One is on the model set design;

the other is on the model probability behavior. We demonstrate that the K-L divergence

and K-L information are of great significance for estimation performance indication.

The rest of the Chapter is organized as follows. In Sec. 5.1, we discuss some character-

istics of the parameter estimation. In Sec. 5.2, we work out a distortion measure: the K-L

divergence. Its properties are also presented. In Sec. 5.3, we introduce the Multiple Model

(MM) approach to parameter estimation. Then, we address the model set design problem

and the model probability behavior analysis which are highly related to the proposed dis-

tortion measure. A model set design example and a multiple algorithm fusion example are

illustrated in Sec. 5.4. Conclusions are presented in Sec. 5.5.
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5.1 Probabilistic Model of Parameter Inference

The parameter estimation consists of four components: parameter space, observation space,

probabilistic relation between the parameter space and the observation space and estima-

tion criteria [57]. The probabilistic relation between the parameter space and the observation

space governs the effect of the parameter on the observation. The parameter is estimated

from the observation based on the probabilistic relation, most often, by optimization proce-

dure according to the estimation criterion.

The probabilistic relation between the parameter space and the observation space can be

characterized by an observation model describing a physical phenomenon, or by a probabilis-

tic model, such as the joint distribution of the parameter and the observation, or likelihood

of the parameter. For example, the contaminated observation z of parameter x by noise v

can be modelled as z = x + v or by their joint PDF f(x, z). The parameter can be inferred

based only on its probabilistic model. Therefore, the probabilistic model is complete and

sufficient in the sense of carrying all the information needed for inference.

The goal of inference is defined by the estimation criterion. The inference is to find a

function from the observation space to the parameter space which is optimal according

to the estimation criterion. The relationship between estimation criterion and model ap-

proximation is not clear. In other words, how to approximate the model to favor a specific

estimation criterion has not been revealed theoretically. Also the credibility of the estimator

could also be different [34].

One way to measure the model distortion is to appraise the model in the sense that it

can facilitate inference with good enough results in most situations and for most estimation

criteria. Accordingly, the quality of the approximate model depends only on its ability to

characterize the underlying truth and to provide a credible probabilistic relation for inference.

Therefore, we will measure the model distortion independent of the the selection of estimation
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criteria.

Since the probabilistic relation between the parameter space and observation space is

completely characterized by their joint probability density function, the model difference is

equivalent to the difference between two PDFs. We will quantify the model difference by

comparing two PDFs.

5.2 Model Distortion Measure

5.2.1 Defining the Measure

Model approximation distorts the relation between the parameter of interest and its observa-

tion. How to quantify this distortion is the key to having a meaningful measure. Practically

speaking, given the data and several models (multiple hypotheses), hypothesis testing is a

way to find the fittest model to the data with minimum decision error or cost [19]. We follow

this procedure to quantify the difference between two probabilistic models.

The joint PDF f(x, z) of parameter x and observation z can be written as f(x), where

x = (x, z). Given two PDFs f0(x) and f1(x), we measure their difference as follows.

First, we use likelihood ratio λ(x) = f0(x)
f1(x)

to characterize the difference of the parameter

and observation pair (x, z) in both models because it has the most separation power in the

Neyman-Pearson sense. Second, the average of λ(x) in respect of either f0(x) or f1(x) gives

their average power to separate them, respectively. It is reasonable to expect that λ(x) = α

and λ(x) = 1/α have the same power to quantify their difference due to the symmetrical

position of f0(x) and f1(x) in this definition. So the geometric mean of the likelihood ratio

λ̄i, i = 0, 1,

λ̄i = exp(

∫

fi(x) ln λ(x)dx)

is suitable to measure the average difference. The geometrical mean is balanced around 1 as
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argued in [36]. Third, we use the ratio of these averages to define the total difference D:

D(f0(x), f1(x)) =λ̄0/λ̄1

= exp(

∫

(f0(x) − f1(x)) ln λ(x)dx)

Note, according to the maximum entropy theory,
∫

f0(x) ln λ(x)dx =
∫

f0(x) ln f0(x)dx −
∫

f1(x) ln f0(x)dx > 0, λ̄0 > 1. Likewise, λ̄1 < 1. The larger D is, the larger the distortion

would be. Let J = ln D , we have

J(f0(x), f1(x)) =

∫

(f0(x) − f1(x)) ln λ(x)dx

=

∫

f0(x) ln
f0(x)

f1(x)
dx +

∫

f1(x) ln
f1(x)

f0(x)
dx

=I(0 : 1) + I(1 : 0)

where I(i : j) =
∫

fi(x) ln fi(x)
fj(x)

dx, i, j = 0, 1. Similarly, for λ(x) = f1(x)
f0(x)

, following the

same procedure, we have J(f1(x), f0(x)) = J(f0(x), f1(x)). Later, we simply use J(0, 1)

to measure the difference between f0(x) and f1(x). Again, the larger J is, the larger the

distortion would be.

5.2.2 Comments

J is the Kullback-Leibler (K-L) divergence and I is the K-L information. The K-L infor-

mation is always non-negative and is zero if and only if f0(x) = f1(x). A stronger property

known as Pinsker’s inequality is [14]

||f0(x) − f1(x)|| ≤
√

2I(1 : 0) (5.1)

where ||f0(x) − f1(x)|| =
∫

|f0(x) − f1(x)|dx is the L1 distance between f0(x) and f1(x),

serving as the lower bound of K-L information.

From the viewpoint of model selection, given the truth x ∼fθ(x), for model selec-

tion from candidates fθj
(x) using the minimum K-L information is equivalent to using the
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maximum likelihood principle and the maximum entropy theorem, i.e.

min
θj

I(θ : θj) = min
θj

lim
n→∞

∑n

i=1

(

ln fθ(xi) − ln fθj
(xi)

)

⇒max
θj

lim
n→∞

∑n

i=1
ln fθj

(xi)

⇒max
θj

lim
n→∞

∏n

i−1
fθj

(xi)

From the viewpoint of making decision, given an observation, Hi, i = 0, 1, is the

hypothesis that x is from the population with PDF fi(x), and then by using the likelihood

ratio decision rule it follows that the definition of the Kullback-Leibler information I(1 : 0)

is the mean information per observation from population f1(x) for discrimination in favor

of H1 against H0 [19].

Moreover, from the viewpoint of the large deviation theory, defining the false alarm

as the probability PF = Pr(decide H1|H0 is true), by the weak law of large numbers, PF will

converge to zero for a fixed detection probability as the sample size N increases. The large

deviation theory says it converges exponentially fast and the convergence rate is determined

by the K-L information I(1 : 0) [8, 12]. That is PF = lim
N→∞

exp(−NI(1 : 0)). The smaller

the convergence rate is, the more probable the false alarm occurs, and the more difficult it

is to discriminate them.

The K-L information is often called distance, but it is not a true distance between dis-

tributions since it is not symmetric and does not satisfy the triangle inequality. The K-L

divergence is the sum of I(1 : 0) and I(0 : 1). It is symmetric, but still not a distance for

not satisfying the triangle inequality.

Suppose f0(x) is the true model and f1(x) an approximate one. For model approximation,

both the true probabilistic model and the approximate one are available. As to tell the

approximate model from the truth by the data, I(0 : 1) measures the deviation; the distortion

of the probabilistic measure caused by using the approximate model for inference is measured

by I(1 : 0). For statistical inference, the K-L divergence is more comprehensive than the
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K-L information. It can quantify the deviation from the truth and can indicate the effects

of model approximation on estimation.

We stress that the K-L divergence will be infinite once two PDFs have different support

sets. This implies that the approximate model will lead to estimators which can never reach

some true parameter values or may produce some values the truth can not be. In this case,

there may exist a better way to do approximation. For some applications, this may not

matter; for others, it may. Practitioners need to pay more attention to this case to have a

reasonable approximation appraisal.

The significance of the model distortion measure will be exemplified by its application to

the multiple model (MM) algorithm. We will apply the model distortion measure to address

two important problems—model set design and model behavior analysis—associated with

multiple model algorithms next. Not only can the Kullback-Leibler information indicate the

model distortion but it is also highly related to the model probability behavior.

5.3 Multiple Model Algorithm

Multiple-model (MM) estimation is a powerful approach to adaptive estimation. It is partic-

ularly good for problems involving structural as well as parametric changes, such as hybrid

estimation and problems involving model uncertainty [1]. Compared to the conventional

estimation, which relies entirely on a single “best” model for inference, a multiple model

algorithm also takes the model uncertainty as an integral part of the inference. It uses a

group of models to do inference simultaneously and produces the overall output according

to each model’s fitness to observations. The fundamental idea is to utilize multiple models

to cover the true model and combine the estimator of each model by the total expectation

theorem through Bayesian procedure [22, 42, 44, 43, 27, 26]. It is cost-effective, robust, and

of a parallel structure.

Given a probabilistic model f(z, x,W ), where z is the observation, x is the parame-
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ter of interest and W is a random nuisance continuous-valued parameter, the MMSE-MM

algorithm for estimating x from z can be formulated as

x̂ ≡Ex|z(W ) [x|z] = Ex|z(W )[Ex|W,z [x|W, z] |z] (5.2)

≈Ex|z(ω)[Ex|ω,z [x|ω, z] |z] (5.3)

=
M
∑

i=1

Ex|z(ωi) [x|ωi, z] Pr(ωi|z) (5.4)

mse(x̂|z) ≡Ex|z(W ) [((x − x̂)′(x − x̂)|z] (5.5)

=Ex|z(W ) [mse(x̂|W, z)|z] (5.6)

≈Ex|z(ω) [mse(x̂|ω, z)|z] (5.7)

=
∑M

i=1
[mse (x̂|ωi, z) + (x̂i − x̂)′(x̂i − x̂)] Pr(ωi|z) (5.8)

Pr(ωi|z) =Pr0(ωi)f(z; ωi)/fC(z) (5.9)

where Ex|z(W ) [x|z] stands for the expectation of x conditioned on z, ω denotes a discrete

random variable with a finite sample set {ωi}, i = 1, ...,M , to approximate W , Pr0(ωi),

f(z; ωi) and Pr(ωi|z) are the initial probability, likelihood and posterior probability of the

ith model, respectively, mse(x̂) is the mean square error of x̂, x̂i = E [x|ωi, z], and fC(z) =

∑M
j=1 f(z; ωj)Pr0(ωj) is the common normalization term. From (5.2) to (5.3) and (5.6) to

(5.7), the original nuisance parameter W is approximated by the model set {ωi} with the

initial probabilities {Pr0(ωi)}.

The approximation is mainly due to the complexity of the original model.

As the multiple observation zN is concerned, the probabilistic model is denoted by

f(zN , x,W ), and the model probability can be calculated either in a batch or in a recursive

way as below

Pr(ωi|zN) =
Pr0(ωi)f(zN ; ωi)

∑M
j=1 Pr0(ωj)f(zN ; ωj)

(5.10)

=
Pr0(ωi|zN−1)f(zN ; ωiz

N−1)
∑M

j=1 Pr0(ωj|zN−1)f(zN ; ωj, zN−1)
(5.11)

We will investigate the behavior characteristics of (5.9), (5.10) and (5.11) next.
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5.3.1 Model Set Design

Performance of the MM estimator depends heavily on the approximation of W from (5.6)

to (5.7) or the design of {ωi} in (5.7). A meaningful definition of the coverage of each

model ωi in the parameter space is the key to model set design. Our results on quantization

of the PDF f(W) w.r.t. different criteria are given in [22, 42, 44, 43, 27, 26] where the

nuisance parameter is quantized in its own parameter space without considerations of the

model distortion. We, here, take further considerations of the deviation of the approximate

model from the true one. This is essential to model set design. For an extreme example, if

f(x, z,W) = f(x, z, ω) for all possible W and a corresponding ω, the quantization of f(W)

will not affect the inference of x from z.

Once we have this distortion measure, we can follow some quantization methods in [42]

such that the model distortion is also taken into consideration and the performance should

not deteriorate too much. Especially, when f(W) has a uniform distribution, we can design

the model set as

ωN = arg min
ωn

max
w∈sωi

J(w, ωi) < D

where ωn is any model set {ωi, i = 1, ..., n}, sωi
is the parameter region covered by ωi, D is a

predetermined value of the maximum allowable distortion level. We pick the model set ωN

with N equal to the minimum allowable n.

In the next section, we apply the K-L divergence as the model distortion measure to

design a proper model set for an illustrative example.

5.3.2 Model Probability Behavior

An important issue in the multiple model estimation is to understand its behavior, such

as the estimation consistency when the true model is in the model set, and the consistent

discrimination between models [5, 6, 4, 7]. We will focus on investigating the behavior of

the model probability such that we can perceive its evolution when the truth is inside or
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outside the model set. It turns out that model probability behavior heavily depends on the

model distance between the model in the model set and the true one, which is defined by

the Kullback-Leibler (K-L) information.

First, examining (5.9), we take log on both sides and have

ln Pr(ωi|z) = ln Pr0(ωi) + ln
f(z; ωi)

f(z; w)
− ln

fC(z)

f(z; w)
(5.12)

where w is one realization of W and f(z; w) is the true observation generation model at w.

Take geometric average on both sides of (5.9) w.r.t. f(z; w). Then

eEz|w[ln Pr(ωi|z)] =e
R

ln Pr(ωi|z)f(z;w)dz = Pr0(ωi)e
I(w:C)−I(w:ωi)

=Pr0(ωi)e
I(w:C)−I(w:ωi) (5.13)

where I(w : ωi) is the Kullback-Leibler (K-L) information between f(z; w) and f(z; ωi).

Because geometric mean is no more than the arithmetical mean, the total of geometric

mean of the model probability is no more than 1. After renormalization, we have

P̄ r
G
(ωi|z) =Pr0(ωi)

e−I(w:ωi)

∑M
j=1 Pr0(ωj)e−I(w:ωj)

=Pr0(ωi)
(

∑M

j=1
Pr0(ωj)e

I(w:ωi)−I(w:ωj)
)−1

Although P̄ r
G
(ωi|z) is not a probability, it is the normalized geometric average of the

model probability w.r.t. the true model. The summation of all P̄ r
G
(ωi|z) is still one.

Compared to the prior model probability, on average, the model probability update will

change at the rate

r(ωi) =
P̄ r

G
(ωi|z)

Pr0(ωi)
=
(

∑M

j=1
Pr0(ωj)e

I(w:ωi)−I(w:ωj)
)−1

(5.14)

Therefore, besides the prior model probability, on average, the change rate of model proba-

bility only depends on the K-L information between the true model and the models in model

set. Assuming I(w : ωi) is the minimum among I(w : ωj), j = 1, ...,M , we say model f(z; ωi)
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is closest to the true observation generation model f(z; w) in terms of the K-L information.

Then

r(ωi) =
(

∑M

j=1
Pr0(ωj)e

I(w:ωi)−I(w:ωj)
)−1

≥
(

∑M

j=1
Pr0(ωj)

)−1

= 1 (5.15)

The model probability of the model closest to the true one will increase on average. Similarly,

the model probability of the farthest model will decrease on average.

Moreover,

P̄ r
G
(ωi|z)

P̄ r
G
(ωj|z)

=
Pr0(ωi)

Pr0(ωj)
exp(I(w : ωj) − I(w : ωi)) (5.16)

The ratio between the two average model probabilities P̄ r
G
(ωi|z) and P̄ r

G
(ωj|z) will increase

or decrease exponentially fast, which only depends on their K-L information difference. Both

(5.15) and (5.16) also indicate that the model probability of the closest model will increase

at the highest rate on average.

Second, examining (5.11) for the recursive form, similarly, we have

ln Pr(ωi|zN) = ln Pr(ωi|zN−1) + ln
f(zN |ωi, z

N−1)

f(zN , |w, zN−1)
− ln

fC(zN |zN−1)

f(zN , w, zN−1)

e(E[ln Pr(ωi|zN )]) =Pr(ωi|zN−1)eI(w:C;zN−1)−I(w:ωi;z
N−1) (5.17)

P̄ r
G
(ωi|zN) =Pr(ωi|zN−1)

e−I(w:ωi;z
N−1)

M
∑

j=1

Pr(ωj|zN−1)e−I(w:ωj ;zN−1)

=Pr(ωi|zN−1) ×
(

M
∑

j=1

Pr(ωj|zN−1)eI(w:ωi;z
N−1)−I(w:ωj ;z

N−1)

)−1

(5.18)

where I(w : ωi; z
N−1) is the K-L information between f(zN |w, zN−1) and f(zN |ωi, z

N−1), and

fC(zN |zN−1) =
∑M

j=1 Pr0(ωj|zN−1)f(zN ; ωj, z
N−1). The average change rate of the model

probability update is

r(ωi) =

(

M
∑

j=1

Pr0(ωj)e
I(w:ωi;z

N−1)−I(w:ωj ;z
N−1)

)−1

(5.19)

In the recursive case, the average change rate r(ωi) is random—it depends on the previous

observations zN−1. Given zN−1, the model probability of the closest model to the true one
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will increase on average, and the model probability of the farthest model will decrease on

average.

Again,

P̄ r
G
(ωi|zN)

P̄ r
G
(ωj|zN)

=
Pr0(ωi|zN−1)

Pr0(ωj|zN−1)
eI(w:ωi;z

N−1)−I(w:ωj ;z
N−1) (5.20)

the ratio between two average model probabilities P̄ r
G
(ωi|zN) and P̄ r

G
(ωj|zN) will increase

or decrease exponentially fast. Given zN−1, the rate depends only on their K-L information

difference.

Third, we examine (5.10) as N goes to infinity to reveal the convergence of the model

probability .

A very general and rigorous results about the asymptotic behavior of posterior probability

when the true model is not inside the model set has been presented in [7], but the results

rely on heavy mathematical machinery and the insight is not straightforward. We present

the asymptotic behavior of the model probability in a very succinct way. It is easy to show

lim
N→∞

Pr(ωi|zN) = lim
N→∞

Pr0(ωi)f(zN ; ωi)
∑M

j=1 Pr0(ωj)f(zN ; ωj)

= lim
N→∞

Pr0(ωi)e
N× 1

N
(ln f(zN ;ωi)−ln f(zN ;ω))

∑M
j=1 Pr0(ωj)e

N× 1
N

(ln f(zN ;ωj)−ln f(zN ;ω))

= lim
N→∞

Pr0(ωi)e
−NI(w:ωi)

∑M
j=1 Pr0(ωj)e−NI(w:ωj)

= lim
N→∞

Pr0(ωi)
∑M

j=1 P0(ωj) expN(I(w:ωi)−I(w:ωj))
(5.21)

Assume i = arg min
j

(I(w : ωj)), and I(w : ωi) 6= I(w : ωj), j = 1, ...,M and j 6= i, that is ωi

is the unique model closest to the true w. then

lim
N→∞

P0(ωj)e
N(I(w:ωi)−I(w:ωj)) = 0 (5.22)

and

lim
N→∞

Pr(ωi|zN) = 1, lim
N→∞

Pr(ωj|zN) = 0, ∀j 6= i (5.23)
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This indicates the posterior model probability of the model closest to the true one will

converge to 1 as the sample size goes to infinity.

Moreover,

lim
N→∞

Pr(ωi|zN)

Pr(ωj|zN)
= lim

N→∞

Pr0(ωi)

Pr0(ωj)
eN(I(w:ωj)−I(w:ωi))

= lim
N→∞

Pr(ωi|zN−1)

Pr(ωj|zN−1)
eI(w:ωj)−I(w:ωi) (5.24)

The model probability ratio between any two models will increase or decrease exponentially

fast at the rate of their K-L information difference as sample size goes to infinity.

5.4 Illustrative Examples

Two examples are designed to illustrate the model set design and the fusion of multiple

algorithms, respectively.

Example 1. Model Set Design

Consider a single linear noisy measurement z of a parameter x:

z = wx + v

z = ωx + v

where x ∼ N(x; m, 1), v ∼ N(v; 0, 1), w ∼ U(w; 0, 1) and they are independent of each

other. Then the probabilistic model of this estimation problem is its joint probability density

function

f(z, x, w) = N(z; wx, 1)N(x; m, 1)U(w; 0, 1)
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Following the procedure in [3, pp. 123-128], its best linear unbiased estimator (BLUE) is

x̂BLUE = x̄ + CxzC
−1
z (z − z̄)

= m + 0.5(1.333 + 0.083m2)−1(z − 0.5m) (5.25)

P = P0 − CxzC
−1
z C ′

xz

= 1 − 0.25(1.333 + 0.083m2)−1 (5.26)

where P is the mean-sqrare error of x̂BLUE.

First, we use z = 0.5x + v to approximate the original system, then the estimator is

simply

x̂UM = m + 0.4(z − 0.5m), PUM = 0.8 (5.27)

where x̂UM stands for the the BLUE based on the uni-model of ω= 0.5.

We compare only the average normalized estimation error square (ANEES) and root-

mean-square error (RMSE) of these two estimators. The ANEES is defined by [34]

ANEES =
1

Nn

N
∑

i=1

(xi − x̂i)
′P−1

i (xi − x̂i) (5.28)

where (xi − x̂i) and Pi are the estimation error and error covariance in the ith run, n is the

dimension of x, and N is the total number of runs. If the estimation error and the estimated

covariance match each other, i.e., the estimator is credible, the ANEES is will be close to 1.

As is clear from RMSE and ANEES of both x̂BLUE and x̂UM in Fig. 5.4 (a) and (b),

respectively and, not surprisingly, the approximation by replacing w ∼ U(w; 0, 1) with ω=

0.5 is too crude, the performance deteriorates dramatically when |m| > 2.

We measure the K-L divergence between two PDFs of f(z, x, w1) and f(z, x, w2). As-

suming one is the truth and the other is the model used by estimator, the K-L divergence

is

J(1, 2) =

∫∫

(f(z, x, w1) − f(z, x, w2)) ln
f(z, x, w1)

f(z, x, w2)
dxdz

= 2
(

m2 + 1
)

(w1 − w2)
2 (5.29)
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Fig. 5.1: x̂BLUE vs. x̂MM (a) RMSE (b) ANEES

where f(z, x, w = wi) = 1
2π

exp
(

− (z−xwi)
2+(x−m)2

2

)

, i = 1, 2.

First, J(1, 2) is symmetrical around m = 0 w.r.t. m for all possible w1 and w2. Previously,

we argued that the K-L divergence can indicate the performance deterioration due to the

model approximation, and the smaller the K-L divergence is, the better the estimation

performance is. Accordingly, the performance of the approximate model of each true w

w.r.t. m should have a symmetrical pattern, so does the average. That is, the uni-model

estimation performance should be symmetrical. By checking Fig. 5.4, the symmetrical

patten of RMSE and ANEES agrees with this assumption. So the K-L divergence can quite

effectively indicate performance changes.

Second, x̂UM and x̂BLUE have similar RMSE and ANEES when −2 ≤ m ≤ 2. By

the minimax principle, min
0≤ω≤1

max
|m|≤2,0≤w≤1

J(1, 2) = 2 (m2 + 1) (w − ω)2 = 2.5 with ω = 0.5,

m = ±2, w = 1 or 0. We can assume that J(1, 2) ≤ 2.5 indicates f(z, x, w = w1) and

f(z, x, w = w2) are quite close for this problem such that the estimation performance of the

approximate model will not deteriorate too much.
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Third, we also use multiple models to handle this problem. Let the minimum divergence

between the true w and the nearest model ω in the model set be less than 2.5 in the worst

case. That is max
|m|≤7

2 (m2 + 1) (w − ω)2 ≤ 2.5. We have 100(w − ω)2 ≤ 2.5 and |w − ω| ≤
√

1
40

. The minimum model number over w ∈ [0, 1] will be ceil
[

1
2|w−ω|

]

= 4. We pick

ω = [0, 0.33, 0.66, 0.99] as our model set.

For this estimation problem, the multiple model algorithm simply becomes a typical

Bayesian inference procedure as is summarized in Table 5.1.

Table 5.1: MM Approach to This Example

1. Model prior information (for i=1,2,...,M):

Model probability: µ(i) △

= P{ω(i)} = 1/M

State: x
(i)
0 = x0

Covariance: P
(i)
0 = P0

2. Model-conditioned Estimation (for i=1,2,..., M):

Measurement residual: z̃(i) = z − ω(i)x
(i)
0

Residual covariance: S(i) = ω(i)P
(i)
0 (ω(i))′ + σ2

v

Estimation gain: K(i) = P
(i)
0 (ω(i))′

(

S(i)
)−1

Update estimator: x̂(i) = x
(i)
0 + K(i)z̃(i)

Update covariance: P (i) = P
(i)
0 − K(i)(S(i))−1(K(i))′

3. Model probability update (for i=1,2,...,M):

Model likelihood: L(i) = f(z̃(i)|ω(i)) = exp[−(z̃(i))′(S(i))−1z̃(i)/2]

|2πS(i)|1/2

Model probability: µ(i) = µ(i)L(i)
PM

j µ(j)L(j)

4. Estimate fusion:

Overall estimate: x̂ =
∑M

i µ(i)x̂(i)

Overall covariance: P =
∑M

i [P (i) + (x̂ − x̂(i))(x̂ − x̂(i))′]µ(i)

As is clear from RMSE and ANEES of both x̂BLUE and x̂MM in Fig. 5.4 (a) and (b), the

MM estimator has better accuracy and is very credible. The MM algorithm with the designed

model set has better performance thanx̂BLUE does. Obviously, using the mm method to

approximate the original problem improves the performance considerably compared with

the estimator using only one model.
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The above example demonstrates the validity of the K-L divergence as a measure of

performance deterioration is significant. It can predict the performance deterioration with

quite good accuracy, and may serve an an effective model distortion measure for model set

design for MM approach.
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Fig. 5.2: x̂BLUE vs. x̂MM (a) MSE (b) ANEES

Example 2. Fusion of Multiple Algorithms

In an MM algorithm, each model can also be viewed as a hypothesis to characterize the

observations and each model contributes to the overall output. The overall output is the

summation of the estimator inferred from each model and weighted by its model probability

which measures the fitness of the observation to each model or hypothesis. The behavior of

the model probability indicates that on average the model probability update increases the

weight of the estimator of the fittest model. Moreover, the model probability of the fittest

model finally approaches one as the observation size goes to infinity. This remark applies to

both the parametric case and filtering case, regardless of whether the true model is inside or

outside the model set.
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In practice, we constantly need to compare multiple algorithms and make hard decisions

to pick the better one for real applications. We can also view each algorithm as a hypothesis

to characterize the observations associated with a state or parameter of interest. Similarly, we

can apply the model probability update structure to evaluate the quality of each algorithm or

hypothesis, and accordingly combine these algorithms by their weighted summation, where

the weight is calculated in a similar manner as for the model probability in a multiple model

algorithm. Particularly, in nonlinear estimation problems, the performance of an algorithm

depends on the working points. Therefore, the preference of an algorithm to another may

change at different working points. This exhibits difficulties to conclude which algorithm is

better in real applications. In such a case, combining the multiple algorithms by a weighted

summation may produce a robust result at all working points, because on average the weight

update can automatically increase the share of the better hypothesis.

Next, we present an illustrative example.

Consider target localization using a radar or active sonar with range r and bearing b

measurements:

r =
√

x2 + y2 + vr, b = tan−1 y

x
+ vb

where (x, y) is the true location of a stationary target in the Cartesian coordinates,

v = [vr, vb]
′ ∼ N (0, R) is the zero-mean Gaussian measurement noise with covariance R =

diag(σ2
r , σ

2
b ).

Suppose that estimates of the target location in the Cartesian coordinates are needed.

The known prior information of the target location x = [x, y]′ is: x ∼ N (x̄, Cx), that is, x is

Gaussian distributed with mean x̄ and covariance Cx. We consider three estimators: x̂UB,

x̂BLUE—based on the unbiased measurement conversion method of [50], and the recursive

best linear unbiased estimation (BLUE) method of [68], respectively—and the fused one.

The fused estimator is the weighted summation of x̂UB and x̂BLUE, i.e.,

x̂Fused = Pr(x̂BLUE|z)x̂BLUE + Pr(x̂UB|z)x̂UB
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The weight is calculated by the model probability update formulation. Assuming two esti-

mators have the same prior probability, and their posterior probabilities are

Pr(x̂BLUE|z) =
Pr0(x̂BLUE)f(z; x̂BLUE)

Pr0(x̂BLUE)f(z; x̂BLUE) + Pr0(x̂UB)f(z; x̂UB)
(5.30)

=
f(z; x̂BLUE)

f(z; x̂BLUE) + f(z; x̂UB)
(5.31)

The second equality is because of the equal prior assumption. Similarly, Pr(x̂UB|z) = 1 −

Pr(x̂BLUE|z).

A simulation with 500 Monte Carlo runs was conducted in which the target location was

generated as a random variable x ∼ N (x̄, Cx), x̄ = [−50000 20000]′, Cx = diag([5002 5002]).

Unless stated otherwise, all plots were obtained from x̂UB, x̂BLUE and the fused one.

50 100 150 200 250 300 350 400
460

480

500

520

540

560

580

600

 σr

 R
MS

E

BLUE
UB
Fused

Fig. 5.3: RMSE vs.σr

0.1 0.15 0.2 0.25 0.3 0.35 0.4
400

450

500

550

600

650

700

750

 σb

 R
MS

E

BLUE
UB
Fused

Fig. 5.4: RMSE vs.σb

80



Fig. 5.3 shows the root mean square error (RMSE) of x̂UB, x̂BLUE and the fused one vs.

σr, 20 < σr < 400, at fixed σb = 0.1. As is clear from the figure, neither x̂UB nor x̂BLUE can

dominate the other. This is not a surprise for such a nonlinear estimation problem because

the performance preference of one algorithm to another depends on the working points. The

fused one has a smaller estimation error than the other two. This indicates that the weight

calculated by (5.30) can help pick the better estimator more often on average such that the

fused estimator has better performance.

Fig. 5.4 shows the RMSE of x̂UB, x̂BLUE and the fused one vs. σb, 0.06 < σb < 0.4, at

fixed σr = 40. The performance of x̂BLUE dominates that of x̂UB. When σb < 0.2, the fused

one outperform the other two. When σb > 0.2, the fused one is a little bit worse than x̂BLUE

but is better than x̂UB. This is because although on average more weight is assigned to a

better hypothesis, this hypothesis may not lead to a better estimator. However, on average,

we still prefer the result from a better hypothesis.

Therefore, the structure of model probability update also provides a feasible way to fuse

multiple estimation algorithms.

5.5 Conclusions

In this Chapter, we discussed the model distortion measure for model approximations. We

have proposed to use the K-L divergence to measure the model distortion. The properties

associated with K-L divergence have been explored. We applied the K-L divergence to design

the model sets for the MM approach. Through an illustrative example, we demonstrate that

the K-L divergence can predict the performance deterioration with quite good accuracy and

can provide new insight into model approximation. Moreover, it is quite general, conceptually

simple, and has high potential to provide a guideline to the development of highly adaptive

algorithms.

Moreover, we investigate the model probability behavior of MM algorithm. Although

81



there are many varieties of MM algorithms, the insight into the behavior of the posterior

model probability is quite general. It is primarily determined by the model distance between

the model in the model set and the true one, which is quantified by the K-L information.

Regardless of whether the true model is inside or outside the model set, in a multiple

model algorithm, the model closest to the true one tends to have more weight to the overall

output. In other words, the performance of multiple model algorithm depends more on

the model closest to the true one than the others. The ratio between two average model

probabilities will increase or decrease exponentially fast as the observation size increases,

and the changing rate is determined by the difference between two K-L information of each

model relative to the true model.

We also draw a connection between multiple model algorithms and the comparison of

multiple estimation algorithms from the viewpoint of multiple hypotheses. By using the

model probability update structure, we can also have a weighted sum of multiple algorithms

that assigns more weight to the result from a better hypothesis. This provides a feasible way

to combine multiple algorithms and produce more robust estimators.
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Part II

Application of Best Linear Unbiased

Filtering Method to Target Tracking
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Chapter 6

Best Linear Unbiased Filtering

Method4

6.1 Introduction

The Kalman filter has been popularly used for dynamic state filtering for several decades.

Beyond the Kalman filter, a more fundamental basis of the recursive best linear unbiased

filtering has been thoroughly investigated in a series of papers by Dr. X. Rong Li [69,

45, 29, 46, 32, 30, 31, 24, 25]. Many aspects of the best linear unbiased estimation have

been examined thereby to reveal different application concerns. They cover unified optimal

linear estimation fusion for central and distributed sensor fusion [45, 29, 46], optimality

and efficiency of distributed fusion [32], relationships among weighted least square methods

and BLUE method with prior, partial prior and no prior [30], and recursibility of linear

estimation [25]. What is called quasi-recursive best unbiased linear filtering technique in [30]

is of particular interest. Based on such formulation, the Kalman filter’s Linear-Gaussian

assumptions can be relaxed such that a general linear filtering technique for nonlinear systems

could be obtained. Hence, we abandon the Kalman filter and go to a more fundamental basis

of optimal recursive linear estimation.

4 c© [2004] IEEE. Reprinted, with permission, from Z. L. Zhao, X. R. Li, V. P. Jilkov, “Best Linear
Unbiased Filtering with Nonlinear Measurements for Target Tracking”. IEEE Transactions on Aerospace

and Electronic Systems, vol. 40, pp. 1324-1336, Oct. 2004
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The rest of this chapter presents the recursive best unbiased linear estimation filter.

6.2 Recursive BLUE Filter

Given the observation z = h(x, v), where v is the observation noise and h(x, v) can be a

linear or nonlinear function of state x and v, the well-known BLUE or linear minimum mean

square error (LMMSE) estimator x̂ of x given z (see [3, pp. 123-128]) is

x̂ = E∗[x|z] = x̄0 + CxzC
−1
z (z − z̄0) (6.1)

P = E[(x − x̂)(x − x̂)
′

] = P0 − CxzC
−1
z Czx (6.2)

where x̄0 and P0 are the prior mean and covariance of x; z̄0 and Cz are the mean and

covariance of z. Cxz is the covariance of x and z. The BLUE or LMMSE estimator of x

given observation z is denoted by E∗[x|z] because it has many properties of the conditional

mean E[x|z], although it is not really conditional mean. For example, it is a linear operator:

E∗[Ax+By+c|z] = AE∗[x|z] + BE∗[y|z] + c. Also, when x and z are jointly gaussian,

E∗[x|z] = E[x|z]. Obviously, the estimator is in a linear function of the observation, and it

does not matter whether the observation is linear or nonlinear.

Let zk and xk be the measurement and state at time k, and let zk−1 stand for the set of

all past measurements before time k. The best linear unbiased estimator of xk given zk is

E∗ [xk|zk
]

. The recursive BLUE requires that the current state can only be estimated based

on the previous estimator and the current measurement. It is known that for all zk and

xk without any special assumptions the BLUE E∗ [xk|zk
]

always has the quasi-recursive

form (see. e.g. [30, 25]).

x̂k = E∗ [xk|zk
]

= x̄k + Kkz̃k (6.3)

Pk = P̄k − KkSkK
′

k (6.4)
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where

x̄k = E∗ [xk|zk−1
]

x̃k = xk − x̄k

z̄k = E∗ [zk|zk−1
]

z̃k = zk − z̄k

P̄k = cov(x̃k)

Sk = cov(z̃k)

Kk = cov(x̃k, z̃k)S
−1
k

Pk = cov(xk − x̂k).

This form is quasi-recursive, not necessarily truly recursive, because given the state estimator

x̂k−1 of xk−1 and its error covariance Pk−1 at time k − 1, the calculations of the predicted

state x̄k and its error covariance P̄k, the predicted measurement z̄k and its error covariance

Sk, and cross-covariance cov(x̃k, z̃k) may depend on zk−1 and some second-order moment

information prior to time k − 1 not only through x̂k−1 and Pk−1; however, if x̄k, z̄k, Sk, P̄k

and cov(x̃k, z̃k) are available precisely through x̂k−1 and Pk−1 only, the above form will be

truly recursive and optimal in the sense of BLUE or LMMSE. Even if this BLUE filter can

not be truly recursive, it provides a solid framework to do approximated filtering.

For a linear system with the standard Kalman filter assumptions, the BLUE filter exactly

becomes the Kalman filter.

From the above analysis, as long as these required terms x̄k, z̄k, P̄k, Sk and cov(x̃k, z̃k)

are available based on x̂k−1and Pk−1 as well as zk, the recursive BLUE is perfectly valid

for nonlinear observation and thus can be applied to filtering with nonlinear measurements.

Therefore, we abandon the Kalman filter framework by adopting the BLUE filter directly.

All the fundamental flaws that were pointed our in the Introduction are circumvented.

86



Consider the stochastic system with linear dynamics and polar or spherical measurements

xk = Fk−1xk−1 + Γk−1wk−1 (6.5)

zk = h(xk, vk) (6.6)

where {wk} and {vk} are, in the sequel, uncorrelated white process noise and measurement

noise sequences, both independent of the initial state x0, Fk−1 is the transition matrix, and

h(xk, vk) is the measurement function. Clearly, the BLUE or LMMSE state prediction can

be done exactly the same as in the Kalman filter:

x̄k=E∗ [xk|zk−1
]

= Fk−1x̂k−1 + Γk−1w̄k−1 (6.7)

P̄k=cov(x̃k) =Fk−1Pk−1F
′
k−1 + Γk−1Qk−1Γ

′
k−1. (6.8)

What remains is to calculate

z̄k = E∗ [zk|zk−1
]

(6.9)

Sk = cov(z̃k) (6.10)

Kk = cov(x̃k, z̃k)S
−1
k . (6.11)

Once these terms are available, the state update follows as (6.3) and (6.4). BLUE filter

provides a more fundamental basis to nonlinear filtering techniques than the Kalman fil-

ter. We apply the best linear unbiased filtering method to target tracking problem with

measurements in polar and spherical coordinates next.
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Chapter 7

Application to Target Tracking with

Nonlinear Measurements4

7.1 Introduction

In tracking applications, target dynamics are usually modelled in Cartesian coordinates,

while the measurements are directly available in the original sensor coordinates, most often

in spherical coordinates. For tracking in Cartesian coordinates using polar or spherical

measurements, the measurement conversion method is widely used [28]. The basic idea is

to transform the nonlinear measurement model into a pseudo-linear form in the Cartesian

coordinates, estimate the bias and covariance of the converted measurement noise, and then

use the Kalman filter, which clearly has better accuracy and consistency than the EKF.

A number of improved techniques for measurement conversion have been proposed

[2, 20, 47, 48, 49, 50, 55, 56]. They differ in the ways of obtaining the bias and covariance

of the noise of the converted measurement. Measurement models used in target tracking,

including measurement conversion methods, are surveyed in [28]. The pros and cons of vari-

ous measurement-conversion techniques have been revealed there with succinct explanation.

In particular, it was pointed out that these conversion methods have fundamental flaws, as

elaborated in Section 7.2. The idea of developing a theoretically sounder filter for tracking

with linear dynamics and nonlinear measurements was briefly discussed in [28].
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In this chapter, such a filter is developed, which stems from the recognition that the

Kalman filter is nothing else but a recursive BLUE for a linear system; furthermore, al-

though the Kalman filter cannot optimally handle any nonlinear measurement directly, we

may still be able to develop the recursive BLUE filter for nonlinear measurements. This chap-

ter presents such a recursive BLUE filter for tracking with linear dynamics and nonlinear

measurements.

The rest of this chapter is organized as follows. In Sec. 7.2, we summarize the previous

measurement-conversion method and explain its flaws. In Secs. 7.3 and 7.4, tracking in

polar coordinates and spherical coordinates is given. The approximate implementations are

discussed in section 7.5. The simulation comparison of this new method with two state-of-

the-art measurement conversion techniques is presented in Sec. 7.6. The conclusions are

given in Sec. 7.7.

7.2 Measurement Conversion Approach

To be simple and clear, the main idea and mathematical derivation are given for the polar

measurements, and then the results are extended to the spherical measurements.

The measured range rm and bearing θm are defined with respect to the true range r and

bearing θ

rm = r + r̃ θm = θ + θ̃.

The noise r̃ and θ̃ are assumed to be independent with zero mean and standard deviations σr

and σθ, respectively. The measurement conversion method converts the polar measurements

into the Cartesian coordinates by

xm = rm cos θm = (r + r̃) cos(θ + θ̃)

ym = rm sin θm = (r + r̃) sin(θ + θ̃)

89



and then transform the above nonlinear form into a pseudo-linear form with respect to (x, y),

xc = x + x̃c yc = y + ỹc (7.1)

where (xc, yc) is the converted debiased measurement [2, 20] or converted unbiased measure-

ment [49, 50], (x, y) = (r cos θ, r sin θ) is the true position of the target and (x̃c, ỹc) is the

noise of the converted measurement . Observe that (7.1) just divides the converted mea-

surement into the true position (x, y) and the measurement noise (x̃c, ỹc), however, (x̃c, ỹc)

is actually dependent on (x, y), namely, components of the state.

Once the linear form is obtained, the measurement conversion method applies the Kalman

filter to do tracking. All measurement conversion techniques differ from each other in the

ways that the bias and covariance of (x̃c, ỹc) are calculated. Specific comparisons can be

found in [48]. Basically, one way is to compute the mean and covariance conditioned

on the measurement as E[[x̃c, ỹc]
′ |rm, θm] and cov[[x̃c, ỹc]

′ |rm, θm], referred to as fixed-

measurement [48] or unbiased method [49, 50]; another way is to compute them firstly con-

ditioned on the true state and then conditioned on measurement as E[E[[x̃c, ỹc]
′ |r, θ]|rm, θm]

and E[cov([x̃c, ỹc]
′ |r, θ)|rm, θm], referred to as fixed-truth [48] or debiased method [2, 20].

As argued in [28], however, we will call them measurement-conditioned (MC) approach and

nested conditioning (NC) approach, respectively.

From the above analysis, all previously proposed measurement conversion techniques

have the following fundamental flaws. First, (x̃c, ỹc) is state dependent; second, its covari-

ance is estimated conditioned on the current measurement or state/measurement; third, the

measurement noise sequence {(x̃c, ỹc)k} is not white anymore. However, in the assumptions

of Kalman filter, the measurement noise is independent of the state, its covariance is uncon-

ditional, and it is white. As pointed out in [28], these fundamental flaws were ignored or

overlooked before. As a result, they are by no means optimal.

From another point of view, there are two steps inside the measurement conversion

method. Firstly, the state or the measurement is assumed to be nonrandom, then the mean
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and covariance of the converted measurement error can be calculated. In the second step, the

state is viewed as random, then the kalman filter can be applied. As we know, the Kalman

filter framework requires the state should be only random. This inconsistency leads to some

undesirable consequences. For example, in the first step because either the measurement

or the state is nonrandom, and then the uncertainty of the state is not taken into account,

the value of the computed covariance of the converted measurement error is smaller than

the true covariance, where the state is random. Consequently, the state estimations of the

MC and NC approaches will perform optimistically. Furthermore, when the measurement

noise is state-dependent, the measurement prediction covariance formula of the Kalman

filter should be modified to take into account the cross-correlation between the state and the

measurement noise. All these techniques fail to have such modifications.

In Sections 7.3 and 7.4, the specific form of z̄k, Sk and cov(x̃k, z̃k) for the polar and

spherical measurements will be derived, respectively.

7.3 Tracking in Polar Coordinates

For any time instant k, the measured range and bearing in Polar coordinates are defined

with respect to the true range r and bearing θ as

rm = r + r̃, θm = θ + θ̃.

The noises r̃ and θ̃ are assumed to be independent of each other and of r, θ, and be Gaussian

distributed with zero means and standard deviations σr and σθ, respectively. Converting the
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polar measurements into the Cartesian coordinates yields

hx(x, v) =xm = (r + r̃) cos(θ + θ̃)

=x cos θ̃ − y sin θ̃ +
x

√

x2 + y2
r̃ cos θ̃ − y

√

x2 + y2
r̃ sin θ̃

hy(x, v) =ym = (r + r̃) sin(θ + θ̃)

=y cos θ̃ + x sin θ̃ +
y

√

x2 + y2
r̃ cos θ̃ +

x
√

x2 + y2
r̃ sin θ̃ (7.2)

Then the tracking system has the nonlinear measurements of formula (6.6):

zk = h(xk, vk) (7.3)

where zk = [xm, ym]′k, xk = [x, ẋ, y, ẏ]′k and vk = [r̃, θ̃]′k.

Before we derive z̄k = E∗[zk|zk−1], Sk and cov(x̃k, z̃k), for brevity, we drop the time index

k and the conditioning on zk−1, i.e. let z̄ , S and cov(x̃, z̃) stand for z̄k, Sk and cov(x̃k, z̃k),

respectively. Now denote x̄k and P̄k by

x̄=[x̄ ¯̇x ȳ ¯̇y]
′

P̄=









cov(x̃) cov(x̃, ˜̇x) cov(x̃, ỹ) cov(x̃, ˜̇y)

cov(˜̇x, x̃) cov(˜̇x) cov(˜̇x, ỹ) cov(̃ẋ, ˜̇y)

cov(ỹ, x̃) cov(ỹ, ˜̇x) cov(ỹ) cov(ỹ, ˜̇y)

cov(˜̇y, x̃) cov(˜̇y, ˜̇x) cov(˜̇y, ỹ) cov(˜̇y)









.

Let λ1 = E[cos θ̃] = e−σ2
θ/2, λ2 = E[cos2 θ̃] = 1

2
(1 + e−2σ2

θ ), λ3 = E[sin2 θ̃] = 1
2
(1 − e−2σ2

θ )

and E[sin θ̃] = E[sin θ̃ cos θ̃] = 0. Since (r, θ) and (r̃, θ̃) are independent, (x, y) and (r̃, θ̃) are

also independent. Because the noise sequence [r̃, θ̃]′k is white, E[[r̃, θ̃]′k|zk−1] = E[[r̃, θ̃]′k] = 0.

Thus, by Lemma 1 in Appendix A, the predicted measurement is

z̄ =E∗
[

xm

ym

]

= λ1

[

x̄
ȳ

]

= λ1x̄ (7.4)

where x̄
△

=[x̄, ȳ]′
△

=E∗ [xk|zk−1
]

.

By Lemma 2 in Appendix A, the cross-covariance between state prediction error x̃ and
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measurement prediction error z̃ is

cov(x̃, z̃) = E
[

xz
′
]

− E[x̄z̄
′

]

= λ1









E









x2 xy
xẋ ẋy
xy y2

xẏ ẏy









− E









x̄2 x̄ȳ
x̄¯̇x ẋȳ
x̄ȳ ȳ2

x̄¯̇y ¯̇yȳ

















= λ1

[

P̄ (:, 1), P̄ (:, 3)
]

(7.5)

where, P̄ (:, i) (i = 1, 3) is the ith column vector of P̄ .

The predicted measurement error covariance is

S = cov (z̃) =

[

cov(x̃m) cov(x̃m, ỹm)
cov(ỹm, x̃m) cov(ỹm)

]

. (7.6)

Since

E[x2
m]=E[(x cos θ̃ − y sin θ̃ +

xr̃ cos θ̃
√

x2 + y2
− yr̃ sin θ̃
√

x2 + y2
)2]

=λ2E
[

x2
]

+ λ3E
[

y2
]

+
1

2
σ2

r +
1

2
σ2

re
−2σ2

θE

[

x2 − y2

x2 + y2

]

we have

S11=cov(x̃m) = E[x2
m] − E[x̄2

m]

=λ2cov(x̃) + λ3cov(ỹ) +
1

2
σ2

r + λ3E[ȳ2] + (λ2 − λ2
1)E[x̄2] +

1

2
σ2

re
−2σ2

θE

[

x2 − y2

x2 + y2

]

.

Similarly

S22=cov(ỹm)

=λ2cov(ỹ) + λ3cov(x̃) +
1

2
σ2

r + λ3E[x̄2] + (λ2 − λ2
1)E[ȳ2] +

1

2
σ2

re
−2σ2

θE

[

y2 − x2

x2 + y2

]

S12=cov(x̃m, ỹm)

=e−2σ2
θcov (x̃, ỹ) + (e−2σ2

θ − λ2
1)E[x̄ȳ] + σ2

re
−2σ2

θE

[

xy

x2 + y2

]

where Sij is the ith row and jth column element of S. All the cov(∗) terms are directly

available from P̄ . However, unlike z̄ and cov(x̃, z̃), Sij can not be calculated precisely
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because the E [∗] terms have no closed form. Fortunately, S can be approximated quite

accurately, which will be discussed in detail in Section 5.

7.4 Tracking in Spherical Coordinates

In spherical coordinates, the measured range, bearing and elevation are defined with respect

to the true range r, bearing θ and elevation φ as

rm = r + r̃, θm = θ + θ̃, φm = φ + φ̃.

The noises r̃, θ̃ and φ̃ are assumed to be independent of each other and of r, θ, φ, and be

Gaussian distributed with zero means and standard deviations σr, σθ and σφ, respectively.

Converting the spherical measurements into the Cartesian coordinates yields

hx(x, v) = xm = rm cos θm cos φm

= (r + r̃) cos(θ + θ̃) cos(φ + φ̃)

hy(x, v) = ym = rm sin θm cos φm

= (r + r̃) sin(θ + θ̃) cos(φ + φ̃)

hz(x, v) = zm = rm sin φm = (r + r̃) sin(φ + φ̃).

Then the tracking system has the nonlinear measurements of formula (6.6):

zk = h(xk, vk) (7.7)

where zk = [xm, ym, zm]′k, xk = [x, ẋ, y, ẏ, z, ż]′k and vk = [r̃, θ̃, φ̃]′k.

Similar to the polar coordinate system case, the predicted state and its error covariance

are denoted by x̄ and P̄ .
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x̄=[x̄ ¯̇x ȳ ¯̇y z̄ ¯̇z]
′

P̄=

















cov(x̃) cov(x̃, ˜̇x) cov(x̃, ỹ) cov(x̃, ˜̇y) cov(x̃, z̃) cov(x̃, ˜̇z)

cov(˜̇x, x̃) cov(˜̇x) cov(˜̇x, ỹ) cov(˜̇x, ˜̇y) cov(˜̇x, z̃) cov(˜̇x, ˜̇x)

cov(ỹ, x̃) cov(ỹ, ˜̇x) cov(ỹ) cov(ỹ, ˜̇y) cov(ỹ, z̃) cov(ỹ, ˜̇z)

cov(˜̇y, x̃) cov(˜̇y, ˜̇x) cov(˜̇y, ỹ) cov(˜̇y) cov(˜̇y, z̃) cov(˜̇y, ˜̇z)

cov(z̃, x̃) cov(z̃, ˜̇x) cov(z̃, ỹ) cov(z̃, ˜̇y) cov(z̃) cov(z̃, ˜̇z)

cov(˜̇z, x̃) cov(˜̇z, ˜̇x) cov(˜̇z, ỹ) cov(˜̇z, ˜̇y) cov(˜̇z, z̃) cov(˜̇z)

















Let λi (i = 1, 2, 3) be the same as before, and µ1 = E[cos φ̃] = e−σ2
φ/2, E[sin φ̃] = 0,

µ2 = E[cos2 φ̃] = 1
2
(1 + e−2σ2

φ), µ3 = E[sin2 φ̃] = 1
2
(1 − e−2σ2

φ), E[sin φ̃ cos φ̃] = 0. Again,

E[[r̃, θ̃, φ̃]′k|zk−1] = E[[r̃, θ̃, φ̃]′k] = 0 because the noise sequence [r̃, θ̃, φ̃]′k is white.

Thus the predicted measurement is

z̄ =E∗





xm

ym

zm



 =





λ1µ1x̄
λ1µ1ȳ
µ1z̄



 (7.8)

where x̄
△

=[x̄, ȳ, z̄]′
△

=E∗ [xk|zk−1
]

.

The cross-covariance between the state prediction error x̃ and measurement prediction

error z̃ is

cov(x̃, z̃) = E
[

xz
′
]

− E[x̄z̄
′

]

=

















µ1λ1cov(x̃) µ1λ1cov(x̃, ỹ) µ1cov(x̃, z̃)

µ1λ1cov(˜̇x, x̃) µ1λ1cov(˜̇x, ỹ) µ1cov(˜̇x, z̃)
µ1λ1cov(ỹ, x̃) µ1λ1cov(ỹ) µ1cov(ỹ, z̃)

µ1λ1cov(˜̇y, x̃) µ1λ1cov(˜̇y, ỹ) µ1cov(˜̇y, z̃)
µ1λ1cov(z̃, x̃) µ1λ1cov(z̃, ỹ) µ1cov(z̃)

µ1λ1cov(˜̇z, x̃) µ1λ1cov(˜̇z, ỹ) µ1cov(˜̇z, z̃)

















= µ1

[

λ1P̄ (:, 1), λ1P̄ (:, 3), P̄ (:, 5)
]

(7.9)

where P̄ (:, i) (i = 1, 3, 5) is the ith column vector of P̄ .

The predicted-measurement error covariance is

S=cov (z̃) = E[zz′] − E[z̄z̄′]

=





cov(x̃m) cov(x̃m, ỹm) cov(x̃m, z̃m)
cov(ỹm, x̃m) cov(ỹm) cov(ỹm, z̃m)
cov(z̃m, x̃m) cov(z̃m, ỹm) cov(z̃m)



 . (7.10)
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Let r =
√

x2 + y2 + z2 and r1 =
√

x2 + y2. Since

E[x2
m] =E[(x cos θ̃ cos φ̃ − y sin θ̃ cos φ̃ +

x

r
r̃ cos θ̃ cos φ̃

− y

r
r̃ sin θ̃ cos φ̃ − xz

r1

cos θ̃ sin φ̃ +
yz

r1

sin θ̃ sin φ̃

− x

r1

z

r
r̃ cos θ̃ sin φ̃ +

y

r1

z

r
r̃ sin θ̃ sin φ̃)2]

=λ2µ2E
[

x̃2
]

+ λ3µ2E
[

ỹ2
]

+ λ2µ2σ
2
rE

[

x2

r2

]

+ λ3µ2σ
2
rE

[

y2

r2

]

+ λ2µ3σ
2
rE

[

x2z2

r2
1r

2

]

+ λ2µ3E

[

x2z2

r2
1

]

+ λ3µ3E

[

y2z2

r2
1

]

+ λ3µ3σ
2
rE

[

y2z2

r2
1r

2

]

,

we have

S11 =cov(x̃m) = E[x2
m] − E[x̄2

m]

=λ2µ2cov(x̃) + λ3µ2cov(ỹ) + λ2µ2σ
2
rE

[

x2

r2

]

+ λ3µ2σ
2
rE

[

y2

r2

]

+ λ2µ3E

[

x2z2

r2
1

]

+ λ3µ3E

[

y2z2

r2
1

]

+ λ2µ3σ
2
rE

[

x2z2

r2
1r

2

]

+ λ3µ3σ
2
rE

[

y2z2

r2
1r

2

]

+ (λ2µ2 − λ2
1µ

2
1)E[x̄2] + λ3µ2E[ȳ2]
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and similarly

S22 =cov(ỹ2
m)

=λ2µ2cov(ỹ) + λ3µ2cov(x̃) + λ2µ2σ
2
rE

[

y2

r2

]

+ λ3µ2σ
2
rE

[

x2

r2

]

+ λ3µ3E

[

x2z2

r2
1

]

+ λ2µ3E

[

y2z2

r2
1

]

+ λ3µ3σ
2
rE

[

x2z2

r2
1r

2

]

+ λ2µ3σ
2
rE

[

y2z2

r2
1r

2

]

+ (λ2µ2 − λ2
1µ

2
1)E[ȳ2] + λ3µ2E[x̄2]

S33 =cov(z̃m)

=µ2cov(z̃) + µ3(cov(x̃) + cov(ỹ)) + µ2σ
2
rE

[

z2

r2

]

+ µ3σ
2
rE

[

r2
1

r2

]

+ (µ2 − µ2
1)E[z̄2] + µ3E[x̄2 + ȳ2]

S12 =cov(x̃m, ỹm)

=µ2(λ2 − λ3)cov(x̃, ỹ) + σ2
rµ2(λ2 − λ3)E

[xy

r2

]

+ (λ2 − λ3)µ3E

[

xyz2

r2
1

]

+ σ2
r(λ2 − λ3)µ3E

[

xyz2

r2
1r

2

]

+ (µ2(λ2 − λ3) − λ2
1µ

2
1)E[x̄ȳ]

S13 =cov(x̃m, z̃m)

=λ1(µ2 − µ3)(cov(x̃, z̃) + σ2
rE
[xz

r2

]

) + ((µ2 − µ3)λ1 − λ1µ
2
1)E[x̄z̄]

S23 =cov(ỹm, z̃m)

=λ1(µ2 − µ3)(cov(ỹ, z̃) + σ2
rE
[yz

r2

]

) + ((µ2 − µ3)λ1 − λ1µ
2
1)E[ȳz̄]

where Sij is the ith row and jth column element of S. All the cov(∗) terms are available

from P̄ and the E [∗] terms have to be approximated. The details are discussed next.

7.5 Approximation of Measurement Residual Covari-

ance S

In Sections 7.3 and 7.4, if the state estimator x̂k−1 and its error covariance Pk−1 are given,

formulas for the predicted state x̄k and its error covariance P̄k, the predicted measurement

z̄k and cross-covariance cov(x̃k, z̃k) are precise. Only the measurement residual covariance
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S needs approximation.

First, the terms E[x̄2], E[ȳ2], E[z̄2], E[x̄ȳ], E[x̄z̄] and E[ȳz̄] in S in both the polar and

spherical cases are replaced by the quantities inside their expectations, respectively. For

example, E[x̄2] and E[ȳ2] are replaced by x̄2 and ȳ2, and then S11 in the polar case becomes

S11=cov(x̃m) = E[x2
m] − E[x̄2

m]

≈λ2cov(x̃) + λ3cov(ỹ) +
1

2
σ2

r + λ3ȳ
2

+(λ2 − λ2
1)x̄

2 +
1

2
σ2

re
−2σ2

θE

[

x2 − y2

x2 + y2

]

.

We justify this approximation as follows.

Actually, the difference between S11 and the above approximation is (λ2 − λ2
1)(E[x̄2] −

x̄2) + λ3(E [ȳ2] − ȳ2). As we know, (x̄2 − E[x̄2]) and (E [ȳ2] − ȳ2) are usually much smaller

than x̄2 and ȳ2 in a tracking problem. Furthermore, by the Taylor series expansion equations

λ2=
1

2
(1 + e−2σ2

θ ) = 1 − σ2
θ + O(σ4

θ)

λ2 − λ2
1=

1

2
(1 + e−2σ2

θ ) − e−σ2
θ =

σ4
θ

2
− O(σ6

θ)

λ3=
1

2
(1 − e−2σ2

θ ) = σ2
θ − σ4

θ + O(σ6
θ)

we see that λ2 is on the order of (1 − σ2
θ); (λ2 − λ2

1) and λ3 are on the order of σ4
θ and

σ2
θ , respectively. In practice for most radar systems, the bearing noise standard deviation

σθ is below 0.4 rad [2], so the contributions of (E[x̄2] − x̄2) and (E [ȳ2] − ȳ2) to S11 are

greatly decreased by their weights, (λ2 − λ2
1) and λ3, compared with the term λ2cov(x). For

example, even for large error σθ ≤ 0.2 rad,
(λ2−λ2

1)

λ2
≤ 0.07% and λ3

λ2
≤ 4%. Therefore, this

approximation difference is usually negligible.

All substitutions of E[x̄2], E[ȳ2], E[z̄2], E[x̄ȳ], E[x̄z̄] and E[ȳz̄] by the quantities inside

their expectations can be justified in a similar way for both polar and spherical cases.

Second, it seems that all the other E [∗] terms involved in S in both the polar and

spherical cases have either no closed form or a complex expression. We approximate them
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through Taylor series expansion. The Taylor series expansion of a function f(x, y) around

(x0, y0) is

f(x, y) ≈f (x0, y0) + (x − x0)
∂f (x0, y0)

∂x
+ (y − y0)

∂f (x0, y0)

∂y
+ (x − x0)

2 ∂2f (x0, y0)

2∂x2

+ (x − x0) (y − y0)
∂2f (x0, y0)

∂x∂y
+ (y − y0)

2 ∂2f (x0, y0)

2∂y2
.

Taking expectation yields

E[f(x, y)]≈f (x0, y0) + cov (x̃)
∂2f (x0, y0)

2∂x2

+cov (x̃, ỹ)
∂2f (x0, y0)

∂x∂y
+ cov (ỹ)

∂2f (x0, y0)

2∂y2
.

Except for the terms E
[

x2z2

d2
1

]

, E
[

y2z2

d2
1

]

and E
[

xyz2

d2
1

]

in S of the spherical case, the other

E[∗] terms are smaller than 1. For example, in S11 of the polar case,

E

[

y2 − x2

x2 + y2

]

≈ ȳ2 − x̄2

x̄2 + ȳ2
+

2ȳ2 (ȳ2 − 3x̄2)

(x̄2 + ȳ2)3
cov(x̃)

+
4x̄ȳ (x̄2 − ȳ2)

(x̄2 + ȳ2)3
cov(x̃, ỹ) − 2x̄2 (x̄2 − 3ȳ2)

(x̄2 + ȳ2)3
cov(ỹ).

Since the denominator has higher order than the numerator in the differential terms and

(x̄2 + ȳ2) is usually much larger than cov(x̃), cov(ỹ) and cov(x̃, ỹ), the second order terms

are therefore negligible. For simplicity, E
[

y2−x2

x2+y2

]

is approximated only by ȳ2−x̄2

x̄2+ȳ2 . A similar

justification can be applied to all E [∗] terms that are smaller than 1. That is E [f(x)] is

simply replaced by f(x̄), the value of f(x) at x = x̄. This assertion has been verified term

by term carefully. Notice that all the cov(∗) terms above are directly available from the state

prediction error covariance P̄ .

The terms E
[

x2z2

r2
1

]

, E
[

y2z2

r2
1

]

and E
[

xyz2

r2
1

]

in S of spherical case could be larger than 1.

The expectation of the second-order Taylor series expansion of E
[

x2z2

r2
1

]

is

E

[

x2z2

r2
1

]

≈ x̄2z̄2

r̄2
1

+
x̄2

r̄2
1

cov(z̃) +
2x̄z̄ȳ2

r̄4
1

cov(x̃, z̃) − 2ȳz̄x̄2

r̄4
1

cov(ỹ, z̃)

+ 2x̄ȳz̄2 x̄2 − ȳ2

r̄6
1

cov(x̃, ỹ) − x̄2z̄2 x̄2 − 3ȳ2

r̄6
1

cov(ỹ) − ȳ2z̄2 3x̄2 − ȳ2

r̄6
1

cov(x̃)
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where r̄ =
√

x̄2 + ȳ2 + z̄2 and r̄1 =
√

x̄2 + ȳ2. Because not only each second-order term

is much smaller than x̄2z̄2

r̄2
1

in the above formula, but also the weight λ2µ3 of E
[

x2z2

r2
1

]

in S11 is

very small, we again approximate E
[

x2z2

r2
1

]

simply by x̄2z̄2

r̄2
1

. Similarly, E
[

y2z2

r2
1

]

and E
[

xyz2

r2
1

]

are approximated by ȳ2z̄2

r̄2
1

and x̄ȳz̄2

r̄2
1

, respectively.

Based on the above analysis, it can be expected that the approximations of the compo-

nents of S are quite accurate for most target tracking applications. This will be verified by

the simulation results in the next section. We can see the true estimation errors are almost

always perfectly consistent with the computed covariance by the filter in all simulations.

7.6 Simulation and Comparison

Before we do the simulations, for the convenience of implementation, we summarize the

BLUE filter for the spherical coordinates in Table 7.1.

Considering that it has been shown in [2, 20] that the measurement conversion method

outperforms the EKF clearly at long range for root-mean-square azimuth of 1.5◦ (26 milli-

rad) or more in terms of the estimation accuracy and filter credibility [34], in the following

we only compare two state-of-the-art conversion techniques with our proposed method. We

choose the measurement-conditioned (MC) approach and one version of the nested condi-

tioning (NC) approach [28], which are among the top choices in the class of measurement

conversion methods. They were referred to as “fixed-measurement” and “additive fixed truth

II” approaches in [48] and unbiased and debiased methods in [20, 49, 50], respectively.

Here the formulas of “fixed-measurement” and “additive fixed truth II” in [48] are adopted

for MC and NC, respectively. The comparison results of the same scenario as that of [48]

are presented as follows.

Consider a scenario of a three-dimensional Cartesian x-y-z space with a single sensor

located at the origin. The target sampling period is 1 sec. The coordinates (x, y, z) of the

target object at time zero are determined by random draws from three independent, Gaussian
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Table 7.1: One Iteration of the BLUE Filter for a system with linear dynamics and converted

spherical measurements specified by (6.5), (6.6) and (7.7)

1. Prediction:

x̄k = [x̄, ¯̇x, ȳ, ¯̇y, z̄, ¯̇z]
′
= Fk−1x̂k−1 + Γk−1w̄k−1

P̄ = Fk−1Pk−1F
′
k−1 + Γk−1Qk−1Γ

′
k−1

r̄ =
√

x̄2 + ȳ2 + z̄2, r̄1 =
√

x̄2 + ȳ2

α = (µ2σ2
r

r̄2 + µ3z̄2

r̄2
1

+ µ3σ2
r z̄2

r̄2
1 r̄2 )

S(1, 1) ≈ λ2µ2P̄ (1, 1) + λ3µ2P̄ (3, 3)
+α(λ2x̄

2 + λ3ȳ
2)

S(2, 2) ≈ λ2µ2P̄ (3, 3) + λ3µ2P̄ (1, 1)
+α(λ3x̄

2 + λ2ȳ
2)

S(3, 3) ≈ µ2P̄ (5, 5) + µ3(P̄ (1, 1) + P̄ (3, 3))

+µ2σ
2
r

z̄2

r̄2 + µ3σ
2
r

r̄2
1

r̄2

S(1, 2) = S(2, 1) ≈ (λ2 − λ3)(µ2P̄ (1, 3) + αx̄ȳ
S(1, 3) = S(3, 1) ≈ λ1(µ2 − µ3)(P̄ (1, 5) + σ2

r
x̄z̄
r̄2 )

S(2, 3) = S(3, 2) ≈ λ1(µ2 − µ3)(P̄ (3, 5) + σ2
r

ȳz̄
r̄2 )

Kk = µ1

[

λ1P̄ (:, 1), λ1P̄ (:, 3), P̄ (:, 5)
]

S−1

2. Update:
x̂k = x̄k + Kk(zk − µ1 [λ1x̄, λ1ȳ, z̄]′)
Pk = P̄k − KkSK

′

k

Constants:

λ1 = e−σ2
θ/2, λ2 = 1

2
(1 + e−2σ2

θ ), λ3 = 1
2
(1 − e−2σ2

θ )

µ1 = e−σ2
φ/2, µ2 = 1

2
(1 + e−2σ2

φ), µ3 = 1
2
(1 − e−2σ2

φ)

distributions with means −50 km, 200 km and 0 km, respectively, and a common standard

deviation of 5 km. The target moves at a nearly constant high velocity, whose components

ẋ, ẏ and ż, obtained by a random draw from a Gaussian distribution with means 1000m/s,

0m/s and 0m/s, respectively, and a common standard deviation of 0.1 km/s. The sensor’s

independent measurement errors have standard deviations σr = 4 m and σθ = σφ = 10

millirad.

Following [48], all the filters are initialized with an effectively infinite initial state error
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covariance, and a highly inaccurate initial state estimate. The tracking period begins at 100

sec after time zero and continues for 100 secs.

We compare only the average normalized estimation error square (ANEES) and position

root-mean-square error (RMSE) of these three filters by increasing the process noise first,

and then increasing the measurement noise. The velocity RMSEs will not be presented,

because the velocity RMSEs of the three filters have little difference in all cases. Moreover,

due to the initial condition used here, it is not easy to tell which one is better in the transient

part. So we only present the results which start from 150 sec.
The ANEES is defined by [34]

ANEES =
1

Nn

N
∑

i=1

(xi−x̂i)
′P−1

i (xi−x̂i) (7.11)

where (xi−x̂i) and Pi are the state estimation error and error covariance in ith run , n is

the state dimension, and N is the total number of runs. If the estimation error and the

estimated covariance match each other, the ANEES will be close to 1, we say the filter is

credible.

The performance of the three filters in different cases can be summarized as follows.

Case 1. No process noise, measurement errors σr = 4m and σθ = σφ = 10 millirad, 500

runs

Fig. 7.1 compares the ANEES’ of the MC and NC techniques with that of the BLUE

filter. The BLUE filter is much more credible than the other two. The ANEES of the

BLUE filter is very close to the ideal unity, which indicates the estimator has almost perfect

credibility. Fig. 7.2 compares the position RMSEs of the three techniques. The BLUE filter

is more accurate than the other two after the initial transient. Notice that the MC method

is more credible than the NC method, but the NC method is more accurate than the MC

method in this situation.

Case 2. Process noise Q = 102I, measurement errors σr = 4m and σθ = σφ = 10

millirad, 500 runs
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Fig. 7.1: ANEES (Case 1)
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Fig. 7.2: RMSE of position after transient (Case 1)

In this case, only the process noise is increased. As is clear from Figs. 7.3 and 7.3,

the ANEES of the BLUE filter is very close to ideal unity and the BLUE filter is also

more accurate than the other two. Moreover, with the increase of the process noise, the

credibilities of the MC and NC methods become better. The increase of the position RMSE

can be explained as follows. The motion of the target is flying away from the origin.With

the constant bearing and elevation noise, the measurement noise becomes larger and larger.

When the filter enters the steady state, the position RMSE will become larger and larger

also.

Case 3. No process noise, Measurement errors σr = 40m and σθ = σφ = 100 millirad,
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Fig. 7.4: RMSE of position after transient (Case 2)

500 runs

In this case, only the measurement noise is increased. The simulation results are plotted

in Figs. 7.5 and 7.5. The BLUE filter is much more accurate than the other two. Also, its

ANEES is still very close to unity, even though the position RMSE is rather large.

Case 4. process noise Q = 10 2 I , Measurement errors σr = 40m and σθ = σφ = 100

millirad, 500 runs

In this case, both the process noise and measurement noise are increased. The simulation

results in Figs. 7.7 and 7.7 show that the BLUE filter is still very credible and much more

accurate than the other two.
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Fig. 7.5: ANEES (Case 3)
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Fig. 7.6: RMSE of position after transient (Case 3)

In the MC and NC methods, because the computation of the covariance of the con-

verted measurement error assumes that either the measurement or the state/measurement

is nonrandom, and then the uncertainty of the state is not taken into account, the computed

covariance is smaller than the true covariance, where the state is random. Consequently, the

state estimations of the MC and NC methods perform optimistically, which explains why

their ANEES’ are above 1.

In the simulation conducted, the standard implementation of the MC and NC conversion

techniques sometimes exhibited numerical problems; we had to use the numerically more

robust Joseph form. On the contrary, we did not experience any numerical problem with
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Fig. 7.7: ANEES (Case 2)
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Fig. 7.8: RMSE of position after transient (Case 2)

the approximate implementation of our proposed BLUE filter.

We also compared the BLUE filter with the EKF as [2, 20] did. When the initial condition

is poor or the process or measurement noise is intensive, the EKF is subject to divergence.

Even though the EKF works well in some scenarios, its performance is still inferior to that

of the measurement conversion method. The specific conclusion can be found in [2, 20].

Furthermore, we have run these three methods under the same conditions using Matlab

6.1v on a P4 1.7GHz CPU with 256M RAM and compared their computational costs for one

iteration of each method. Table 7.2 contains those costs. Their average times of each run

are quite close. So the good performance of BLUE filter is achieved without increasing the
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computational complexity.

Table 7.2: Computational Costs for One Iteration of Each Method

Filters BLUE MC NC

CPU time (ms) 104 102 101

7.7 Conclusions

An optimal recursive filter in the LMMSE sense has been presented for linear dynamics with

nonlinear measurements. For the recursive BLUE is perfectly valid for nonlinear measure-

ments, the proposed filter operates entirely in the Cartesian coordinates but is free of the

fundamental flaws of the measurement-conversion method.

The simulation-based comparison of the proposed BLUE filter with two state-of-the-

art measurement-conversion techniques demonstrates the following. In terms of estimation

errors and filter credibility, our proposed BLUE filter significantly outperforms these two

measurement-conversion techniques in all simulations; in particular, our proposed filter is

almost always perfectly credible in the sense that the true estimation errors are consistent

with the filter’s self-assessment. Because of abandoning the Kalman filter framework and

using optimal BLUE filter in the implementation, the good performance is achieved without

increasing the computational complexity and algorithm complexity.

7.8 Appendix

Lemma 2: For scalar-valued x, y and z, if y is independent of x and z, then

E∗[xy|z] = E[y]E∗[x|z]
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Proof: Since y is independent of x and z,

E[xy] = E[x]E[y]

cov(xy, z) = E[xyz] − E[xy]E[z]

= E[y]E[xz] − E[y]E[x]E[z]

= E[y](E[xz] − E[x]E[z])

= E[y]cov(x, z)

we have

E∗[xy|z] = E[xy] + cov(xy, z)cov−1(z)(z − E[z])

= E[y](E[x] + cov(x, z)cov−1(z)(z − E[z]))

= E[y]E∗[x|z]

2

Lemma 3: For BLUE estimation error covariance,

cov(x̃)=E[(x − x̂)(x − x̂)′] = E[xx′] − E[x̂x̂′]

cov(x̃, ỹ)=E[(x − x̂)(y − ŷ)′] = E[xy′] − E[x̂ŷ′]

where x̂ = E∗[x|z], x̃ = x − x̂, ŷ = E∗[y|z], ỹ = y − ŷ.
Proof:

cov(x̃, ỹ) , E[(x − x̂)(y − ŷ)′]

= E[(x − x̂)y′] − E[(x − x̂)ŷ′]

= E[(x − x̂)y′]

= E[xy′] − E[x̂y′]

= E[xy′] − E[x̂(y − ŷ + ŷ)′]

= E[xy′] − E[x̂ŷ′]

The second line and the last line come from orthogonality principle: (x − x̂) ⊥ ŷ and
(y − ŷ) ⊥ x̂. Similarly

cov(x̃) = E[xx′] − E[x̂x̂′]

2
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Chapter 8

Summary and Future Work

This dissertation discusses the performance measures for estimation performance appraisal

and the application of an estimation algorithm to target tracking with nonlinear measure-

ment.

In the first part, this dissertation covers three types of measures which include local

performance measures, global performance measures and model distortion measure. Local

measures and global measures are designed to leverage the interpretation on and insights

into various aspects of estimation performance, such as accuracy, concentration probability

and uncertainty reduction. They address these aspects from local and global viewpoints,

respectively. Many useful local performance measures has been published in [38, 34, 33, 35,

36, 37]. [64] presents the global performance measure. For parameter estimation, the model

approximation is quite common and it inevitably affects estimation performance. Model

distortion measure is devised to indicate the difference between the approximated model

and the original one. [65] and [63] exemplify applications of the model distortion measure

to MM algorithm.

The ongoing work along this line focuses on tests for and measures of estimator’s credi-

bility. Most estimators and filters provide assessments of their own estimation error, often

in the form of mean-square error. Are these self-assessments trustable? What is the degree

to which they are trustable? The credibility tests and credibility measures which have been
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addressed in the submitted papers [39, 40, 41] are designed to answer these questions.

I am also aiming at the topics on model comparison and model selection. The essential

idea is still to find efficient performance measures to size up the stochastic dependence

relation between model and data. The published paper on this topic includes [62]. Future

work will emphasize the exploration of these existing measures and potential novel measures.

Another goal of performance evaluation is on the following questions: how to quantify

the accuracy of the accuracy measures, how to measure the credibility measures’ credibility.

The statistics seems lack of thorough theoretical conclusion on such questions. We will

explore the insights into such questions and gain meaningful interpretations. Such questions

could be rooted in the profound discoveries of Kurt Godel and Alan M. Turing in the 1930’s.

“Godel showed that no finite set of axioms and methods of reasoning could encompass all

the mathematical properties of the positive integers. Turing later couched Godel’s ingenious

and complicated proof in a more accessible form. He showed that Godel’s incompleteness

theorem is equivalent to the assertion that there can be no general method for systematically

deciding whether a computer program will ever halt, that is, whether it will ever cause the

computer to stop running (see [11]).” After all, the performance evaluation will finally

reach the limit of the foundation of probability theory and statistical inference theory. The

intuition tells us that the ultimate conclusions we can make will depend on the discoveries

of equivalence of the incompleteness theorem to its counterpart in probability theory and

statistical inference. The ultimate goal is towards such an understanding and insight.

For estimation algorithm application, we apply the best linear unbiased estimation tech-

nique to nonlinear measurements in target tracking. One main contribution of this work is

to relax the Kalman filter’s assumptions and go to a more fundamental basis. We emphasize

that the best linear unbiased estimation is valid for nonlinear as well as linear measurements.

The proposed method outperforms the measurement conversion methods significantly. Some

detailed applications to polar and spherical coordinate measurements of the recursive best
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linear unbiased filtering technique can be found in [67, 66, 68].

The ongoing and future work along this line is on the comparison among these most

often used filtering techniques, such as EKF, unscented filter, our proposed BLUE filter and

particle filter. Our interest is to cast these methods into a general theoretical framework

such that we can elucidate the pros and cons of these methods theoretically. Related work

is presented in [61, 60]. A natural extension of such work is to have a more general view-

point on these methods from parametric, nonparametric and semiparametric setting. Novel

techniques are desired.

I am also interested in the research topic of sensor fusion. An efficient multi-sensor fu-

sion procedure could efficiently extract more useful information, which is hidden in distorted

multi-sensor data. Information from multiple sensors can reduce overall uncertainty and

thus increase the accuracy of the measurement, which finally improves the detection perfor-

mance. Sensor fusion has great potential for applications in system identification, pattern

recognition, fault detection, image processing, and target classification and tracking.
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