
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

8-9-2006 

The Mineralogy, Geochemistry and Phosphate Paragenesis of the The Mineralogy, Geochemistry and Phosphate Paragenesis of the 

Palermo #2 Pegmatite, North Groton, New Hampshire Palermo #2 Pegmatite, North Groton, New Hampshire 

James Nizamoff 
University of New Orleans 

Follow this and additional works at: https://scholarworks.uno.edu/td 

Recommended Citation Recommended Citation 
Nizamoff, James, "The Mineralogy, Geochemistry and Phosphate Paragenesis of the Palermo #2 
Pegmatite, North Groton, New Hampshire" (2006). University of New Orleans Theses and Dissertations. 
398. 
https://scholarworks.uno.edu/td/398 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/398?utm_source=scholarworks.uno.edu%2Ftd%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


THE MINERALOGY, GEOCHEMISTRY & PHOSPHATE PARAGENESIS OF 
THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE 

 
 
 
 
 
 

A Thesis 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the  
University of New Orleans 
 in partial fulfillment of the 

 requirements for the degree of 
 
 
 
 
 
 

Master of Science 
in 

Geology and Geophysics 
 
 
 
 
 
 

by 
 

James W. Nizamoff 
 

B.A., University of Maine at Farmington, 1996 
 

August 2006



 ii

 Acknowledgements 

I’m gratefully indebted to Dr. William “Skip” Simmons, Alexander U. Falster and 

Dr. Karen Webber for their support, patience and all the wonderful opportunities 

provided to me at UNO.  Thank you so much for your friendship and all the great 

experiences.  Special thanks to Al Falster for always being there and helping to keep 

me sane during trying times.  I can’t really say how much I appreciate everyone from the 

MP2 crew without writing a Falster-sized acknowledgement.  

Thanks to Dr. Michael “Mike” Wise for introducing me to pegmatites in a scientific 

sense and for imparting unto me some of his great knowledge.  Thanks to Mike for also 

realizing that pegmatites rule.     

Special thanks to R.W. “Uncle Bob” Whitmore for providing me a great pegmatite 

to study as well as introducing me to and getting me hooked on phosphate mineralogy.  

Bob’s support of mineralogical research interests is unmatched and greatly appreciated 

by all the people who have been fortunate enough to work with him.     

I owe a great many thanks to Chandra Dreher who has contributed significantly 

to the quality of this work.  Chandra has spent many hours helping with illustrations, 

tables and formatting.  Her support and love are greatly appreciated!  

I‘d like to thank the many members of Bob Whitmore’s “volunteer” slave mining 

crew at Palermo (especially Steffen Hermanns, Scott Higgins, Gordon Jackson and Rob 

Lawrence) for their help with sample collection, logistics, lodging, beverages, etc. in the 

field. 

Special thanks to Jace Pearson for his assistance in the field, for providing me a 

place to sleep during my numerous trips to Maine and being a great friend. 



 iii

Several colleagues deserve special mention (as they enjoy phosphates almost 

as much as I do) for their assistance and valuable discussion regarding phosphate 

mineralogy.  Thanks to Dr. Alessandro Guastoni and soon to be Dr. Fernando Colombo 

for all the stimulating conversation and insight regarding pegmatites.  I would also like to 

thank Dr. André-Mathieu Fransolet and Dr. Frédéric Hatert of the Université de Liège, 

Belgium for their helpful suggestions and constructive comments regarding my 

research.   

Thanks to Cathe Brown for her assistance with XRF analyses at the 

Smithsonian, for harassing Mike Wise, and making my time spent at PegCamp a more 

enjoyable experience. 

Special thanks to Ray Sprague for actually selling me a piece of montebrasite 

from the Emmons Quarry.  Also thanks for running the Maine Pegmatite Workshop and 

giving me a hard time for all these years.   

I would also like to thank Mary and Dudy Groves for providing a wonderful facility 

to learn about pegmatites.  I learned a great deal of what I know about pegmatites while 

staying at Poland Mining Camps. 

Thanks to the many students at UNO that have had the fortitude to discuss 

and/or study pegmatites with me:  Brian S. Giller, Morgan and Pam Masau, Peter Tice, 

Roberta Johnson, Brenda Yawn, Julie Pertuit, Michelle Abraham, Randy Elder, Tabitha 

Hensley and others. 

I’d also like to thank my parents Anne and William Nizamoff for their support and 

patience.  Thank you for allowing me the chance to do this, I couldn’t have done without 

you. 



 iv

Table of Contents 

THE MINERALOGY, GEOCHEMISTRY & PHOSPHATE PARAGENESIS OF THE PALERMO #2 
PEGMATITE, NORTH GROTON, NEW HAMPSHIRE ............................................................................................ I 

LIST OF TABLES...................................................................................................................................................... VII 
LIST OF FIGURES...................................................................................................................................................... IX 
ABSTRACT .............................................................................................................................................................. XV 
INTRODUCTION ..........................................................................................................................................................1 
PREVIOUS WORK .......................................................................................................................................................3 
BACKGROUND ...........................................................................................................................................................7 
METHODS ................................................................................................................................................................13 

Field work and sample collection ......................................................................................................................13 
Scanning Electron Microscope ..........................................................................................................................13 
Electron Microprobe..........................................................................................................................................14 
X-Ray Diffractometer.........................................................................................................................................15 
X-Ray Fluorescence Spectrometry .....................................................................................................................16 
Neutron Activation .............................................................................................................................................17 

THE PALERMO #2 PEGMATITE .................................................................................................................................18 
MINERALOGY ..........................................................................................................................................................23 

Rock-forming Minerals: .....................................................................................................................................23 
Feldspar group: ............................................................................................................................................................... 23 
Albite – NaAlSi3O8 ......................................................................................................................................................... 23 
Microcline – KAlSi3O8 ................................................................................................................................................... 23 
Mica group:..................................................................................................................................................................... 24 
Biotite – KFe2+

3AlSi3O10(OH)2....................................................................................................................................... 24 
Muscovite – KAl2□AlSi3O10(OH)2 ................................................................................................................................. 24 
Quartz – SiO2 .................................................................................................................................................................. 25 

Minor/accessory/trace minerals: .......................................................................................................................25 
Silicates:.............................................................................................................................................................25 

Beryl – Be3Al2Si6O18 ...................................................................................................................................................... 25 
Schorl – NaFe3+

3Al6(BO3)3[Si6O18](OH)4....................................................................................................................... 27 
Almandine – Fe2+

3Al2(SiO4)3 .......................................................................................................................................... 27 
Zircon – ZrSiO4 .............................................................................................................................................................. 32 
Bertrandite – Be4Si2O7(OH)2 .......................................................................................................................................... 35 

Native Elements: ................................................................................................................................................37 
Bismuth – Bi ................................................................................................................................................................... 37 

Sulfides:..............................................................................................................................................................37 
Pyrite – FeS2 ................................................................................................................................................................... 37 
Sphalerite -- ZnS............................................................................................................................................................. 37 
Arsenopyrite – FeAsS2.................................................................................................................................................... 37 
Galena -- PbS .................................................................................................................................................................. 38 
Chalcopyrite – CuFeS2.................................................................................................................................................... 38 
Bornite – Cu5FeS4 ........................................................................................................................................................... 38 
Pyrrhotite – Fe1-xS........................................................................................................................................................... 38 

Oxides: ...............................................................................................................................................................39 
Uraninite – UO2 .............................................................................................................................................................. 39 
Ferrocolumbite – Fe2+Nb2O6........................................................................................................................................... 40 
Magnetite/Hematite – Fe3O4 / Fe2O3............................................................................................................................... 42 
Rutile – TiO2................................................................................................................................................................... 43 

Carbonates:........................................................................................................................................................43 
Siderite – FeCO3 ............................................................................................................................................................. 43 

Sulfates:..............................................................................................................................................................46 
Gypsum – CaSO4 · 2 H2O ............................................................................................................................................... 46 

Arsenides: ..........................................................................................................................................................46 
Löllingite – FeAs2 ........................................................................................................................................................... 46 

Primary Phosphates:..........................................................................................................................................46 
Triphylite – LiFePO4....................................................................................................................................................... 46 



 v

Apatite group: ................................................................................................................................................................. 51 
Fluorapatite – Ca5(PO4)3F............................................................................................................................................... 51 
Hydroxylapatite - Ca5(PO4)3(OH)................................................................................................................................... 51 
Chlorapatite - Ca5(PO4)3Cl.............................................................................................................................................. 51 
Montebrasite – (Li,Na)AlPO4(OH,F).............................................................................................................................. 60 
Graftonite – (Fe2+,Mn2+,Ca)3(PO4)2 ................................................................................................................................ 63 
Sarcopside – Fe3(PO4)2 ................................................................................................................................................... 67 
Monazite- (Ce) – (Ce, La, Nd)PO4.................................................................................................................................. 68 
Xenotime – (Y) – YPO4 .................................................................................................................................................. 69 
Arrojadite group member – KNa4Ca(Fe2+Mn2+)14Al(PO4)12(OH,F)2 .............................................................................. 70 
Wolfeite – Fe2+

2(PO4)(OH) ............................................................................................................................................. 72 
High Temperature Secondary Phosphates:........................................................................................................74 

Ferrisicklerite – Li(Fe3+, Mn2+)PO4................................................................................................................................. 74 
Heterosite – Fe3+PO4....................................................................................................................................................... 75 
Lazulite group: ................................................................................................................................................................ 77 
Scorzalite – (Fe2+,Mg)Al2(PO4)2(OH)2 ........................................................................................................................... 77 
Lazulite – MgAl2(PO4)2(OH)2......................................................................................................................................... 77 
Augelite – Al2(PO4)(OH)3............................................................................................................................................... 80 

Low Temperature Secondary Phosphates:.........................................................................................................82 
Rockbridgeite – Fe2+Fe3+

4(PO4)3(OH)5 ........................................................................................................................... 82 
Frondelite – Mn2+Fe3+

4(PO4)3(OH)5................................................................................................................................ 82 
Beraunite – Fe2+Fe3+

5(PO4)4(OH)5 · 4 H2O ..................................................................................................................... 85 
Kryzhanovskite – (Fe3+, Mn)Fe3+

2(PO4)2(OH)3 .............................................................................................................. 87 
Strunzite – Mn2+Fe3+

2(PO4)2(OH)2 · 6 H2O..................................................................................................................... 91 
Whitmoreite – Fe2+Fe3+

2(PO4)2(OH)2 · 4 H2O................................................................................................................. 93 
Vivianite – Fe2+

3(PO4)2 · 8 H2O ...................................................................................................................................... 95 
Ludlamite – Fe3(PO4)2 · 4 H2O ....................................................................................................................................... 97 
Mitridatite – Ca2Fe3+

3(PO4)3O2 · 3 H2O ........................................................................................................................ 100 
Childrenite – Fe2+Al(PO4)(OH)2 · H2O ......................................................................................................................... 101 
Eosphorite – Mn2+Al(PO4)(OH)2 · H2O ........................................................................................................................ 101 
Gormanite – Fe2+

3Al4(PO4)4(OH)6 · 2 H2O ................................................................................................................... 102 
Souzalite – Mg3Al4(PO4)4(OH)6 · 2 H2O....................................................................................................................... 102 
Whiteite group: ............................................................................................................................................................. 105 
Whiteite-(MnFeMg) – Mn2+Fe2+Mg2Al2(PO4)4(OH)2 · 8 H2O...................................................................................... 105 
Whiteite-(CaMnMg) – CaMn2+Mg2Al2(PO4)4(OH)2 · 8 H2O........................................................................................ 105 
Whiteite-(CaFeMg) – CaFe2+Mg2Al2(PO4)4(OH)2 · 8 H2O........................................................................................... 105 
Jahnsite-(CaMnFe) – CaMn2+Fe2+

2Fe3+
2(PO4)4(OH)2 · 8 H2O ...................................................................................... 105 

Jahnsite-(CaMnMg) – CaMn2+Fe2+
2Fe3+

2(PO4)4(OH)2 · 8 H2O..................................................................................... 105 
Jahnsite-(CaMnMn) – CaMn2+Mn2+

2Fe3+
2(PO4)4(OH)2 · 8 H2O................................................................................... 105 

Paravauxite group: ........................................................................................................................................................ 110 
Laueite – Mn2+Fe3+

2(PO4)2(OH)2 · 8 H2O ..................................................................................................................... 110 
Stewartite – Mn2+Fe3+

2(PO4)2(OH)2 · 8 H2O................................................................................................................. 110 
Paravauxite – Fe2+Al2(PO4)2(OH)2 · 8 H2O................................................................................................................... 110 
Ushkovite – MgFe3+

2(PO4)2(OH)2 · 8 H2O.................................................................................................................... 110 
Gordonite – MgAl2(PO4)2(OH)2 · 8 H2O....................................................................................................................... 110 
Fairfieldite group: ......................................................................................................................................................... 113 
Messelite – Ca2(Fe2+,Mn2+)(PO4)2 · 2 H2O ................................................................................................................... 113 
Fairfieldite – Ca2(Mn2+,Fe2+)(PO4)2 · 2 H2O ................................................................................................................. 113 
Collinsite – Ca2(Mg,Fe2+)(PO4)2 · 2 H2O ...................................................................................................................... 113 
Plumbogummite group:................................................................................................................................................. 116 
Crandallite – CaAl3(PO4)2(OH,H2O)6 ........................................................................................................................... 116 
Goyazite – SrAl3(PO4)2(OH,H2O)6 ............................................................................................................................... 116 
Autunite – Ca(UO2)2(PO4)2 · 10-12 H2O....................................................................................................................... 119 
Torbernite – Cu2+(UO2)2(PO4)2 · 8-12 H2O................................................................................................................... 120 
Strengite – Fe3+PO4 · 2 H2O.......................................................................................................................................... 120 
Phosphosiderite – Fe3+PO4 · 2 H2O............................................................................................................................... 120 

PHOSPHATE PARAGENESIS.....................................................................................................................................121 
High Temperature Metasomatic Alteration of Triphylite-lithiophilite:............................................................123 
Low Temperature Metasomatic Alteration of Triphylite-lithiophilite (oxidizing): ..........................................126 
Low Temperature Metasomatic Alteration of Triphylite-lithiophilite (non-oxidizing): ...................................128 
Secondary Phosphate Alteration Sequence for Montebrasite-amblygonite:....................................................129 



 vi

Low Temperature Metasomatic Alteration of Montebrasite-amblygonite: ......................................................131 
Secondary Phosphate Alteration Sequence for “Arrojadite”: .........................................................................133 
Selected Phosphate Paragenesis for Sample P2-CM-42..................................................................................134 
Summary of Paragenetic Results for the Palermo #2 Pegmatite: ....................................................................136 

CONCLUSIONS .......................................................................................................................................................138 
REFERENCES..........................................................................................................................................................139 
APPENDIX I -- WHOLE-ROCK GEOCHEMISTRY ......................................................................................................146 
VITA ......................................................................................................................................................................149 

 



 vii

List of Tables 

Table 1. Representative electron microprobe analyses of almandine        29 

Table 2. Representative electron microprobe analyses of zircon        33 

Table 3. Representative electron microprobe analyses of ferrocolumbite       41 

Table 4. Representative electron microprobe analyses of triphylite        49 

Table 5. Representative electron microprobe analyses of apatite group       54 
minerals        

 
Table 6. Representative electron microprobe analyses of montebrasite       61 

Table 7. Representative electron microprobe analyses of graftonite and       65 
sarcopside  
      

Table 8. Representative electron microprobe analyses of xenotime and               70 
monazite         

 
Table 9. Representative electron microprobe analyses of wolfeite        73 

Table 10. Representative electron microprobe analysis of ferrisicklerite            75 

Table 11. Representative electron microprobe analysis of heterosite        76 

Table 12. Representative electron microprobe analyses of scorzalite and       78 
lazulite 
 

Table 13. Representative electron microprobe analysis of augelite        80 

Table 14. Representative electron microprobe analysis of rockbridgeite              84 

Table 15. Representative electron microprobe analysis of beraunite        86 

Table 16. Representative electron microprobe analysis of kryzhanovskite       88 

Table 17. Representative electron microprobe analysis of strunzite        92 

Table 18. Representative electron microprobe analyses of whitmoreite        94 
 
Table 19. Representative electron microprobe analysis of vivianite        96 

Table 20. Representative electron microprobe analysis of ludlamite        98 



 viii

Table 21. Representative electron microprobe analyses of childrenite and     102 
eosphorite      

 
Table 22. Representative electron microprobe analyses of gormanite and     104 

souzalite   
 
Table 23. Representative electron microprobe analyses of whiteite group     106 

minerals (jahnsite) 
 
Table 24. Representative electron microprobe analyses of whiteite group     107 

minerals (whiteite) 
 
Table 25. Representative electron microprobe analyses of paravauxite      111 

group minerals 
 
Table 26. Representative electron microprobe analyses of fairfieldite      114 

group minerals 
 
Table 27. Representative electron microprobe analyses of plumbogummite     117 

group minerals 
 



 ix

List of Figures 

Figure 1. Map showing Grafton pegmatite field, Palermo #2 study area and            7 
syn- to post-Acadian plutons in New Hampshire    

          
Figure 2. Bedrock geologic map of Palermo #2 study area           9 

Figure 3. Topographic map showing the location of the Palermo #2 and                18 
adjacent pegmatites 

 
Figure 4. P2O5 content of feldspars from Palermo #2                           24 
 
Figure 5. Image of beryl crystal in the core margin of Palermo #2                  26 
 
Figure 6. Image of blue beryl crystal in the core margin of Palermo #2        26 
 
Figure 7. Ternary FeMnMg (atoms per formula unit - apfu) plot of         30 

almandine garnet from Palermo #2          
 
Figure 8. Ternary FeMnMg (atoms per formula unit - apfu) plot of         30 

almandine garnet from Palermo #2          
 
Figure 9. Fe/Mn versus Mn plot of almandine garnet from the core         31 

margin zone of the Palermo #2 pegmatite          
 
Figure 10. Fe/Mn versus Mn plot of garnet from the Palermo #2, Bennett       31 

(Oxford Co., Maine) and the Tsaobismund pegmatite (Namibia). 
 
Figure 11. Zr/Hf versus Hf (wt.%) for zircon from the Palermo #2 pegmatite       34 
 
Figure 12. Hafnium (apfu) versus zirconium (Zr) content of zircon from the       34 

Palermo #2 pegmatite           
 
Figure 13. P2O5 content of feldspars from Palermo #2          23 
 
Figure 14. Secondary electron image of bertrandite crystals from the core        36 

margin of the Palermo #2 pegmatite          
 
Figure 15. Typical silicate products resulting from the alteration of beryl in        36 

granitic pegmatites           
 
Figure 16. Backscattered electron image of skeletal pyrite crystals         39 

exhibiting partial replacement by pyrrhotite          
 
Figure 17. Image of uraninite crystal exhibiting cubic and octahedral         40 

forms from Palermo #2    



 x

 
Figure 18. Compositions (atomic proportions) of columbite group         42 

minerals from Palermo #2 and two other pegmatites from the 
Grafton field           

 
Figure 19. Backscattered electron image of twinned rutile crystals from        43 

the wall zone of the Palermo #2 pegmatite          
 
Figure 20. Backscattered electron image of scalenohedral siderite         44 

crystals with strunzite needles from Palermo #2 
 

Figure 21. Siderite crystals exhibiting rhombohedral forms from the         45 
Palermo #2 pegmatite 

 
Figure 22. Backscattered electron image of rhombic siderite crystals         45 

exhibiting a secondary overgrowth of Mn-rich siderite  
 
Figure 23. Energy dispersive X-ray map of siderite showing an increase        45 

of Mn (red) from the core to rim of the crystals 
 
Figure 24. Masses of primary triphylite on the hanging wall side of the         48 

core margin of the Palermo #2 pegmatite 
 
Figure 25. Image of a euhedral triphylite crystal from Palermo #2         48 
 
Figure 26. FetotMntotMg (apfu) ternary plot of triphylite from Palermo #2        50 
 
Figure 27. Fe/Mn versus Mn plot of triphylite and lithiophilite from the         51 

Palermo #2 and other noted New England phosphate-bearing  
pegmatites 

 
Figure 28. Ternary plot of the anionic content (apfu) of apatite group         55 

minerals from the wall zone of the Palermo #2 pegmatite 
 
Figure 29. Ternary plot of the anionic content (apfu) of apatite group         55 

minerals from the intermediate zone of the Palermo #2  
pegmatite 

 
Figure 30. Ternary plot of the anionic content (apfu) of apatite group         56 

minerals from the core margin zone of the Palermo #2  
pegmatite 

 
Figure 31. Backscattered electron image of nearly acicular secondary        57 

fluorapatite hosted within a cavity in siderite from the core  
margin of Palermo #2 



 xi

 
Figure 32. Primary hydroxylapatite pod exhibiting partial replacement         58 

by siderite from the Palermo #2 pegmatite 
 
Figure 33. Backscattered electron image of euhedral chlorapatite crystals       58 

related to the alteration of montebrasite from the Palermo #2  
pegmatite 

 
Figure 34. Backscattered electron image of chlorapatite as one of several       59 

alteration products of montebrasite from the Palermo #2  
pegmatite 

 
Figure 35. Primary montebrasite exhibiting alteration to scorzalite-lazulite       60 

from the Palermo #2 pegmatite 
 
Figure 36. Backscattered electron image showing incipient alteration of         62 

montebrasite to scorzalite 
 
Figure 37. Backscattered electron image depicting primary montebrasite        63 

and associated alteration products 
 
Figure 38. Graftonite-sarcopside intergrowth from the Palermo #2         64 

pegmatite 
 
Figure 39. Ternary plot of Fe, Mn and Ca for graftonite and sarcopside         66 

from the Palermo #2 pegmatite 
 
Figure 40. Ternary plot of Fe, Mn and Ca for graftonite from the          67 

Palermo #2 pegmatite and proximal Palermo #1 and Rice  
Mine pegmatites 

 
Figure 41. Backscattered electron image of monazite-(Ce) from the         68 

Palermo #2 pegmatite 
 
Figure 42. Backscattered electron image of a grain of xenotime-(Y)         69 

hosted by quartz from the core margin of the Palermo #2  
pegmatite 

 
Figure 43. Backscattered electron image of vivianite associated with         71 

relict fragments of “arrojadite” from sample P2-CM-07 from 
the Palermo #2 pegmatite, North Groton, NH 

 
Figure 44. Reddish grains of wolfeite hosted by gray-blue triphylite from        72 

the Palermo #2 pegmatite 
 
 



 xii

Figure 45. Ferrisicklerite rind on the outer margin of a triphylite mass        74 
from the Palermo #2 pegmatite, North Groton, NH 

 
Figure 46. Heterosite from the Palermo #2 pegmatite, North Groton, NH        77 
 
Figure 47. Scorzalite-lazulite, an alteration product of montebrasite         79 

from the Palermo #2 pegmatite 
 
Figure 48. Backscattered electron image showing scorzalite as an         79 

alteration product of montebrasite 
 
Figure 49. Backscattered electron image of augelite, gormanite and         81 

chlorapatite from sample P2-CM-08, Palermo #2 pegmatite 
 
Figure 50. Rockbridgeite with beraunite, mitridatite, jahnsite lining an        83 

alteration cavity in triphylite 
 
Figure 51. Backscattered electron image of rockbridgeite crystals in a        85 

secondary cavity in altered triphylite from the Palermo #2  
pegmatite 

 
Figure 52. Image of beraunite with whitmoreite on siderite          87 
 
Figure 53. Backscattered electron image of beraunite from the          87 

Palermo #2 pegmatite 
 
Figure 54. Backscattered electron image of kryzhanovskite crystals from       89 

sample P2-CM-21 from the Palermo #2 pegmatite 
 
Figure 55. Image of kryzhanovskite with vivianite, ludlamite and laueite        90 
 
Figure 56. Strunzite with whitmoreite on siderite from the Palermo #2         91 

pegmatite 
 
Figure 57. Backscattered electron image of whitmoreite from sample         95 

P2-CM-35 
 
Figure 58. Backscattered electron image of whitmoreite from sample         95 

P2-CM-42 
 
Figure 59. Backscattered electron image of vivianite from the Palermo #2       97 

pegmatite 
 
Figure 60. Backscattered electron image of ludlamite exhibiting hoppered       99 

and/or etched surfaces from Palermo #2 
 



 xiii

Figure 61. Light green to colorless ludlamite with siderite and mitridatite      100 
in sample P2-CM-25 from Palermo #2 

 
Figure 62. Childrenite-eosphorite with whitmoreite, beraunite, strunzite      101 

and siderite from Palermo #2 
 
Figure 63. Gormanite-souzalite and associated minerals montebrasite      103 

and scorzalite-lazulite from the Palermo #2 pegmatite 
 
Figure 64. Backscattered electron image of jahnsite-(CaMnMn) on       108 

rockbridgeite from sample P2-CM-09 from Palermo #2 
 
Figure 65. Backscattered electron image of jahnsite-(CaMnMn) on       108 

rockbridgeite from sample P2-CM-09 from Palermo #2 
 
Figure 66. Backscattered electron image of prismatic whiteite-(CaMnMg)     109 

crystals from core margin sample P2-CM-30 from Palermo #2 
 
Figure 67. Energy dispersive X-ray map of zoned jahnsite-whiteite       109 

from sample P2-CM-27 from Palermo #2 
 
Figure 68. Backscattered electron image of compositionally zoned      112 

paravauxite-gordonite crystals from Palermo #2 
 
Figure 69. Image of laueite crystals from the Palermo #2 pegmatite      113 
 
Figure 70. Backscattered electron image of fairfieldite-messelite        115 

crystals lining a cavity in siderite from Palermo #2 
 
Figure 71. Backscattered electron image of collinsite from core margin      116 

sample P2-CM-05 of the Palermo #2 pegmatite 
 
Figure 72. Backscattered electron image of crandallite from the core      118 

margin of the Palermo #2 pegmatite 
 
Figure 73. Secondary electron image of pseudohexagonal platy        119 

goyazite crystals from Palermo #2 
 
Figure 74. Generalized phosphate paragenesis and temperature        122 

conditions for primary and secondary species from  
LCT-type granitic pegmatites 

 
Figure 75. Typical high temperature metasomatic alteration conditions      124 

and products for the triphylite-lithiophilite series 
 
 



 xiv

Figure 76. Triphylite mass exhibiting a rind of ferrisicklerite from the      125 
Palermo #2 pegmatite 

 
Figure 77. FetotMntotMg (apfu) plot of primary phosphates: triphylite,      126 

graftonite, wolfeite and sarcopside; high temperature  
metasomatic phosphates: ferrisicklerite and heterosite;  
low temperature metasomatic phosphates - oxidizing conditions: 
beraunite, rockbridgeite, and whitmoreite; and low temperature 
metasomatic phosphates - non-oxidizing conditions:  
kryzhanovskite, ludlamite and vivianite 

 
Figure 78. Possible low temperature metasomatic alteration products       127 

resulting from oxidizing conditions for the triphylite-lithiophilite 
series 

 
Figure 79. Possible low temperature metasomatic alteration products      129 

resulting from non-oxidizing conditions for the  
triphylite-lithiophilite series 

 
Figure 80. Typical high temperature metasomatic alteration conditions      130 

and products for montebrasite-amblygonite 
 
Figure 81. Backscattered electron image showing incipient alteration of      131 

montebrasite to scorzalite 
 
Figure 82. Low temperature metasomatic alteration products for        132 

montebrasite-amblygonite 
 
Figure 83. Low temperature metasomatic alteration products for       133 

“arrojadite” from the Palermo #2 pegmatite 
 
Figure 84. Paragenetic sequence for Palermo #2 sample P2-CM-42      135 
 
Figure 85. Diagram illustrating how primary phosphates as well as      136 

non-phosphate species donate cations to the alterative  
fluids producing metasomatic secondary phosphates 



 xv

Abstract 

An investigation of the beryl-phosphate subtype Palermo #2 pegmatite, located in 

the Grafton pegmatite field of New Hampshire, has revealed a large number of phosphate 

species.  Late-stage, carbonate-bearing aqueous fluids have metasomatically altered 

primary phosphates producing a suite of nearly forty species of secondary phosphates. 

The secondary phosphates at Palermo #2 are a result of alteration of primary 

phosphates and associated silicate, carbonate, sulfide, arsenide and oxide minerals 

locally present in the core margin.  Concomitant alteration of these associated minerals 

contributes the necessary ions to the hydrothermal fluids responsible for the formation 

of the diverse suite of secondary phosphates.  Alteration of the mineral assemblage 

occurring in a given area creates a collection of secondary phosphates characteristic of 

that specific assemblage, whereas a completely different collection of secondary 

phosphates may appear only a few centimeters away.  Thus, each suite of secondary 

phosphates is the product of its specific microenvironment of alteration.
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 Introduction 

The Palermo #2 granitic pegmatite is located approximately one and one-half 

miles west-southwest of the village of North Groton, New Hampshire and along with 

numerous other pegmatites in the vicinity, is part of the Grafton pegmatite field of west 

central New Hampshire (Figure 1).  The Palermo #2 pegmatite and related pegmatites 

of the Grafton field may be classified as weakly- to moderately-evolved beryl type rare-

element pegmatites (Černý and Ercit 2005, Černý 1991a).  Černý and Ercit further 

divide the beryl type into beryl-columbite and beryl-columbite-phosphate subtypes.  

Pegmatites of the beryl-columbite-phosphate subtype typically display enrichment of 

beryllium, phosphorus and a greater abundance of niobium versus tantalum.   The lack 

of abundant columbite-tantalite and presence of great quantities of phosphate minerals 

in the Grafton field suggests that the majority of these pegmatites should be classified 

as beryl and beryl-phosphate subtypes.   

Francis et al. (1993) states that no significant field or geochemical studies have 

been done on the Grafton pegmatite field.  Relatively few comprehensive studies of 

pegmatites belonging to the beryl-phosphate or beryl-columbite-phosphate subtypes 

exist.  However, with the important contributions to the body of knowledge regarding 

phosphates made by P.B. Moore and coauthors during the 1970’s, pegmatite 

phosphate mineralogy and geochemistry has received more attention from researchers 

in the last thirty years.  Numerous significant works (Moore, 1971; Moore 1973, Moore 

et al., 1975; Mücke 1981; Moore, 1982; London and Burt 1982; Shigley and Brown 

1985; Campbell and Roberts 1986; Fransolet et al.1986; Keller and Von Knorring 1989; 

Roda et al. 2004) involving the description and geochemistry of phosphate mineral 
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assemblages in granitic pegmatites have been published in the last thirty years.  The 

current study has been devised based on the objectives and results of those works 

listed above.   

In the Grafton pegmatite field the beryl-columbite-phosphate and beryl-

phosphate pegmatites are the most mineralogically evolved pegmatites exposed in the 

field.  Primary pegmatitic phosphates such as triphylite-lithiophilite and montebrasite-

amblygonite frequently suffer one or more alterative processes resulting from interaction 

with postmagmatic aqueous fluids (London and Burt 1982).  Alteration of primary 

phosphates by the processes of cation/anion leaching, oxidation/reduction, 

hydroxylation, hydration, and cation addition/exchange may generate a wide range of 

secondary phosphate species (Moore 1973).  Approximately 200 secondary phosphates 

have been identified from pegmatites, indicating that highly variable and complex 

chemical interactions must take place to form such a wide range of species.  Careful 

examination of phosphate paragenesis may help elucidate the nature of the interactions 

resulting in the formation of secondary phosphates.   

The geochemistry and petrogenesis of beryl-columbite-phosphate and beryl-

phosphate pegmatites is not well known as most research has focused on descriptive 

mineralogy.  The two main objectives for this investigation include:  1) detailed 

description of the mineralogy of the Palermo #2 with emphasis on the phosphate 

mineralogy, geochemistry and paragenesis; and 2) the identification of geochemical 

fractionation trends in individual mineral phases and whole-rock samples. 
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Previous Work 

The Grafton pegmatite field has been the subject of relatively little scientific work 

aside from the description of the unusual mineralogy present in several pegmatites.  

The Palermo #1 pegmatite has had much attention focused on the wealth of phosphate 

minerals that occur there.  No less than sixty-nine phosphate minerals occur at Palermo 

#1, eleven of which were first described from the location (Segeler et al. 1981; Francis 

et al. 1993).  However, most research has pertained to the description of new mineral 

species.  Investigations covering broader topics including mineral paragenesis and 

geochemical fractionation trends are lacking.  Geochemical data for pegmatites from the 

Grafton field is extremely limited with the exception of a few small sets of analyses by 

Moore (2000), London et al. (1990) and others.  No large scale geochemical and/or 

petrogenetic investigations have been undertaken regarding the pegmatites of the 

Grafton field.    

The Palermo #2 pegmatite in particular has been overlooked scientifically since it 

does not contain gigantic crystals and masses of primary phosphate minerals 

comparable to those found at the Palermo #1.  The Palermo #2 has also experienced 

much less mining in terms of tonnage removed than the Palermo #1.  Significant 

portions of the core/core margin that contain the most evolved mineral assemblages are 

accessible at Palermo #1 while very little of these zones is exposed at Palermo #2. 

The Palermo #2 mine was opened between 1888 and 1890 by the Palermo 

Mining Company, Syracuse, New York which leased the property from 1886-1888.  The 

company later bought the property outright and owned it from 1888-1898.  A relatively 

small open cut was made during this time to assess the mica potential of the pegmatite.  
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In 1900 the General Electric Company of Schenectady, New York purchased the 

mineral rights to the Palermo #2 and surrounding pegmatites.  A small amount of work 

was done at the Palermo #2 mine between 1914 and 1918 to provide mica during World 

War I.  Palermo #2 saw a period of inactivity between 1919 and 1941 (Whitmore 

personal communication 2002).  With the outbreak of World War II and corresponding 

increase in the demand for mica, General Electric started work at Palermo #2 in 1942 

under the supervision of Leon Churchill (McNair 1943).  The existing small open cut was 

enlarged to dimensions of approximately 50 meters in length, 10 meters in width and a 

depth of 3-14 meters and two inclines (~ 13 m in depth) running parallel to the general 

strike of the pegmatite were sunk (McNair 1943).  As part of the U.S. Geological 

Survey’s Pegmatite Investigations program from 1942-1945, the mine was visited 

periodically by D.M. Larrabee and L.R. Page during 1942-43 and mapped by A.H. 

McNair and J.H. Chivers in May 1943.  Additional maps updating the progress of mining 

were made by V.E. Shainin and E.N. Cameron during 1943-44.  General Electric 

ceased mining in July 1944 and in April 1945 the mine was remapped by McNair and 

F.H. Main (Cameron et al. 1954).   Cameron et al. (1954) reported that the Palermo #2 

pegmatite is approximately 400 meters in length and varies from 7 to 50 meters in 

width.  The pegmatite strikes N 20º E and dips E-SE at 80-85º.  Cameron et al. (1954) 

also contains a description of the zonation and mineralogy of the pegmatite.  A border, 

wall, outer intermediate, core margin and core zone were observed.  Major minerals 

reported were quartz, plagioclase, muscovite, perthite, biotite, schorl, beryl, triphylite 

and vivianite.  In 1958 Mountain Mining Company of Spruce Pine, North Carolina 

purchased the mineral rights to the property and mined mica from 1958 until 1961 
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(Whitmore and Lawrence, 2004).  In 1961 the U.S. government ended mica subsidies 

effectively causing the cessation of mica mining in the area (Whitmore personal 

communication 2002).  

From 1996 to present R.W. Whitmore of Weare, New Hampshire has been 

working the Palermo #2 for beryl and phosphate mineral specimens.  Nizamoff et al. 

(1998) and Nizamoff et al. (2002) provided an updated account of phosphate mineral 

descriptions and associations revealed by the recent mining activity that were previously 

unknown from the Palermo #2 pegmatite.  

The age and timing of emplacement for the pegmatites of the Grafton field is a 

still unanswered question.  No detailed geochemical and field studies to determine the 

petrogenetic origin of the pegmatites have been undertaken in the Grafton field.  

Several Acadian to post-Acadian orogeny granitoids of the New Hampshire Plutonic 

suite outcrop within 10 km of the Palermo #2 pegmatite and may have served as the 

parental source for the pegmatites of the Grafton field.  Page (1937) proposed a genetic 

relationship between pegmatites in the Rumney quadrangle and the various intrusives 

present (Concord granite, Bethlehem granodiorite and Kinsman granodiorite); reporting 

pegmatites relating to each intrusive.  Page ultimately suggested the majority of said 

pegmatites were derived from the Concord granite.  Cameron et al. (1954) suggested 

the pegmatites could be related to a member of the Concord suite of granitic plutons of 

the syn- to post-tectonic New Hampshire Plutonic Suite given the pegmatites display no 

readily discernable deformation or cross-cutting relationships with the Concord granite.  

Francis et al. (1993) also proposed an apparent genetic relationship between the 

Palermo #1 pegmatite of the Grafton field and the Concord granitic plutons based on 
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the observations of Cameron et al. (1954).  Field work was conducted by the author in 

order confirm these observations and possibly add new data to those already existing.   
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Background 

The Grafton pegmatite field (Francis et al. 1993) of west central New Hampshire 

has an areal extent of approximately 700 km2 and is composed of several hundred 

granitic pegmatites occurring in generally northeasterly trending linear belts (Cameron 

et al. 1954) (Figure 1).  

           

Figure 1:  Map delineating the Grafton Pegmatite Field and the Palermo #2 study area, Grafton County, 
New Hampshire.  Syn- and post-Acadian plutonic granitoids are highlighted (Modified from Dorais, 2003). 
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The Grafton field is known for pegmatites that are generally considered to display 

low to medium degrees of geochemical and mineralogical evolution (barren; beryl; 

beryl-phosphate and beryl-columbite-phosphate subtypes).  Several pegmatites in the 

Grafton field are world renowned for producing a wide variety of primary and secondary 

phosphate minerals (Palermo #1 mine, Fletcher mine, Charles Davis mine). 

The Palermo #2 (N 43º 45.137’  W 71º 53.632’, elevation ~ 538 m) and at least 

fifty-seven related granitic pegmatites in the immediate area are located in the extreme 

southern portion of the Rumney 15 minute quadrangle in Grafton County, New 

Hampshire.  

The Rumney 15 minute quadrangle is located within the Acadian orogenic belt of 

the New England Appalachians.  The New England Appalachians were formed by the 

Taconic and Acadian orogenic events that commenced during the early Paleozoic.  The 

first stage of the building process of the Appalachians, the Taconic orogeny, involved 

the three continental masses of Laurentia, Gondwana and Baltica.  These three blocks 

collided resulting in the formation of the Caledonides in Europe and Greenland and in 

the formation of the Appalachians of eastern North America.  The New England 

Appalachians were created by the collision of Laurentia and the northwestern portion of 

Gondwana (Osberg et al. 1989).  
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Figure 2:  Bedrock geologic map of a portion of Grafton County, NH denoting the location of the Palermo 
#2 pegmatite (Modified from Lyons et al., 1997 and Malinconico, 1982). 
 

The emplacement of the Palermo #2 pegmatite most likely occurred syn- or post- 

Acadian orogeny.  The Acadian orogeny (from ~420 to 360 Ma) involved numerous 

events including the deposition of flysch and molasse, episodic volcanic activity, several 

installments of folding and faulting, and emplacement of syn-, late- and post-tectonic 

intrusives with corresponding episodes of metamorphism; all relating to the collision of 

the microcontinent Avalonia with Laurentia (Osberg et al. 1989).   
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The Palermo #2 pegmatite is hosted by the sillimanite-muscovite grade 

metamorphic rocks of the upper unit (Kearsarge) of the Devonian Littleton formation.  

The Kearsarge member of the Littleton is composed of alternating beds of mica 

quartzite and mica quartz sillimanite schist that typically display graded bedding 

features (Malinconico 1982).  These units were deposited as flysch during the later 

stages of the closing of Iapetus ocean during the early Paleozoic (Malinconico 1982).   

The timing of the metamorphic and deformative events in central New Hampshire 

is discussed by Spear et al. (2002); Eusden and Lyons (1993); and Eusden and 

Barreiro (1989).  Malinconico (1982) reports three episodes of deformation and/or 

metamorphism in the southeastern Rumney quadrangle during the Acadian orogeny:  1) 

metamorphism (M1) producing a staurolite-andalusite/kyanite assemblage with 

associated folding (D1) (possibly synchronous with the emplacement of the Kinsman 

granodiorite and Bethlehem granodiorite); 2) minor deformation (D2) with introduction of 

mild folding about east-west axes; 3) a more intense deformation (D3) with tight folding 

about northeasterly plunging axes.  This deformative episode was accompanied by high 

grade metamorphism (M2) to a sillimanite-muscovite assemblage. 

Several possible granitic parent bodies belonging to the syn- to post-orogenic 

New Hampshire Plutonic Suite (NHPS) are located within an 11 km radius of the 

Palermo #2 and related pegmatites (Figure 2).  Foliated, gneissic S-type peraluminous 

granitoids of the Cardigan and Rumney plutons of the syntectonic Kinsman intrusive 

suite (413 ± 5 Ma, Barreiro and Aleinikoff, 1985) are located approximately 3 km 

southeast and 11 km northeast respectively. The Mt. Clough granodiorite of the 

Bethlehem intrusive suite (410 ± 5 Ma, Lyons et al., 1997) is located approximately 2.5 
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km to the west (Clark and Lyons 1986).  Like the Kinsman Intrusives, the Mt. Clough 

granodiorite exhibits a fairly distinctive foliation texture (foliation exhibited is likely a 

result of D3).  A portion of the post-tectonic Concord two-mica granite intrusive suite 

outcrops approximately 3 km to the south in the Jewell Hill area (Cameron et al. 1954).  

Lyons et al. (1997) reports a U/Pb age of 373 Ma for the Newfound Lake pluton of the 

Concord suite. The Concord granite does not display evidence of deformation (i.e. 

foliation).  Malinconico (1982) reports retrograde metamorphism in the Rumney area 

may be related to the Concord granite.  Whole-rock geochemical analyses of the 

Concord granite, Bethlehem granodiorite and Kinsman granodiorite are reported in 

Appendix I. 

The NHPS granitoids are thought to have been derived from a magma-mixing 

process involving the anatexis of crustal rocks from the Central Maine Terrane (CMT), 

the Bronson Hill Anticlinorium and the possible involvement of a separate (likely mantle-

related) magma source (Dorais 2003, Spear et al. (2002) and Lathrop et al. 1996).   

Cameron et al. (1954) suggested that the pegmatites in the Palermo area might 

be related to the Concord granite due to the lack of cross-cutting relationships and the 

absence of deformation-related textures.  Field work by the author has shown evidence 

that a phosphate-bearing pegmatite crosscuts the Concord granite approximately 3 km 

from the Palermo group of pegmatites in the Jewell Hill area.  The Esty pegmatite is 

clearly syn- or post-Concord granite as it crosscuts and displays sharp contacts with the 

granite.  The Esty pegmatite contains large masses (up to 10 cm) of a primary arrojadite 

group mineral as well as other phosphate species, suggesting a common provenance 
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with the pegmatites of the Palermo area.  These observations suggest that the Palermo 

#2 pegmatite was likely emplaced syn- to post-Concord granite.   

Clearly, additional work is needed in order to better establish a petrogenetic link 

between the pegmatites of the Grafton pegmatite field and potential parental plutons or 

other rocks (host rocks, etc).  Isotopic analysis (Sm-Nd) and U-Pb age-dating of 

pegmatitic wall zone rocks, proximal granitoids and pegmatite host rocks could help 

constrain a possible granite-pegmatite relationship.   
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Methods 

Field work and sample collection 

Samples examined during this study were collected beginning in May 1997.  

Periodic sampling trips were made subsequently to coincide with mining activity.  In 

addition to the samples collected by the author, R.W. Whitmore provided numerous 

specimens for research.   

Whole-rock samples were collected along a linear traverse of the open cut so as 

to obtain a representative sampling of each pegmatite zone.  The whole-rock samples 

were collected at 15 sites along the traverse and at least 2 kg of material was obtained 

at each site.  Approximately 200-300 grams of material from each traverse sample site 

was ground to a particle size of approximately 0.3 to 1 mm.  A heavy liquid separation 

using lithium metatungstate was carried out and the corresponding heavy (> 2.80 g/ml) 

and light fractions (< 2.80 g/ml) examined under a binocular stereomicroscope.  Mineral 

separates were hand picked from the whole-rock and heavy liquid separation samples 

under a binocular stereomicroscope.  The picked grains were then examined under the 

scanning electron microscope.  Selected grains were then prepared for electron 

microprobe analysis.   

Scanning Electron Microscope 

Energy dispersive spectral analysis and backscattered electron images of 

polished mounts and mineral samples affixed to conductive putty were collected using a 

digital AMRAY 1820 scanning electron microscope.  Polished mounts were prepared in 

the same fashion as those for the electron microprobe.  Loose mineral and rock 

samples were attached to an aluminum sample stub with conductive putty and sprayed 
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with a conductive coating.  Operating conditions for energy dispersive spectral analysis 

and backscattered electron imagery included an acceleration potential of 15-25 kV, 400 

micron final aperture, 18 mm working distance, 0 to 35 degrees sample tilt, and 3.0 spot 

size.  Backscattered electron images were collected using a frame size of 512x512 

pixels and X-ray maps collected at 256x256 pixels with a 20-50 ms dwell time per pixel.  

Data and images were acquired using Iridium/EDS2000 software by IXRF Systems, Inc.      

Electron Microprobe 

Samples analyzed by the electron microprobe were mounted in epoxy, ground 

down and polished to a flat, high finish using a Buehler polishing table.  Polishing 

consisted of three steps: 1.0, 0.3 and 0.05 micron alumina grit.  Samples were rinsed 

and placed in an ultrasonic cleaner to remove excess polishing compound.  The 

samples were then rinsed with distilled water and allowed to dry.  After drying the 

samples were coated with 250 ± 20 angstroms of carbon under a vacuum of 1 x 10-5 

Torr.  Coated samples were kept in a desiccator before being placed in the microprobe. 

Quantitative chemical analyses were acquired by Alexander U. Falster using a 

fully automated ARL-SEMQ electron microprobe.  Operating conditions for feldspars, 

micas, and phosphates included: 15 kV acceleration potential, 15 nA beam current and 

60 seconds counting time.  MAN was used for background determinations.  A 1-2 

micron beam diameter was used for feldspars, micas and phosphates.  For beam 

sensitive phosphates the beam diameter was adjusted to 3-4 microns.  Standards used 

for analyses of feldspars, micas and phosphates included:  Clinopyroxene (Si Kα, Fe K α, 

Ti Kα, Ca Kα, Mg Kα), Albite (Si Kα , Al Kα, Na Kα), Fibbia adularia (Si Kα, Al Kα, K Kα), 

Plagioclase An50 (Si Kα, Al Kα, Ca Kα), Cerro de Mercado apatite (P Kα, Ca Kα, F Kα), 
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Fayalite (Si Kα, Fe Kα), Rhodonite (Si Kα, Mn Kα), Andalusite (Si Kα, Al Kα), Fluortopaz (Al 

Kα, Si Kα, F Kα), Strontium sulfate (Sr Lα), Barium sulfate (Ba Lα), Pollucite (Cs Lα) and 

Rubidium Leucite (Rb Lα). 

MAN standards for feldspars, micas, and phosphates included:  Periclase, 

hematite, vanadium(V) oxide, zinc oxide, quartz, fluorite, as well as any of the above 

where applicable. 

Operating conditions for Nb-Ta oxides and zircon included: 25 kV acceleration 

potential, 20 nA beam current and 60 seconds counting time.  MAN was used for 

background determinations.  A 2-3 micron beam diameter was used for analyses of Nb-

Ta oxides and zircon.  Standards used for analyses of Nb-Ta oxides and zircon 

included:  Zirconium(IV) oxide (Zr Lα), manganotantalite (Ta Mα, Mn Kα), yttrium niobate 

(Nb Lα), Tin(IV) oxide (Sn Lα), Hematite (Fe Kα), rutile (Ti Kα), Bismuth germanate (Bi Mα) 

and stibiotantalite (Sb Lα). 

MAN standards for Nb-Ta oxides and zircon included:  Periclase, hematite, 

vanadium(V) oxide, quartz, fluorite, zinc oxide, Harding microlite, as well as any of the 

above where applicable. 

Data were processed via Probe for Windows by MicroBeam, Inc. 

X-Ray Diffractometer 

X-ray diffraction patterns of powdered mineral samples were obtained using a 

SCINTAG XDS 2000 X-ray diffractometer (Cu Kα radiation).  Powder patterns were run 

over a range of 2-70° 2 theta using a step size of 0.04 to 0.1° 2 theta.  X-ray powder 

diffraction data was acquired and processed by DMSNT (Diffraction Master Systems for 

Windows NT) by Scintag, Inc. 
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Single crystal X-ray diffraction patterns for mineral identification were obtained 

via a Gandolfi camera.  Sample run times were dependent on sample size and Fe 

content and varied between 8 and 24 hours.   

X-Ray Fluorescence Spectrometry 

Analyses of whole rock samples using X-ray fluorescence spectrometry were 

performed at the Smithsonian Institution, Washington, D.C. and at the Coordinated 

Instrumentation Facilities at Tulane University.  Samples were pulverized in tungsten 

carbide and ceramic (alumina) mills using a Spex shatterbox.  Mills were 

decontaminated between samples using an expendable charge for each new sample.  

Sample run times ranged from ~ 10 to 20 minutes depending on the hardness of the 

material.   

Samples analyzed at Tulane University included a suite pulverized in a tungsten 

carbide mill and a suite pulverized in a ceramic mill.  For each sample approximately 4 g 

of sample was weighed out and mixed with ~ 0.9 g of Hoechst Wax C Micropowder 

using a Retsch Mixer at 20 rpm for 3 minutes.  The mixed samples were then pressed 

into pellets.  The finished pressed pellets were stored in a desiccator and analyzed with 

a Spectro EDXRF (EDS system).  Standards included JR-2 (Japanese rhyolite), SRM 

2704 (NIST Buffalo River sediment) and USGS BVHO-1(basalt). 

Samples analyzed at the Smithsonian Institution were analyzed with a Philips 

PW1480 X-ray spectrometer.  Major elements were analyzed using fused discs.  Fused 

discs were prepared by mixing ~ 2 g of oven dried sample (also determined LOI) with 

4.05 g of lithium tetraborate.  Contents were then put into a Pt crucible and 5 drops of 

lithium iodide fluxing agent added.  The Pt crucible was placed in a Philips PerlX3 
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Automatic Bead machine which produced the finished fused disc.  Trace elements were 

analyzed using pressed pellets.  Approximately 5 grams of powdered sample were 

pressed in an ARL press for 10 seconds at 3500 psi.  Fused discs were analyzed using 

40 Kv and 60 mA for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, and MnO 

using USGS standards G2 and W2.   

Neutron Activation 

Neutron activation analyses of powdered whole rock samples (for pulverization 

procedure see preparation for XRF) were performed by the Phoenix Memorial 

Laboratories at the University of Michigan, Ann Arbor.  Quartz tubes were cut into ~ 5 

cm sections using a hydrogen-oxygen torch, individual sections were then sealed at one 

end.  The tube sections were boiled in aqua regia and rinsed with distilled water with the 

process being repeated for five cycles.  After cleaning, the tube sections were dried, 

weighed and loaded with ~ 200 mg of powdered sample.  The open ends of the quartz 

tubes were then sealed with the hydrogen-oxygen torch and the tubes placed in the 

distilled water bath where they could be inspected for leakage. 

The sealed samples were exposed to 20 H core-face irradiation at an average 

flux rate of 4.2 x 1012 n/cm2/s.  Following irradiation, two separate counts of gamma 

activity were done:  a 5000-second (live time) count of each sample after a 1-week 

decay period; and a 10000-second count (live time) after a period of 4-5 weeks decay.  

Element concentrations were determined based on comparison with three replicates of 

the standard reference material NIST1633A (coal fly ash) with all data reductions based 

on NIST certified values.  Samples of NIST688 (basalt) and NIST278 (obsidian) were 

included as check standards.        
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The Palermo #2 Pegmatite 

The Palermo #2 pegmatite is one the larger pegmatites in the Grafton field, 

measuring approximately 400 m in length and ranging from 7 to 50 m in width (Figure 

3).  With the exception of an open cut at the widest portion of the dike and two small 

prospect pits, the pegmatite is obscured by vegetation and soil.   

 

Figure 3:  Topographic map showing the location of the Palermo #2 and adjacent pegmatites, North 
Groton, New Hampshire (from Cameron et al., 1954). 
 

The pegmatite is concordant with the country rock (Lower member of the Littleton 

formation) and strikes N. 20º E.   The dip in the vicinity of the open cut is variable from 

85º E/SE to nearly vertical on the hanging wall and approximately 80-85º E/SE on the 

footwall.   The hanging wall and footwall contacts are sharp and well-defined, 
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suggesting a significant temperature difference existed between the pegmatite melt and 

the host rock.   

The pegmatite is zoned, with border, wall, intermediate, core margin and core 

zones that are typically weakly defined (gradational).  The pegmatite appears to be 

asymmetrically zoned, with the hanging wall half of the pegmatite showing an increase 

in the thickness of the wall and intermediate zones in the vicinity of the open cuts and 

the core margin/core zones are located much closer to the footwall side of the 

pegmatite.   

The border zone is approximately 1 to 4 cm in thickness and is discontinuous.  

The border zone is composed of quartz and muscovite, as well as small amounts of 

plagioclase, almandine and fluorapatite.  The border zone is fairly fine-grained, 

exhibiting an average grain size of less than 0.5 cm.   

The wall zone ranges from 1 to 5 meters in thickness and shows increased grain 

size in comparison to the border zone.  The average grain size in the wall zone is 

approximately 2-3 cm.  The wall zone is composed mainly of quartz, plagioclase, 

perthite, muscovite and biotite.  Minor to trace amounts of fluorapatite, schorl, 

almandine and zircon also occur in the wall zone.  Quartz forms coarse graphic 

intergrowths with plagioclase.  Muscovite is present in books to 15 cm and may occur 

as an intergrowth with biotite.  The accessory phases fluorapatite, schorl, almandine 

and zircon occur as subhedral to euhedral crystals to 3 mm in size.   

The intermediate zone composes the bulk of the volume of pegmatite and varies 

from 5 to 25 meters in thickness.  The transition from wall to intermediate zone is 

gradational, however the increasing grain size and presence of abundant book mica 
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typifies the intermediate zone.  Quartz, plagioclase, perthite, muscovite, biotite are the 

major minerals composing the intermediate zone.  The accessory mineralogy of the 

intermediate zone is more complex that that of the wall zone:  fluorapatite, schorl, 

almandine, beryl, native bismuth, pyrite, sphalerite, galena, xenotime, monazite, 

magnetite, rutile and hematite occur in small amounts in the intermediate zone.  The 

accessory phases are generally subhedral to euhedral and are typically less than 3 mm 

in size.  Grain size in the intermediate zone is quite coarse, the majority of grains are 

greater than 4 cm in size.  Blocky masses of perthite occur to 30 cm and book 

muscovite is abundant (5-30 cm in size).  Quartz forms coarse graphic intergrowths with 

plagioclase and perthite.  Secondary cavities (<1 cm) containing euhedral albite, apatite 

and muscovite occur rarely in large masses of plagioclase.  However, the vast majority 

of minerals in the intermediate zone do not show evidence of significant replacement or 

alteration.   

The core margin is generally between 2 to 3 meters in thickness and forms a rind 

on the outer surface of large pods of monomineralic quartz (core).  Major minerals 

composing the core margin include:  quartz, perthite, plagioclase, muscovite, schorl, 

beryl, triphylite, fluorapatite and hydroxylapatite.  Major minerals occur as anhedral to 

subhedral masses or as euhedral crystals up to 2 meters in size.  Large masses (up to 

50 cm) of the primary phosphates triphylite and hydroxylapatite are fairly abundant and 

occur in contact with or proximal to the outer margin of the quartz core.  Schorl is also 

concentrated in the core margin relative to the rest of the pegmatite and concentrations 

or nests of crystals to 10 cm are abundant.  Euhedral crystals of beryl to 30 cm are 

frequently observed in the core margin.  Book muscovite is sparse in the core margin 
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and consequently these areas were avoided during the mica mining periods.  Accessory 

minerals occurring in the core margin include:  ferrisickerlite, heterosite, siderite, 

montebrasite, graftonite, xenotime-(Y), monazite-(Ce), wolfeite, “arrojadite”, sarcopside, 

rockbridgeite, beraunite, laueite, strunzite, vivianite, ludlamite, kryzhanovskite, jahnsite-

(CaMnFe), jahnsite-(CaMnMg), jahnsite-(CaMnMn), stewartite, ushkovite, whitmoreite, 

childrenite, eosphorite, messelite, fairfieldite, mitridatite, strengite, phosphosiderite, 

scorzalite, lazulite, paravauxite, gordonite, gormanite, souzalite, augelite, chlorapatite, 

whiteite-(MnFeMg), whiteite-(CaFeMg), whiteite-(CaMnMg), crandallite, goyazite, 

collinsite, autunite, torbernite, native bismuth, pyrite, sphalerite, galena, pyrrhotite, 

arsenopyrite, chalcopyrite, bornite, löllingite, uraninite, ferrocolumbite, rutile, almandine, 

zircon and bertrandite.  The accessory minerals occur mainly as microscopic (< 3 mm) 

subhedral to euhedral crystals.  Many of the phosphate-bearing accessory minerals are 

products of metasomatic alteration of primary phosphates by late-stage, carbonate-

bearing aqueous fluids.  This alteration process will be discussed in detail in the chapter 

regarding phosphate paragenesis.   

The core of the Palermo #2 pegmatite consists mainly of large (up to 10 m), 

ellipsoidal masses of quartz.  The pods are discontinuous and may be separated by 

several meters of core margin or intermediate zone.  The quartz masses are essentially 

monomineralic, although occasionally large blocks of perthite or beryl crystals may be 

observed projecting into the quartz from the core margin.  The pods of core quartz 

exposed in the open cut portion of the pegmatite display an unusual orientation in that 

they plunge approximately 25º toward the northwest.  The plunging orientation and the 

small size of the pods relative to the overall dimensions of pegmatite suggest that larger 
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masses of quartz (core) may be present at depth.  It is currently impossible to confirm 

the existence of a larger core as access to the lower portions of the two inclines is 

restricted to the uppermost areas due to the accumulation of debris as a consequence 

of more recent mining activity.  Another large mass of monomineralic quartz is exposed 

in a prospect pit approximately 30 meters NE along strike from the main open cut.  The 

lack of exposure in the vertical dimension at this location precludes any conclusion 

regarding the relationship between the prospect pit quartz mass exposure and the 

smaller masses of quartz core observed in the open cut.   

A large xenolith of the country rock (schist) is present just to the right of the 

center of the open cut.  The block is approximately 1.5 meters in length and does not 

show particularly strong evidence of reaction with the pegmatitic melt except for the 

presence of an outer rim that is strongly enriched in muscovite relative to typical 

Littleton schist.  
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Mineralogy 

Rock-forming Minerals: 

Feldspar group: 

Albite – NaAlSi3O8 

Microcline – KAlSi3O8 

Both albite and microcline are present throughout the Palermo #2 pegmatite with 

albite occurring in higher proportions in the outer zones (border, wall, intermediate) 

whereas microcline occurs mainly in the inner zones (core margin, core).  Albite forms 

blocky masses up to 10 cm and also occurs in lamellar streaks in microcline (perthite).  

Albite rarely occurs as translucent euhedral crystals in secondary cavities in masses of 

primary albite.  Microcline typically occurs as perthite (exhibiting fine exsolution lamellae 

of albite) and crude single crystals in the core margin that may reach up to 1 m in size.  

Pegmatites of a peraluminous nature containing large quantities of phosphate minerals 

other than apatite may exhibit elevated phosphorus content in feldspars via a Al3+ + P5+ 

= 2 Si4+ substitution  (London et al. 1990).  The phosphorus (expressed as P2O5) 

content of alkali feldspar from Palermo #2 is shown in Figure 4.  P2O5 content in alkali 

feldspar ranges from 0.03 (detection limit) to 0.47% and displays an increase from the 

wall zone to intermediate to core margin zone. 
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Figure 4:  P2O5 content of alkali feldspar from the wall, intermediate and core margin zones of the 
Palermo #2 pegmatite.  Bars signify variance in P2O5 content of data from each pegmatite zone. 
 

Several researchers have reported that P is preferentially incorporated into the K-

feldspar structure (Smith, 1974, 1983, Mason 1982).   Feldspars from Palermo #2 

appear to reflect this relationship as K-feldspars typically contain higher amounts of 

P2O5 than sodic plagioclase feldspars.   

Mica group: 

Biotite – KFe2+
3AlSi3O10(OH)2 

Muscovite – KAl2□AlSi3O10(OH)2 

Muscovite and biotite are the dominant mica minerals present at Palermo #2.  

Biotite occurs more frequently in the outer zones of the pegmatite and is rarely 

encountered in the core margin zone.  Muscovite is abundant throughout the pegmatite 

and was the primary commodity the pegmatite was mined for.  Book muscovite is 



 25

common in the wall and intermediate zones and therefore mining activity prior to 1960 

was concentrated in these zones.  Large books of muscovite up to 20 cm occur in the 

core margin in association with quartz and large perthitic feldspars.  Intergrowths of 

biotite and muscovite occur infrequently in the wall and intermediate zones. 

Quartz – SiO2 

Quartz is abundant throughout the pegmatite and is a major component along 

with feldspars (albite and microcline) and micas (muscovite and biotite).  The core zone 

of the pegmatite consists of large monomineralic masses of quartz up to 7 m across in 

the central portion of pegmatite.  Euhedral crystals of quartz to 5 mm may occur in 

cavities created by the dissolution of primary minerals including beryl, feldspars, 

tourmaline, etc.  Smoky quartz occurs sporadically in the core margin of the pegmatite 

and is related to the presence of small amounts of uraninite and/or U-bearing secondary 

phosphates (autunite, torbernite).  

Minor/accessory/trace minerals: 

Silicates: 

Beryl – Be3Al2Si6O18 

Beryl is present in moderate quantities in the core margin/core of Palermo #2.  

Beryl forms crude to sharp hexagonal prisms up to 30 cm in length that range in color 

from light green (Fe2+/Fe3+) to blue (Fe2+) to yellow (Fe3+) (Figure 5).  Beryl crystals that 

project into the quartz core frequently contain transparent areas that make suitable 

gemstock (Figure 6).  The majority of gem material from Palermo #2 is green to blue in 

color although the oxidized yellow variety heliodor may occur in the vicinity of 

radioactive minerals such as uraninite, autunite and torbernite.  Cesium content (from 
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EDS) in beryl from Palermo #2 is low (< 1 %) as is typical of beryl-phosphate subtype 

granitic pegmatites (Trueman and Černý, 1982).   

 

Figure 5:  Large yellow beryl at the core margin-core interface.  The yellow color (Fe3+) is due to the 
presence of the nearby radioactive minerals uraninite and zircon. 
 

 

Figure 6:  Nearly transparent blue beryl (2 cm in length) from the core margin/core interface at Palermo 
#2. 
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Schorl – NaFe3+
3Al6(BO3)3[Si6O18](OH)4 

Schorl is the sole member of the tourmaline group that occurs at Palermo #2.  

Schorl occurs as lustrous black subhedral to euhedral prisms to 5 cm.  Schorl is present 

in small amounts in the wall and intermediate zones, but is much more prevalent in the 

core margin zone.  Schorl is associated with quartz, perthitic feldspar, albite, muscovite, 

and triphylite.  In some cases schorl has undergone partial to complete dissolution in 

the vicinity of altered primary phosphates.       

Almandine – Fe2+
3Al2(SiO4)3 

Almandine is an uncommon mineral at Palermo #2 and typically occurs in the 

core margin in association with fluorapatite, quartz and feldspar.  Almandine forms 

subhedral to anhedral reddish pink masses up to 2 mm and may be associated with 

green fluorapatite, altered muscovite, schorl and triphylite.  In many cases almandine 

appears to be etched indicating that conditions favorable for dissolution of garnet 

existed in the late stages of crystallization or occurred during subsolidus alteration of 

phosphate species.  Chemical compositions of garnet from Palermo #2 are given in 

Table 1.  Compositionally, garnet from Palermo #2 falls in the almandine field with a 

fairly significant spessartine component (Figure 7 and 8).  Pyrope (Mg) and grossular 

(Ca) components are quite low.   FeO content ranges from ~ 25.7 to 28.9 wt.% whereas 

MnO content falls between 13.1 and 17.1 wt.%.  Fe/Mn ratios occur within a range from 

~ 1.50 (most geochemically evolved) to 2.20 (least evolved) (Figure 9).  CaO content 

(0.15-0.21 wt.%) is quite constant between analyzed samples whereas MgO content 

(0.35-0.91 wt.%) displays more variability.  Fe/Mn ratios have been employed by 

Hildreth (1979, 1981) and Mahood (1981) to show the variation of Fe/Mn with 
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fractionation of rhyolitic magmas.  This relationship has been noted in granitic 

pegmatites by Černý et al. (1981, 1985).  A decrease in Fe/Mn ratio from outer to inner 

zones with a single pegmatite has been noted by Foord (1976), Černý & Hawthorne 

(1982) and Baldwin & von Knorring (1983).  A comparison of Fe/Mn versus Mn in garnet 

from Palermo #2 and other notable phosphate-bearing granitic pegmatites is shown in 

Figure 10. 
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Table 1: Representative electron microprobe analyses of garnet from the core margin of the Palermo #2 
pegmatite. 
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Figure 7:  Ternary FeMnMg (atoms per formula unit - apfu) plot of almandine garnet from Palermo #2. 
 
 

 

Figure 8:  Ternary FeMnMg50 (apfu) plot of almandine garnet from Palermo #2. 
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Figure 9:  Fe/Mn versus Mn plot of almandine garnet from the core margin zone of the Palermo #2 
pegmatite.   
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Figure 10:  Fe/Mn versus Mn plot of garnet from the Palermo #2, Bennett (Oxford Co., Maine) and the 
Tsaobismund pegmatite (Namibia).  Tsaobismund data from Fransolet et al., 1986.  Bennett data from 
Wise and Rose, 2000.  



 32

Zircon – ZrSiO4 

Zircon occurs in small quantities in all zones of Palermo #2.  Crystals are 

generally euhedral, are <1 mm to 3 mm in size and exhibit a brown to reddish brown 

color.  Zircon distribution is as follows: zircon occurs sparingly in the wall and 

intermediate zones and is much more prevalent in the core margin/core zones where it 

is associated with triphylite, sulfides, almandine and uraninite.  Zircon exhibits solid-

solution with hafnon (HfSiO4) and thorite (ThSiO4), therefore some degree of 

substitution of Hf and Th for Zr is not uncommon in fractionated granites and 

pegmatites. The HfO2 content of zircon from the wall zone ranges from ~1.0 to 3.3% 

whereas HfO2 in the core margin ranges from ~ 4.5 to 7.5% (Table 2).  Hafnium (Hf) 

content of zircon may be used as a monitor of fractionation in granitic pegmatites and, 

as has been noted in many other granitic pegmatites by Černý et al. (1985), Hf content 

in zircon from Palermo #2 steadily increases from the wall to core margin zones (Figure 

11).  Figure 12 illustrates a positive correlation between Hf substitution for Zr and the 

increasing degree of evolution within the pegmatite.  Thorium oxide (ThO2) content in 

zircon from Palermo #2 ranges from below detection limit to 0.30 wt.% in the wall zone 

to 0.15 to 0.54 wt.% in the core margin zone.   Zircon also exhibits solid-solution with 

and is isostructural to xenotime-(Y) (YPO4).  In contrast to the substitution relationship 

between Hf and Zr, Figure 13 shows P substitution for Si in zircon from Palermo #2 is 

not correlatable with increasing fractionation within the pegmatite. This relationship 

suggests that P for Si substitution may be controlled by a different mechanism.   
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Table 2: Representative electron microprobe analyses of zircon from the Palermo #2 pegmatite. 
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Figure 11:  Zr/Hf versus Hf (wt.%) for zircon from the Palermo #2 pegmatite.   
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Figure 12:  Hafnium (apfu) versus zirconium (Zr) content of zircon from the Palermo #2 pegmatite.  
Hafnium substitution for Zr increases with increasing degree of evolution in the pegmatite. 
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Figure 13:  Si (apfu) versus phosphorus (P) in zircon from Palermo #2.  P substitution for Si does not 
correlate with degree of evolution within the pegmatite. 
 

Bertrandite – Be4Si2O7(OH)2 

Bertrandite occurs as an alteration product of beryl and forms tabular colorless to 

white crystals to 1 mm (Figure 14).  Bertrandite is found in the core margin/core of 

Palermo #2 in dissolution molds of beryl crystals and is associated with millimetric 

euhedral quartz crystals. The presence of bertrandite suggests that the fluids 

responsible for the dissolution of beryl were neutral to somewhat acidic in nature 

(Černý, 2002) (Figure 15).  
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Figure 14:  Secondary electron image of tabular bertrandite crystals from the core margin of the Palermo 
#2 pegmatite. 
 

 

Figure 15: Typical silicate products resulting from the alteration of beryl in granitic pegmatites (Černý, 
2002). 
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Native Elements: 

Bismuth – Bi 

Native bismuth occurs as very small, silvery metallic grains (< 1mm) in the 

intermediate and core margin zones.  Native bismuth is associated with sulfides (pyrite, 

chalcopyrite), feldspars, quartz and muscovite. 

 

Sulfides: 

Pyrite – FeS2 

Pyrite mainly occurs in the core margin of the pegmatite where it exhibits cubic or 

octahedral forms.  Pyrite forms euhedral crystals to 1 mm and is associated with 

pyrrhotite, quartz, chalcopyrite, perthitic feldspar and fine-grained muscovite. 

Sphalerite -- ZnS 

Sphalerite occurs in small quantities in the core margin of the Palermo #2 

pegmatite.  Sphalerite forms resinous brown masses up to 2 mm and is associated with 

pyrite, chalcopyrite, galena, siderite, zircon, uraninite and quartz.  

Arsenopyrite – FeAsS2 

Arsenopyrite is present as a rare accessory mineral at Palermo #2.  Arsenopyrite 

is found in the intermediate and core margin zones as small (< 1 mm), silvery pseudo-

orthorhombic crystals associated with pyrite, zircon, quartz, siderite and perthitic 

feldspar. 
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Galena -- PbS 

Galena is a rare accessory phase at Palermo #2.  Galena occurs in the core 

margin as small, silvery metallic masses to 700 µm associated with pyrite, sphalerite, 

chalcopyrite, quartz and siderite. 

Chalcopyrite – CuFeS2 

Chalcopyrite occurs sporadically in the core margin of Palermo #2 where it forms 

in brassy metallic masses to 800 µm in size.  Chalcopyrite is typically associated with 

pyrite, sphalerite, siderite, bornite and quartz.  Chalcopyrite and bornite are the only 

significant primary Cu-bearing phases at Palermo #2. 

Bornite – Cu5FeS4 

Bornite is a rare accessory phase that is restricted to the core margin.  Bornite 

occurs in small grains to 200 µm in size and is typically associated with pyrite, 

chalcopyrite, quartz and perthitic feldspar.  

Pyrrhotite – Fe1-xS 

Pyrrhotite occurs in small quantities as an alteration product of pyrite in the core 

margin of the Palermo #2 pegmatite.  Pyrrhotite is associated with pyrite, chalcopyrite, 

quartz, muscovite and perthitic feldspar.  
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Figure 16:  Backscattered electron image of skeletal pyrite crystals (light gray) exhibiting partial 
replacement by pyrrhotite (white). 

 

Oxides: 

Uraninite – UO2 

Uraninite occurs in small quantities in the core margin in association with zircon, 

sulfides and primary phosphates (triphylite, fluorapatite).  Uraninite forms small (< 2 

mm) masses and sometimes occurs as euhedral crystals (Figure 17).  Alteration of 

uraninite results in the formation of autunite and torbernite in the presence of late stage 

phosphate-bearing fluids.  Perthitic feldspars proximal to uraninite often display a 

distinctive brick red color.   
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Figure 17:  Euhedral uraninite crystal exhibiting cubic and octahedral forms from Palermo #2.  Field of 
view is approximately 3 mm. 
 

Ferrocolumbite – Fe2+Nb2O6 

Ferrocolumbite, an extremely rare phase at Palermo #2, is found exclusively in 

the core margin in association with siderite, zircon, uraninite and fluorapatite.  

Ferrocolumbite occurs as lustrous metallic black tablets to 1.5 mm in maximum 

dimension.  Ferrocolumbite displays low Ta/(Ta+Nb) and Mn/(Mn+Fe) ratios (see Table 

3) that fall in the ferrocolumbite field of Černý and Ercit (1989) (Figure 18).  

Compositionally, ferrocolumbite from Palermo #2 shows an increase in Ta and 

corresponding decrease in Nb from core to rim, indicating some fractionation of Nb and 

Ta occurred during crystallization.  Ferrocolumbite from Palermo #2 exhibits slightly 

lower Nb/Ta and Fe/Mn ratios compared to those from two other pegmatites from the 

Grafton field (Palermo #1 and Eight Ball), indicating a slightly higher degree of 
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fractionation (Černý et al. 1986).  Notably, Ti is the only minor component present in 

microprobe detectable quantities in ferrocolumbite from Palermo #2.   

 
Table 3:  Representative electron microprobe analyses of columbite group minerals from Palermo #2 and 
nearby pegmatites in the Grafton field. 
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Figure 18:  Compositions (atomic proportions) of columbite group minerals from Palermo #2 and two 
other pegmatites from the Grafton field, western New Hampshire. 
 

Magnetite/Hematite – Fe3O4 / Fe2O3 

Magnetite and hematite occur in very small quantities throughout the Palermo #2 

pegmatite.  Magnetite is generally massive, although well-formed octahedral crystals 

have been observed.  Hematite forms platy aggregates of lustrous metallic crystals.  

Crystals/masses of magnetite and hematite are typically less than 1 mm in size.      

 

 

 



 43

Rutile – TiO2 

Rutile occurs as sub-millimeter brownish-black prisms in the wall, intermediate 

and core margin zones (Figure 19).  Rutile is associated with Fe-oxides (magnetite, 

hematite), feldspars, quartz and muscovite.   

 

Figure 19:  Backscattered electron image of twinned rutile crystals from the wall zone of the Palermo #2 
pegmatite.   

 

Carbonates: 

Siderite – FeCO3 

Siderite is locally abundant in areas of the core margin that display alteration of 

primary phosphates.  Siderite occurs as a partial to complete replacement of 



 44

hydroxylapatite, fluorapatite and triphylite.  Siderite is typically present as saccharoidal 

masses that range from white to brownish in color.  Euhedral crystals occur in cavities 

within massive siderite and display simple rhombohedral or scalenohedral forms 

(Figures 20 and 21).  Siderite is often associated with a variety of secondary 

phosphates including but not restricted to:  rockbridgeite, beraunite, fairfieldite group, 

plumbogummite group and strunzite.  At least two distinct generations of siderite have 

been noted at Palermo #2 (Figure 22).  The secondary generation of siderite displays 

an increasing Mn content illustrated by energy dispersive X-ray mapping in Figure 23.  

Siderite at Palermo #2 is most likely a product of late-stage, carbonate-bearing aqueous 

fluids. 

 

Figure 20:  Backscattered electron image of scalenohedral siderite crystals with strunzite needles from 
Palermo #2. 
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Figure 21:  Siderite crystals exhibiting rhombohedral forms from the Palermo #2 pegmatite.  Field of view 
is approximately 4 mm. 
 
 

  

Figure 22 (left):  Backscattered electron image of rhombic siderite crystals exhibiting a secondary 
overgrowth of Mn-rich siderite.  
Figure 23 (right):  Energy dispersive X-ray map of siderite showing an increase of Mn (red) from the core 
to rim of the crystals. 
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Sulfates: 

Gypsum – CaSO4 · 2 H2O 

Gypsum occurs as curved, colorless crystals to 1 mm on pyrite/pyrrhotite in 

association with rockbridgeite.  Gypsum is most likely a product of the weathering 

environment. 

Arsenides: 

Löllingite – FeAs2 

Löllingite is present as lustrous silvery metallic crystals up to 2 mm in the core 

margin of Palermo #2.  Löllingite is associated with secondary phosphates, quartz, 

pyrite, sphalerite and zircon. 

Primary Phosphates: 

Triphylite – LiFePO4 

Triphylite at Palermo #2 occurs almost exclusively in the core margin zone of the 

pegmatite.  Triphylite is a primary phase and typically forms grayish blue masses up to 

50 cm associated with coarse perthite, schorl, quartz and beryl (Figure 24).  Euhedral 

crystals (to 20 cm) of triphylite are rare and frequently exhibit some degree of alteration 

to ferrisicklerite (Figure 25).  Triphylite is perhaps the most important primary phosphate 

involved in the formation of secondary phosphate species.  The majority of triphylite at 

Palermo #2 has undergone some degree of metasomatic alteration and exhibits a dark 

brown (ferrisicklerite) to purplish brown to dark purple rind (heterosite).  Triphylite may 

be completely replaced by these and/or additional alteration products or may show 

alteration in only a small percentage of the overall volume of the mass or crystal.  

Triphylite masses may also display rinds of dark blue vivianite (a low temperature 
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secondary phosphate).  Vivianite also commonly infiltrates triphylite masses as thin 

coatings along fractures and {100}, {010} and {011} cleavage planes.  The presence of 

vivianite imparts a darker blue color to triphylite.  Compositionally triphylite from 

Palermo #2 plots well into the triphylite field (Figure 26), evidenced by high Fe/(Fe+Mn) 

values (Table 4).  FeO content ranges from 31.1 to 39.7 wt.% and MnO varies from 5.2 

to 7.8 wt.%.  In comparison with other worldwide phosphate-bearing pegmatites, 

triphylite from Palermo #2 contains relatively high amounts of MgO (1.5 to 4.0 wt.%).  

As with garnet and columbite group minerals, the ratio of Fe to Mn may be used to 

ascertain the degree of evolution of granitic pegmatites (decreasing Fe/Mn indicates 

increasing evolution/fractionation) (Černý et al., 1985).  Ginsburg (1960) and Keller 

(1991) report that evaluation of the Fe/(Fe+Mn) ratio in triphylite-lithiophilite is a useful 

tool to estimate the degree of geochemical evolution of pegmatites.  Figure 27 illustrates 

the ratio of Fe/Mn versus Mn in triphylite from Palermo #2 and several well-known New 

England phosphate-bearing pegmatites.  In comparison with triphylite and lithiophilite 

from the Branchville, Emmons and Bennett pegmatites, triphylite from Palermo #2 

displays a lesser degree of geochemical evolution.  The role of triphylite in secondary 

phosphate paragenesis is discussed in detail in the section regarding phosphate 

paragenesis.      
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Figure 24:  Masses of primary triphylite on the hanging wall side of the core margin of the Palermo #2 
pegmatite.  
 

 

Figure 25:  Euhedral triphylite crystal (2 cm in length), the dark color is due to alteration to ferrisicklerite. 
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Table 4: Representative electron microprobe analyses of triphylite from the core margin of the Palermo #2 
pegmatite.   
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Figure 26:  FetotMntotMg (apfu) ternary plot of triphylite from Palermo #2. 
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Figure 27:  Fe/Mn versus Mn plot of triphylite and lithiophilite from the Palermo #2 and other noted New 
England phosphate-bearing pegmatites.  Analyses of Bennett triphylite and lithiophilite from Wise and 
Rose, 2000.  Analysis from Palermo #1 from unpublished data of M.A. Wise. 

 

Apatite group: 

Fluorapatite – Ca5(PO4)3F 

Hydroxylapatite - Ca5(PO4)3(OH) 

Chlorapatite - Ca5(PO4)3Cl 

 
Members of the apatite group are abundant throughout the Palermo #2 

pegmatite.  Fluorapatite and hydroxylapatite occur in the border through core margin 

zones, whereas chlorapatite is restricted to the core margin.  Fluorapatite is quite 

variable in its occurrence and appearance.  Fluorapatite in the border, wall and 

intermediate zones forms in masses or as crude prismatic green to white crystals that 

sometimes exhibit pinacoidal terminations.  Crystals occurring in secondary cavities 
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may be green, white or colorless, display highly variable aspect ratios and may be more 

complex in morphology with the addition of pyramidal forms to the previously cited 

prisms and pinacoids (Figure 31).  Fluorapatite masses and crystals may reach 1 cm in 

maximum dimension.  Primary hydroxylapatite occurs throughout the pegmatite 

although it appears with much higher frequency in the core margin zone.  

Hydroxylapatite ranges from green to white to colorless to sky blue in color and occurs 

in masses to 30 cm (Figure 32).  Euhedral crystals of secondary hydroxylapatite in 

cavities display simple prism and pinacoidal forms.  Chlorapatite, a secondary or tertiary 

phase, typically occurs as small white masses related to the alteration of montebrasite 

(Figure 34).  Chlorapatite may form very rare white prismatic crystals in voids created by 

subsolidus alteration of primary phosphates (montebrasite) (Figure 33).  The presence 

of chlorapatite and/or hydroxylapatite as a consequence of the subsolidus alteration of 

montebrasite has been reported from pegmatites in the White Picacho district, AZ 

(London and Burt, 1982) as well as at the Daheim and Okatjimukuju Farm pegmatites in 

the Karibib-Usakos pegmatite field of Namibia (Baldwin et al., 2000).  Chlorapatite has 

also been observed as a product derived from the alteration of alluaudite in the Angarf-

Sud pegmatite, Anti-Atlas, Morocco (Fransolet et al., 1985).  

Table 5 presents electron microprobe analyses of apatite group minerals from 

Palermo #2.  Fluorine content varies considerably, however fluorapatite from the outer 

zones of the pegmatite exhibits higher concentrations of F- than those in the core 

margin zone.  The anionic composition of apatite from the wall zone of the Palermo #2 

pegmatite is shown in Figure 28.  Apatite from the wall zone is dominantly fluorapatite 

and hydroxylapatite.  Composition of apatite from the intermediate zone is shown in 
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Figure 29.  Here the average composition is closer to the fluorapatite-hydroxylapatite 

join.  Figure 30 illustrates apatite compositions from the core margin of Palermo #2.  

Apatite compositions are highly variable in the core margin and appear to be dependent 

on the timing of crystallization (primary vs. secondary vs. tertiary).  Considering Figures 

28, 29 and 30, it appears that as crystallization proceeded from the wall zone to the 

various stages of apatite formation in the core margin, F- displays a decreasing trend 

whilst OH- and Cl- exhibit an increasing trend.  The Palermo #2 pegmatite is anomalous 

in that it contains relatively large amounts of hydroxylapatite and that hydroxylapatite 

distribution is not restricted to the core margin of the pegmatite.  The decrease in F- 

content of apatite group minerals from wall zone to core margin may be a monitor of 

decreasing F-content in the pegmatite forming-melt.  This trend is also illustrated by a 

corresponding increase in OH- and Cl-content in apatite group species.   

Carbonate-hydroxylapatite has been reported from the proximal Palermo #1 

pegmatite by Segeler et al. (1981) and Francis et al. (1993).  Members of the apatite 

group from Palermo #2 do not exhibit significant carbonate content.  Site occupancy of 

the PO4
3--site is quite high (see Table 5), leaving the site only 0.00 to 0.03 apfu that 

could possibly be attributed to CO2
3-.  
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Table 5: Representative electron microprobe analyses of apatite group minerals from the Palermo #2 
pegmatite. 
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Figure 28:  Ternary plot of the anionic content (apfu) of apatite group minerals from the wall zone of the 
Palermo #2 pegmatite. 
 

 

 

Figure 29:  Ternary plot of apatite group anions (apfu) from the intermediate zone of the Palermo #2 
pegmatite. 
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Figure 30:  Ternary plot of anionic content (apfu) of apatite group members from the core margin zone of 
the Palermo #2 pegmatite. 
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Figure 31:  Backscattered electron image of nearly acicular secondary fluorapatite hosted within a cavity 
in siderite from the core margin of Palermo #2. 
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Figure 32:  Primary hydroxylapatite (light blue) pod exhibiting partial replacement by siderite (tan) from the 
Palermo #2 pegmatite.  Field of view is approximately 10 cm. 
 

 
 
 
Figure 33:  Backscattered electron image of euhedral chlorapatite crystals related to the alteration of 
montebrasite from the Palermo #2 pegmatite. 
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Figure 34:  Backscattered electron image of chlorapatite as one of several alteration products of 
montebrasite from the Palermo #2 pegmatite (Nizamoff et al. 2003). 
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Montebrasite – (Li,Na)AlPO4(OH,F) 

Montebrasite occurs as a primary phase and is restricted to the core margin of 

Palermo #2.  Montebrasite is present as white masses up to 2 cm in association with 

muscovite, scorzalite-lazulite, quartz and triphylite (Figure 35).  Nearly all montebrasite 

at Palermo #2 displays some alteration to scorzalite-lazulite, augelite, gormanite-

souzalite, crandallite-goyazite or apatite group (hydroxylapatite and chlorapatite) 

secondary phosphates (Figure 37).  F- content is quite low and ranges from 1.04 to 

2.48% (Table 6).  London and Burt (1982) and Černá et al. (1972) report similar F 

content (1.5 to 3.5%) is indicative of secondary montebrasite from pegmatites of the 

White Picacho district, AZ and the Tanco pegmatite, Manitoba, Canada respectively.  

Examination of montebrasite from Palermo #2 in polished and thin section reveals it to 

be a primary phase (Figure 36).  In contrast to the Palermo #1 pegmatite, montebrasite 

from the Palermo #2 pegmatite does not exhibit any evidence of alteration via Na-

bearing fluids (lack of Na-bearing secondary phosphates:  brazilianite and  wardite).    

    

Figure 35:  Primary montebrasite (white) exhibiting alteration to scorzalite-lazulite (blue) from the Palermo 
#2 pegmatite.  Field of view is approximately 1.5 cm. 
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Table 6: Representative electron microprobe analyses of montebrasite from the Palermo #2 pegmatite. 
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Figure 36: Backscattered electron image showing incipient alteration of montebrasite (black) to 
scorzalite (white) (Nizamoff et al. 2003). 
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Figure 37:  Backscattered electron image depicting primary montebrasite (black) and associated 
alteration products (scorzalite-medium gray, gormanite-medium gray, crandallite-light gray, hydroxyl-
/chlorapatite-white) from Palermo #2.   
 

Graftonite – (Fe2+,Mn2+,Ca)3(PO4)2 

Graftonite is a rare primary phosphate at Palermo #2, forming crudely crystallized 

dark reddish brown masses up to 10 cm in maximum dimension (Figure 38).  

Sarcopside is present as a lamellar intergrowth with graftonite.  Graftonite and 

sarcopside occur in alternating layers that are approximately 1 mm in thickness.  

Several authors have suggested that the lamellar intergrowth of graftonite and 
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sarcopside is a result of an exsolution process (Peacor & Garske, 1964; Hurlbut, 1965; 

Hurlbut & Aristarain, 1968; Moore, 1972; Smeds et al. 1998).  Wise and Černý (1990) 

report the lamellar intergrowth observed as being an exsolution product of a high 

temperature, (Li,Ca)-rich precursor of graftonite.  FeO content in graftonite from 

Palermo #2 ranges from 37.6 to 38.3 wt.% and MnO ranges from 12.4 to 12.6 wt.% 

(Table 7 and Figure 39).  CaO content remains nearly constant at 7.1 wt.%.  The lack of 

compositional variability may be a result of the few analyses of graftonite from Palermo 

#2.  In contrast with graftonite from Palermo #2, graftonite from the nearby Palermo #1 

and Rice Mine pegmatites contains greater amounts of CaO (10.1 and 11.9 wt.%, 

respectively) and MnO (13.5 and 17.1 wt.%, respectively)  with correspondingly lower 

amounts of FeO (32.5 and 28.2 wt.%, respectively) (Figure 40). 

 

Figure 38:  Graftonite-sarcopside intergrowth from the Palermo #2 pegmatite.  Field of view is 
approximately 3 cm. 
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Table 7: Representative electron microprobe analyses of graftonite and sarcopside from the Palermo #2 
pegmatite. 
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Figure 39:  Ternary plot of Fe, Mn and Ca for graftonite and sarcopside from the Palermo #2 pegmatite. 
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Figure 40:  Ternary plot of Fe, Mn and Ca for graftonite from the Palermo #2 pegmatite and proximal 
Palermo #1 and Rice Mine pegmatites.  Palermo #1 and Rice Mine data provided by M.A. Wise. 
 

Sarcopside – Fe3(PO4)2 

Sarcopside is a rare primary phase at Palermo #2 and only occurs as an 

intergrowth with graftonite.  Light reddish brown (graftonite) and brownish gray 

(sarcopside) alternating ~1 mm thick layers are thought to represent exsolution from a 

high temperature, (Li,Ca)-rich precursor of graftonite (Wise and Černý, 1990) (Figure 

38).  Compositionally, sarcopside differs from graftonite in that it contains less CaO with 



 68

a corresponding increase in FeO (Table 7 and Figure 39).  MnO and MgO contents are 

nearly identical between the two species.   

Monazite- (Ce) – (Ce, La, Nd)PO4 

Monazite-(Ce) is very rare at Palermo #2 and occurs at the intermediate 

zone/core margin zone interface.  Monazite-(Ce) forms small (< 1 mm) grains hosted by 

quartz and feldspars (Figure 41).  Microprobe analyses of monazite confirmed that Ce is 

the dominant REE present (Table 8).   Nd2O3 and La2O3 contents range from 16.5 to 

17.0 wt.% and 8.1 to 8.8 wt.% respectively.   

 

 

Figure 41:  Backscattered electron image of monazite-(Ce) from the Palermo #2 pegmatite. 
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Xenotime – (Y) – YPO4 

Xenotime-(Y) is a rare phase at Palermo #2 and was identified through heavy 

mineral separation.  Xenotime-(Y) occurs as subhedral grains to 500 µm in size and is 

typically hosted by quartz and feldspars near the intermediate and core margin zone 

interface (Figure 42).  Compositionally xenotime-(Y) from Palermo #2 is interesting due 

to its relatively high content of mid-weight rare-earth elements (MREE) (Table 8).  

Dysprosium (Dy), gadolinium (Gd), erbium (Er) and ytterbium (Yb) oxide contents are 

moderately elevated and range from ~2 to 4.5%.  Roda et al. (2004) reports that 

xenotime-(Y) from the Cañada pegmatite, a phosphate-bearing pegmatite in 

Salamanca, Spain contains a similar moderate enrichment of Yb2O3 (avg. 2.7 wt.%), 

Dy2O3 (6.4 wt.%) and Gd2O3 (to 4.3 wt.%).     

 

Figure 42:  Backscattered electron image of a grain of xenotime-(Y) (white) hosted by quartz from the 
core margin of the Palermo #2 pegmatite. 
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Table 8: Representative electron microprobe analyses of xenotime-(Y) and monazite-(Ce) from the 
Palermo #2 pegmatite.  
 

 

 

Arrojadite group member – KNa4Ca(Fe2+Mn2+)14Al(PO4)12(OH,F)2 

X-ray diffraction analyses have confirmed that a member of the arrojadite group 

occurs in small quantities at Palermo #2.   “Arrojadite” forms masses of platy crystals up 

to 3 mm across that are typically intergrown with vivianite.  Backscattered electron 
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images reveal that the “arrojadite” appears to be a primary phase that has undergone 

alteration to secondary products (Figure 43).  Vivianite and goyazite(?) occur as 

alteration products of “arrojadite” from Palermo #2.  Microprobe analyses are necessary 

to properly speciate the “arrojadite” from Palermo #2. 

 

Figure 43:  Backscattered electron image of vivianite associated with relict fragments of “arrojadite” from 
sample P2-CM-07 from the Palermo #2 pegmatite, North Groton, NH.  The vivianite and “arrojadite” are 
hosted by granular crystals of siderite. 
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Wolfeite – Fe2+
2(PO4)(OH) 

Wolfeite occurs exclusively as reddish brown inclusions (up to 1.5 cm) in 

triphylite (Figure 44).  Most researchers consider wolfeite to be a primary phase (Plimer 

and Bucher, 1979; Moore, 1982), however work by Frondel (1949) and Masau et al. 

(2000) suggested that wolfeite can result from metasomatic alteration of arrojadite 

group minerals.  Wolfeite from Palermo #2 does not exhibit strong textural evidence 

suggesting that it is an alteration product of triphylite.   Compositionally wolfeite from 

Palermo #2 displays little variation in FeO, MnO and MgO content (Table 9). 

 

Figure 44:  Reddish grains of wolfeite hosted by gray-blue triphylite from the Palermo #2 pegmatite.  Field 
of view is approximately 2 cm.  
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Table 9: Representative electron microprobe analyses of wolfeite from the Palermo #2 pegmatite. 
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High Temperature Secondary Phosphates: 

Ferrisicklerite – Li(Fe3+, Mn2+)PO4 

Ferrisicklerite typically occurs as a dark brown rind on triphylite masses (Figure 

45).  Ferrisicklerite is a common alteration product of primary triphylite at Palermo #2 

and may completely replace masses or crystals of triphylite.  Ferrisicklerite is formed via 

high temperature metasomatic alteration of triphylite causing divalent Fe to be oxidized 

to trivalent Fe.  A representative electron microprobe analysis of ferrisicklerite is shown 

Table 10. 

 

Figure 45: Ferrisicklerite rind (dark brown) on the outer margin of a triphylite mass from the Palermo #2 
pegmatite, North Groton, NH.  View is 5 cm across. 
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Table 10: Representative electron microprobe analysis of ferrisicklerite from Palermo #2. 

 

 

Heterosite – Fe3+PO4 

Heterosite occurs as light to dark purple masses and coatings on ferrisicklerite 

and triphylite (Figure 46).  Heterosite is quite common in material collected from the 

mine tailings dump.  Like ferrisicklerite, heterosite is formed via high temperature 
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metasomatic alteration of triphylite causing divalent Fe to be oxidized to trivalent Fe.  

Additionally Li+ is concomitantly leached from the structure of ferrisicklerite resulting in 

the formation of heterosite.  A representative electron microprobe analysis of heterosite 

is shown Table 11. 

Table 11: Representative electron microprobe analysis of heterosite from the Palermo #2 pegmatite. 
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Figure 46: Heterosite (10 cm) from the Palermo #2 pegmatite, North Groton, NH.  Note development of 
yellow strunzite and black rockbridgeite along the outer margin. 
 

Lazulite group: 

Scorzalite – (Fe2+,Mg)Al2(PO4)2(OH)2 

Lazulite – MgAl2(PO4)2(OH)2 

Scorzalite-lazulite occurs infrequently at Palermo #2 as a high temperature 

metasomatic alteration product of montebrasite and/or triphylite + muscovite.  

Scorzalite-lazulite occurs as blue masses to 3 cm surrounding montebrasite and other 

Al-bearing secondary phosphates (Figure 47 and 48).  Scorzalite-lazulite is also found 

as small blue patches (< 1 cm) in the vicinity of triphylite that may be intermixed with 

muscovite.  FeO content in scorzalite-lazulite ranges from 4.0 to 16.0 wt.% whereas 

MgO content varies from 2.6 to 10.6 wt.% (Table 12).  Fransolet (1975) reports that 

scorzalite from the Angarf-Sud pegmatite, Anti-Atlas, Morocco is an alteration product of 
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triphylite with Al3+ introduced from the decomposition of muscovite.  Fransolet (1975) 

also proposed that scorzalite formed in temperature range of ~600 to 500ºC under 

conditions of low ƒO2 at Angarf-Sud. 

Table 12: Representative electron microprobe analyses of scorzalite-lazulite from Palermo #2. 
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Figure 47:  Scorzalite-lazulite (blue), an alteration product of montebrasite (white) from the Palermo #2 
pegmatite.  Field of view is approximately 1.5 cm 

 

 

Figure 48: Backscattered electron image showing scorzalite (white) as an alteration product of 
montebrasite (black) from Nizamoff et al. (2003). 
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Augelite – Al2(PO4)(OH)3 

Augelite occurs as a high temperature alteration product of montebrasite 

at Palermo #2.  Augelite forms small white to colorless masses (to 700µm) that 

occur sporadically in gormanite-souzalite (Figure 49).  Augelite is a fairly rare 

phase at Palermo #2 and is associated with gormanite-souzalite, montebrasite, 

chlorapatite and goyazite-crandallite.  A representative electron microprobe 

analysis of augelite is shown in Table 13. 

 
Table 13: Representative electron microprobe analysis of augelite from the Palermo #2 pegmatite.  
Low analytical totals are due to the presence of OH-. 
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Figure 49: Backscattered electron image of augelite, gormanite and chlorapatite from sample P2-CM-08, 
Palermo #2 pegmatite. 
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Low Temperature Secondary Phosphates: 

 
Rockbridgeite – Fe2+Fe3+

4(PO4)3(OH)5 

Frondelite – Mn2+Fe3+
4(PO4)3(OH)5 

Rockbridgeite-frondelite is a common low temperature alteration product of 

triphylite at Palermo #2.  Rockbridgeite-frondelite occurs as black to green bladed 

crystals (< 1.5 mm) that often form mats or hemispherical aggregates (Figures 50 and 

51).  Rockbridgeite-frondelite typically forms in an oxidizing environment and may be 

associated with strunzite, laueite, stewartite, ushkovite, beraunite, jahnsite-(CaMnFe), 

jahnsite-(CaMnMn), jahnsite-(CaMnMg) and whitmoreite.  A representative electron 

microprobe analysis of rockbridgeite is shown in Table 14.  Whereas semi-quantitative 

EDS analyses indicate that frondelite is likely present at Palermo #2, electron 

microprobe analysis of said samples is necessary to confirm this finding. 
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Figure 50:  Rockbridgeite (black) with beraunite (green), mitridatite (yellow green), jahnsite (brown) lining 
an alteration cavity in triphylite (blue-gray).  Field of view is approximately 3 cm. 
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Table 14: Representative electron microprobe analysis of rockbridgeite from Palermo #2.  Low analytical 
totals are due to the presence of OH-. 
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Figure 51:  Backscattered electron image of rockbridgeite crystals in a secondary cavity in altered 
triphylite from the Palermo #2 pegmatite.  
 
 
Beraunite – Fe2+Fe3+

5(PO4)4(OH)5 · 4 H2O 

Beraunite occurs as greenish acicular crystals to 1.5 mm that often form 

spherical aggregates or as radiating sprays of crystals (Figure 52 and 53).  In highly 

oxidized environments, beraunite may possess an orange color and form as botryoidal 

crusts.  Beraunite typically forms in an oxidizing environment and may be associated 

with strunzite, laueite, stewartite, rockbridgeite-frondelite, jahnsite-(CaMnFe), jahnsite-
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(CaMnMg), jahnsite-(CaMnMn) and whitmoreite.  A representative electron microprobe 

analysis of beraunite is shown in Table 15. 

Table 15: Representative electron microprobe analysis of beraunite from the Palermo #2 pegmatite.  Low 
analytical totals are due to the presence of OH- and H2O.  
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Figure 52 (left):  Green beraunite with orange whitmoreite on siderite, field of view is approximately 3 mm.  
Figure 53 (right):  Backscattered electron image of beraunite from the Palermo #2 pegmatite. 
 
 
Kryzhanovskite – (Fe3+, Mn)Fe3+

2(PO4)2(OH)3 

Kryzhanovskite is present as reddish brown to brown masses to 2 cm that often 

appear to show signs of being partially etched (Figure 54 and 55).  Although Fe in 

kryzhanovskite is trivalent, these minerals typically occur in a non-oxidizing environment 

in association with vivianite, ludlamite and fairfieldite-messelite.  Moore (1971) and 

Moore et al., (1980) suggested that kryzhanovskite may form from the oxidation of 

phosphoferrite - Fe2+Fe2+
2(PO4)2 · 3 H2O.  Based on Moore’s supposition, it appears 

that at Palermo #2 phosphoferrite crystallized in the non-oxidizing assemblage with 

vivianite, ludlamite and fairfieldite group minerals and was subsequently oxidized to 

kryzhanovskite.  Consequently in the observed assemblage at Palermo #2, 

kryzhanovskite has a pseudomorphic relationship with phosphoferrite.  A representative 

electron microprobe analysis of kryzhanovskite is shown in Table 16.  
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Table 16: Representative electron microprobe analysis of kryzhanovskite from Palermo #2.  Low 
analytical totals are due to the presence of OH-. 
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Figure 54:  Backscattered electron image of kryzhanovskite crystals from sample P2-CM-21 from the 
Palermo #2 pegmatite.   
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Figure 55: Kryzhanovskite (brown) with vivianite (blue), ludlamite (light green) and laueite (orange in 
cavity).  Field of view is approximately 3 cm.   
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Strunzite – Mn2+Fe3+
2(PO4)2(OH)2 · 6 H2O 

Strunzite is present at Palermo #2 as straw-yellow acicular crystals to 1 cm in 

length (Figure 56).  Strunzite forms in an oxidizing environment and may be associated 

with laueite, stewartite, rockbridgeite-frondelite, jahnsite-(CaMnFe), jahnsite-(CaMnMg), 

jahnsite-(CaMnMn), beraunite and whitmoreite.  A representative electron microprobe 

analysis of strunzite is shown in Table 17. 

 

 

Figure 56:  Strunzite with whitmoreite (orange) on siderite (white) from the Palermo #2 pegmatite.  Field of 
view is approximately 1 cm. 
 

 

 

 



 92

Table 17: Representative electron microprobe analysis of strunzite from the Palermo #2 pegmatite.  Low 
analytical totals are due to the presence of OH- and H2O.  
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Whitmoreite – Fe2+Fe3+
2(PO4)2(OH)2 · 4 H2O 

Whitmoreite occurs as orange to yellow-brown crystals to 1 mm that exhibit a 

variety of habits at Palermo #2.  Whitmoreite typically forms central spheres from which 

acicular crystals protrude outward giving the appearance of a “naval mine” (Figure 57).  

Other forms observed at Palermo #2 include groupings of orange prismatic crystals 

(Figure 58) and smooth spherical masses of crystals.  Whitmoreite forms under 

oxidizing conditions and may be associated with laueite, rockbridgeite-frondelite, 

beraunite and strunzite.  A representative electron microprobe analysis of whitmoreite 

from sample P2-CM-08 is shown in Table 18. 
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Table 18: Representative electron microprobe analysis of whitmoreite from Palermo #2.  Low analytical 
totals are due to the presence of OH- and H2O. 
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Figure 57 (left):  Backscattered electron image of whitmoreite from sample P2-CM-35. 
Figure 58 (right): Backscattered electron image of whitmoreite from sample P2-CM-42.   
 

Vivianite – Fe2+
3(PO4)2 · 8 H2O 

Vivianite is abundant in the vicinity of triphylite masses in the core margin of 

Palermo #2 where it may occur as thin bluish coatings along fractures and cleavage 

planes of other minerals such as triphylite.  The presence of vivianite imparts a darker 

blue color to triphylite.  Vivianite also forms bladed to blocky transparent blue crystals 

up to 3 mm in cavities resulting from the alteration of primary phosphates (Figure 59). 

Vivianite forms in a non-oxidizing environment and may be associated with ludlamite, 

kryzhanovskite, fairfieldite-messelite and hydroxylapatite.  A representative electron 

microprobe analysis of vivianite is shown in Table 19. 
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Table 19: Representative electron microprobe analysis of vivianite from the Palermo #2 pegmatite.  Low 
analytical totals are due to the presence of H2O.  
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Figure 59:  Backscattered electron image of vivianite from the Palermo #2 pegmatite. 

 
Ludlamite – Fe3(PO4)2 · 4 H2O 

Ludlamite forms nearly colorless to apple green tablets and masses to 1 cm in 

size (Figure 61).  Ludlamite often exhibits a slightly etched appearance crystal surfaces 

(Figure 60).  Ludlamite forms in a non-oxidizing environment and may be associated 

with vivianite, kryzhanovskite, fairfieldite-messelite and hydroxylapatite.  A 

representative electron microprobe analysis of ludlamite is shown in Table 20. 
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Table 20: Representative electron microprobe analysis of ludlamite from the Palermo #2 pegmatite.  Low 
analytical totals are due to the presence of H2O. 
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Figure 60:  Backscattered electron image of ludlamite exhibiting hoppered and/or etched surfaces from 
Palermo #2. 
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Figure 61:  Light green to colorless ludlamite with siderite (light tan) and mitridatite (olive green) in sample 
P2-CM-25 from Palermo #2.  Field of view is approximately 5 cm. 
 
Mitridatite – Ca2Fe3+

3(PO4)3O2 · 3 H2O 

Mitridatite occurs as a distinctive yellowish green to light olive green coating in 

secondary cavities produced by metasomatic alteration of primary phosphates (triphylite 

and apatite group).  Mitridatite also occurs on fracture surfaces of minerals and may 

occur up to several meters away from its primary phosphate precursory minerals.  

Mitridatite typically forms fairly late in the paragenetic sequence under oxidizing 

conditions and may be associated with rockbridgeite-frondelite, strunzite, laueite, 

beraunite, jahnsite-(CaMnFe), jahnsite-(CaMnMn) and whitmoreite. 
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Childrenite – Fe2+Al(PO4)(OH)2 · H2O 

Eosphorite – Mn2+Al(PO4)(OH)2 · H2O 

Childrenite crystallizes in the orthorhombic system, with some crystals appearing 

to be monoclinic.  Eosphorite crystallizes in the monoclinic system, with some crystals 

appearing to be pseudo-orthorhombic.  Childrenite-eosphorite generally forms tan to 

orange-pink prismatic crystals up to 2 cm at Palermo #2 (Figure 62).  Childrenite-

eosphorite may display compositional zoning within crystals and typically forms in a 

non-oxidizing environment.  Childrenite-eosphorite is normally associated with vivianite, 

fairfieldite-messelite, ludlamite, hydroxylapatite and siderite.  Representative electron 

microprobe analyses of childrenite and eosphorite are shown in Table 21. 

 

Figure 62:  Childrenite-eosphorite (pinkish tan prismatic) with whitmoreite (orange spheres), beraunite 
(green mats), strunzite (straw needles) and siderite (brownish white).  Field of view is approximately 1 cm. 
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Table 21: Representative electron microprobe analyses of childrenite-eosphorite from Palermo #2.  Low 
analytical totals are due to the presence of OH- and H2O. 
 

 
 
 
 
Gormanite – Fe2+

3Al4(PO4)4(OH)6 · 2 H2O 

Souzalite – Mg3Al4(PO4)4(OH)6 · 2 H2O 

Gormanite is found as greenish-blue acicular crystals that form nodular masses to 

10 cm associated with montebrasite, scorzalite-lazulite, augelite, goyazite-crandallite and 

chlorapatite (Figure 63).  Gormanite nodules and masses from Palermo #2 are likely the 
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largest reported from the United States.  Souzalite occurs in greenish-blue patches to 

0.5 cm in association with montebrasite, scorzalite-lazulite, gormanite, vivianite, 

kryzhanovskite, fairfieldite and whiteite group minerals and represents a localized 

concentration of Mg.  Gormanite and souzalite are low temperature alteration products 

of montebrasite and possibly scorzalite-lazulite and generally form in non-oxidizing 

conditions.  In some cases it appears that gormanite may be an alteration product of 

triphylite + muscovite.  Representative electron microprobe analyses of gormanite and 

souzalite are shown in Table 22.   

 

 
 
Figure 63:  Gormanite-souzalite (bluish green) and associated minerals montebrasite (white) and 
scorzalite-lazulite (blue) from the Palermo #2 pegmatite.  Field of view is approximately 2 cm. 
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Table 22: Representative electron microprobe analyses of gormanite-souzalite from sample P2-CM-21 
from Palermo #2.  Low analytical totals are due to the presence of OH- and H2O.  
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Whiteite group: 

Whiteite-(MnFeMg) – Mn2+Fe2+Mg2Al2(PO4)4(OH)2 · 8 H2O 

Whiteite-(CaMnMg) – CaMn2+Mg2Al2(PO4)4(OH)2 · 8 H2O 

Whiteite-(CaFeMg) – CaFe2+Mg2Al2(PO4)4(OH)2 · 8 H2O 

Jahnsite-(CaMnFe) – CaMn2+Fe2+
2Fe3+

2(PO4)4(OH)2 · 8 H2O 

Jahnsite-(CaMnMg) – CaMn2+Fe2+
2Fe3+

2(PO4)4(OH)2 · 8 H2O 

Jahnsite-(CaMnMn) – CaMn2+Mn2+
2Fe3+

2(PO4)4(OH)2 · 8 H2O 

 
Six members of the whiteite group exist at Palermo #2: whiteite-(MnFeMg), 

whiteite-(CaMnMg), whiteite-(CaFeMg), jahnsite-(CaMnFe), jahnsite-(CaMnMg) and 

jahnsite-(CaMnMn).  Jahnsite-(CaMnFe), jahnsite-(CaMnMg) and jahnsite-(CaMnMn) 

occur as yellow to orange to brown prismatic monoclinic crystals of less than 2 mm 

(Figure 64 and 65).  Crystals of jahnsite may show striations parallel to the prism 

elongation.  Jahnsite typically forms in an oxidizing environment and may be associated 

with laueite, rockbridgeite-frondelite, strunzite, beraunite, mitridatite and whitmoreite.  

Whiteite-(MnFeMg), whiteite-(CaFeMg) and whiteite-(CaMnMg) form brown to light tan 

to nearly colorless radiating sprays and aggregates of prismatic monoclinic crystals to 

1.5 mm in size (Figure 66).  Whiteite crystallizes in non-oxidizing to slightly oxidizing 

conditions and is often associated with paravauxite-gordonite, scorzalite-lazulite, 

fairfieldite-messelite and gormanite-souzalite.  Whiteite group minerals occasionally 

exhibit compositional zoning within single crystals.  Jahnsite-(CaMnFe) overgrowths on 

whiteite-(MnFeMg) have been observed.  Additionally whiteite-(CaFeMg) has been 

observed as an overgrowth on jahnsite-(CaMnMn) (see Figure 67).   Representative 

electron microprobe analyses of whiteite group species are shown in Table 23 and 24.   
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Table 23: Representative electron microprobe analyses of whiteite group minerals (jahnsite) from Palermo 
#2.  Low analytical totals are due to the presence of OH- and H2O. 
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Table 24: Representative electron microprobe analyses of whiteite group minerals (whiteite) from the 
Palermo #2 pegmatite.  Low analytical totals are due to the presence of OH- and H2O. 
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Figure 64:  Backscattered electron image of jahnsite-(CaMnMn) on rockbridgeite from sample P2-CM-09 
from Palermo #2. 
 

 
 
Figure 65:  Backscattered electron image of jahnsite-(CaMnMn) crystals from sample P2-CM-09 from 
Palermo #2. 
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Figure 66:  Backscattered electron image of prismatic whiteite-(CaMnMg) crystals from core margin 
sample P2-CM-30 from Palermo #2.  
 

 

Figure 67:  Energy dispersive X-ray map of zoned jahnsite-whiteite from sample P2-CM-27 from Palermo 
#2.  Al-rich whiteite-(CaFeMg) (red) occurs as an overgrowth on Fe-rich jahnsite-(CaMnMn) (green). 

Al 
Fe 
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Paravauxite group: 

Laueite – Mn2+Fe3+
2(PO4)2(OH)2 · 8 H2O 

Stewartite – Mn2+Fe3+
2(PO4)2(OH)2 · 8 H2O 

Paravauxite – Fe2+Al2(PO4)2(OH)2 · 8 H2O  

Ushkovite – MgFe3+
2(PO4)2(OH)2 · 8 H2O 

Gordonite – MgAl2(PO4)2(OH)2 · 8 H2O 

Paravauxite group minerals are widespread in the low temperature secondary 

phosphate assemblages at Palermo #2.  Laueite and ushkovite form yellowish to 

reddish orange prisms to 2 mm that are longitudinally striated, possess diamond-

shaped cross-sections and have steeply angled terminations (Figure 69).  Stewartite is 

rare at Palermo #2 and occurs as bright yellow bladed crystals exhibiting extremely 

steep angled terminations that converge to a point.  The presence of stewartite was 

confirmed via X-ray diffraction.     Laueite, stewartite and ushkovite are generally found 

in oxidizing environments and are generally associated with rockbridgeite-frondelite, 

strunzite, beraunite, jahnsite-(CaMnFe), jahnsite-(CaMnMn), mitridatite and whitmoreite.  

Paravauxite and gordonite occur as colorless to white to pale yellow-orange prisms that 

are longitudinally striated, possess diamond-shaped cross-sections and have steeply 

angled terminations (Figure 68).  Gordonite principally occurs in non-oxidizing 

environments, whereas paravauxite may occur in non-oxidizing to slightly oxidizing 

conditions.  Paravauxite and gordonite are typically associated with scorzalite-lazulite, 

fairfieldite-messelite, gormanite-souzalite, whiteite-(MnFeMg), whiteite-(CaMnMg) and 

siderite.  Like minerals of the whiteite group, members of the paravauxite group may 

display compositional zonation.  Zoned crystals of paravauxite-gordonite and 
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paravauxite-laueite have been observed from Palermo #2.  Representative electron 

microprobe analyses of laueite, ushkovite, paravauxite and gordonite are given in Table 

25. 

Table 25: Representative electron microprobe analyses of paravauxite group minerals from Palermo #2.  
Low analytical totals are due to the presence of OH- and H2O. 
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Figure 68:  Backscattered electron image of compositionally zoned paravauxite-gordonite crystals from 
the Palermo #2 pegmatite (sample P2-CM-27). 
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Figure 69:  Laueite crystals from the Palermo #2 pegmatite, field of view is approximately 3 mm. 

 
Fairfieldite group: 

Messelite – Ca2(Fe2+,Mn2+)(PO4)2 · 2 H2O 

Fairfieldite – Ca2(Mn2+,Fe2+)(PO4)2 · 2 H2O 

Collinsite – Ca2(Mg,Fe2+)(PO4)2 · 2 H2O 

Members of the fairfieldite group present at Palermo #2 include messelite, 

fairfieldite and collinsite.  Fairfieldite group minerals are usually colorless to white to 

pale blue in color and form platy, bladed and feathery sheaf-like crystals to 1.5 mm in 

size (Figure 70 and 71).   Fairfieldite group minerals may display slight compositional 

zoning within crystals and typically form in a non-oxidizing environment.  Fairfieldite and 
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messelite are often associated with childrenite-eosphorite, vivianite, ludlamite, 

hydroxylapatite and carbonates (siderite), whereas collinsite is associated with siderite, 

fluorapatite/hydroxylapatite and plumbogummite group minerals.  Representative 

electron microprobe analyses of messelite, fairfieldite and collinsite are given in Table 

26. 

Table 26: Representative electron microprobe analyses of fairfieldite group minerals from Palermo #2.  
Low analytical totals are due to the presence of H2O. 
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Figure 70:  Backscattered electron image of fairfieldite-messelite crystals lining a cavity in siderite from 
Palermo #2.   
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Figure 71:  Backscattered electron image of collinsite from core margin sample P2-CM-05 of the Palermo 
#2 pegmatite. 
 
Plumbogummite group: 

Crandallite – CaAl3(PO4)2(OH,H2O)6 

Goyazite – SrAl3(PO4)2(OH,H2O)6 

Goyazite and crandallite are found as platy laths forming alteration rims on 

montebrasite or as pseudohexagonal platy crystals associated with 

fluorapatite/hydroxylapatite in cavities in siderite (Figure 72 and 73).  Goyazite and 

crandallite exhibit compositional zonation in some cases (i.e. crandallite transitioning to 

goyazite).  Goyazite-crandallite also occurs with vivianite as a possible alteration product 
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of “arrojadite”.  Representative electron microprobe analyses of goyazite and crandallite 

are shown in Table 27. 

 
Table 27: Representative electron microprobe analyses of plumbogummite group minerals from the 
Palermo #2 pegmatite.  Low analytical totals are due to the presence of OH- and H2O. 
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Goyazite and “arrojadite” are the only species present at Palermo #2 that contain 

Sr and Ba as major to minor constituents.  In contrast, the nearby Palermo #1 pegmatite 

contains numerous phases (bjarebyite, kulanite, goyazite, goedkenite, palermoite) that 

contain substantial amounts of Ba and Sr (Nizamoff et al. 2004). 

 

 

Figure 72:  Backscattered electron image of crandallite from the core margin of the Palermo #2 
pegmatite. 
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Figure 73:  Secondary electron image of pseudohexagonal platy goyazite crystals from Palermo #2. 
 
 
Autunite – Ca(UO2)2(PO4)2 · 10-12 H2O 

Autunite occurs as small (< 1 mm) yellow to greenish yellow tabular crystals in 

the core margin at Palermo #2.  Autunite may occur on joint and fracture surfaces or in 

small cavities and is often associated with quartz, muscovite, torbernite, pyrite, and 

goethite.  Autunite is a product of low temperature oxidative alteration of primary 

uranium-bearing minerals (uraninite) in the presence of Ca ions leached from Ca-

bearing minerals (apatite group, carbonates, etc.).   
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Torbernite – Cu2+(UO2)2(PO4)2 · 8-12 H2O 

Torbernite forms small (< 1 mm) yellow greenish to green tabular crystals in the 

core margin at Palermo #2.  Torbernite may occur on joint and fracture surfaces or 

small cavities and is often associated with quartz, muscovite, autunite, pyrite, and 

goethite.  Torbernite is a typical product of low temperature oxidative alteration of 

primary uranium-bearing minerals (uraninite) in the presence of Cu-bearing sulfides.  

  

Strengite – Fe3+PO4 · 2 H2O  

Phosphosiderite – Fe3+PO4 · 2 H2O 

Strengite and its dimorph phosphosiderite occur as small (< 1 mm) pinkish to red 

crystals in association with rockbridgeite, pyrite/pyrrhotite and gypsum.  Strengite and 

phosphosiderite typically form at low temperatures (< 250ºC) in an oxidizing 

environment.  Strengite and phosphosiderite may also occur as products of the 

weathering environment as these phases have been identified from materials collected 

from the mine tailings dump.  Interaction of altered primary phosphates and the resulting 

secondary species with meteoric water may be a possible mechanism for a weathering 

origin of strengite and phosphosiderite. 
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 Phosphate Paragenesis 

Approximately two hundred secondary phosphate species have been reported 

from granitic pegmatites.  Most secondary phosphates are formed by subsolidus 

metasomatism of primary phosphates by aqueous fluids (Moore 1973).  This alterative 

process takes place over a temperature range from ~600 to <100°C under both 

oxidative and reducing conditions (Moore 1973).  Fransolet et al. (1985) suggested a 

lower temperature range for this process:  ~400 to 25ºC for the phosphate assemblage 

present at the Angarf Sud pegmatite, Anti-Atlas, Morocco.  Experimental work by 

Shigley and Brown (1986) found that lithiophilite crystallizes from a hydrous pegmatitic 

melt containing ~ 2 wt.% P2O5 over a temperature range of ~ 500 to 400ºC.  It should be 

noted that these temperature ranges may be subject to some degree of variability 

depending on the volatile content (H2O, F-, Cl-, CO3
2-, BO3

3-, Li+ and PO4
3+) of the 

pegmatitic melt.  Assuming crystallization of primary phosphates between ~ 600 to 

500ºC, and akin to Moore (although with slight differences in temperature), this author 

has chosen to split the metasomatic alterative process into two stages: high 

temperature metasomatic alteration (from ~500-300°C) and low temperature 

metasomatic alteration (from ~300-100°C) (Figure 74).  The 300ºC boundary is proximal 

to the approximate temperature (~250ºC) where mineral structures can accommodate 

bonded water molecules in a stable arrangement (Moore 1973).  Fransolet et al. (1985) 

suggested that secondary phosphates can form at ambient temperatures in the near-

surface/surface environment and this phenomenon should not be discounted. 
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Figure 74:  Generalized phosphate paragenesis and temperature conditions for primary and secondary 
species from LCT-type granitic pegmatites. 
      

Triphylite, montebrasite and fluorapatite/hydroxylapatite are the main primary 

phases that facilitate the formation of secondary phosphates at Palermo #2.  The fluids 

responsible for the alterative process are thought to be post-magmatic and aqueous 

with varying acidity/alkalinity (Moore, 1973; Hawthorne, 1998).  The presence of Fe2+-, 

Fe3+-, Mn2+- and Mn3+-bearing secondary phosphates can provide insight regarding 

oxygen fugacity and the redox conditions during formation of the secondary phosphate 

suites.  Large scale replacement of primary phosphates by siderite/rhodochrosite 

provides evidence that secondary phosphate-forming aqueous fluids can have a 

substantial carbonate (CO3
2-) component. 

In addition to the primary phosphates that are being altered, the minerals in 

contact with and proximal to the primary phosphate may contribute cations and /or 



 123

anions to the aqueous metasomatic fluids.  The ensuing combination of cations and/or 

anions results in a complicated geochemical/mineralogical environment that may yield a 

large number of secondary species.  In addition to the deposition of secondary 

phosphate species at the site of the parental primary phosphate, secondary phosphates 

may be deposited along fractures and joint surfaces radiating outward from the primary 

phosphate masses.  Consequently, secondary phosphates can be found many meters 

away from their primary source.  The metasomatic alteration schemes that follow are 

meant to illustrate observed assemblages with the caveat that these schemes show 

some degree of overlap (i.e. – certain species can occur in multiple environments and 

environmental constancy (T, pH, ƒO2, etc.) cannot be assured).  

High Temperature Metasomatic Alteration of Triphylite-lithiophilite: 

The high temperature alteration of triphylite at the Palermo #2 pegmatite occurs 

during a temperature interval between ~500 to 300º C and involves cation exchange, 

leaching of Li+ and may include hydroxylation (Figure 75).  The main alteration 

sequence observed is the Mason-Quensel sequence (Quensel, 1937; Mason, 1941), 

involving the oxidative alteration sequence: triphylite → ferrisicklerite → heterosite.  

Divalent Fe in triphylite is oxidized to trivalent Fe yielding ferrisicklerite (Figure 76).  

Leaching of Li+ from ferrisicklerite produces heterosite and its diagnostic purple hue.  

Addition of Na+ and Ca2+ in the oxidizing environment may yield members of the 

alluaudite group (not observed at Palermo #2).  High temperature alteration of triphylite-

lithiophilite in the presence of non-oxidizing conditions may yield wolfeite-triploidite, 

griphite, scorzalite, whitlockite or natrophilite.  At Palermo #2, scorzalite is the sole high 

temperature alteration product of triphylite in non-oxidizing conditions.  Scorzalite 
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occurring proximally to triphylite is often intimately associated with altered muscovite of 

a greenish color.  Muscovite likely donates the Al3+ required for the formation of 

scorzalite as Al3+ is typically present in only trace amounts in triphylite, although there 

are numerous minerals (schorl, almandine, feldspars) present in the core margin that 

could be possible sources of Al3+.  Moore (1973) noted a significant mass of scorzalite 

as an alteration product of triphylite at the Palermo #1 pegmatite. 

 
 

Figure 75: Typical high temperature metasomatic alteration conditions and products for the triphylite-
lithiophilite series.  *Species occurring at other localities and not found at Palermo #2. 
 

Figure 77 illustrates the major cation content (Fe, Mn and Mg) in the primary 

phosphates triphylite, wolfeite, graftonite and sarcopside.  Also plotted are compositions 

of selected high temperature metasomatic alteration products of triphylite (ferrisicklerite 

and heterosite); low temperature metasomatic phosphates (oxidizing conditions): 

Non-oxidizing conditions

Triphylite-lithiophilite 
Li(Fe2+,Mn2+)PO4 – Li(Mn2+,Fe2+)PO4 

High Temperature Metasomatic Alteration 

Oxidizing conditions 
Leaching of Li+ 

Addition of OH- 
Wolfeite-triploidite* 

 
Addition of Al3+ 

Griphite*, Scorzalite 
 

Addition of Ca2+ 
Whitlockite* 

 
Addition of Na+ 
Natrophilite* 

Oxidation of Fe2+ to Fe3+ 
Ferrisicklerite-sicklerite 

 
Leaching of Li+ 

Heterosite-purpurite 
 

Addition of Na+ and Ca2+ 
Alluaudite group* 

~ 500°C - 300°C 
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beraunite, rockbridgeite, and whitmoreite; and low temperature metasomatic 

phosphates (non-oxidizing conditions): kryzhanovskite, ludlamite and vivianite.  Little 

compositional variation is evident between primary triphylite and its secondary products 

ferrisicklerite and heterosite suggesting that cations are mainly being exchanged and 

that additional cations are not likely being introduced to the system from other species 

at Palermo #2.  Secondary phosphates forming in an oxidizing environment contain 

significantly less Mg in comparison with secondary phosphates forming in non-oxidizing 

conditions.   

 

 
 

Figure 76: Triphylite mass (blue, 5 cm) exhibiting a rind of ferrisicklerite (dark brown) from the Palermo #2 
pegmatite, North Groton, NH. 
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Figure 77:  FetotMntotMg (apfu) plot of primary phosphates: triphylite, graftonite, wolfeite and sarcopside 
(circles); high temperature metasomatic phosphates: ferrisicklerite and heterosite (squares); low 
temperature metasomatic phosphates - oxidizing conditions: beraunite, rockbridgeite, and whitmoreite 
(triangles-down); and low temperature metasomatic phosphates - non-oxidizing conditions: 
kryzhanovskite, ludlamite and vivianite (triangles-up) from the Palermo #2 pegmatite. 
 

Low Temperature Metasomatic Alteration of Triphylite-lithiophilite (oxidizing): 

The low temperature alteration of triphylite at the Palermo #2 pegmatite occurs 

during a temperature interval between ~300 to 100º C and under oxidizing conditions is 

shown in Figure 78.  In addition to cationic exchange and hydroxylation occurring in the 

high temperature alteration scheme, hydration and additional hydroxylation may take 

place in the ~300 to 100ºC temperature range.  At Palermo #2, the major cations 

involved in the formation of secondary phosphates include: Fe2+, Fe3+, Mn2+, Ca2+ and 
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Mg2+.  The exchange/addition of Fe2+, Fe3+, Mn2+, Ca2+ and Mg2+ in combination with 

hydroxylation and hydration has resulted in the formation of rockbridgeite-frondelite, 

strunzite, laueite, stewartite, ushkovite, beraunite, jahnsite-(CaMnFe), jahnsite-

(CaMnMn), jahnsite-(CaMnMg), kryzhanovskite, mitridatite and whitmoreite.  At other 

phosphate-bearing pegmatites additional cations (mainly alkalis and transition metals) 

can be added to the system resulting in the formation of numerous secondary species 

(Figure 78).     

Oxidizing conditions
Hydration and additional hydroxylation 

Addition of cations:

Low Temperature Metasomatic Alteration

~ 300°C - <100°C

Cyrilovite*Na+

K+

Ca2+

Fe2+

Fe3+

Mn2+

Mn3+

Mg2+

Ba2+

Zn2+

Be2+

Perloffite*

Leucophosphite-tinsleyite*

Faheyite*
Roscherite group*

Rockbridgeite-frondelite
Strunzite
Jahnsite-(CaMnMn)
Jahnsite-(CaMnFe)
Jahnsite-(CaMnMg)
Kryzhanovskite
Laueite-pseudolaueite
Ushkovite
Stewartite
Strengite-phosphosiderite
Whitmoreite-earlshannonite
Beraunite
Mitridatite
Robertsite*
Bermanite*

Schoonerite*
Jungite*

 
 
Figure 78: Possible low temperature metasomatic alteration products resulting from oxidizing conditions 
for the triphylite-lithiophilite series.  *Denotes species not occurring at Palermo #2. 
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Low Temperature Metasomatic Alteration of Triphylite-lithiophilite (non-

oxidizing): 
 

The low temperature alteration of triphylite at the Palermo #2 pegmatite occurs 

during a temperature interval between ~300 to 100º C and under non-oxidizing 

conditions (Figure 79).  In addition to cationic exchange and hydroxylation occurring in 

the high temperature alteration scheme, hydration and additional hydroxylation may 

take place in the ~300 to 100ºC temperature range.  At Palermo #2, the major cations 

involved in the formation of secondary phosphates include: Fe2+, Mn2+, Ca2+ and Mg2+.  

The exchange/addition of Fe2+, Mn2+, Ca2+ and Mg2+ in combination with hydroxylation 

and hydration has resulted in the formation of vivianite, ludlamite, fairfieldite-messelite 

and childrenite-eosphorite.   

Additional cations involved in the formation of secondary phosphates include: 

Al3+ and Sr2+.  The exchange/addition of Al3+, Fe2+, Mn2+, Ca2+ and Mg2+ in combination 

with hydroxylation and hydration has resulted in the formation of whiteite group species, 

paravauxite group species and childrenite-eosphorite.  The exchange/addition of Al3+ 

and Sr2+ in combination with hydroxylation and hydration has resulted in the formation 

of crandallite and goyazite. 
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Non-oxidizing conditions
Hydration and additional hydroxylation 

Addition of cations: 

Low Temperature Metasomatic Alteration

~ 300°C - <100°C

Na+

Fe2+

Ca2+

Mn2+

Mg2+

Sr2+

Al3+

Zn2+

Be2+

Goyazite-crandallite 
Palermoite-bertossaite*
Goedkenite*

Phosphophyllite*
Scholzite-parascholzite*
Hopeite*

Roscherite group*
Moraesite*

Ludlamite
Vivianite
Phosphoferrite-reddingite*
Messelite-fairfieldite-collinsite
Fluorapatite/hydroxylapatite
Hureaulite*

Fillowite*
Arrojadite-dickinsonite
Wyllieite*

Childrenite-eosphorite 
Whiteite
Paravauxite

 

Figure 79: Possible low temperature metasomatic alteration products resulting from non-oxidizing 
conditions for the triphylite-lithiophilite series.  *Species occurring at other localities and not found at 
Palermo #2. 
 

Secondary Phosphate Alteration Sequence for Montebrasite-amblygonite: 

Like triphylite-lithiophilite, montebrasite-amblygonite follows a two stage 

metasomatic alteration sequence and occurs in both oxidizing and non-oxidizing 

conditions.  High temperature metasomatic alteration of montebrasite-amblygonite 

occurs over a temperature range of ~500 to 300º C and involves cation exchange, 

leaching of Li+ and F-, and hydroxylation (Figure 80).  The high temperature alteration 

sequence observed at Palermo #2 is montebrasite → scorzalite-lazulite ± augelite.  

Leaching of Li+ and F- from montebrasite in combination with the addition of Fe2+, Mg2+ 
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and OH-, result in the formation of scorzalite-lazulite ± augelite (Figure 81).   Scorzalite-

lazulite is quite prevalent at Palermo #2 whereas augelite is more sporadic in 

occurrence.   

 

 
 

Figure 80: Typical high temperature metasomatic alteration conditions and products for montebrasite-
amblygonite (modified from Nizamoff et al. 2002).   
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Figure 81: Backscattered electron image showing incipient alteration of montebrasite (very dark 
gray) to scorzalite (white) from Nizamoff et al. 2003. 

 

Low Temperature Metasomatic Alteration of Montebrasite-amblygonite: 

The low temperature alteration of montebrasite at the Palermo #2 pegmatite 

occurs during a temperature interval between ~300 to 100º C and under oxidizing to 

non-oxidizing conditions (Figure 82).  In addition to cation exchange and hydroxylation 

occurring in the high temperature alteration scheme, hydration and additional 

hydroxylation may take place in the ~300 to 100ºC temperature range.  At Palermo #2, 

the major cations involved in the formation of secondary phosphates include: Fe2+, 

Mn2+, Ca2+, Mg2+ and Al3+.  The exchange/addition of Fe2+, Mn2+, Ca2+, Mg2+ and Al3+ in 

combination with hydroxylation and hydration has resulted in the formation of 

gormanite-souzalite, augelite, goyazite-crandallite, chlorapatite-hydroxylapatite, 

paravauxite-gordonite, whiteite-(MnFeMg), whiteite-(CaMnMg), fairfieldite-messelite-

Montebrasite

Scorzalite 

Scorzalite



 132

collinsite and childrenite-eosphorite.  The overall alteration sequence of montebrasite 

from Palermo #2 displays some similarity to the alteration of montebrasite from 

pegmatites in the Karibib region of Namibia.  Baldwin et al. (2000) report 

natromontebrasite, brazilianite, lazulite-scorzalite, goyazite-gorceixite-crandallite and 

hydroxylapatite as typical alteration products of montebrasite forming at temperatures 

below ~450ºC.  The assemblage present at Palermo #2 suggests a lack of reactivity of 

Na+ in the alterative fluids as no brazilianite or other Na-bearing phosphates are 

present.   

 

Hydration and additional hydroxylation 
Addition of cations: 

Low Temperature Metasomatic Alteration

~ 300°C - <100°C
Brazilianite*
Lacroixite*
Wardite*

Na+

Al3+

Ca2+

Fe2+

Mn2+

Mg2+

Sr2+

Ba2+

Be2+

Palermoite-bertossaite*
Goedkenite*
Goyazite-crandallite

Augelite
Gormanite-souzalite
Foggite*
Gatumbaite*

Bjarebyite-kulanite*
Samuelsonite*
Gorceixite*

Roscherite group*
Moraesite*

Childrenite-eosphorite
Messelite-fairfieldite-collinsite
Whiteite-jahnsite group
Paravauxite-gordonite

 
 
Figure 82: Low temperature metasomatic alteration products for montebrasite-amblygonite (modified from 
Nizamoff et al. 2002).  *Species occurring at other localities and not found at Palermo #2. 
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Secondary Phosphate Alteration Sequence for “Arrojadite”: 

The low temperature alteration of “arrojadite” at the Palermo #2 pegmatite occurs 

between ~300 to 100º C in a non-oxidizing environment (Figure 83).  Metasomatic 

alteration of primary “arrojadite” appears to have involved the leaching of leaching of 

Na+, F-, K+, Ca2+ and possibly some Fe2+.  Hydroxyl and H2O were added as well as 

possibly some Fe2+.  The alterative process yields mainly vivianite as a low temperature 

product although goyazite-crandallite occurs in one sample.  It is uncertain if the 

goyazite-crandallite is a direct alteration product of “arrojadite” or an alteration product 

of a proximal primary phosphate such as montebrasite. Additional specimens of 

“arrojadite” should be examined to better understand this process.  

 

Figure 83:  Low temperature metasomatic alteration products for “arrojadite” from the Palermo #2 
pegmatite, North Groton, NH (Nizamoff et al. 2004). 
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Selected Phosphate Paragenesis for Sample P2-CM-42 

The paragenetic sequence of phosphate minerals from sample P2-CM-42 from 

the core margin of the Palermo #2 pegmatite is presented in Figure 84.  Sample P2-

CM-42 is an interesting sample due to the presence of multiple primary phosphates 

(triphylite, fluorapatite and hydroxylapatite) that have undergone metasomatic alteration 

to secondary products.  Alteration of triphylite under non-oxidizing conditions produces 

a suite of secondary phosphates including: ludlamite, vivianite and messelite-fairfieldite.  

Alteration of triphylite under non-oxidizing conditions in the presence of muscovite can 

produce a suite of secondary phosphates including: scorzalite and gormanite.  

Alteration of fluorapatite ± hydroxylapatite under non-oxidizing conditions produces a 

suite of secondary species including: siderite (two generations), childrenite and 

hydroxylapatite (colorless).  At some point below ~ 250ºC, the alterative environment 

became more oxidizing, resulting in a suite of secondary phosphates including: 

rockbridgeite, strunzite, laueite, jahnsite, mitridatite, whitmoreite and beraunite.  These 

phases occur on both the earlier triphylite-derived phosphates and fluorapatite ± 

hydroxylapatite-derived products.   
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Figure 84:  Paragenetic sequence for Palermo #2 sample P2-CM-42.  Arrows indicate that the origin of 
the denoted species may identical. 
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Summary of Paragenetic Results for the Palermo #2 Pegmatite: 
 

The approximately 40 secondary phosphates that occur at Palermo #2 are the 

result of alteration of primary phosphates and associated silicate, carbonate, sulfide, 

arsenide and oxide minerals locally present in the core margin of the pegmatite.  Post-

magmatic, aqueous fluids caused the concomitant alteration of many of the minerals 

occurring in core margin resulting in the formation of the diverse suite of secondary 

phosphates observed at Palermo #2.  Unlike the nearby Palermo #1 pegmatite, 

secondary phosphates from the Palermo #2 pegmatite have resulted from the low 

temperature metasomatic exchange of Fe2+, Fe3+, Mn2+, Al3+, Ca2+, Mg2+, OH- and H2O 

(Figure 85). 

Triphylite

Montebrasite Quartz

Hydroxylapatite

Fe-, Mn-, Al-, Ca- and U-

secondary phosphates
Fe-, Mn-, Mg- and Al-

secondary phosphates

Uraninite

Schorl

Muscovite

Al3+

Al3+

Fe2+, Mn2+, Mg2+

Ca2+

Al3+, Mg2+

Fe2+, Mn2+, Mg2+

U4+

Fe2+, Mg2+

 
 
Figure 85:  Diagram illustrating how primary phosphates as well as non-phosphate species donate 
cations to the alterative fluids producing metasomatic secondary phosphates. 
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In comparison with Palermo #2, the larger variety of secondary phosphates 

exhibited by the Palermo #1 pegmatite can probably be attributed to a combination of 

the presence of more significant amounts of accessory minerals (Zn-, Pb-, Cu-sulfides) 

and greater amounts of primary phosphates such as arrojadite group minerals that may 

contribute Ba and Sr to alterative fluids. 
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Conclusions 

The Palermo #2 is a rare-element pegmatite of the beryl-phosphate subtype 

located in the Grafton pegmatite field of west-central New Hampshire.  Geochemically, 

the Palermo #2 displays fractionation trends (Mn/Fe ratios in garnet and triphylite, Ta/Nb 

and Mn/Fe ratios in ferrocolumbite, Zr/Hf ratios in zircon) consistent with those reported 

by other researchers for beryl-phosphate and/or beryl-columbite-phosphate subtype 

granitic pegmatites.     

Several notable trends are evident from the examination of geochemical data from 

Palermo #2.  Three apatite group minerals (fluorapatite, hydroxylapatite and chlorapatite) 

occur in the pegmatite and exhibit an evolutionary trend of high F- and low to moderate 

OH- in apatite from the wall zone to low F- and progressively higher OH- and Cl- in apatite 

in the core margin zone of the pegmatite.  To the author’s knowledge, this is the first time 

a trend of this nature has been seen in apatite group minerals in granitic pegmatites. 

Montebrasite from Palermo #2 contains relatively low amounts of F- (from 1.04 to 

2.48 wt.%).  Low F- montebrasite and the presence of abundant hydroxylapatite in the 

core margin of the pegmatite suggest a decrease in the activity of F- in late-stage 

magmatic fluids. 

The primary phosphates triphylite, fluorapatite, hydroxylapatite and montebrasite 

have been metasomatically altered by late-stage, carbonate-bearing aqueous fluids. 

Interaction between the primary phosphates and late-stage aqueous fluids has produced 

a diverse suite of nearly 40 species of secondary phosphate minerals and associated 

carbonates.  



 139

References 

Baldwin, J.R. & von Knorring, O. (1983) Compositional range of Mn-garnet in zoned 
granitic pegmatites.  Canadian Mineralogist, 21, 683-688.  

 
Baldwin, J.R., Hill, P.G., von Knorring, O., and Oliver, G.J.H. (2000) Exotic aluminum 

phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite 
from rare-element pegmatites in Namibia.  Mineralogical Magazine, 64, 6, 1147- 
1164. 

 
Barreiro, B. and Aleinikoff, J.N. (1985) Sm-Nd and U-Pb isotopic relationships in the 

Kinsman Quartz Monzonite, New Hampshire.  Geological Society of America 
Abstracts with Programs, V. 17, p.3.  

 
Cameron, E.N., Larrabee, D.M., McNair, A.H., Page, J.J, Stewart, G.W. and Shainin, 

V.E. (1954) Pegmatite investigations 1942-45 New England.  U.S.G.S. 
Professional Paper 255, 352 pp. 

 
Campbell, T.J. and Roberts, W.L. (1986) Phosphate minerals from the Tip Top mine, 

Black Hills, South Dakota.  Mineralogical Record, 17, 237-254. 
 
Černá, I., Černý, P. and Ferguson, R.B. (1972) The Tanco pegmatite at Bernic Lake, 

Manitoba.  III. Amblygonite-montebrasite. Canadian Mineralogist, 11, 643-659. 
 
Černý, P. (1991a) Rare-element granitic pegmatites. Part 1: Anatomy and internal 

evolution of pegmatite deposits.  Geoscience Canada, 18, 49-67. 
 
Černý, P. (1991b) Rare-element granitic pegmatites. Part 2: Regional to global 

environments and petrogenesis.  Geoscience Canada, 18, 68-81. 
 
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites.  In: Grew, E.S. (ed.) 

Beryllium: Mineralogy, petrology and geochemistry.  Reviews in Mineralogy, V. 
33. Mineralogical Society of America, 691 p. 

 
Černý, P. and Ercit, T.S. (1989) Mineralogy of niobium and tantalum: crystal chemical 

relationships, paragenetic aspects and their economic implications.  In 
 Lathanides, Tantalum and Niobium (P. Möller, P. Černý and F.Saupé, eds.). 
 Springer-Verlag, Berlin, Germany (27-79).  

 
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. 

Canadian Mineralogist, 43, 2005-2026. 
 
 
 



 140

Černý, P. and Hawthorne, F.C. (1982) Selected peraluminous minerals.  In Granitic 
Pegmatites in Science and Industry (P.Černý ed.). Mineralogical Association of 
Canada, Short Course Handbook 8, 163-186.  

 
Černý, P., Goad, B.E., Hawthorne, F.C. & Chapman, R. (1986) Fractionation trends of 

the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and 
its pegmatite aureole, southern Manitoba.  American Mineralogist, 71, 501-517. 

 
Černý, P., Meintzer, R.E., and Anderson, A.J. (1985) Extreme fractionation in rare- 

element granitic pegmatites: selected examples of data and mechanisms. 
Canadian Mineralogist, 23, 381-421. 

 
Černý, P., Trueman, D.L., Ziehlke, D.V., Goad, B.E. & Paul, B.J. (1981) The Cat Lake –  

Winnipeg River and Wekusko Lake pegmatite fields, Manitoba.  Manitoba  
Mineral Resources Division, Economic Geology Report ER80-1. 

 
Clark, R.G., Jr. and Lyons, J.B. (1986) Petrogenesis of the Kinsman Intrusive Suite: 

Peraluminous granitoids of western New Hampshire.  Journal of Petrology, 27, 
1365-1393. 

 
Dorais, M.J. (2003)  The petrogenesis and emplacement of the New Hampshire plutonic 

suite.  American Journal of Science, 303, 447-487. 
 
Eusden, Jr., J. D. and Barreiro, B. (1989) The timing of high-grade metamorphism in 

central-eastern New England.  Maritime Sediments and Atlantic Geology, 24, 
241-255. 

 
Eusden, Jr., J. D. and Lyons, J. B. (1993) The sequence of Acadian deformations in 

central New Hampshire.  Geological Society of America Special Paper 275, 55- 
66. 

 
Foord, E.E. (1976) Mineralogy and Petrogenesis of Layered Pegmatite-Aplite Dikes in 

the Mesa Grande District, San Diego County, California.  Ph.D. Thesis, Stanford 
Univ., Stanford, CA. 

 
Francis, C.A., Wise, M.A., Kampf, A.R., Brown, C.D., and Whitmore, R.W. (1993) 

Granitic pegmatites in northern New England, E1-E24.  In: Field Trip Guidebook 
for the Northeastern United States: 1993 Boston GSA, Volume 1, Eds. Cheney, 
J.T. and Hepburn, J.C., Contribution No. 67, Department of Geology and 
Geography, University of Massachusetts, Amherst, Massachusetts. 

 
Fransolet, A.M. (1975) On scorzalite from the Angarf-Sud pegmatite, Zenaga Plain, 

Anti-Atlas, Morocco.  Fortschritt der Mineralogie, 52, 285-291. 
 
 



 141

Fransolet, A.M., Abraham, K. and Speetjens, J. (1985) Genetic evolution and 
significance of the phosphate mineral assemblages in the Angarf-Süd pegmatite, 
Tazenakht Plain, Anti-Atlas, Morocco.  Bulletin de Mineralogie, 108, 3-4, 551- 
574. 

 
Fransolet, A.M., Keller, P. and Fontan, F. (1986) The phosphate mineral associations of 

the Tsaobismund pegmatite, Namibia.  Contributions to Mineralogy and 
Petrology, 92, 502-517. 

 
Frondel, C. (1949) Wolfeite, xanthoxenite and whitlockite from the Palermo mine, New 

Hampshire.  American Mineralogist, 34, 692-705.     
 
Ginsburg, A.I. (1960) Specific geochemical features of the pegmatitic process.  21st  

International Geologic Congress (Norden), 17, 111-121. 
 
Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. Mineralogical 

Magazine, 62, 2, 141-164. 
 
Hildreth, W. (1979) The Bishop Tuff: evidence for the origin of compositional zonation in 

silicic magma chambers.  Geological Society of America Special Paper 180, 43- 
75. 

 
Hildreth, W. (1981) Gradients in silicic magma chambers: implications for lithospheric 

magmatism.  Journal of Geophysical Research, 86, 10153-10192. 
 
Hurlbut, C.S., Jr. (1965) Detailed description of sarcopside from East Alstead, New 

Hampshire.  American Mineralogist, 50, 1698-1707.    
 
Hurlbut, C.S., Jr. and Aristarain, L.F. (1968) Beusite, a new mineral from Argentina, and 

the graftonite-beusite series.  American Mineralogist, 53, 1799-1814.    
 
Keller, P. (1991) The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites 

of Namibia.  Communications of the Geological Survey of Namibia, 7, 21-34. 
 
Keller, P. and von Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, 

Namibia Part 1: Phosphate mineral associations of the Clementine II pegmatite. 
European Journal of Mineralogy, 1, 567-593. 

 
Lathrop, A.S., Blum, J.D. and Chamberlain, C.P. (1996) Nd, Sr and O isotopic study of 

the petrogenesis of two members of the New Hampshire Plutonic Series. 
Contributions to Mineralogy and Petrology, 124, 126-138. 

 
London, D., Černý, P., Loomis, J.L., and Pan, J.Y. (1990) Phosphorus in alkali feldspars 

of rare-element granitic pegmatites.  Canadian Mineralogist, 28, 771-786. 
 



 142

London, D. and Burt, D.M. (1982) Alteration of spodumene, montebrasite and 
lithiophilite in pegmatites of the White Picacho District, Arizona.  American 
Mineralogist, 67, 87-113. 

 
Lyons, J.B., Bothner, W.A., Moench, R.H., and Thompson, J.B., Jr. (1997) Bedrock 

geologic map of New Hampshire. U.S. Geological Survey. 
 
Mahood, G.A. (1981) Chemical evolution of a Pleistocene rhyolitic center: Sierra la 

Primavera, Jalisco, Mexico.  Contributions to Mineralogy and Petrology, 77, 129- 
149. 

 
Malinconico, M. (1982) Stratigraphy and structure of the Southeastern Rumney 15 

minute Quadrangle, New Hampshire.  M.S. Thesis. Dartmouth College, Hanover, 
New Hampshire, 234 pp. 

 
Mason, B. (1941) Minerals of the Varuträsk pegmatite. XXIII. Some iron-manganese 

phosphate minerals and their alteration products, with special reference to 
material from Varuträsk.  Geologiska Föreningeni Förhandlingar, 63, 2, 117-175.  

 
Mason, R.A. (1982) Trace element distributions between the perthite phases of alkali 

feldspars from pegmatites.  Mineralogical Magazine, 45, 101-106. 
 
Masau, M., Stanĕk, J., Černý, P. and Chapman, R. (2000) Metasomatic wolfeite and 

associated phosphates from the Otov I granitic pegmatite, western Bohemia. 
Journal of the Czech Geological Society, 45, 1-2, 159-173. 

 
McNair, A.H.  (1943) Palermo number two mica mine, Groton, New Hampshire.  USGS 

unpublished report.  US Department of the Interior, 4 pp. 
 
Moore, P.B. (1971) The Fe2+

3(H2O)n(PO4)2 homologous series: crystal-chemical 
relationships and oxidized equivalents.  American Mineralogist, 56, 1-17.    

 
Moore, P.B. (1973) Pegmatite phosphates: descriptive mineralogy and crystal 

chemistry.  Mineralogical Record, 4, 103-130. 
 
Moore, P.B. (1982) Pegmatite minerals of P (V) and B (III).  In Granitic Pegmatites in 

Science and Industry (P.Černý ed.). Mineralogical Association of Canada, Short 
Course Handbook 8, 267-291.  

 
Moore, P.B. (2000) Analyses of Primary Phosphates from Pegmatites in Maine and 

Other Localities, in King, V.T., Tucker, R.D. and Marvinney, R.G. (editors), 
Mineralogy of Maine: Volume 2 –mining history, gems and geology: Maine 
Geological Survey, p. 333-336. 

 
 
 



 143

Moore, P.B., Irving, A.J. and Kampf, A.R. (1975) Foggite, goedkenite, and 
 samuelsonite: three new species from the Palermo #1 pegmatite, North Groton, 
 New Hampshire.  American Mineralogist, 60, 957-964.  

 
Moore, P.B., Araki, T., and Kampf, A.R. (1980) Nomenclature of the phosphoferrite  

structure type: refinements of landesite and kryzhanovskite.  Mineralogical 
Magazine, 43, 789-795. 

 
Mücke, A. (1981) The parageneses of the phosphate minerals of the Hagendorf 

pegmatite--a general view. Chemie der Erde, 40, 217-234. 
 
Nizamoff, J. W, Simmons, W.B. and Falster, A.U. (2004) Phosphate mineralogy and 

paragenesis of the Palermo # 2 pegmatite, North Groton, New Hampshire. 
Geological Society of America National Meeting, Denver.  Abstract Vol. p. 115, 
#41-3. 

 
Nizamoff, J. W., Whitmore, R.W., Falster, A. U., Simmons, W. B., and Webber, K. L. 

(1998)  Secondary Phosphate Minerals from the Palermo #2 Mine, North Groton, 
New Hampshire.  25th Annual Rochester Academy of Sciences Mineralogical 
Symposium, Abstracts with Program, 18. 

 
Nizamoff, J. W., Whitmore, R.W., Falster, A.U. and Simmons, W.B. (2002)  

Montebrasite and associated secondary phosphates from the Palermo No. 2 
mine, North Groton, New Hampshire.  29th Annual Rochester Mineralogical  
Symposium, Abstracts with Program, 14-15. 

 
Nizamoff, J.W., Whitmore, R.W., Falster, A.U. and Simmons, W.B. (2003) Montebrasite 

and associated secondary phosphates from the Palermo #2 mine, North Groton, 
New Hampshire:  Rocks and Minerals, 78, 122-123. 

 
Nizamoff, J.W., Whitmore, R.W., Falster, A.U. and Simmons, W.B. (2004) 
  Parascholzite, keckite, gormanite and other previously unreported secondary 
  species and new data on kulanite and phosphophyllite from the Palermo #1 
  mine, North Groton, New Hampshire. 31st Annual Rochester Mineralogical  
  Symposium, Abstracts with Program, 11-13. 
 
Osberg, P.H., Tull, J.F., Robinson, P., Hon, R., and Butler, J.R. (1989) The Acadian 

orogen.  In The Appalachian-Ouachita Orogen in the United States (Hatcher, 
R.D., Jr., Thomas, W.A., and Viele, G.W., eds.). The Geology of North America, 
v. F-2,  Geological Society of America, Boulder, Colorado, 179-232. 

 
Page, L.R. (1937) The geology of the Rumney quadrangle, New Hampshire.  

Unpublished Ph.D. thesis, University of Minnesota. 
 
 



 144

Peacor, D.R. and Garske, D. (1964) Sarcopside from Deering and East Alstead, New 
Hampshire.  American Mineralogist, 49, 1149-1150.  

 
Plimer, I.R. and Bucher, I.D. (1979) Wolfeite and barbosalite from Thackaringa, 

Australia.  Mineralogical Magazine, 43, 505-507. 
 
Quensel, P. (1937) Minerals of the Varuträsk pegmatite. I. The lithium-manganese 

phosphates.  Geologiska Föreningeni Förhandlingar, 59, 1, 77-96.  
 
Roda, E., Pesquera, A., Fontan, F. and Keller, P. (2004) Phosphate mineral 

associations in the Cañada pegmatite (Salamanca, Spain): paragenetic 
relationships, chemical compositions and implications for pegmatite evolution. 
American Mineralogist, 89, 110-125. 

 
Segeler, C.G., Ulrich, W., Kampf, A.R., and Whitmore, R.W. (1981) Phosphate minerals 

of the Palermo No.1 pegmatite. Rocks and Minerals, 56, 196-214. 
 
Shigley, J.E. and Brown, G.E., Jr. (1985) Occurrence and alteration of phosphate 

minerals at the Stewart pegmatite, Pala district, San Diego County, California. 
American Mineralogist, 70, 395-408. 

 
Shigley, J.E. and Brown, G.E., Jr. (1986) Lithiophilite formation in granitic pegmatites: a 

reconnaissance experimental study of phosphate crystallization from hydrous 
aluminosilicate melts.  American Mineralogist, 71, 356-366. 

 
Smeds, S-A., Uher, P., Černý, P., Wise, M.A., Gustafsson, L. and Penner, P. (1998) 

Graftonite-beusite in Sweden; primary phases, products of exsolution, and 
distribution in zoned populations of granitic pegmatites.  Canadian Mineralogist, 
36, Part 2; 377-394. 

 
Smith, J.V. (1974) Feldspar Minerals. 2. Chemical and Textural Properties.  Springer 

Verlag, New York. 
 
Smith, J.V. (1983) Some chemical properties of feldspars.  In Feldspar Mineralogy (2nd  

edition, P.H. Ribbe, ed.).  Reviews in Mineralogy, 2, 281-296. 
  
Spear, F.S., Kohn, M.J., Cheney, J.T., and Florence, F. (2002) Metamorphic, thermal,  

and tectonic evolution of Central New England. Journal of Petrology, 43, 2097- 
2120.    

 
Trueman, D.L. and Černý, P. (1982) Exploration for rare-element granitic pegmatites.  In 

Granitic Pegmatites in Science and Industry (P.Černý ed.). Mineralogical  
Association of Canada, Short Course Handbook 8, 463-493.  

 
Whitmore, R.W. (2002) Personal communication. 
 



 145

Whitmore, R.W. and Lawrence, R.C., Jr. (2004) The Pegmatite Mines Known as 
Palermo.  Friends of Palermo mines, 213 pp. 

 
Wise, M.A and Černý, P. (1990) Beusite-triphylite intergrowths from the Yellowknife 

pegmatite field, Northwest Territories.  Canadian Mineralogist, 28, 133-139.  
 
Wise, M.A and Rose, T.R. (2000) The Bennett pegmatite, Oxford County, Maine.  In  

King, V.T., Tucker, R.D. and Marvinney, R.G. (editors), Mineralogy of Maine:  
Volume 2 –mining history, gems and geology: Maine Geological Survey, p. 323- 
332. 

 



 146

Appendix I -- Whole-Rock Geochemistry  

Appendix Table 1: XRF and INAA analyses of pegmatite wall zone from the Palermo #2 (JNWZ-1, JNWZ-
2 and JNWZ-3) pegmatite and pegmatite (JNPG-1) a several km to the southwest.   

 

 
 
*  - INAA (ppm) detection 
bdl – Below Detection Limit 
n/a – Not Analyzed  
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Appendix Table 2: XRF and INAA analyses of granitoids proximal to the Palermo #2 pegmatite.  Sample 
designations are as follows:  Concord granite: JNCOG-1 and JNCOG-2A; Bethlehem granodiorite: JNBG-
1A and JNBG-2; Kinsman quartz monzonite: JNKQM-A. 
 

 

*  - INAA (ppm) detection 
bdl – Below Detection Limit 

 



 148

Appendix Table 3: XRF and INAA analyses of the host rock (Littleton schist) of the Palermo #2 pegmatite.  
Sample designations are as follows:  JNLS-1A – collected 12 m from hanging wall contact; JNLS-2A – 
collected 1 m from hanging wall contact; JNLS-3A – collected at hanging wall contact; JNLS-4A –  
collected 10 m from footwall contact; JNLS-5 – collected 1 m from footwall contact; JNLS-7 – Littleton 
schist from Palermo #1 contact. 
 

 

*  - INAA (ppm) detection 
bdl – Below Detection Limit 
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