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1. INTRODUCTION

1.1 Motivation

The two ships represented in this thesis are dramatically different in design, but

both exhibit similar properties such as length and breadth. The traditional hull form is

represented by a typical flare-sided design with a forward reaching bow while the advanced

hull form has a modified tumblehome and a truncated bow. The difference in shapes provides

an interesting problem, comparing the roll responses for these two very different vessels while

keeping certain shape parameters such as length, beam, and draft constant.

1.2 Previous Work

The steady state and transient techniques used in this thesis have been extensively

used in the past to predict the complicated dynamics of sea going vessels. These dynamics

exist for the specific situation where the system stability is degraded to the point that

capsizing might occur, however that is realized (water on deck, icing, dangerous loading

condition or a combination of the above). These techniques have been used to model the

capsizing dynamics of a small fishing vessel [6] and extended to multiple degrees of freedom

with large amplitude forcing [5]. The same techniques were used to examine the United

States Navy’s T-AGOS ocean survey vessel for large amplitude rolling motion [4] and for a

complete six degrees of freedom T-AGOS study [8] and [12]. The wave amplitudes were then

varied and the progressive transient sampling was then compared [3]. The steady state and

transient study was then extended to floating offshore platform rolling motions [10].

1



The single degree of freedom for this traditional hull form was first explored in 2005 in

[9] and continued in [11]. This thesis is limited to the one degree of freedom case of roll and

roll responses.

1.3 Non-linearity, Stability and Chaos

Linear approximation of systems are often sufficient but limited ways to understand

the dynamics of that system. However, sometimes non-linear effects cannot be neglected and

modeling systems with non-linearity better represents the actual dynamics [18]. Non-linear

terms can be found in any component of the equations of motion: inertial and dissipative

terms, as well as restoring and external forces, and also in the boundary conditions [18].

In a dynamical system with varied parameters, steady state solutions may be stable or

unstable. Steady state roll responses model a softening spring of a pendulum system, where

the amplitude A is a function of the encounter frequency ωe. For certain values of the

encounter frequency there are multiple solutions. Where multiple solution exists, two are

stable solutions and one is unstable [18]. The sudden change observed in the magnification

curve is called a bifurcation. The transient response will be influenced by the unstable

solution repelling nearby states [18]. In non-linear systems, the initial conditions influence

which solution will be observed in experiments [18]. Motion is represented in transient

responses in the Poincaré map. With the Poincaré mapping, different kinds of periodic

motion and manifold intersections that may lead to chaos can be distinguished [18]. These

concepts will be explored further in the appendices.

1.4 Ship Comparisons

The United States Navy’s newest design for a guided missile destroyer, the DDX or

the DDG-1000 ZUMWALT class, is dramatically different than a traditional destroyer. The

distinctive changes are reflected in the modified tumblehome and truncated bow. Compared
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to the most recent counterpart, the DDG-51 has a traditional flare-sided design and forward

reaching bow. Here the traditional hull form is represented by the DDG-51 and the ad-

vanced hull form is represented by the DDG-1000. The Office of Naval Research (ONR) has

published representative ship plans for both the DDG-51 and the DDG-1000. By selecting

comparative righting arm curves it is possible to examine a system that may be character-

istically unstable. Several modeled conditions are represented in this thesis. The first is a

low damping case for each ship and the second is a high damping case for each ship. The

extreme steady state cases are identified and corresponding transient movement is mapped.
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2. SHIP CHARACTERISTICS

In this chapter, the defining ship characteristics will be described in detail. These

are not the actual dimensions of the naval vessels, just representative plans.

2.1 Hull Form Comparison

The body plans for both ships are included in order to visualize the differences in

the two hull forms. Below is the traditional hull form used or the DDG-51, Aegis class.

Fig. 2.1: Traditional Hull Form Body Plan
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The advanced hull form lines are representative of the DDG-1000. The modified tum-

blehome is apparent from the body plan.

Fig. 2.2: Advanced Hull Form Body Plan

Fig. 2.3: Traditional Hull Form Profile Plan

The bow sections are best viewed by the profile plan. Both ships exhibit a modern

surface combatant-type underbody and sonar dome. Statistics from the Office of Naval

Research describe both forms as having a displacement of 8,790 tonnes (8,651 long tons),

with a length of 154 meters (505 feet), a beam of 18.8 meters (61.7 feet) and a design draft

of 5.5 meters (18 feet) [2].
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Fig. 2.4: Advanced Hull Form Profile Plan

2.2 Righting Arm Curves

The conditions for the righting arm curves were derived from two different sources.

The traditional righting arm curve was developed with the program STAAF and the ad-

vanced righting arm curve was developed from ONR data [2] and a third order curve fit

was constructed. The transverse metacentric height (GMT ) for the traditional righting arm

curve was 2.0 meters (6.56 feet) and the advanced righting arm curve was 2.01 meters (6.59

feet). The limiting GMT for the traditional hull form is 0.19 meters (0.62 feet) and the

limiting righting arm for the advanced hull form is the one used above, 2.01 meters (6.59

feet). At a preliminary glance, the traditional hull form case already has a greater static

stability. The angle of vanishing stability for both ships was 1.44 radians. These righting

arm curve equations are used in the restoring force portion of the roll equation and account

for a portion of the non-linearity of the system. The heel angle is denoted by φ.

Tab. 2.1: Transverse GM Limits (Sarchin and Goldberg Criteria)
Ship GMT Meters GMT Feet
Traditional 0.19 m 0.62 ft
Advanced 2.01 m 6.59 ft

Tab. 2.2: Approximated Third Order Righting Arm Curve Equations
Ship Third Order Approximation
Traditional 6.56φ− 3.12φ3

Advanced 3.58φ− 1.73φ3
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Fig. 2.5: Limiting Righting Arm Curves Office of Naval Research Data

Fig. 2.6: Traditional Hull Form Righting Arm Curve Approximation
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Fig. 2.7: Advanced Hull Form Righting Arm Curve Approximation
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3. ROLL MOTIONS

Even though roll motions are strongly coupled with sway and yaw, examining roll

by itself is necessary to pinpoint that extreme motion. Roll motions are difficult to predict

for several reasons. They are complicated near roll resonance and cause typical ship forms

to roll severely. With large roll angles, there are strong non-linearities occurring in the

hydrodynamic damping and possibly in the static roll restoring moment [16]. Within this

study the roll non-linearities are approximated by using linear coefficients which depend

on the amplitude of the resulting motion and the ship’s forward speed [16]. Isolating the

effects of roll motion for a zero forward speed case is accomplished by changing the existing

coordinate system. This is done by rotating the axes through an angle ψ̂ about the y axis

and selecting x̂ and ẑ so that Î42 + Â42 = 0 and Î62 + Â62 = 0. The angle ψ̂ is also picked

so that Î46 + Â46 = 0 and the C∗
44(|η̄4|) is approximated by ∆g · ḠM̄T ) [16]. The new roll

equation of motion becomes:

[−ω2
e(Î44 + Â44) + iωeB̂

∗
44 + C∗

44]η̄4 + B̂42η̄2 + B̂46η̄6 = F̂4

With these changes roll is now only coupled through B̂42 and B̂46 [16]. In order to

have a pure roll equation of motion, these coupling terms are ignored. The above uncoupled

roll equation assumes that the center of the coordinate system is the roll center and that a

different roll center may be required for each frequency [16].
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3.1 Damping Approximations

The quadratic damping portion of the inputs were developed from sallying experi-

ments conducted in model tests. Two cases were used, one where the rudders are at zero (0)

degrees and one where the rudders are at an exaggerated angle, ninety (90) degrees. The two

cases correspond to a high damping case (maximizing the rudder profile) and a low damping

case (minimizing the rudder profile). These two rudder positions are referred to as the high

damping and low damping cases in the following sections.

3.2 Approximated Equations

The ship motions program SHIPMO developed by Robert F. Beck [1] was used to

determine the components for the equation of motion. The initial conditions were given for

each ship with the program calculating responses for thirteen (13) wave angles with a ship

speed of sixteen (16.0) feet per second or approximately nine and a half (9.5) knots. The wave

frequency was 0.5 radians per second. SHIPMO gave hydrostatic results for displacement

and coefficients for each of the encounter frequencies ωe.

Tab. 3.1: Ship Displacements
Ship Displacement
Traditional 8215.2 LT
Advanced 8900.3 LT

Tab. 3.2: Roll Inertia for Traditional and Advanced Hull
Traditional I44 2.74e8

Advanced I44 2.82e8

The exciting force F4, added mass A44, inertia I44 and damping B44 coefficients were

calculated for both the traditional and advanced hull form. The data extracted from the ship

motions program was compiled for the range of encounter frequencies from approximately
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ωe = 0.37 to ωe = 0.62 radians per second. The range of encounter frequencies corresponds

to the ships turning at a steady speed of ten (10) knots with a heading angle varying from

zero (0) degrees to one hundred and eighty (180) degrees. The data was curve fit to compile

equations to describe the previously mentioned coefficients for the encounter frequency range.

Those equations are listed below.

Tab. 3.3: Added Mass Coefficients for Traditional and Advanced Hull Forms
Traditional A44 −6.02e7ω3

e + 7.76e8ω2
e − 2.92e8ωe + 1.15e8

Advanced A44 −8.41e7ω2
e + 9.61e7ωe + 4.91e7

Tab. 3.4: Damping Coefficients for Traditional and Advanced Hull Forms
Traditional B44 1.69e8ω3

e − 8.63e7ω2
e + 1.32e7ωe − 2.46e5

Advanced B44 9.10e7ω2
e − 5.60e7ωe + 9.27e6

Tab. 3.5: Roll Exciting Force for Traditional and Advanced Hull Forms
Traditional F4 −4.70e9ω4

e + 9.32e9ω3
e − 6.97e9ω2

e + 2.33e9ωe − 2.92e8

Advanced F4 −4.31e9ω4
e + 8.53e9ω3

e − 6.36e9ω2
e + 2.12e9ωe − 2.65e8
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4. STEADY STATE MAGNIFICATION CURVES

4.1 Forcing and Damping

The two significant variables for these experiments are the damping and the forcing.

The low and high damping cases have been discused in the previous chapter. The forcing

representing the combination of the Froude-Krylov and Diffraction forces varied wave am-

plitudes from one (1.0) foot to five (5.0) feet.

4.2 Comparisons

With linear responses, the maximum response is often close to the resonance fre-

quency. With non-linear responses, the effect of nonlinear damping and restoring may change

the peak roll amplitude. Depending on the restoring spring, whether softening or hardening,

the peak amplitude may occur at a higher or lower frequency as explained in Appendix C.

The first figure in this chapter represents the traditional hull form with low damping and

full wave amplitude range. The peak amplitude for the eight foot and the ten foot wave is

at a significantly higher frequency than the resonance frequency of 0.5 radians per second.

The encounter frequency of the two highest wave amplitudes are at a higher frequency than

the resonance frequency of 0.5 radians per second and the two lowest wave amplitudes are at

a lower frequency than the resonance frequency. The peak amplitude for the five foot wave

amplitude is also extremely close to the 1.44 radians of vanishing stability.
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Tab. 4.1: Peak Wave Height vs. Encounter Frequency, Traditional Hull Form (Low Damping Case)

Wave Height Encounter Frequency Roll Amplitude
2 feet .57 rad/s 0.23 rad
4 feet .55 rad/s 0.52 rad
8 feet .41 rad/s 1.36 rad
10 feet .39 rad/s 1.42 rad

Fig. 4.1: Traditional Roll Response vs. Encounter Frequency Low Damping Case

Examining the difference between the low and the high damping case responses

reveals an increase in the damping the corresponding peak roll amplitudes all are at a lower

frequency than the resonance frequency of 0.5 radians per second. The high damping case

also exhibited a wide region of multivaluedness for the two highest wave amplitudes as

compared to the low damping case.

The advanced hull form responses in the low damping case shows a significant change

where all the peak amplitudes moved for all of the forcing cases, including the lower wave

amplitudes. All of the encounter frequencies are higher than the resonance frequency of 0.5

radians per second.
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Fig. 4.2: Traditional Roll Response vs. Encounter Frequency High Damping Case

Tab. 4.2: Peak Wave Height vs. Encounter Frequency, Traditional Hull Form (High Damping Case)

Wave Height Encounter Frequency Roll Amplitude
2 feet .57 rad/s 0.18 rad
4 feet .56 rad/s 0.33 rad
8 feet .53 rad/s 0.61 rad
10 feet .51 rad/s 0.75 rad

Again, for the advanced hull form high damping case, all the encounter frequencies

for the peak roll amplitude fell at higher frequencies than at the resonance frequency of 0.5

radians per second

For the low damping (worst case) the traditional hull form’s peak roll amplitudes

were higher at five (5) foot and four (4) foot wave amplitudes, but the advanced hull form

low wave amplitude roll responses were higher than the traditional hull form roll responses.

The comparison between the two low damping cases of the traditional and advanced

hull form show a greater roll amplitude much closer to the angle of vanishing stability for

the traditional case and a broader range of multivaluedness for the traditional case than

14



Tab. 4.3: Peak Wave Height vs. Encounter Frequency, Advanced Hull Form (Low Damping Case)

Wave Height Encounter Frequency Roll Amplitude
2 feet .415 rad/s 0.61 rad
4 feet .384 rad/s 0.81 rad
6 feet .385 rad/s 0.87 rad
8 feet .383 rad/s 0.90 rad
10 feet .380 rad/s 0.93 rad

Tab. 4.4: Peak Wave Height vs. Encounter Frequency, Advanced Hull Form (High Damping Case)

Wave Height Encounter Frequency Roll Amplitude
2 feet .438 rad/s 0.31 rad
4 feet .430 rad/s 0.46 rad
6 feet .422 rad/s 0.57 rad
8 feet .417 rad/s 0.65 rad
10 feet .410 rad/s 0.72 rad

the advanced case. Both the traditional and advanced hull forms show the marked distance

between the peak roll amplitude encounter frequencies and the resonance frequency. The

results for the low damping case with the highest wave amplitude of five (5.0) feet for the

magnification curves alone show that the highest (worst case) roll amplitudes occur for the

traditional hull form. However, the Poincaré maps for each of the traditional and advanced

hull form at the highest wave amplitude show a different global picture.
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Fig. 4.3: Advanced Roll Response vs. Encounter Frequency Low Damping Case

Fig. 4.4: Advanced Roll Response vs. Encounter Frequency High Damping Case

16



5. TRANSIENT SAMPLING

5.1 Poincaré Maps

The transient sampling for the Poincaré maps shows a different dynamic picture

than the magnification curves for the same system parameters. For a given encounter fre-

quency ωe, the roll velocity can be compared to the roll amplitude over time and a global

picture for that ωe is developed. The stable and unstable solutions are pinpointed, and

by identifying the initial conditions, the attraction to a specific solution (whether stable or

unstable) is shown.

5.2 Frequency Selection and Magnification Curves

The encounter frequencies to examine the Poincaré maps were chosen to be approx-

imately two thirds of the distance from the peak amplitude for each of the traditional and

advanced steady state low damping cases. The maximum wave amplitude of five (5) feet

was chosen, and the sampling frequencies are given in the following tables.

5.3 Comparisons

The sampling frequencies for traditional and the advanced hull form are taken

from the steady state magnification curves. For the region of multivaluedness, there are

three solutions, two stable and one unstable. The Poincaré maps identify three important

regions of initial conditions surrounding these three solutions.

17



Fig. 5.1: Traditional Roll Response 10 ft Wave Height Low Damping Case

Any point on the map has a corresponding roll amplitude and roll velocity. The

points outside of the bounded region are unstable and may lead to capsizing. The points in

the bounded region (safe basin) are safe and will be attracted to one of the stable solutions

identified by a black dot. The unstable solution is represented by an X. All points in the

tear shaped blue curve (or lobe) around the low amplitude stable solution will be attracted

to that solution. All other points will be attracted to the high amplitude solution. The

unstable solution will repel the trajectory to either stable solution.

Tab. 5.1: Traditional vs. Advanced Poincaré Map Encounter Frequency
Ship Encounter Frequency

Traditional .485 rad/s
Advanced .390 rad/s

Comparing the Poincaré maps show that for the traditional hull form the regions of

safe basin in the transient sampling map area is greater, so a greater percentage of initial

conditions stay within this safe basin. However, the magnification curves showed the roll

18



Fig. 5.2: Advanced Roll Response 10 ft Wave Height Low Damping Case

Tab. 5.2: Traditional vs. Advanced Poincaré Map Encounter Frequency Corresponding Steady
State Solutions

Ship High Stable Unstable Low Stable
Traditional 1.02 rad 0.75 rad 0.30 rad
Advanced 0.88 rad 0.70 rad 0.23 rad

amplitude is greater and closer to the angle of vanishing stability for the isolated high

wave amplitude case for the traditional hull form. Also, the basin of attraction for the

low amplitude stable solution for the advanced hull form is an extremely reduced area as

compared to the basin of attraction of the traditional hull form.

19



Fig. 5.3: Traditional Poincaré Map

Tab. 5.3: Area Comparison of Safe Basins and Basins of Attractions for the Traditional vs. Ad-
vanced Hull Form

Ship Total Area Low Stable Basin Percentage
Traditional 10.92 2.85 26.1%
Advanced 7.06 0.95 13.5%

20



Fig. 5.4: Advanced Poincaré Map
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6. CONCLUSIONS

Examining the steady state magnification curves of roll amplitude, the traditional

hull form for the low damping case showed the highest roll amplitude closest to the angle

of vanishing stability. The traditional hull form encounter frequencies for the higher wave

amplitude where higher than resonance and the lower wave amplitudes were at a lower

frequency than resonance. The high damping case resulted in the maximum roll amplitudes

occurring at lower frequencies than resonance.

The steady state magnification curve of roll amplitude for the advanced hull form

for the low and high damping case showed the peak roll amplitudes occurring at higher

frequencies than resonance, and the peak roll amplitude for the advanced hull form was less

that the traditional for high wave amplitudes but greater for low wave amplitudes for the

low damping case.

The Poincaré maps for the high wave amplitude low damping cases for both hull

forms showed the safe basins and basins of attraction for the multiple solutions corresponding

to the steady state encounter frequencies. Both showed that a higher percentage of initial

conditions will attract to the high amplitude steady state stable solution, although the

percentage of initial conditions was higher for the advanced hull form.

The safe basin for the traditional hull form was greater in scope than the safe basin

for the advanced hull form. The magnification curves show the traditional hull form’s roll

amplitude at the low damping case was greatest and closest to the angle of vanishing stability.
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The associated Poincaré maps show that the initial conditions favor the low roll

amplitude steady state solution a greater percentage of the time. The entire initial condition

global picture favors the traditional hull form rather than the advanced. Both methods

combined provide a better dynamical picture together than when examined separately.

6.1 Applicability

Special attention to the non-linearities in the systems should be paid when examin-

ing the frequencies at which the high roll amplitude responses may occur. Also, comparing

the transient sampling for the worst case encounter frequency of the steady state magnifica-

tion curves can broaden the understanding of the system dynamics and the attraction to a

particular solution. This examination is not limited to just these two hull forms and can be

useful to gain an comprehensive look into a particular ship dynamics problem.

6.2 Future Work

This thesis has only scratched the surface with regards to a comprehensive look at

these two hull forms. A greater range of frequencies and sea states as well as more model tests

are needed to give a robust examination of this comparison problem. Different combinations

of these techniques should be employed, such as comparing the Poincaré maps for the same

wave amplitude and different encounter frequencies as well as comparing the Poincaré maps

for the same encounter frequency but a range of wave amplitudes to better understand the

changing steady state and transient dynamics of the given system. After the complete one

degree of freedom case is completed, then multiple (three or six) degree of freedom cases

should be utilized and compared.
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7. APPENDIX A: EQUATIONS OF MOTION AND SHIPMO

The six degrees of freedom are surge, sway, heave, roll, pitch and yaw. Translation

in the X direction is η1, surge and the moment about the X axis is η4, roll. Translation in

the Y direction is η2, sway and the moment about the Y axis is η5, pitch. Translation in

the Z direction is η3, heave and the moment about the Z axis is η6, yaw [16]. The three axis

fixed system of xo, yo and zo are translated to the ship system moving at a constant velocity

Uo by

xo = x+ Uot

yo = y

zo = z

Where t is time [16]. The relative orientation of x̄, ȳ and z̄ to x, y, and z determine the

ship motions [16]. The linearized equations of motion for an unrestrained vessel in sinusoidal

waves are
6∑

k=1

[−ω2
e(∆jk + Ajk) + iωeBjk + Cjk] η̄k = F I

j + FD
j

where j = 1, 2, . . . , 6[16]The components of the above equation are the frequency of wave

encounter, ωe is

ωe = ωo −
ω2

o

g
Uocosµ

24



Where µ is the angle between ship heading and wave heading [16]. The mass matrix,

∆jk is as follows:

∆jk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆ 0 0 0 +∆z̄c 0

0 ∆ 0 −∆z̄c 0 +∆x̄c

0 0 ∆ 0 −∆x̄c 0

0 −∆z̄c 0 I44 0 −I46

+∆z̄c 0 −∆x̄c 0 I55 0

0 +∆x̄c 0 −I46 0 I66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where x̄c and z̄c are the coordinates of the center of gravity of the ship [16]. Ajk is the added

mass in the jth mode due to the unit motion is the kth direction, Bjk is the damping coefficient

in the jth mode due to unit motion in the kthdirection and Ckj is the hydrostatic restoring

force coefficient in the jth mode due to motion in the kth direction [16]. The hydrostatic

restoring force is zero with the exception of the following terms: C33, C35 = C53, C44, and

C55 [16]. The exciting force components F I
j and FD

j are the Froude-Krylov exciting force and

the diffraction exciting force. The ship motions program SHIPMO uses damping coefficients

developed in [7]. It is an experimental compilation of hull forms that may not include these

advanced and traditional hull forms in accurate quadratic damping. Only linear damping is

taken from the computer program and quadratic damping is derived from experiments.
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8. APPENDIX B: BIFURCATION AND BIFPACK

To examine if the dynamical systems represented are stable or unstable, with lin-

earizing the stability theory an asymptotic solution to a small initial perturbation is exam-

ined. A growing perturbation is unstable, and a decaying perturbation is stable [13]. The

steady state magnification curves contain regular turning points, which are points which the

curve changes signs and the forcing function does not equal zero [13]. The Factorization

Theorem in One Dimension implies that the curve is stable on one side of a regular turning

point (also called a saddle-node) and unstable one the other side [13]. The computer pro-

gram BIFPACK was developed by R. Seydel and is a set of Fortran codes that can calculate

the parameter dependence of ordinary differential equations [17]. The main parameter, λ,

is the branching parameter. Using the package for ordinary differential equations, and the

boundary value problem describing the steady state oscillator. The magnification curves

are developed from BIFPACK. The equations used are the re-created righting arm curves

from ONR [2], the equations developed from SHIPMO, and derivatives of the equations with

respect to ωe which is the branching parameter λ used to track the bifurcation or turning

points of the magnification curves in a continuation method.
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9. APPENDIX C: SOFTENING SPRING

The nonlinear system of the softening spring is very similar to the magnification

curve and the program BIFPACK is used to produce the results. The method of iteration

where Duffing’s study of the equation

mẍ+ cẋ+ kx± µx3 = Fcosωt

representing a mass on a cubic spring, excited harmonically with damping. Duffing’s steady

state harmonic solution without damping with the process of successive approximation is

where an assumed solution is substituted into the differential equation. The differential

equation is integrated to improve the accuracy [19]. Higher harmonic terms are ignored, and

after the second approximation a reasonable solution is obtained. The first assumed solution

precedes the undamped equation:

x0 = Acosωt

ẍ+ ω2
nx+ −µx3 = Fcosωt

giving the integrated equation solved for ω2 as

ω2 = ω2
n ±

3

4
µA3 − F
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When this system is undamped, the amplitude A is discontinuous as it approaches

resonance. With the softening spring, as the non-dimensional frequency increases from zero,

the amplitude increases and reaches a turning point where the frequency decreases as the

amplitude increases, creating a curve that folds back towards zero frequency. It then ‘jumps’

to a higher amplitude and amplitude diminishes as frequency increases from zero onward.

This produces two curves which approach a ‘backbone’ region asymptotically. The region

where there are several solutions for the same ω/ωn is an unstable region. The unstableness

is influenced by both the amount of damping present as well as the rate of change of the

forcing [19].

Damping the system changes the curve by eliminating the asymptotic regions and

connecting the two curves so the first bends back around to attach to the second at a peak.

The differential equation for the softening spring with damping then becomes

ẍ+ cẋ+ ω2
nx− µx3 = Fcos(ωt+ φ) = Aocosωt−Bosinωt

where the magnitude of the force is F
√
A2

o +B2
o . Using the same first approximation as the

undamped case, the substitution into the differential equation and integration results in the

solutions of

Ao = (ω2
n − ω2)A+

3

4
µA3

Bo = cωA

The frequency, amplitude and force relationship becomes:

F 2 = [(ω2
n − ω2)A+

3

4
µA3]2 + [cωA]2
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10. APPENDIX D: POINCARÉ MAPS

The systems described in this thesis are non-autonomous continuous time dynamical

systems, and describe a differential equation where the vector field depends on time. For the

limit set definitions, a limit set is a set of points in state space that a trajectory repeatedly

visits. In [14], some definitions to this problem are examined. A limit set is attracting if

there exists an open neighborhood U of set L such that L(x) = L for all x ∈ U . The basin

of attraction BL of an attracting set L is defined as the union of all such neighborhoods U ,

where BL is the set of all initial conditions that tend toward L as time progresses to infinity.

However, these definitions are related to autonomous, not non-autonomous systems and the

limit sets of non-autonomous differential equations are not meaningful unless examined via

a Poincaré map [14].

Because the dynamical system studied here may lead to chaos, they exhibit a sensi-

tive dependence on initial conditions. For the specific system, the characteristic trajectories

for two initial conditions arbitrarily close to one another diverge until they become uncor-

related [14]. The technique of Poincaré maps transforms a continuous time system into a

discrete time system with limits related to the continuous time systems [14]. Points in the

Poincaré map may be stable, asymptotically stable, unstable or non-stable. The informal

definitions follow where L is defined as stable if all nearby trajectories stay nearby. If the

trajectories are attracted, then L is asymptotically stable and if they are repelled, then un-

stable. For L to be non-stable, at least one trajectory that is not in L is attracted and at

least one close trajectory is repelled.
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The computer program INSITE [15] and [14] determines the stable and unstable mani-

folds W s and W u of the system. Again, definitions from [14] state that a stable manifold W s

of the limit set L for a flow of φt are all points of the set whose trajectory φt(x) approaches

L as time approaches infinity, and the unstable manifold W u of the limit set L approaches

for the aforementioned flow whose trajectory approaches L as time approaches negative in-

finity. The stable and unstalbe manifolds are invariant unter φt. The third order curve fit

for the righting arm curves are needed for the Melnikov Method to develop the close form

intersecting manifolds of the Poincaré Maps [6].
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