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Abstract 

During the last years, multiple-input multiple-output (MIMO) technology has attracted great 

attentions in the area of wireless communications. The hardware implementation of MIMO 

decoders becomes a challenging task as the complexity of the MIMO system increases. This 

thesis presents hardware/software co-design architecture and implementations of two typical 

lattice decoding algorithms, including Agrell and Vardy (AV) algorithm and Viterbo and 

Boutros (VB) algorithm. Three levels of parallelisms are analyzed for an efficient 

implementation with the preprocessing part on embedded MicroBlaze soft processor and the 

decoding part on customized hardware. The decoders for a 4 by 4 MIMO system with 16-QAM 

modulation scheme are prototyped on a Xilinx XC2VP30 FPGA device. The hardware 

implementations of the AV and VB decoders show that they support up to 81 Mbps and 37 Mbps 

data rate respectively. The performances in terms of resource utilizations and BER are also 

compared between these two decoders. 
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Chapter 1 

Introduction 

1.1  Motivations and background 

Because of the scarce spectrum bandwidth provided for modern wireless systems, the 

traditional single-input single-output (SISO) channel can not meet the continuously increasing 

demands for channel capacity and quality of service (QoS) in wireless communications. By 

introducing multiple antennas into both transmitter and receiver, MIMO technique has emerged 

as a key technology for the next generation wireless systems.  

   MIMO communication system can significantly increase the channel throughput and provide 

better link reliability [1][2][3] at the same bandwidth and same overall transmit power of the 

SISO communication system. In MIMO system, multiple data streams are transmitted through 

different antennas at the same time using the same frequency, which is so called spatial 

multiplexing. Because of this multipath propagation, each output of the receive antenna is a 

linear combination of all transmitted streams. Then the extremely high throughput is achieved by 

separating data streams on the receiver using proper decoding algorithms. In addition, QoS is 

improved because of spatial diversity advantage, since each receive antenna has a measurement 

of all transmitted data streams. In general, the spectrum efficiency and the propagation range 

have been greatly increased due to the spatial multiplexing gain and the diversity gain provided 

by MIMO technique. Combined with orthogonal frequency division multiplexing (OFDM), 

MIMO technology has been proposed as part of the IEEE 802.11n High-Throughput standard, 

which is expected to be ratified in mid 2007 [4].  
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   All of these promising performance improvements resulting from MIMO system are 

achieved at a cost of increased computational complexity especially in the decoders at the 

receiver side. In a multiple-antenna channel environment, each transmitted signal is aligned on 

the modulation constellation points. By multiplying all possible signal sets with the MIMO 

channel matrix, it generates a set of finite points in a multiple-layered lattice structure. The 

MIMO decoding problem is essentially to search for the closest lattice point to the received point. 

The optimal detection strategy for a MIMO decoder is to perform a maximum likelihood (ML) 

search over all possible points inside a lattice structure and find the best one with smallest 

Euclidian distance to the received signal. But in reality, this method is not practicable because 

the corresponding computational complexity grows exponentially with the number of transmit 

antennas M and the number of bits Q used to represent a symbol, since the detector needs to 

examine all 2MQ possible lattice points for each received vector. For example, in a MIMO system 

with 4 transmit and 4 receive antennas using 16-QAM modulation scheme, a total of 65536 

candidates have to be examined to find the optimal vector. This method is also referred as 

exhaustive search. An efficient hardware implementation of the decoders has become a key 

challenging task in MIMO wireless system design. 

   There are two typical strategies of MIMO detection algorithms used to accelerate the 

decoding procedure in an arbitrary lattice structure given by its generation matrix. One is the 

Pohst strategy proposed in 1981 [5], which examines lattice points lying inside a hyper sphere. 

The decoding algorithm developed by Viterbo and Boutros [6] is based on this strategy and is so 

called the VB algorithm in this thesis. Another strategy of lattice detection is suggested by 
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Schnorr and Euchner in 1994 [7], which performs the point search inside the aforementioned 

hyper sphere with a zig-zag order in each lattice layer with increasing distances from the 

received vector. A representative lattice decoding algorithm based on this strategy is introduced 

by Agrell, Eriksson, Vardy and Zeger [8] and is called the AV algorithm. Both algorithms solve 

the ML detection problem and are commonly referred as sphere decoding algorithms because 

they search for the closest lattice point in a hyper sphere. Both algorithms are considered as the 

most promising solutions for the MIMO decoders. A detailed analysis and efficient architecture 

for both algorithms will be discussed in Chapter 2 and Chapter 4 respectively. 

   Due to the complexity and high data dependency involved in the decoding algorithms, the 

MIMO decoders are traditionally implemented on digital signal processors (DSPs), such as Bell 

Labs layered space-time (BLAST) system [9][10]. Because of not supporting parallelism, a 

single DSP based implementations can hardly achieve very high decoding rate for MIMO system, 

especially as the number of antennas increases. Very large scale integrated circuit (VLSI) 

architecture of MIMO systems has also been studied recently. It is a challenging task to achieve 

the real-time performance of the sphere decoder due to the complexity of VLSI implementation. 

Several hardware implementations have been reported by prototyping the VLSI architecture of 

the VB algorithm, AV algorithm or their extended versions [11][12]. Most recently, Burg, 

Bormann, and etc have declared a high processing rate for MIMO decoders on an application 

specific integrated circuit (ASIC) implementation [13]. But the ASIC implementation is 

generally refined for a fixed number of antennas and a certain signal constellation. The loss of 

flexibility becomes a major limitation for ASIC implementations of sphere decoders.  
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   Field programmable gate array (FPGA) devises are also widely used in signal processing 

field due to their flexible reconfiguration and support of parallelism. Combined with their huge 

processing capabilities, high data rates are ensured for many computational intense algorithms 

implemented in FPGAs.  

The main advantage provided by FPGAs when compared with DSP implementation is the 

huge performance gains brought by the opportunity to execute the computationally intensive 

procedures in parallel of an algorithm. Although the design cycle is longer than DSP 

implementation, once an efficient architecture is developed and the possible parallelisms are 

explored, FPGA is able to significantly improve the computation throughput. Another advantage 

of FPGA is the customizability since the processing capacity is scalable based on the FPGA 

resources and the applications have the flexibility to be upgraded even during the run-time to 

keep up with changing standards.  

   Compared with ASIC applications, the implementing of design changes is much easier and 

the time-to-market cycle is much shorter in FPGA implementations. Furthermore, for system 

prototyping the overall cost of an FPGA design is much lower than that of an ASIC design.  

   In addition, the hardware/software (HW/SW) co-design concept has been adopted by FPGA 

lately by introducing one or more embedded processors into FPGA design, e.g. the PowPC (PPC) 

or MicroBlazeTM (MB) on Xilinx FPGAs [14][15] and Nios processors on Altera FPGAs [16]. 

HW/SW co-design technique generally partitions the computational algorithm into customized 

hardware to achieve high computational speed and into embedded soft processors to reduce the 

design complexity. Generally, one or more embedded processors can be instantiated in the FPGA 
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to execute the processing tasks that are less time critical but highly sequential or considerably 

complicated for direct circuit implementation. This thesis will explore the FPGA-based HW/SW 

co-design architecture for both AV and VB lattice decoding algorithms. 

1.2  Research Objectives 

The main objective of this thesis is to develop efficient HW/SW co-design architecture of 

sphere decoders for both AV and VB algorithms and prototype it on Xilinx University Program 

(XUP) Virtex-II Pro developing board [17]. The decoding rates are also examined based on the 

hardware implementations.  

1.3  Contributions 

The hardware implementation of MIMO decoders with high decoding rate is a challenging 

and urgent task in multiple-antenna wireless communications. The main contributions of this 

thesis are summarized as follow: 

   The FPGA-based HW/SW co-design architecture for MIMO decoders with complex 

constellation structure is proposed, which partitions the complicated channel matrix 

preprocessing including matrix inversion and factorization into soft processor and the iterative 

decoding procedures into customized hardware modules. This architecture is able to significantly 

improve the decoding rate, and meanwhile keeps it easy to be implemented in hardware.  

   Three levels of parallelisms are also explored to accelerate the decoding processing: the 

concurrent execution of the preprocessing on embedded processor and decoding functions on 

hardware modules, the parallel execution of the real/imaginary decoding parts of complex 

constellations, and the parallel execution of multiple states during the closest lattice point search. 

 5



   Both AV and VB decoders are simulated in ModelSim [18], developed in EDK [19] and 

implemented on XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The hardware 

results are also verified by the MATLAB software simulations.  

   System performances including BER, data rate, and resource utilizations are compared 

between these two decoding algorithms. To the author’s knowledge, the real-time performance of 

the system prototypes are among the fastest MIMO decoders reported thus far.  

1.4  Organization of the thesis 

The rest of the thesis is organized as follow. Chapter 2 reviews the principles of MIMO 

system and two sphere lattice decoding algorithms. The step by step decoding procedure and 

state based flow charts are given and analyzed for both AV and VB algorithms. Chapter 3 gives 

the introduction to FPGA structure and hardware/software co-design procedures. Three levels of 

parallel structures for the complex sphere decoders are explored in Chapter 4. The complex 

constellation parallelism is derived theoretically and verified by MATLAB simulations. The data 

flow dependency among the iterative searching procedure is also analyzed to achieve the state 

level parallelism in this chapter. Comparisons of the experimental results between these two 

algorithms are presented in Chapter 5, followed by the conclusion Chapter 6. 
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Chapter 2 

MIMO system and sphere decoding algorithms 

   This chapter gives a brief introduction to MIMO system. Two typical sphere decoding 

algorithms are described in details and are further analyzed for hardware architecture design.  

2.1  Introduction to MIMO system 

During recent years, MIMO technology has emerged as a promising solution for the ever 

increasing demands of higher data rate and better QoS in wireless communications. By applying 

multiple antennas at both transmitter and receiver sides, MIMO system is able to greatly enhance 

the spectral efficiency and also provides a better range of coverage than the traditional SISO 

system. Recent initiatives for standardization of future MIMO systems including UMTS (3GGP 

Release 7), IEEE 802.11n wireless LAN, and IEEE 802.16 WiMax reflect the importance of 

MIMO technique.  

 

Figure 2.1 Block diagram of MIMO system  
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   Figure 2.1 gives a schematic representation of a MIMO system. The original signal S  is 

split into M lower rate data streams, modulated and transmitted simultaneously from each 

transmit antenna. The receiver, having complete knowledge of the channel, decodes these 

individual data streams, demodulates them and combines them together so as to recover the 

original signal. In the wireless MIMO channel, each data stream is transmitted through different 

data paths to reach different receive antennas. Two performance gains are provided by this 

multipath propagation method. 

2.1.1 Antenna diversity gain 

   Fading is generally a cumbersome problem in wireless communications. When the signal 

power drops significantly, the channel is said to be in a fade, which gives rise to BER and 

reduces the signal coverage range. In MIMO system, replicas of the same transmitted signal are 

provided across different antennas at the receiver side through independent fading paths. When 

one path is in fade, it is unlikely that all other paths are also in deep fade. Hence the more 

reliable reception is achieved in MIMO system. This QoS gain brought by MIMO system is 

called antenna diversity gain or spatial diversity gain.  

2.1.2 Spatial multiplexing gain 

    The spatial multiplexing is to transmit the split data streams concurrently through different 

transmit antennas, which helps to increase the data transmission rate for the same bandwidth and 

with no additional power expenditure. This performance gain is only possible in MIMO system. 

The capacity of the wireless channel grows linearly with the number of transmit antennas. Thus 

the spatial multiplexing can enormously enhance the spectral efficiency, which makes MIMO 
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technique uniquely important in modern wireless communications with scarce spectrum 

bandwidth.  

2.2  Lattice decoding problem 

Design an efficient decoder for MIMO receiver to match with the high transmission rate has 

become a challenging task, because the high computational complexity is involved especially in 

high dimensional MIMO systems with complex signal constellation.  

Considering a MIMO system with M transmit N receive antennas, the received vector y  is 

given by:  

nHuy +=                                    Eq 2.1 

where u  is the 1×M transmitted signal vector, and n  is a 1×N additive white Gaussian 

noise (AWGN) vector with zero mean and  variance. H is the M×N channel transfer matrix 

which is assumed to be known by the receiver. Each element in the H matrix corresponds to one 

fading coefficient between one transmit-receive antenna pair. For selected modulation scheme, 

each element in 

0N

u  is represented by one of the constellation points. A lattice structure, denoted 

as , is generated by multiplying all possible Λ u  with H. The ML lattice decoding problem is 

to find the closest lattice point to the received point in the lattice structure:  

                           2||||minargˆ Huyu
u

−=
Λ∈

                          Eq 2.2 

where û  is the decoded vector. Thus the ML-based decoding system can be summarized as: 

   Input: The channel lattice generation matrix H and the received vector .y  

   Output: A 1×M vector û  such that Hû  is a closest lattice point to .y   

    

 9



2.3  Sphere lattice decoding algorithms 

   The optimal lattice decoding method is to examine all possible lattice points in the lattice 

structure and find the best one with minimum Euclidian distance to the received vector. However, 

this method is not a solution for practical MIMO decoders because of the extreme complexity 

involved in this exhaustive search. 

   Two sphere decoding algorithms are analyzed in this section, named AV and VB algorithms. 

Both algorithms are ML-based lattice decoding algorithms, which try to enumerate the lattice 

points inside a sphere, and find the closest one to the received vector. The main difference 

between these two algorithms is the investigating order inside the lattice structure. The VB 

algorithm searches from the lower bound to the upper bound in each search layer and examines 

all possible lattice points falling into a certain sphere in the lattice structure with an initial radius 

C . Meanwhile the AV algorithm spread out from a nearby lattice point to the received point and 

terminates once the total distance is greater than the best distance and the search procedure 

reaches the bottom layer. No initial radius is needed in the AV algorithm, and it does not need to 

upgrade the lower and upper bounds of each layer using the time consuming square root 

functions as it needs in the VB algorithm. It is claimed that the AV algorithm is about 2 to 8 

times more efficient than the VB algorithm [8] even if a proper initial radius C  is applied to 

the VB algorithm.  

The step by step procedure for each algorithm is presented below. To improve the efficiency 

of the VB algorithm, a modified version of VB algorithm is adopted in this thesis, which avoids 

the hardware inefficient square root functions. 
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2.3.1 VB decoding algorithm  

   Two lattices are identical if all the lattice points generated by the lattice matrices and given 

signal set are the same. So basis reduction can be performed on the lattice generation matrix H to 

reduce the complexity of the decoding procedure. In the VB algorithm, Cholesky factorization is 

applied to the gram matrix , and it yields , where R is an upper triangular 

matrix. Thus the squared Euclidian distance shown in Eq 2.2 can be rewritten as: 

THHG = RRG T=

                             

2

2

2

22

||)(||
||)(||

)()(
)()(

||)(||
||||

T

T

TT

TT

uR
Ru

uRRu
uHHu

Hu
Huyd

−=

−=

−−=

−−=

−=

−=

ρ

ρ

ρρ

ρρ

ρ

                     Eq 2.3 

where 1−= Hyρ . By properly chosen the C , the searching range becomes a sphere with 

square radius C centered at the received point. And thanks for the attributes of the upper 

triangular matrix, the squared distance can be constrained by the following inequation: 

              Cururud
M

i

M

ij
jjijiiii ≤−+−= ∑ ∑

= +=

2

1 1

2 )))(()((),( ρρρ              Eq 2.4 

Substituting  for i = 1,…,M and 2, iiiiiii rqu =−= ρξ iiijij rrq /=  for i = 1,…,M, j = i+1,…,M 

into Eq 2.4:  

                  Cqqud
M

i

M

ij
jijiii ≤+=∑ ∑

= +=

2

1 1

2 ))((),( ξξρ                         Eq 2.5 

   Starting from the bottom row of matrix R and working backwards, the upper and lower 

bounds of the examining lattice point can be determined by the partial distance derived from Eq 

2.5: 
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Cqq
M

ij
jijiii ≤+ ∑

+=

2

1
))(( ξξ                         Eq 2.6 

where ui is used to represent the examining index of layer i and Li denotes the upper bound of ui. 

So the initial ui, which is essentially the lower bound of the examining index, and Li for each 

layer is determined by:  

                    
⎣ ⎦
⎡ ⎤ 1/

/

−+−=

+=

iiiii

iiiii

SqTu

SqTL
                         Eq 2.7 

where  is the smallest integer greater than x, and ⎣ ⎦x ⎡ ⎤x  is the greatest integer smaller than x. 

And:  

                                                          Eq 2.8 ∑
+=

+=
M

ij
jijii qS

1
ξρ

2
1 )( iiiiii uSqTT −−=−                            Eq 2.9 

   The VB-based decoder searches from the bottom layer to the top layer and scans each lattice 

index from the lower bound to the upper bound. When the algorithm reaches the top layer 

without violating the bound constraint, a valid lattice point is found. Then the new distance dnew 

between the valid lattice point and the received point is calculated and compared with the 

currently best distance dbest, which is initialized to be equal to C . If dnew is smaller than dbest, a 

closer lattice point is found and stored as the currently best lattice point. The searching radius is 

upgraded to dnew. This process iterates until all the lattice points within the sphere are examined. 

The flow chart and more details of this VB algorithm are available in [6]. In this thesis, the VB 

algorithm is partitioned into different states as show in the following step by step demonstration.  
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Step 1: Preprocessing and initialization: 
Transform H into an upper triangular matrix by 
Cholesky [20] factorization algorithm. Calculate 

1−= Hyρ . Initialize the sphere radius C  by an 

adaptive method [21]. Set dimension index i=M 
and dbest= C . Find the upper bound LM and index 
uM . 
Step 2: Finite State Machine (FSM) 
Upgrade ui= ui +1. 
If ui < Li and i>1 go to State A; 
If ui < Li and i=1 go to State B; 
If ui > Li go to State C. 
Step 3: State A: 
Expand the layer into (i-1)-dimensional sublayer 
and find the Si and Ti used to upgrade ui and Li. 
Goes to State D. 
Step 4: State B 
Upgrade dnew. 
If dnew < dbest, record the currently best distance 
and the best point. Set i=M. Go to State D. 
If dnew > dbest, go to step2. 
Step 5: State C 
Stop if i=M, otherwise move the procedure one 
step up i=i+1, and go to step 2; 
Step 6: State D 
Upgrade ui and Li, and go to step 2. 

Figure 2.2 State representation of VB algorithm 

   As shown in Figure 2.2, basis reduction is performed to reduce the complexity of decoding 

procedure before the closest point search begins. This is called preprocessing, which involves 

Cholesky decomposition and matrix inversion. These complex matrix manipulations are difficult 

and too costly for hardware implementation, and they are not executed frequently in the sphere 

decoding algorithm. So only the iterative decoding procedures are considered to be implemented 

on FPGA hardware.  

   By analyzing the calculations involved in these four states of the searching procedure, it is 
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clear that State D carries much more computational load than other states. This is because the 

hardware inefficient square root functions are used to upgrade ui and Li. The requirements of the 

square root functions make the computation load unbalanced among the four states. Furthermore, 

State D counts for about 40% of the total number of states visited for a vector to be decoded in 

MATLAB simulation. Thus the State D becomes the dominant computational part in the VB 

algorithm, which can not take full parallelism advantage of FPGAs. To design an efficient FPGA 

architecture, the VB algorithm must be modified to avoid the square root calculations. One of the 

modified versions of the VB algorithm is presented in [22], which suitably matches the 

FPGA-based design. 

   The purpose of the square root computations in the original VB algorithm is to find the lower 

and upper bounds for the examining index in each layer. Because the points in a lattice structure 

are generated from the transmitted signal vectors, the examining index ui should also come from 

the signal constellation points. Besides, in coherent demodulations the modulation scheme is 

known by the receiver. Thus a new method to determine the searching range for the examining 

index can be achieved by directly substituting each symbol of the signal constellation into Eq 2.6. 

Redefine Ti as:  

                                                         Eq 2.10 2)( iiiii uSqT −=

where Si remains the same as in Eq 2.8. The partial distance at the ith layer can be rewritten as:  

                                     Eq 2.11 KkCTxSqP
M

ij
jkiiik ,...,1,)(

1

2 =≤+−= ∑
+=

where xk is a symbol in the signal constellation and K is the total number of symbols. Thus the Li 
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and ui can be upgraded as:  
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The flow chart of the modified VB algorithm is given below:  
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Figure 2.3 Flowchart of modified VB algorithm  
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the examining range by the constraint radius C , the symbols from the signal constellation are 

directly used to calculate all possible partial distances in the ith layer. And the examining index ui 

is restricted to the qualified symbols. There are at least three advantages brought by this method: 

Firstly, it avoids the square root functions, and the partial distances Pk can be calculated in 

parallel to achieve an efficient hardware implementation. Secondly, within the signal 

constellation, the number of the examining points is more likely to be reduced compared with the 

original method, which makes the received vector to be decoded faster than the original VB 

algorithm. At last, it guarantees that all the examining points are coming from the signal 

constellation points which leads to a better BER performance. 

   Although an efficient searching procedure can be conducted by the improved VB algorithm, 

the choice of the initial sphere radius C  is very crucial to the decoding speed. If the radius is 

too small, the search will fail and no lattice point within the sphere will be found. However large 

C  means more points will be examined during the searching procedure and longer time will be 

spent for one vector to be decoded. Thus the decoding rate will be greatly degraded if the radius 

is too large. An adaptive method to calculate the radius C  is discussed in Chapter 5. 

2.3.2 AV decoding algorithm  

   Instead of examining the lattice points from the lower bound to the upper bound in each layer, 

the AV algorithm starts from the Babai point [23], and spreads out within the distance between 

the Babai point and the received point.  

   The lattice generation matrix H is decomposed into an M×M lower triangular matrix R and 

an M×N orthonormal matrix Q using KZ reduction or LLL reduction algorithms [24], 
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where . Then Eq 2.1 can be rewritten as: QRH 1−=

                            
TT QnRuQy

nQRuy
+=

+=
−

−

1

1

                           Eq 2.13 

   The AV decoding problem is formulated as: 

                            21 ||||minargˆ −

Λ∈
−= RuQyu T

u
                    Eq 2.14 

   The index ui is calculated and examined in the order shown in Eq 2.15 and Eq 2.16: 

                            RQye T
i =                                   Eq 2.15 

                            ,...}2][,1][],{[ ±±= iiiiiii eeeu                     Eq 2.16 

where [x] finds the closest integer to x. The orthogonal distance in the ith layer is given by:  

                            iiiii rued /)( −=                              Eq 2.17 

where rii is the ith diagonal element in R. The partial distance dnew in the ith layer is upgraded by 

Eq 2.18 if it is smaller than the currently best distance dbest: 

                                           Eq 2.18 ∑
= =

=−=
M

ij

M

ij
jjjjjnew drued 222 )/)(( ∑

And the closest point search expands to the (i-1) dimensional sublayer by:  

                            1,...,1,,1 −=−=− ijdree ijijji                     Eq 2.19 

On the other hand, if the partial distance is greater than dbest, the search procedure steps 1 layer 

back, and the examining index in this layer is upgraded in the order shown in Eq 2.16. This 

zig-zag order leads to a nondecreasing distance to the received vector y  in each layer. The 

searching procedure terminates when it moves down to the bottom layer without finding a closer 

lattice point than the currently saved best one. More details are available in [8]. The iterative 

decoding procedures are divided into three states as shown in Figure 2.4. 
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Step 1: Preprocessing and initialization: 
Transform H into a lower triangular 
matrix by QR [25] decomposition 
algorithm. Initialize dimension index 
i=M. Find the bounded index uM and the 

orthogonal distance d from y  to the 

layer with index uM. Set dbest=∞ . 
Step 2: Finite State Machine (FSM) 
Upgrade dnew using d. 
If dnew < dbest and i>1 go to State A; 
If dnew < dbest and i=1 go to State B; 
If dnew > dbest go to State C. 
Step 3: State A: 
Expand the layer into (i-1)-dimensional 
sublayer and find d and bounded ui. Go 
to step 2. 
Step 4: State B 
Record the currently best distance and 
the lattice point. Set i=2, and find d and 
bounded ui. Go to step 2. 
Step 5: State C 
Stop if i=M, otherwise move the 
procedure one step up i=i+1, and find d 
and bounded ui. Go to step 2; 

Figure. 2.4 State representation of AV algorithm 

   Similar to the VB algorithm, the matrix preprocessing involves QR decomposition and 

matrix inversion, which is only needed to be upgraded once in a signal frame length (typically 10 

ms). Thus only the iterative decoding functions are considered to be implemented on FPGA. By 

analyzing the three states involved in the AV algorithm, it is clear that the computational load is 

well balanced among these states, and no complicated calculations are introduced into the 

decoding procedure. Furthermore, based on the data flow dependency among these states, the 

state level parallelism can be explored for the AV algorithm to design an efficient FPGA 
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architecture.  

   The flow chart of the AV algorithm is also given in Figure 2.5: 

Preprocessing: Calculate  TQR,

 Find MM ue and orthogonal distance ,

Initialization:  
Set i=M and dbest=∞  

Upgrade dnew

dnew< dbest?

 

Figure 2.5 Flowchart of AV algorithm 

   Compared with the VB algorithm, the advantages of using the investigating order in Eq 2.16 

are obvious. Firstly, it does not need to calculate and upgrade the upper and lower bounds in each 

layer which involves intensive computations in the VB algorithm. Secondly, by using this 

nondecreasing distance order to search inside each lattice layer, the chance of finding the correct 

layer early is maximized. Furthermore, by spreading the searching procedure from the Babai 

i=1?

State A: 
Expand to i-1 
dimensional 
sublayer: i=i-1. 
Find ui and d 

State B: 
Record 
currently best 
lattice point  

i= 2. 
Find ui and d 

State C: 
If i=M, stop; 
Else move one 
layer up: i=i+1.
Find ui and d 

NY 

YN 
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point, no initial radius C  is needed in the AV algorithm. Literature results show that the 

AV-based decoder is about 2 to 8 times faster than the VB-based decoder [8]. Efficient 

hardware/software co-design architecture is designed for both algorithms in Chapter 4, where the 

experimental results from our designs also agree with this claim accordingly.  
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Chapter 3 

Hardware/software co-design and developing board 

3.1  Introduction to hardware/software co-design 

The term of hardware/software co-design surfaced in the early 90s when rapid reduction in 

the size of integrated circuits (ICs) made it possible to have embedded processor(s) on the same 

hardware silicon or chip, which is so called System on Silicon (SoS) or System on a Chip (SoC). 

It has moved from an emerging discipline to a mainstream technology [26], and is applied in a 

vast number of areas. The principle of HW/SW co-design technique is to partition the 

applications into the embedded processors and the customized hardware modules. The goal of 

this architecture is to enhance the system performance while reducing the design effort and costs, 

which is achieved by the benefits from HW/SW co-designs. The advantages of using processors 

lie in the following aspects: First, software is more flexible and cheaper than hardware, which 

allows late design changes and simplified debugging opportunities [35]. Furthermore, the 

available software libraries make many computationally complicated functions easy to be 

implemented inside the microprocessors. Finally, the possibility of reusing software by porting it 

to other processors, reduces the time-to-market cycle and the design effort. On the other hand, 

the hardware is always used to implement the computationally intensive tasks, which can 

extraordinarily improve system performance by the parallel executions. With a flexible and high 

speed interface between the hardware and software cores, this architecture can greatly speed up 

the applications by the high speed hardware implementation and can also maintain the flexibility 

and programmability of the microprocessor.  
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ASICs and FPGAs are both widely used in the HW/SW co-design systems. ASICs provide a 

dedicated hardware solution, which can usually lead to the best hardware performance at the 

expense of long design cycle and high non-recurring engineering (NRE) charges. On the other 

hand, FPGAs provide more flexibility and shorter design time than ASICs at a higher cost per 

unit device. It is a perfect platform for system prototyping and low-volume products. During past 

a few years, traditional FPGAs have combined with embedded microprocessors and related 

peripherals to form complete SoCs. Examples of this hybrid technology can be found in Xilinx 

Virtex-II Pro, Virtex-4 devices and Altera Stratix FPGAs. In this thesis, Xilinx Virtex-II Pro 

developing board is chosen to be the test bench for the MIMO decoders. The Xilinx FPGA-based 

HW/SW co-design architecture is given below: 

Customized 
hardware modules 

(VHDL) 

FPGA Configured 
MB Soft Processor

Data Side 
Cache 

Instruction 
Side Cache 

Software running on 
the soft processor 

(C code) 

Instruction Side Bus

Data Side Bus

Shared Bus 

Dedicated Bus 

Customized 
Hardware I

Customized 
Hardware II 

Customized 
Hardware N

 
Figure 3.1 Xilinx FPGA-based hardware/software co-design architecture 
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   The Xilinx MicroBlaze soft core, which is licensed as part of Xilinx EDK, is a 3-stage 

pipeline 32-bit RISC processor with 32 general purpose registers, ALU and a rich instruction set 

optimized for embedded applications. It is implemented by general logic primitives within the 

FPGA logics [15]. The MicroBlaze solution is designed to be flexible, giving the user control of 

a number of features such as the cache size, interfaces, and execution units. The configurability 

allows the user to trade-off features for size, in order to achieve the necessary performance for 

the target application at the lowest possible cost. Multiple customized hardware modules can be 

attached to the MB for hardware functions through interfaces such as on-chip peripheral bus 

(OPB), fast simplex link (FSL) or processor local bus (PLB). The software functions are 

executed inside the MB soft core with the instructions and data provided by instruction side 

cache and data side cache. C code and VHDL code are used to describe the software and 

hardware designs respectively. By properly partitioning of an application, the HW/SW co-design 

architecture is able to greatly enhance the computational performance of the whole system 

meanwhile keeps the flexibility of complicated manipulations inside the MB executions.  

3.2  FPGA structure 

There are three typical types of ICs, programmable logic devices (PLDs), ASICs and FPGAs. 

With predetermined architecture by manufacturer, PLDs can provide great programmable 

flexibility for engineers to perform a variety of different functions. But these devices contain a 

relatively limited number of logic gates which is only suitable for some simple and small 

applications. On the other hand, ASICs contain millions of logic gates, which can be use to 

implement extremely large and complex systems and to offer optimized hardware 
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implementations. But the designing of ASIC systems is too time consuming and costly. And once 

the final design is finished, it can not be modified to adapt to any application changes.  

FPGAs stand in the middle of PLDs and ASICs, which contain programmable logic blocks along 

with configurable interconnections between them [27]. Their functionality can be reconfigured in 

the way like PLDs, and they can contain millions of logic gates to provide a performance lean 

more toward to that of ASICs. The cost of an FPGA design is much lower than that of an ASIC. 

Meanwhile the design changes, even at the run-time, are implemented much easier in FPGAs. 

Thus, FPGA is considered as an ideal platform to perform the computationally intensive 

operations involved in the sphere decoding algorithms for reasons of performance, cost and 

reconfigurability. Xilinx and Altera are the two major manufacturers in FPGA market. Each 

company has a variety of FPGA series, which suit for different design requirements. Figure 3.2 

shows the structure of Xilinx FPGAs. The Xilinx FPGA device is organized as an array of logic 

elements, named slices, and programmable routing resources used to provide connections 

between the slices, FPGA I/O pins, on-chip block memory and other resources [28]. Each slice 

contains two logic cells, which can be performed as a 16-bit register or conducts the functions of 

basic logic gates such as AND, OR, XOR, and etc. By properly combining these basic logic 

elements, certain circuits can be generated to perform more complex combinatorial functions. 

Multipliers are inherently slow if implemented by connecting a large number of programmable 

logic blocks together. Xilinx FPGAs incorporate special hardwired embedded multipliers to 

improve the design performance.  
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Figure 3.2 Xilinx FPGA structure [28] 

   The Xilinx Virtex-II Pro XC2VP30 FPGA is chosen as the test bench device for this thesis 

research. The available resources of particular interest to our design are listed in Table 3.1 

FPGA XC2VP30 

Number of slices 13969 

Number of External IOBs 896 

Number of embedded 18×18 MULT 136 

Size of BRAMs 2448 Kb 

Table 3.1 Xilinx XC2VP30 FPGA features 

3.3  Design flow and developing board 

As the HW/SW co-design architecture became more and more sophisticated, a lot of 

commercialized computer aided design (CAD) tools have emerged into this field to facilitate the 

co-design procedure. Figure 3.3 shows the HW/SW co-design flow involved in the 
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implementation and evaluation of the MIMO lattice decoders.  

ModelSim Microsoft Visual 
Studio Software 

application
Hardware 
module 

 hardware simulation
VHDL code software compilation 

& simulation 
C code 

ISE synthesis 
VHDL code 

 
EDK  

hardware/software co-synthesis 
& on-chip simulation 

MATLAB Hardware/software Simulation co-verification .m file 

Performance
output 

 

Figure 3.3 Design flow for FPGA-based HW/SW co-design systems 

   In HW/SW co-designs, the application is partitioned into soft core and hardware modules. 

The software applications are developed and simulated in C language by Microsoft Visual Studio 

[29]. The hardware modules are first described in VHDL language, and simulated in Mentor 

Graphics ModelSim [30] at RTL level. Then they are synthesized in Xilinx ISE [31] software 

environment and translated into electronic hardware circuits to be mapped on chosen FPGA. 

Xilinx EDK [32] tool is used to merge the hardware and software designs together, and it is a 

comprehensive suit of integrated development environment to ease and facilitate the HW/SW 
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co-design process. As shown in Figure 3.4, the system window is used to design the SoC 

architecture, where versatile hardware modules can be attached to the embedded processor with 

certain address allocation and I/O assignments. After that the software application is developed 

in the Application window along with the interface between the software and hardware modules. 

The on-chip simulations for the whole system can also be conducted within the EDK tool.  

 

Figure 3.4 Xilinx EDK workplace 

 At last, the results from the HW/SW co-design are verified with the MATLAB software 

simulations. In the MIMO lattice decoder designs, the performances of decoding rate, FPGA 

resource utilization and BER are evaluated based on these simulations and verifications. 
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Figure 3.4 XUP Virtex-II Pro developing board [17] 

   Xilinx XUP Virtex-II Pro developing board is chosen as the target board for the 

implementations of lattice decoders. It consists of a high performance XC2VP30 FPGA 

surrounded by a comprehensive collection of peripheral components that can be used to create a 

complex system. The FPGA device can be configured by several methods including external 

parallel port interface, USB cable or internal CompactFlash storage media [33]. One or more MB 

soft cores can be implemented by configuring a group of logic cells inside the FPGA chip. 

Efficient architecture of aforementioned two sphere lattice decoders is explored in the next 

chapter for the FPGA-based HW/SW co-design.  
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 Chapter 4 

Hardware/software architecture for MIMO Sphere decoders  

   This chapter presents HW/SW co-design architecture for two MIMO sphere decoding 

algorithms. A coarse-gain partition of both algorithms is discussed first. Then three levels of 

parallel structures are explored to generate an efficient HW/SW architecture to improve the 

system performance. The co-design architecture is prototyped on the Xilinx Virtex-II Pro 

developing board.  

4.1 Partitioning of the sphere decoding algorithms 

   In our AV and VB sphere decoding algorithms, the basis reduction is generally performed to 

reduce the complexity of the decoding procedure, which transforms the lattice generation matrix 

into a triangular matrix. This process is called preprocessing that involves matrix factorization 

operations such as QR or Cholesky decompositions and matrix inversions. These complex matrix 

manipulations are difficult and not efficient to be mapped directly onto FPGAs. Fortunately, in 

MIMO wireless communications, the preprocessing stage of the sphere decoders does not need 

to be updated frequently. Generally, the channel matrix H can be assumed to be static during the 

transmission of one frame length of data signals. Therefore the preprocessing of lattice 

generation matrix only needs to be executed once for a certain time period (typically 10 ms). The 

MB soft processor on Virtex-II Pro FPGA running at about 100 MHz is able to complete the 

preprocessing task timely. For this reason, the basis reduction operations for both AV and VB 

algorithms are partitioned into the Xilinx MB soft processor.  

   Unlike the preprocessing stage of the decoding algorithms, the actual closest lattice point 
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searching procedure needs to be executed for every received signal vector. This iterative 

procedure is very time consuming if implemented sequentially in soft processor. Furthermore the 

decoding rate of the sphere decoder is determined by the average completion time of the 

searching procedure. Thus it is desirable to put the sphere searching procedure directly into 

FPGA hardware circuits. The gate level implementations on FPGA can greatly accelerate the 

computationally intensive functions involved in the decoding procedure. Because of supporting 

parallelism, some of the decoding calculations can be executed concurrently if no data flow 

dependency lies among them. Once an efficient architecture is explored, the FPGA-based 

implementation can extraordinarily speed up the decoding procedure of the sphere decoders. In 

addition to the performance gain, FPGA device also provides the flexibility to reconfigure the 

system to accommodate any changes of the MIMO systems including number of antennas, 

modulation schemes, and etc.   

   Based on the analysis above, a straightforward coarse-gain partition is applied to the AV and 

VB decoding algorithms to build up the HW/SW co-design architecture, which includes a soft 

processor, customized hardware module(s), and a shared peripheral bus between them for data 

communication. As shown is Figure 3.1, the channel matrix preprocessing is implemented in the 

embedded MB soft core, and the decoding procedure is mapped onto FPGA hardware modules. 

The preprocessing results (the upper or lower triangular matrix) are transferred from the MB to 

the hardware modules periodically through the OPB interface, which is synchronous to MB 

processor and can achieve a high data transfer rate. Subsequently, three levels of parallel 

structures are explored to further accelerate the decoding speed of this co-design architecture 
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while maintaining the same BER performance.  

4.2 Processor level parallelism 

MicroBlaze 
(Preprocessing)

OPB interface 

Customized Hardware

 

Figure 4.1 Architecture of the processor level parallelism 

   The HW/SW co-design architecture for both AV and VB algorithms is illustrated in Figure 

4.1. The preprocessing part including matrix factorization and inversion is programmed on MB 

soft processor for both algorithms. The lattice searching procedure is implemented in customized 

hardware modules to improve the decoding rate. The OPB interface is used to transfer data 

between them. The processor level parallelism refers to the concurrent execution of the 

preprocessing stage and the decoding procedure. And multiple decoding blocks can be mapped 

onto the FPGA. This is feasible because all signals received within the same frame length are 

decoded using the same triangular matrix decomposed by the preprocessing unit. Thus multiple 

received vectors can be decoded simultaneously. The maximum number of the customized 

modules that can be implemented is determined by the size of the hardware core and the 

available resources of chosen FPGA.  

   To evaluate the performance gain brought by the processor level parallelism, tp is defined as 

(Decoding)  
Customized Hardware 

(Decoding)  
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the execution time of the preprocessing part, and td is defined as the average execution time to 

decode one received vector. Then the system architecture with 1 MB processor and N customized 

hardware modules can achieve a speedup factor of:  

)/,max( NLtt
Ltt

S
dp

dp
f

+
=                          Eq 4.1 

where L is the number of received vector per frame length. There exists a slight overhead before 

starting a new searching procedure in hardware modules, because the received vectors need to be 

manipulated for different hardware modules based on the basis reduction schemes in MB soft 

processor. This overhead is not significant because only the multiplication of a 1×N vector with 

an N×M orthogonal matrix is involved. Furthermore, instead of execution in MB soft core, if 

this multiplication is partitioned into each hardware module, this kind overhead can be almost 

ignored because of the parallel executions in FPGA. Based on the EDK synthesis results shown 

in Chapter 5, the XC2VP30 FPGA can accommodate 4 hardware decoders for the AV algorithm 

and 3 hardware decoders for the VB algorithm in parallel to accelerate the decoding speed.  

4.3 Complex constellation parallelism 

   In wireless communications, the transmitted signals are often modulated using the complex 

quadrature amplitude modulation scheme. If this is the case, the MIMO channel matrix H 

becomes an M×N complex matrix, and the received signal y  and the transmitted signal u  

becomes 1×N and 1×M complex vectors respectively. In this subsection, the MIMO systems 

with the same number of transmit and receive antennas (M=N) are considered to achieve the 

complex constellation parallelism. 
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4.3.1 Conventional 2M-dimensional search method 

Generally, the MIMO system can be described as: 

                               nHuy +=                                Eq 4.2 

The sphere decoders search the closest lattice point in a specified order as discussed in chapter 2. 

But in the complex constellation case, the admissible order in each searching layer can not be 

easily specified because the examining index in each layer becomes a complex number. A 

solution for this problem is to linearly transform Eq 4.2 into [35]: 
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where  and  represent the real part and imaginary part of a complex number x. Thus 

the M-dimensional complex decoding problem can be solved via decomposing the complex 

matrix into an equivalent 2M-dimensional (2M-D) real matrix as shown in Eq 4.3.  

}{xℜ }{xℑ

   Thus the inputs of the sphere decoder become a 2M-dimensional channel matrix and a 1×2M 

received vector. While this method provides a possible approach to the complex MIMO systems, 

the searching space is greatly enlarged by the doubled dimension. 2M layers are involved in the 

decomposed channel matrix, thus significantly increases the number of iterations during the 

closest lattice point searching procedure. Figure 4.2 shows the number of states visited as the 

dimension of MIMO channel matrix grows for the AV algorithm. Number of states visited is 

increased greatly when the dimension of MIMO system doubles. And as the number of states 

visited is an important factor of the decoding rate, the data throughput of the MIMO decoder will 

be considerably degraded if the dimension of the system is doubled. In addition, decomposing 
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the complex lattice into a 2M-dimensional real lattice ignores the orthogonal feature of real and 

imaginary parts of a complex system and the symmetry of the QAM constellation, thus reducing 

the possibility of parallel implementations on FPGA. Consequently, the conventional 2M-D 

method is not suitable for FPGA implementations. 

 
Figure 4.2 Number of states visited vs. number of antennas 

   An efficient two M-dimensional (two M-D) transform method is mathematically derived for 

an alternative solution to the complex MIMO decoders. And the simulation results are presented 

to verify its performance.  

4.3.2 Two M-dimensional search method 

   The idea of the two M-D transform method is to decompose the M-dimensional complex 

MIMO decoding problem into two independent M-dimensional real problems. Each decomposed 

subsystem only contains the real part or imaginary part of the transmitted signals. Hence the 

complex lattice decoding problem is solved by decoding the real part and imaginary part of the 

transmitted signal separately.  
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Eq 4.3 can be rewritten into the following two equations by multiplying out the matrix H and 

vector u :  

}{}{}{}{}{}{ nHuHuy ℜ+ℑℑ−ℜℜ=ℜ              Eq 4.4 

}{}{}{}{}{}{ nHuHuy ℑ+ℜℑ+ℑℜ=ℑ              Eq 4.5 

By calculating Eq4.4 + Eq4.5* , we can get: }{*}{1 HH ℑℜ−
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Similarly, by solving Eq4.4* Eq4.5, we have: −ℑℜ− }{*}{1 HH
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To simplify these equations, we denote the following terms:  
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                      Eq 4.8 

By substituting Eq 4.8 into Eq 4.6 and Eq 4.7, we get:  

11 }{ nSuy +ℜ=                              Eq 4.9 

22 }{ nSuy +ℑ=                             Eq 4.10 

Thus the complex lattice decoding problem of Eq 4.2 can be decomposed into two 

independent M-dimensional real decoding problems shown in Eq 4.9 and Eq 4.10. This 

transformation is well suited for FPGA-based implementations because the real and imaginary 

parts of the transmitted signal can be decoded in parallel, which is named the complex 
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constellation parallelism in the sphere decoder architecture. Since the number of states visited for 

each decoding part remains the same as an M-dimensional real system, this method can 

significantly improves the decoding rate for a MIMO system with complex modulation scheme. 

Of cause there exist some overheads to achieve this performance gain, because the matrix S, 

vectors 1y  and 2y  in Eq 4.8 need to be calculated before the preprocessing and lattice 

searching procedure starts. But by partitioning the calculation of S into MB soft core, and 1y  

and 2y  into FPGA hardware modules, this parallelism is still able to meet the preprocessing 

time requirement and greatly improve the throughput of the sphere decoder. The architecture of 

the complex constellation parallelism is illustrated in Figure 4.3, as the R-decoder and I-decoder 

denote for the real part and the imaginary part decoders respectively. 

MicroBlaze 
(Preprocessing)

OPB interface 

Hardware Decoder 

R-decoder I-decoder 

 

Figure 4.3 Architecture of complex constellation parallelism 

   The transformed matrix S is calculated in MB soft processor. Then it is decomposed in the 

preprocessing stage to generate the triangular matrix. The results are transferred to hardware 

decoder along with an intermediate matrix , which is used to calculate }{}{1 HH ℑℜ−
1y  and 

2y  as in Eq 4.8. At last the vectors 1y  and 2y  are decoded concurrently in the R-decoder and 

I-decoder to recover the real and imaginary parts of the transmitted signal.  
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4.3.3 Simulation validation 

   After mathematically deriving the two M-D transform method for complex MIMO decoders, 

the MATLAB simulations are carried out to validate its BER performance with the conventional 

2M-D method. 4×4 MIMO decoders with 16-QAM modulation scheme are simulated for both 

AV and VB algorithms. The BER performances are compared between the aforementioned two 

decoding transformations at different SNRs. The results are presented in Figure 4.4.  

  

Figure 4.4 Comparisons of BER performances of two transformation methods 

   According to the simulation results, the two M-D transform method results in a slight 

degradation in BER performance for both AV and VB algorithms. This is because some 

distortions have been involved by this two M-D method to improve the decoding efficiency. In 

the basis reduction and 2M-D transformations, the original channel matrix and the transformed 

matrix are identical because one can be obtained from the other through scaling, rotation, and 

reflection [8]. And the BER performance will not be degraded by these kinds of transforms 

because these lattice generation matrices are able to generate the same lattice points to decode by 
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the sphere decoding algorithms if the same signal constellation is used. Unlike these identical 

transforms, the two M-D transform reduces the points in the lattice structure from 2MQ to 2*2MQ/2 

by Eq 4.9 and 4.10, where M and Q denote for the number of transmit antennas and the number 

of bits used to represent a symbol in the signal constellation. Although only basic transforms are 

used, there are still some distortions involved by this nonlinear two M-D transformation. And 

Figure 4.4 shows that the VB decoder suffers a bigger distortion than the AV decoder. But even 

in the VB decoder, the two M-D method brings only about 1 dB degradation in BER 

performance compared with the 2M-D method. Furthermore, by considering the reduction of the 

number of states visited, as shown in Figure 4.5, it is clear that the proposed two M-D method 

can considerably accelerate the decoding procedure and meanwhile keeps the BER performance 

within an acceptable degradation range. 

 

Figure 4.5 Comparisons of number of states visited of two transformation methods 
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4.4 State level parallelism 

   To further improve the decoding speed, a state level parallelism is developed based on the 

data flow dependency analysis between all the states shown in Figure 2.2 and 2.4. A finite state 

machine (FSM) is designed to control the transitions among these states. This state level 

parallelism is implemented in the FPGA hardware modules.  

4.4.1 Data flow dependency analysis 

   There are three states involved in the decoding procedure as described in the step by step 

demonstration in Figure 2.4 for the AV algorithm. Figure 4.6 shows the data dependency between 

all possible state transition pairs. State A is dependent on both states B and C if the search 

procedure switches to A from B or C, because the orthogonal distance d calculated in B or C is 

used to upgrade the layer index ui in State A. Similarly, State A is self dependent. State B has no 

dependency on A because these two states work on different search dimensions if B follows A 

during the decoding procedure. For the same reason State C is not dependent on any other states 

that could jump to C. Based on the data flow dependency, the possibility of the parallelism 

among these three states is found as: A || B, A || C, B || C, C || C. These conditions are used to 

implement the state level parallelism for the AV algorithm.  

 

Figure 4.6 Data flow dependency graph of AV algorithm 

B

C

A 

Dependent 
Not Dependent 
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   Similar to the AV algorithm, the data flow dependency for the VB algorithm can be drawn in 

Figure 4.7. Because of high data dependency among the decoding procedure, only State C can be 

executed simultaneously with states B or C in this algorithm, which is summarized as: B||C, C||C.  

BA 

 

Figure 4.7 Data flow dependency graph of VB algorithm 

4.4.2 Hardware architecture of state level parallelism 

   Depending on the data flow dependency analysis above, multiple states can be executed 

concurrently in the hardware decoding modules. As an example, Figure 4.8 presents the 

hardware architecture of state level parallelism for the AV decoder. An FSM is designed as a 

central unit to control the state transitions and synchronization between them. For a 4-antenna 

MIMO system, five hardware state modules are created, with one for each state and other two 

duplicated C states. This is because up to three State Cs can be executed in parallel based on the 

data flow analysis and experimental results. For instance, when the current state is B, FSM 

enables not only State B but also all three State C models. The results from these modules can be 

directly used if this State B is followed by multiple C states. A data buffer unit is used to 

temporally store the data during the decoding procedure.  

C D
Dependent 

Not Dependent 
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Figure 4.8 Architecture of state level parallelism for AV decoder  

   The state parallel structure for the VB decoder is similar to that of the AV decoder. There are 

six state modules for a 4-antenna MIMO system compared with Figure 4.8, with an extra State D 

involved in the VB algorithm.  

   To see the performance gain brought by this state level parallelism, Figure 4.9(a) shows a 

typical searching procedure in the AV decoding algorithm, where the state transition is executed 

sequentially. Three hardware modules are generated and 7 time cycles are needed to finish the 

searching procedure. In the state parallel structure, five hardware modules are created to speed 

up the decoding procedure as shown in Figure 4.9(b). All possible states after the current one are 

enabled if they are allowed to execute in parallel. For example, if current state is A, modules A, 

B and C are all enabled because the searching procedure could jump to either B or C after State 

A, and these two states are not dependent on State A. At the end of the processing in State A, the 

results from either B or C will be accepted based on the state transition conditions. The next state 

of the selected state is determined and the search procedure continues. By using this structure, 

the searching procedure shown in this example can be finished in 4 time cycles. Thus 3 time 

cycles are saved compared with the sequential implementation.  

Finite State Machine 

State B State CState A

Data 
Buffer

State CState C
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Figure 4.9 An example of state level parallelism for AV decoder  
(a) Sequential implementation (b) Parallel implementation 

   This performance gain is achieved at a cost of more FPGA resource utilization. But this 

overhead is trivial when compared with the available slices on the XC2VP30 FPGA device. The 

experimental results are given in the next chapter.  
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Chapter 5 

Performance and results 

   A 4×4 MIMO system with 16-QAM modulation scheme is chosen as the target application. 

Both AV and VB sphere decoders are developed in Xilinx Embedded Development Kit (EDK) 

and prototyped on XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The resource 

utilization and the maximum frequency of the decoders are obtained from the synthesis results by 

Xilinx ISE tool. The bit accurate models for both algorithms are simulated in MATLAB, and are 

used to verify the results from the hardware/software co-design implementations. The two 

algorithms are also implemented on TI DSP processor for decoding rate comparisons. 

5.1 MicroBlaze soft core prototype performance 

   As discussed in Chapter 4, the preprocessing part of the sphere decoding algorithms is 

partitioned into MB soft core, which includes QR or Cholesky factorization, matrix inversion 

and transpose, and other operations. In order to apply the constellation parallelism for complex 

MIMO systems, the real/imaginary (R/I) decomposition is also calculated in MB soft processor, 

which includes matrix inversion and multiplication. From the synthesis results, the MicroBlaze 

soft processor can operate at 100 MHz when prototyped on the XC2VP30 FPGA. The soft core 

timing performance for the 4×4 MIMO system is presented in Table 5.1.  

   It is demonstrated from the results that the R/I decomposition and preprocessing parts of the 

sphere decoders can be completed within 0.8 ms. A MIMO system with 8 transmit and 8 receive 

antennas has also been examined. The results show that the MB executions can be completed 

within 3.8 ms for both algorithms, which is still much less than the typical frame length (10 ms) 
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of a MIMO system. These results prove the feasibility of the processor level parallelism for both 

AV and VB sphere decoders.  

 AV algorithm VB algorithm 

Device Xilinx MicroBlaze 

Frequency 100 MHz 

R/I decomposition 25,253 cycles 

Factorization 36,277 cycles (QR) 4,621 cycles (Cholesky) 

Inversion 12,287 cycles 

Transpose 1,129 cycles 

Total Time 78,675 cycles 

0.787 ms 

57,801cycles 

0.578 ms 

Table 5.1 MicroBlaze soft core timing performance 

5.2 Hardware synthesis performance 

   Based on the HW/SW co-design architecture described in Chapter 4, the closest lattice point 

searching procedure is mapped on FPGA as customized hardware modules to speed up the 

decoding rate. Because the constellation and state level parallelisms are applied in the sphere 

decoding architecture, it is meaningful to examine the overheads of FPGA resource utilization 

caused by these two optimizations. The real and imaginary parts of the transmitted vector u  are 

decoded separately after the two M-D transformation. Table 5.2 presents the number of slices and 

embedded multipliers used in single real part or imaginary part decoders for both algorithms. R-I 

decomposition is used to calculate 1y  or 2y  in Eq 4.8, and two extra C states are used to 
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achieve the state level parallelism. Compared with total slices used by the decoder, the slice 

overhead caused by these parallel structures are trivial. Although 8 extra embedded multipliers 

are involved in the proposed parallel architecture, it is still acceptable when compared with the 

total number of available embedded multipliers provided by XC2VP30 FPGA.  

AV decoder VB decoder  

Slices Embedded Mult Slices Embedded Mult

R-I decomposition 245 4 245 4 

Two extra C states 170 4 128 4 

Single decoder 1705 22 2419 31 

Table 5.2 Resource utilization of real or imaginary part decoder 

   From the post place-and-route (PAR) report, the FPGA resource utilization and the maximum 

frequencies are compared between the AV and VB algorithms for the 4×4 complex MIMO 

system as shown in Table 5.3:  

 AV algorithm VB algorithm 

Target FPGA XC2VP30 

Slices 3410 out of 13696 4838 of 13696 

External IOBs 205 out of 896 227 out of 896 

Embedded Multipliers 44 our of 136 62 our of 136 

Maximum Frequency 251 MHz 257 MHz 

Table 5.3 FPGA resource utilization for AV and VB sphere decoders 
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   The results show that the VB-based decoder uses more embedded multipliers and more 

FPGA slices than the AV-based decoder because the VB algorithm involves more complicated 

calculations.  

5.3 Decoding rate performance  

   The data rate for the MIMO sphere decoders with M transmit and M receive antennas is 

determined by: 

                            
statestate Cn
MbfR

*
** dim=  (Mbps)                     Eq 5.1 

where f is the synthesized system frequency in MHz, bdim is the number of bits per dimension 

which is determined by the modulation scheme. Because 16-QAM signal constellation is chosen 

in our designs, 4 bits per dimension are transmitted in each symbol. And nstate is the average 

number of states visited required to decode a received vector at a certain SNR. With the state 

level parallelism applied to the sphere decoder architecture, two or more states executed at the 

same time are counted as one state visit. Cstate is the average number of clock cycles per state 

visit, which is calculated as:  

∑= )*( ,, stateistateistate CPC                     Eq 5.2 

where Pi,state denotes the visiting statistic percentage of state i, which is obtained from high-level 

simulation. Ci,state is the clock cycles used by state i captured from the FPGA RTL level 

simulation.  

    In section 2.3.1, it is discussed that the initial radius C  is very crucial to the performance 

of VB-based sphere decoders. An adaptive method is adopted to calculate this squared initial 
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radius as shown in Eq 5.3: 

                         ))*)*(,(( 12 α+= − HHySTydroundC              Eq 5.3 

where ),(2 yxd  denotes the squared Euclidian distance between two vectors x  and y . ST( x ) 

is a function that transfers each element in vector x  into its closest signal constellation point. 

And α  is an adaptive positive number based on experience, which is chosen to be 0.2 for our   

4×4 MIMO system with 16-QAM modulation. The idea here is to find a distance from the 

received point to a nearby lattice point, and then use this distance as the initial radius in the VB 

sphere decoding algorithm. Because in MIMO wireless communications, the channel is 

considered to be static during a short length of time, the squared radius C only needs to be 

upgraded once in a signal frame length. An adaptive number α  is added to this C in order to 

keep the BER performance. The simulation results of number of states visited for different initial 

radiuses are compared in Figure 5.1 for the VB decoder.  

 

Figure 5.1 Number of states visited for different initial radiuses in VB decoder 
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   Figure 5.1 shows that when the Eb/N0 (bit-noise ratio) is greater than 8 dB, the number of 

states visited is significantly reduced by the adaptive method compared with other two fixed C 

cases. And from BER simulations, all these three methods can achieve almost the same BER 

performances. So it is concluded that the adaptive method is able to improve the decoding rate 

without violating the BER performance.  

   Based on above analysis, the statistic information for the number of states visited and 

average clock cycles at 20 dB Eb/N0 is given in Table 5.4. The time for data exchange and 

decision making of FSM module is considered inside each state. The simulation results show that 

the average processing time for one state visit is 8.5 clock cycles for the AV algorithm and 7.6 

clock cycles for the VB algorithm. The average number of states visited for one decoding 

procedure is 5.8 and 14.5 for the AV and VB decoders respectively.  

AV algorithm VB algorithm  

Clock cycles Percentage Clock cycles Percentage 

State A 11 50% 6 30% 

State B 6 5% 6 10% 

State C 6 45% 6 20% 

State D -- -- 10 40% 

Average 8.5 cycles/state 

5.8 states visited 

7.6 cycles/state 

14.5 states visited 

Table 5.4 Average state visit statistics for AV and VB decoders at 20 dB Eb/N0 
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   These two algorithms are also implemented on DSP in comparison with the proposed 

FPGA-based sphere decoders. A fixed point TI TMS320C6201 DSP device is chosen as the 

benchmark platform, which operates at a fixed frequency 200 MHz. Because DSP does not 

support parallel executions, the 2M-D transformation is applied to decode the complex signals in 

the MIMO system. Based on these parameters, the decoding rate of the sphere decoders of 

different hardware implementations at 20 dB Eb/N0 is given in Table 5.5. The FPGA results 

show that the AV-based decoder is more than 2 times faster than the VB-based decoder, which 

matches the theoretical analysis as in [8].  

FPGA DSP  

AV decoder VB decoder AV decoder VB decoder 

Platform Xilinx XC2VP30 TI TMS320C6201 

f (MHz) 251 257 200 

Cstate (cycles) 8.5 7.6 94 474 

nstate 5.8 14.5 15.5 33.2 

bdim 4 

M 4 

R (Mbps) 81.5 37.3 2.2 0.2 

Table 5.5 Comparisons of decoding rate for different implementations at 20 dB Eb/N0 

   The DSP results show that the AV and VB decoders can only reach about 2.2 Mbps and 0.2 

Mbps respectively for our MIMO system at 20dB Eb/N0. Comparing with FPGA-based 
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performances, the key reason for the low decoding rates in DSP implementations is the lack of 

parallel executions and high instruction overhead. As shown in the above table, DSP-based VB 

decoder takes 474 clock cycles in average for a state visit, which is only 7.6 clock cycles in the 

corresponding FPGA implementation. The number of states visited of the DSP implementation 

is larger than that of the FPGA implementation because DSP does not support the complex 

constellation and state level parallelisms designed in Chapter 4. Similarly, the DSP-based 

decoder can not implement the current execution of preprocessing and decoding parts. As 

shown in Figure 5.2, the decoding rate of the FPGA-based sphere decoders is about 37 times 

and 187 times faster than the DSP-based implementations of AV and VB algorithms 

respectively at 20 dB Eb/N0. 

 
Figure 5.2 Comparisons of decoding rates for different sphere decoders  

5.4 BER performance 

   The BER performance is evaluated for different lattice dimensions, different lattice 
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generation matrices with Gaussian distribution and different SNRs. Figure 5.3 shows the BER 

performance for the VB-based sphere decoders. The simulation results show that the 8-antenna 

MIMO system can achieve a better BER performance than that of the 4-antenna system. 

Theoretically this is because that if there are more antennas involved in a MIMO system, more 

antenna diversity gains is obtained to improve the BER performance. From Figure 5.3, it also 

shows that the fixed point FPGA-based sphere decoders in this thesis match the BER 

performances from the floating point software simulations. This result proves that in our 

hardware implementations, the number of bits used to present a fixed point and the scaling 

number to convert the floating point to a fixed point are suitably chosen which can keep the 

precision within the examined range of SNRs.  

 

Figure 5.3 BER performances for VB sphere decoders 

   The BER performance of the AV-based sphere decoder is close to that of the VB-based 
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decoder as shown in Figure 5.4.  

 
Figure 5.4 Comparison of BER performances for two sphere decoders  
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Chapter 6 

Conclusions 

Hardware/software co-design architecture for two typical MIMO lattice decoding algorithms 

has been designed and implemented in this thesis. The closest lattice point searching procedure is 

partitioned into the FPGA-based hardware modules. And a MicroBlaze soft core is used for the 

channel matrix preprocessing and R/I decomposition. Three levels of parallel structures are 

designed in this co-design architecture to improve the decoding rate. The overheads involved in 

these parallel structures are also analyzed. The proposed architecture is prototyped on the Xilinx 

XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The experimental results show 

that the AV and VB based decoders can reach up to 81.5 Mbps and 37.3 Mbps decoding rate 

respectively at 20 dB Eb/N0 for a 4×4 MIMO system with 16-QAM modulation, which are 

among the fastest MIMO decoders to the author’s knowledge. They are about 37 and 187 times 

faster than their respective implementations in a DSP processor. The BER performance of the 

experimental prototype matches with the software simulation results. 

   The implementation results show that our FPGA-based HW/SW co-design architecture is a 

promising solution to design efficient MIMO decoders to match with the high transmission rate 

in MIMO systems. This thesis research also provides author an excellent opportunity to learn the 

procedures involved in the HW/SW co-design and to get invaluable experiences on real issue 

designs.  
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