
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-9-2006

Hardware/Software Co-Design Architecture and Implementations Hardware/Software Co-Design Architecture and Implementations

of MIMO Decoders on FPGA of MIMO Decoders on FPGA

Cao Liang
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Liang, Cao, "Hardware/Software Co-Design Architecture and Implementations of MIMO Decoders on
FPGA" (2006). University of New Orleans Theses and Dissertations. 416.
https://scholarworks.uno.edu/td/416

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/416?utm_source=scholarworks.uno.edu%2Ftd%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

HARDWARE/SOFTWARE CO-DESIGN ARCHITECTURE AND
IMPLEMENTATIONS OF MIMO DECODERS ON FPGA

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Electrical Engineering

 by

Cao Liang

B.S., UESTC, 2002

August 2006

ACKNOWLEDGEMENT

Many people from different parts of my life have contributed to my success in completing

this thesis. First and foremost I would like to express my deepest gratitude to my committee

members Dr. Xinming Huang, Dr. Jing Ma and Dr. Vesselin Jilkov for the continuous support

and shared knowledge. I would like to offer a special thanks to Dr. Jing Ma and Dr. Xinming

Huang for providing me the opportunity to work on this project and for their invaluable

inspiration and suggestions which make it possible for me to finish this thesis. I am very grateful

to Dr. Xinming Huang for serving as my committee chair and guiding me to the right direction

during the long graduation process. I would also thank Dr. Vesselin Jilkov for his insightful ideas

and comments to the thesis.

Last, I take this opportunity to thank my parents and wife for their unconditional support and

love which gives me unending encouragement and strengths. I dedicate my thesis to them.

 ii

TABLE OF CONTENTS

List of Figures ...v
List of Tables .. vi
Glossary of Abbreviations .. vii

Abstract ... ix

Chapter 1 Introduction ..1

1.1 Motivations and background ...1
1.2 Research objectives ...5
1.3 Contributions ...5
1.4 Organization of the thesis ...6

Chapter 2 MIMO system and sphere decoding algorithms ..7

 2.1 Introduction to MIMO system ...7
 2.1.1 Antenna diversity gain ...8
 2.1.2 Spatial multiplexing gain ...8
 2.2 Lattice decoding problem ..9
 2.3 Sphere lattice decoding algorithms ..10
 2.3.1 VB decoding algorithm ..11
 2.3.2 AV decoding algorithm ..16

Chapter 3 Hardware/software co-design and developing board ..21

 3.1 Introduction to hardware/software co-design ..21
 3.2 FPGA structure ..23
 3.3 Design flow and developing board ..25

Chapter 4 Hardware/software architecture for MIMO sphere decoders29

 4.1 Partitioning of the sphere decoding algorithms ...29
 4.2 Processor level parallelism ..31
 4.3 Complex constellation parallelism ...32
 4.3.1 Conventional 2M-dimensional search method ...33
 4.3.2 Two M-dimensional search method ...34
 4.3.3 Simulation validation ...37
 4.4 State level parallelism ..38
 4.4.1 Data flow dependency analysis ..39
 4.4.2 Hardware architecture of state level parallelism ..40

Chapter 5 Performance and results ...43

 iii

 5.1 MicroBlaze soft core prototype performance ...43
 5.2 Hardware synthesis performance ..44
 5.3 Decoding rate performance ...46
 5.4 BER performance ..50

Chapter 6 Conclusions ..53

References ...54

Vita ..57

 iv

List of Figures
Figure 2.1 Block diagram of MIMO system ...7

Figure 2.2 State representation of VB algorithm ..13

Figure 2.3 Flowchart of modified VB algorithm ..15

Figure 2.4 State representation of AV algorithm ..18

Figure 2.5 Flowchart of AV algorithm ...19

Figure 3.1 Xilinx FPGA-based hardware/software co-design architecture22

Figure 3.2 Xilinx FPGA structure ...25

Figure 3.3 Design flow for FPGA-based HW/SW co-design systems ...26

Figure 3.4 Xilinx EDK workspace ..27

Figure 3.5 XUP Virtex-II Pro developing board ..28

Figure 4.1 Architecture of the processor level parallelism ...31

Figure 4.2 Number of states visited vs. number of antennas ..34

Figure 4.3 Architecture of complex constellation parallelism ..36

Figure 4.4 Comparisons of BER performances of two transformation methods37

Figure 4.5 Comparisons of number of states visited of two transformation methods38

Figure 4.6 Data flow dependency graph of AV algorithm ...39

Figure 4.7 Data flow dependency graph of VB algorithm ..40

Figure 4.8 Architecture of state level parallelism for AV decoder ...41

Figure 4.9 An example of state level parallelism for AV decoder ...42

Figure 5.1 Number of states visited for different initial radiuses in VB decoder47

Figure 5.2 Comparisons of decoding rates for different sphere decoders50

Figure 5.3 BER performances for VB sphere decoders ..51

Figure 5.4 Comparison of BER performances for two sphere decoders52

 v

List of Tables
Table 3.1 Xilinx XC2VP30 FPGA features ..25

Table 5.1 MicroBlaze soft core timing performance ..44

Table 5.2 Resource utilization of real or imaginary part decoder ...45

Table 5.3 FPGA resource utilization for AV and VB sphere decoders ..45

Table 5.4 Average state visit statistics for AV and VB decoders at 20 dB Eb/N048

Table 5.5 Comparisons of decoding rate for different implementations at

20 dB Eb/N0 ..49

 vi

Glossary of Abbreviations

ALU – Arithmetic Logic Unit

ASIC – Application Specific Integrated Circuit

AWGN – Additive White Gaussian Noise

BER – Bit Error Rate

BRAM – Block Random Access Memory

CAD – Computer Aided Design

DSP – Digital Signal Processor

Eb/N0 – Bit Noise Ratio

EDK – Embedded Development Kit

FPGA – Field Programmable Gate Array

FSL – Fast Simplex Link

FSM – Finite State Machine

HW/SW – Hardware/Software

IC – Integrated Circuits

I/O – Input Output

IOB – Input Output Bus

ISE – Integrated Software Environment

MB – MicroBlaze

MIMO – Multiple Input Multiple Output

ML – Maximum Likelihood

NRE – non-recurring engineering

OFDM – Orthogonal Frequency Division Multiplexing

 vii

OPB – On-chip Peripheral Bus

PAR – Place and Route

PLB – Processor Local Bus

PLD – Programmable Logic Device

QAM – Quadrature Amplitude Modulation

QoS – Quality of Service

RISC – Reduced Instruction Set Computer

RTL – Register Transfer Level

SISO – Single Input Single Output

SoC – System on a Chip

SoS – System on Silicon

SNR – Signal Noise Ratio

VHDL – Very high speed integrated circuits Hardware Description Language

VLSI – Very Large Scale Integration

XUP – Xilinx University Program

 viii

Abstract

During the last years, multiple-input multiple-output (MIMO) technology has attracted great

attentions in the area of wireless communications. The hardware implementation of MIMO

decoders becomes a challenging task as the complexity of the MIMO system increases. This

thesis presents hardware/software co-design architecture and implementations of two typical

lattice decoding algorithms, including Agrell and Vardy (AV) algorithm and Viterbo and

Boutros (VB) algorithm. Three levels of parallelisms are analyzed for an efficient

implementation with the preprocessing part on embedded MicroBlaze soft processor and the

decoding part on customized hardware. The decoders for a 4 by 4 MIMO system with 16-QAM

modulation scheme are prototyped on a Xilinx XC2VP30 FPGA device. The hardware

implementations of the AV and VB decoders show that they support up to 81 Mbps and 37 Mbps

data rate respectively. The performances in terms of resource utilizations and BER are also

compared between these two decoders.

 ix

Chapter 1

Introduction

1.1 Motivations and background

Because of the scarce spectrum bandwidth provided for modern wireless systems, the

traditional single-input single-output (SISO) channel can not meet the continuously increasing

demands for channel capacity and quality of service (QoS) in wireless communications. By

introducing multiple antennas into both transmitter and receiver, MIMO technique has emerged

as a key technology for the next generation wireless systems.

 MIMO communication system can significantly increase the channel throughput and provide

better link reliability [1][2][3] at the same bandwidth and same overall transmit power of the

SISO communication system. In MIMO system, multiple data streams are transmitted through

different antennas at the same time using the same frequency, which is so called spatial

multiplexing. Because of this multipath propagation, each output of the receive antenna is a

linear combination of all transmitted streams. Then the extremely high throughput is achieved by

separating data streams on the receiver using proper decoding algorithms. In addition, QoS is

improved because of spatial diversity advantage, since each receive antenna has a measurement

of all transmitted data streams. In general, the spectrum efficiency and the propagation range

have been greatly increased due to the spatial multiplexing gain and the diversity gain provided

by MIMO technique. Combined with orthogonal frequency division multiplexing (OFDM),

MIMO technology has been proposed as part of the IEEE 802.11n High-Throughput standard,

which is expected to be ratified in mid 2007 [4].

 1

 All of these promising performance improvements resulting from MIMO system are

achieved at a cost of increased computational complexity especially in the decoders at the

receiver side. In a multiple-antenna channel environment, each transmitted signal is aligned on

the modulation constellation points. By multiplying all possible signal sets with the MIMO

channel matrix, it generates a set of finite points in a multiple-layered lattice structure. The

MIMO decoding problem is essentially to search for the closest lattice point to the received point.

The optimal detection strategy for a MIMO decoder is to perform a maximum likelihood (ML)

search over all possible points inside a lattice structure and find the best one with smallest

Euclidian distance to the received signal. But in reality, this method is not practicable because

the corresponding computational complexity grows exponentially with the number of transmit

antennas M and the number of bits Q used to represent a symbol, since the detector needs to

examine all 2MQ possible lattice points for each received vector. For example, in a MIMO system

with 4 transmit and 4 receive antennas using 16-QAM modulation scheme, a total of 65536

candidates have to be examined to find the optimal vector. This method is also referred as

exhaustive search. An efficient hardware implementation of the decoders has become a key

challenging task in MIMO wireless system design.

 There are two typical strategies of MIMO detection algorithms used to accelerate the

decoding procedure in an arbitrary lattice structure given by its generation matrix. One is the

Pohst strategy proposed in 1981 [5], which examines lattice points lying inside a hyper sphere.

The decoding algorithm developed by Viterbo and Boutros [6] is based on this strategy and is so

called the VB algorithm in this thesis. Another strategy of lattice detection is suggested by

 2

Schnorr and Euchner in 1994 [7], which performs the point search inside the aforementioned

hyper sphere with a zig-zag order in each lattice layer with increasing distances from the

received vector. A representative lattice decoding algorithm based on this strategy is introduced

by Agrell, Eriksson, Vardy and Zeger [8] and is called the AV algorithm. Both algorithms solve

the ML detection problem and are commonly referred as sphere decoding algorithms because

they search for the closest lattice point in a hyper sphere. Both algorithms are considered as the

most promising solutions for the MIMO decoders. A detailed analysis and efficient architecture

for both algorithms will be discussed in Chapter 2 and Chapter 4 respectively.

 Due to the complexity and high data dependency involved in the decoding algorithms, the

MIMO decoders are traditionally implemented on digital signal processors (DSPs), such as Bell

Labs layered space-time (BLAST) system [9][10]. Because of not supporting parallelism, a

single DSP based implementations can hardly achieve very high decoding rate for MIMO system,

especially as the number of antennas increases. Very large scale integrated circuit (VLSI)

architecture of MIMO systems has also been studied recently. It is a challenging task to achieve

the real-time performance of the sphere decoder due to the complexity of VLSI implementation.

Several hardware implementations have been reported by prototyping the VLSI architecture of

the VB algorithm, AV algorithm or their extended versions [11][12]. Most recently, Burg,

Bormann, and etc have declared a high processing rate for MIMO decoders on an application

specific integrated circuit (ASIC) implementation [13]. But the ASIC implementation is

generally refined for a fixed number of antennas and a certain signal constellation. The loss of

flexibility becomes a major limitation for ASIC implementations of sphere decoders.

 3

 Field programmable gate array (FPGA) devises are also widely used in signal processing

field due to their flexible reconfiguration and support of parallelism. Combined with their huge

processing capabilities, high data rates are ensured for many computational intense algorithms

implemented in FPGAs.

The main advantage provided by FPGAs when compared with DSP implementation is the

huge performance gains brought by the opportunity to execute the computationally intensive

procedures in parallel of an algorithm. Although the design cycle is longer than DSP

implementation, once an efficient architecture is developed and the possible parallelisms are

explored, FPGA is able to significantly improve the computation throughput. Another advantage

of FPGA is the customizability since the processing capacity is scalable based on the FPGA

resources and the applications have the flexibility to be upgraded even during the run-time to

keep up with changing standards.

 Compared with ASIC applications, the implementing of design changes is much easier and

the time-to-market cycle is much shorter in FPGA implementations. Furthermore, for system

prototyping the overall cost of an FPGA design is much lower than that of an ASIC design.

 In addition, the hardware/software (HW/SW) co-design concept has been adopted by FPGA

lately by introducing one or more embedded processors into FPGA design, e.g. the PowPC (PPC)

or MicroBlazeTM (MB) on Xilinx FPGAs [14][15] and Nios processors on Altera FPGAs [16].

HW/SW co-design technique generally partitions the computational algorithm into customized

hardware to achieve high computational speed and into embedded soft processors to reduce the

design complexity. Generally, one or more embedded processors can be instantiated in the FPGA

 4

to execute the processing tasks that are less time critical but highly sequential or considerably

complicated for direct circuit implementation. This thesis will explore the FPGA-based HW/SW

co-design architecture for both AV and VB lattice decoding algorithms.

1.2 Research Objectives

The main objective of this thesis is to develop efficient HW/SW co-design architecture of

sphere decoders for both AV and VB algorithms and prototype it on Xilinx University Program

(XUP) Virtex-II Pro developing board [17]. The decoding rates are also examined based on the

hardware implementations.

1.3 Contributions

The hardware implementation of MIMO decoders with high decoding rate is a challenging

and urgent task in multiple-antenna wireless communications. The main contributions of this

thesis are summarized as follow:

 The FPGA-based HW/SW co-design architecture for MIMO decoders with complex

constellation structure is proposed, which partitions the complicated channel matrix

preprocessing including matrix inversion and factorization into soft processor and the iterative

decoding procedures into customized hardware modules. This architecture is able to significantly

improve the decoding rate, and meanwhile keeps it easy to be implemented in hardware.

 Three levels of parallelisms are also explored to accelerate the decoding processing: the

concurrent execution of the preprocessing on embedded processor and decoding functions on

hardware modules, the parallel execution of the real/imaginary decoding parts of complex

constellations, and the parallel execution of multiple states during the closest lattice point search.

 5

 Both AV and VB decoders are simulated in ModelSim [18], developed in EDK [19] and

implemented on XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The hardware

results are also verified by the MATLAB software simulations.

 System performances including BER, data rate, and resource utilizations are compared

between these two decoding algorithms. To the author’s knowledge, the real-time performance of

the system prototypes are among the fastest MIMO decoders reported thus far.

1.4 Organization of the thesis

The rest of the thesis is organized as follow. Chapter 2 reviews the principles of MIMO

system and two sphere lattice decoding algorithms. The step by step decoding procedure and

state based flow charts are given and analyzed for both AV and VB algorithms. Chapter 3 gives

the introduction to FPGA structure and hardware/software co-design procedures. Three levels of

parallel structures for the complex sphere decoders are explored in Chapter 4. The complex

constellation parallelism is derived theoretically and verified by MATLAB simulations. The data

flow dependency among the iterative searching procedure is also analyzed to achieve the state

level parallelism in this chapter. Comparisons of the experimental results between these two

algorithms are presented in Chapter 5, followed by the conclusion Chapter 6.

 6

Chapter 2

MIMO system and sphere decoding algorithms

 This chapter gives a brief introduction to MIMO system. Two typical sphere decoding

algorithms are described in details and are further analyzed for hardware architecture design.

2.1 Introduction to MIMO system

During recent years, MIMO technology has emerged as a promising solution for the ever

increasing demands of higher data rate and better QoS in wireless communications. By applying

multiple antennas at both transmitter and receiver sides, MIMO system is able to greatly enhance

the spectral efficiency and also provides a better range of coverage than the traditional SISO

system. Recent initiatives for standardization of future MIMO systems including UMTS (3GGP

Release 7), IEEE 802.11n wireless LAN, and IEEE 802.16 WiMax reflect the importance of

MIMO technique.

Figure 2.1 Block diagram of MIMO system

M
od

ul
at

io
n

D
em

ux

S1

S2

SM

u1

u2

uM

M antennas

D
ec

od
er

y1

y2

N antennas

yN

1û

2û

D
em

od
ul

at
io

n

MIMO channel

M
ux

Mû

Ŝ S

ReceiverTransmitter

 7

 Figure 2.1 gives a schematic representation of a MIMO system. The original signal S is

split into M lower rate data streams, modulated and transmitted simultaneously from each

transmit antenna. The receiver, having complete knowledge of the channel, decodes these

individual data streams, demodulates them and combines them together so as to recover the

original signal. In the wireless MIMO channel, each data stream is transmitted through different

data paths to reach different receive antennas. Two performance gains are provided by this

multipath propagation method.

2.1.1 Antenna diversity gain

 Fading is generally a cumbersome problem in wireless communications. When the signal

power drops significantly, the channel is said to be in a fade, which gives rise to BER and

reduces the signal coverage range. In MIMO system, replicas of the same transmitted signal are

provided across different antennas at the receiver side through independent fading paths. When

one path is in fade, it is unlikely that all other paths are also in deep fade. Hence the more

reliable reception is achieved in MIMO system. This QoS gain brought by MIMO system is

called antenna diversity gain or spatial diversity gain.

2.1.2 Spatial multiplexing gain

 The spatial multiplexing is to transmit the split data streams concurrently through different

transmit antennas, which helps to increase the data transmission rate for the same bandwidth and

with no additional power expenditure. This performance gain is only possible in MIMO system.

The capacity of the wireless channel grows linearly with the number of transmit antennas. Thus

the spatial multiplexing can enormously enhance the spectral efficiency, which makes MIMO

 8

technique uniquely important in modern wireless communications with scarce spectrum

bandwidth.

2.2 Lattice decoding problem

Design an efficient decoder for MIMO receiver to match with the high transmission rate has

become a challenging task, because the high computational complexity is involved especially in

high dimensional MIMO systems with complex signal constellation.

Considering a MIMO system with M transmit N receive antennas, the received vector y is

given by:

nHuy += Eq 2.1

where u is the 1×M transmitted signal vector, and n is a 1×N additive white Gaussian

noise (AWGN) vector with zero mean and variance. H is the M×N channel transfer matrix

which is assumed to be known by the receiver. Each element in the H matrix corresponds to one

fading coefficient between one transmit-receive antenna pair. For selected modulation scheme,

each element in

0N

u is represented by one of the constellation points. A lattice structure, denoted

as , is generated by multiplying all possible Λ u with H. The ML lattice decoding problem is

to find the closest lattice point to the received point in the lattice structure:

 2||||minargˆ Huyu
u

−=
Λ∈

 Eq 2.2

where û is the decoded vector. Thus the ML-based decoding system can be summarized as:

 Input: The channel lattice generation matrix H and the received vector .y

 Output: A 1×M vector û such that Hû is a closest lattice point to .y

 9

2.3 Sphere lattice decoding algorithms

 The optimal lattice decoding method is to examine all possible lattice points in the lattice

structure and find the best one with minimum Euclidian distance to the received vector. However,

this method is not a solution for practical MIMO decoders because of the extreme complexity

involved in this exhaustive search.

 Two sphere decoding algorithms are analyzed in this section, named AV and VB algorithms.

Both algorithms are ML-based lattice decoding algorithms, which try to enumerate the lattice

points inside a sphere, and find the closest one to the received vector. The main difference

between these two algorithms is the investigating order inside the lattice structure. The VB

algorithm searches from the lower bound to the upper bound in each search layer and examines

all possible lattice points falling into a certain sphere in the lattice structure with an initial radius

C . Meanwhile the AV algorithm spread out from a nearby lattice point to the received point and

terminates once the total distance is greater than the best distance and the search procedure

reaches the bottom layer. No initial radius is needed in the AV algorithm, and it does not need to

upgrade the lower and upper bounds of each layer using the time consuming square root

functions as it needs in the VB algorithm. It is claimed that the AV algorithm is about 2 to 8

times more efficient than the VB algorithm [8] even if a proper initial radius C is applied to

the VB algorithm.

The step by step procedure for each algorithm is presented below. To improve the efficiency

of the VB algorithm, a modified version of VB algorithm is adopted in this thesis, which avoids

the hardware inefficient square root functions.

 10

2.3.1 VB decoding algorithm

 Two lattices are identical if all the lattice points generated by the lattice matrices and given

signal set are the same. So basis reduction can be performed on the lattice generation matrix H to

reduce the complexity of the decoding procedure. In the VB algorithm, Cholesky factorization is

applied to the gram matrix , and it yields , where R is an upper triangular

matrix. Thus the squared Euclidian distance shown in Eq 2.2 can be rewritten as:

THHG = RRG T=

2

2

2

22

||)(||
||)(||

)()(
)()(

||)(||
||||

T

T

TT

TT

uR
Ru

uRRu
uHHu

Hu
Huyd

−=

−=

−−=

−−=

−=

−=

ρ

ρ

ρρ

ρρ

ρ

 Eq 2.3

where 1−= Hyρ . By properly chosen the C , the searching range becomes a sphere with

square radius C centered at the received point. And thanks for the attributes of the upper

triangular matrix, the squared distance can be constrained by the following inequation:

 Cururud
M

i

M

ij
jjijiiii ≤−+−= ∑ ∑

= +=

2

1 1

2)))(()((),(ρρρ Eq 2.4

Substituting for i = 1,…,M and 2, iiiiiii rqu =−= ρξ iiijij rrq /= for i = 1,…,M, j = i+1,…,M

into Eq 2.4:

 Cqqud
M

i

M

ij
jijiii ≤+=∑ ∑

= +=

2

1 1

2))((),(ξξρ Eq 2.5

 Starting from the bottom row of matrix R and working backwards, the upper and lower

bounds of the examining lattice point can be determined by the partial distance derived from Eq

2.5:

 11

Cqq
M

ij
jijiii ≤+ ∑

+=

2

1
))((ξξ Eq 2.6

where ui is used to represent the examining index of layer i and Li denotes the upper bound of ui.

So the initial ui, which is essentially the lower bound of the examining index, and Li for each

layer is determined by:

⎣ ⎦
⎡ ⎤ 1/

/

−+−=

+=

iiiii

iiiii

SqTu

SqTL
 Eq 2.7

where is the smallest integer greater than x, and ⎣ ⎦x ⎡ ⎤x is the greatest integer smaller than x.

And:

 Eq 2.8 ∑
+=

+=
M

ij
jijii qS

1
ξρ

2
1)(iiiiii uSqTT −−=− Eq 2.9

 The VB-based decoder searches from the bottom layer to the top layer and scans each lattice

index from the lower bound to the upper bound. When the algorithm reaches the top layer

without violating the bound constraint, a valid lattice point is found. Then the new distance dnew

between the valid lattice point and the received point is calculated and compared with the

currently best distance dbest, which is initialized to be equal to C . If dnew is smaller than dbest, a

closer lattice point is found and stored as the currently best lattice point. The searching radius is

upgraded to dnew. This process iterates until all the lattice points within the sphere are examined.

The flow chart and more details of this VB algorithm are available in [6]. In this thesis, the VB

algorithm is partitioned into different states as show in the following step by step demonstration.

 12

Step 1: Preprocessing and initialization:
Transform H into an upper triangular matrix by
Cholesky [20] factorization algorithm. Calculate

1−= Hyρ . Initialize the sphere radius C by an

adaptive method [21]. Set dimension index i=M
and dbest= C . Find the upper bound LM and index
uM .
Step 2: Finite State Machine (FSM)
Upgrade ui= ui +1.
If ui < Li and i>1 go to State A;
If ui < Li and i=1 go to State B;
If ui > Li go to State C.
Step 3: State A:
Expand the layer into (i-1)-dimensional sublayer
and find the Si and Ti used to upgrade ui and Li.
Goes to State D.
Step 4: State B
Upgrade dnew.
If dnew < dbest, record the currently best distance
and the best point. Set i=M. Go to State D.
If dnew > dbest, go to step2.
Step 5: State C
Stop if i=M, otherwise move the procedure one
step up i=i+1, and go to step 2;
Step 6: State D
Upgrade ui and Li, and go to step 2.

Figure 2.2 State representation of VB algorithm

 As shown in Figure 2.2, basis reduction is performed to reduce the complexity of decoding

procedure before the closest point search begins. This is called preprocessing, which involves

Cholesky decomposition and matrix inversion. These complex matrix manipulations are difficult

and too costly for hardware implementation, and they are not executed frequently in the sphere

decoding algorithm. So only the iterative decoding procedures are considered to be implemented

on FPGA hardware.

 By analyzing the calculations involved in these four states of the searching procedure, it is

 13

clear that State D carries much more computational load than other states. This is because the

hardware inefficient square root functions are used to upgrade ui and Li. The requirements of the

square root functions make the computation load unbalanced among the four states. Furthermore,

State D counts for about 40% of the total number of states visited for a vector to be decoded in

MATLAB simulation. Thus the State D becomes the dominant computational part in the VB

algorithm, which can not take full parallelism advantage of FPGAs. To design an efficient FPGA

architecture, the VB algorithm must be modified to avoid the square root calculations. One of the

modified versions of the VB algorithm is presented in [22], which suitably matches the

FPGA-based design.

 The purpose of the square root computations in the original VB algorithm is to find the lower

and upper bounds for the examining index in each layer. Because the points in a lattice structure

are generated from the transmitted signal vectors, the examining index ui should also come from

the signal constellation points. Besides, in coherent demodulations the modulation scheme is

known by the receiver. Thus a new method to determine the searching range for the examining

index can be achieved by directly substituting each symbol of the signal constellation into Eq 2.6.

Redefine Ti as:

 Eq 2.10 2)(iiiii uSqT −=

where Si remains the same as in Eq 2.8. The partial distance at the ith layer can be rewritten as:

 Eq 2.11 KkCTxSqP
M

ij
jkiiik ,...,1,)(

1

2 =≤+−= ∑
+=

where xk is a symbol in the signal constellation and K is the total number of symbols. Thus the Li

 14

and ui can be upgraded as:

KkCPPwherexu

CPandxL

ktti

kki

,...,1,)min(,1
),max(

=≤=−=
≤=

 Eq 2.12

The flow chart of the modified VB algorithm is given below:

MlTandSCd

HyGCholeskyqHHG

lllbest

ji
T

,...,1,0,

;);()(,
2

1
,

====

=== −

ρ

ρ

Figure 2.3 Flowchart of modified VB algorithm

 The changes of the modified VB algorithm are subtle but significant. Instead of calculating

YN

Y

Mi =

CPandxL
KkCPPwherexu

CTxsqP

kki

ktti

M

ij
jkiiik

≤=
=≤=−=

≤+−= ∑
+=

)max(
,...,1,)min(,1

)(
1

2

2)(

1

iiiii

ii

uSqT

uu

−=

+=

N

∑
=

=
M

i
inew Td

1

2

Y

State B

1

,111

−=

+=

−=

∑
=

−−−

ii

qS

u
M

ij
jjiii

iii

ξρ

ρξ

1+= ii

ui >Li

State C

N

i =M

Y

Output bestu
i >1

22
newbest

best

dd

uu

=

=

State A

State D

N
22
bestnew dd <

 15

the examining range by the constraint radius C , the symbols from the signal constellation are

directly used to calculate all possible partial distances in the ith layer. And the examining index ui

is restricted to the qualified symbols. There are at least three advantages brought by this method:

Firstly, it avoids the square root functions, and the partial distances Pk can be calculated in

parallel to achieve an efficient hardware implementation. Secondly, within the signal

constellation, the number of the examining points is more likely to be reduced compared with the

original method, which makes the received vector to be decoded faster than the original VB

algorithm. At last, it guarantees that all the examining points are coming from the signal

constellation points which leads to a better BER performance.

 Although an efficient searching procedure can be conducted by the improved VB algorithm,

the choice of the initial sphere radius C is very crucial to the decoding speed. If the radius is

too small, the search will fail and no lattice point within the sphere will be found. However large

C means more points will be examined during the searching procedure and longer time will be

spent for one vector to be decoded. Thus the decoding rate will be greatly degraded if the radius

is too large. An adaptive method to calculate the radius C is discussed in Chapter 5.

2.3.2 AV decoding algorithm

 Instead of examining the lattice points from the lower bound to the upper bound in each layer,

the AV algorithm starts from the Babai point [23], and spreads out within the distance between

the Babai point and the received point.

 The lattice generation matrix H is decomposed into an M×M lower triangular matrix R and

an M×N orthonormal matrix Q using KZ reduction or LLL reduction algorithms [24],

 16

where . Then Eq 2.1 can be rewritten as: QRH 1−=

TT QnRuQy

nQRuy
+=

+=
−

−

1

1

 Eq 2.13

 The AV decoding problem is formulated as:

 21 ||||minargˆ −

Λ∈
−= RuQyu T

u
 Eq 2.14

 The index ui is calculated and examined in the order shown in Eq 2.15 and Eq 2.16:

 RQye T
i = Eq 2.15

 ,...}2][,1][],{[±±= iiiiiii eeeu Eq 2.16

where [x] finds the closest integer to x. The orthogonal distance in the ith layer is given by:

 iiiii rued /)(−= Eq 2.17

where rii is the ith diagonal element in R. The partial distance dnew in the ith layer is upgraded by

Eq 2.18 if it is smaller than the currently best distance dbest:

 Eq 2.18 ∑
= =

=−=
M

ij

M

ij
jjjjjnew drued 222)/)((∑

And the closest point search expands to the (i-1) dimensional sublayer by:

 1,...,1,,1 −=−=− ijdree ijijji Eq 2.19

On the other hand, if the partial distance is greater than dbest, the search procedure steps 1 layer

back, and the examining index in this layer is upgraded in the order shown in Eq 2.16. This

zig-zag order leads to a nondecreasing distance to the received vector y in each layer. The

searching procedure terminates when it moves down to the bottom layer without finding a closer

lattice point than the currently saved best one. More details are available in [8]. The iterative

decoding procedures are divided into three states as shown in Figure 2.4.

 17

Step 1: Preprocessing and initialization:
Transform H into a lower triangular
matrix by QR [25] decomposition
algorithm. Initialize dimension index
i=M. Find the bounded index uM and the

orthogonal distance d from y to the

layer with index uM. Set dbest=∞ .
Step 2: Finite State Machine (FSM)
Upgrade dnew using d.
If dnew < dbest and i>1 go to State A;
If dnew < dbest and i=1 go to State B;
If dnew > dbest go to State C.
Step 3: State A:
Expand the layer into (i-1)-dimensional
sublayer and find d and bounded ui. Go
to step 2.
Step 4: State B
Record the currently best distance and
the lattice point. Set i=2, and find d and
bounded ui. Go to step 2.
Step 5: State C
Stop if i=M, otherwise move the
procedure one step up i=i+1, and find d
and bounded ui. Go to step 2;

Figure. 2.4 State representation of AV algorithm

 Similar to the VB algorithm, the matrix preprocessing involves QR decomposition and

matrix inversion, which is only needed to be upgraded once in a signal frame length (typically 10

ms). Thus only the iterative decoding functions are considered to be implemented on FPGA. By

analyzing the three states involved in the AV algorithm, it is clear that the computational load is

well balanced among these states, and no complicated calculations are introduced into the

decoding procedure. Furthermore, based on the data flow dependency among these states, the

state level parallelism can be explored for the AV algorithm to design an efficient FPGA

 18

architecture.

 The flow chart of the AV algorithm is also given in Figure 2.5:

Preprocessing: Calculate TQR,

 Find MM ue and orthogonal distance ,

Initialization:
Set i=M and dbest=∞

Upgrade dnew

dnew< dbest?

Figure 2.5 Flowchart of AV algorithm

 Compared with the VB algorithm, the advantages of using the investigating order in Eq 2.16

are obvious. Firstly, it does not need to calculate and upgrade the upper and lower bounds in each

layer which involves intensive computations in the VB algorithm. Secondly, by using this

nondecreasing distance order to search inside each lattice layer, the chance of finding the correct

layer early is maximized. Furthermore, by spreading the searching procedure from the Babai

i=1?

State A:
Expand to i-1
dimensional
sublayer: i=i-1.
Find ui and d

State B:
Record
currently best
lattice point

i= 2.
Find ui and d

State C:
If i=M, stop;
Else move one
layer up: i=i+1.
Find ui and d

NY

YN

 19

point, no initial radius C is needed in the AV algorithm. Literature results show that the

AV-based decoder is about 2 to 8 times faster than the VB-based decoder [8]. Efficient

hardware/software co-design architecture is designed for both algorithms in Chapter 4, where the

experimental results from our designs also agree with this claim accordingly.

 20

Chapter 3

Hardware/software co-design and developing board

3.1 Introduction to hardware/software co-design

The term of hardware/software co-design surfaced in the early 90s when rapid reduction in

the size of integrated circuits (ICs) made it possible to have embedded processor(s) on the same

hardware silicon or chip, which is so called System on Silicon (SoS) or System on a Chip (SoC).

It has moved from an emerging discipline to a mainstream technology [26], and is applied in a

vast number of areas. The principle of HW/SW co-design technique is to partition the

applications into the embedded processors and the customized hardware modules. The goal of

this architecture is to enhance the system performance while reducing the design effort and costs,

which is achieved by the benefits from HW/SW co-designs. The advantages of using processors

lie in the following aspects: First, software is more flexible and cheaper than hardware, which

allows late design changes and simplified debugging opportunities [35]. Furthermore, the

available software libraries make many computationally complicated functions easy to be

implemented inside the microprocessors. Finally, the possibility of reusing software by porting it

to other processors, reduces the time-to-market cycle and the design effort. On the other hand,

the hardware is always used to implement the computationally intensive tasks, which can

extraordinarily improve system performance by the parallel executions. With a flexible and high

speed interface between the hardware and software cores, this architecture can greatly speed up

the applications by the high speed hardware implementation and can also maintain the flexibility

and programmability of the microprocessor.

 21

ASICs and FPGAs are both widely used in the HW/SW co-design systems. ASICs provide a

dedicated hardware solution, which can usually lead to the best hardware performance at the

expense of long design cycle and high non-recurring engineering (NRE) charges. On the other

hand, FPGAs provide more flexibility and shorter design time than ASICs at a higher cost per

unit device. It is a perfect platform for system prototyping and low-volume products. During past

a few years, traditional FPGAs have combined with embedded microprocessors and related

peripherals to form complete SoCs. Examples of this hybrid technology can be found in Xilinx

Virtex-II Pro, Virtex-4 devices and Altera Stratix FPGAs. In this thesis, Xilinx Virtex-II Pro

developing board is chosen to be the test bench for the MIMO decoders. The Xilinx FPGA-based

HW/SW co-design architecture is given below:

Customized
hardware modules

(VHDL)

FPGA Configured
MB Soft Processor

Data Side
Cache

Instruction
Side Cache

Software running on
the soft processor

(C code)

Instruction Side Bus

Data Side Bus

Shared Bus

Dedicated Bus

Customized
Hardware I

Customized
Hardware II

Customized
Hardware N

Figure 3.1 Xilinx FPGA-based hardware/software co-design architecture

 22

 The Xilinx MicroBlaze soft core, which is licensed as part of Xilinx EDK, is a 3-stage

pipeline 32-bit RISC processor with 32 general purpose registers, ALU and a rich instruction set

optimized for embedded applications. It is implemented by general logic primitives within the

FPGA logics [15]. The MicroBlaze solution is designed to be flexible, giving the user control of

a number of features such as the cache size, interfaces, and execution units. The configurability

allows the user to trade-off features for size, in order to achieve the necessary performance for

the target application at the lowest possible cost. Multiple customized hardware modules can be

attached to the MB for hardware functions through interfaces such as on-chip peripheral bus

(OPB), fast simplex link (FSL) or processor local bus (PLB). The software functions are

executed inside the MB soft core with the instructions and data provided by instruction side

cache and data side cache. C code and VHDL code are used to describe the software and

hardware designs respectively. By properly partitioning of an application, the HW/SW co-design

architecture is able to greatly enhance the computational performance of the whole system

meanwhile keeps the flexibility of complicated manipulations inside the MB executions.

3.2 FPGA structure

There are three typical types of ICs, programmable logic devices (PLDs), ASICs and FPGAs.

With predetermined architecture by manufacturer, PLDs can provide great programmable

flexibility for engineers to perform a variety of different functions. But these devices contain a

relatively limited number of logic gates which is only suitable for some simple and small

applications. On the other hand, ASICs contain millions of logic gates, which can be use to

implement extremely large and complex systems and to offer optimized hardware

 23

implementations. But the designing of ASIC systems is too time consuming and costly. And once

the final design is finished, it can not be modified to adapt to any application changes.

FPGAs stand in the middle of PLDs and ASICs, which contain programmable logic blocks along

with configurable interconnections between them [27]. Their functionality can be reconfigured in

the way like PLDs, and they can contain millions of logic gates to provide a performance lean

more toward to that of ASICs. The cost of an FPGA design is much lower than that of an ASIC.

Meanwhile the design changes, even at the run-time, are implemented much easier in FPGAs.

Thus, FPGA is considered as an ideal platform to perform the computationally intensive

operations involved in the sphere decoding algorithms for reasons of performance, cost and

reconfigurability. Xilinx and Altera are the two major manufacturers in FPGA market. Each

company has a variety of FPGA series, which suit for different design requirements. Figure 3.2

shows the structure of Xilinx FPGAs. The Xilinx FPGA device is organized as an array of logic

elements, named slices, and programmable routing resources used to provide connections

between the slices, FPGA I/O pins, on-chip block memory and other resources [28]. Each slice

contains two logic cells, which can be performed as a 16-bit register or conducts the functions of

basic logic gates such as AND, OR, XOR, and etc. By properly combining these basic logic

elements, certain circuits can be generated to perform more complex combinatorial functions.

Multipliers are inherently slow if implemented by connecting a large number of programmable

logic blocks together. Xilinx FPGAs incorporate special hardwired embedded multipliers to

improve the design performance.

 24

Figure 3.2 Xilinx FPGA structure [28]

 The Xilinx Virtex-II Pro XC2VP30 FPGA is chosen as the test bench device for this thesis

research. The available resources of particular interest to our design are listed in Table 3.1

FPGA XC2VP30

Number of slices 13969

Number of External IOBs 896

Number of embedded 18×18 MULT 136

Size of BRAMs 2448 Kb

Table 3.1 Xilinx XC2VP30 FPGA features

3.3 Design flow and developing board

As the HW/SW co-design architecture became more and more sophisticated, a lot of

commercialized computer aided design (CAD) tools have emerged into this field to facilitate the

co-design procedure. Figure 3.3 shows the HW/SW co-design flow involved in the

 25

implementation and evaluation of the MIMO lattice decoders.

ModelSim Microsoft Visual
Studio Software

application
Hardware
module

 hardware simulation
VHDL code software compilation

& simulation
C code

ISE synthesis
VHDL code

EDK

hardware/software co-synthesis
& on-chip simulation

MATLAB Hardware/software Simulation co-verification .m file

Performance
output

Figure 3.3 Design flow for FPGA-based HW/SW co-design systems

 In HW/SW co-designs, the application is partitioned into soft core and hardware modules.

The software applications are developed and simulated in C language by Microsoft Visual Studio

[29]. The hardware modules are first described in VHDL language, and simulated in Mentor

Graphics ModelSim [30] at RTL level. Then they are synthesized in Xilinx ISE [31] software

environment and translated into electronic hardware circuits to be mapped on chosen FPGA.

Xilinx EDK [32] tool is used to merge the hardware and software designs together, and it is a

comprehensive suit of integrated development environment to ease and facilitate the HW/SW

 26

co-design process. As shown in Figure 3.4, the system window is used to design the SoC

architecture, where versatile hardware modules can be attached to the embedded processor with

certain address allocation and I/O assignments. After that the software application is developed

in the Application window along with the interface between the software and hardware modules.

The on-chip simulations for the whole system can also be conducted within the EDK tool.

Figure 3.4 Xilinx EDK workplace

 At last, the results from the HW/SW co-design are verified with the MATLAB software

simulations. In the MIMO lattice decoder designs, the performances of decoding rate, FPGA

resource utilization and BER are evaluated based on these simulations and verifications.

 27

Figure 3.4 XUP Virtex-II Pro developing board [17]

 Xilinx XUP Virtex-II Pro developing board is chosen as the target board for the

implementations of lattice decoders. It consists of a high performance XC2VP30 FPGA

surrounded by a comprehensive collection of peripheral components that can be used to create a

complex system. The FPGA device can be configured by several methods including external

parallel port interface, USB cable or internal CompactFlash storage media [33]. One or more MB

soft cores can be implemented by configuring a group of logic cells inside the FPGA chip.

Efficient architecture of aforementioned two sphere lattice decoders is explored in the next

chapter for the FPGA-based HW/SW co-design.

 28

 Chapter 4

Hardware/software architecture for MIMO Sphere decoders

 This chapter presents HW/SW co-design architecture for two MIMO sphere decoding

algorithms. A coarse-gain partition of both algorithms is discussed first. Then three levels of

parallel structures are explored to generate an efficient HW/SW architecture to improve the

system performance. The co-design architecture is prototyped on the Xilinx Virtex-II Pro

developing board.

4.1 Partitioning of the sphere decoding algorithms

 In our AV and VB sphere decoding algorithms, the basis reduction is generally performed to

reduce the complexity of the decoding procedure, which transforms the lattice generation matrix

into a triangular matrix. This process is called preprocessing that involves matrix factorization

operations such as QR or Cholesky decompositions and matrix inversions. These complex matrix

manipulations are difficult and not efficient to be mapped directly onto FPGAs. Fortunately, in

MIMO wireless communications, the preprocessing stage of the sphere decoders does not need

to be updated frequently. Generally, the channel matrix H can be assumed to be static during the

transmission of one frame length of data signals. Therefore the preprocessing of lattice

generation matrix only needs to be executed once for a certain time period (typically 10 ms). The

MB soft processor on Virtex-II Pro FPGA running at about 100 MHz is able to complete the

preprocessing task timely. For this reason, the basis reduction operations for both AV and VB

algorithms are partitioned into the Xilinx MB soft processor.

 Unlike the preprocessing stage of the decoding algorithms, the actual closest lattice point

 29

searching procedure needs to be executed for every received signal vector. This iterative

procedure is very time consuming if implemented sequentially in soft processor. Furthermore the

decoding rate of the sphere decoder is determined by the average completion time of the

searching procedure. Thus it is desirable to put the sphere searching procedure directly into

FPGA hardware circuits. The gate level implementations on FPGA can greatly accelerate the

computationally intensive functions involved in the decoding procedure. Because of supporting

parallelism, some of the decoding calculations can be executed concurrently if no data flow

dependency lies among them. Once an efficient architecture is explored, the FPGA-based

implementation can extraordinarily speed up the decoding procedure of the sphere decoders. In

addition to the performance gain, FPGA device also provides the flexibility to reconfigure the

system to accommodate any changes of the MIMO systems including number of antennas,

modulation schemes, and etc.

 Based on the analysis above, a straightforward coarse-gain partition is applied to the AV and

VB decoding algorithms to build up the HW/SW co-design architecture, which includes a soft

processor, customized hardware module(s), and a shared peripheral bus between them for data

communication. As shown is Figure 3.1, the channel matrix preprocessing is implemented in the

embedded MB soft core, and the decoding procedure is mapped onto FPGA hardware modules.

The preprocessing results (the upper or lower triangular matrix) are transferred from the MB to

the hardware modules periodically through the OPB interface, which is synchronous to MB

processor and can achieve a high data transfer rate. Subsequently, three levels of parallel

structures are explored to further accelerate the decoding speed of this co-design architecture

 30

while maintaining the same BER performance.

4.2 Processor level parallelism

MicroBlaze
(Preprocessing)

OPB interface

Customized Hardware

Figure 4.1 Architecture of the processor level parallelism

 The HW/SW co-design architecture for both AV and VB algorithms is illustrated in Figure

4.1. The preprocessing part including matrix factorization and inversion is programmed on MB

soft processor for both algorithms. The lattice searching procedure is implemented in customized

hardware modules to improve the decoding rate. The OPB interface is used to transfer data

between them. The processor level parallelism refers to the concurrent execution of the

preprocessing stage and the decoding procedure. And multiple decoding blocks can be mapped

onto the FPGA. This is feasible because all signals received within the same frame length are

decoded using the same triangular matrix decomposed by the preprocessing unit. Thus multiple

received vectors can be decoded simultaneously. The maximum number of the customized

modules that can be implemented is determined by the size of the hardware core and the

available resources of chosen FPGA.

 To evaluate the performance gain brought by the processor level parallelism, tp is defined as

(Decoding)
Customized Hardware

(Decoding)

 31

the execution time of the preprocessing part, and td is defined as the average execution time to

decode one received vector. Then the system architecture with 1 MB processor and N customized

hardware modules can achieve a speedup factor of:

)/,max(NLtt
Ltt

S
dp

dp
f

+
= Eq 4.1

where L is the number of received vector per frame length. There exists a slight overhead before

starting a new searching procedure in hardware modules, because the received vectors need to be

manipulated for different hardware modules based on the basis reduction schemes in MB soft

processor. This overhead is not significant because only the multiplication of a 1×N vector with

an N×M orthogonal matrix is involved. Furthermore, instead of execution in MB soft core, if

this multiplication is partitioned into each hardware module, this kind overhead can be almost

ignored because of the parallel executions in FPGA. Based on the EDK synthesis results shown

in Chapter 5, the XC2VP30 FPGA can accommodate 4 hardware decoders for the AV algorithm

and 3 hardware decoders for the VB algorithm in parallel to accelerate the decoding speed.

4.3 Complex constellation parallelism

 In wireless communications, the transmitted signals are often modulated using the complex

quadrature amplitude modulation scheme. If this is the case, the MIMO channel matrix H

becomes an M×N complex matrix, and the received signal y and the transmitted signal u

becomes 1×N and 1×M complex vectors respectively. In this subsection, the MIMO systems

with the same number of transmit and receive antennas (M=N) are considered to achieve the

complex constellation parallelism.

 32

4.3.1 Conventional 2M-dimensional search method

Generally, the MIMO system can be described as:

 nHuy += Eq 4.2

The sphere decoders search the closest lattice point in a specified order as discussed in chapter 2.

But in the complex constellation case, the admissible order in each searching layer can not be

easily specified because the examining index in each layer becomes a complex number. A

solution for this problem is to linearly transform Eq 4.2 into [35]:

TTT

n
n

HH
HH

u
u

y
y

⎥
⎦

⎤
⎢
⎣

⎡
ℑ
ℜ

+⎥
⎦

⎤
⎢
⎣

⎡
ℜℑ−
ℑℜ

⎥
⎦

⎤
⎢
⎣

⎡
ℑ
ℜ

=⎥
⎦

⎤
⎢
⎣

⎡
ℑ
ℜ

}{
}{

}{}{
}{}{

}{
}{

}{
}{ Eq 4.3

where and represent the real part and imaginary part of a complex number x. Thus

the M-dimensional complex decoding problem can be solved via decomposing the complex

matrix into an equivalent 2M-dimensional (2M-D) real matrix as shown in Eq 4.3.

}{xℜ }{xℑ

 Thus the inputs of the sphere decoder become a 2M-dimensional channel matrix and a 1×2M

received vector. While this method provides a possible approach to the complex MIMO systems,

the searching space is greatly enlarged by the doubled dimension. 2M layers are involved in the

decomposed channel matrix, thus significantly increases the number of iterations during the

closest lattice point searching procedure. Figure 4.2 shows the number of states visited as the

dimension of MIMO channel matrix grows for the AV algorithm. Number of states visited is

increased greatly when the dimension of MIMO system doubles. And as the number of states

visited is an important factor of the decoding rate, the data throughput of the MIMO decoder will

be considerably degraded if the dimension of the system is doubled. In addition, decomposing

 33

the complex lattice into a 2M-dimensional real lattice ignores the orthogonal feature of real and

imaginary parts of a complex system and the symmetry of the QAM constellation, thus reducing

the possibility of parallel implementations on FPGA. Consequently, the conventional 2M-D

method is not suitable for FPGA implementations.

Figure 4.2 Number of states visited vs. number of antennas

 An efficient two M-dimensional (two M-D) transform method is mathematically derived for

an alternative solution to the complex MIMO decoders. And the simulation results are presented

to verify its performance.

4.3.2 Two M-dimensional search method

 The idea of the two M-D transform method is to decompose the M-dimensional complex

MIMO decoding problem into two independent M-dimensional real problems. Each decomposed

subsystem only contains the real part or imaginary part of the transmitted signals. Hence the

complex lattice decoding problem is solved by decoding the real part and imaginary part of the

transmitted signal separately.

 34

Eq 4.3 can be rewritten into the following two equations by multiplying out the matrix H and

vector u :

}{}{}{}{}{}{ nHuHuy ℜ+ℑℑ−ℜℜ=ℜ Eq 4.4

}{}{}{}{}{}{ nHuHuy ℑ+ℜℑ+ℑℜ=ℑ Eq 4.5

By calculating Eq4.4 + Eq4.5* , we can get: }{*}{1 HH ℑℜ−

}{}{}{}{
}){}{}{}{}({}{}{}{}{

1

11

HHnn
HHHHuHHyy

ℑℜℑ+ℜ+

ℑℜℑ+ℜℜ=ℑℜℑ+ℜ
−

−−

 Eq 4.6

Similarly, by solving Eq4.4* Eq4.5, we have: −ℑℜ− }{*}{1 HH

}{}{}{}{
}){}{}{}{}({}{}{}{}{

1

11

HHnn
HHHHuHHyy

ℑℜℜ−ℑ+

ℑℜℑ+ℜℑ=ℑℜℜ−ℑ
−

−−

 Eq 4.7

To simplify these equations, we denote the following terms:

}{}{}{}{

}{}{}{}{
}{}{}{}{

}{}{}{}{

}{}{}{}{

1
2

1
1

1

1
2

1
1

HHnnn

HHnnn
HHHHS

HHyyy

HHyyy

ℑℜℜ−ℑ=

ℑℜℑ+ℜ=

ℑℜℑ+ℜ=

ℑℜℜ−ℑ=

ℑℜℑ+ℜ=

−

−

−

−

−

 Eq 4.8

By substituting Eq 4.8 into Eq 4.6 and Eq 4.7, we get:

11 }{ nSuy +ℜ= Eq 4.9

22 }{ nSuy +ℑ= Eq 4.10

Thus the complex lattice decoding problem of Eq 4.2 can be decomposed into two

independent M-dimensional real decoding problems shown in Eq 4.9 and Eq 4.10. This

transformation is well suited for FPGA-based implementations because the real and imaginary

parts of the transmitted signal can be decoded in parallel, which is named the complex

 35

constellation parallelism in the sphere decoder architecture. Since the number of states visited for

each decoding part remains the same as an M-dimensional real system, this method can

significantly improves the decoding rate for a MIMO system with complex modulation scheme.

Of cause there exist some overheads to achieve this performance gain, because the matrix S,

vectors 1y and 2y in Eq 4.8 need to be calculated before the preprocessing and lattice

searching procedure starts. But by partitioning the calculation of S into MB soft core, and 1y

and 2y into FPGA hardware modules, this parallelism is still able to meet the preprocessing

time requirement and greatly improve the throughput of the sphere decoder. The architecture of

the complex constellation parallelism is illustrated in Figure 4.3, as the R-decoder and I-decoder

denote for the real part and the imaginary part decoders respectively.

MicroBlaze
(Preprocessing)

OPB interface

Hardware Decoder

R-decoder I-decoder

Figure 4.3 Architecture of complex constellation parallelism

 The transformed matrix S is calculated in MB soft processor. Then it is decomposed in the

preprocessing stage to generate the triangular matrix. The results are transferred to hardware

decoder along with an intermediate matrix , which is used to calculate }{}{1 HH ℑℜ−
1y and

2y as in Eq 4.8. At last the vectors 1y and 2y are decoded concurrently in the R-decoder and

I-decoder to recover the real and imaginary parts of the transmitted signal.

 36

4.3.3 Simulation validation

 After mathematically deriving the two M-D transform method for complex MIMO decoders,

the MATLAB simulations are carried out to validate its BER performance with the conventional

2M-D method. 4×4 MIMO decoders with 16-QAM modulation scheme are simulated for both

AV and VB algorithms. The BER performances are compared between the aforementioned two

decoding transformations at different SNRs. The results are presented in Figure 4.4.

Figure 4.4 Comparisons of BER performances of two transformation methods

 According to the simulation results, the two M-D transform method results in a slight

degradation in BER performance for both AV and VB algorithms. This is because some

distortions have been involved by this two M-D method to improve the decoding efficiency. In

the basis reduction and 2M-D transformations, the original channel matrix and the transformed

matrix are identical because one can be obtained from the other through scaling, rotation, and

reflection [8]. And the BER performance will not be degraded by these kinds of transforms

because these lattice generation matrices are able to generate the same lattice points to decode by

 37

the sphere decoding algorithms if the same signal constellation is used. Unlike these identical

transforms, the two M-D transform reduces the points in the lattice structure from 2MQ to 2*2MQ/2

by Eq 4.9 and 4.10, where M and Q denote for the number of transmit antennas and the number

of bits used to represent a symbol in the signal constellation. Although only basic transforms are

used, there are still some distortions involved by this nonlinear two M-D transformation. And

Figure 4.4 shows that the VB decoder suffers a bigger distortion than the AV decoder. But even

in the VB decoder, the two M-D method brings only about 1 dB degradation in BER

performance compared with the 2M-D method. Furthermore, by considering the reduction of the

number of states visited, as shown in Figure 4.5, it is clear that the proposed two M-D method

can considerably accelerate the decoding procedure and meanwhile keeps the BER performance

within an acceptable degradation range.

Figure 4.5 Comparisons of number of states visited of two transformation methods

 38

4.4 State level parallelism

 To further improve the decoding speed, a state level parallelism is developed based on the

data flow dependency analysis between all the states shown in Figure 2.2 and 2.4. A finite state

machine (FSM) is designed to control the transitions among these states. This state level

parallelism is implemented in the FPGA hardware modules.

4.4.1 Data flow dependency analysis

 There are three states involved in the decoding procedure as described in the step by step

demonstration in Figure 2.4 for the AV algorithm. Figure 4.6 shows the data dependency between

all possible state transition pairs. State A is dependent on both states B and C if the search

procedure switches to A from B or C, because the orthogonal distance d calculated in B or C is

used to upgrade the layer index ui in State A. Similarly, State A is self dependent. State B has no

dependency on A because these two states work on different search dimensions if B follows A

during the decoding procedure. For the same reason State C is not dependent on any other states

that could jump to C. Based on the data flow dependency, the possibility of the parallelism

among these three states is found as: A || B, A || C, B || C, C || C. These conditions are used to

implement the state level parallelism for the AV algorithm.

Figure 4.6 Data flow dependency graph of AV algorithm

B

C

A

Dependent
Not Dependent

 39

 Similar to the AV algorithm, the data flow dependency for the VB algorithm can be drawn in

Figure 4.7. Because of high data dependency among the decoding procedure, only State C can be

executed simultaneously with states B or C in this algorithm, which is summarized as: B||C, C||C.

BA

Figure 4.7 Data flow dependency graph of VB algorithm

4.4.2 Hardware architecture of state level parallelism

 Depending on the data flow dependency analysis above, multiple states can be executed

concurrently in the hardware decoding modules. As an example, Figure 4.8 presents the

hardware architecture of state level parallelism for the AV decoder. An FSM is designed as a

central unit to control the state transitions and synchronization between them. For a 4-antenna

MIMO system, five hardware state modules are created, with one for each state and other two

duplicated C states. This is because up to three State Cs can be executed in parallel based on the

data flow analysis and experimental results. For instance, when the current state is B, FSM

enables not only State B but also all three State C models. The results from these modules can be

directly used if this State B is followed by multiple C states. A data buffer unit is used to

temporally store the data during the decoding procedure.

C D
Dependent

Not Dependent

 40

Figure 4.8 Architecture of state level parallelism for AV decoder

 The state parallel structure for the VB decoder is similar to that of the AV decoder. There are

six state modules for a 4-antenna MIMO system compared with Figure 4.8, with an extra State D

involved in the VB algorithm.

 To see the performance gain brought by this state level parallelism, Figure 4.9(a) shows a

typical searching procedure in the AV decoding algorithm, where the state transition is executed

sequentially. Three hardware modules are generated and 7 time cycles are needed to finish the

searching procedure. In the state parallel structure, five hardware modules are created to speed

up the decoding procedure as shown in Figure 4.9(b). All possible states after the current one are

enabled if they are allowed to execute in parallel. For example, if current state is A, modules A,

B and C are all enabled because the searching procedure could jump to either B or C after State

A, and these two states are not dependent on State A. At the end of the processing in State A, the

results from either B or C will be accepted based on the state transition conditions. The next state

of the selected state is determined and the search procedure continues. By using this structure,

the searching procedure shown in this example can be finished in 4 time cycles. Thus 3 time

cycles are saved compared with the sequential implementation.

Finite State Machine

State B State CState A

Data
Buffer

State CState C

 41

A A AA

Figure 4.9 An example of state level parallelism for AV decoder
(a) Sequential implementation (b) Parallel implementation

 This performance gain is achieved at a cost of more FPGA resource utilization. But this

overhead is trivial when compared with the available slices on the XC2VP30 FPGA device. The

experimental results are given in the next chapter.

(a) (b)

B

C

C

B

C

C

B

C

C

B

C

C

C Module enabled and
results are ignored

Module enabled and
results are accepted

C C C

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

Module not enabled

1 2 3 4 5 6 7

1 2 3 4

 42

Chapter 5

Performance and results

 A 4×4 MIMO system with 16-QAM modulation scheme is chosen as the target application.

Both AV and VB sphere decoders are developed in Xilinx Embedded Development Kit (EDK)

and prototyped on XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The resource

utilization and the maximum frequency of the decoders are obtained from the synthesis results by

Xilinx ISE tool. The bit accurate models for both algorithms are simulated in MATLAB, and are

used to verify the results from the hardware/software co-design implementations. The two

algorithms are also implemented on TI DSP processor for decoding rate comparisons.

5.1 MicroBlaze soft core prototype performance

 As discussed in Chapter 4, the preprocessing part of the sphere decoding algorithms is

partitioned into MB soft core, which includes QR or Cholesky factorization, matrix inversion

and transpose, and other operations. In order to apply the constellation parallelism for complex

MIMO systems, the real/imaginary (R/I) decomposition is also calculated in MB soft processor,

which includes matrix inversion and multiplication. From the synthesis results, the MicroBlaze

soft processor can operate at 100 MHz when prototyped on the XC2VP30 FPGA. The soft core

timing performance for the 4×4 MIMO system is presented in Table 5.1.

 It is demonstrated from the results that the R/I decomposition and preprocessing parts of the

sphere decoders can be completed within 0.8 ms. A MIMO system with 8 transmit and 8 receive

antennas has also been examined. The results show that the MB executions can be completed

within 3.8 ms for both algorithms, which is still much less than the typical frame length (10 ms)

 43

of a MIMO system. These results prove the feasibility of the processor level parallelism for both

AV and VB sphere decoders.

 AV algorithm VB algorithm

Device Xilinx MicroBlaze

Frequency 100 MHz

R/I decomposition 25,253 cycles

Factorization 36,277 cycles (QR) 4,621 cycles (Cholesky)

Inversion 12,287 cycles

Transpose 1,129 cycles

Total Time 78,675 cycles

0.787 ms

57,801cycles

0.578 ms

Table 5.1 MicroBlaze soft core timing performance

5.2 Hardware synthesis performance

 Based on the HW/SW co-design architecture described in Chapter 4, the closest lattice point

searching procedure is mapped on FPGA as customized hardware modules to speed up the

decoding rate. Because the constellation and state level parallelisms are applied in the sphere

decoding architecture, it is meaningful to examine the overheads of FPGA resource utilization

caused by these two optimizations. The real and imaginary parts of the transmitted vector u are

decoded separately after the two M-D transformation. Table 5.2 presents the number of slices and

embedded multipliers used in single real part or imaginary part decoders for both algorithms. R-I

decomposition is used to calculate 1y or 2y in Eq 4.8, and two extra C states are used to

 44

achieve the state level parallelism. Compared with total slices used by the decoder, the slice

overhead caused by these parallel structures are trivial. Although 8 extra embedded multipliers

are involved in the proposed parallel architecture, it is still acceptable when compared with the

total number of available embedded multipliers provided by XC2VP30 FPGA.

AV decoder VB decoder

Slices Embedded Mult Slices Embedded Mult

R-I decomposition 245 4 245 4

Two extra C states 170 4 128 4

Single decoder 1705 22 2419 31

Table 5.2 Resource utilization of real or imaginary part decoder

 From the post place-and-route (PAR) report, the FPGA resource utilization and the maximum

frequencies are compared between the AV and VB algorithms for the 4×4 complex MIMO

system as shown in Table 5.3:

 AV algorithm VB algorithm

Target FPGA XC2VP30

Slices 3410 out of 13696 4838 of 13696

External IOBs 205 out of 896 227 out of 896

Embedded Multipliers 44 our of 136 62 our of 136

Maximum Frequency 251 MHz 257 MHz

Table 5.3 FPGA resource utilization for AV and VB sphere decoders

 45

 The results show that the VB-based decoder uses more embedded multipliers and more

FPGA slices than the AV-based decoder because the VB algorithm involves more complicated

calculations.

5.3 Decoding rate performance

 The data rate for the MIMO sphere decoders with M transmit and M receive antennas is

determined by:

statestate Cn
MbfR

*
** dim= (Mbps) Eq 5.1

where f is the synthesized system frequency in MHz, bdim is the number of bits per dimension

which is determined by the modulation scheme. Because 16-QAM signal constellation is chosen

in our designs, 4 bits per dimension are transmitted in each symbol. And nstate is the average

number of states visited required to decode a received vector at a certain SNR. With the state

level parallelism applied to the sphere decoder architecture, two or more states executed at the

same time are counted as one state visit. Cstate is the average number of clock cycles per state

visit, which is calculated as:

∑=)*(,, stateistateistate CPC Eq 5.2

where Pi,state denotes the visiting statistic percentage of state i, which is obtained from high-level

simulation. Ci,state is the clock cycles used by state i captured from the FPGA RTL level

simulation.

 In section 2.3.1, it is discussed that the initial radius C is very crucial to the performance

of VB-based sphere decoders. An adaptive method is adopted to calculate this squared initial

 46

radius as shown in Eq 5.3:

))*)*(,((12 α+= − HHySTydroundC Eq 5.3

where),(2 yxd denotes the squared Euclidian distance between two vectors x and y . ST(x)

is a function that transfers each element in vector x into its closest signal constellation point.

And α is an adaptive positive number based on experience, which is chosen to be 0.2 for our

4×4 MIMO system with 16-QAM modulation. The idea here is to find a distance from the

received point to a nearby lattice point, and then use this distance as the initial radius in the VB

sphere decoding algorithm. Because in MIMO wireless communications, the channel is

considered to be static during a short length of time, the squared radius C only needs to be

upgraded once in a signal frame length. An adaptive number α is added to this C in order to

keep the BER performance. The simulation results of number of states visited for different initial

radiuses are compared in Figure 5.1 for the VB decoder.

Figure 5.1 Number of states visited for different initial radiuses in VB decoder

 47

 Figure 5.1 shows that when the Eb/N0 (bit-noise ratio) is greater than 8 dB, the number of

states visited is significantly reduced by the adaptive method compared with other two fixed C

cases. And from BER simulations, all these three methods can achieve almost the same BER

performances. So it is concluded that the adaptive method is able to improve the decoding rate

without violating the BER performance.

 Based on above analysis, the statistic information for the number of states visited and

average clock cycles at 20 dB Eb/N0 is given in Table 5.4. The time for data exchange and

decision making of FSM module is considered inside each state. The simulation results show that

the average processing time for one state visit is 8.5 clock cycles for the AV algorithm and 7.6

clock cycles for the VB algorithm. The average number of states visited for one decoding

procedure is 5.8 and 14.5 for the AV and VB decoders respectively.

AV algorithm VB algorithm

Clock cycles Percentage Clock cycles Percentage

State A 11 50% 6 30%

State B 6 5% 6 10%

State C 6 45% 6 20%

State D -- -- 10 40%

Average 8.5 cycles/state

5.8 states visited

7.6 cycles/state

14.5 states visited

Table 5.4 Average state visit statistics for AV and VB decoders at 20 dB Eb/N0

 48

 These two algorithms are also implemented on DSP in comparison with the proposed

FPGA-based sphere decoders. A fixed point TI TMS320C6201 DSP device is chosen as the

benchmark platform, which operates at a fixed frequency 200 MHz. Because DSP does not

support parallel executions, the 2M-D transformation is applied to decode the complex signals in

the MIMO system. Based on these parameters, the decoding rate of the sphere decoders of

different hardware implementations at 20 dB Eb/N0 is given in Table 5.5. The FPGA results

show that the AV-based decoder is more than 2 times faster than the VB-based decoder, which

matches the theoretical analysis as in [8].

FPGA DSP

AV decoder VB decoder AV decoder VB decoder

Platform Xilinx XC2VP30 TI TMS320C6201

f (MHz) 251 257 200

Cstate (cycles) 8.5 7.6 94 474

nstate 5.8 14.5 15.5 33.2

bdim 4

M 4

R (Mbps) 81.5 37.3 2.2 0.2

Table 5.5 Comparisons of decoding rate for different implementations at 20 dB Eb/N0

 The DSP results show that the AV and VB decoders can only reach about 2.2 Mbps and 0.2

Mbps respectively for our MIMO system at 20dB Eb/N0. Comparing with FPGA-based

 49

performances, the key reason for the low decoding rates in DSP implementations is the lack of

parallel executions and high instruction overhead. As shown in the above table, DSP-based VB

decoder takes 474 clock cycles in average for a state visit, which is only 7.6 clock cycles in the

corresponding FPGA implementation. The number of states visited of the DSP implementation

is larger than that of the FPGA implementation because DSP does not support the complex

constellation and state level parallelisms designed in Chapter 4. Similarly, the DSP-based

decoder can not implement the current execution of preprocessing and decoding parts. As

shown in Figure 5.2, the decoding rate of the FPGA-based sphere decoders is about 37 times

and 187 times faster than the DSP-based implementations of AV and VB algorithms

respectively at 20 dB Eb/N0.

Figure 5.2 Comparisons of decoding rates for different sphere decoders

5.4 BER performance

 The BER performance is evaluated for different lattice dimensions, different lattice

 50

generation matrices with Gaussian distribution and different SNRs. Figure 5.3 shows the BER

performance for the VB-based sphere decoders. The simulation results show that the 8-antenna

MIMO system can achieve a better BER performance than that of the 4-antenna system.

Theoretically this is because that if there are more antennas involved in a MIMO system, more

antenna diversity gains is obtained to improve the BER performance. From Figure 5.3, it also

shows that the fixed point FPGA-based sphere decoders in this thesis match the BER

performances from the floating point software simulations. This result proves that in our

hardware implementations, the number of bits used to present a fixed point and the scaling

number to convert the floating point to a fixed point are suitably chosen which can keep the

precision within the examined range of SNRs.

Figure 5.3 BER performances for VB sphere decoders

 The BER performance of the AV-based sphere decoder is close to that of the VB-based

 51

decoder as shown in Figure 5.4.

Figure 5.4 Comparison of BER performances for two sphere decoders

 52

Chapter 6

Conclusions

Hardware/software co-design architecture for two typical MIMO lattice decoding algorithms

has been designed and implemented in this thesis. The closest lattice point searching procedure is

partitioned into the FPGA-based hardware modules. And a MicroBlaze soft core is used for the

channel matrix preprocessing and R/I decomposition. Three levels of parallel structures are

designed in this co-design architecture to improve the decoding rate. The overheads involved in

these parallel structures are also analyzed. The proposed architecture is prototyped on the Xilinx

XUP Virtex-II Pro developing board with an XC2VP30 FPGA. The experimental results show

that the AV and VB based decoders can reach up to 81.5 Mbps and 37.3 Mbps decoding rate

respectively at 20 dB Eb/N0 for a 4×4 MIMO system with 16-QAM modulation, which are

among the fastest MIMO decoders to the author’s knowledge. They are about 37 and 187 times

faster than their respective implementations in a DSP processor. The BER performance of the

experimental prototype matches with the software simulation results.

 The implementation results show that our FPGA-based HW/SW co-design architecture is a

promising solution to design efficient MIMO decoders to match with the high transmission rate

in MIMO systems. This thesis research also provides author an excellent opportunity to learn the

procedures involved in the HW/SW co-design and to get invaluable experiences on real issue

designs.

 53

References:
[1] G. J. Foschini and M. Gans, “On the limits of wireless communication in a fading

environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp.
311–335, Mar. 1998.

[2] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,”

IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.

[3] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith and A. Naguib, “From Theory to Practice: An

Overview of MIMO Space–Time Coded Wireless Systems,” IEEE Journal on Selected Areas
in Communications, vol. 21, no. 3, pp. 281-302, Apr. 2003

[4] http://en.wikipedia.org/wiki/Multiple-input_multiple-output_communications

[5] M. Pohst, “On the computation of lattice vectors of minimal length, successive minima and

reduced bases with applications,” SIGSAM Bull., vol. 15, no. 1, pp. 37–44, Feb. 1981.

[6] E. Viterbo and J. Boutros, “A universal lattice decoder for fading channels,” IEEE Trans. Inf.

Theory, vol. 45, no. 5, pp. 1639–1642, Jul. 1999.

[7] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved practical algorithms and

solving subset sum problems,” Math. Programming, vol. 66, no. 2, pp. 181–191, Sep. 1994.

[8] E.Agrell, T.Eriksson, A.Vardy and K Zeger, “Closet point search in lattice”, IEEE Trans. on

Inf. Theory, pp 2201-2214, Aug. 2002

[9] Adjoudani, E. Beck, A. Burg, and ect. “ Prototype experience for MIMO BLAST over

third-generation wireless system”, IEEE Journal of Selected Areas in Communications,
Vol,.21, No.3, pp 440-451, April 2003

[10] M. Guillaud, A.Burg, M.Rupp, E.Beck, and S. Das, “Rapid prototyping design of a 4x4

BLAST-over- UMTS system”, 35th Asilomar Conference on Signals, Systems and
Computers, pp1256-1260, Pacific Grove, CA, USA, November 4-7, 2001

[11] Z. Guo and P. Nilsson. ”A VLSI Architecture of the Soft-Output Schnorr-Euchner Decoder

for MIMO Systems”, accepted in IEEE International Midwest Symposium on Circuits and
Systems (MID-WEST), Cincinnati, USA, Aug. 2005.

 54

[12] Z. Guo, P. Nilsson and V. Ovall. ”A Low-Complexity High-Throughput Soft-Output MIMO
Decoder”, The 14th IST Mobile & Wireless Communications Summit, Dresden, Germany,
Jun. 2005.

[13] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bölcskei, “VLSI

Implementation of MIMO Detection Using the Sphere Decoding Algorithm,” IEEE Journal
of Solid-State Circuits, vol. 40, no. 7, pp. 1566-1577, Jul. 2005.

[14] http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/capabilities/powerpc.

htm

[15] http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze

[16] http://www.altera.com/technology/embedded/emb-index.html

[17] http://www.xilinx.com/univ/xupv2p.html

[18] http://www.model.com/

[19] http://www.xilinx.com/bvdocs/ipcenter/data_sheet/EDK_Sell_Sheet.pdf

[20] G. Strang, Linear Algebra and Its Applications, 3rd ed. San Diego, CA: Harcourt Brace

Jovanovich, 1988.

[21] J. Ma, C. Liang and X. Huang, “A comparison of lattice decoding algorithms in hardware

implementation”, Proc. SPIE, Vol. 5819, pp. 200-210, June 2005.

[22] Jing Ma, Xinming Huang, Swapna Kura, “A high data rate universal lattice decoder on

FPGA”, Proc. SPIE, Vo1. 5819, pp 211-221, June 2005.

[23] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem,”

Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[24] H. Cohen, “A course in Computational Algebraic Number Theory”, Berlin, Germany:

Spring-Verlag, pp.102-104, 1993.

[25] W. W. Hager, “Applied Numerical Linear Algebra”, Englewood Cliffs, NJ: Prentice-Hall,

pp. 208-236, 1988.

[26] Wolf. W, “A decade of hardware/software codesign”, IEEE Computer Society, vol. 36, pp.

38-43, April 2003.

 55

[27] Clive Maxfield, “The Design Warrior’s Guide to FPGAS”, ISBN: 0-7506-7604-3, pp1-10,

2004

[28] Chris H. Dick, “Design and Implementation of High-Performance FPGA Signal Processing

Data paths for Software Defined Radios”, Xilinx Inc.

[29] http://msdn.microsoft.com/vstudio/

[30] http://www.model.com/products/60/se.asp

[31] http://www.xilinx.com/ise/logic_design_prod/foundation.htm

[32] http://www.xilinx.com/ise/embedded/edk_pstudio.htm

[33] http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

[34] M.O.Damen, H.E.Gamal, and G.Caire, “On maximum-likelihood detection and the search

for the closest lattice point”, IEEE Trans. on Inf. Theory, pp 2389-2402, Oct. 2003

[35] http://ls12-www.cs.uni-dortmund.de/~niemann/codesign/codesign.html

 56

Vita

 Cao Liang was born in 1979, in Sichuan, China. He received the B.S. degree in Electrical

Engineering from University of Electronic Science and Technology of China in 2002. After the

graduation, he worked in Sifang Information & Technology Co., Ltd as a software engineer for

more than one year. In fall 2004, he began his graduate studies in the EE department at

University of New Orleans.

 His research is mainly focused on embeded computer systems for high performance

computation and wireless communications.

 57

	Hardware/Software Co-Design Architecture and Implementations of MIMO Decoders on FPGA
	Recommended Citation

	tmp.1312909957.pdf.bHkIA

