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Abstract 
 
 
    Single Metallic Nanowire Arrays (Ni, Au and Cu etc) and superlattice nanowire arrays 

(Ni/Au, Ni/Cu) were synthesized through template-directed electrochemical deposition 

method. The dual-bath technique was employed in fabrication of superlattice nanowire 

arrays. Anodized alumina membrane (AAM) and Ion Track-etched Polycarbonate 

Membrane was used as the fabrication templates. The specific electrode making 

technique and electrochemical deposition procedures were described in detail. Scanning 

electron microscope (SEM) performed all sample characterization. Vibrating sample 

magnetometer (VSM) and ferromagnetic resonance (FMR) were utilized to investigate 

the magnetic properties of single Ni nanowire arrays of different lengths and Ni/Cu 

superlattice nanowire arrays. The VSM data exhibited that the magnetic easy axis of 

samples is parallel to the nanowire axis direction and the nanowire arrays have obvious 

shape anisotropy. The FMR spectra indicated that the resonant field value is angular and 

aspect ratio dependence. 
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Chapter 1 
 

Introduction 
 
 

1.1 Significance of Synthesis of Metallic Nanowires and Magnetic Property Study 

Nanoscience and nanotechnology is one of the main directions of advances in science 

and technology in the 21st century, which comprises scientifical and technological 

developments on the nanometer scale, usually locate between 1 and 100 nanometer. 

When the new materials and devices are fabricated in this characteristic scale, lots of 

unique properties and performances could be achived in this atomic-scale architecture 

system. As we known, the technological revolution always built on the foundation of   

advanced materials and advanced manufacturing. Nanostructed materials as a category of 

advanced materials are the foundation of nanoscience and nanotechnology. Moreover, the 

nanostuctured materials is also needed in advanced device fabricaton and system self-

assembly. Generally, the research in nanomaterials includes four main fields: 1) 

Structurally controlled nanomaterial fabrication; 2) Characterization of the nanomaterial 

structures and properties; 3) Device fabrication; 4) System Manufacturing. All in all, 

research in nanomaterials needs multidisciplinary efforts among physicists, chemists, 

material professionals and  mechanic engineers etc. 

In the past few years, much of the progress in synthesis, structure characterization and 

physical property investigation for nanomaterials with reduced dimensionality, such as 

two-dimensional quantum wells[3,4,9,10,11] or nanofilms[12,13,14], one-dimensional 

nanowires[15,16,17,18,19,22], nanotubes[1,20,25], or nanobelts[21,23,24] etc. and zero-dimensional 

quantum dots[5,6,7,8], has been achieved. The two most important examples are: 1) In 1991 

Dr. lijima first fabricated one-dimentional carbon nanotubes[1]; 2) In 1985, Richard E. 
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Smalley from Rice University discovered the Fullerenes (C60)[2], which brought him the 

Nobel Prize in Chemistry 1996.  

Based on the material properties and utilization, one-dimensional nanowire systems 

can be classified as semiconductor compound nanowires [26,27]; Silicon [28,29] and 

germanium [30] nanowires; Oxide [31], carbide [32,33] and nitride [34] nanowires; and metallic 

nanowires [15,16]. In this thesis, we will only concentrate on the metallic magnetic 

nanowires. In the past few years, metallic nanowires have aroused a remarkable interest 

due to their potential applications in giant magnetoresistance (GMR) effect based 

magnetic sensor [37,39,40], ferromagnetic nanowires based tunable microwave filters [35,36] 

and magnetic recording media [38,41] etc. It is not difficult to see that almost all above 

potential applications of metallic nanowires are based on their magnetic properties. 

Therefore, the investigation of the efficient large-scale synthesis methods of different 

metallic nanowires and their diverse magnetic properties are the key to approach their 

practical application in the near future.  

 

1.2 Template-Directed Electrodeposition Approach 
      

Much of the progress in the fabrication of nanowires has been achieved in the past 

few years. Lots of novel methods have been developed for synthesis different types of 

nanowires. The most commonly used nanowire preparation techniques include four 

aspects as listed below: 1) Vapor Phase Evaporation [43,44,45,46]; 2) Chemical Vapor 

Deposition, developed by Wagner and Ellis in 1964 for whisker growth [42]; 3) Laser 

Ablation [47,48,49]; 4) Electroless and Electrochemical Deposition [15,16,17]. For the synthesis 

of metallic nanowires, the electrochemical deposition technique has been approved a very 
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efficient way to produce high quality and large-scale nanowires. Therefore, this technique 

has been used widely recently. Initially, the electrochemical deposition technique was 

developed for decorative purpose in industry. Then, this technique was also found has 

many other engineering application in wear resistance and corrosion protection etc. 

Before this technique was utilized to make nanowires, it has been also widely used to 

make nanofilms and coatings on appropriate substrates [50,51,52]. In 1996, Martin became 

the first scientist to investigate the electrochemical deposition technique for metallic 

nanowire preparation in nanopore template of polycarbonate membranes [15]. Then Wang 

et al [16] and Peng et al [17] began to use this technique for synthesis of different metallic 

nanowires.  For metallic nanowire growth using electrochemical deposition technique, we 

also have to apply with template-directed technique. If there has no template-directed 

technique to be applied, it could not be realized for nanowire preparation by just 

employing electrochemical deposition. Generally, the approach for making metallic 

nanowires based on template-directed electrochemical deposition technique includes 

three steps: 1) Formation of nanometer-sized channels in appropriate membranes; 2) 

Electrodeposition of metallic nanowires into the nanometer-sized channels using 

membrane as template; 3) Post-Treatment of the metallic nanowires.  

 

1.2.1 Template-Directed Synthesis 
 

Template-Directed synthesis is the most commonly used approach in our nanomaterial 

research. This technique is also called the bottom-up approach by comparison with top-

down approaches, such as X-ray lithography and focused ion beam (FIB) [61]. However, 

both the lithography and FIB techniques are comparatively cumbersome and expensive 
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for large-scale fabrication. Therefore, researchers are of great interests in the template-

directed synthesis currently. Template-directed nanomaterial fabrication method also has 

some other advantages: 1) This technique becomes a “bridge” linking microscopic world 

(nanowires, nanotubes and nanorods etc nanometer-sized structures) to the current 

macroscopic world (different types of membrane templates and electrochemical 

deposition); 2) Good reproducibility; 3) Shape of nanometer-sized structures are pre-

designed; 4) The fine microscopic tips (such as atomic force microscopy (AFM) and 

scanning tunneling microscopy (STM)) are not a must any more in the manipulation of 

the nanomaterial building blocks.  

 

1.2.1.1 Templates 

Anodized alumina membrane (AAM)[53] and ion track-etched polymer membrane [54] 

are the most commonly used as fabrication templates. Both of these two types of 

membranes are commercially available. The main provider of these two types of 

membranes is the Whatman Company. Initially, these two types of membranes were 

developed for lab filtration applications because they occupy relatively precise pore 

structure and narrow pore size distribution, which is suitable for filtrate certain sized 

material and biological particles. The first person utilized these types of membrane as 

templates instead of filters for making nanowires is Possin and he used track-etched mica 

as template to synthesize Sn nanowires for superconducting studies in 1970 [55]. Recently, 

Martin [15], Wang et al [16] and Peng et al [17] have investigated the track-etched 

polycarbonate membrane as template to synthesize metallic nanowires by employing 

electrochemical deposition technique. Xu and Chen et al [56] synthesized CdS 
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semiconductor nanowires using anodized alumina membrane (AAM) as template. 

Subsequently, Mayer et al [57], Forrer et al [58] and Zhang et al [59] fabricated metallic 

nanowires based on electrodeposition technique in nanopore template of anodized 

alumina membrane (AAM).  

 

1.2.1.1.1 Anodized Alumina Membrane (AAM) 

Figure 1.1 is the SEM images of commercial Anopore® anodized alumina membrane 

bought from Whatman company which is one of the main AAM manufacturer [60]. The 

commercial anodized alumina membranes generally have high pore density, relatively 

precise pore structure and narrow pore size distribution etc characteristics, and they are 

usually made for filtration applications. The alumina membranes are made of high purity 

aluminum and manufactured electrochemically. They have hydrophilic properties and are 

compatible with most solvents and aqueous materials. These inorganic membranes 

manufactured by Whatman Company usually have 60µm thickness and 25-50% porosity.   

                                                                    ( a ) 

 
( b ) 

 

Figure 1.1  SEM images of Anopore® anodized alumina membrane,  

a ) top view, ×20,000,  b ) cross-sectional view, ×2,000 
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The big drawback of these commercial AAMs is that they have some lateral crossover 

problems among vicinal individual pores, especially the area close to the two ends of 

pores, which make the subsequently fabricated nanowires difficulty to disperse and also 

affect magnetic properties of nanowire array due to the non-uniform interactions among 

vicinal individual nanowires. Another drawback is that these membranes usually have 

deformed pores instead of normally round shape (Figure 1a). 

The fabrication of anodized alumina membrane in lab is a very intense and 

cumbersome job. The AAM template fabrication method was developed by Masuda in 

1995[62], called two-step anodization procedure. The general procedures for making AAM 

are described below: First, high pure aluminum foil is vacuum annealed and the annealed 

aluminum foil then will be electropolished in a mixture solution of perchloric acid and 

ethanol with a certain ratio. The electropolished step will make the aluminum foil surface 

looks like a bright silver mirror. The following step after electropolishing is to employ 

the first anodization at a certain constant voltage. The whole anodization processing is 

performed in an oxalic acid solution. Then, the phosphoric acid and chromic acid mixture 

solution will be used to dissolve the just formed alumina layer during the first anodization. 

After removing the aluminum oxide layer, the initial hexagonal ordered honeycomb pore 

arrangement is achieved. The following second anodization applies the same parameters 

and conditions as in the first time set. After running the desired anodization time, the 

phosphoric acid and chromic acid mixture solution will be used again to remove the 

alumina layer. Eventually the more ordered and deep hexagonal honeycomb pores could 

be achieved with a certain thickness. The remaining pure aluminum layer at the bottom of 

sample can be dissolved by copper(II) chloride solution. For this two-step anodization 
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processing method, the anodization voltage controls the pore diameter size of AAM; the 

pore thickness is determined by the anodization time; the membrane porosity lies on the 

oxalic acid concentration. Figure 1.2 is the SEM images of the AAM fabricated by 

Masuda et al [62]. Comparing the Figure 1.2 to Figure 1.1, it is easy to see that the AAM 

made by Masuda et al had much better pore shape and uniformity than commercial one.  

 

Figure 1.2  SEM images of anodized alumina membrane made by Masuda et al[62] ,  

A) top view, B) cross-sectional view 
 

1.2.1.1.2 Ion Track-Etched Membrane 

The commonly used commercial ion track-etched membrane is polycarbonate 

membrane, which is initially also made for filters and cell culture [60]. Figure 1.3 is the 

SEM top view image of commercial Nuclepore® polycarbonate membrane manufactured 

by Whatman Company with 600nm pore size and 12µm thickness. The commercial 

polycarbonate membrane showed us that ion track-etched membrane has non-deformed 
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round pore shape, which is better than the commercial anodized alumina membrane 

(Figure 1.1a). 

 

Figure 1.3   SEM top view image of Nuclepore® polycarbonate membrane  

with pore size 600nm, ( × 5,000 ) 

The usual drawbacks of the ion track-etched membranes are low porosity, bad pore 

distribution and tilted channels. From Figure 1.3, we can find that the pores are 

distributed randomly and some are overlapped partially among vicinal those. These 

characteristic drawbacks of ion track-etched membranes are determined by their 

fabrication method, which is inevitable. Briefly, the ion track-etched membrane 

fabrication procedures could be described as below [63]: An intact thin membrane film is 

exposed to a heavy ion source. The heavy ion beam will randomly bombard the 

membrane film, which will leave bombardment tracks inside membrane film with 

damaged polymer molecular structures. The chemical etching technique will be used to 

remove the bombardment tracks due to their damaged polymer molecular structures and 

keep the remaining area of the membrane intact. Therefore, the reason why ion track-

etched membranes having lots of partially overlapped pores is the random ion 

bombardment. Besides, the tilted channels are contributed from the angler between the 

member surface and the flying path of heavy ions is not exact perpendicularity, which is 

caused by the unparallel flying path of ions. The low porosity could be overcome by 

increasing the ion bombardment time. However, with the increase of the ion 
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bombardment time, the chance to form partially overlapped pores will increase 

dramatically. 

 

      1.2.2 Electrodeposition Fabrication 
 

Electrodeposition has been widely used in making thin films and coating for a long 

period [50,64]. The working mechanism is pretty simple, which involves the application of 

an electric current through a certain concentration electrolyte containing the desired metal 

ions to reduce the metal ions into metal on the cathode (or substrate). If electrodeposition 

employing on some non-conductive substrates, some pretreatments would be applied first 

on the surface of the non-conductive substrates, such as electroless chemical deposition 

or sputtering etc. The electrolyte could be aqueous solution of salts or fused salts. 

Electrolyte composition, applied potential, electrical current, electrolyte pH value and 

temperature are five main processing parameters of this electrodepostion technique.  

In 1996, Martin [15] first employed this technique in synthesizing metallic nanowires 

using polycarbonate membrane as template. Subsequently, the electrochemical deposition 

has been used extensively in fabricating single metallic nanowries and multilayered 

metallic nanowires (superlattice) with controlled thickness for magnetic property studies 

[65]. For the electrodeposition process, a standard three-electrode plating cell is applied, 

which includes a working electrode, a counter electrode and a reference electrode. 

Usually the applied substrate will be served as the working electrode and several inert 

metals will be served as counter electrode and reference electrode, such as Pt wire. The 

standard Ag/AgCl is also the often-used reference electrode. The template-directed 

electrodeposition synthesis has been proved as the particularly high yield technique for 
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fabricating nanowires [66,67]. A single-bath technique is the commonly used approach to 

synthesize the single component metal nanowires. The electrobath only contains the 

desired single metal ions as electrolyte solution for deposition. For fabricating 

multilayered metallic nanowires (or superlattice), there are two approaches through the 

template-directed electrodeposition synthesis technique. The single-bath technique is 

widely used in most recent research work. The electrolyte solution is the mixture of two 

or more different metal ions. By controlling the applied potential and the concentration of 

the different metal ions, the reduction order of the desired metals could be arranged. One 

drawback of the single-bath technique is the co-deposition problem, which involves that 

there are two or more different metals could be reduced at the same time when applying a 

certain potential. However, adjusting the concentration of the different metal ions and 

choosing suitable applied potential could minimize this drawback. An alternative 

approach to synthesize the multilayered metallic nanowires is the dual-bath or multi-bath 

technique. The number of the components composing the multilayered metallic 

nanowires determines the number of the electrobath. Each electrobath only contains one 

single metal ion. The template substrate will move among different electrobaths to 

employ the electrodeposition. By employing this dual-bath or multi-bath technique, the 

co-deposition problem could be finally avoided, which can ensure each single segment in 

the multilayered metallic nanowires is one single pure metal we desired.  
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Chapter 2 
 

Fabrication and Characterization of Metallic Nanowire Arrays 

 
2.1 Introduction 
       

Metallic nanowire arrays have recently attracted considerable attention due to their 

electrical, optical and magnetic properties and their potential application in high-density 

magnetic recording media and tunable microwave device [35,36,68,69]. The complicated and 

high-cost lithographic patterning fabrication technique for making metallic nanowire 

arrays is not suitable for large numbers of production and could not be applied 

extensively [70]. The template-directed electrochemical deposition technique has bee 

approved a good alternative approach in synthesizing metallic nanowire arrays and has 

been widely used in fabricating most metallic nanowire arrays with well-defined structure 

for magnetic property studies.  

 

2.2 Experimental Section 

      2.2.1 Materials and Equipment  

      All chemicals were of reagent quality and were used as received. Dichloromethane 

(99.5%, EM science), acetone (99.7%, Mallinckrodt), ethyl alcohol (99.5%, Aldrich), and 

NaOH (98%, Sigma). The commercial gold (Orotemp 24 RTU, KAu(CN)2, containing 

8.2g/liter gold, pH ~ 8.0) and nickel (Nickel sulfamate-RTU, Ni(H2NSO3)2, pH ~ 4.0) 

plating solutions were purchased from Technics, Inc.. Besides, the commercial copper 

(Cyanide) plating solution was obtained from Samson Technology Corp. The Anopore® 

anodized alumina membranes (AAMs) and Nuclepore® Track-etched polycarbonate 
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membranes were purchased from Whatman company. Besides, several alumina 

membranes were obtained from Professor Jin-Seung Jung research group (Department of 

Chemistry, Kangnung National University, South Korea). The Pd-Au and Ag sputtering 

target were purchased from Denton Vacuum Company. Silver paste and 3M Scotch 

Super Strength glue was obtained from Ted Pella, Inc. and VWR Company respectively.  

The Denton Desk II cold sputter/etch unit carried out magnetron sputtering deposition. 

Princeton Applied Research VMP2 Multichannel Potentiostat Systems was used to 

perform electrochemical deposition. JEOL JSM 5410 Scanning Electron Microscope 

(SEM) took scanning electron micrographs.  

 
2.2.2 Fabrication of Metallic Nanowire Arrays Using Anodized Alumina  

         Membrane (AAM) as Template 
       

The metallic nanowire arrays were fabricated by electrochemical deposition into the 

channels of anodized alumina membrane (AAM) template using a standard three-

electrode plating cell containing desired metal ions [71]. The specific fabrication 

procedures are showed in Figure 2.1 and will be discussed in detail below. 

 

 
 

Figure 2.1   Schematics of metallic nanowire array fabrication 
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2.2.2.1 Conversion of Anodized Alumina Membrane Template into Electrode 

 
 

 

 
Figure 2.2   Schematics of AAM electrode fabrication 

 

 

Figure 2.3   Denton Desk II cold sputter/etch unit 
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The AAM electrode fabrication is the initial step for the whole template-directed 

electrochemical deposition process. Figure 2.2 is the fabrication schematics of conversion 

from a piece of anodized alumina membrane (AAM) template to a working electrode. 

The AAM is a fragile and insulating inorganic material and we need to convert this 

insulating material to be electrically conductive and served as an electrode. The Denton 

Desk II cold sputter/etch unit (Figure 2.3) was utilized to deposit a thin metal film on one 

side of the AAM membrane. The Denton Desk II cold sputter/etch unit can work with 

different metal targets, such as Au, Ag, Cu, Pd and Pd/Au alloy. In our research group, 

the Ag and Pd/Au alloy targets were the usual sputtering metals for different purposes. 

These two different metal targets have advantages and disadvantages respectively. If our 

objective is to make freestanding nanowires, we generally use Ag as the sputtering metal 

because it is easy for us to remove it from AAM template during the post-treatment 

process. Usually we use nitric acid to dissolve or sandpaper to polish. However, if the 

object is to make nanowire arrays, usually the sputtering metal is not necessary to remove 

after finishing electrodepostion. Therefore, the Pd/Au alloy as sputtering target is a good 

choice. One advantage with Pd/Au alloy is its good stability in the air. If we use Ag as the 

sputter metal, we know metal Ag could be oxidized slowly to form a thin AgO film, 

which will affect the subsequent electrochemical deposition performance and decrease its 

deposition efficiency. Besides, another purpose of sputtering metal on one side of AAM 

is to seal one end of all membrane pores. Otherwise, the following electrochemical 

deposition processing to deposit nanowires into AAM channels will be difficult to 

realize. For this Denton Desk II sputter system, the deposition speed depends on the 

parameters we set. Generally, we use 45 milliamps as the sputter intension and the 
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deposition speed is 0.33 nm/second. The different substrate surface uniformity and target 

metal composition also slightly affect the deposition speed and efficiency. 

    After sputtering metal with a certain thickness (200-300nm) on one side of a piece of 

AAM, the following step is to attach a 15-20cm long conductive wire, the commonly 

used is copper wire because of its low-cost and having good electric conductivity, on the 

metal film side of AAM using conductive silver paste. The bond strength between 

conductive wire and metal film of AAM mainly depends on the concentration of 

conductive silver paste, but the most concentrated is not the best because it is difficult for 

the most concentrated paste to spread out to make sufficient contact between conductive 

wire and the sputtered metal film, which will also decrease the bond strength. The 

concentration of silver paste can be adjusted by addition of acetone. Besides, there is 

another point we need to be aware of. The silver paste has to be solidified in the air for 

sufficient time, which make the attachment much more stronger. Otherwise, the 

conductive wire could be peeled off on the metal film of AAM due to the dissolution of 

silver paste when it is immersed in the electroplating solution for a certain long period 

during electrochemical deposition processing. 

The last step of making an AAM electrode is the seal using insulating polymer glue 

(3M Scotch Super Strength glue). The purpose of sealing with insulating polymer glue is 

to direct the metal reduced from electrolyte solution to fill into the desired area, the inside 

of AAM channels. Otherwise, the most metal could be deposited on the undesired area, 

the surface of sputtered metal film, which will not only decrease the electrochemical 

deposition efficiency, but also decrease the sample quality. Besides, the around edges of 

AAM also need to be covered by the insulating glue to avoid the unnecessary deposition. 
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2.2.2.2 Electrochemical Deposition in the Channels of AAM Template 
 
      Electrochemical deposition was performed on a Princeton Applied Research VMP2 

Multichannel Potentiostat Systems through a standard three-electrode plating cell (Figure 

2.4) with a constant current method. In this standard three-electrode plating cell, the 

fabricated AAM template was served as a working electrode, and the counter electrode 

and reference electrode were two high pure platinum wires. In order to precisely control 

the working potential, Ag/AgCl standard electrode were sometimes used as a reference 

one. It is unnecessary to use Ag/AgCl standard electrode as the reference electrode if the 

constant electric current method was performed because the electric current density and 

electrodeposition time are the only two controlling parameters in tailoring the nanowire 

products under constant electric current condition. In this Princeton Applied Research 

VMP2 Multichannel Potentiostat Systems, the applied software includes a 

chronopotentiometry mode, which could allow us to choose a certain electric current 

value to run the electrochemical deposition experiment. The working electrode area can 

be calculated based on the AAM template size. Therefore, the electric current density of 

the working electrode can be calculated from above data. Once the current density is 

fixed, the amount of the reduced metal from electroplating solution only depends on the 

experiment time. Based on the previous studies in our research group, the current density 

was usually set to 0.5 mA/cm2 or smaller. The commonly used current density value is 

0.1 mA/cm2 . Under this parameter, the rough nanowire growing speed of Au and Ni is 

300nm/hour and 100 nm/hour respectively. Theoretically, the nanowire growing speed 

also could be calculated based on coulomb value. However, the theoretical calculation 

needs to know the electrochemical deposition efficiency because the electric current 
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through the working electrode couldn’t be used with 100% to perform reductive reaction 

to reduce metal ion to metal.  

 
 

Figure 2.4   Schematics of a Standard Three-Electrode Plating Cell for Performing       

Electrochemical Deposition Using AAM as Template 

 

     2.2.2.3 Sample Post-Treatments 
 

The specific post-treatments depend on the different research goals. For this research 

project, we want to get the metallic nanowire arrays with AAM template remaining in 

order to investigate their magnetic properties.  Therefore, the post-treatment processing 

of sample after finishing electrodeposition is relatively simple and we just need to 

remove the insulating polymer glue and the attached metal wire. The dichloromethane 

(99.5%, EM science) or acetone (99.7%, Mallinckrodt) is the commonly used solvent to 
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dissolve insulating polymer glue. In the meantime, the silver paste also will be softening 

in these organic solvents and the metal wire could be detached easily. For this process, 

the troublesome thing is that the insulating polymer glue cannot be dissolved away as 

quickly as we expect in either one of two organic solvents. If the polymer glue cannot be 

removed totally, the softening polymer glue could wrap up the nanowires, which will 

make the following sample characterization using scanning electron microscope (SEM) 

to be extremely difficult because the polymer glue is electrically non-conducting material, 

which could make the SEM image look fuzzy. This fuzzy phenomenon is due to the 

electrons accumulation on the non-conducting surface of sample, which makes the focus 

of SEM become dramatically difficult. Usually, the soak time of sample in the organic 

solvent for removing polymer glue is up to several days. Moreover, the organic solvent 

needs to be changed very often (every 10 to 12 hours), which could allow the refreshing 

organic solvent to speed up the dissolution process.  

After dissolving the polymer glue and removing metal wire, we used sandpaper to 

slightly polish the metal film side of AAM temple in order to get rid of solidified silver 

paste and sputtered metal film. Finally the nanowire arrays embedded in AAM template 

were obtained. Besides, in order to prevent several deposited metal (such as nickel, 

copper etc.) from oxidizing, the samples were kept in ethyl alcohol solution (99.5%, 

Aldrich) to avoid contacting air because the oxidized metal nanowire arrays would affect 

their magnetic property measurements.  

Moreover, if we have to get freestanding nanowires for characterization on SEM, 

some extra treatments need to be done. The sputtered metal can be removed using 

sandpaper polish. If the sputtered metal is silver, we also can use nitric acid to dissolve. 
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But this process needs to be extremely careful because the strong acid also could dissolve 

several types of metal nanowires (such as nickel, copper and cobalt etc.) although they 

are embedded in the channels of AAM template. The anodized alumina membrane can be 

dissolved in strong base solution (such as 2M NaOH or KOH). The warm sodium 

hydroxide or potassium hydroxide solution could speed up the dissolution of AAM 

template. After dissolving the AAM template, the freestanding metal nanowires would 

precipitate at the bottom of container while treating with centrifuge. After washing 

sample with deionic water for several times, the nanowires were kept in 99.5% ethyl 

alcohol solution and ready for SEM observation.  

       
 

2.2.3 Fabrication of Metallic Nanowire Arrays Using Ion Track-etched 

Polycarbonate Membrane as Template 

The fabrication of metallic nanowire arrays using ion track-etched polycarbonate 

membrane as template is slightly different with that using AAM as template. The reason 

is that the polycarbonate membrane is very soft organic material and it is not like AAM 

that is hard inorganic material. Therefore, the way for making AAM working electrode 

depicted above could not work out for fabricating soft polycarbonate membrane electrode. 

Several additional techniques need to be applied to modify the above AAM electrode 

fabrication procedures to make it suitable for soft polycarbonate membrane. An Open-

Face Delrin* Filter Holder (Figure 2.5) was utilized in making the polycarbonate 

membrane electrode. Figure 2.6 is the Nuclepore® Track-etched polycarbonate 

membranes (25mm, Whatman). In life science research lab, this ion track-etched 

membrane combined with the filter holder is generally served as a filter.  In order to 
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make polycarbonate membrane electrode, a few of modifications was made on this filter 

holder, which is showed in the Figure 2.7. 

 
 

Figure 2.5 Open-Face Delrin* Filter Holder (25mm, Pall* Life Sciences) 
 

 
 

Figure 2.6 Nuclepore® Track-etched polycarbonate membrane (25mm, Whatman) 
     

 

Figure 2.7 Assembly schematics of polycarbonate membrane electrode fabrication 

 
    For this modification, there was no insulating polymer glue been used directly on the 

sputtered metal surface of polycarbonate membrane. The insulating polymer glue was 
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used indirectly in this fabrication to prevent plating solution leaking from filter hold 

pipeline. Moreover, the conducting wire is not directly bond to sputtered metal side of 

polycarbonate membrane, but wedding to a thin conducting copper foil. The advantage of 

this modification is to decrease the workload of post-treatment of sample because the 

sample membrane is easily to be peeled off and there is no polymer glue need to be 

dissolved or a piece of conducting wire have to be removed from membrane template. 

Based on the schematics of a standard three-electrode plating cell showed in Figure 2.4, 

we just need use this polycarbonate membrane electrode to substitute the AAM electrode 

and we are ready to make metallic nanowires in the channels of soft track-etched 

polycarbonate membrane (Figure 2.8). 

 
 

Figure 2.8   Schematics of a standard three-electrode plating cell for performing 

                electrochemical deposition using polycarbonate membrane as template 
 

Besides, the post-treatment was relatively simpler comparing to the AAM template 

sample. There is no troublesome insulating polymer glue to be dissolved. In order to 

obtain freestanding nanowires for SEM observation, the sputtered metal film on the 
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membrane can be polished away using sandpaper. The polycarbonate membrane itself 

was much easier to be dissolved in dichloromethane organic solution.  

 
      2.2.4 Scanning Electron Microscope (SEM) Characterization 
 

JEOL JSM 5410 Scanning electron microscopy (SEM) with energy dispersive X-ray 

spectroscopy (EDX) analysis performed sample characterization. The nanowire ethanol 

solution was dropped on the conductive carbon tape that is bond to a SEM sample mount. 

After the evaporation of ethanol, the sample mount was loaded into SEM sample 

chamber for observation. If the observed sample is non-conducting material, such as 

polycarbonate membrane or anodized alumina membrane, the Denton Desk II cold 

sputter system was used to deposit a very thin layer of metal, Au or Pd/Au etc., on the 

surface of sample to make sample surface become electrical conductive before SEM 

observation.   

 

2.3 Results and Discussion  

2.3.1 SEM Images of Single Metal Nanowires 
 
The template-directed electrochemical deposition method can fabricate well-defined 

single metal nanowries. The electrochemical deposition begin to reduce the metal cation 

of the plating solution at the bottom of inside channels of template because the sputtered 

metal can be served as cathode and then grow toward to the open side of membrane 

channels. 

2.3.1.1 Electrochemical Fabrication Using AAM as Template 

Figures 2.9a,b,c,d,e,f,g shows several cross-sectional view SEM images of nickel 

nanowire arrays after dissolving AAM template using 2M potassium hydroxide solution.                             
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( a )                                                              ( b ) 

                                                                       
( c )                                                             ( d ) 

      

 

                  
                

 ( e )                                                               ( f ) 

                               
                        

( g ) 

         
 

Figure 2.9 SEM images of Ni nanowire arrays  

a) Ø=400nm, ×7,500, b) Ø=500nm, ×10,000, c) Ø=300nm, ×7,500, d) Ø=300nm, 

×20,000, e) Ø=400nm, ×35,000, f) Ø=60nm, ×35,000, g) Ø=60nm, ×3,500 
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Hereinto, the template used for making nanowires in the Figures 2.9a,b,c,d,and e were the 

commercial AAM obtained from Whatman Company. In the Figure 2.9f,g, we used lab-

made AAM as temple obtained from Professor Jin-Seung Jung research group 

(Department of Chemistry, Kangnung National University, South Korea) to make these 

Ni nanowire arrays. In Figures 2.9a,b,e, all the nickel nanowires stand on the substrate 

that is Pd/Au alloy film we sputtered using Denton Desk II Cold Sputter/Etch Unit. 

Besides, we mentioned before that the big drawback of the commercial AAMs is that 

they have some lateral crossover problems among vicinal individual pores, especially the 

area close to the two ends of pores, which make the subsequently fabricated nanowires 

difficulty to disperse. From Figures 2.9c, d, we can clearly see that nanowires made from 

these types of commercial AAMs still could form a bunch of arrays even if we removed 

the metal film substrate using sandpaper polish technique. Besides, from Figure 2.9e we 

can find that not all commercial AAM channels were straight enough. Moreover, the 

nanowire cylinder surface is not smooth enough and there are some small bumps existed. 

Relatively, the AAM obtained from Jin-Seung Jung research group are much better than 

the commercial AAM. 

Figures 2.10a,b are two top view SEM images of nickel nanowire arrays. We can find 

that the transection shapes of nanowires are not typically round, which is decided by the 

channel shapes of commercial AAM because they are not round enough (Figure 1.1a). 

Meanwhile, there are some defects (nanowires missing) found in the images. There are 

two possible reasons that could cause these defects. One is that the previous sputter metal 

didn’t seal the end of that AAM channel well. Therefore, the nickel ions could not be 
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reduced and deposited into that channel. Another possible reason is that nanowire was 

broken due to applied forces during post-treatment processes, such as centrifuging force.  

 
     ( a )                                                                 ( b ) 

     
                               

Figure 2.10 Top view SEM images of Ni nanowire arrays 

a) Ø=400nm, ×20,000, b) Ø=400nm, ×50,000 

 
   ( a )                                                              ( b ) 

       
              

Figure 2.11 SEM images of Au nanowire arrays 

a) Ø=300nm, ×10,000, b) Ø=300nm, ×7,500 

Figures 2.11a,b are SEM images of gold nanowire arrays after dissolving AAM 

template using 2M potassium hydroxide solution. Figure 2.12 is the top view SEM image 

of gold nanowire arrays. After polishing off sputtered Pd/Au alloy film, we got 

freestanding gold nanowires (Figures 2.13a,b,c,d). From Figure 2.13a, we can clearly see 
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that the zigzag shape of the nanowire cylinder body due to the roughness inside some 

individual channels of commercial AAM templates. 

 
 

Figure 2.12 Top view SEM image of Au nanowire arrays (Ø=300nm, ×10,000) 

 
( a )                                              ( b ) 

              

  ( c )                                                 ( d ) 

    
                         

Figure 2.13 SEM images of freestanding Au nanowire      a) Ø=300nm, ×20,000, 

b) Ø=300nm, ×7,500 c) Ø=300nm, ×3,500, b) Ø=300nm, ×3,500 
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    Interestingly, there was once that the electrodeposition was run overtime. After nickel 

metal finish filling the entire channels of AAM template, it started to deposit on the 

surface of the AAM template. We can clearly see this phenomenon from Figure 2.14a 

because the sample formed two obvious layers. Especially, the top view SEM images 

showed us the interestingly ‘unique’ nanostructures (Figure 2.14b). Moreover, the Figure 

2.14b showed us that the special nanostructures were formed through layer by layer.  

( a )                                                                 ( b ) 

       
                        

Figure 2.14 SEM images of the ‘unique’ nanostructures  a) ×500 , b) ×1,500 

 

 

2.3.1.2 Electrodeposition Fabrication Using Track-Etched Polycarbonate 

Membrane as Template 

Nickel nanowire arrays were electrochemically fabricated into cylindric channels of 

commercial ion track-etched polycarbonate membranes. Figure 2.15 are the SEM images 

of Ni nanowire arrays standing on the sputtered Pd/Au alloy after dissolving 

polycarbonate membrane template using dichloromethane. Comparing to nanowires 

electrochemically synthesized using commercial AAM as template, the nanowires 

fabricated electrochemically based on track-etched polycarbonate membranes have much 
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better diameter uniformity and smooth surface. The drawback is that the nanowire 

density is low (membrane pore density around 109/cm2) and the distribution is not 

uniform, which could affect the subsequent magnetic property measurements due to the 

different interactions among vicinal individual nanowires.   

  ( a )                                                                  ( b ) 

        
                              

Figure 2.15 SEM images of Ni nanowire arrays after dissolving polycarbonate 

membrane template a) Ø=600nm, ×3,500, b) Ø=600nm, ×10,000 

 
 

2.3.2 SEM Images of Ni/Au Multisegmental Nanowires 

Ni/Au multisegmental nanowires were electrochemically synthesized into cylindric 

channels of AAM template with different pore size using dual-bath technique to avoid the 

co-deposition problem that could be caused by single-bath technique. Figure 2.17 and 

2.18 are SEM images of Ni/Au multisegmental nanowire arrays fabricated using AAMs 

as template. In all pictures, the dark segments are nickel metal and the light segments are 

gold metal. The length of the metal segments was controlled by the electrodepostion time. 

From Figures 2.17a,b,c, we can find that there are some detached gold segments, which 

was possibly caused by the centrifuge force used during the post-treatments period. 

Besides, when we move the working electrode from one electrolyte bath to another 

electrolyte bath, the electrode should be soaked and washed completely in deionic water 
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for sufficient time. Otherwise, the previous electrolyte solution would remain the inside 

of template channels, which could contaminate the next electrolyte solution and make the 

interface between the vicinal two different composition segments blur and unparallel (see 

Figure 2.18).  

( a )                                                                ( b ) 

      
( c )                                                              ( d ) 

      
( e ) 

 

Figure 2.17 SEM images of Ni/Au multisegmental nanowire arrays 

a) Ø=300nm, ×50,000, b) Ø=300nm, ×20,000, c) Ø=200nm, ×50,000, 

d) Ø=400nm, ×10,000, e) Ø=500nm, ×7,500 
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( a ) 

 

( b )                                                                    ( c ) 

                
 

Figure 2.18   SEM images of Ni/Au multisegmental nanowire arrays 

a) Ø=500nm, ×7,500, b) Ø=400nm, ×20,000, c) Ø=400nm, ×35,000 
 

 
2.3.3 SEM Observation after Modification of Multisegmental Nanowires 
 
Ni/Au multisegmental nanowires could be modified using diluted HCl solution to 

form some other interesting structures showed in Figure 2.19 because the diluted HCl 

solution only can dissolve Ni metal and keep Au metal intact. Moreover, if the sample 

was soaked in diluted HCl solution for a very short time, there only the partial nickel 

metal have been dissolved and we could get such type of nanostructures as showed in 

Figure 2.19 a, b and c. If the soak time is long enough, then the nickel segments were 

dissolved completely and just left gold segments, which could let us obtain gold 

nanodisks showed in Figure 2.19d. 
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                                ( a )                                                             ( b ) 

         
                   
                                  ( c )                                                             ( d ) 

        
 

Figure 2.19 SEM images of modified multisegmental nanowires 

a) Ø=300nm, ×15,000, b, c) Ø=400nm, ×10,000, d) Ø=300nm, ×20,000 
 

 

2.4 Conclusions 

The template-directed electrochemical deposition technique has been approved a good 

alternative approach in synthesizing metallic nanowire arrays and has been widely used 

in fabricating most metallic nanowire arrays with well-defined structure. The specific 

electrode making and electrochemical deposition procedures have been described in 

detail. Under constant electric current condition, the electric current density and 

electrodeposition time are the two controlling parameters in tailoring the nanowire 

products. The anodized alumina membrane (AAM) and ion track-etched polymer 

membrane are the most commonly used as fabrication templates. The dual-bath technique 
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was applied in synthesis of multisegmental nanowire arrays to avoid co-deposition 

problems caused by the single-bath technique. Several interesting nanostructures was 

obtained after modification of Ni/Au multisegmental nanowires using diluted HCl 

solution. The scanning electron microscopy (SEM) performed all sample characterization.  
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Chapter 3 
 

Magnetic Property Investigation of Metallic Nanowire Arrays 

 
3.1 Introduction 

     Metallic nanowire arrays synthesized by template-directed electrochemical deposition 

method have recently attracted considerable attention due to their potential applications 

in high-density magnetic recording media and tunable microwave device [35,36,68,69]. 

Vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques 

are two useful tools in investigating the magnetic properties of these metallic nanowire 

arrays. Vibrating Sample Magnetometer can allow us to easily get magnetization 

hysteresis loops at room temperature, which could provide us coercivity and remanence 

etc static magnetic properties about the tested samples. The ferromagnetic resonance 

(FMR) technique is a good tool in studying the dipolar interactions between the 

individual nanowires etc dynamic magnetic properties of metallic nanowire array system 

[72].  

 

3.2 Experimental Section 

3.2.1 Materials and Equipment 

All Chemicals, materials and equipments unless otherwise stated were the same as 

those shown in chapter 2. Magnetic measurements were performed on a Lakeshore® 

7307 Vibrating Sample Magnetometer (VSM) at room temperature. Ferromagnetic 

resonance spectra were recorded on a Bruker® EMX 102 Ferromagnetic Resonance 

(FMR) and Electron Paramagnetic Resonance (EPR) Spectrometer System using X-band 

(9.8 GHz) at room temperature.  
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3.2.2 Specimens of Ni Nanowrie Arrays and Ni/Cu Superlattice Nanowire Arrays 

The specimens for the vibrating sample magnetometer (VSM) and Ferromagnetic 

Resonance (FMR) Measurements were Ni nanowire arrays and Ni/Cu superlattice 

nanowire arrays fabricated by electrodeposition using lab-made anodized alumina 

membrane (AAM) obtained from Professor Jin-Seung Jung research group (Department 

of Chemistry, Kangnung National University, South Korea). These AAM templates had a 

nominal radius of 60nm. By controlling the different electrodeposition time, we got Ni 

nanowires arrays with different lengths of 150nm, 300nm, 600nm and 1200nm. The dual-

bath technique was employed in preparation of Ni/Cu superlattice nanowire arrays that  

contains four Ni segments of different length and three copper segments of same length 

with the structure Ni(150nm) – Cu(150nm) – Ni(300nm) – Cu(150nm) – Ni(600nm) – 

Cu(150nm) – Ni(1200nm).  

3.2.3 Vibrating Sample Magnetometer (VSM) Measurements 

 The hysteresis M(H) loops data of series of  metallic nanowire arrays were recorded 

on a Lakeshore® 7307 Vibrating Sample Magnetometer (VSM) at ambient temperature. 

A piece of nanowire array embedded in AAM or polycarbonate membrane was loaded on 

the specimen mount. The experimental data were recorded with the change of angle 

between the applied field and the nanowire axis.  

3.2.4 Ferromagnetic Resonance (FMR) Measurements 

A Bruker® EMX 10/12 Paramagnetic Resonance (EPR) Spectrometer System 

recorded the ferromagnetic resonance data of series of metallic nanowire arrays at 

ambient temperature. A piece of nanowire array embedded in AAM or polycarbonate 
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membrane was loaded on the specimen mount. The microwave absorption spectra were 

recorded using X-band (9.8 GHz) with the change of angle between the applied field and 

the nanowire axis. 

 

3.3 Results and Discussion 

3.3.1 VSM Spectra 

The hysteresis loops of Ni nanowire arrays and Ni/Cu superlattice nanowire arrays 

are showed in Figure 3.1. These hysteresis loops were obtained with the external field 

applied parallel and perpendicular to the wire axis. The VSM measurement data in Figure 

3.1 showed us that the easy axis is parallel to the nanowire axis direction, which could be 

explained from the major contribution of the shape anisotropy for nanowire arrays 

because they have large aspect ratio. Therefore, we can expect that the coercivity of the 

nanowire arrays for an external applied field parallel to the nanowire axis is larger than 

that for an applied field perpendicular to the nanowire axis. Besides, the hysteresis loops 

of Figure 3.1 also showed us that the saturation field for an external applied field parallel 

to the nanowire axis is smaller than that for an external applied field perpendicular to the 

nanowire axis, which also indicates that all nanowire arrays have obvious magnetic 

anisotropy along the nanowire axis direction. Moreover, the hysteresis loops of Ni 

nanowire arrays and Ni/Cu superlattice nanowire arrays in Figure 3.1 also shows that the 

remanent magnetization (Mr) for an external applied field parallel to the nanowire axis is 

larger than that for an external applied field perpendicular to the nanowire axis because 

the magnetic easy axis is aligned with the nanowire axis direction. Theoretically,  if the 

magnetic easy axis or the axis of anisotropy is perfectly parallel to the external applied 
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field, the remanent magnetization (Mr) should be equal to the saturation magnetization 

(Ms); and if the magnetic easy axis or the axis of anisotropy is perfectly perpendicular to 

the external applied field, then the remanent magnetization (Mr) would be close to zero. 
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Figure 3.1  The hysteresis M(H) loops data of Ni nanowire arrays and Ni/Cu 

superlattice nanowire arrays measured with external field parallel and 

perpendicular to the wire axis 

 

3.3.2 FMR Spectra 

The sequence of FMR spectra at X-band (9.8Hz) recorded as function of the angle 

between the applied external field and the nanowire axis is showed in Figure 3.2. The 

sequence of FMR spectra of all single Ni nanowire arrays with different lengths (Figure 

3.2 a, b, c, and d) showed us that the resonance field of the absorption peak increased by 

changing the angle between the applied external field and the nanowire axis from parallel 

( 0°) to perpendicular (90°) because the wire axis is the effective magnetic easy axis. 
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However, the sequence of FMR spectra of Ni/Cu superlattice nanowire arrays in Figure 

3.2e didn’t show the same phenomenon as the single Ni nanowire arrays. When the 

applied external field parallel ( 0°) to the superlattice nanowire axis, the resonance field 

of the absorption peak is larger than that for the angle of 30°and 45°, but smaller than that 

for the angle of 60°and perpendicular (90°).  
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Figure 3.2  FMR spectra for a series of specimens of Ni nanowire arrays with 

different lengths ( a , b , c , d) and Ni/Cu superlattice nanowire arrays ( e ); The 

sequence of FMR spectra at X-band (9.8Hz) were recorded as function of the angle 

between the applied external field and the nanowire axis 

 
 

     Figure 3.3 and Figure 3.4 are the FMR spectra of a series of Ni nanowire arrays of 

different lengths ranging from 150nm to 1200nm, which was recorded when the applied 

external field is parallel and perpendicular to the nanowire axis respectively. In those 

FMR spectra, only the sample with length of 600nm showed us a double of its spectra 

recorded when the applied external field is parallel to the nanowire axis, and all other 

sample with different length only have single absorption peak. Besides, the resonant field 

of absorption peak could be changed by changing the nanowire resulting in the varying of 

the aspect ratio, which showed us that these nanowire array samples’ effective 
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demagnetizing factor can be turned by changing the nanowire aspect ratio. Besides, for 

the sample with same aspect ratio, the resonant field values of spectra for the applied 

external field parallel to the nanowire axis is smaller than those for the applied external 

field perpendicular to the nanowire axis, which is contributed from the effect of shape 

anisotropy. 
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Figure 3.3 FMR spectra for a series of Ni nanowire arrays of different lengths 

were recorded when the applied external field is parallel to the nanowire axis 
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Figure 3.4   FMR spectra for a series of Ni nanowire arrays of different lengths were 

recorded when the applied external field is perpendicular to the nanowire axis 
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3.4 Conclusions 
 

Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR) were 

utilized to characterize the magnetic behaviors of Ni nanowire arrays of different lengths 

and Ni/Cu superlattice nanowire arrays. The VSM data exhibited that the magnetic easy 

axis of samples is parallel to the nanowire axis direction and the nanowire arrays have 

obvious shape anisotropy. The FMR spectra indicated that the resonant field value is 

angular and aspect ratio dependence.  
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