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ABSTRACT

 
In this thesis, a new synthetic methodology for the high yield synthesis of spinel-

type transition metal ferrite nanoparticles has been developed. This approach is based on 

the complexation of the first-row transition metal cations with diethylene glycol (DEG) 

followed by the hydrolysis of the resulting chelate iron alkoxide complexes in the 

presence of an alkaline hydroxide. Due to the passivation of their surfaces with DEG 

molecules, the as-prepared nanoparticles are stable against agglomeration and can be 

easily dispersed in polar protic solvents (water, alcohols, etc.). Alternatively, a post-

synthesis passivation with carboxylate ions can render the iron oxide nanocrystals highly 

dispersible in non-polar solvents. Optimization of the reaction conditions suggested that 

the size of the nanocrystals could be controlled by changing the complexing strength of 

the reaction medium. This hypothesis was verified in the case of the Fe3O4 nanoparticles: 

their sizes vary from 5.7 nm when the reaction is performed in neat diethylene glycol to 

16.8 nm in N-methyl diethanolamine (NMDEA), whereas a 1:1 (%wt) mixture of these 

solvents yields nanocrystals with an average size of and 12.7 nm. A detailed 

characterization by using a wide variety of techniques, including powder X-Ray 

diffraction, IR spectroscopy, thermogravimetric analysis (TGA), transmission electron 

microscopy (TEM) and 1H-NMR spectrometry was performed in order to elucidate the 

composition and the morphology of the variable-sized iron oxide nanoparticles. Both 

finite size and interparticle interaction effects were identified to influence the magnetic 

behavior of the oleate-capped nanosized particles. At low temperatures the Fe3O4 

nanocrystals exhibit a ferromagnetic behavior with blocking temperatures which increase 

with the average particle size, whereas at room temperature, except for the largest 

nanoparticles, they undergo a superparamagnetic relaxation. We exploited the high 

surface reactivity of the 10 nm Fe3O4 nanoparticles to attach 2-3 nm gold grains to their 

surfaces through a simple, two-step chemically controlled procedure. By chemically 

bonding bioactive molecules to the attached Au nanoparticles these novel nano-

architectures open up new opportunities for the implementation of the magnetic 

nanoparticles as a platform for various applications in the biomedical field.
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CHAPTER 1 

 

Introduction 

1.1. Preface 

Spinel-type iron oxides have been long used in various practical applications due to 

their natural occurrence and spontaneous magnetism. The attractive properties of the 

lodestone, a naturally-occurring Fe3O4 mineral, were first exploited in the ancient China 

(circa 1100 A.D) for the design of the magnetic compass1; a simple device which was 

used for many centuries in navigation and the discovery of new continents. Since then, 

the spinel-type iron oxides identified themselves as one of the most important families of 

technological materials for the mankind. Ferrites have always been a part of the human 

life, being traditionally used as pigments, catalysts or permanent magnets. Thus, it is not 

surprising that their technological importance increased continuously as many discoveries 

required the use of magnetic materials. However, the scientific and technological 

potential of ferrites was not completely unfolded since when they were introduced in the 

late 50’s in  the design of transformers and the non-reciprocal circuit elements.2 Later, the 

ferrofluid technology introduced by NASA exploited the ability of the colloidal 

suspensions of micron-sized ferrite particles to combine the rheological proprieties of the 

liquids with the magnetism of the crystalline bulk ferrite materials for various 

applications such as sealing, position sensing as well as the design of actuators.  

As such a tremendous technological progress in electronics was inevitably 

accompanied by the development of computing, transportation and non-volatile data 
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storage technologies, miniaturization of the electronic devices became critical, thereby 

leading to the reduction of the size of the magnetic materials to dimensions comparable to 

those of the atoms and molecules. At this point, nanoscale ferrites have found enormous 

potential applications in medicine and life sciences, since it is well known that many 

living organisms, from bacteria to vertebrates incorporate magnetic crystals. As an 

example, magnetite crystals were found in magnetosomes3, whereas trace amounts of 

magnetite nanoparticles have been identified in the brain of fishes4 and birds5-6. 

Magnetite crystals found in animals usually range from 40 to 100 nm and serve for 

navigation and their orientation with respect to the geomagnetic field. Due to very low 

toxicity and possesses high stability in physiological fluids and easy manipulation with a 

magnetic field, magnetite particles conjugated with biomolecules are the ideal candidates 

for the development of new strategies in the detection, diagnosis and treatment of various 

diseases. With all these exciting new biomedical applications to be developed in the next 

decade, the synthesis of ferrite nanoparticles with controllable dimensionality and 

tailorable magnetic properties, their functionalization with biomolecules along with the 

understanding of the structure-proprieties correlations have become of topics of 

fundamental scientific importance. 

In this chapter we examine the structure of the spinel-type ferrites and the correlation 

with their magnetic properties. Additionally, we provide a comprehensive overview of 

the most important synthetic approaches, both physical and chemical, used in the 

preparation of nanocrystalline transition-metal ferrites. 
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1.2. The Spinel Structure of Ferrites 

 
                       Ferrites are mixed oxides with general formula AB2O4, where A is a metal 

ion with +2 valence and B is the Fe+3 ion. They have a spinel-type structure similar to 

that of the mineral “spinel”, MgAl2O4. In a typical spinel lattice, the voluminous oxide 

ions (rO
2-=124 pm)6 adopt a cubic close-packed arrangement, thereby forming two 

different types of sites, i.e., tetrahedral (A) and octahedral (B). The interstitial sites are 

schematically represented in Figures 1.1(a) and 1.1(b).7  

               Spinel compounds possess a cubic unit cell which can be regarded as built of eight      

smaller cubes called octants or formula units (Figure 2a), corresponding to the formula of 

“A8B16O32
”. Accordingly, the spinel unit cell contains 32 oxide ions, 64 tetrahedral sites 

and 32 octahedral sites. In order to achieve a charge balance of the ions, the interstitial 

voids will be only partially occupied by positive ions. Therefore, in stoichiometric 

spinels, only one-eighth of the tetrahedral sites and one-half of the octahedral sites are 

occupied by metal ions. There are two types of octants which alternate in the unit cell of a 

spinel crystal (Figure 1.2b). The A2+ ions are located at the centers of the A-type octants 

and are tetrahedrally coordinated by four oxide ions occupying half the corners of these 

small cubes. In addition, the A2+ ions lie at the corners and the face centers of the spinel 

unit cell. The B-type octants contain the B3+ ions in the octahedral interstitial sites so that 

half the corners are occupied by the trivalent metal ions and the other half by the oxide 

ions.7, 8  

                        Depending on the cation distribution over the different crystallographic sites, the 

spinel compounds can be generally classified into two categories: normal and inverse 

spinels. Normal spinels have the general formula At(B2)oO4 and contain all the trivalent 
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Figure 1.1 A tetrahedral site (a) and an octahedral site (b); the 
solid red spheres represent the oxide ions (O2-), whereas the 
green and black spheres correspond to the divalent (A2+) and 

trivalent (B3+) cations. 
 

 

 

Figure 1.2. The cubic unit cell of spinels (a); the A-type octants alternating with 
the B-type octants in the spinel unit cell (b)7-8 

 

 

 

 



 5

metal ions (B3+) in the octahedral sites (o), whereas all the divalent metal ions (A2+) 

reside in the tetrahedral sites (t). Transition metal ferrites, such as ZnFe2O4 and CdFe2O4, 

assume the normal spinel structure. This structure is also adopted by some oxides 

containing Al3+ (MAl2O4, M2+= Mg2+, Fe2+, Co2+, Zn2+), Co3+ (MCo2O4, M2+= Zn2+, 

Co2+), Cr3+  (MCr2O4, M2+= Mg2+, Mn2+, Ni2+, Fe2+, Co2+, Cu2+, Zn2+), and Mn3+ 

(MMn2O4, M2+= Mg2+, Mn2+, Co2+, Cu2+, Zn2+) as trivalent metal ions. Additionally, a 

large number of sulphides, selenides, and tellurides possess the normal spinel structure. 

In the inverse spinels, the divalent cations (A2+) and half of the trivalent cations (B3+) 

occupy the octahedral sites, whereas the other half of the B3+ metal ions lie in the 

tetrahedral sites. Most of the first series transition metal ferrites, such as NiFe2O4, 

CoFe2O4, Fe3O4, and CuFe2O4, are inverse spinels; their site occupancy can be described 

by the general formula Bt(AB)oO4. Some other spinel compounds posses the divalent and 

the trivalent metal ions randomly distributed over both the tetrahedral and the octahedral 

interstices. These compounds are named mixed spinels and their composition is best 

represented by the general formula (A1-γBγ)t(AγB2-γ)oO4, where the inversion parameter, γ, 

denotes the fraction of the trivalent cations (B3+) residing in the tetrahedral sites. Mixed 

spinels occur in a wide range of compositions and are usually considered as intermediate 

compounds between the two extreme cases, i.e., normal and inverse spinels. 

Representative ferrites adopting the mixed spinel structure include MgFe2O4 and 

MnFe2O4. Since magnesium ferrite contains 10% of the Mg2+ ions in the tetrahedral 

interstices and 90% in the octahedral interstices, according to the above mentioned 

formula, the cation distribution can be described as (Mg0.1Fe0.9)t(Mg0.9Fe1.1)oO4. 

Manganese ferrite, with 80% of the Mn2+ ions occupying the tetrahedral holes and 20% 
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occupying the octahedral holes, can be written as (Mn0.8Fe0.2)t(Mn0.2Fe1.8)oO4. Therefore, 

the inversion parameter is 0.9 for MgFe2O4 and 0.2 for MnFe2O4. Usually, γ varies 

between 0 (for normal spinel compounds) and 1 (for inverse spinels); the inversion 

parameter can also take intermediate values (0<γ<1) and the corresponding ferrites adopt 

a mixed spinel structure characterized by a random occupancy of the tetrahedral and 

octahedral sites by the divalent (A2+) and trivalent (B3+) cations7, 9. 

              The problem of site occupancy in spinels is not a trivial one since most of their 

properties are strongly dependent on the cation distribution. Several factors, both 

structural and experimental, have been identified in determining the coordination 

preference of the two metal ions, A2+ and B3+, in spinel crystals8. One of them refers to 

the relative sizes of the divalent and trivalent cations. According to Shannon and Prewitt 

set of ionic radii determined from X-ray diffraction measurements (based on rO
2-, oct.=126 

pm), the divalent metal ions encountered in 2,3 oxide spinels have octahedral radii 

ranging from 83 pm to 97 pm.6 It was experimentally observed that the ionic radii vary 

with coordination number. For example, the radius of Mg2+ ion changes from 86 pm 

(when octahedrally coordinated) to 71 pm (for tetrahedral coordination). This is a 

consequence of the fact that ions are elastic and their outer sphere, characterized by a 

lower electron density, can be deformed with a certain extent depending on the 

coordination number and the nature of the surrounding anions.7  The trivalent metal ions 

usually found in 2, 3 oxide spinels are Al3+, Cr3+, Co3+, Mn3+, and Fe3+ and their radii 

vary between 68 pm and 81 pm.6 Since the cations bearing a higher positive charge are 

smaller than those with a lower charge, it is expected that the trivalent cations (B3+) will 

occupy the smaller interstitials sites, i.e., the tetrahedral sites, leaving the larger 
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octahedral sites available for the divalent cations (A2+). This is not the case of normal 

spinels like MgAl2O4 where the larger Mg2+ ions (86 pm/71 pm, roct./rtet.) lie in the 

smaller tetrahedral sites, whereas the smaller Al3+ ions (67.5 pm/53 pm, roct./rtet.) occupy 

the larger octahedral sites. Similarly, other bulk materials, such as ZnFe2O4 and CdFe2O4, 

contain in their tetrahedral holes the larger, nonmagnetic Zn2+ (88 pm/71 pm, roct./rtet.) and 

Cd2+ (109 pm/92 pm, roct./rtet.) ions, whereas the octahedral holes are occupied by the 

smaller Fe3+ ions (78.5 pm/63 pm, roct.(HS)/rtet.). 

           The ratio of the cation to anion radius (rcation/ranion), known as the Pauling’s radius 

ratio rule, can also be used as a tool to predict the coordination preference of the metal 

ions in ionic crystals. However, the radius ratio rule was applied successfully only for a 

limited number of the investigated compounds. According to this rule, the metal ions will 

occupy preferentially the tetrahedral sites if the calculated radius ratios fall within the 

range 0.225-0.414. If the ratios of the ionic radii vary between 0.414 and 0.732, the 

cation will have preference for octahedral sites. Coordination numbers of eight are 

predicted for metal ions when the ratios take values between 0.732 and 1.00.7, 9 In 2, 3 

oxide spinels, each oxide ion (O2-) is surrounded by four ions of opposite charge. For 

example, in MgAl2O4 each oxide ion has a four-fold coordination being surrounded by 

three trivalent cations (Al3+) and one divalent cation (Mg2+). Therefore, calculation of the 

radius ratio (rcation/ranion) is performed using the value of 124 pm (given by Shannon and 

Prewitt) for the radius of tetrahedrally coordinated oxide ion. For metal ions, both the 

tetrahedral and the octahedral radii are taken into account in determining the radius ratio 

and hence the crystallographic site preference. For Mg2+ ion, the calculated radius ratios 

are 0.573 (rMg
2+

, tet./rO
2-; rMg

2+
, tet.= 71 pm) and 0.694 (rMg

2+
, oct./rO

2-; rMg
2+

, oct.= 86 pm), 
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respectively. Since the obtained values fall within the range 0.414-0.732, according to the 

radius ratio rule, it is expected that the Mg2+ ions will occupy the octahedral sites inside 

the spinel crystal. The radius ratios of the Al3+ ion with O2- ion are 0.427 (rAl
3+

, tet./rO
2-; 

rAl
3+

, tet.= 53 pm) and 0.544 (rAl
3+

, oct./rO
2-; rAl

3+
, oct.= 67.5pm), respectively. These values 

are lower than those obtained for the Mg2+ ion and they approach the borderline (0.414) 

between the two types of coordination. Therefore, the Al3+ ions might occupy both the 

tetrahedral and octahedral voids. Using the Pauling’s ionic radii, the ratio of the radii for 

Mg2+ ion (65 pm) and O2- ion (140 pm) was found to be 0.464. Regardless of the set of 

radii used, the calculated radius ratios for the Mg2+ ions clearly show their preference for 

octahedral sites. With Mg2+ ions in the octahedral sites and Al3+ ions distributed over both 

the tetrahedral and the octahedral sites, MgAl2O4 would adopt an inverse spinel structure. 

These results are not consistent with the real structure of the natural MgAl2O4 which is a 

normal spinel.  

          Similar results were obtained for ZnFe2O4. The ratios of the cation (Zn2+) to anion 

(O2-) are 0.597 (rZn
2+

, tet./rO
2-; rZn

2+
, tet.= 74 pm ) and 0.710 (rZn

2+
, oct./rO

2-; rZn
2+

, oct.= 88 pm ), 

respectively. These values fit into the range from 0.414 to 0.732 showing the ability of 

the Zn2+ ion to accommodate six oxide ions as its closest neighbors. The radius ratio rule 

predicts an inverse spinel structure for ZnFe2O4. Indeed, the bulk material is an inverse 

spinel at very low temperatures, but transforms into a normal spinel at room temperature.           

           Another important parameter to be taken into account in examining the 

coordination preference of the cations in 2,3 oxide spinels is the crystal field stabilization 

energy (CFSE).9 The calculated values of the crystal field stabilization energy of the 

divalent cations (A2+) in 2,3 oxide spinels are systematically found to be higher for 
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octahedral sites than for the tetrahedral ones.10 These values indicate a strong preference 

of the divalent cations for octahedral interstices, thereby confirming the inverse spinel 

type-structure observed in some compounds such as Fe3O4, NiFe2O4, CoFe2O4, and 

CuFe2O4. The Fe3+ (d5) ions have no contribution in determining the type of spinel 

structure since their crystal field stabilization energy is zero regardless of the 

coordination environment. Therefore, the smaller Fe3+ ions (78.5 pm/63 pm, roct.(HS)/rtet.) 

show no preference for a particular crystallographic site; they will be equally shared 

between the tetrahedral and the octahedral sites, leaving the other half of the octahedral 

interstices available for larger cations such as Fe2+ (92 pm, 0.4Δ0), Co2+ (88.5 pm, 0.8Δ0), 

Ni2+ (83 pm, 1.2Δ0), and Cu2+ (87 pm, 0.6Δ0). 

          In addition to the crystal field stabilization energy (CFSE), the lattice energy was 

found to have close connection with the cation distribution in oxide spinels. The lattice 

energy characterizes the stability of an ionic crystal and is usually described as a sum of 

three energetic terms: electrostatic, non-Coulombian, and vibrational.11 Since the 

electrostatic term, expressed as 
a

MNeU E
0

2

4πε
=  (where M stands for the Madelung constant 

and a is the lattice parameter), has the biggest contribution to the lattice energy, it results 

that the Madelung constant will play an important role on the energetics of the ionic 

crystals. In general, a larger value of the Madelung constant implies a larger value of the 

lattice energy and, therefore, a greater stability of the crystal structure. Several 

approaches were proposed for the calculation of the Madelung constant in oxide spinels. 

For example, Thompson et al. described the Madelung constant as the contribution of the 

average cationic (from both tetrahedral (Qt) and octahedral (Qo) sites) and anionic (Qan) 
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charges, respectively: antananottoo QQQQQQQQQM 6
2

54
2

32
2

1 αααααα +++++= , where αi 

(i=1, 2, 3) are constants, whereas αi (i=4, 5, 6) represent quadratic functions of the 

crystallographic oxygen parameter u.12 This parameter refers to the position of the oxide 

ions in the spinel lattice and can be accurately determined by structure refinement of the  

laboratory diffraction data. The dependency of the Madelung constant on the oxygen 

parameter u in simple oxide spinels was investigated by O’Neill and Navrotsky.11 By 

plotting the values of the Madelung constant as a function of the oxygen parameter, they 

observed that M increases for normal 2,3 oxide spinels, whereas for normal 4,2 oxide 

spinels M decreases as u increases (Figure 1.3). The Madelung constant for inverse 2, 3 

and 4,2 oxide spinels follows an opposite trend as compared to the normal spinel 

structures. For each type of oxide spinels, the curves corresponding to the normal and 

inverse structures intersect at a certain value of u, where the energetics of the crystal 

impose a change in the cation arrangement. Therefore, at a value of u=0.2555 the 

structure of 2,3 oxide spinels changes from inverse to normal, whereas for 4,2 oxide 

spinels the structure changes from normal to inverse at u=0.2625. These results are in 

good agreement with the classification of oxide spinels proposed by Hill et al. who 

describe Fe3O4 as an inverse spinel with a value of the oxygen parameter equal to 0.2548 

and ZnFe2O4 as a normal spinel with a calculated u value of 0.2615.13  

           The structural parameters previously mentioned are not the only ones affecting the 

cation distribution in bulk 2,3 oxide spinels. Other factors which influence significantly 

the site occupancy in these compounds include the preparation method and the thermal 

history of the sample. Along with the particle size, these two parameters were also found 

to affect the site occupancy in nanostructured ferrites.  
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Figure 1.3 Oxygen parameter (u) dependence of the Madelung constant (M) for 2,3 
and 4,2 oxide spinels [Ref.11]. 
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A common feature of the ferrite nanomaterials is that they usually adopt a mixed spinel 

structure, (A1-γFeγ)t(AγFe2-γ)oO4, characterized by the presence of divalent (A2+) and 

trivalent (Fe3+) cations in both crystallographic sites. In general, the inversion parameter 

(γ) of a given nanostructured ferrite is quite different from that of the bulk counterpart 

and varies with the preparation method. Ho et al. reported the preparation of 14nm-sized 

ZnFe2O4 particles by an aerogel or supercritical sol-gel method. The resulting 

nanocrystals have a mixed spinel structure with an inversion parameter of 0.205. If the 

as-prepared ZnFe2O4 nanopowders are subjected to a ball milling process, their size 

increases to about 40 nm, leading also to an increase of the inversion parameter to 0.55.14   

A lower value of the inversion parameter (γ=0.07) was reported for ZnFe2O4 

nanoparticles produced by the ball milling (mechanosynthesis) process using ZnO and α-

Fe2O3 as precursor materials. Ball milling followed by annealing (air, 1h) at temperatures 

up to 300° C led to an increase of the particle size from 30.6 nm to 50.6 nm. The 

coarsening process undergone by the as-prepared nanostructured material is accompanied 

by the variation of the inversion parameter from 0.07 to 0.163.15 Kamiyama et al. 

examined the cation distribution in nanosized ZnFe2O4 particles obtained by 

coprecipitation method and observed that the inversion parameter decreases as the 

particle size increases. Variable-sized ZnFe2O4 nanoparticles were obtained by annealing 

(air, 1h) of the as-prepared nanopowders at 500° C and 700° C, respectively. Structure 

refinement of the neutron diffraction data revealed that the smaller particles (26 nm) have 

an inversion parameter of 0.142, whereas for the larger ones (96nm) the inversion 

parameter is 0.108.16 
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            However, the variation of the inversion parameter with particle size does not 

always follow the same trend. Both the increase and the decrease of the inversion 

parameter with particle size have been reported in the literature. When ferrite 

nanopowders undergo post-synthesis heat treatments the particle size increases. This 

process is accompanied by the diffusion of the divalent and trivalent cations between the 

A and B sites leading to a change in the inversion parameter as compared to the as-

prepared material. Such a change in the cation distribution presumably depends on 

several factors including the annealing temperature, the heating rate as well as rate at 

which the annealed sample is cooled down to room temperature.9  

         Particle size dependence of the inversion parameter was also reported for ZnFe2O4 

particles obtained by forced hydrolysis in polyol medium. Differently sized ZnFe2O4 

particles with mixed spinel structure were obtained by changing both the molar ratio 

water to metal (h) and the nature of the polyol. Interestingly, the variation of the reaction 

parameters caused a change not only in the particle size, but also in the cation 

distribution. Thus, the inversion parameter was found to decrease from 0.25 to 0.15 as the 

particles increases from 6.6nm (polyethylene glycol, h=6.7) to14.4 nm (diethylene glycol, 

h=0.7).17  

       

1.3. Synthesis of the Nanocrystalline Ferrites  

 

              Bulk ferrites have been traditionally prepared by solid state reactions consisting 

in a succession of heat treatments/intermediate regrindings of stoichiometric mixtures of 

powdered precursors. Although this conventional “shake and bake” route is cheap and 

easily scalable, the slow rate of diffusional processes necessitates prolonged annealings at 
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relatively high temperatures resulting in a very limited control over the morphology of 

the reaction products. 

            Translation of the dimensions of ferrites to the nanometer scale can be achieved 

through a wide variety of methods, both physical and chemical. The physical methods are 

“top-down” strategies in which high purity powders of bulk precursor materials are 

transformed into nanocrystalline ferrites by a mechanical, mechano-chemical or laser-

assisted process. Although they are simple, inexpensive and easily scalable, physical 

methods present limited control over the morphology and/or chemical composition of the 

final products. Conversely, solution-based chemical methods are “bottom-up” approaches 

where nanoparticles are produced via chemical reactions between sub-nanometer reactive 

species, such as atoms or molecules. Depending on the nature of the solvent used, 

solution-based chemical methods are classified into two main categories: aqueous 

solution-based techniques and non-aqueous techniques.             

 

1.3.1. Preparation of Nanostructured Ferrites by Physical Methods  

 

            Physical methods employing the high-energy ball milling technique are 

widespread used in the preparation of nanostructured ferrite materials. These methods can 

be generally classified into three categories: mechanical activation, mechano-chemical 

synthesis (mechanosynthesis) and mechanical alloying.  

            Mechanical activation refers to the grinding of bulk ferrite material in planetary 

ball mills until the grain size reaches the nanometer scale. The bulk ferrites used as 

precursor materials in the ball-milling process were obtained by a conventional thermal 

(ceramic) method from mixtures of a divalent metal oxide (MO, M2+=Mg2+, Mn2+, Ni2+, 
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Zn2+) and α-Fe2O3. In order to obtain ferrite materials with nanocrystalline structure, the 

mechanical milling experiments were performed in air for all ferrites investigated (Table 

1A), except for MnFe2O4, which was ball-milled under argon atmosphere. Kedesdy et al. 

showed that MnFe2O4 reacts with O2 in the air at temperatures around 300ºC with the 

formation of the corresponding trivalent metal oxide: 18  

                                        3232242 2
2
12 OMnOFeOOMnFe +→+  

Indeed, X-ray diffraction measurements used to investigate the phase purity of the 

obtained ferrite nanopowders confirmed the formation of more than one phase when the 

ball milling of MnFe2O4 is carried out in air.19 For the other ferrites (ZnFe2O4, NiFe2O4, 

MgFe2O4) mechanical milled in air, the reflections in X-ray diffractograms can all be 

assigned to a cubic spinel structure.  

           In general, one of the shortcomings of the physical methods is related to the 

limited number of parameters which can be varied in order to achieve a better control 

over the morphology of the resulting nanopowders. In the mechanical activation process, 

the average grain size of the ferrite powders could be tuned by varying the milling time. 

Chinnasamy et al. showed that the average grain size of the NiFe2O4 powders, 

determined from X-ray diffraction measurements, decreases from 60 nm to 10 nm as the 

milling time increases from 1 h to 30 h.20 Mahmoud et al. observed a similar behavior for 

MnFe2O4 powders prepared by mechanical activation. Increasing the milling time from 

10 min to 3 h decreased the particle size from 200 nm to 82 nm. A close examination of 

the TEM micrograph revealed a relatively small number of individual, roughly sherical 

 

 



 16

Table 1.1. Survey of Nanostructured Ferrites Prepared by Physical Methods 
A) Mechanical Activation (Ceramic method/ Ball Milling Bulk Material) 

 
Ferrite 

(MFe2O4) 
Starting/Precursor 

Material 
Conditions Size (nm) 

TEM/XRD 
Ref. 

 
MnFe2O4 

 
a) MnO, α-Fe2O3 

 
b) Bulk MnFe2O4 

 
 

 
a) ceramic: air, 900°C (12h), 

1150°C (20h) 
b) ball milling: Ar, 10’, 30’, 

120’, 180’ 
 

 
200 (10’) 
120 (30’) 
90 (120’) 
82 (180’) 

 

 
19 

ZnFe2O4 a) ZnO, α-Fe2O3 

 
b) Bulk ZnFe2O4 

 

a) ceramic 
 

b) ball milling: air, 5’, 12’, 24’ 
 

- 23 

MgFe2O4 a) MgO, α-Fe2O3 

 
b) Bulk MgFe2O4 

a) ceramic: 1200K (24h), 
1300K (24h) 

b) ball milling: air, 750rpm 
15’, 30’ 

 

- 21, 22 

NiFe2O4 
 
 

a) NiO, α-Fe2O3 

 
b) Bulk NiFe2O4 

a) ceramic 
 

b) ball milling: air, 1h, 6h, 
20h, 30h 

60 (1h) 
40 (6h) 
15 (20h) 
10 (30h) 

20 

 

B) Mechano-Chemical Synthesis (Ball Milling Precursor and/or Heat Treatment) 

Ferrite 
(MFe2O4) 

Starting/Precursor 
Material 

Conditions Size (nm) 
(XRD) 

Ref. 

 
CoFe2O4 

 
a) Co(NO3)2·6H2O 

Fe(NO3)3·9H2O 
Na2CO3 

 
b) CoFe2(OH)4(CO3)2 ·nH2O 

 

 
a) coprecipitation: pH=9, 
ultrasonication (1h, RT) 

 
 

b) ball milling: 5h, 10h, 15h 
 

 
5.1 (5h), 
8.6 (10h), 
12.2 (15h) 

 
31 

ZnFe2O4 a) ZnO, α-Fe2O3 
 

b) nanosized ZnFe2O4 
 

a) ball milling: 1320h, 
acetone 

b) annealing: air, 1h, 300°C 
 

a) 36.6 
 

b) 50.6 

15 

NiFe2O4 
 
 
 

a) NiO, α-Fe2O3 

 
b) nanosized NiFe2O4 

a) ball milling: air, 10h, 35h, 
50h 

b) annealing: air, 1h, 1100°C 

6 (50h) 30 
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Table 1.1. Survey of Nanostructured Ferrites Prepared by Physical Methods 
C)  Mechanical Alloying (Ball milling Precursor and/or Heat Treatment) 

Metal 
ferrite 

Starting/Precursor 
Material 

Conditions Size (nm) 
(XRD) 

Ref. 

 
NiFe2O4 

 

 
a) FeCl3, NiCl2, NaOH, 

NaCl 
b) Fe(OH)3, Ni(OH)2 

 
a) coprecipitation: RT 

 
b) ball milling: 30h (200pm), 

30h, 33h (300rpm) 
 

 
10 

 
32 

Co0.5Fe2.5O4 Co3O4, Fe3O4 a) ball milling: Ar, 30h 

b) annealing: 
-vacuum (750°C, 0.5h) 

- in air (200°C, 2h) 
- magnetic (He, 30kOe, 1h 

300°) 
 

25 33 

Co0.8Fe2.2O4 
 

Co3O4, Fe3O4 a) ball milling: air, 24h 

b) annealing: 
- in air (500-1000°C, 1h) 
- magnetic (30kOe, 2h, 

300°C) 

30 (750°C) 

50 (1000°C) 

34 
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nanoparticles as well as a large number of aggregates. The aggregated appearance of the 

MnFe2O4 nanoparticles made difficult the accurate determination of the average particle 

size from electron microscopy measurements.19      

           The high-energy ball milling process induces the diffusion of the divalent (M2+) 

and trivalent (Fe3+) metal ions between the two sublattices of the spinel structure, which 

results in a change of the inversion parameter, γ, of the obtained nanopowders as 

compared with the bulk material. It was also observed that the inversion parameter varies 

differently with the particle size depending on the type of spinel structure adopted by the 

bulk ferrites. For instance, the inversion parameter of the mixed spinel MnFe2O4 

increases from 0.23 (corresponding to the bulk material) to 0.45 (for 82 nm-sized 

particles).19 In the case of bulk NiFe2O4 which adopts an inverse spinel structure, the 

reduction of the grain size during the mechanical milling process is accompanied by a 

decrease of the inversion parameter from 1 (for the bulk material) to 0.94 (for 10 nm-

sized particles).20 A similar behavior was reported by Šepelák et al. for mixed spinel 

MgFe2O4. While the bulk, nonactivated material had an inversion parameter of 0.904, the 

nanopowders obtained after mechanical activation (approximately 10nm in size) were 

characterized by a γ value of 0.756.21,22 As compared to the other ferrites presented in 

Table 1A, bulk ZnFe2O4 underwent a significant alteration of the cation distribution 

during the ball milling process. The Mössbauer measurements revealed a strong increase 

of the inversion parameter, γ from 0 (for the bulk ZnFe2O4) to 0.94 (for the ferrite 

nanopowders obtained after mechanical milling). Therefore, as the grain size is reduced, 

the normal spinel structure of the bulk ZnFe2O4 transforms into a mixed spinel phase 

characterized by a large occupancy of the tetrahedral interstices by the smaller Fe3+ ions. 
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It was observed that the change in the spinel-type lattice is accompanied by shrinkage of 

the ferrite unit cell. Using the X-ray diffraction measurements to determine the unit cell 

size of ZnFe2O4 before and after ball milling, Šepelák et al. noted that the lattice 

parameter, a, decreased from 0.84432 nm to 0.84136 nm as the fraction of the Fe3+ ions 

residing in the tetrahedral interstices increases.23 A similar relationship between the site 

occupancy in ferrites and the lattice parameter was reported by Mozzi and Palladino for 

nonstoichiometric magnesium ferrite with formula Mg1.06Fe0.94O3.97. The authors 

observed that the lattice parameter decreased from 8.398 Å to 8.385 Å with decreasing 

the fraction of larger divalent metal ions (Mg2+) in the tetrahedral interstices.24  

             By studying the influence of temperature on the cation distribution in nanosized 

Mn-Fe ferrite, Zhang et al. also noted a dependence of the lattice parameter on the site 

occupancy in these compounds. 40 nm-sized Mn-Fe ferrite powders obtained by a 

coprecipitation method were subjected to a post-synthesis heat treatment at temperatures 

ranging from 25 to 485ºC. For the annealed samples including that obtained after cooling 

back to room temperature, the electron microscopy measurements showed no significant 

changes in the nanoparticle morphology. Investigation of the cation distribution in these 

samples by neutron diffraction followed by Rietveld refinement revealed a decrease of 

the inversion parameter from 0.61 to 0.39 as the nanopowders were annealed from room 

temperature to 363ºC. No meaningful changes in the cation distribution (γ=0.38) 

occurred when the Mn-Fe ferrite sample was further heated to 485ºC. This indicated that 

the nanoparticulate Mn-Fe ferrite system attained an equilibrium state which was 

maintained even after cooling the powdered sample back to room temperature. The 

authors attributed the slight decrease of the inversion parameter (from 0.38 to 0.29) 
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during the cooling process to the errors associated with the refinement of the 

experimental data using the Rietveld method. The change in the site occupancy during 

the heat treatment was accompanied by a small variation of the lattice parameter. X-ray 

diffraction measurements indicated an increase of the lattice parameter from 8.4811(3)Å 

to 8.4884(2)Å as the inversion parameter decreased from 0.61 

(Mn0.39Fe0.61(Mn0.82Fe1.18)O4) to 0.29 (Mn0.71Fe0.29(Mn0.39Fe1.50)O4). The slight variation 

of the lattice parameter during the post-synthesis heat treatment was explained by taking 

into account the iron (III)-oxygen bond length as well as the oxidation state of the 

manganese in the Mn-Fe ferrite nanopowders. The iron (III)-oxygen bond length in 

ferrite spinels is a function of cation coordination environment, i.e., tetrahedral or 

octahedral. Since this bond is shorter when the trivalent cation is tetrahedrally 

coordinated, a larger occupancy of the tetrahedral interstices by the Fe3+ (a larger γ value) 

can result in a slight shrinkage of the unit cell. The evolution of the oxidation state of 

manganese during the thermal treatment in vacuum is consistent with the observed 

variation of the lattice parameter. As determined from the electron energy loss 

spectroscopy (EELS) measurements, the mixture of the Mn2+ and Mn3+ ions contained in 

the as-prepared ferrite nanopowder  is gradually transformed into Mn2+ ions. Such a 

reductive process compensates for the loss of negative charges associated with the 

decrease in the oxygen content of the ferrite nanopowders when subjected to the heat 

treatment in vacuum. Both the small fraction of the Fe3+ ions residing in the tetrahedral 

interstices and the presence of the Mn2+ ions (rMn
2+

, tet.> rMn
3+

, tet.) explained the larger 

value of the lattice constant of the annealed sample compared to the as-prepared ferrite 

nanopowders.25 
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                 In addition to the morphological changes, the structural modifications undergone 

by the bulk ferrites during mechanical activation process were found to have a significant 

effect on the magnetic properties of the resulting nanostructured ferrites. The 

mechanically activated ferrite nanopowders have been the subject of intense studies 

aiming at understanding the relationship between the crystal structure of nanosized 

ferrites and the observed magnetic properties. The slight contraction of the unit cell 

observed in some of the mechanically activated ferrites causes distortions of the cation 

(B)-anion-cation(B) bond angle, which in turn affect the strength of the interaction 

between the magnetic ions occupying the octahedral (B) interstices. 

             Defined as the process by which the spins of two neighboring metal ions interact 

through an intermediate O2- ion, the exchange interaction depends on both the distance 

between cations and the cation-anion-cation bond angle.7, 9, 26 The bond angle dependence 

of the exchange interaction was confirmed by Šepelák and coworkers who reported a 

change in the Fe3+ (B)-O2-- Fe3+ (B) interaction strength in nanocrystalline ZnFe2O4 as a 

result of the deformation of the corresponding bond angle during mechanical milling. The 

authors also noted the existence of the intersublattice exchange interactions (Fe3+ (A)-O2-- 

Fe3+ (B)) in nanosized ZnFe2O4 as compared to the bulk material where the normal spinel 

structure ([Zn]A[Fe2]BO4) allows only the intrasublattice Fe3+(B)-O2--Fe3+(B) 

interactions.23,27The occurrence of the intersublattice exchange interactions in 

nanocrystalline ZnFe2O4 powders was attributed to the alteration of the cation  

distribution during the ball milling process when the normal spinel ZnFe2O4 was 

converted into a mixed spinel [Zn0.06Fe0.94]A[Zn0.94Fe1.06]BO4. 
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            In spinel crystals, the intersublattice (A-O-B) exchange interactions are stronger 

than the intrasublattice (A-O-A and B-O-B) interactions.28 The spins of the magnetic ions 

located in the tetrahedral interstices (A) are coupled antiferromagnetically with those of 

the cations residing in the octahedral sites (B). The antiparallel coupling of the metal ions 

is mediated, in the case of metal oxides, by the diamagnetic O2- ion which contains paired 

electrons in each of its 2p orbitals.7, 9 The exchange interaction between metal ions having 

unpaired 3d electrons is strong when the cation-oxide-cation bond angle approaches 

180ºC. For the intersublattice A-O-B exchange interactions (or superexchange 

interaction) the bond angle is 126º, whereas for the intrasublattice A-O-A and B-O-B 

exchange interactions the bond angles are 79º and 90º, respectively.29  The magnetic ions 

occupying the same type of interstitial sites are characterized by a parallel alignment of 

their spins which results in a weaker ferromagnetic coupling.26  

            Since both the inter- and intrasublattice exchange interactions are present in the 

mechanically activated ZnFe2O4 nanopowders, these materials show much higher Néel 

temperature, TN, values as compared to their bulk counterpart. Mössbauer measurements 

performed on both bulk ZnFe2O4 and 20 nm-sized powders prepared by mechanical 

milling revealed an increase of the Néel temperature from 9K (for normal spinel 

ZnFe2O4) to 77K (for mixed spinel [Zn0.58Fe0.42]A[Zn0.42Fe1.58]BO4 as the grain size 

decreases.28Experimental results also showed that the Néel temperature strongly depends 

on the preparation method when ferrite nanopowders with similar particle size are 

investigated. While the mechanical activation process is limited to the grinding of the 

bulk ferrites pre-prepared by a solid state reaction, the mechano-chemical synthesis uses 

the high-energy ball milling technique to reduce the grain size of the powdered 
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precursors (MIIO and α-Fe2O3) to the nanometer scale and to promote the reaction 

between the two metal oxides with the formation of nanocrystalline ferrites. The 

mechano-chemical syntheses (or mechanosyntheses) require long milling times to 

complete the reactions between the two oxide precursors and to obtain single-phase 

nanocrystalline ferrites (Table 1B). The X-ray diffraction measurements used to 

determine the phase purity of the nanopowders obtained by mechanosynthesis showed 

that pure nanosized NiFe2O4 was obtained only after 35 h of mechanical milling. Shorter 

milling times led to mixtures of NiFe2O4 and oxide precursors.30 In most of the cases, the 

mechano-chemical synthesis requires a subsequent thermal treatment to improve the 

crystallinity and the chemical composition of the obtained ferrite nanopowders. The heat 

treatment process is often accompanied by an increase in the crystallite size and a change 

in the inversion. Neutron diffraction refinement revealed that the ZnFe2O4 nanopowders 

prepared by mechanosynthesis are oxygen deficient and the oxygen content can be 

increased by post-synthesis annealing in air at temperatures up to 300ºC.15 

                Manova et al. reported the preparation of nanocrystalline by ball milling induced 

decomposition of a layered cobalt-iron hydroxy-carbonate precursor:    

                    224222342 2)2()()( COOHnOCoFeOnHCOOHCoFe +++→⋅   

 The mixed metal precursor material was obtained by addition of a Na2CO3 solution to an 

aqueous mixture of the two metal nitrates, cobalt (II) nitrate and iron (III) nitrate, taken in 

stoichiometric amounts. Subsequent mechanical treatment of the layered mixed metal 

hydroxy-carbonate precursor resulted in pure 5.1 nm-sized CoFe2O4 powder after a 

relatively short milling time of 5 h. The transmission electron microscopy (TEM) 

measurements revealed the aggregated nature of these particles. Interestingly, the 



 24

crystallite size of the CoFe2O4 powders increased from 5.1 nm to 8.6 nm as the milling 

times increased to 10 h. Longer milling times resulted in the formation of mixtures 

containing cobalt ferrite and metallic cobalt.31            

            Similar to the mechano-chemical synthesis, the mechanical alloying process 

employs the high-energy ball milling technique to prepare nanocrystalline ferrites both by 

fracturing the large particles of the precursor materials and promoting the solid state 

reactions between the resulting nanosized powders. Mixtures of metal hydroxides or 

mixed metal oxides with spinel structure are usually used as precursor materials to 

prepared nanosized ferrites by mechanical alloying.32-34 Shi et al. prepared nanostructured 

NiFe2O4 particles by combining the coprecipitation method, used to synthesize the 

precursor mixture of divalent and trivalent hydroxides, with the mechanical alloying 

(Table 1C). Prolonged milling (63 h) of the metal hydroxides with a large amount of 

NaCl (1:6, w/w) resulted in 10nm-sized NiFe2O4 particles which are subsequently 

subjected to annealing at 650ºC. A close examination of the TEM micrograph of the 

nanocrystalline NiFe2O4 prepared by mechanical alloying revealed slightly aggregated 

spherical particles. The morphology did not change significantly during annealing 

process which indicates that NaCl played an important role in preventing the particles 

aggregation.32   

            Other physical methods used to produce nanosized ferrite powders include pulse 

laser ablation (for mixtures of iron oxides with sizes ranging from 30-100 nm)35, radio- 

frequency plasma torch synthesis (for 20 nm and 26 nm Ni-substituted Fe3O4 and 18 nm 

NiFe2O4)36
, CO2 laser pyrolysis (for 5 nm-sized γ-Fe2O3)37 and γ-ray radiation (for 14 nm-

sized Fe3O4).38     
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1.3.2. Preparation of Nanocrystalline Ferrites by Wet Chemical Methods  

 

             Although the physical methods are simple and versatile, enabling the preparation 

of a wide variety of ferrite nanopowders in large quantities and with a relatively low cost, 

their reliability is often questionable due to the contamination of the products (especially 

in the mechanical milling processes) and the limited control of the morphology of the 

resulting nanosized materials. The wet chemical synthetic routes have proven to be much 

more advantageous for the preparation of transition metal ferrites than the physical 

methods since they provide a better control over the size, size distribution, shape, and 

degree of agglomeration of the resulting nanocrystals. These characteristics, along with 

the chemical composition were found to influence significantly the magnetic properties 

of the ferrite nanoparticles and, therefore, their potential application in high-density 

magnetic storage media39, magnetic resonance imaging40,41, magnetic refrigeration42, 

magneto-optical devices43, and ferrofluids44,45. The use of nanophase ferrites in certain 

biological and biomedical areas requires them to possess not only uniform sizes (usually 

smaller than 20nm), shapes, and high values of the saturation magnetization, but also 

individual coatings with biocompatible molecules.46-48 The solution-based chemical 

methods produce nanostructured transition metal ferrites with relatively good crystallinity 

even though they are, usually, low-temperature synthetic approaches. Moreover, a limited 

number of synthetic routes do afford large-scale preparations of high quality ferrite 

nanocrystals without a significant alteration of the morphology and properties of the 

resulting materials. However, the great disadvantages of the chemical methods lie in the 

fact that some of them use highly toxic reagents as metal precursors and necessitate a 
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rigorous control over the reaction parameters in order to obtain nanocrystalline ferrites 

with the desired morphology. In addition, most of the chemical methods use large 

amounts of capping ligands and surfactants rendering the resulting ferrite nanocrystals 

soluble in non-polar media. This imposes some restrictions on the use of the ferrite 

nanocrystals in certain biological systems which require solubility in aqueous media. 

Several solution-based approaches, both in aqueous and non-aqueous media, have been 

reported for the preparation of nanocrystalline ferrites particles; they include 

coprecipitation, microemulsion, sol-gel, hydrothermal/solvothermal and sonochemical 

methods. 

 
 
1.3.2.1. Nucleation and Growth of the Nanoparticles 
 
 
             The common feature of the solution-based approaches is the precipitation of solid 

products from homogeneous solutions. Precipitation of solid particles is a dynamic 

process involving three stages: nucleation, growth, and coarsening/aggregation.49-51 

According to LaMer and Dinegar, who firstly described the theory behind the formation 

of monodispersed sulfur colloids from sodium thiosufate and hydrochloric acid, 

uniformly sized and shaped particles are obtained only when the nucleation and growth 

processes are completely separated. They proposed a diagram showing the variation of 

the solute concentration in time where three regions, corresponding to the prenucleation, 

nucleation and growth processes, can be easily identified (Figure 1.4)52-54. The pre-

nucleation process (region I) is characterized by a relatively sharp increase of the solute 

(monomer) concentration as the chemical reaction progresses. At a critical value of the 

solute concentration (“nucleation concentration “) corresponding to a certain level of  the 
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Figure 1.4. LaMer’s diagram describing the formation mechanism for 
monodisperse colloidal particles [Ref. 52-54]. 
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supersaturation, a transition from the homogeneous to heterogeneous state occurs as a 

result of the onset of the nucleation process. The solute concentration continues to 

increase with time during the “nucleation period” (region II), but is shortly followed by a 

rapid decrease due to an intensive colloid nucleation. Once the solute concentration 

approaches the “nucleation concentration” again, the nuclei are no longer produced in the 

system because the supersaturation level is now too low to further sustain the nucleation 

process. The existing nuclei enlarge by migration of the monomer species from the 

slightly supersaturated solution toward their surfaces, thereby causing a further decrease 

of the concentration (region III). The growth process occurs until the monomer 

concentration reaches the “saturation concentration”. According to the LaMer diagram, 

the shape of the concentration–time curve suggests that the precipitation takes place 

through a fast nucleation process followed by a slower diffusional growth eventually 

leading to the formation of monodisperse colloidal particles.  

           The free energy associated with the formation of a nucleus by the aggregation of 

the solute species (monomers) in the supersaturated solution is given by the following 

equation: γβ STkVG B +⎟
⎠
⎞

⎜
⎝
⎛

Ω
−=Δ ln , where V is the volume of the nucleus, S represents 

its surface area, Ω stands for the volume of a monomer molecule contained in the 

nucleus, β denotes the saturation ratio and γ is the normalized surface free energy. 

Particularly, for spherically-shaped nuclei with 3

3
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=  and 24 rS π= , the free energy 
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−=Δ  and its sign is principally 

determined by the value of the saturation ratio (β). Thus, when β is less than 1.0 (the 
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solution is not enough supersaturated to induce the nucleation), the free energy, ΔG(r), 

takes positive values and the nucleation processes do not occur spontaneously. 

Conversely, when β is higher than 1.0, the free energy reaches a maximum, ΔG*(r), 

corresponding to a certain value of the nuclear radius,
β

γ
ln

2
Tk

r
B

Ω
=∗ , which is calculated 

by considering 0)(
=

Δ
dr

Gd . Therefore, all the nuclei having a radius smaller than r* are 

energetically unstable and shrink until they completely dissolve, whereas those with r 

higher than r* continue to enlarge and become more stable since their energy decreases 

with increasing the size.55, 56 

 However, recent developments in the synthesis of nanostructured materials have 

demonstrated that the mechanistic pathway proposed by LaMer and Dinegar for sulfur 

colloids cannot explain itself the formation of solid particles in various other systems. For 

example, Cheon et al. observed that the precipitation of nearly monodisperse 

nanocrystalline γ-Fe2O3 by the thermal decomposition of iron pentacarbonyl precursor in 

the presence of different capping ligands occurs through an intermediate growth stage 

when variable sized particles are obtained.57 The detailed investigation of the formation 

mechanism revealed that the γ-Fe2O3 nanocrystals capped with dodecylamine (DDA) 

undergo a size evolution upon heating the solution for different periods of time. 

Specifically, the powder isolated after 9 h of annealing in solution consisted of a mixture 

of 40 nm-sized hexagonal particles and 10 nm spherical particles, whereas the solid 

material collected after 16h contained 50 nm hexagonally-shaped particles as the main 

fraction with a very small amount of tiny (~ 3 nm) nanocrystals. These experimental 

observations suggest that nucleation and growth of the particles is followed by a 
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coarsening process in which the larger particles continue to grow until they attain the 

final morphology, whereas most of the smaller particles gradually decrease their sizes 

and eventually dissolve. Such a solution-mediated mass transport from the small to the 

large particles with the improvement of the size distribution is called Ostwald ripening.50, 

58-60. As it can be deduced from the Gibbs-Thompson equation, the driving force of the 

Ostwald ripening process is the variation of the solubility (equilibrium concentration) of 

the particles with their size: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
Ω⋅⋅

= ∞= rTk
cc

B
rr

12exp γ , where cr represents the solubility 

of a grain with the radius r and cr=∞  stands for the solubility of a large-sized solid 

material (the bulk solubility). 53, 55, 58 Thus, for a system containing nanoparticles with a 

wide size distribution, the equilibrium concentration of the monomers (solutes) at the 

solid-liquid interfaces is not constant but instead it fluctuates depending on the particle 

size. For example, according to the Gibbs-Thomson equation, the monomer (solute) 

concentration in the nearby solution of the large nanoparticles is smaller than that in the 

bulk solution. This determines the formation of a concentration gradient at the interface 

between each nanoparticle and the bulk solution which will induce the particle growth via 

migration of the monomers (solutes) from the surrounding solution to the nanocrystal 

surface. Conversely, for the small nanoparticles, the monomer (solute) concentration at 

the particle-solution boundary is higher compared to that in the bulk solution. This will 

determine the diffusion of the solute species from the nanocrystal surface to the solution, 

thereby leading to the gradual dissolution of the small nanoparticles during the 

coarsening process.60, 61           

            The Ostwald ripening process has been observed to take place in either aqueous 

or non-aqueous media and is influenced by several parameters including the reaction 
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time57, the pH62, the ionic strength62 of the solution and the nature of solvent and the 

capping ligand57, 63. For example, Vayssières et al. showed that during the preparation 

and aging of aqueous suspensions of Fe3O4 nanoparticles, the increase of the pH and the 

ionic strength of the solution will significantly inhibit the Ostwald ripening process.  This 

is due to the fact that at high values of the pH and the ionic strength of the solution, a 

large number of HO- ions and cations provided by the solvent and the electrolyte are 

adsorbed on the surface of the nanoparticles, thereby decreasing their surface free energy 

(γ) and stabilizing them against a further coarsening process during the aging period. 62 

Recently, Sastry and coworkers reported a novel synthetic approach for the 

preparation of the nanocrystalline iron oxides in slightly acidic solutions containing 

K4Fe(CN)6 and K3Fe(CN) as precursors. The bacterium-mediated reaction results in the 

formation of polydisperse spherical-shaped particles with sizes ranging from 10 to 40 nm. 

Longer reaction times cause clustering and coalescence of the spheroidal particles 

initially produced in the system into larger cubically-shaped crystals with sizes varying 

between 50 and 150 nm.64   

Such a growth mechanism by which small-sized particles called “primary 

particles” cluster into intermediate shapeless aggregates to produce well-defined, nearly 

monodisperse “secondary particles” is referred as aggregation (coalescence).65 In many 

cases, formation of nanostructured materials involves a single aggregation step by which 

the primary particles resulted from the nucleation and diffusional growth processes tend 

to minimize their surface free energy by clustering and coalescence into larger, more 

stable structural entities.66-68 However, as Zheng et al. have recently demonstrated for 

nanocrystalline α-Fe2O3 prepared solvothermally, the growth mechanism can occur 
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through more than one aggregation step. A close examination of the TEM micrographs 

corresponding to the iron oxide samples collected at different reaction times revealed that 

the small 5-8 nm-sized crystals cluster together to give larger particles with sizes ranging 

between 15 and 30 nm. The resulting nanoparticles act as building blocks for the 

subsequent growth of the 40-50 nm irregularly-shaped aggregates. Each of these single 

crystalline entities undergoes a coarsening (Ostwald ripening) process leading to the 

formation of highly faceted α-Fe2O3 particles with a relatively narrow size distribution.69 

           The secondary particles resulting by the clustering and coalescence of two or more 

primary nanocrystallites can be either monocrystalline or polycrystalline in nature, 

depending on the arrangement of the smaller units within each larger structural entity.67 

Polycrystalline secondary structures have been obtained when the nanosized primary 

particles aggregate in a random manner.70 The random clustering of the nanocrystalline 

units can also yield monocrystalline secondary particles when the aggregation is followed 

by an internal recrystallization process.66 However, monocrystalline particles are 

commonly obtained by the oriented attachment of the primary nanocrystallites which 

necessitates a continuity of the crystal lattices of the neighboring particles through each 

shared interface.67-69, 71, 72  In such a case, a perfect alignment of the lattice fringes over 

the whole assembly can be easily identified by examining the HRTEM micrographs. The 

formation of secondary particles through the oriented attachment mechanism is often 

accompanied by the formation of various packing defects including dislocations, twins, 

phase boundaries and stacking faults.73-75  In some cases, both the aggregation and the 

Ostwald ripening processes contribute to the formation of nanocrystalline ferrite 

particles.63,69 Barker and coworkers conducted a comparative study of the growth 
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processes based on the strength of the interaction between different stabilizing agents and 

the surface of the Fe3O4 nanoparticles prepared by the thermal decomposition of iron (III) 

acetylacetonate in organic media. For this reason, the authors performed two separated 

experiments using trioctylamine, which acts both as a solvent and a stabilizing agent, and 

a mixture of trioctylamine (solvent) and heptanoic acid (capping ligand), respectively. 

According to them, when the experiment is carried out in trioctylamine, the small 

particles initially formed in the system aggregate into larger shapeless assemblies with 

polycrystalline structure and broad size distribution. The clustering and coalescence stage 

is followed by an Ostwald ripening process when the resulting intermediate aggregates 

undergo internal recrystallization leading to the formation of monocrystalline, highly 

faceted particles. However, the growth mechanism changes significantly when the 

synthesis is performed in the presence of heptanoic acid. In this case, the growth process 

which occurs by Ostwald ripening is much slower and yields smaller single crystalline 

particles with a narrow size distribution. These two mechanistic pathways observed in the 

formation of  the Fe3O4 nanoparticles were ascribed to the different binding properties of 

the trioctylamine and heptanoic acid, respectively. 

 

1.3.2.2. Synthesis of Nanocrystalline Ferrites in Aqueous Solutions 

1.3.2.2.1. The Coprecipitation Method 

 

            Coprecipitation of nanocrystalline ferrites from aqueous homogeneous solutions 

is one of the most popular liquid phase synthetic approaches due to its simplicity, low 

cost and versatility. Transition metal ferrite nanoparticles with a wide variety of 
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compositions ranging from ternary metal oxides48, 76-78 (AFe2O4, A2+=Mn2+, Fe2+, Co2+, 

Cu2+,  Zn2+) to mixed metal oxides containing two79 (AxB1-xFe2O4, A2+=Co2+, B2+=Ni2+) 

or three80 (AxByC1-x--yFe2O4, A2+=Ni2+, B2+=Cu2+, C2+=Zn2+) different divalent metal ions 

have been prepared by using the coprecipitation technique. In a typical coprecipitation 

process, aqueous solutions containing divalent metal precursors, such as acetates, 

chlorides, nitrates or sulphates, and an iron (III) salt are treated with a precipitating 

agent.76, 80, 81, 83, 84 Alternatively, the synthesis can be performed by replacing the ferric 

precursor with a ferrous salt, but in this case the partial oxidation of the iron (II) 

compound is required.80, 82 In addition to alkaline hydroxides (NaOH, KOH)77, 81 and 

ammonia solutions85, 86, another commonly used precipitant is urea.84, 85 This organic 

compound undergoes a hydrolysis reaction87 when heated at temperatures higher than 

60ºC with the formation of hydroxide ions (HO-): 

                                                    
−+ ++→+ HOCONHOHNHCO 223)( 24222  

 The nature of the precipitating agent was found to influence significantly the morphology 

of the ferrite nanopowders synthesized by the coprecipitation method. For example, Ryu 

and coworkers reported the preparation of nanophase Co1-xNixFe2O4 (0<x<1) and 

compared the morphology of the particles obtained in the presence of two different 

precipitating agents, that is, NaOH and NH4OH, respectively.79  When the precipitation is 

performed with NaOH the resulting particles possess a relatively good crystallinity, their 

sizes vary between 15 and 25 nm, depending on the Co/Ni ratio and  have a needle-like 

aspect, except for the first term of the series (x=0), where the particles are spherical.  This 

is not the case of the nanopowders precipitated in the presence of NH4OH, when the 

particles are found to be less crystalline and their sizes range from 2 to 10 nm.  
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However, regardless of the morphology of the as-prepared nanopowders, the 

nanostructured ferrite materials resulting from their heat treatment at 600oC consist of 

agglomerated particles with an average size of 30 nm. The morphological changes of the 

as-prepared nanopowders during the annealing process were found to depend on their 

initial composition. Thus, while in the alkaline medium the transition metal ions 

precipitate as hydroxides, in the presence of an ammonia solution the coprecipitation 

occurs with the formation of transition metal complexes incorporating the NH4
+ ions. 

           The temperature is one of the most important parameters in the coprecipitation 

process. When the metal ions are precipitated at room temperature, amorphous 

intermediate compounds such as hydroxides or oxyhydroxides separate from the reaction 

solution. In such a case, a subsequent heat treatment of the hydroxo-intermediates is 

required in order to obtain the corresponding nanocrystalline ferrite materials.80, 86, 88 

Chen et al. prepared nanosized MnFe2O4 particles by mixing stoichiometric amounts of 

Mn(II) and Fe(III) chlorides with NaOH at room temperature followed by the digestion 

of the resulting precipitate at 100°C. In addition to promoting the dehydration of the 

metal hydroxide intermediates and the crystallization of the nanophase MnFe2O4, the 

thermal treatment was found to strongly influence the size of the ferrite nanoparticles.78   

            However, if the coprecipitation reaction takes place in boiling solutions 

containing the metal precursors and the precipitating agent, the hydroxo-intermediates 

formed at elevated temperature are immediately converted into nanocrystalline ferrites.76 

For instance, Sousa and coworkers prepared a series of nanosized transition metal ferrites 

(MFe2O4, M2+= Ni2+, Cu2+, Zn2+) by precipitating the metal ions in alkaline media at 

100°C. As demonstrated by the X-ray diffraction measurements, the isolated solid 
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products were found to be single-phase mixed metal oxides with spinel structure and 

good crystallinity.77 

 Unlike the other transition metal ferrites, Fe3O4
 can be obtained as an oxide even 

at room temperature.43, 83, 85 Kang et al. reported the synthesis of 8.5 nm-sized Fe3O4 

particles by room temperature coprecipitation of a 1:2 molar mixture of Fe(II) and Fe(III) 

precursors with a solution of NaOH. The resulting black solid was treated with a diluted 

solution of HCl and then dispersed in water to form an aqueous colloid. The positive 

charges built up at the surface of the Fe3O4 nanocrystals upon acidification induce 

electrostatic repulsions between neighboring particles thereby stabilizing the colloidal 

dispersion against aggregation. The TEM investigation of the aqueous colloid revealed 

that the Fe3O4 nanoparticles are uniformly sized and shaped and they assemble into 

monolayers.43   

           Kim et al. showed that by performing the coprecipitation reaction at different 

temperatures, variable-sized Fe3O4 nanoparticles can be obtained. 6nm particles were 

synthesized by adding a stoichiometric mixture of Fe(II) and Fe(III) salts to a solution of 

NaOH at room temperature. The same reaction carried out at 80°C yielded Fe3O4 

particles with an average size of 12 nm.89  In the preparation of the Fe3O4 nanopowders 

by coprecipitation instead of mixtures of Fe(II) and Fe(III) salts in molar ratios of 1:148 or 

1:283, other Fe(II) compounds (chlorides or sulphates) have also been used81, 90. In such 

cases, the partial oxidation of the ferrous ions is necessary in order to obtain Fe3O4 

nanoparticles. For example, Tada and coworkers synthesized nanocrystalline Fe3O4 

powders containing traces of γ-Fe2O3 by oxidation of Fe(OH)2 in the presence of H2O2. 
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Prior to the oxidation, the iron (II) hydroxide intermediate was obtained by the 

precipitation of the iron(II) salt with a solution of KOH under ambient conditions.81 

 

 

1.3.2.2.2. The Sol-Gel Method 

 

            Nanocrystalline ferrites have also been synthesized by the sol-gel method91-94, a 

synthetic route widely used for the preparation of various types of ceramic materials 

(magnetic95, 96, ferroelectric97, 98 and thermomechanic99) as well as glasses100 and 

catalysts.101, 102 The sol-gel technique is a multi-step synthetic route in which a precursor 

dissolved in a suitable solvent is converted into the corresponding crystalline oxide 

through a succession of chemical and physical processes.103 The precursor materials 

generally used in the sol-gel approach are the metal/metalloid alkoxides and the metal 

salts. For example, various silicon alkoxide precursors, such as tetraalkoxysilanes 

(Si(OR)4, R=CH3, C2H5, n-C3H7, n-C4H9, OCH2CH2OCH3), organoalkoxysilanes 

(R’xSi(OR)4-x, x=1-3 and R’ is an organic radical unreactive towards hydrolysis) and 

alkoxysiloxanes (oligomeric compounds consisting of 1 to 8 silicon atoms) have been 

employed in the sol-gel preparation of silicon-based compounds including silica (SiO2), 

silicones, and silicate gels, respectively.104  Likewise, binary metal oxides such as M2Oz 

(M= Ti, Zr, Hf, Nb, Ta, Ce, Th) have been synthesized from the corresponding metal 

alkoxides (M(OR)z)102, 105, whereas the more complex cubic and hexagonal ferrites  

(MFe2O4 and MFe12O19, M is a divalent metal ion) are usually prepared by using metal 

salts (nitrates, chlorides and acetates) as precursor materials.96, 106, 107, 108 Regardless of 

the nature of the oxide product, two types of chemical reactions are usually involved in 
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the sol-gel technique: the hydrolysis of the metal/metalloid precursor and the 

condensation of the resulting intermediates.103, 105 Hydrolysis and condensation are 

complex reactions occurring either concurrently or separately in the course of the sol-gel 

process and being closely dependent on the nature of the precursor. As an example, when 

metal salts are used as precursors, the hydrolysis reaction involves solvated cations 

generated in aqueous solutions by the electron transfer from the water molecules to the 

metal ions:104, 105     

                                                                    Mz+ + NH2O [ M(H2O)N] z+
                                           

In such a case, the hydrolysis reaction occurs by the elimination of the protons from the 

coordination sphere of the solvated cation: 

-H+
[M(H2O)N]z+ [M(OH)(H2O)N-1](z-1)+ ........ [M(OH)N](N-z)-

-H+ -H+

(N-z-1)-[MO(OH)N-1]
-H+

........ [MON-1(OH)](2N-z-1)-
-H+

[MON](2N-z)-
 

According to Livage et al., several types of intermediates can be generated in the course 

of the hydrolysis process: aquo ([M(H2O)N]z+, where N stands for the coordination 

number), hydroxo-aquo ([M(OH)(H2O)N-1](z-1)+), hydroxo (M(OH)N](N-z)-, oxy-hydroxo 

([MO(OH)N-1](N-z-1)-) and oxy ([MON](2N-z)-)species, respectively.104, 105 Once formed in 

the aqueous solution, these intermediates undergo subsequent condensation reactions 

eventually leading to the formation of metal oxide products. However, the mechanistic 

pathways through which the intermediates are transformed into the final product are 

substantially different, being primarily determined by the nature of the groups 

coordinated to the metal ions. Thus, when hydroxo-aquo species are involved in the 

condensation process, hydroxo bridges are created between the Mz+ cations. Such a 
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condensation reaction is called olation and proceeds through a nucleophilic substitution 

(SN) mechanism with elimination of a water molecule:104, 105 

                                 

M-OH + M-O
H

H
M-O-M

H
+ H2O

 

Conversely, when the condensation reaction takes place in the presence of oxo-hydroxo 

intermediates, oxo bridges are created between the Mz+ cations. Such a reaction refers to 

as oxolation and can proceed either through a nucleophilic addition (AN) or through a 

nucleophilic substitution (SN), depending on the saturation of the coordination sphere of 

the Mz+ cations. For the Mz+ cations with unsaturated coordination spheres, the oxolation 

reaction between the corresponding oxo-hydroxo intermediates takes place through a 

nucleophilic addition mechanism:104, 105 

                           

-M

O

+ M-

O

-M

O

M-

O  

If the coordination sphere of the Mz+ cations is saturated, the oxolation reaction takes 

place through a nucleophilic substitution mechanism. In such a case, the oxo-hydroxo 

species undergo a condensation reaction which is usually described as a two-step process 

consisting of a nucleophilic addition and a β-elimination. The hydroxo-bridged 

intermediate formed by the nucleophilic addition loses a water molecule to give a 

compound in which the Mz+ cations are linked by an oxo bridge:104, 105  

                  
M-OH + M-OH

(1)
M-O-M-OH

H (2)
M-O-M + H2O                         
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In general, the sol-gel processing involves several successive stages: (a) the formation of 

a sol which represents a colloidal suspension containing small particles with a diameter 

less than 1000 nm dispersed in a continuous liquid medium; (b) the gelation of the sol to 

give a three-dimensional M-O-M/M-OH-M network whose pores are filled with solvent 

molecules (wet gel); (c) the aging of the resulting wet gel, process known as syneresis; 

(d) the elimination of the solvent from the gel pores (drying) and (e) the calcination of the 

resulting porous gels with the formation of metal oxide ceramic materials 

(densification).103, 104  

                     Kim et al. have extensively used the sol-gel method to prepare various 

nanocrystalline spinel-type oxides including Co1-xZnxFe2O4 (0<x<1), 

Ni0.65Zn0.35Cu0.2Fe1.8O4, Cu0.9Mn0.1Fe2O4 and CoFe1.9Re0.1O4 (RE=Y, La), respectively. 

Transition metal ferrite nanopowders were typically obtained by calcining the amorphous 

gels resulting from the hydrolysis of metal salts (acetates, nitrates) dissolved in different 

solvent mixtures. It is worth noting that, in all cases, the temperature effect on the 

magnetic properties of the nanocrystalline ferrites shows a similar trend regardless of 

their chemical composition. Specifically, the saturation magnetization (Ms) of the ferrite 

powders increases with increasing the calcination temperature, whereas the coercivity 

(Hc) increases to reach a maximum and then drops abruptly. Such a variation of the 

magnetic properties of the nanophase ferrites is dependent on the particle size which was 

found to increase with the calcination temperature.91-94  

           Since the magnetic properties of the spinel-type metal oxides are very sensitive to 

both the M2+/M3+ molar ratio and the cation distribution within the spinel lattice, a strict 

control over the chemical composition of the ferrite products is highly desirable in the 
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sol-gel process. To this end, the bimetallic sources have proven to be more suitable for 

the preparation of single phase ferrite nanopowders than the mixtures of single-metal 

precursors. Veith and coworkers have synthesized nanophase ZnFe2O4 by calcining the 

solid intermediates resulting from the hydrolysis of mixed metal alkoxides Zn[Fe(OR)4]2 

(R= -C(CH3)3, -CH(CH3)2) dissolved in both polar and non-polar solvents.109 While the 

mixed metal precursors (Zn[Fe(OR)4]2) were prepared from the reaction of alkoxo 

sodium ferrate (NaFe(OR)4) and zinc chloride (ZnCl2) under inert atmosphere, the ferrate 

compound was pre-synthesized by treating sodium alkoxide (NaOR) with iron (III) 

alkoxide (Fe(OR)3). Alternatively, the alkoxo sodium ferrate could be obtained by 

reacting sodium alkoxide (NaOR) with iron(III) chloride with the elimination of sodium 

chloride.  

         The bimetallic alkoxide Zn[Fe(OR)4]2 is then hydrolyzed with a mixture of water 

and 2-propanol and the resulting xerogel is thermally decomposed to a nanocrystalline 

ZnFe2O4 product. Interestingly, the phase purity of the prepared ferrite nanopowders was 

found to be very sensitive to the nature of the solvent used in the hydrolysis step. Unlike 

the polar solvents, which lead to single phase ZnFe2O4 nanoparticles even when the 

xerogel is heat treated at relatively low temperatures (200oC), the hydrolysis reactions 

performed in non-polar solvents yield nanocrystalline product which is slightly 

impurified by zinc and iron oxides, respectively. In such a case, the detrimental effect of 

the polarity of the solvent can be eliminated only upon calcination of the xerogel at high 

temperatures (800oC), when the secondary phases disappear with formation of a single 

phase ferrite nanopowders. 

 



 42

1.3.2.2.3. The Hydrothermal/Solvothermal Method 

 

             Aqueous solution-based synthetic strategies have been extensively used for the 

preparation of nanophase ferrites by virtue of their simplicity, low cost and versatility. 

However, due to the low boiling point of water (b.p.=100°C at 1 atm) the chemical 

reactions in aqueous medium usually take place at low temperatures, thus leading to 

nanostructured metal oxides with a relatively poor crystallinity. Due to the mild reaction 

conditions, a subsequent annealing step is often required to convert the as-prepared 

powders into highly crystalline nanophase ferrites. Although the grain size and the 

crystallinity of the as-prepared nanopowders can be significantly improved during the 

post-synthesis heat treatment, in most of the cases the resulting particles have a wide size 

distribution, irregular shapes and a high degree of agglomeration.  

            An effective approach to obtain highly crystalline ferrites from aqueous solutions, 

eliminating the annealing step, consists of heating the reaction mixture in a sealed 

container at moderate temperatures. In such conditions, a high pressure is built up inside 

the bomb-type reactor, thereby increasing the temperature of the solution high enough to 

promote the chemical reactions between the precursors and to produce ferrite powders 

with good crystallinity. As the pressure inside the reaction vessel increases, significant 

changes on the physical properties of the solvent are observed over a wide temperature 

interval. Thus, the polarity and density of the water decrease, whereas its temperature 

increases rapidly to reach values much higher than the boiling point. Additionally, its 

solvent properties are greatly enhanced, thereby enabling the complete dissolution of 

various compounds, both organic and inorganic, which otherwise have a sparse solubility 
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in aqueous media. Finally, when the temperature and pressure attain the so-called 

“critical values” (TC=374°C, PC=218 atm), the dissimilarities between the gaseous and 

liquid phases disappear completely and a new phase known as supercritical water is 

formed. In the supercritical state, water combines the individual characteristics of the 

liquid and gas phases making it very attractive as reaction medium for various chemical 

reactions.110  However, such a behavior is not restricted only to water; other many non-

aqueous solvents can serve as reaction media under similar conditions. Thus, when the 

chemical reactions take place in aqueous solutions the process is known as hydrothermal, 

whereas for non-aqueous solvents the technique is called solvothermal.111                 

Under such extreme conditions, chemical reactions can occur in both sub-critical and 

super-critical regime, thereby resulting into highly crystalline single-phase products 

which do not necessitate post-synthesis annealings. However, although the 

hydrothermal/solvothermal process is a one-pot, highly efficient “green-chemistry” 

preparative route for various ferrite materials, it allows only for a limited control of the 

nucleation and growth processes usually yielding particles with irregular shapes, 

relatively large sizes and a wide size distribution.112  

            Yu and coworkers noted that hydrothermal heating at 180°C of an ammoniacal 

FeCl2 solution containing metallic Zn leads to the formation of octahedrally-shaped 

ZnFe2O4 nanoparticles with an average size of 300 nm. While the purity of the ferrite 

material is controlled by the reaction time and temperature, its crystallinity was found to 

be significantly enhanced by increasing the concentration of ammonia in the reaction 

solution.113 The reaction time and temperature as well as the dielectric constant of the 

reaction medium were also found to exert a significant effect on both the particle size and 
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the crystallinity of the hydrothermally-prepared nanophase ferrites. For example, the 

particle size of the nanocrystalline NiFe2O4 synthesized from an alkaline solution 

containing the corresponding transition metal salts could be varied from 10 nm to 120 nm 

by simply raising the reaction temperature from 60°C to 120°C. Increasing the reaction 

time from 3h to 6h increased the dimensions of the ferrite particles from 10 nm to 70 nm. 

The same size variation was observed when decreasing the dielectric constant of the 

reaction medium by increasing the i-PrOH/H2O volume ratio from 0.05 to 0.10.114 

Likewise, in the case of solvothermal reactions, both the crystallinity and morphology of 

the ferrite nanoparticles is significantly affected by the variation of several parameters 

including the reaction time, temperature, concentration of the metal precursor and the 

nature of the solvent and the capping agent.115-117 Hou and coworkers prepared nearly 

spherical Fe3O4 nanocrystals by the partial reduction of iron (III) acetylacetonate with 

hydrazine in the presence of different organic molecules as stabilizers.116  Prior to the 

solvothermal reaction the iron source was dissolved into a mixture containing ethylene 

glycol (EG) and polyvinyl pyrrolidone (PVP), followed by the slow addition of the 

reducing agent. As revealed by the TEM investigation, the size of the nanoparticles 

decreases when a second stabilizer, is added to the reaction solution. Thus, while the size 

of the Fe3O4 nanoparticles prepared in neat PVP was found to be close to 11 nm, similar 

experiments performed in mixtures of PVP with tri-n-octylphosphine oxide (TOPO) or 

hexadecylamine (HAD) yielded 8 nm Fe3O4 nanoparticles.   
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1.3.2.2.4. The Microemulsion Method 

 

           The microemulsion technique has proven to be a viable synthetic route for the 

preparation of a wide range of nanostructured inorganic materials including metals (Pt118, 

Ag119, Cu120), alloys (Pt/Pd121, 122, Au/Pt123), halides (AgCl124, 125, AgBr125, KMnF3
126, 127), 

sulfides (PbS128, CdS129, ZnS130) and oxides (SnO2
131, TiO2

132). In particular, this 

synthetic approach has been extensively used for the synthesis of spinel-type ferrites 

containing one (MFe2O4, where M2+=Mn2+, Fe2+, Co2+, Ni2+)133-137 or more (M’XM1-

XFe2O4, where M’2+=Mn2+, Ni2+ and M2+=Zn2+)138-141 divalent metal cations.   

          Microemulsions are colloidal systems in which one of the two mutually insoluble 

liquids is dispersed as fine droplets (with a size typically less than 100nm) in a second 

continuous liquid phase.142 The two liquids are commonly referred to as the “aqueous 

phase”, that is an aqueous solution containing transition metal salts ([M2+]/Fe3+]=1:2, 

[M2+]/[Fe2+]=1:2 and [M’2+]/[M2+]/[Fe2+]=1:1:4)133, 134, 143, 144 or a precipitating agent 

(tetramethyl ammonium hydroxide-(CH3)4NOH, ammonium hydroxide-NH4OH, sodium 

hydroxide-NaOH and methyl amine-CH3NH3OH)133-135, 143, 144, and the “oil phase”, 

represented by an organic solvent immiscible with water. Among the most frequently 

used non-polar organic solvents are heptane145, isooctane133, 137, 138, 140, 146, toluene134, 143, 

(o-, m-, p-) xylenes147. In addition to the hydrocarbons, other organic substances, such as 

fatty alcohols (1-hexanol)139, 141, 144, 148 and halogenated compounds (1,1,1-

trichloroethane)142, as well as supercritical fluids (CO2)142 have been employed in the 

microemulsion technique. However, because of the high interfacial tension between the 

two mutually insoluble liquids, such heterogeneous systems are labile with respect to 
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separation and surface active agents (surfactants) are often required to stabilize the 

microemulsion. Surfactants are amphiphilic organic molecules containing a polar 

(hydrophilic) group attached to a non-polar hydrocarbon (lipophilic) chain.150  Depending 

on the charge of the hydrophilic group, the surfactants can be classified into three main 

categories: ionic (anionic or cationic), non-ionic (neutral), and amphoteric (possess both 

positively and negatively charged moieties), respectively. The hydrophobic part of the 

surfactant molecule usually consists of one or more aliphatic chains, aromatic rings or 

combinations of them where the number of carbon atoms typically varies between 10 and 

20.142, 151 When a certain amount of surfactant is added to a mixture of two immiscible 

liquids, its molecules tend to self-organize at the liquid-liquid interfaces with the 

formation of spherically-shaped aggregates called micelles. The minimum surfactant 

concentration at which the micelles form in the heterogeneous system is referred to as 

“critical micellar concentration”.150 Micelles are categorized in two types, that is 

“normal” and “reverse”, depending on the nature of the liquid phase contained in their 

cores. For example, in the normal micellar solutions (oil-in-water) the surfactant-

stabilized nanodroplets of a non-polar liquid (oil phase) are dispersed in a continuous 

polar medium (aqueous phase). In this case, the surfactant molecules will have the 

hydrophilic functional groups (heads) oriented to the continuous aqueous phase, whereas 

the hydrophobic chains (tails) will point to the non-polar liquid confined in the micellar 

core.142  

                 In general, micelles experience a random movement in solution leading to 

collisions which can be followed by the formation of either pairing micelles or short 

time-living dimers. Since these mutual interactions facilitate the exchange of the content 
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of their cores, thus promoting chemical reactions, micelles are suitable as nanoreactors 

for the preparation of various nanocrystalline materials, including metals or oxides. For 

example, nanocrystalline ferrites can be synthesized in reverse micelles by precipitating a 

micellar solution of transition metal ions with a base. The base can be either dispersed in 

a water-in-oil microemulsion or can be a bulk solution. In these conditions the 

precipitation occurs either by diffusion of the molecules of the reagents through the 

surfactant bilayer of the pairing micelles or by direct mixing of their contents when the 

surfactant molecules at the surface contact of the interacting nanodroplets are temporarily 

eliminated during their collision and fussion. Once the reagents are mixed, the nucleation 

and growth of the nanoparticles occurs within the confined space of the micelles yielding 

nearly spherical nanocrystals with a size comparable to the diameter of the surfactant-

stabilized water pools.142 In many cases, the chemical reactions are performed at room 

temperature and the isolated solid products consist of mixtures of metal 

hydroxides/oxyhydroxides with a poor crystallinity. In these conditions, a post-synthesis 

annealing is often necessary to convert them into crystalline mixed metal oxides. 

However, this would be detrimental for the ferrite nanopowders since it results not only 

in complex structural changes like the cation redistribution, but also in morphological 

transformations such as aggregation of the nanoparticles134, 138, 146, 149 or increase  in the 

grain size148. Such side effects can be decreased upon elimination of the post-synthesis 

heat treatment. This is possible if the microemulsion-based syntheses are carried out at 

moderate temperatures (45-95o C) when the as-prepared ferrites nanopowders possess a 

relatively good crystallinity and a supplementary heat treatment is not longer necessary. 

139, 141 
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           Pileni and coworkers applied the oil-in-water microemulsion technique to the 

preparation of various nanocrystalline transition metal ferrites. In these syntheses, the 

nanophase ferrites were precipitated by introducing a controlled amount of methylamine 

into a normal micellar solution containing transition metal dodecyl sulfates. Interestingly, 

these metal compounds act both as metal sources for the synthesis of nanostructured 

ferrites and as surfactants for the formation of the normal micellar systems. The metal 

dodecyl sulfates were prepared prior to the synthesis by reacting divalent metal salts, 

typically chlorides and acetates, with sodium dodecyl sulfate (NaDS). The experiments 

were usually carried out in air in order to promote the oxidation of the Fe2+ ions to Fe3+ 

ions necessary in the synthesis of the ferrite materials.135, 136 The investigation of the 

formation mechanism of the nanophase magnetite revealed that two parameters influence 

the size of the resulting nanoparticles, i.e., the reaction temperature and the concentration 

of the iron (II) dodecyl sulfate (Fe(DS)2). Transmission electron microscope (TEM) 

measurements showed that by changing the iron(II) dodecyl sulfate concentration from 

2.5×10-3M to 10-2 M the particle size increased from 3.7 nm to 7 nm when the reaction 

was performed at room temperature. Likewise, by varying the reaction temperature from 

25ºC to 80ºC and keeping constant the concentration of the iron (II) dodecyl sulfate at 

2.5×10-3M, the dimensions of the particles increased from 3.7 nm to 6.6 nm. The largest 

magnetite particles (11.6 nm) were obtained for the highest values of both the Fe(DS)2 

concentration (10-2 M) and the reaction temperature (80ºC). The authors assumed that the 

variation of the nanoparticle size is dictated by the fraction of the Fe2+ ions being 

oxidized to the Fe3+ ions rather than the modification of the morphology of the normal 

micelles. Their hyphothesis was supported by a series of small angle X-ray spectroscopy 
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(SAXS) measurements which indicated that neither the surfactant concentration nor the 

reaction temperature affected the dimensions of the normal micelles. When either of 

these parameters is increased, a larger amount of oxygen is dissolved in the normal 

micellar solution which induces the oxidation of a higher proportion of the Fe2+ ions and, 

eventually, the enlargement of the magnetite particles.135 

           Vestal et al. performed a comparative study on the properties of the 

nanocrystalline CoCrFeO4 synthesized by using both the oil-in-water and water-in-oil 

microemulsion techniques.149 Although the resulting ferrite particles were quite different 

in size, their shape, relative size distributions as well as the trends in the variations of the 

magnetic properties showed similarities regardless of the nature of the micellar solution 

used in the synthesis. Thus, while CoCrFeO4 particles synthesized from normal micellar 

solutions possess a size which ranges from 8 nm to 16 nm depending on the reaction 

temperature, the average diameters of the nanocrystals obtained by the reverse micelle 

technique can be varied between 6 nm and 11 nm upon adjustment of the water/oil 

volume ratio. 

           The large-scale preparation of the nanophase ferrites using the microemulsion 

technique has long been a challenge since this synthetic approach usually produces small 

amounts of solid materials, typically on the order of several tens of milligrams. 

According to two recent reports, large quantities of nanocrystalline ferrites could be 

produced in a single experiment by performing the precipitation reactions in a reverse 

micelle system.146, 147 Lee and coworkers reported the multi-gram preparation of variable-

sized Fe3O4 nanocrystals by precipitating stoichiometric mixtures of iron salts with 

hydrazine in a water-sodium dodecylbenzenesulfonate-xylene micellar system. Refluxing 
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the reaction solution for several hours under argon atmosphere resulted in the formation 

of pure nanometer-sized Fe3O4 particles with a high crystallinity. Interestingly, the 

prolonged refluxing at temperatures around 100ºC did not disrupt the micellar structure  

of the solution and allowed the preparation of non-aggregated Fe3O4 nanocrystals with 

spheroidal shape and relatively tight size distribution. The particle dimensions could be 

varied between 2 nm and 10 nm by adjusting the relative amounts of the divalent and 

trivalent iron salts and the polar solvent/surfactant molar ratio. This large–scale 

preparation technique was adapted to the synthesis of other nanocrystalline transition 

metal ferrites, such as MnFe2O4, CoFe2O4, NiFe2O4 and ZnFe2O4. The obtained particles 

have sizes that range from 4 nm to 6.5 nm depending on the nature of the divalent metal 

cation. Compared to Fe3O4, the mixed metal ferrite nanocrystals are characterized by 

more irregular shapes and broader size distributions. The great advantage of the synthetic 

procedure developed by Lee and coworkers lies in the use of relatively small quantities of 

organic solvents, similar to those employed in the conventional water-in-oil 

microemulsion method, whereas the amounts of the metal precursors are up to 10 times 

larger than those used in a regular experiment .147  

 
 

 
1. 3. 2. 3.  Synthesis of Nanocrystalline Ferrites in Non-Aqueous Medium 
 

 

            In addition to the precipitation in aqueous solutions, nanocrystalline mixed metal 

oxides can be alternatively synthesized by chemical reactions performed in non-aqueous 

media. Although they are not always environmentally friendly, non-aqueous approaches 

present some major advantages over the conventional aqueous solution methods. 
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Examples include a strict control over the size of the nanoparticles, a high crystallinity, as 

well as a tunable solubility in polar and non-polar solvents. Due to the high boiling point 

of the organic solvents, chemical reactions in non-aqueous solutions take place at much 

more elevated temperatures than those in aqueous media, usually leading to the formation 

of highly crystalline products without the need of post-synthesis heat treatment. In 

addition, the reaction rates can be controlled much easier in non-aqueous media, thus 

allowing for a complete separation of the nucleation and growth processes and yielding 

nearly monodisperse nanoparticles with a controllable size, shape and agglomeration 

degree. One of the characteristics common to the organic solution techniques is the use of 

capping agents. In general, capping ligands are long chain organic molecules that 

passivate the nanoparticles’surface, thus inhibiting their growth and stabilizing them 

against clustering and aggregation. Depending on the nature of their free groups, the 

capping ligands facilitate the dispersion of the passivated nanocrystals into various 

solvents, either polar or non-polar, with the formation of stable colloidal suspensions. 

The non-aqueous techniques involved in the preparation of the nanocrystalline ferrites 

usually fall within two categories, i. e. the hydrolysis of the transition metal ions in polyol 

medium (the polyol method) and the thermal decomposition of single molecular 

precursors. 

 

1. 3. 2. 3. 1. The Polyol Method 

 
The hydrolysis of the transition metal ions in polyol (ethylene glycol, diethylene 

glycol or 1,2-propanediol) solutions with the formation of nanophase binary or mixed 

metal oxides is traditionally referred to as the polyol method. 152-154 Although the polyol 
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process was initially aimed at the synthesis of various micrometer to nanometer-sized 

metallic particles (Co, Ni, Cu, Ag, Pt, Pd, Sn, W, Rh, Ru, CoXNi(100-X), FeZ[CoXNi(100-

X)](1-Z) )155-157, due to its simplicity and versatility this technique has been successfully 

extended to other types of nanocrystalline materials, including ferrites. In this process, 

the metallic particles were obtained by reducing the corresponding metal oxides or 

hydroxides with a polyol which acts not only as a reducing agent, but also as a solvent for 

the starting materials and a stabilizing agent for the resulting compounds.155, 156 When 

transition metal salts are used as precursor materials, their conversion into the 

corresponding metal hydroxides will require the presence of sodium hydroxide in the 

reaction system.157 It was also observed that the addition of sodium hydroxide into the 

reaction mixture can affect the rate of the reduction process as well as the size of the as-

prepared metallic particles.156  Because the presence of water in the system can potentially 

affect the reduction of the metal ions, syntheses in polyol media are usually performed by 

refluxing the reaction mixture for extended periods of time. Thus, in addition to the water 

molecules, other organic compounds resulting from the oxidation of the polyols will be 

also removed during the course of the synthetic process.155, 157 Several factors, such as the 

reaction temperature155, 156, the metal precursor/polyalcohol molar ratio155 the reaction 

time156 and the nature of the noble metal used as seeds in the heterogeneous nucleation of 

other metals or alloys were found to play an important role on the size of the resulting 

metallic nanoparticles.157  

            Unlike the metals, the presence of a certain amount of water in the reaction 

mixture is essential for the preparation of metal oxide nanoparticles through the polyol 

process. This synthetic pathway, known as “forced hydrolysis in polyol medium” has 
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been successfully applied to the preparation of various nanocrystalline oxides, such as α-

Fe2O3
152, 158 and spinel-type ferrites (CoFe2O4, NiFe2O4)153, 154, respectively.  

 

1. 3. 2. 3. 2. Thermal Decomposition of Single Molecular Precursors 
 
 

   A non-hydrolytic synthetic approach extensively used for the preparation of 

nanocrystalline ferrites is the thermolysis of single molecular precursors (organometallic 

compounds or metal-fatty acid complexes) in high boiling point organic solvents (long-

chain ethers, amines, alkenes).159-161, 164, 165 A major advantage of such one-pot synthetic 

route is related to the possibility to obtain large amounts of variable-sized metal oxide 

nanoparticles with high crystallinity and tight size distributions.160 The similarity in both 

the size and the shape of the nanocrystals is critical for the formation of multidimensional 

architectures (superlattices) which can be used as building blocks for the design of 

nanoscale optical, electronic and magnetic devices. Several organometallic compounds 

and metal-fatty acid complexes have been used as precursor materials in the thermolysis 

process; these compounds along with the corresponding solvents and capping ligands are 

summarized in the Table 1.2.  

    Sun et al. synthesized highly crystalline MFe2O4 (M=Mn, Fe, Co) nanoparticles 

by refluxing solutions of metal acetylacetonates (M(acac)n, n=1, 2) in phenyl (or benzyl) 

ether in the presence of 1,2-hexadecanediol as a reducing agent under a protected 

atmosphere. The as-prepared nanocrystals stabilized with oleic acid and oleyl amine had 

narrow size distributions (σ<5%) and average diameters which can be varied between 3 

and 10 nm by increasing the reaction time and temperature. According to them, bigger 

ferrite particles (10-20 nm) can be obtained through the so-called “seed-mediated 
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growth” method, which consists of performing the reaction between metal 

acetylacetonates and 1,2-hexadecanediol in solutions containing variable amounts of the 

as-prepared nanoparticles (3-10 nm) serving as seeds.166, 167 

   However, because the thermolysis process presents some limitations due to the 

toxicity and high cost of the organometallic compounds ((η5-C5H5)CoFe2(Co)9)165, other 

metal sources have been considered as potential precursors for the preparation of the 

nanocrystalline metal oxides. There are several reports on the synthesis of ferrite 

nanoparticles by the thermal decomposition of the metal-fatty acid complexes.160, 161, 164 

Although most of these compounds are not commercially available, they represent 

attractive metal sources for the thermolysis reactions since they can be conveniently 

prepared from simple precursors and decompose at relatively low temperatures, typically 

around 300oC. For example, Yu et al. prepared an iron-oleate complex by dissolving 

FeOOH into a hot solution of oleic acid in 1-octadecene161, whereas Jana et al. and Park 

et al. obtained the metal precursors by treating the transition metal chlorides with sodium 

carboxylate (myristate, palmitate, stearate, oleate) salts.160, 164 The resulting metal-fatty 

acid complexes are subsequently converted into nanocrystalline ferrites by a thermolysis 

reaction in hot organic solvents (t~300-320ºC) in the presence of capping agents.160, 161, 

164 Alternatively, Wang et al. reported that the transition metal-fatty acid complexes can 

be obtained by exchange reactions taking place at the interface between the solid and the 

solution phases of a system containing a sodium fatty acid salt (solid), an aqueous 

solution of the transition metal salts (solution), and a fatty acid (liquid), respectively. 

Again, the resulting transition metal-fatty acid complexes undergo a thermolysis reaction  
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Table 1.2. Survey of Metal Precursors, Solvents and Capping Ligands Used in the 
Synthesis of Nanocrystalline Ferrites by Thermolysis Method 

 
Ferrite Metal Precursor Solvent Capping 

Ligand 
Particle 

Morphology 
Ref. 

 
γ-Fe2O3 

 
Fe(Cup)3 

Cup=C6H5N(NO)O- 

 
Octylamine 

 
 
 

 
Trioctylamine 

 
Spherical, 
5-10 nm 

 
159 
 
 

Fe3O4 FeO(OH) 
 
 

Fe(acac)3 

 
 

Fe(acac)3 

 

 
Fe(oleate)3 

 

 

 

 
 

Fe(oleate)3 
 

Fe(oleate)2 
 

1-Octadecene 
 
 

Benzyl Alcohol 
 
 

Phenyl Ether, 
1,2-Dodecanediol 

 
1-Hexadecene 

Octyl Ether 
1-Octadecene 

1-Eicosene 
Trioctylamine 

 
1-Octadecene 

 
1-Octadecene 

 
 

Oleic Acid 
 
 

Undecanoic acid 
Dopamine 

 
Oleic Acid, 
Oleylamine 

 
Oleic Acid 

 
 
 
 
 

Oleic Acid 
 

Oleic Acid 
 
 

Spherical, 
6-28 nm 

 
Spherical, 8 nm 

12 nm 
 

Spherical, 
4-14 nm 

 
Spherical, 5 nm 

9 nm 
12 nm 
16 nm 
22 nm 

 
Spherical, 
8-50 nm 

Cubic, 50 nm 
 

161 
 
 
162 
 
 
163 
 
 
160 
 
 
 
 
 
164 
 

CoFe2O4 (η5-C5H5)CoFe2(Co)9 Octyl Ether 
 

Oleic Acid 
Oleic Acid, 
Lauric Acid 

Spherical, 6 nm 
9 nm 

165 

MFe2O4 M(acac)n, n=2,3 
M=Fe, Co, Mn 

Fe3O4 
Phenyl Ether, 
Benzyl Ether 

 
CoFe2O4 

Phenyl Ether, 
Benzyl Ether 

 
MnFe2O4 

Phenyl Ether, 
Benzyl Ether 

 
Oleic Acid, Oleyl 

Amine 
 
 

Oleic Acid, Oleyl 
Amine 

 
 

Oleic Acid, Oleyl 
Amine 

 
Spherical, 
Hexagonal 
4-20 nm 

 
3-20 nm 

 
 
 

7-18 nm 

 
166 
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under solvothermal conditions yielding nanocrystalline ferrites (Fe3O4, CoFe2O4) with an 

average size of 10 nm and a tight size distribution. The nanoparticles’ dimensions can be 

controlled by varying several parameters, such as the reaction temperature, the capping 

agent/transition metal ions molar ratio and the nature of the capping ligand.168    

  In addition to the control over the chemical composition and the size of the 

nanoparticles, another advantage of the thermolysis reactions is represented by the 

possibility to control the shape of the resulting nanocrystals. The capping agent/metal 

precursor molar ratio as well as the reaction time and temperature were found to affect 

not only the size of the ferrite nanocrystals, but also their shape. 169, 170 For example, Zeng 

et al. demonstrated that the increase of the capping ligand/iron precursor molar ratio to 

3:1 produces a change of the shape of the oleic acid/oleyl amine-passivated MnFe2O4 

nanocrystals, prepared by the thermolysis of the metal acetylacetonates 

([Fe(acac)3]/[Mn(acac)2]=2/1), from spherical to cubic.169 Redl and coworkers studied the 

influence of the reaction time and the amount of capping ligand on the morphology of the 

iron oxide nanocrystals synthesized by the thermal decomposition of ferrous acetate in a 

solution containing trioctylamine and oleic acid. By decreasing the oleic acid/ferrous 

acetate molar ratio from 3:1 to 1.5:1, the morphology of the nanostructured iron oxide 

particles changes from spherical (4 nm) to a mixture of faceted (14 nm) and spherical (5 

nm). A further decrease of the molar ratio to 0.75:1 leads to the formation of cubically-

shaped nanocrystals (8 nm) with relatively tight size distribution (8%). Therefore, the 

decrease of the amount of oleic acid in the reaction solution is accompanied by 

significant alteration not only of the shape of the nanoparticles, but also of the size and 

size distribution. If both the molar ratio (0.75:1) and the reaction temperature (255ºC) are 
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kept constant, the increase of the reaction time from 10 min to 140 min causes a change 

of the shape of the particles from cubic (8 nm) to octahedral (19 nm).170    
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CHAPTER 2 

Reactivity of 3d Transition Metal Cations in Diethylene Glycol 

Solutions. Synthesis of Hydrocarbon-Soluble Transition Metal 

Ferrite Nanocrystals  
 
 

2.1 Introduction 

Transition metal ferrites are well-established materials for various technological 

applications due to their useful magnetic properties. Their composition, both elemental 

and stoichiometric, is easily altered without major structural changes, which permits 

tuning their ferrimagnetic properties in a wide range. Bringing the dimensionality of 

ferrites to the nanometer scale opens up new perspectives for cutting-edge applications, 

in high-density magnetic and magneto-optic recording media, ferrofluids, drug carriers, 

color imaging, and MRI contrast agents, etc.1-5 Additionally, high stability in different 

chemical environment, compared to metallic nanoparticles, makes ferrites particularly 

useful for biological and medical applications.6,7 Most of these areas require 

nanomaterials with the structure of discrete nanoparticles that can be dispersed or 

dissolved in some common solvents. Synthesis of nanocrystalline ferrites has been 

achieved using microemulsion techniques, where agglomeration is suppressed by the 

micellar structure of the reaction fluids. These  

techniques exploit the geometrically restricted growth of  particles in the nanometer space 

defined by either normal (oil in water) or inverse (water in oil) microemulsions stabilized 

by surfactants.8-13   
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 However, once products are liberated from solvent and surfactant, the resulting 

nanopowders would not be soluble in regular solvents. Solubility is one of the biggest 

challenges since nanocrystals of metal oxides tend to agglomerate due to their large 

surface energy. This problem can be overcome by passivating the surface of the 

(nano)crystal by attaching capping ligands. There are a number of reports on successful 

synthesis of nanoparticles of metals14-16 and metal chalcogenides17-22 stabilized by 

complexing with ligands containing long hydrocarbon chains. However, only a few 

publications deal with soluble nanoparticles of metal oxides.23-26 Although the developed 

methods for synthesis of capped metal oxides are reported to produce high-quality 

nanoparticles, their applicability at industrial scale remains questionable for a number of 

reasons, such as hazardous nature of precursors, hazardous or complicated process, high 

cost of the materials, and/or low product yield. The latter issue is worth pointing out with 

a special emphasis, since analysis of the literature data indicates that the yield of 

nanocrystalline products is rarely reported.  

In this work, we intended to develop a new method for synthesis of transition 

metal ferrites with the structure of discrete nanoparticles. This method was supposed to 

provide a high product yield, be versatile enough so that different transition metals can be 

used, and be easily scalable. To ensure the nanocrystalline state of the ferrites, their 

surface metal atoms would be complexed with capping ligands containing hydrocarbon 

chains of variable lengths as substituents. An initial issue for the designed strategy was to 

find a way to control kinetics of the nanoparticles growth. After evaluation of different 

types of reactions, we excluded ion metathesis reactions that usually run instantaneously 

yielding precipitates of a random morphology. The reaction of our choice is the 
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hydrolysis of metal complexes that can be performed in nonaqueous solutions. It seems 

that the rate of this reaction might be adjusted by varying either the concentration of 

water in nonaqueous solutions or the temperature. The nonaqueous approach seems also 

to be beneficial for solving the problem of the nanocrystals surface composition.  

 

2.2 Experimental  

2.2.1. Reagents. Chemicals and solvents were used as received from Aldrich, ZnCl2 

98%, FeCl2
.4H2O 99%, CoCl2·6H2O 98%, FeCl3·6H2O 97%, MnCl2·4H2O 98+%, 

CuCl2·2H2O 99+%, NaOH 97% (20-40 mesh beads),  diethylene glycol 99%, myristic 

acid 99.5%, oleic acid 90%, phenyl ether 99%, and methyl alcohol 99.8%, and from Alfa 

Aesar, CoCl2 99.7%, CoBr2 (Co 26.6%), NiCl2·6H2O 99.3%, and NaOCH3 98%.  

The air-sensitive chemicals were manipulated in a VAC glovebox with a nitrogen 

atmosphere. Syntheses were carried using Schlenk technique under argon. 

 

2.2.2. Synthesis Methods 

 

2.2.2.1  Preparation of Metal Ferrite Nanoparticles at Room- Temperature. 

A 1 mmol amount of MCl2·nH2O (M = Fe, Co, or Zn) and 2 mmol of FeCl3·6H2O were 

dissolved in 20 g of diethylene glycol (DEG) in a Schlenk flask under protection with 

argon. Separately, 8 mmol of NaOH was dissolved in 10 g of diethylene glycol. A 

solution of NaOH was added to solution of metal chlorides while stirring at room 

temperature causing an immediate color change. A mixture of 3.00 g of water in 3.00 g of 

diethylene glycol was added to the above solution. As the liquid turned turbid, the 



 72

reaction was stopped by adding 1 mmol of myristic acid dissolved in 10 mL of methanol. 

This addition caused immediate precipitation of solids. The mixture was stirred for 30- 

60 min at room temperature and then centrifuged. The precipitate was washed with 

methanol and redissolved in 20 mL of phenyl ether. The resulting solution was thermally 

treated in a Schlenk flask under protecting flow of argon. The temperature was raised to 

220 °C in the course of 30 min and kept for another 10 min. After cooling, the solution 

was mixed with 1-2 volumes of methanol and the precipitate was separated by 

centrifuging, washed with methanol, and dried under opened air or stored moistened with 

methanol. A typical yield of dark brown powders was 0.35-0.40 g. Powder X-ray 

diffraction data were consistent with a spinel structure. 

 

2.2.2.2. Preparation of Metal Ferrite Nanoparticles by the Elevated- Temperature 

Method. 

 

 MnFe2O4 (Method A) 

A 2 mmol amount of MnCl2
.4H2O and 4 mmol of FeCl3.6H2O were dissolved in 40 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 4 h, the temperature of solution was raised during 1 h to 210-220 °C and 

then kept constant for 0.5 h. As the solution turned turbid, the reaction was terminated by 

adding 2.3 mmol of oleic acid dissolved in 20 g of DEG. This addition caused immediate 

precipitation of solids. The mixture was cooled to room temperature and then centrifuged. 

The precipitate was washed with methanol and redissolved in 20 mL of toluene. The 
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resulting solution was centrifuged and mixed with 1-2 volumes of methanol. The 

precipitate was separated by centrifuging, washed with methanol, and dried under opened 

air or stored moistened with methanol. The yield of dark brown powder was 0.53 g. 

 

MnFe2O4 (Method B) 

A 1 mmol amount of MnCl2·4H2O and 2 mmol of FeCl3·6H2O were dissolved in 100 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 8 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 4 h, the temperature of the resulting solution was raised during 1 h to 200-

210 °C and then kept constant for 0.5 h. As the solution turned turbid, the reaction was 

terminated by adding 1 mmol of oleic acid dissolved in 20 g of DEG. This addition 

caused immediate precipitation of solids. The mixture was cooled to room temperature 

and then centrifuged. The precipitate was washed with methanol and redissolved in 10 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with methanol. The yield of dark brown 

powder was 0.25 g. 

 

FeFe2O4 (Method A) 

 A 2 mmol amount of FeCl2·4H2O and 4 mmol of FeCl3·6H2O were dissolved in 80 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 
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change. The temperature of the resulting solution was raised during 1-1.5 h to 210- 220 

°C and then kept constant for 0.5-1 h. As the solution turned turbid, the reaction was 

terminated by adding 2.6 mmol of oleic acid dissolved in 20 g of DEG. This addition 

caused immediate precipitation of solids. The mixture was cooled to room temperature 

and then centrifuged. The precipitate was washed with methanol and redissolved in 20 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with methanol. The yield of dark brown 

powder was 0.511 g. 

 

CoFe2O4 (Method A) 

A 2 mmol amount of CoCl2·6H2O and 4 mmol of FeCl3·6H2O were dissolved in 40 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 20 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 1 h, the temperature of solution was raised during 1.5 h to 180-190 °C and 

then kept constant for 1 h. As the solution turned turbid, the reaction was terminated by 

adding 2 mmol of oleic acid dissolved in 20 g of DEG. This addition caused immediate 

precipitation of solids. The mixture was cooled to room temperature and then centrifuged. 

The precipitate was washed with methanol and redissolved in 20 mL of toluene. The 

resulting solution was centrifuged and mixed with 1-2 volumes of methanol. The 

precipitate was separated by centrifuging, washed with methanol, and dried under opened 

air or stored moistened with methanol. The isolated yield of the obtained dark brown 

powder was 0.5 g. 
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CoFe2O4 (Method B) 

A 2 mmol amount of CoCl2
.H2O and 4 mmol of FeCl3·6H2O were dissolved in 80 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 2-2.5 h, the temperature of the resulting solution was raised during 1 h to 

220 °C and then kept constant for 0.5 h. As the solution turned turbid, the reaction was 

terminated by adding 2.5 mmol of oleic acid dissolved in 20 g of DEG. This addition 

caused immediate precipitation of solids. The mixture was cooled to room temperature 

and then centrifuged. The precipitate was washed with methanol and redissolved in 20 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with methanol. The isolated yield of dark 

brown powder was 0.5 g. 

 

NiFe2O4 (Method A) 

 A 2 mmol amount of NiCl2
.H2O and 4 mmol of FeCl3.H2O were dissolved in 40 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 4 h, a solution 1.2 g of water + 15 g of DEG was added in three equal 

portions while the temperature was raised during 1-1.5 h to 200- 210°C. Finally, the 

temperature was kept constant for 0.5-1 h. As the solution turned turbid, the reaction was 

terminated by adding 2.6 mmol of oleic acid dissolved in 20 g of DEG. This addition 
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caused immediate precipitation of solids. The mixture was cooled to room temperature 

and then centrifuged. The precipitate was washed with methanol and redissolved in 20 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with ethanol. The isolated yield of dark brown 

powder was 0.5 g. 

 

 
NiFe2O4 (Method B)  

A 2 mmol amount of NiCl2
.6H2O and 4 mmol of FeCl3

.6H2O were dissolved in 100 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 50 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 4 h, 1.0 g of water mixed with 10 g of DEG was added in two equal 

portions while temperature was raised during 1-1.5 h to 200-210 °C. Finally, the 

temperature was kept constant for 0.5-1 h. As the solution turned turbid, the reaction was 

terminated by adding 2 mmol of oleic acid dissolved in 20 g of DEG. This addition 

caused immediate precipitation of solids. The mixture was cooled to room temperature 

and then centrifuged. The precipitate was washed with methanol and redissolved in 20 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with methanol. The yield of dark brown 

powder was 0.525 g. 
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ZnFe2O4 (Method A) 

 A 1 mmol amount of ZnCl2 and 2 mmol of FeCl3·6H2O were dissolved in 20 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 8 mmol of 

NaOH was dissolved in 10 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 2-2.5 h, the temperature of the resulting solution was raised during 1 h to 

210 °C and then kept constant for another1 h. As the solution turned turbid, the reaction 

was terminated by adding 1.25 mmol of oleic acid dissolved in 10 g of DEG. This 

addition caused immediate precipitation of solids. The mixture was cooled to room 

temperature and then centrifuged. The precipitate was washed with methanol and 

redissolved in 20 mL of toluene. The resulting solution was centrifuged and mixed with 

1-2 volumes of methanol. The precipitate was separated by centrifuging, washed with 

methanol, and dried under opened air or stored moistened with methanol. The isolated 

yield of a brown powder was 0.32 g. 

 

ZnFe2O4 (Method B) 

A 2 mmol amount of ZnCl2 and 4 mmol of FeCl3·6H2O were dissolved in 40 g of 

diethylene glycol in a Schlenk flask under protection with argon. Separately, 16 mmol of 

NaOH was dissolved in 40 g of diethylene glycol. A solution of NaOH was added to 

solution of metal chlorides while stirring at room temperature causing an immediate color 

change. After 2-2.5 h, the temperature of the resulting solution was raised during 1 h to 

210 °C and then kept constant for another1 h. As the solution turned turbid, the reaction 

was terminated by adding 2.5 mmol of oleic acid dissolved in 20 g of DEG. This addition 

caused immediate precipitation of solids. The mixture was cooled to room temperature 
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and then centrifuged. The precipitate was washed with methanol and redissolved in 20 

mL of toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, and 

dried under opened air or stored moistened with methanol. The isolated yield of a brown 

powder was 0.5 g. 

 

2.2.3. Characterization Techniques 

 
Electron microscopy (TEM, HRTEM), EDX, and SAD were performed on a JEOL 2010 

transmission electron microscope. The samples were prepared by depositing the toluene 

solutions containing ferrite nanoparticles on the carbon-coated copper grids and drying at 

room temperature. The powder X-ray diffraction measurements were performed using a 

Philips X`Pert system equipped with a graphite monochromator (CuKα radiation, λ = 

1.54056 Ǻ); the X-ray diffraction patterns were recorded from 20 to 95 (2θ value) and 

analyzed using Philips X`Pert Suite of Programs. The IR spectra were recorded over the 

range 4000-500cm-1 with a Perkin-Elmer 1600 spectrometer; the samples were prepared 

as KBr pellets. Elemental analysis was performed by Galbraith Laboratories, Inc. on the 

powders resulted after sintering the ferrite nanoparticles. 

 

2.3 Results and Discussion 

 
2.3.1 Study of the reactivity of 3d transition metal cations in diethylene glycol 

solutions 

The newly designed method is different from currently available methods by its 

controlled stepwise character. Every step is responsible for a particular process, such as 
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metal complexation, hydrolysis/condensation, and terminating/capping ligation. 

Preliminary investigations revealed that diethylene glycol (DEG) can function as a 

complexing agent and a solvent for performing the synthesis. It remains liquid in a wide 

range of temperatures (-10 to 245°C) and has a high dielectric constant (ε = 32) that 

enables it to dissolve polar and ionic substances. In addition, the structure of its molecule 

is ideal for forming chelated complexes with metals, either neutral or anionic when its 

molecules are deprotonated. Application of DEG as a solvent was reported for synthesis 

of ZnO nanopowder by thermal decomposition of zinc acetate hydrate.27  

           Many of the first-row transition metal chlorides, both hydrated and anhydrous, are 

soluble in DEG, and this property was used for preparing their 0.1 or 0.2 m stock 

solutions. The tested cations include Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+. 

Anhydrous sodium hydroxide is also soluble in DEG, and its stock 0.8 m solution was 

used to perform reactions with metal precursors. Mixing both solutions in equivalent 

quantities usually causes immediate color change (in case of open-shell cations) without 

precipitation of any solids in all cases except for Cu2+. In the case of DEG and 

CoCl2
.6H2O, we found that its original 0.1 m deep blue solution turns to deep purple upon 

addition of 2 equiv of NaOH. The resulting solution is air-sensitive and turns brown on 

contact with oxygen. This can be explained by an increased energy splitting between 

metal orbitals (like between t2g and eg in octahedral complexes) when the softer ligands 

are replaced with the harder ones. Evidently, this facilitates oxidation of d7 Co2+ into d6 

Co3+ cation. The reaction between CoCl2 and NaOH was also tested in solutions of 

different polyols such as ethylene glycol and 1,1,1-tris(hydroxymethyl)propane (50% 

solution in ethanol), and it was found that precipitation of cobalt hydroxo salts (or 
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hydroxide) occurs instantaneously. This indicates the unique chelating properties of DEG 

that help to stabilize the complexed Co2+ in basic solution.  

        Two alternative scenarios were proposed for this observation. According to one, the 

softer Cl
- 
ligands are substituted with the harder OH

- 
in the inner sphere, but the metal 

atom remains chelated with DEG; according to the other, ligands remain intact, but 

chelated complex becomes deprotonated, so that the softer alcohol ligand is converted 

into the harder alkoxide. To identify the right path, similar reaction (with Co
2+

) was 

performed in different solvent, diethylene glycol monobutyl ether that cannot form a 

dianion as DEG does but has the same chelating strength. Mixing solutions of cobalt 

chloride and sodium hydroxide in this solvent caused immediate precipitation of cobalt 

hydroxy salts or cobalt hydroxide. This observation indicates that hydroxo groups of 

DEG are involved in the process and, thus, supports the second mechanism (Scheme 2.1). 

We also observed that precipitation of metal oxides does not happen even when the 

alkaline DEG solutions of anhydrous salts are heated to temperatures above 200°C. This 

probably would be different with a neutral dihydroxo complex and an alcohol form of 

DEG. Another method for identification of the reaction pathway would be spectroscopic, 

but unfortunately, due to band broadening, evaluation of the UV-vis spectra of DEG 

solutions containing CoBr2 instead of CoCl2 and NaH(OCH2CH2)2O or NaOCH3 instead 

of NaOH was inconclusive. The metal DEG complexes undergo nucleophilic substitution 

reactions when the temperature or concentration of water in the system is increased. This 

causes the beginning of condensation of mononuclear hydroxide reactive intermediates 

and eventually leads to precipitation of metal hydroxides or oxides (Scheme 2.1). The 

advantage of this method over a simple ion metathesis reaction is that the rate of nucleo-
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philic substitution reaction with neutral molecules of water is much lower. The crystal 

growth is slow enough to be monitored visually or using optical methods, and this 

process can be stopped at any moment. The reaction is terminated by adding a capping 

ligand that binds to the surface of growing nanoparticles and passivates it. Due to long 

hydrocarbon chains of capping ligands, the nanoparticles become insoluble in highly 

polar solvent DEG and immediately precipitate. We tested several long-chain 

carboxylates for their activity and found that in a form of sodium salts they did not react 

with metal oxide nanoparticles; only corresponding acids were reactive. In this study 

oleic CH3(CH2)7CHCH(CH2)7COOH and myristic CH3(CH2)12COOH acids were used as 

capping ligands. The described results have been used as a base for synthesis of the 

nanoscale metal oxides M
II
Fe

III
2O4 that have a cubic structure of spinel or inversed spinel 

as bulk solids. Solutions of two metal salts, FeCl3 and MCl2 (M = Mn, Fe, Co, Ni, and 

Zn), were used in stoichiometric ratio 2:1. We also tried to synthesize nanoparticles of γ-

Fe2O3 that has the same crystal structure.  

 

    2.3.2. Synthesis of Ferrite Nanoparticles by Room-Temperature Hydrolysis  

 

            This method was applied for synthesis of Fe, Co, and Zn ferrites. The diethylene 

glycol (DEG) solution of metal chlorides containing a stoichiometric quantity of sodium 

hydroxide is treated with water (2-3 g/30 mL of reaction solution) mixed with equal 

amount of DEG. The reaction of hydrolysis was performed at room temperature, and as 

the solution turned turbid, the capping agent (myristic acid) dissolved in methanol was 

added to stop the reaction. The precipitated nanoparticles contained cores with mixed 

metal hydroxides that were still partially ligated with DEG (this was evidenced by IR  
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Scheme 2.1. Formation of ferrite nanoparticles in diethylene glycol solutions by elevated 

temperature method. 
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spectra) and had low crystallinity. To convert them into mixed-metal oxide nanoparticles, 

thermal treatment was necessary. For obtaining bulk metal oxides, corresponding 

powdered hydroxides usually undergo thermal treatment; dehydration is accompanied by 

crystallization. This conventional thermal dehydration could not be used in the synthesis 

of ferrite nanoparticles since the products loose their identity as nanocrystalline, and also 

they cannot be obtained as individual nanoparticles soluble in organic solvents. Since our 

raw products were colloidal hydroxides stabilized with long-chain carboxylates, they 

were soluble in different nonpolar solvents. This made possible to perform their 

dehydration and crystallization by thermal treatment in solutions of high-boiling low-

polar solvents (Scheme 2.2). Phenyl ether (b.p. 259°) was found to be a good candidate as  

solvent, allowing the thermal treatment of the solutions in the temperature range 220-

250°C.  The resulting nanocrystalline products were stable against aggregation and 

remained in solution. To isolate them, 1-2 volumes of methanol were added to the 

solution at room temperature. The suspensions were centrifuged, and the solids were 

washed with methanol.  

           Ligand composition of the ferrite nanoparticles was identified using IR 

spectroscopy. Figure 2.1 shows the IR spectra of the intermediate product ZnFe2O4 

containing DEG (a) and ZnFe2O4 nanoparticles capped with myristate anion and obtained 

by room temperature method (b). The IR spectrum of the intermediate product ZnFe2O4 

shows strong bands at 3401.1 cm-1 and 1055.2 cm-1 corresponding to O-H and C-OH 

stretching vibrations, respectively. Strong bands are also observed at 2931 cm-1 and 

2870.2 cm-1 which can be attributed to the asymmetric and symmetric stretches of the 

CH2 group in diethylene glycol. The shoulder at 1119.9 cm-1 can be assigned to the  
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Figure 2.1. IR spectra of the intermediate product ZnFe2O4 containing diethylene glycol (a) 
and ZnFe2O4 nanoparticles capped with myristate anion and obtained by room temperature 

method (b). 
 
 
 
 
 

  {M(OH)2 + 2Fe(OH)3}X[O2CR]Y {MFe2O4}X[O2CR]Y + 4XH2O 
 

Scheme 2.2. Dehydration of the mixed-metal hydroxide nanoparticles stabilized with 
long-chain carboxylate anions. 
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C-O-C stretching vibration. The IR spectrum also reveals a relatively weak absorption 

band at 1454.8 cm-1 corresponding to the symmetric bending mode of the methylene 

group. The band at 902.5 cm-1 was associated with a deformation mode of CH2 group. 

 The second spectrum identifies long-chain carboxylate groups (strong band at 1538.5 

cm-1 corresponding to asymmetric COO- stretching mode and at 1455.1cm-1 assigned to 

symmetric COO- stretching vibration)28  as well as hydroxo groups of the residual DEG 

or metal hydroxides (broad band at 3410.3cm-1). The two strong bands at 2923.1 cm-1 and 

2846.2 cm-1 are due to asymmetric and symmetric CH2 stretching modes, respectively.29 

The “fingerprints” region of both spectra closely resembles the spectra of free DEG and 

sodium myristate, respectively.  

 

 2.3.3. Synthesis of Ferrite Nanoparticles by the Elevated-Temperature Hydrolysis.  

 
          This method was applied for synthesis of Mn, Fe, Co, Ni, and Zn ferrites. The high 

boiling point of diethylene glycol (245°C) allowed performing the reactions of hydrolysis 

at elevated temperature. This modification of the process requires a smaller quantity of 

water present in solution; in the case of Mn
2+

, Fe
2+

, Co
2+

, and Zn 
2+

, no water was added 

in addition to those few equivalents introduced together with metal salt hydrates. The 

reaction solutions containing stoichiometric quantities of metal salt hydrates and sodium 

hydroxide were heated to 190-220°C. As the solution turned turbid, the reaction was 

stopped by adding a DEG solution of capping ligand (oleic acid). This addition caused 

immediate decomposition of the colloid and precipitation of the product. After cooling, 

the product was isolated by centrifugation, washed with methanol, dissolved in toluene, 

and reprecipitated by adding methanol. Since the resulting nanoparticles were formed in 
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an anhydrous, highly crystalline form, the additional step of annealing in solution of 

high-boiling low-polar solvent was not necessary (Scheme 2.1).   

          The isolated yield of the nanopowders after air-drying was 75-90%; the yield was 

calculated after the metal oxide content was determined. The as-prepared ferrite 

nanopowders were highly soluble in toluene producing deep brown solutions that 

exhibited neither turbidity nor a Tyndall effect with a laser beam and were stable for 

indefinitely long time. These systems can be considered as colloidal in terms of size of 

the dispersed phase. On the other hand, they are stabilized similarly to molecular systems 

rather than colloidal with electric double layers. For this reason the term “solution” was 

used instead of term “dispersion”.  

TEM images for all ferrites obtained by elevated-temperature method are 

displayed in Figure 2.2 (a-e). As it follows from these images, the particles have spherical 

shape and size between 3 and 7 nm for different metal ferrites and are clearly deposited 

apart from each other. Corresponding histograms are displayed in Figure 2.3 (a-e). The 

data on mean particle size and calculated standard deviations for all metal ferrites 

(synthesized using both the room-temperature and elevated-temperature methods) are 

given in Table 2.1. Products obtained by elevated-temperature method are labeled as (A) 

and (B). The main difference between these products is in concentration of the reaction 

solutions. The overall concentration of metal cations in case of (A) was 0.075-0.15 m 

while in case of (B) it was 0.03-0.075 m. The presented data indicate that there is no clear 

relationship between the concentration of solutions and the size and size distribution of 

the obtained nanoparticles. High-resolution TEM images often exhibit crystal lattice, as it 

is evident for a nanoparticle of manganese ferrite shown in Figure 2.4. 
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Figure 2.2. Bright field TEM images of MnFe2O4 (a), FeFe2O4 (b), CoFe2O4 (c), NiFe2O4 
(d), and ZnFe2O4 (e); Fe ferrite was obtained using method (A), whereas Mn, Co, Ni, and Zn 

ferrites were synthesized using method (B). 
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Figure 2.3. Particle size histograms of MnFe2O4 (a), FeFe2O4 (b), CoFe2O4 (c), NiFe2O4 
(d), and ZnFe2O4(e); Fe ferrite was prepared using method (A), whereas Mn, Co, Ni, and Zn 

ferrites were synthesized using method (B). 
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Table 2.1. Size of the Transition Metal Ferrites Nanoparticles (Determined from TEM Images). 
 
            I) Obtained by Room-Temperature Method 
 

Metal Ferrite Mean Particle Size (nm) Relative Standard Deviation (%) 
FeFe2O4 4.2 18 

CoFe2O4 4 a 

ZnFe2O4 3 a 
a Accurate measurements were not possible due to the lack of sharpness 

 
 
 
 

 
 
           II) Obtained by Elevated-Temperature Method 
 

Metal Ferrite Mean Particle Size (nm) Relative Standard Deviation (%) 
MnFe2O4  (method A) 

MnFe2O4  (method B) 

6.6 

5.3 

28 

16 

 

FeFe2O4 (A) 

 

6.6 

 

11 

 

CoFe2O4 (A) 

CoFe2O4 (B) 

 

3.3 

4.2 

 

10.5 

18 

 

NiFe2O4 (A) 

NiFe2O4 (B) 

 

3.6 

5.3 

 

19 

13.4 

 

ZnFe2O4(A) 

ZnFe2O4(B) 

 

5.1 

5.6 

 

11 

12 
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Figure 2.4. High-resolution TEM image of 

one particle of MnFe2O4 
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This micrograph reveals lattice fringes with a distance between two adjacent fringes of 

0.5962 nm corresponding to {110} family of planes. This value leads to an estimated 

lattice parameter of 8.4326 Å, which is in a good agreement with that calculated from 

powder X-ray data (8.439(1) Å; Figure 2.5) and previously reported for bulk MnFe2O4 

(8.499 Å; ASTM file No. 10-319).  

            The attempt to synthesize nanoparticles of γ-Fe2O3 using high-temperature 

method yielded nanopowder with poor crystallinity and solubility; no information about 

its particle size could be obtained. Phase composition was evaluated using powder X-ray 

diffractometry; in all cases the observed pattern corresponded to a crystal lattice with 

cubic symmetry. Diffractograms of all transition metal ferrites synthesized by the 

elevated-temperature method are displayed in Figure 2.5. The diffraction peaks are 

broadened due to the reduced size of the particles. The mean particle size was determined 

from the full width  at half maximum (FWHM) of the three most intense peaks by using 

the Scherrer`s equation. Calculation of a particle size for ZnFe2O4 using peak broadening 

gave the result of 4.95 nm, while the TEM experiment gave the value of 5.60 nm. 

              In order to determine the metal oxide content of the as-prepared transition metal 

ferrite nanopowders, a quantitative analysis using a combustion method was performed. 

Sintering under open air at 400-600°C caused their complete deligation and aggregation 

with formation of larger crystallites; diffractograms of both nanopowder and sintered 

ZnFe2O4 are displayed in Figure 2.6. The residual after sintering nanopowders have been 

analyzed (Galbraith Laboratories, Inc.) to determine their metal ratio; the results are 

presented in the Table 2.2. 
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Figure 2.5. Typical powder X-ray diffractograms of MnFe2O4 (a), FeFe2O4 (b), CoFe2O4 
(c), NiFe2O4 (d), and ZnFe2O4 (e); Fe ferrite was prepared using method (A), whereas Mn, 

Co, Ni, and Zn ferrites were synthesized using method (B). 
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Figure 2.6. Powder X-ray diffractograms of 5.1 nm-sized ZnFe2O4 particles 
obtained by the elevated-temperature method (a) and bulk material obtained by 

sintering of the nanopowder (b). 
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Table 2.2. Results of Quantitative Analysis of the Obtained Nanocrystalline Ferrites 

 

              I) By room-temperature hydrolysis method 

 

Metal ferrite Metal oxide content 
(wt %) 

Metal content in 
sintered samples 

(wt %) 

Ratio of metals, 
Fe : M (M = Co, Zn)

FeFe2O4 73.9 - N/A 

CoFe2O4 48.7 Fe (51.43); Co (19.41) 2.80 

ZnFe2O4 47.2 Fe (48.95); Zn (22.68) 2.53 

 
 
 
                 II) By elevated-temperature hydrolysis method 

  

Metal ferrite Metal oxide content 
(wt %) 

Metal content in 
sintered samples 

(wt %) 

Ratio of metals, 
Fe : M 

(M = Mn, Co, Ni Zn) 
MnFe2O4 78.4 Fe (54.16); Mn (21.03) 2.53 

FeFe2O4 76.4 - N/A 

CoFe2O4 61.4 Fe (50.69); Co (24.30) 2.20 

NiFe2O4 69.6 Fe (49.19); Ni (26.09) 1.98 

ZnFe2O4 65.2 Fe (52.43); Zn (24.81) 2.47 
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Analytical and TEM data indicate that both room-temperature and elevated-temperature 

synthetic methods gave good results for iron ferrite, while, in the case of cobalt and zinc 

ferrites, the latter method gave products of a better quality. On the basis of the obtained 

metal oxide content data for the sample of CoFe2O4, a molar ratio of CoFe2O4 to oleate 

anion was found to be 1.905:1. This corresponds to a fraction of metal atoms bearing an 

oleate anion of 0.175. Evidently, these atoms are located on the surface of nanocrystals. 

The following steps were used to calculate the percent coverage of the surface metal 

atoms with oleate ligands.30 A particle diameter of 3 nm determined by TEM was used to 

calculate its volume. This value and a bulk density of 5.2 g/cm
3 

were used to calculate the 

nanoparticle mass, the number of moles, the number of CoFe2O4 formula units, and 

finally the number of metal atoms/particle. Similar calculations were performed for a 

hypothetical particle derived from the original particle with a radius of 1.5 nm minus the 

surface atomic layer estimated as an average M-O distance of 1.95 Å. The number of 

metal atoms on the surface of nanoparticles was calculated by subtracting the second 

value from first. Finally, the fraction of these atoms over total number of metal atoms 

was found to be 0.34. A similar result (0.365) was obtained by using the formula F= 

4/n
1/3

, where F is the fraction of  the surface atoms and n is the total number of atoms.31 

As it was shown above, the fraction of metal atoms bearing oleate anion was 0.175, 

which is ~50% of all surface metal atoms. It is possible that every carboxylate anion acts 

as a bidentate bridging ligand that coordinates to two adjacent metal atoms.  
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2.4 Conclusion  

 
      A new method for synthesis of nanocrystalline transition metal ferrites with 

structure of discrete nanoparticles stabilized with carboxylate capping ligands was 

developed. Nanoparticles of Mn, Fe, Co, Ni, and Zn ferrites with a diameter of 3-7 nm 

and an isolated yield 75-90% were obtained. Since the surface of the nanoparticles is 

capped with long-chain carboxylate anions, they are soluble in non-polar solvents 

forming solutions which are stable for long periods of time. The obtained products were 

characterized with TEM imaging, elemental analysis, IR spectroscopy, and X-ray 

diffractometry. We believe this method can be used for the synthesis of other types of 

nanocrystalline metal oxides. 
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                                                               CHAPTER 3 

Synthesis of variable-sized nanocrystals of Fe3O4 with high 

surface reactivity 
 
 

3.1. Introduction 

          Nanocrystalline metal oxides are generally synthesized by a variety of methods 

based on relatively simple chemical reactions yielding products with desired 

composition, purity and crystal structure.  Obtaining the nanocrystals with variable and 

uniform size is a significant challenge however because controlling the crystal growth in 

all its steps is not easy to accomplish.  Many common methods are rooted in the ion 

metathesis reactions in solution.  These straightforward reactions provide good yield and 

purity of the products, but they occur instantly on mixing and leave little possibility to 

control the course of the crystallization.  Different techniques were developed in order to 

address this problem.  According to one of them, ion metathesis reactions are performed 

under strictly controlled conditions of mixing, such as addition of the dilute reactant 

solutions at a restricted rate with vigorous stirring and maintaining the proper 

temperature.1-9  The nanocrystal growth is controlled also by performing metathesis 

reactions in heterogeneous media of microemulsions where aqueous micelles of variable 

sizes act as microreactors.10-15  In a third method, the precipitating agent (OH-) is slowly 

generated in aqueous solution by hydrolysis of a molecular precursor (urea, urotropin, 

etc.).16-18  The greatest advantage of these techniques is that the surface of the produced 

nanocrystals remains active and available for post-synthesis chemical modification. 



 100

           Other methods use the nucleophilic property of water in hydrolysis of metal 

precursors. Reactions usually are slower than ion metathesis reactions and therefore 

crystallization is easier to control.  Hydrolysable salts of metal ions are used for synthesis 

of corresponding oxides in colloidal form by their forced hydrolysis under hydrothermal 

conditions19-21 or in a high-boiling solvents.22, 23 Hydrolysis in non-aqueous solutions has 

been applied also to metal alkoxides24, 25 and β-diketonates,26-29 offering a convenient 

route to the uncapped nanoparticles. 

         A different synthetic approach replaces the hydrolysis or ion metathesis reactions 

by thermal decomposition of oxygen-rich molecular precursors or metal carbonyls in the 

presence of oxygen or oxygen donors in solutions of high-boiling nonpolar solvents.30-38  

This technique offers a convenient way to manipulate the kinetics of crystallization and 

therefore the nanocrystal dispersity.  The thermal decomposition technique is usually 

used in conjunction with tactical targeting control over composition of the surface of 

growing nanocrystals.  The synthesis reactions are performed in the presence of 

complexing agents that reversibly bind to the coordinatively unsaturated metal atoms at 

the crystal surface. These complexing agents (capping ligands) contain one or more 

substituents that provide steric separation between nanocrystals and adjust their affinity 

to the medium, stabilizing their colloids. Capping ligands39-42 and coordinating 

polymers43-45 are sometimes used also to passivate the nanocrystal surface in combination 

with hydrolytic and ion metathesis methods. 

  In this chapter we describe a new method that allows the scaled preparation of 

uncapped nanocrystalline metal oxides with variable size and composition and high 

crystallinity. The method is based on the reaction between chelate metal alkoxide 
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complexes and water at elevated temperature in solutions of the parent chelating alcohols.  

The isolated uncapped nanocrystals retain a chemically active surface that is available for 

further derivatization.  Nanocrystals in this state are capable of forming stable aqueous 

colloids without using capping ligands or surfactants.  The developed method represents 

a highly economical and facile “green” process that can be used for scaled preparations.  

This method may contribute to the development of new catalysts, functional magnetic 

and optoelectronic materials and biocompatible magnetic materials for their application 

in biology and medicine as diagnostic and therapeutic tools.  

 

 

3.2. Experimental 

         3.2.1. Chemicals.  The reagents and solvents were purchased from the following 

companies: Iron(III) chloride hexahydrate 97%, toluene 99.5%, methyl alcohol 99.8%, 

and hexanes 98.5% from Merck; diethylene glycol 99%, N-methyl diethanolamine 99+%, 

sodium hydroxide 97% (20-40 mesh beads), ethyl acetate 99.5%, and decane 99+% from 

Aldrich; iron(II) chloride tetrahydrate 99% from Alfa Aesar; oleic acid 90% from Fisher; 

and absolute ethyl alcohol from AAper Alcohol and Chemical Co.  Chemicals and 

solvents were used without further purification. The air-sensitive chemicals were 

manipulated in a VAC glovebox with a nitrogen atmosphere.  

          3.2.2. Synthesis. All syntheses were carried out using Schlenk technique under 

argon atmosphere.  

3.2.2.1. Preparation of magnetite nanoparticles in diethylene glycol solutions.  A 2 

mmol amount of FeCl2·4H2O and 4 mmol FeCl3·6H2O were dissolved in 80 g of 

diethylene glycol (DEG) in a Schlenk flask under protection with argon. Separately, 16 
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mmol of NaOH was dissolved in 40 g of diethylene glycol. The solution of NaOH was 

added to the solution of metal chlorides with stirring at room temperature causing an 

immediate color change from yellow-brown to deep green-brown. After 3 hours, the 

temperature of solution was raised during 1.5 h to 210oC and then kept constant for 2 h in 

the temperature range 210-220°C. The solid product was isolated by cooling the reaction 

mixture to room temperature and centrifuging. A black solid was obtained and washed 

with ethanol twice and with a mixture of ethanol and ethyl acetate (1:1, v/v) three times 

to remove the excess of diethylene glycol and dried in a flow of nitrogen.  The typical 

yield was 95-96%. When reactivity tests or the preparation of colloids were planned, the 

solids were used without drying.   

 In order to obtain iron oxide nanoparticles soluble in nonpolar solvents, a 

diethylene glycol solution of oleic acid (2.6 mmol oleic acid per 20 g DEG) was added to 

the reaction mixture at high temperature. This addition immediately precipitated the 

solids. The mixture was cooled to room temperature and then centrifuged. The 

precipitates were washed with methanol and dissolved in 20 ml toluene. The resulting 

solution was centrifuged and mixed with 2-3 volumes of methanol. The precipitate was 

separated by centrifuging, washed with methanol and kept either moistened with 

methanol or dispersed in nonpolar solvents (hexanes, toluene, and decane).   

3.2.2.2. Preparation of magnetite nanoparticles in a mixture of diethylene glycol and 

N-methyl diethanolamine (3:1, w/w).  A 2 mmol amount of FeCl2·4H2O and 4 mmol 

FeCl3·6H2O were dissolved in 60 g of diethylene glycol (DEG) in a Schlenk flask under 

argon. When the salts were completely dissolved, 20 g of N-methyl diethanolamine 

(NMDEA) was added and the solution immediately turned from yellow-brown to deep 
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brown-green. The resulting solution was stirred for 1 h at room temperature. Separately, 

16 mmol of NaOH was dissolved in 30 g of diethylene glycol and then mixed with 10 g 

N-methyl diethanolamine. The solution of NaOH was added to the solution of metal 

chlorides with stirring at room temperature causing an immediate color change from deep 

brown-green to deep green. After 3 h, the temperature of solution was raised during 1.5 h 

to 210°C and then kept constant for 3 h in the temperature range 210-220°C.  After 

cooling, the solid product was isolated by centrifuging, washing with ethanol twice and 

with a mixture of ethanol and ethyl acetate (1:1, v/v) three times and drying in a flow of 

nitrogen.  

           Magnetite nanoparticles soluble in nonpolar solvents were obtained by heating to 

reflux for 0.5-1 h a mixture containing 165 mg of black powder and a toluene solution of 

oleic acid (0.89 mmol oleic acid per 50 ml toluene). A deep brown solution was obtained 

and the solid product was re-precipitated by adding 1-2 volumes of methanol and then 

washed several times with methanol to remove the excess of oleic acid. The precipitate 

was kept either moistened with methanol or dispersed in nonpolar solvents (hexanes, 

toluene, and decane).  

3.2.2.3. Preparation of magnetite nanoparticles in a mixture of diethylene glycol and 

N-methyl diethanolamine (1:1, w/w).  A 2 mmol amount of FeCl2·4H2O and 4 mmol 

FeCl3·6H2O were dissolved in 40 g of diethylene glycol (DEG) in a Schlenk flask under 

argon. When the salts were completely dissolved, 40 g of N-methyl diethanolamine 

(NMDEA) was added and the solution immediately turned from yellow-brown to deep 

brown-green. The resulting solution was stirred for 1 h at room temperature.  Separately, 

16 mmol of NaOH was dissolved in 20 g of diethylene glycol and then mixed with 20 g 
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N-methyl diethanolamine. The solution of NaOH was added to the solution of metal 

chlorides with stirring at room temperature causing an immediate color change from deep 

brown-green to deep green. After 3 h, the temperature of solution was raised during 1.5 h 

to 210 °C and then kept constant for 3 h in the temperature range 210-220 °C. After 

cooling, the solid product was isolated by centrifuging, washing with ethanol twice and 

with a mixture of ethanol and ethyl acetate (1:1, v/v) three times and drying in a flow of 

nitrogen. The typical isolated yield of black powders was 80-90 % (for products 

containing 96-97 % of metal oxide).  

             Magnetite nanoparticles soluble in nonpolar solvents were obtained by heating to 

reflux for 0.5-1 h a mixture containing 80 mg of black powder and a toluene solution of 

oleic acid (0.5 mmol oleic acid per 25ml toluene). A deep brown solution was obtained 

and the solid product was re-precipitated by adding 1-2 volumes of methanol and then 

washed several times with methanol to remove the excess of oleic acid. The precipitate 

was kept either moistened with methanol or dispersed in nonpolar solvents (hexanes, 

toluene, and decane).  

3.2.2.4. Preparation of magnetite nanoparticles in a mixture of diethylene glycol and 

N-methyl diethanolamine (1:3, w/w).  A 2 mmol amount of FeCl2·4H2O and 4 mmol 

FeCl3·6H2O were dissolved in 20 g of diethylene glycol (DEG) in a Schlenk flask under 

argon. When the salts were completely dissolved, 60 g of N-methyl diethanolamine 

(NMDEA) was added and the solution immediately turned from yellow-brown to deep 

brown-green. The resulting solution was stirred for 1 h at room temperature.  Separately, 

16 mmol of NaOH was dissolved in 10 g of diethylene glycol and then mixed with 30 g 

N-methyl diethanolamine. The solution of NaOH was added to the solution of metal 
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chlorides with stirring at room temperature causing an immediate color change from deep 

brown-green to deep green. After 3 h, the temperature of solution was raised during 1.5 h 

to 210 °C and then kept constant for 4 h in the temperature range 210-220 °C. After 

cooling, the solid product was isolated by centrifuging, washing with ethanol twice and 

with a mixture of ethanol and ethyl acetate (1:1, v/v) three times and drying in a flow of 

nitrogen.   

            Magnetite nanoparticles soluble in nonpolar solvents were obtained by heating to 

reflux for 0.5-1 h a mixture containing 120 mg of black powder and a toluene solution of 

oleic acid (0.64 mmol oleic acid per 25 ml toluene). A deep brown solution was obtained 

and the solid product was re-precipitated by adding 1-2 volumes of methanol and then 

washed several times with methanol to remove the excess of oleic acid. The precipitate 

was kept either moistened with methanol or dispersed in nonpolar solvents (hexanes, 

toluene, and decane).  

3.2.2.5. Preparation of magnetite nanoparticles in N-methyl diethanolamine 

solutions.  A 2 mmol amount of FeCl2·4H2O and 4 mmol FeCl3·6H2O were dissolved in 

40g of N-methyl diethanolamine (NMDEA) in a Schlenk flask under protection of argon.  

Separately, 16 mmol of NaOH was dissolved in 40  g of N-methyl diethanolamine. Then, 

a solution of NaOH was added to solution of metal chlorides while stirring at room 

temperature causing an immediate color change from deep brown to deep green. After 

3 h, the temperature of solution was raised during 1.5 h to 210 °C and then kept constant 

for 4 h in the temperature range 210-220 °C. The solid product was isolated by cooling 

the reaction mixture to room temperature and then centrifuging. A black solid was 

obtained and washed with ethanol twice and with a mixture of ethanol and ethyl acetate 
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(1:1, v/v) three times and dried in a flow of nitrogen. The yield of black powder was 

0.294 g (63%).  

          3.2.3. Characterization.  The structure and phase purity of the nanopowders were 

investigated by X-ray diffractometry (XRD). The measurements were performed with a 

Phillips X`pert system equipped with a graphite monochromator (CuKα  radiation, 

λ=1.54056 Å). A JEOL JEM 2010 transmission electron microscope (TEM) at an 

accelerating voltage of 200 kV was used to examine the particles morphology. 

Additionally, high-resolution transmission electron microscopy (HRTEM) images and 

selected area electron diffraction (SAED) patterns were taken in order to determine the 

nanocrystal structure. Thermogravimetric analyses (TGA) were performed in both air and 

argon at a heating rate of 2 °C/min up to 600 °C using a SDTQ600 analyzer. The NMR 

studies were performed on a Varian Gemini-300 spectrometer. FT-IR spectra were 

obtained on a Perkin-Elmer 1600 spectrometer.  

 

3.3 Results and Discussion 

          In our earlier studies on the synthesis of nanocrystalline spinel-structured oxides, 

we have found that diethylene glycol is a convenient reaction medium46 due to its useful 

physical and chemical properties.47 The high boiling point (245oC) of this solvent makes 

it suitable for variable-temperature syntheses, which is desirable for controlling the rate 

of reaction and also for obtaining products with improved crystallinity. Diethylene glycol 

has high permittivity (ε = 32), enabling it to dissolve highly polar inorganic and a variety 

of organic compounds and also to promote reactions whose pathways run through highly 

polar or ionic intermediates. 



 107

            As we found previously, the chelating ability of DEG inhibits the formation of 

metal hydroxides/oxides in solutions containing stoichiometric quantities of transition 

metal salts and sodium hydroxide.46 Introduction of a controlled amount of water in these 

solutions causes hydrolysis of chelated complexes with formation of metal oxides or 

hydroxides depending on the temperature, with nearly quantitative yield.  The structure of 

complexes existing in solution is not known, but there is evidence that the metal ion 

coordination sphere contains deprotonated DEG and Cl- ligands (Scheme 3.1). The rate of 

this reaction can be easily controlled by changing the concentration of water and 

temperature. The course of reaction is monitored visually and as the solution turns turbid, 

the reaction is considered to be complete.   

               In our earlier studies, we next added long-chain carboxylic acids to cap the 

surface of nanoparticles and isolated them as nanopowders. A series of transition metal 

ferrites (MO)xFe2O3 (M = Mn, Fe, Co, Ni and Zn; x = 0.7-1) was obtained.46 In the 

current study we addressed the problem of tuning the particle size and the details of the 

surface chemistry of the nanocrystalline oxides. We focused exclusively on iron ferrite 

(magnetite) while keeping in mind that our results should apply also to other transition 

metal ferrites. 

       3.3.1. Synthesis.  In order to obtain non-aggregated nanoparticles with a chemically 

active surface, we eliminated the step of capping the nanoparticles with the long-chain 

carboxylic acid.  As a stoichiometric quantity of NaOH (8 equivalents) dissolved in DEG 

is added to the solution containing 1 equivalent of FeCl2
.4H2O and 2 equivalents of 

FeCl3
.6H2O dissolved in the same solvent, an immediate color change from yellow-

brown to deep green-brown  occurs. We explained this46 in terms of deprotonation of the 
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coordinated alcohol DEG and formation of anionic chelate alkoxide complex (Scheme 

3.1).  The resulting solution stays unchanged indefinitely at room temperature if protected 

from air, but gets oxidized quickly if exposed to air and turns deep yellow. Raising the 

temperature to 150oC and then to 210-220oC causes gradual color change to red-brown 

and then dark brown with increasing turbidity. As this temperature is maintained for 2 

hours, a black suspension forms and heating is stopped. After a simple workup procedure 

using ethanol and ethyl acetate, the nanopowders are isolated with high yield and tested 

for their crystal structure and morphology and for reactivity. We performed a series of 

synthetic experiments varying the rate and time of heating and concentration of the 

reagents and found no significant difference in the nanocrystals’ shape and size with an 

average value of 5.7 nm (Figures 3.2a and 3.3a). If the step of aging is shortened to less 

than 1 hour, the quality of the nanocrystals is low, no lattice fringes can be seen, and the 

edges are diffuse. Our attempts to obtain larger particles by injecting an additional 

quantity of the reaction solution in the hot solution of the seed nanoparticles yielded a 

product with wider size distribution. This result indicated that nucleation and growth 

occurred with a similar rate. 

            The results show that under various conditions the particle morphology did not 

change significantly and prompted us to increase the complexing strength of the reaction 

medium. Such a change might provide a better control over the rate of hydrolysis of 

metal chelates, help to stabilize colloids, and therefore obtain larger nanocrystals. The 

thermal decomposition of triethanolamine-based chelate  complexes of iron, cobalt and 

nickel in aqueous solution at 250oC (hydrothermal synthesis) has been used to synthesize 

corresponding oxides as micrometer-sized crystals.48, 49 We chose to use diethanolamine,    
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Scheme 3.1.  Formation of metal chelate complex and its decomposition yielding 

colloidal transition metal ferrite. 
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a compound related to both triethanolamine and DEG and whose complexing and 

chelating properties are well-established.50-53 Because diethanolamine (DEA) has 

hydrogen bonding more extended than DEG, its physical properties are substantially 

different, and it has higher viscosity and boiling point. N-methyl diethanolamine 

(NMDEA), on the other hand, has physical properties similar to those of DEG but 

complexing properties similar to diethanolamine. We performed a series of syntheses of 

nanocrystalline magnetite in neat NMDEA and in its 3:1, 1:1, and 1:3 mixtures with DEG 

while keeping all other parameters unchanged. Magnetite nanocrystals were also 

prepared from a 1:1 mixture of DEG and DEA and the results were compared with those 

obtained when NMDEA is used as a chelating solvent instead of DEA.  

As a stoichiometric quantity of NaOH (8 equivalents) dissolved in 1:1 

DEG/NMDEA solvent mixture is added to a solution containing 1 equivalent of 

FeCl2
.4H2O and 2 equivalents of FeCl3

.6H2O dissolved in the same solvent, the color 

changes from brown-green to green immediately. Upon heating, the solution becomes 

dark green-brown at 180-190°C and then the color gradually changes to dark brown when 

the temperature reaches 210°C. At this temperature, a slight turbidity becomes noticeable. 

The turbidity increases in time with the formation of a black suspension as the reaction 

mixture is exposed at 210-220°C for 3 hours. In contrast, turbidity appears at 150-160oC 

in DEG-solution systems. The progress of crystallization was monitored by taking 

aliquots of solution at different time intervals after reaching 180°C. The TEM tests at 

early times showed shapeless 11-16 nm agglomerates formed from small (4-6 nm) 

nanoparticles (Figure 3.4a). High resolution images clearly showed lattice fringes on 

many of these agglomerates (Figure 3.4b).  Remarkably, the fringes were aligned within 
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many agglomerates.  As the annealing is continued at 210-220oC for 2-3 hours, the initial 

shapeless solid formations are gradually converted into compact nanocrystals with an 

average size 12.7 nm and well-developed crystal lattice (Figures 3.2c, 3.3c and 3.4c).  By 

varying the solvent weight ratio (DEG/NMDEA) from 1:1 to 3:1 and 1:3, changes in the 

final size of the magnetite nanocrystals are observed. TEM measurements showed that 

magnetite nanoparticles obtained from a 3:1 mixture of DEG and NMDEA have an 

average size of 10.2 nm (Figures 3.2b and 3.3b), whereas those prepared from a 1:3 

mixture of the two chelating solvents have a mean size of 14.4 nm (Figures 3.2d and 

3.3d). This is understandable since the turbidity appears at 180-190oC in the 3:1 mixed 

solvent system and at 210-220oC in the 1:3 mixed solvent system, beginning with 5 

minutes of heating in this temperature range. 

Reactions in neat NMDEA solvent, maintained under the same conditions as the 

mixed solvent system, showed similar behavior. As expected, reactions in this medium 

produced the largest nanocrystals (16.8 nm).  While the smaller nanocrystals have 

spheroidal shape, the larger ones are faceted. The shape of a small number of 

nanocrystals indicates they formed by fusion of two or more nanoparticles (Figures 3.2e 

and 3.3e). Therefore, there is a substantial difference in the course of reactions in 

solutions of DEG and NMDEA. Hydrolysis reactions in DEG followed by nanocrystal 

nucleation and growth occur with high rate. Aging of the resulting colloids causes 

internal recrystallization of the nanoparticles without any significant mass transport. This 

result suggests that formation of metal oxides from chelate DEG complexes is 

irreversible.   In contrast, hydrolysis reactions of metal chelates in solutions containing 

NMDEA occur at higher temperature and with slower rate. The initially formed small 
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nanoparticles (4-6 nm) quickly agglomerate into shapeless aggregates (11-16 nm), which 

then undergo slow recrystallization to produce secondary nanocrystals with sizes ranging 

between ~10 nm and ~15 nm in mixed solvent systems or 16.8 nm in pure NMDEA. 

Because this recrystallization is accompanied by significant mass transport, this step 

probably involves an equilibrium between solid oxide and metal complexes in solution. 

Coalescence of small nanocrystals followed by recrystallization and formation of larger 

ones has been found in many colloidal systems with metal oxides.54-59  

            3.3.2. Crystal structure and morphology of magnetite nanoparticles. The 

structure and phase purity of Fe3O4 nanoparticles with various sizes were investigated by 

powder X-ray diffractometry (XRD). Figure 3.1 shows the X-ray diffraction patterns of 

the nanopowders obtained from neat DEG (e), neat NMDEA (a), and mixtures of DEG 

and NMDEA with different weight ratios (b, c, and d). The patterns were found to match 

well with that of cubic crystalline bulk magnetite (JCPDS file No. 19-629) with no other 

secondary iron oxide phases. The corresponding values of the refined lattice parameter 

8.419(3) Å, 8.384 Å, 8.381(7) Å, 8.365(4) Å, and 8.388(6) Å, are in good agreement with 

the value reported for the bulk substance (8.396 Å).60 The peak broadening of the studied 

powders decreases from (e) to (a), which is indicative of the nanocrystalline nature of the 

materials.  The crystallite size was estimated from the six most intense peaks of each X-

ray diffraction pattern using Scherrer’s formula;61 the calculated average values are 6.4 

nm (a), 10.6 nm (b), 12.3 nm (c), 15.4 nm (d),  and 17.4 nm (e). 

 Details about the structure and morphology of the obtained nanoparticles were 

provided by TEM studies. Figures 3.2 (a-e) and 3.3 (a-e) show the TEM micrographs of 

different-sized Fe3O4 nanoparticles. The nanocrystals are clearly separated from each 
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other in monolayers and their shape changes with increasing size from almost spherical 

(a, b, c) to hexagonal (d, e).  The average sizes were estimated to be 5.7 nm (a), 10.2 nm 

(b), 12.7 nm (c), 14.4 nm (d), 16.8 nm with corresponding standard deviation values (δ) 

of 16.2%, 13.2%, 8.8%, 11.4%, and 11.5% (Figure 3.5).  The sizes of the nanocrystals 

determined by TEM were in good agreement with the size calculated from peak 

broadening in X-ray diffractograms, indicating that most of the nanoparticles are single-

crystalline. 

        The selected area electron diffraction (SAED) pattern (Figure 3.6), taken from a 

monolayer of 12.7 nm-sized Fe3O4 nanoparticles, contains six well-defined spotted rings.  

As anticipated, the spotted appearance of the diffraction rings is due to high crystallinity 

of the obtained nanoparticles. The corresponding interplanar spacings calculated from the 

SAED pattern are presented in Table 3.1. The values obtained are consistent with those 

obtained from the X-ray diffraction pattern, as well as those corresponding to standard 

bulk Fe3O4 (JCPDS file No. 19-629).62 

                        The HRTEM image of a typical 12.8 nm-sized Fe3O4 nanoparticle is 

presented in Figure 3.4c. The micrograph reveals highly ordered lattice fringes with a 

fringe separation of 4.83 Å, which corresponds to {111} lattice planes. This value agrees 

well with that of 4.85 Å determined from the analysis of the XRD pattern.  Although 

most of the nanoparticles are single-crystalline, a small number of twinned nanocrystals 

were also observed (Figure 3.4d), supporting coalescence of the primary particles as one 

of the steps in their crystallization. 
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Figure 3.1. X-ray diffraction patterns of the nanopowders obtained from neat NMDEA (a), 
a 1:3 mixture of DEG and NMDEA (b), a 1:1 mixture of DEG and NMDEA (c), a 3:1 

mixture of DEG and NMDEA (d), and neat DEG (e). 
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Figure 3.2. TEM bright field images of Fe3O4 nanoparticles obtained from DEG (a), a 3:1 
mixture of DEG and NMDEA (b), a 1:1 mixture of DEG and NMDEA (c), a 1:3 mixture of 

DEG and NMDEA (d) , and NMDEA (e). 
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Figure 3.3. Low-magnification TEM micrographs of Fe3O4 nanocrystals prepared from neat 
DEG (a), a 3:1 mixture of DEG and NMDEA (b), a 1:1 mixture of DEG and NMDEA (c), a 

1:3 mixture of DEG and NMDEA (d), and neat NMDEA (e) 
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Figure 3.4. TEM bright field image of Fe3O4 nanoparticles obtained from a 
mixture of DEG and NMDEA (1:1,w/w) at the initial phase of synthesis (a), 

and corresponding HRTEM image of a typical agglomerate (b); HRTEM image 
of a single 12.8 nm-sized Fe3O4 nanoparticle viewed along the [10-1] zone axis 

(c); HRTEM image of a twinned Fe3O4 nanoparticle obtained from neat 
NMDEA (d) 

 

 

 

 

 

  



 118

 

 

 

 

 

 

   

                                                                                

Figure 3.5. Particle size histograms of Fe3O4 nanoparticles prepared from neat DEG (a), a 
mixture of DEG and NMDEA (3:1, w/w) (b), a mixture of DEG and NMDEA (1:1, w/w) (c), 

a mixture of DEG and NMDEA (1:3, w/w) (d), and neat NMDEA (e). 
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Figure 3.6. SAED pattern of Fe3O4 nanoparticles 
prepared from a mixture of DEG and NMDEA 

(1:1, w/w) 
 
 

   

 

Table 3.1.  Interplanar spacings, d (Å), deduced from the analysis of SAED and XRD 
     Patterns and the values corresponding to standard bulk magnetite 

 
Diffraction ring 1 2 3 4 5 6 

SAED 3.089 2.624 2.194 1.784 1.694 1.550

XRD (Figure 3.1c) 2.965 2.526 2.095 1.710 1.613 1.481

XRD (Standard bulk Fe3O4) 2.967 2.532 2.099 1.714 1.615 1.484

hkl 220 311 400 422 511 440 
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3.3.3. Surface of magnetite nanoparticles. A thermogravimetric study of the magnetite 

nanoparticles obtained from DEG and NMDEA solutions was performed over the range 

of temperature 20-600oC in air and argon atmosphere. The first and brief event of weight 

loss occurs below 100oC and is due to evaporation of the absorbed solvent.  The TGA 

curves corresponding to the runs in air show a weight gain effect between 125-175oC, 

presumably attributable to oxidation of the core Fe3O4 to Fe2O3. Such a curve 

representing the Fe3O4 nanocrystals prepared from neat NMDEA is shown in Figure 3.7. 

The residues after decomposition of the samples in air at the temperatures 600oC were 

identified by X-ray diffractometry as α-Fe2O3 (Figure 3.8). Regardless of the atmosphere, 

the main weight loss starts at ∼175oC and ends at ~ 325oC when the rate of heating is 2 

deg/min. The values of the mass change in the temperature range 175-600°C correlated 

with particle size are presented in Table 3.2. A typical TGA curve corresponding to the 

run in argon atmosphere and representing the 10.2 nm Fe3O4 nanocrystals is shown in 

Figure 3.9. The observed weight loss is due to evaporation of the adsorbed DEG, 

NMDEA and water from the surface of nanoparticles, as well as to dehydration of the 

surface OH-groups. 

     We attempted to characterize the composition of the surface by IR 

spectroscopy, but the quality of the spectra was unsatisfactory due to a low concentration 

of organic component.  To solve this problem, we used destructive methods to separate 

the organic and inorganic constituents and then used 1H NMR spectrometry for 

identification of the organic component and determination of its content 

semiquantitatively by integration.   
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Figure 3.7. TGA curve for the uncapped Fe3O4 nanoparticles prepared from 
neat NMDEA; the measurement was performed in air with a heating rate of 2 

deg/min up to 600° C. 
 

 

Figure 3.8. X-ray diffraction patterns for the uncapped Fe3O4 nanoparticles 
prepared from neat NMDEA (a), and α-Fe2O3 obtained after TGA 

measurement in air (b). 
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Figure 3.9. TGA curve for uncapped 10.2 nm-sized Fe3O4 nanoparticles prepared from a 
mixture of DEG and NMDEA (3:1, w/w); the measurement was performed in argon 

atmosphere at a heating rate of 2 deg/min up to 600° C. 
 

 

Table 3.2. Correlation between particle size (nm) and weight loss (%) determined from 
the analysis of TGA curves corresponding to the measurements in argon atmosphere. 
 

Sample Particle size (TEM) 
(nm) 

Weight loss (175 - 600° C) 
(%) 

Fe3O4 (neat DEG) 5.7 5.412 

Fe3O4 ( DEG:NMDEA = 3:1,w/w) 10.2 4.827 

Fe3O4 ( DEG:NMDEA = 1:1,w/w) 12.7 4.489 

Fe3O4 ( DEG:NMDEA = 1:3,w/w) 14.4 4.334 

Fe3O4 ( neat NMDEA ) 16.8 2.885 
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Exact quantities of nanopowder and deuterium oxide were sealed in an ampoule 

and heated at 100oC to extract the organic constituent into solution and facilitate 

coagulation of iron oxide. After heating for ~ 1 hour, the ampoule was opened and the 

resulting clear colorless solution was separated, weighed and transferred into an NMR 

tube. A measured quantity of DMSO was added as a standard for integration.  The 

sample synthesized from DEG solution revealed only DEG and DMSO peaks in its 

proton spectrum (Figure 3.10).  The content of DEG in the nanopowders determined by 

integration was 2.9% by weight.  Although the accuracy of this determination is subject 

to limitations inherent in integration, the result still clearly indicates that DEG is not 

merely a contaminant, but a constituent.  The sample synthesized from a mixture of DEG 

and NMDEA formed a much more stable colloid in deuterium oxide that could be 

decomposed only at 170oC after heating for 1 hour.  The NMR spectrum showed no 

peaks for NMDEA, but only peaks of unidentified substance(s).  A detailed analysis was 

not possible, since the residual paramagnetic species in solution caused substantial line 

broadening. Alternatively, a sample of the nanopowder was thermally decomposed at 

200-350oC in vacuum and the volatile products of its thermolysis were collected and 

analyzed by NMR.  The results proved that NMDEA decomposed under these conditions 

results into a mixture of unidentified substances.  

         Thus, the only evidence of its presence in the samples was the strongly basic pH of 

their aqueous solutions. All nanocrystalline magnetite products contained different 

quantities of adsorbed volatile constituents, more for smaller nanocrystals and less for 

larger ones.  These substances were identified as diethylene glycol and the decomposition 

products of N-methyl diethanolamine. 
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Figure 3.10.  1H NMR spectrum of the product of decomposition of Fe3O4 nanoparticles 
in D2O solution; peak at 2.61 ppm represents DMSO added as a standard for integration. 
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          3.3.4. Nanocrystals’ surface reactivity and dispersibility.  The reactivity of the 

obtained nanocrystalline magnetite products was tested using their reaction with oleic 

acid in toluene solution. This test was based on the ability of inorganic nanocrystals 

capped with long-chain carboxylates to form colloids in hydrocarbons. Additional 

examination of their ability for repeated colloid formation after precipitation may be used 

for testing how strongly the capping ligand is bound to the nanocrystal surface. The 

nanopowders synthesized from DEG or NMDEA/DEG solutions exhibited high 

reactivity, dissolving at room temperature or after short refluxing. Addition of methanol 

to the resulting dispersions caused precipitation of solids that were separated, washed 

with methanol and tested for solubility in toluene. We determined that DEG-derived 

nanopowders could be re-dispersed in toluene, whether or not refluxing was used when 

they reacted with oleic acid. However, oleate-capped nanocrystals originating from 

DEG/NMDEA lost their dispersibility if refluxing was not used when they were reacted 

with oleic acid. As refluxing was used, the solids remained dispersible in toluene.  

Magnetite samples synthesized using neat NMDEA were always the least reactive. Their 

complete dissolution in toluene/oleic acid solution could not be achieved even after 

prolonged refluxing. 

     Analysis of the surface showed that all nanocrystals contain organic compounds, 

either DEG or NMDEA or both.  It is not clear how these molecules are bound to the 

nanocrystal surface, although it is likely they partially use their chelating properties.  

Evidently, these organic constituents play the essential role in protecting the nanocrystals 

against agglomeration and consequently, their surface reactivity and dispersibility. It is 

likely that when the DEG-containing nanopowders react with oleic acid, the carboxyl 
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group binds directly to the surface metal ions, replacing DEG molecules. This chemical 

bonding provides stability and dispersibility, and, as we observed, the capping ligand 

cannot be removed by washing. The products of synthesis from NMDEA contain basic 

amine functions on the surface of nanocrystals, which changes their reactivity with 

carboxylic acids. It is likely that at room temperature the interaction is limited to the 

formation of hydrogen bonds between carboxylic and amino groups. Oleic acid adsorbed 

via hydrogen bonding can be easily removed by washing with alcohols. At an elevated 

temperature and in the presence of an excess of oleic acid, the final product contains 

oleate ligand covalently bound to the surface of nanocrystals similar to the ones obtained 

from DEG.   

           The isolated nanocrystalline magnetite was tested for dispersibility in methanol, 

ethanol, and water. Most of the tested samples could be dispersed in pure solvents (Figure 

3.11a); however, the dissolution was dramatically facilitated by the presence of traces of 

mineral or carboxylic acids. Colloidal solutions of Fe3O4 nanoparticles prepared from 1:1 

mixtures of DEG and NMDEA are obtained with concentrations as high as 32 mg/mL in 

water, 26.5 mg/mL in methanol, and 13 mg/mL in ethanol. Acidification not only 

improved the dispersing, but also caused great stabilization: both aqueous and alcohol 

colloids containing 75 μmol/L of HCl were stable for very long periods of time. The 

TEM examination of an aqueous dispersion aged for 3 months revealed their non-

aggregate nature (Figure 3.11b).   
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Figure 3.11.  TEM micrographs of Fe3O4 nanoparticles prepared from a 
1:1 mixture of DEG and NMDEA: freshly-prepared aqueous dispersion 

(a), and aqueous dispersion acidified and aged for 3 months (b). 
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3.4. Conclusion 

 

           The high-yield synthesis of the uncapped nanocrystals of Fe3O4 with chemically 

active surfaces is accomplished by the elevated-temperature hydrolysis of chelate iron 

alkoxide complexes in solutions of diethylene glycol and N-methyl diethanolamine. The 

rate of this reaction is easily controlled by changing the temperature and concentration of 

the reactants, and high yield is obtained due to the practically irreversible hydrolysis.  

The highly polar medium of alcohol and by-product ions (Na+, Cl-) stabilizes the colloids, 

which is essential for the nucleation and growth steps. As the stability of these colloids 

becomes exhausted, the oxides precipitate as nanopowders whose surface is passivated by 

a labile layer of the adsorbed solvent. The different donor properties of diethylene glycol 

and N-methyl diethanolamine affect the rate of hydrolysis and crystallization, and 

therefore the final size of the nanocrystals. The smallest (5.7 nm) and largest (16.8 nm) 

nanocrystals were obtained in the former and the latter solvents, respectively.  

Nanocrystals with sizes ranging from ~10 nm to ~15 nm were obtained in mixed solvent 

systems with different weight ratios of the two chelating solvents. We believe that this 

method can be used for synthesis of other metal oxides nanocrystals with various sizes 

and chemically active surfaces. The isolated nanocrystalline powders are easily 

dispersible in toluene in the presence of oleic acid and in water or alcohol (methanol and 

ethanol) without using a surfactant. This property of the nanoscaled magnetite, as a 

biologically compatible magnetic material, may promote its application in biology and 

medicine as a component for diagnostic and therapeutic tools.   
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                                                   CHAPTER 4 
 
 

Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized 

from Non-Aqueous Homogeneous Solutions of Polyols 

 

4.1. Introduction 

           Transition metal ferrites, MIIFe2
IIIO4, are magnetic materials with a cubic spinel-

type structure which have been extensively used in various technological applications in 

the past decades.1, 2 Owing to their easy preparation, low fabrication cost, high chemical 

stability and unique electrical, optical, thermal, rheological, catalytic and magnetic 

properties, ferrites, either in the form of nanopowders or surface-stabilized nanoparticles 

suspended in a carrier liquid (ferrofluid)3 have a widespread use in electronics4, magneto-

optics5, magnetocaloric refrigeration6, dynamic sealing7, high-density information 

storage8, oscillation damping9 and catalysis.10 Among the nanocrystalline ferrites, Fe3O4 

and γ-Fe2O3 have received a particular interest as ideal candidates for different 

biomedical applications including enzyme encapsulation11, biosensor design12, 13, cell 

labeling/separation14 and oligonucleotide identification15, magnetic resonance imaging 

(MRI)16-18, tumor hyperthermia19, 20, and magnetically-targeted drug delivery21-24 due to 

their dimensions comparable with the cells and biomolecules, low toxicity and 

biocompatibility, high saturation magnetization values and their easy manipulation with 

low magnetic fields.  

           As the size of the particles decreases below 100 nm, a large fraction of the 

constituting atoms will be found on the surface of the nanocrystals; this induces 
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significant changes in the magnetic structure and properties of the nanophase materials as 

compared to their bulk counterparts. Specifically, the domain wall structure encountered 

in the bulk crystalline ferrites is replaced by a single domain structure characteristic to 

each particle, thus leading to new phenomena, such as superparamagnetism25, extra 

anisotropy contributions26 and spin canting (disordered spin configuration)27, 28. 

Superparamagnetism refers to the random fluctuation of the magnetization of the single-

domain particles when the thermal energy overcomes the anisotropy energy barrier. At 

low temperatures the magnetization of each nanoparticle is oriented parallel to a 

particular crystallographic direction called easy axis along which the energy of the 

particle is minimized. The magnetization of the nanoparticle remains blocked in this 

minimum energy position until an amount of energy at least equal to the anisotropy of the 

particle is provided to the system. Increasing the temperature above a certain value, 

known as the blocking temperature (TB), the thermal energy will overcome the anisotropy 

energy (EA) and the magnetization of each particle begins to fluctuate between the two 

directions of the easy axes. In these conditions, the magnetic system behaves as a 

classical paramagnet.29 According to the Stoner-Wohlfarth theory, the blocking 

temperature is higher as the volume of the nanoparticles increases: 

V
k

KT
B

B ⋅=
25

, 

where K represents the anisotropy constant and kB is the Boltzmann constant.30  

          In general, the magnetic behavior of the nanoparticles is the result of the interplay 

between the bulk magnetocrystalline characteristics, finite size effects and collective 

magnetostatic interactions between the particles. However, the delimitation of each 

individual contribution to the total magnetization of the magnetic system would require 
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not only the preparation of well-dispersed nanocrystals with controllable sizes and 

shapes, but also a strict control over the interactions between them. Finite size effects 

include the single domain magnetic structure and the surface spin disorder and originate 

from the high surface/volume ratio of the small particles, whereas the interparticle 

interactions refers to the exchange and dipole-dipole interactions. The study of the 

interparticle interactions is not trivial since they can change significantly the magnetic 

response of a nanosized system by increasing the anisotropy energy barrier (EA) 

necessary to overcome the blocking of the magnetization of each particle. Herein, we 

report on the influence of the finite size effects and interparticle interactions on the 

magnetic properties of the oleate-capped Fe3O4 nanocrystals synthesized in non-aqueous 

homogeneous solutions of polyols (diethylene glycol and N-methyl diethanolamine). The 

experiments were performed on two series of samples, one containing Fe3O4 particles 

with various sizes ranging from 6.6 to 17.8 nm and the other one containing 6.6 nm 

particles diluted at different concentrations paraffin. 

 

   4.2. Experimental 

 

           4.2.1. Chemicals. Iron(III) chloride hexahydrate 97%, toluene 99.5%, methyl 

alcohol 99.8%, and hexanes 98.5% were purchased from Merck. Diethylene glycol 99%, 

N-methyl diethanolamine 99+%, sodium hydroxide 97% (20-40 mesh beads), ethyl 

acetate 99.5%, and decane 99+% were obtained from Aldrich. Iron(II) chloride 

tetrahydrate 99% was purchased from Alfa Aesar, oleic acid 90% from Fisher and 

absolute ethyl alcohol from AAper Alcohol and Chemical Co. Chemicals and solvents 



 136

were used without further purification. The air-sensitive chemicals were manipulated in a 

VAC glovebox with a nitrogen atmosphere.  

           4.2.2. Synthesis. The synthetic procedures for the preparation of oleate-capped 

Fe3O4 nanocrystals with various sizes are described in detail in the Chapter 3. For 

example, the ~6 nm-sized magnetite nanoparticles were prepared in diethylene glycol 

(DEG) solutions obtained by dissolving a mixture of 2 mmol FeCl2·4H2O and 4 mmol 

FeCl3·6H2O in 80 g solvent in a Schlenk flask under protection with argon. Separately, 16 

mmol of NaOH was dissolved in 40 g diethylene glycol. The solution of NaOH was 

added to the solution of metal chlorides with stirring at room temperature causing an 

immediate color change from yellow-brown to deep green-brown. After 3 hours, the 

temperature of the solution was raised during 1.5 h to 210ºC and then kept constant for 2 

h in the temperature range 210-220ºC. In order to obtain magnetite nanoparticles soluble 

in nonpolar solvents, a diethylene glycol solution of oleic acid (2.6 mmol oleic acid per 

20 g DEG) was added to the reaction mixture at high temperature. This addition 

immediately precipitated the solids. The mixture was cooled to room temperature and 

then centrifuged. The precipitates were washed with methanol and dissolved in 20 ml 

toluene. The resulting solution was centrifuged and mixed with 2-3 volumes of methanol. 

The precipitate was separated by centrifuging, washed with methanol and kept either 

moistened with methanol or dispersed in nonpolar solvents (hexanes, toluene, and 

decane). When magnetic measurements were planned, the solids were dried in a flow of 

nitrogen. 

           The largest magnetite nanoparticles (~17 nm) were prepared following a similar 

synthetic procedure but using N-methyl diethanolamine (NMDEA) instead of diethylene 
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glycol (DEG) and heating the reaction mixture for 4h in the temperature range 210-220° 

C. The solid product was isolated by cooling the reaction mixture to room temperature 

and centrifuging. A black solid was obtained and washed with ethanol twice and with a 

mixture of ethanol and ethyl acetate (1:1, v/v) three times to remove the excess of N-

methyl diethanolamine. Magnetite nanoparticles soluble in nonpolar solvents were 

obtained by heating to reflux for ~1 h a mixture containing 182 mg of black powder and a 

toluene solution of oleic acid (1.95 mmol oleic acid per 50 ml toluene). A deep brown 

solution was obtained and the solid product was re-precipitated by adding 1-2 volumes of 

methanol and then washed several times with methanol to remove the excess of oleic 

acid. The precipitate was dried in a flow of nitrogen.  

           For the preparation of ~11 nm-sized magnetite nanoparticles, a mixture of 

diethylene glycol (DEG) and N-methyl diethanolamine (NMDEA) (1:1, v/v) was used in 

the synthesis and the reaction mixture was heated for 3 h in the temperature interval 210-

220° C. The solid product was isolated by cooling the reaction mixture to room 

temperature and centrifuging. A black solid was obtained and washed with ethanol twice 

and with a mixture of ethanol and ethyl acetate (1:1, v/v) three times to remove the 

excess of diethylene glycol and N-methyl diethanolamine. In order to obtain magnetite 

nanoparticles soluble in nonpolar solvents, a mixture containing 120 mg of black powder 

and a toluene solution of oleic acid (1.26 mmol oleic acid per 50 ml toluene) was heated 

to reflux for ~1 h. A deep brown solution was obtained and the solid product was re-

precipitated by adding 1-2 volumes of methanol and then washed several times with 

methanol to remove the excess of oleic acid. The resulted black solid was dried in a flow 

of nitrogen. 
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           4.2.3. Characterization. The morphology of the magnetite nanoparticles was 

examined with a JEOL JEM 2010 transmission electron microscope (TEM) at 200KV. 

Thermogravimetric analyses (TGA) were carried out in argon at a heating rate of 

2°C/min up to 600°C using a SDTQ 600 analyzer. The magnetic measurements of both 

as-prepared Fe3O4 nanoparticles and samples diluted in paraffin were performed with a 

Superconducting Quantum Interference Device (SQUID) in the temperature range 5-

300K and magnetic fields up to 5 T. The zero-field cooled (ZFC) curves were obtained 

by cooling the magnetite samples from 300 K to 5 K in the absence of an external 

magnetic field, followed by the measurement of the magnetization under a magnetic field 

of 100 Oe as the temperature is raised back to room temperature. The field-cooled 

measurements were carried out in a similar way, except for the cooling process which 

was performed under an external magnetic field of 100 Oe. The hysteresis loop 

measurements were performed at different temperatures ranging from 5 to 300K under 

magnetic fields up to 5T.     

  

4.3. Results and discussion  

 

           Highly crystalline magnetite (Fe3O4) nanoparticles were prepared at elevated 

temperatures by the hydrolysis of chelate iron alkoxide complexes in solutions of the 

corresponding polyols, diethylene glycol (DEG) and N-methyl diethanolamine 

(NMDEA). Polyols play a multiple role in the formation of nanocrystalline Fe3O4 

particles serving not only as solvents and complexing agents for the iron (II, III) 

precursors, but also as stabilizing agents for the resulting nanocrystals. Moreover, the 

presence of monolayers of polyol molecules adsorbed on the nanocrystals’surface 
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induces their solubility in polar solvents such as water, methanol, and ethanol. The polyol 

molecules can be exchanged at elevated temperatures for long-chain carboxylic acids 

which bind covalently to the surface iron ions via carboxylate groups, thereby stabilizing 

the particles against agglomeration and rendering them soluble in non-polar media 

(toluene, hexanes, and decane).31, 32 These fatty acids are also essential in minimizing the 

exchange interactions between the superficial iron ions of neighboring Fe3O4 

nanocrystals such that the interparticle interactions are dominated by the dipole-dipole 

ones.33, 34           

            Adjusting the complexing strength of the reaction medium by using either neat 

solvents (DEG or NMDEA) or a 1:1 (w/w) mixture of the two polyols, allowed tuning of 

the particle dimensions in the range 6-17 nm.32 Figure 4.1 shows the transmission 

electron microscope (TEM) images of the Fe3O4 nanoparticles prepared from neat DEG 

(a), neat NMDEA (c), and a mixture of DEG and NMDEA (1:1, w/w) (b), respectively. 

As revealed by the TEM micrographs, the Fe3O4 nanoparticles obtained from neat DEG 

and the mixture of the two polyols have spheroidal shapes, whereas those synthesized 

from neat NMDEA are faceted. The nanocrystals are individual and relatively uniform-

sized. They arrange in monolayers which exhibit a short range order due to the presence 

of small fractions of tiny particles and shapeless aggregates (Figures 4.1b and 4.1c) 

indicating that the Fe3O4 nanoparticles are formed through the aggregation of “primary 

particles”.32 The average particle sizes and the size distributions were estimated by 

counting 150 nanoparticles. As anticipated, the nature of the reaction medium influences 

significantly the size of the resulting nanocrystalline particles: while the DEG-mediated 

reaction leads to 6.6 nm-sized Fe3O4 particles (standard deviation, σ=11.3%), a mixture  
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Figure 4.1. Representative transmission electron microscope (TEM) images of oleate-capped 

magnetite nanoparticles prepared from neat DEG (a), a mixture of DEG and NMDEA 
(1:1,w/w) (b), and neat NMDEA (c). 

 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 

Figure 4.2. Histograms of size distribution for magnetite nanocrystals synthesized from neat 
DEG (a), a mixture of DEG and NMDEA (1:1, w/w) (b), and neat NMDEA (c). 
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of DEG and NMDEA (1:1, w/w) results in the formation of particles with an average 

diameter of 11.6 nm (σ=9.4%) which can be increased to 17.8 nm (σ=10.5%) when the 

reaction is performed in neat NMDEA (Figure 4.2). The crystallite sizes calculated from 

the corresponding X-ray diffraction patterns by using the Scherrer’s formula led to values 

similar to those obtained from the TEM measurements, suggesting that the nanopowders 

consists of single crystalline particles. Additionally, the XRD patterns showed that 

nanopowders are single phase materials that crystallize into cubic-type structures with the 

cell parameters comparable to that of the crystalline bulk magnetite (a=8.396 Å).32 

           Figure 4.3 illustrates the temperature (T) dependence of the zero-field (ZFC) and 

field cooled (FC) magnetizations (M) measured for variable-sized Fe3O4 nanoparticles 

coated with oleate ligand. For the nanoparticles prepared from neat DEG (Figure 4.3(a)) 

and those synthesized from a 1:1 mixture of DEG and NMDEA (Figure 4.3(b)), the ZFC 

and FC curves, which coincide initially, start to separate and follow different trends as the 

temperature is decreased from 300 to 5K. In the FC mode, the magnetization either 

increases slightly and then levels off (Figure 4.3(a)) or decreases to eventually reach a 

plateau (Figure 4.3(b)), whereas the ZFC magnetization shows a maximum followed by   

a steady decrease to a value approaching zero in the low temperature region. The shape of 

the FC curves in the Figure 4.3(a, b) is the result of the presence of dipole-dipole 

interactions between the oleate-capped particles.35, 36 Moreover, the variation of the 

magnetization in the ZFC and FC modes indicates a superparamagnetic behavior for the 

6.6 nm and 11.6 nm-sized Fe3O4 particles. The maximum in the ZFC curve defines the 

blocking temperature TB, where the thermal energy becomes comparable with the 

anisotropy energy barrier (EA). For temperatures below TB, the magnetization of each 
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nanoparticle aligns with the direction of the easy axis and cannot be further changed due 

to the existence of the anisotropy energy barriers. Owing to the random orientation of the 

easy axes of the nanoparticles, the total magnetization approaches zero at low 

temperatures. However, when the sample is progressively warmed up to 300 K, an 

increasing number of particles will acquire a thermal energy comparable to the anisotropy 

energy, thus switching their magnetizations from the easy axes to the direction of the 

magnetic field. This leads to a progressive increase of the magnetization of the sample. 

At temperatures higher than TB, the magnetization of each particle begins to fluctuate 

between the two directions of the easy axis (superparamagnetic relaxation). The values of 

the blocking temperature were found to vary between 203K for the particles obtained 

from neat DEG (6.6 nm) to 264K for those prepared from a 1:1 mixture of DEG and 

NMDEA (11.6 nm). In the case of particles synthesized from neat NMDEA (17.8 nm), no 

maximum was observed in the ZFC curve. However, since the ZFC curve presents a 

shoulder in the high temperature region, we assume that the blocking temperature of the 

biggest nanocrystals is situated above 300K. The observed variation of the blocking 

temperature with the average size of the Fe3O4 nanocrystals is consistent with the Stoner-

Wohlfarth theory which predicts an increase of the anisotropy energy barrier (EA) and, 

consequently, an increase of the blocking temperature (TB) as the volume of the 

nanoparticles increases. 

Assuming that the particles are non-interacting and possess a uniaxial anisotropy, 

the corresponding blocking temperatures (TB) can be used to estimate the values of the 

anisotropy energy constant (K) of the oleate-capped Fe3O4 nanocrystals. The calculated 

values of the constant are K=4.74·105 J/m3 for the particles with an average diameter of  
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Figure 4.3. Magnetization (M) versus temperature (T) measured in both the zero-field cooled     
(ZFC) and the field cooled (FC) modes for oleate-capped magnetite nanocrystals with various 

sizes: 6.6 nm (a), 11.6 nm (b), and 17.8 nm (c). 
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6.6 nm and K=1.11·105 J/m3 for those with a mean size of 11.6 nm, respectively. These 

values are about one order of magnitude higher than that of the bulk material (K(bulk) 

=0.135·105 J/m3)28 and were found to increase with decreasing the size of the 

nanoparticles. Additionally, they are slightly larger, but yet in good agreement with the K 

values estimated by Mössbauer spectroscopy for 6 nm (K=1.4·105 J/m3) and 12 nm 

(K=0.9·105 J/m3)38 particles or by using the equation KV=25kBT for 7 nm Fe3O4 particles 

(K=2.8·105J/m3)26, but much lower than that corresponding to 3-7 nm-sized particles 

obtained by the water-in-oil microemulsion technique (K=106 J/m3)39. The anisotropy 

constant (K) of the nanocrystalline materials can incorporate different contributions from 

magnetocrystalline, shape and surface anisotropy.26, 40 Thus, assuming that the 

magnetocrystalline anisotropy of the Fe3O4 nanoparticles prepared in the polyol media is 

invariant to the reaction conditions (the nature of the solvent, the heating time) and the 

shape of the nanoparticles does not change significantly with their size, the variation 

trend in K can be ascribed to the concurrent effect of the interparticle interactions41 and 

the surface anisotropy40. Specifically, the decrease in size of the Fe3O4 nanoparticles 

results in an increased surface spin disorder due to a higher fraction of superficial iron 

ions with incomplete coordination environments and broken bonds.27 In such conditions, 

the surface effects become dominant eventually leading to the increase of the anisotropy 

energy constant.42 In Figure 4.4 are represented the hysteresis loops of the three samples 

of oleate-coated Fe3O4 nanocrystals measured at 300 (a) and 5K (b). The corresponding 

values of saturation magnetization (MS), squarness (SQ=MR/MS) and coercivity (HC) are 

summarized in Table 4.1. In agreement with the ZFC/FC measurements, the M(H) curves 

recorded at 300K confirm that the 6.6 nm and 11.6 nm Fe3O4 particles present a  
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Figure 4.4. Magnetization (M) as a function of the magnetic field (H) measured at 300 (a) and 5K 
(b) for oleate-capped magnetite nanocrystals with average sizes of 6.6 nm, 11.6 nm, and 17.8 nm, 
respectively; the fit of  M versus H curve recorded at 300K for 11.6 nm-sized Fe3O4 nanoparticles 

(c). 
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Table 4.1. Magnetic Properties of Variable-Sized Magnetite Nanocrystals Capped with 
Oleate Ligand. 

 

Average Size (nm) TB(K) MS (emu/g) HC(Oe) SQ 

TEM Fit  5 K 300 K 5K 300 K 5 K 300 K 

6.6 5.84 203 80.8 70.7 405.6 15.7 0.280 0.0240 

11.6 9.95 263.6 89.2 77.4 278.2 14.7 0.250 0.0312 

17.8 - >300 91.3 82.5 379.4 3.4 0.293 0.0076 
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superparamagnetic behavior, whereas those with a size of 17.8 nm are ferromagnetic 

exhibiting very low remanence (MR) and coercivity (HC). In the superparamagnetic state, 

the M(H) curves of the nanosized materials can be described by the Langevin function: 
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where M(T) is the magnetization of the nanosized material at the temperature T, MS 

represents the saturation magnetization of the nanosized material, x=μH/kBT and the 

magnetic moment of the nanoparticles μ=MS(bulk)V (V stands for the average volume of 

the nanoparticles).43  The fit of the M(H) curve for the Fe3O4 particles with the average 

diameter of 11.6 nm (as determined from the TEM measurement) is represented in the 

Figure 4.4(c), whereas the “magnetic” sizes of the nanoparticles prepared from neat DEG 

and a 1:1 mixture of DEG and NMDEA are presented in Table 4.1. The diameters of the 

oleate-capped Fe3O4 nanocrystals determined from the fitting of the M versus H curves 

are consistently smaller than those estimated from the TEM measurements.  

Such a discrepancy was previously reported in the literature, being ascribed to the 

existence of a “dead layer” at the surface of the nanoparticles.44  Due to their broken 

bonds, the iron ions contained in the “dead layer” will present a random orientation of 

their magnetic moments, thereby leading to a decrease of the total magnetization of each 

individual nanoparticle.38 The data presented in Table 4.1 show that the saturation 

magnetization (MS) of the oleate-capped Fe3O4 nanocrystals increases continuously with 

increasing their average diameter, whereas the coercivity (HC) follows an opposite trend. 

The values of the saturation magnetization at 300K are systematically lower than those 

measured at 5 K presumably due to the thermal fluctuations of the magnetic moments of 

the nanoparticles at higher temperatures. At 300K, the saturation magnetization increases 
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from 70.7 emu/g for the nanocrystals prepared from neat DEG (6.6 nm) to 82.5 emu/g for 

the nanoparticles obtained from neat NMDEA (17.8 nm). Nanocrystalline Fe3O4 particles 

synthesized from the 1:1 mixture of the two polyols (11.6 nm) have an intermediate value 

of 77.4 emu/g for the saturation magnetization. The MS values are comparable with those 

of Fe3O4 nanoparticles having similar sizes obtained by other non-aqueous approaches. 

Specifically, while  the 16 nm-sized Fe3O4 particles prepared at ~300°C by the “seed-

mediated growth” method possess a saturation magnetization of 83 emu/g46, those with a  

diameter of 11 nm obtained at 180°C by a solvothermal technique in ethylene glycol 

medium have a Ms value of 79.2 emu/g47. It is worth noticing that for the particles 

prepared in DEG solutions (6.6 nm), the saturation magnetization is much higher than 49 

emu/g, the Ms value measured experimentally for 7 nm Fe3O4 particles synthesized at 

88°C in aqueous solution by the coprecipitation of the iron salts.48 The decrease of the 

saturation magnetization (MS) with the reduction of the nanocrystal size is associated 

with the existence of a surface layer where the iron ions possess unsaturated coordination 

spheres. This is due to the absence of some oxygen ions from the spinel lattice and/or the 

capping of the nanoparticles with long chain carboxylate ligands which are bound 

directly to the iron ions. Such structural modifications create a surface spin disorder 

which induces significant changes in the magnetic properties of the nanocrystalline 

materials.27, 39, 45, 49, 50 It was demonstrated that the nature of the capping ligand can also 

exert an important role on the magnetic properties of the nanoparticles. For example, Gao 

and coworkers showed that for Fe3O4 particles with similar sizes (8 nm) prepared by the 

solvothermal method, Ms increases from 89.8 emu/gFe to 96.6 emu/gFe when tri-n-

octylphosphine oxide (TOPO) is used as capping ligand instead hexadecylamine (HDA). 
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Such an increase of the Ms value was attributed to the π-acceptor properties of the tri-n-

octylphosphine oxide. Unlike the hexadecylamine, the TOPO molecules accept electrons 

from the iron ions once attached to the nanocrystals’ surface, thus altering the exchange 

interactions between the neighboring iron ions and eventually leading to the decrease of 

the saturation magnetization of the Fe3O4 nanoparticles.47 

           Assuming that each nanoparticle consists of a magnetic core having the magnetic 

structure of the bulk material and a magnetically disordered shell, Chen and coworkers 

calculated the thickness of the shell (t) from the variation of the saturation magnetization 

(MS) with the reciprocal of the average diameter (1/d) of the particles:51 
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The linear fitting of our data obtained at 30K (Fig. 4. 5) yielded a value for the saturation 

magnetization of the bulk material (MS(bulk)) of 88.65 emu/g  and a thickness of the 

magnetically inert layer (t) of 2.26 Å, whereas at 5K the calculated values were 98.18 

emu/g (MS(bulk)) and 1.92 Å (t), respectively. The t values obtained from our calculations 

for oleate-capped Fe3O4 nanocrystals are much smaller than those of 4.5 Å (at 20K)29, 5 

Å (at 5 K)51 and 6 Å (at 300 K)52 reported in the literature for nanosized MnFe2O4 

particles prepared by other wet chemical methods (w/o microemulsion method and 

coprecipitation in aqueous solutions) or 10 Å (at 5K)45 observed in the case of CoFe2O4 

nanoparticles synthesized by co-precipitation in aqueous solution followed by 

calcination.  

           Additionally, the coercivity was found to decrease with increasing the volume of 

the Fe3O4 nanoparticles. Such a variation is in good agreement with the Stoner-Wolhfarth 
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Figure 4.5. Saturation magnetization (MS) vs. the reciprocal 
of the average diameter (1/d) of the oleate-capped Fe3O4 

nanoparticles. 
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 theory for single-domain particles with uniaxial anisotropy, which predicts that the 

coercivity (HC) of the nanosized materials depends on both the anisotropy constant (K) 

and the saturation magnetization (MS):
S

C M
KH

0

2
μ

= , where μ0 is the permeability 

constant of the vacuum.53, 54 Thus, the decrease of the coercivity with increasing the size 

of the nanoparticles is consistent with both the decrease of the anisotropy constant and 

the increase of the saturation magnetization. The inset of the Figure 4.4b shows the 

hysteresis loops of the variable-sized Fe3O4 nanoparticles recorded at 5 K. In all cases the 

samples present a ferromagnetic behavior with the saturation magnetization (MS) ranging 

from 80.8 to 91.3 emu/g and coercivities varying between 278.2 and 405.6 Oe. The 

values of the reduced remanence or squarness (SQ=MR/MS) calculated from the M(H) 

loops at 5K range between 0.25 and 0.29. They are considerable smaller than the 

theoretical value SQ=0.5 suggesting that the oleate-capped Fe3O4 nanoparticles are 

single-domain and possess a uniaxial anisotropy.55  

         In order to demonstrate the influence of the dipolar interparticle interactions on the 

magnetic properties of the oleate-capped Fe3O4 nanoparticles, DC magnetization 

measurements were performed on samples consisting of particles prepared from neat 

DEG (6.6 nm) and dispersed in paraffin. The concentration of the nanosized particles in 

the magnetite-paraffin solid solution was varied in a wide range (from 0.25 to 100 wt %), 

thus allowing us to tune the interparticle distances. In Figure 4.6 are plotted the typical 

temperature dependence magnetization curves measured in the ZFC mode under a static 

magnetic field of 100 Oe for different concentrations of the 6.6 nm Fe3O4 particles in the  

     

 



 152

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4. 6. Typical zero-field cooled (ZFC) curves of 
the 6.6 nm-sized Fe3O4 particles capped with oleate 

ligand and diluted in paraffin; the concentration of the 
nanoparticles in the magnetite-paraffin solid solution 

varies between 0.25 and 100 wt %. 
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paraffin matrix. As a general feature, the magnetization decreases with increasing the 

concentration of the nanosized particles. For example, the highest magnetization (M=22.2 

emu/g) corresponds to the most diluted sample (c=0.25%), whereas the lowest value of 

magnetization (M=10.1 emu/g) was obtained for the sample containing bare Fe3O4 

nanoparticles (c=100%). A similar trend was reported by El-Hilo et al. in the case of 10 

nm Fe3O4 particles obtained by coprecipitation in aqueous medium and suspended in a 

liquid carrier.56 However, for the intermediate concentrations, the magnetization does not 

increase regularly with the dilution, the results being analogous with those obtained by 

Vestal and coworkers for 8 nm-sized MnFe2O4 particles synthesized by the “seed-

mediated growth” method and dispersed in eicosane.57 Although the origin of these 

discrepancies was not completely elucidated, the variation of the magnetization with the 

dilution strongly suggests that the interactions between the nanoparticles play an 

important role in modifying the anisotropy energy barriers of the magnetic system.  

       In Figures 4.7(a) and (b) are displayed the variations of the blocking temperature 

(TB) and coercivity (HC) with the dilution in paraffin. As seen in the Figure 4.7(a), TB 

decreases slightly from 203K to 183K as the particle concentration is decreased from 100 

to 7. 5% and then drops sharply to a value of 108K as the concentration reaches 1%. 

After this abrupt decrease, the further reduction of the particle concentration to 0.25% 

does not change the value of the blocking temperature. Likewise, the coercivity decreases 

from 409 to 397 Oe in the same concentration range and then drops abruptly to 185 Oe 

for a concentration of 0.25% (Figure 4.7(b)). Such similarities in the variation pattern of 

both the blocking temperature and the coercivity with the particle concentration suggest 

that they have the same origin, that is, the interactions between nanoparticles.  
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Figure 4.7. Variation of the blocking temperature (a) and coercivity (b) with the concentration 
of the 6.6 nm-sized Fe3O4 particles in the paraffin matrix. 
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This can be explained by the Dormann-Bessais-Fiorani (DBF) model which introduces an 

extra energy factor (Bi) in the expression of the anisotropy energy barrier (EA) of a 

magnetic system with interparticle interactions:  

                                                        iA BKVE += θ2sin ,                                                      

where K represents the anisotropy constant, V is the volume of the magnetic particle, θ 

stands for the angle between the easy axis of the magnetic particle and the magnetization 

direction in an applied magnetic field, and Bi is an energy factor describing the 

interparticle interactions.58, 59 Usually, the magnetostatic interactions between the 

particles include the exchange and the dipole-dipole interactions. However, when the 

nanocrystals’ surface is functionalized with long-chain organic molecules the exchange 

couplings are minimized and, the energy factor Bi from the expression of the anisotropy 

energy barrier (EA) is dominated by the dipolar interactions. For a magnetic system of 

single-domain particles, the energy corresponding to the dipole-dipole interactions can be 

expressed as: 3

2
00

4 d
mE dipoledipole π

μ
−=− , where μ0 represents the permeability constant of the 

vacuum and m0 stands for the magnetic moment of the particle.51 According to the above 

equation, the increase of the interparticle separation (d) induces the reduction of the 

strength of the dipolar interactions leading, eventually, to the decrease of the anisotropy 

energy barrier (EA). In these conditions, the decrease of the blocking temperature and the 

coercivity with increasing the interparticle separation can be explained by the lowering of 

the anisotropy energy barriers when the concentration of the oleate-capped Fe3O4 

particles in the paraffin matrix is reduced. Below a critical concentration (c=1%), the 

interparticle interactions become extremely weak so that a further decrease of the 

concentration to 0.25% will induce no variation in the value of the blocking temperature. 
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The M(H) curves of a sample containing 6.6 nm oleate-capped Fe3O4 particles dispersed 

in paraffin (c=1%) were measured at different temperatures ranging from 10 to 300 K 

(Figure 4.8(a)) and the values of the saturation magnetization (MS) were determined. The 

variation of the high-field magnetization with the temperature for a ferro- or 

ferrimagnetic system can be described by the Bloch law: 

                                                   )1)(0()( αBTMTM SS −= , 

where MS(0) is the saturation magnetization at 0K, B represents the Bloch constant and α 

stands for the Bloch exponent.60, 61 The values of MS(0), B and α obtained by fitting the 

experimental data to the above equation (Figure 4.8(b)) are: 93.5 emu/g, 10-5K-1.67 and 

1.67, respectively. As a feature of the oleate-capped Fe3O4 nanoparticles, the Bloch 

exponent in the fitting equation is slightly larger than the value of 1.5 characteristic to the 

bulk crystalline material62 and which was previously reported for 3.3 nm CoFe2O4 

nanoparticles obtained by the same technique43. Such a deviation from the Bloch law was 

observed for various nanoparticulate oxides, where the exponent α increases with 

reducing the size of the nanoparticles.51, 63 Furthermore, the wide range of values of the 

Bloch exponent was ascribed to the influence of various factors such as the high 

surface/volume ratio, the preparative route, the chemical composition of the 

nanoparticles, as well as their surface modification.62 For example, Chen et al. suggested 

that in the case of the MnFe2O4 nanocrystals with sizes varying between 5 and 15 nm the 

values of the Bloch exponent fall within the range 1.6-2, whereas a value of 1.66 was 

reported for 12 nm La0.8Sr0.2MnO3-δ nanoparticles obtained by a ball-milling process, 

which is substantially bigger than α=0.9 calculated by Xiong and coworkers for 8.1 nm 

CoCrFeO4 nanoparticles prepared by a sol-gel approach.51, 63, 64 
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Figure 4.8. M(H) curves of the 6.6 nm-sized Fe3O4 particles dispersed in paraffin (c=1%) 

measured at different temperatures ranging from 10 to 300 K (a); the temperature 
dependence of the saturation magnetization. 
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4. 4. Conclusions 
           

 

The magnetic properties of the variable-sized Fe3O4 nanoparticles prepared in 

non-aqueous homogeneous solutions of polyols were investigated by performing DC 

magnetization measurements at various temperatures and under different magnetic fields. 

Both finite size and interparticle interaction effects were identified to influence the 

magnetic behavior of the oleate-capped nanosized particles. At low temperatures the 

Fe3O4 nanocrystals exhibit a ferromagnetic behavior with blocking temperatures which 

increase with increasing the average particle size, whereas at room temperature, except 

for the largest nanoparticles (17.8 nm), they undergo a superparamagnetic relaxation. 

However, the 17.8 nm-sized particles are ferromagnetic at room temperature, their 

blocking temperature being higher than 300K.  

The squarness values calculated from the corresponding magnetization curves 

indicate that the Fe3O4 nanoparticles possess a uniaxial anisotropy and their easy axes are 

randomly oriented. Both the anisotropy constant (K) and the coercivity (HC) of the oleate-

capped Fe3O4 nanoparticles were found to decrease with increasing their average size, 

whereas an opposite trend was observed for the saturation magnetization (MS). Moreover, 

for all samples, the Ms values are slightly smaller than that of the bulk material, 

suggesting the existence of a disordered spin configuration on their surface. The 

thickness of the magnetically inert layer was estimated at 1.92 Å (5 K) from the size 

dependence of the magnetization. While the exchange interactions are minimized due to 

the protective layer of the capping ligand, the dipole-dipole interactions between the 

nanosized particles can be tuned by changing the interparticle distances. This could be 

achieved by dispersing the oleate-capped Fe3O4 nanoparticles in paraffin at different 
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concentrations ranging from 0.25 to 100 wt%. As the strength of the interactions 

decreases with dilution, the anisotropy energy barrier is substantially lowered, thereby 

inducing a drastic decrease of both the blocking temperatures and the coercivity with 

decreasing the concentration of the nanosized particles in the paraffin matrix. 
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CHAPTER 5 

Attachment of Gold Nanograins onto Colloidal Magnetite Nanocrystals 

5.1 Introduction 

     In the last few years, magnetite nanoparticles have become increasingly important 

for cutting-edge applications in biomedicine due to both their biocompatibility and 

attractive magnetic properties.1 Superparamagnetic magnetite nanocrystals possess high 

magnetic susceptibility, low remanence, low coercivity and high saturation 

magnetization, making them ideal candidates for applications in magnetic resonance 

imaging (MRI), cancer/HIV diagnosis, magnetically-controlled drug delivery, biological 

separation, enzyme and protein immobilization, magnetic cell sorting, RNA and DNA 

purification, retinal detachment therapy, biosensors and magnetocytolysis.2-7 

Additionally, although nanocrystalline Fe3O4 presents a lower saturation magnetization 

than its metallic congeners, it exhibits a much higher chemical stability against oxidation, 

which enables magnetite nanocrystals to be easily dispersed in blood and directed to a 

specific target upon applying an external magnetic field. 

     For high-performance applications, magnetite nanoparticles are required to possess a 

narrow size distribution, smooth surface, uniformity of the spherical shape and the ability 

to form colloidal suspensions in physiological fluids.  This last condition has proven to be 

a critical shortcoming for practical applications because magnetic particles have the 

tendency to cluster and precipitate, which drastically reduce their efficiency. Advanced 

manipulation of magnetite nanoparticles for in-vivo diagnostic tests necessitates magnetic 
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nanoparticles conjugated with bioactive molecules such as antibodies, nucleic acids, 

lipids, peptides, enzymes, proteins or DNA. Biomolecule immobilization often requires 

chemical modification of the surface by complicated synthetic procedures.8 This could be 

greatly simplified by coating magnetite nanoparticles with metallic nanoshells. Gold 

represents an excellent candidate by virtue of its easy reductive preparation, high 

chemical stability, biocompatibility, and its affinity for binding to amine/thiol terminal 

groups of organic molecules.9  Ideally, gold nanoshells should be thin enough to induce 

minimal alteration of the magnetic properties of the magnetite core.  Several recent 

papers have reported the synthesis of core-shell Fe3O4@Au nanocomposites, but, in most 

cases, the coating of individual magnetite nanoparticles and the tunability of the shell-

thickness still remain unresolved.10, 11 

       Here, we report a facile, highly reproductive two-step synthetic process enabling 

the attachment of 2-3 nm gold clusters onto (3-aminopropyl)triethoxysilane (APTES)-

coated Fe3O4 nanoparticles obtained by functionalization of Fe3O4 particles with a mean 

diameter of 10.5 nm (Scheme 5.1). This work exploits the strong ability of gold metal to 

bind covalently to the lone pair of the terminal –NH2 groups of organic entities, 

interactions that can be further enhanced by mutually attractive electrostatic interactions 

when the two components are oppositely charged. Though such a method has proven to 

be simple, inexpensive and versatile, little emphasis has been placed on the design of 

nanocomposite architectures with tailorable properties and complex functionalities by the 

immobilization of metal nanoclusters onto different kinds of nanoparticles. 
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Scheme 5.1. Synthetic approach to the attachment of Au nanograins onto colloidal Fe3O4      

nanoparticles; APTES is (3-aminopropyl)triethoxysilane and THPC is 
tetrakis(hydroxymethyl)phosphonium chloride. 
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Previous attempts include the work of Halas and coworkers, who designed a bottom-up 

approach for the preparation of core-shell SiO2@Au nanocomposites by the sequential 

attachment of gold nanoparticles to the surface-modified SiO2 nanocrystals.12 The growth 

of these attached gold nanoparticles by a subsequent reduction of Au3+ in aqueous 

solutions finally results in the formation of a continuous thin gold layer at the surface of 

the SiO2 nanocrystals. Recently, Sun and coworkers have reported the preparation of 

dumbbell-like bifunctional Au-Fe3O4 nanocomposites by the thermal decomposition of 

Fe(CO)5 at 300oC in presence of Au nanoparticles dispersed into a noncoordinating 

solvent and an inert atmosphere13. Additionally, all the other related papers cover 

extensively the immobilization of noble metals onto different bare/surface-functionalized 

inorganic nanocrystals having applications in optical devices and catalysis.14-17 Though 

Fe3O4/Au nanocomposites represent a relevant system with superior magnetic properties 

and potential widespread use in biomagnetics, such composites have been largely ignored 

in favor of Fe3O4@Au core-shell nanostructures. 

 

       5.2 Experimental 

5.2.1 Synthesis of the magnetic nanoparticles 

        Highly crystalline magnetite nanoparticles were prepared by the hydrolysis of 

chelated iron alkoxide complexes at elevated temperature in solutions of diethylene 

glycol (DEG) and N-methyl diethanolamine (NMDEA) (3:1, w/w).  In a typical 

experiment, a 4 mmol amount of FeCl2·4H2O and 8mmol of FeCl3·6H2O were dissolved 

in 120 g of diethylene glycol (DEG) in a Schlenk flask under protection with argon. 
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When the salts were completely dissolved, 40 g of NMDEA was added and the solution 

immediately turned from yellow-brown to deep brown-green.  The resulting solution was 

allowed to stir for 1h.  Separately, 32 mmol of NaOH was dissolved in 60 g of DEG and 

then mixed with 20 g NMDEA.  The solution of NaOH was added to the solution of 

metal chlorides while stirring at room temperature, causing an immediate color change 

from deep brown-green to deep green.  After 3 h, the temperature of the solution was 

raised during 1.5 h to 210°C and then kept constant for 3 h in the temperature range of 

210-220°C.  After cooling the reaction mixture to room temperature, the obtained black 

solid was isolated by centrifugation, washed with a mixture of ethanol and ethyl acetate 

(1:1, v/v) three times and then dispersed in methanol.   

          As shown in the chapter 3, the surface  of the as-prepared Fe3O4 nanocrystals are 

passivated by the molecules of the adsorbed solvents (DEG and NMDEA), which bind 

the superficial Fe ions via the  ligand’s lone pairs, thus rendering the nanoparticles 

soluble in polar solvents (water, methanol, and ethanol).18  Furthermore, organic 

molecules such as DEG and NMDEA are known to possess the ability to act as tridentate 

ligands for a transition metal ion, forming two-ring, chelating complexes.19  Although the 

mechanistic pathway of the bonding of these organic molecules to the oxide nanocrystals’ 

surface is not completely elucidated, it is likely that when adsorbed on the surface, these 

molecules partially use their chelating properties and leave some of the hydroxo groups 

available for further derivatization.  
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5.2.2 Synthesis of the Fe3O4/ Au nanocomposites  

 

   For the synthesis of the nanocomposite material, we used colloidal solutions of Fe3O4 

nanoparticles in methanol that exhibit long sedimentation times, being stable against 

agglomeration for several months. The first step of the synthetic process consists of 

functionalizing the Fe3O4 nanocrystals with 3-aminopropyltriethoxysilane (APTES).  

Recently, two independent papers reported the functionalization with APTES of 

magnetite nanoparticles obtained by co-precipitation of Fe2+ and Fe3+ salts in aqueous 

solution.20-21  The authors demonstrated that the hydroxy groups on the magnetite surface 

react with the ethoxy groups of the APTES molecules with the formation of Si-O bonds 

and leave the terminal –NH2 groups available for enzyme immobilization.21  However, in 

both cases the APTES functionalization of individual Fe3O4 nanoparticles is hampered by 

the relatively high agglomeration level of the co-precipitated nanopowders.  In contrast to 

the co-precipitation procedure, our non-aqueous synthetic approach allows the two 

chelating solvents (DEG and NMDEA) to protect the nanocrystals against agglomeration, 

induce their solubility in polar solvents, and favor the reactions at the nanocrystal’s 

surface, thus rendering them more suitable for individual functionalization with organic 

molecules. For the functionalization of Fe3O4 nanocrystals with 3-

aminopropyltriethoxysilane (APTES), 2 mL of ferrofluid (~10 mg Fe3O4/mL methanol 

solution) was diluted to 50 mL with absolute ethanol and sonicated for 2-3 min.  The 

resulting colloidal solution was transferred to a three-neck flask equipped with a 

condenser, a thermometer, and a heating mantle.  Then, 180 μL APTES was injected into 

the flask and the mixture was vigorously stirred at room temperature for about 1 h and 
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then heated to reflux for 2 h under protection with argon.  After cooling the mixture to 

room temperature, the solid product was magnetically separated, washed with ethanol 

five times and then redispersed in 10 mL of ethanol by sonicating for 10 min.  In order to 

induce positive charges at the surface of the APTES-coated Fe3O4 nanocrystals, 10 drops 

of HNO3 solution (prepared by mixing 0.05 mL of 6 M HNO3 with 20 mL ethanol) was 

introduced into the ethanolic dispersion of APTES-coated Fe3O4 and then stirred for 4 h.         

The second step in the synthesis of Fe3O4/Au nanocomposites is the attachment 3 nm 

gold particles onto APTES-coated Fe3O4 nanoparticles. Negatively charged gold 

nanoparticles were prepared by a modification of the method of Duff et al.22  In a typical 

experiment, a volume of 5 mL of 1 M NaOH was diluted with 18 mL of distilled water 

and then mixed with 10 mL of tetrakis(hydroxymethyl)phosphonium chloride (THPC) 

(0.67 mmol) solution.  The THPC stock solution was prepared separately by diluting 0.6 

mL of 80% THPC (3.375 mmol) aqueous solution with 50 mL distilled water.  The 

resulting solution containing the reducing agent was allowed to stir for 5 min. Then, 20 

mL of 1% HAuCl4 solution was added slowly to the above mixture kept under vigorous 

stirring to yield a deep red-brown solution indicating the formation of Au nanoparticles. 

The resulting colloidal gold solution was stirred continuously for 10 min.  Once prepared, 

the negatively charged gold nanoparticles contained in the colloidal solution were 

attached to the surface of aminosilane-coated Fe3O4 nanocrystals. Thus, 30 mL of 

colloidal gold solution was introduced into a round bottom flask containing 10 mL of the 

ethanolic dispersion of amine-functionalized Fe3O4 nanoparticles and the mixture was 

stirred overnight at room temperature. The solid product was collected by magnetic 

separation, washed in sequence with ethanol and distilled water five times to remove the 
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excess of gold particles, and then redispersed in ethanol by sonication. From these 

solutions, samples for the XRD and magnetic measurements were prepared by drying the 

solid material at room temperature under flowing nitrogen.  

 

 

5.3. Characterization of the Fe3O4/ Au composite nanopowders 

 

Figure 5.1 shows the transmission electron microscopy (TEM) images of (a) the 

Fe3O4 nanoparticles obtained from a mixture of DEG and NMDEA (3:1, w/w), (b) the 

colloidal gold particles, (c) the as-prepared Fe3O4/Au nanocomposite material, and (d, e) 

and (f, g) the ethanolic dispersion of Fe3O4/Au nanocomposites aged for two and seven 

months, respectively and sonicated for 60 minutes. The micrographs clearly show that the 

attachment of gold nanoparticles to individual Fe3O4 nanocrystals was successful.  

However, as seen in Fig. 5.1 (c), some agglomeration of the Fe3O4/Au nanocomposites is 

observed, but the initial spherical Fe3O4 nanoparticles can still be individually 

distinguished. We observe that the parent Fe3O4 nanoparticles are slightly aggregated, 

most of them appearing as discrete units which exhibit individual spherical shapes. At the 

same time, the Fe3O4/Au nanosized composites show a remarkable resistance to 

sonication; most of the gold particles are still attached onto the surface of Fe3O4 

nanocrystals even after sonication for 1 h. While the attaching mechanism is still unclear, 

TEM data suggest that the bonding of colloidal gold nanoparticles to the surface of 

APTES-modified Fe3O4 nanoparticles is relatively strong and probably not strictly 

electrostatic. From the HRTEM image (Fig. 5.2), one can easily identify the 2-3 nm gold  
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Figure 5.1. Typical TEM images of the as-prepared Fe3O4 nanoparticles obtained from a 
mixture of DEG and NMDEA (3:1, w/w) (a), the colloidal Au particles (b), the freshly 

prepared Fe3O4/Au nanocomposite material (c), and the Fe3O4/Au nanocomposite material 
aged for 2 (d, e), 5 (f, g), and 7months (h, i) and sonicated for 60 minutes. 

 



 174

 

 

 

 

 

 

Figure 5.2.  Representative high resolution TEM image of a typical 
Au-decorated Fe3O4 nanocrystal viewed along [011] zone axis. 
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particles (smaller, darker dots) attached to spherical ~10 nm Fe3O4 nanocrystals.  Because 

of their small size, the lattice fringes of the 2-3 nm attached gold particles cannot be 

distinguished, whereas for the larger Fe3O4 nanocrystals, lattice fringes corresponding to 

the (11-1) and (-1 1 -1) atomic planes are easily identified. The interplanar distance 

calculated from the corresponding HRTEM image is 4.85Å, whereas the zone axis is 

[011]. Although the number of gold particles attached to each individual Fe3O4 

nanocrystal varies between neighboring particles, no uncoated magnetite nanocrystals 

were observed.  

 From the X-ray powder diffraction (XRD) pattern in Figure 5.3, all reflections 

can be ascribed to nanocrystalline Fe3O4, whereas the most intense reflection of Au, 

specifically the (111), is identified by a broad, low-intensity peak centered at 38 o2θ. The 

absence of individual peaks corresponding to gold is likely due to the low concentration 

of gold in the composite material, the very small size of the gold particles and/or their 

amorphous nature resulting from reduction of the AuCl4
− ions in the presence of THPC.  

The small amount of gold attached to the magnetite nanoparticles was further confirmed 

by inductive coupled plasma (ICP) spectroscopy, which gave a weight percentage of 

43.67% Fe3O4, 8.31% Si and 48.01% Au, respectively. Figure 5.4(a). illustrates the UV-

vis spectra of the freshly prepared gold nanoparticles dispersed in water and ethanol, as 

well as the spectrum of an ethanolic dispersion of Fe3O4/Au nanocomposites.  When 

dispersed in water, the as-prepared colloidal gold nanoparticles exhibit a plasmon peak at 

515 nm that is shifted to 537 nm when the gold nanoparticles are dispersed in ethanol. 

The characteristic gold plasmon peak was not observed in the Fe3O4/Au nanocomposite. 

We hypothesize that the absence of the plasmon peak is due to both the low concentration 
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Figure 5.3.  XRD pattern of the Fe3O4/Au nanocomposite (a) with simulated reference 
patterns of magnetite (b) and gold (c), and the Fe3O4 nanoparticles prepared from a 

mixture of DEG and NMDEA (3:1, w/w). 
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Figure 5.4.  UV-vis spectra of the Fe3O4/Au nanocomposite material (a) and physical 

mixtures of colloidal Au nanoparticles and Fe3O4 nanocrystals dispersed in ethanol (b). 
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of gold particles in the composite material and their small size. The influence of the gold 

concentration on the intensity of the gold plasmon peak was investigated by recording the 

UV-vis spectra of physical mixtures of ethanolic dispersions of Fe3O4 nanocrystals and 

gold nanoparticles (Figure 5.4(b)). The intensity of the plasmon absorption peak at 537 

nm (typical for THPC gold nanoparticles dispersed in ethanol) decreases monotonically 

as the concentration of gold in the physical mixture decreases. The curves (a) to (k) differ 

by 10% increments of the Au concentration from 100% (curve (a)) to 0% (curve (k)). 

Interestingly, we observed that the immobilization of the gold nanoparticles onto the 

Fe3O4 nanocrystals is size-selective. Careful examination of TEM micrographs reveals 

that the as-prepared gold nanoparticles exhibit a relatively broad size distribution, with 

sizes ranging between 2 and 7 nm in diameter, whereas the gold nanoparticles 

immobilized onto the Fe3O4 nanocrystals are significantly smaller, ranging between 1 and 

4 nm (Figure 5.5). Fitting the size distribution profiles with a Gaussian function gives an 

average particle size of 3.4 nm (SD = 0.7) for the as-prepared Au nanoparticles and 2.5 

nm (SD = 0.6) for the gold in the composite material. This strongly suggests that size 

effects play an important role in the formation of the Fe3O4/Au nanocomposites and that 

the ~10 nm APTES-coated Fe3O4 nanocrystals preferentially bind smaller gold 

nanoparticles.  Consequently, the plasmon peak observed in the UV-vis spectra of both 

the aqueous and ethanolic gold colloids is attributed to the larger gold nanoparticles, 

whereas the Fe3O4/Au nanocomposites produce a plasmonless UV-vis spectrum.  This 

observation agrees with the suggestion of other authors that for a collection of very small 

gold nanoparticles (d<3 nm), finite-size effects become significant, thus suppressing the 

characteristic plasmon peak in the corresponding UV-vis spectrum (since the main  
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Figure 5.5.  Size distribution plots of the as-prepared Au nanoparticles and Au 
nanoparticles immobilized onto 10.5 nm-sized Fe3O4 nanocrystals.  Solid lines represent 

the fitted Gaussian distribution functions. 
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contribution to the plasmon peak mainly originates from the surface scattering of the 

conduction electrons, its intensity follows a 1/r dependence with the size of the 

particle).23 

 

5.4. Magnetic properties of the Fe3O4/ Au composite nanopowders 

 

 The ZFC/FC curves of the gold-decorated Fe3O4 nanoparticles and the as-

prepared Fe3O4 nanoparticles measured in a field of 100 Oe on a superconducting 

quantum interference device (SQUID) magnetometer are plotted in Figure 5.6. The 

absence of a well-defined maximum in the ZFC curve indicates that both the as-prepared 

10.5 nm-sized Fe3O4 nanoparticles and Fe3O4/Au nanocomposites exhibit blocking 

temperatures (TB) above room temperature.  Furthermore, no visible difference between 

the two curves was detected upon immobilization of 2-3 nm gold particles onto the ~10 

nm Fe3O4 particles. It is known that the maximum of the ZFC curve for a collection of 

superparamagnetic non-interacting single-domain nanoparticles is dependent on the size 

of nanocrystals, their degree of clustering, as well as on the mutual dipolar interactions 

between them.24 However, in the case of Fe3O4/Au nanocomposites, the ZFC and FC 

curves diverge at T = 198 K, which is a much lower temperature than the T = 228 K 

observed in the case of the as-prepared Fe3O4 nanoparticles. This could be associated 

with a lowering of the anisotropic energy barrier for the Fe3O4/Au nanocomposites with 

respect to that of the as-prepared Fe3O4 nanocrystals.The hysteresis loops of the as-

prepared Fe3O4 nanoparticles and Fe3O4/Au nanocomposites, recorded at 300 K and 5 K, 

are represented in Figure 5.7.  As expected from the shape of the ZFC/FC curves, the  
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Figure 5.6.  ZFC/FC curves of the as-prepared Fe3O4 nanoparticles (a), and 
Fe3O4/Au nanocomposite material (b). 
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Figure 5.7.  Hysteresis loops of as-prepared Fe3O4 nanoparticles obtained from a 
mixture of DEG and NMDEA (3:1, w/w) measured at 300K (a) and 5K (b) and of 

Fe3O4/Au nanocomposite material recorded at 300 K (c) and 5K (d). 
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Table 5.1. Magnetic Properties of the As-Prepared Fe3O4 nanoparticles and the Fe3O4/Au 
Nanocomposite Material 

                         300 K                                                         5 K  

 Material    HC(Oe)      MS(emu/g)         SQ             HC(Oe)      MS(emu/g)         SQ       

Fe3O4 14 83.5 0.036 85 94 0.25 

Fe3O4/Au 14.8 78 0.034 242 88.7 0.25 
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Fe3O4/Au nanopowders exhibit a hysteretic behavior at both temperatures. The coercivity 

(Hc) and squareness (SQ) are found to increase from Hc = 14.8 Oe and SQ = Mr/Ms = 

0.034 at 300 K to Hc = 242 Oe and SQ = 0.25 at 5 K, respectively (Table 5.1.). The 

magnetic data show that the room temperature saturation magnetization of the 10.5 nm-

sized Fe3O4 particles is 83.5 emu/g, close to the value of 92 emu/g reported for bulk 

material.25 The saturation magnetization of the Fe3O4/Au nanocomposites was found to 

be 78 emu/g at 300 K and 88.7 emu/g at 5K, respectively. The values of Ms for the 

Fe3O4/Au nanocomposites were normalized to the weight of the magnetic core as 

resulting from the inductive coupled plasma (ICP) experiments. Moreover, the room 

temperature saturation magnetization of Fe3O4/Au nanocomposites is very close to the 

value of 80 emu/g reported for 3-14 nm Au-Fe3O4 dumbbell nanoparticles synthesized by 

Sun and coworkers13 and undoubtedly show that the saturation magnetization of Fe3O4 

nanoparticles is minimally influenced by the immobilization of gold nanoparticles on 

their surfaces.  

 

 

5.5. Conclusions 

 

In summary, we describe a simple and feasible sequential approach to immobilize 

2-3 nm gold particles onto the chemically modified surface of ~10 nm Fe3O4 particles 

prepared from a non-aqueous, homogeneous solution of diethylene glycol and N-

methyldiethanol amine (3:1, w/w). The process is size-selective and in the case of 

Fe3O4/Au nanocomposites, both the low concentration and the small size of the gold 
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particles immobilized on the ~10 nm Fe3O4 nanoparticles obscure the gold plasmon peak.  

The attached gold particles provide chemically active sites on the surface of the 

magnetite nanocrystals, enabling their potential derivatization with different 

multifunctional organic molecules. This effective approach can be readily extended to the 

immobilization of other noble metals onto the chemically modified surface of magnetite 

nanocrystals, also opening up new potential routes for the functionalization of these 

nano-ensembles and their further manipulation in specific biochemical applications.  
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