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Abstract 

Novel synthetic routes to formation of gold-magnetite nanoparticles have been 

designed by sonochemistry. Treatment of preformed magnetite nanoparticles 

with ultrasound in aqueous media with dissolved tetrachloroauric acid resulted in 

the formation of gold-magnetite nanocomposite materials.  These materials 

maintained the morphology of the original magnetite particles.  The morphology 

of the gold particles could be controlled by adjusting experimental parameters, 

including the addition of small amounts of solvent modifiers such as methanol, 

diethylene glycol, and oleic acid. Further experiments were conducted with silver 

and titanium. Morphology and properties of nanocomposites were analyzed by 

transmission electron microscope (TEM), energy dispersive spectra (EDS), 

superconducting quantum interference device (SQUID) and inductively coupled 

plasma (ICP). The nanocomposite materials were magnetic and exhibited optical 

properties similar to gold nanoparticles. Magnetic nanoparticles have a wide 

range of potential applications including uses as medical diagnostic tools, drug 

delivery systems, and biosensors.   
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Introduction 

Nanoparticles are small crystalline particles with characteristic size smaller 

than 100 nm, located in the transition region between molecules and microscopic 

(micron-size) structures. There are various types of nanoparticles synthesized, 

like, insulating (ceramics), metallic and semiconductor. Recently hollow 

nanocrystals have also been synthesized which are spherical shells on the 

nanoscale1. 

Surface modification of nanometer sized inorganic core with different 

inorganic shell to form core/shell type nanostructures has become an important 

route to functional nanomaterials. Such modification has brought about 

interesting physical and chemical properties of the nanostructured materials that 

have shown important technological applications2-4. 

Monodisperse particles, i.e. particles of uniform size dispersed in a fluid 

are achievable and this is one of the reasons for the increased interest in 

nanoparticles in recent times6. Nanosize particles have a tendency to stick to 

surfaces and in some cases to each other, forming clusters of particles. This is 

caused by the relatively large electromagnetic forces, i.e., when particles carry a 

net charge there is a strong electrostatic repulsion between them, by Coulomb’s 

law, and they stick strongly to oppositely charged particles, or uncharged 

polarizable surfaces. Nanoparticles of ferroelectric or ferromagnetic materials 

demonstrate a strong dipole-dipole interaction while nonpolar particles polarize 
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and interact through the van der Waals forces. Nanoparticles can be self-

assembled, which is another reason for interest in them. 

Nanoparticles have been produced and used for a very long time. They 

are usually used as pigments in inks, paints and glazes7. They are also an 

essential ingredient in sun protection lotions, and in other cosmetics. 

Nanoparticle applications can be separated into different categories according to 

the role played by the particles. The simplest case is where their size, shape, 

surface chemistry, or other physical properties, affect their immediate 

environment. They have also been recognized to function as catalysts for carbon 

nanotube growth. Another application is where the particles communicate 

information on the local environment or modify some local physical property in a 

way that can be detected in real-time.  

The finite size and surface effects gives rise to some noteworthy 

phenomenon to magnetic nanoparticles including superparamagnetism, high field 

irreversibility, high saturation field, shifted loop after field cooling8. The fact that 

particles of a ferromagnetic material below a critical size (<15 nm) would consist 

of a single magnetic domain was evident from the work of Frenkel and Dorfman. 

The particle shows an atomic paramagnetic behavior (superparamagnetism) 

except an extremely large moment above a certain temperature called the 

blocking temperature.  

The particles need to show superparamagnetic behavior at room 

temperature9. The other application like medical diagnosis and curative therapy 
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require these particles to be stable in physiological pH and salinity conditions. 

The particle size is a key issue since the precipitation due to gravity can be 

avoided with smaller particles. On the other hand steric and coulombic repulsions 

can also be of importance with respect to charge and surface chemistry.  

It is necessary to coat these magnetic nanoparticles with a biocompatible 

polymer during or after synthesis to prevent formation of large aggregation, 

charges from the original structure and biodegradation in systems for in vivo 

applications10. Among the range of magnetically responsive components (from 

magnetite to summarium-cobalt systems) magnetite and its oxidized form (γ-

Fe2O3) are most commonly employed. Nickel and cobalt are susceptible towards 

oxidation and have alarming toxicity. So they are of little or no interest. Thus for 

in vivo biological applications the magnetic particles must be synthesized from 

non-toxic, non-immunogenic material with small particle size to maintain 

circulation after injection through the capillary systems of organs and tissues. 

Further more it is also necessary to have a higher magnetization for the particles 

so that their movement can be controlled by an external magnetic field and can 

be immobilized to the targeted pathogenic tissue11. 

For in vitro applications restrictions are a bit relaxed with respect to sizes. 

Superparamagnetic nanocrystals dispersed in submicrometric diamagnetic 

particles with long sedimentation times can be used. The advantage appears in 

the functionality of the nanoparticles. In nut shell for all applications the size, 
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shape, the size distribution and surface chemistry of the particles as well as their 

magnetic properties are always of prime importance.  

Recently many attempts have been made to develop processes and 

techniques that would yield core shell uniform nanoparticles with controlled size 

and shape. Developments in nanotechnology demand building blocks with 

increasing structural and compositional complexity, which can be reproducibly 

self-assembled into functional materials. In this regard, nanoparticles with core-

shell morphologies represent a new type of constructional unit consisting of two 

dissimilar compositional and structural domains. Such materials should have 

enhanced physical and chemical properties and a broader range of applications 

than their single-component counterparts. 

During the last several years, interest in the study of nanostructured 

materials has been increasing at an accelerating rate, stimulated by recent 

advances in materials synthesis and characterization techniques and the 

realization that these materials exhibit many unique and interesting physical and 

chemical properties with a number of potential technological applications. As 

never before, magnetic materials are the key to the future of the storage 

industry. 

Preparation of gold-magnetite nanocomposites, especially those with a 

core-shell structure12, has been a topic of much interest.  Magnetic nanoparticles 

have a wide range of potential applications13, including uses as medical 

diagnostic tools13, drug delivery systems13-15, and biosensors13,14 as well as 

 4



molecular sensors16.  Effective use of magnetic nanoparticles for these purposes 

requires several characteristics such as uniform and controllable particle size, 

shape, and morphology, substantial and reliable magnetic properties17,18, low 

toxicity, stability in biological or environmental systems13,14, and readily 

functionalizable surfaces to allow chemical and biological selectivity19.  Gold 

coated magnetite has been proposed as an effective material that would meet 

these requirements. It has been well established that gold can be functionalized 

with thiolated organic molecules20 and via amide coupling chemistry21. 

Researchers have successfully bound thiol modified DNA and various other 

enzymes to gold particles22. 

Obtaining novel materials with controlled size or shape23,24 under mild 

conditions and with safe precursors is an issue that has engaged many 

researchers. Sonic energy has been routinely used in the field of materials 

science for many years. Its chemical effects have recently come under 

investigation for the acceleration of chemical reactions25,26 and for the synthesis 

of new materials25, as well as for the generation of novel materials with unusual 

properties26. Many reactions which are normally sluggish can be accelerated by 

application of ultrasound.  The acceleration is due to either physical or chemical 

effects of cavitation. Physical effects can enhance the reactivity of a catalyst by 

enlarging the surface area or by improving mass transport26. Chemical effects of 

ultrasound enhancements of reaction rates occurs through high temperature, 

high pressure, and highly reactive radical species formed during cavitation26. 
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Figure 1. Schematic of Sonochemical Process 

 

Cavitation in a liquid occurs due to the stresses induced in the liquid by 

the passing of a sound wave through the liquid25. A sound wave consists of 

compression and decompression/rarefaction cycles.  If the pressure during the 

decompression cycle is low enough, the liquid can be torn apart to leave small 

bubbles25,26. These cavitation bubbles grow during subsequent decompression 

phases, and contract during compression phase.  Because of an imbalance 

between growth and contraction, the bubbles increase in size until they are no 

longer stable.  At this point the bubbles implode violently during the next 

compression. During implosion temperatures can reach an estimated 5000°C, 

pressures can reach several hundreds of atmospheres, and solvent molecules 

can be homolytically cleaved to form species such as hydroxyl radical and 

hydrogen atoms26.  Formation of gold nanoparticles during sonication has been 
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previously reported, and the mechanism was proposed to occur through 

hydrogen atom reduction of dissolved gold27. 
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Experimental Procedures 

In our study we have introduced two new approaches of synthesizing 

magnetic nanoparticles. They are 

1. Sonochemical synthesis of gold magnetite nanoparticles with 

various surfactants. 

2. Synthesis of gold titanium dioxide nanoparticles, magnetite-

titanium dioxide core/shell nanoparticles and magnetite-titanium-

gold core shell nanoparticles. 

We have been able to achieve interesting results in the first part of the 

experimental section. They are reproducible and these particles show higher 

magnetization than magnetite particles. Magnetic properties of the 

nanocomposites can be tuned by changing the amount of gold particles in the 

sample. With proper choice of surfactants these properties can be controlled. It 

has been well established that gold can be functionalized with thiolated organic 

molecules and via amide coupling chemistry. Researchers have successfully 

bound thiol modified DNA and various other enzymes to gold particles.  

In the first part of the study, sonochemical methods were utilize to 

produce gold-magnetite nanocomposite materials28. 0.1 mM HAuCl4 solution was 

prepared in nanopure water. 50 ml of the prepared solution was sparged in 

argon for 20 min. 100 µL methanol was added and was sparged with argon for 

another 5 min. 100 µL of preformed magnetite29,30 suspended in methanol was 

added to the above solution and sparged for another 10 min. Then it was 
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sonicated under argon atmosphere for 10 min at 50% amplitude using an 

ultrasonic processor. The solution then turned pink/purple depending on the size 

of the gold nanoparticles. The whole solution was then transferred into a test-

tube and kept in front of a strong magnet for at least one day until the whole 

solution became clear as the gold-magnetite nanocomposites stuck to the wall of 

the test-tubes. Then the transparent solution was carefully taken out of the test-

tube in front of the magnet so that the particles remained against the test-tube 

walls. After washing, the nanocomposite particles were dispersed in 2 ml of 

ethanol and stored in capped tubes. These were then used for TEM studies.  

In the other sets of experiments 100 µL of each of diethylene glycol (DEG) 

and oleic acid were used as surfactants in addition to 100 µL of methanol during 

the sparging processes. The remaining of the experimental procedure remained 

the same and the extraction process was also the same. 
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Results and Discussion 

Sonication of magnetite nanoparticles in the absence of HAuCl4 did not 

cause any observable changes in the TEM images of the magnetite particles.  In 

the presence of HAuCl4, sonication resulted in the appearance of a red or purple 

coloration of the particles, as depicted in Figure 2.   

a ba b

Figure 2. Gold magnetite nanocomposite materials suspended in ethanol prior to 
(a) and after (b) magnetic separation. The brown/purple color is from gold 
nanoparticles. Note that all the color is removed after separation, indicating that 
the gold was attached to magnetite 

 

Exposing these materials to a magnetic field resulted in removal of all 

colored material from the liquid. This result indicates that the gold particles must 

be physically or chemically attached to the magnetite.  This attachment is at 

least strong enough to cause the suspended gold particles to migrate with the 

magnetite in a magnetic field. TEM images of these particles revealed the 

presence of both gold and magnetite forming a nanocomposite material (see 

Figure 3).  
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Figure 3. TEM image of gold-magnetite nanocomposite material 
formed by sonication of magnetite in aqueous HAuCl4 with added 
methanol. Dark particles are gold, grey particles are magnetite. 

Observation of the particles in Figure 3 suggests a high degree of 

agglomeration between magnetite particles.  This degree of agglomeration is 

likely due to the removal of the initially present capping ligand during the 

sonication process. 

EDS analysis of the particles indicated the presence of both iron and gold, 

Figure 4. EDS spectrum of composite particles depicted in Figure 3. Cu and C 
peaks are from TEM grid 
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as illustrated in Figure 4.  The data presented in this EDS spectrum were 

collected from multiple particles, and is therefore representative of the composite 

material. Additional EDS spectra collected on single particles verified that the 

dark particles in the TEM image (Figure 4) are in fact gold and the grey particles 

contain iron as the only metal. 

The gold-magnetite nanocomposite material was also characterized to 

determine its magnetic properties using a SQUID magnetometer.  Substantial 

changes in the magnetic properties of these materials were observed compared 

to the untreated magnetite precursor material.  Figure 5 compares the 

Figure 5.  Magnetization vs. temperature for magnetite 
nanoparticles (a) and gold-magnetite nanocomposite material 
(b).  In each panel, the top curve is for the field cooled sample 
and the bottom curve is for the zero field cooled sample. 
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magnetization vs. temperature behavior of the untreated magnetite and the 

gold-magnetite nanocomposite material.  While the general shape of these 

curves is similar, the gold-magnetite nanocomposite material exhibited a 

substantially higher magnetization of about 23 emu/g compared to 14 emu/g for 

the untreated magnetite.  In both cases, the magnetization was normalized to 

total mass of magnetite in the sample.  In addition to the differences in 

magnetization, the coercivity of the sample changed upon formation of the 

nanocomposite material.  The untreated magnetite had an observed coercivity of 

75 Oe, while the gold-magnetite nanocomposite material exhibited a 

substantially increased coercivity of 200 Oe.  These data are depicted in Figure 6.  

 

Figure 6. Hysteresis loops for untreated magnetite (a) and gold-
magnetite nanocomposite material (b). 
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Also apparent in this figure, is the significantly larger saturation 

magnetization (Ms) for the nanocomposite material (Ms ~ 125 emu/g) compared 

to that of the untreated magnetite (Ms ~ 90 emu/g). The changes in magnetic 

properties are most likely due to changes in the surface characteristics of the 

magnetite.  During sonication, the capping ligands initially present can be 

removed.  Removal of these capping ligands could cause a change in the surface 

charge or magnetic domains.  Surface modification of the magnetite is also 

possible under the reactive conditions that occur during sonication.  In addition, 

interactions between magnetite particles could be enhanced by their direct 

contact, which is not possible with capping ligands present.  Finally, interaction 

of the magnetite surface with gold could contribute to changes in the surface 

states, yielding altered magnetic properties.  A control experiment was 

performed in which magnetite was sonicated under identical conditions but with 

no HAuCl4 present. The magnetic properties for these particles showed 

decreased saturation magnetization (Ms ~ 5 emu/g) compared to untreated 

magnetite.  

The fact that magnetite sonicated in the absence of gold exhibited 

decreased magnetization and magnetite sonicated in the presence of gold 

showed increased magnetization, indicates that interaction of gold with 

magnetite is a significant factor in controlling the magnetic properties of the 

composite material. 
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Additional investigations utilized diethylene glycol or oleic acid in place of 

methanol.  These additives served two purposes: 1) they acted as hydroxyl 

radical scavengers, thereby promoting the reducing conditions needed for gold 

metal formation and 2) they acted as capping ligands for the particles.  In 

addition to these functions, the additives were also found to change the gold 

particle size and the Fe/Au ratio in the composite materials (Table 1).  Therefore, 

adjusting the identity and amounts of these additives may provide a mechanism 

for preparing gold-magnetite nanocomposite materials with a range of selected 

Fe/Au compositions and particle sizes. 

 
Table 1. The ratios of the Au and Fe in the samples with MeOH, DEG and Oleic 

acid. Data obtained from the ICP. 
 
Sample prepared with Au weight % Fe weight % 

Methanol 26 74 
Diethylene Glycol 57 43 

Oleic Acid 50.4 49.6 
 
 

Figure 7 depicts the TEM for gold-magnetite nanocomposite material 

formed with diethylene glycol as additive, and Figure 8 presents the TEM image 

when oleic acid was used. When diethylene glycol was used, more uniform gold 

particles were observed. In addition, the Fe/Au ratio decreased compared to the 

material prepared using methanol as an additive. With oleic acid added, 

substantially smaller gold particles were observed, and the Fe/Au ratio decreased 

even further. EDS data collected for these particles verified the presence of both 

gold and iron in the nanocomposite material. As for the samples prepared with 
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Figure 7. TEM image of gold-magnetite 
nanocomposite formed with diethylene 
glycol additive 

methanol, these particles were collected by magnetic separation, indicating that 

the gold and magnetite were bound together strongly enough to remain attached 

and migrate together in the magnetic field.  

Figure 8. TEM image of gold-magnetite 
nanocomposite formed with oleic acid additive 
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Figure 9 shows the absorbance spectra of the three types of gold 

magnetite nanocomposites suspended in ethanol. The Au-magnetite nanoparticle 

with MeOH shows an absorbance peak at 569 nm while that with DEG showed a 

maximum at 557 nm.  The Au-magnetite nanocomposites prepared with oleic 

Absorbance vs Wavelength
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Figure 9. The absorbance spectra of the three types of gold magnetite 
nanocomposites suspended in ethanol. 
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Figure 10. EDS Spectra for the Au-magnetite nanocomposites in DEG 
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acid did not yield a clear absorbance maximum, possibly due to excessive 

scattering by the particles. 

The EDS spectra for the gold magnetite nanoparticles also show the 

presence of both Au and Fe. This can be seen in Figures 10 and 11. 

Figure 11. EDS Spectra for the Au-magnetite nanocomposites in Oleic Acid
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The gold-magnetite nanocomposite material was also characterized to 

determine its magnetic properties using a SQUID magnetometer.  Substantial 

changes in the magnetic properties of these materials were observed compared 

to the untreated magnetite precursor material.  Figure 12 and 13 shows the 

magnetization versus temperature plot of the gold-magnetite nanocomposites 

with DEG and Oleic acid. The general shape of the graphs remained almost 

similar but the nanocomposites with DEG and oleic acid showed higher 

magnetization value of ~33 emu/g and 27 emu/g respectively. In both cases, the 

magnetization was normalized to total mass of magnetite in the sample.  In 

addition to the differences in magnetization, the coercivity of the sample 
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Figure 12.  Magnetization vs. temperature for gold 
magnetite nanocomposite material with DEG in 100 Oe 
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Figure 13.  Magnetization vs. temperature for gold 
magnetite nanocomposite material with Oleic Acid in 100 
Oe Field. 

changed upon formation of the nanocomposite material.  The gold-

magnetite nanocomposite with DEG as the surfactant had an observed 

coercivity of 284 Oe, while the gold- magnetite nanocomposite material with 

Oleic Acid exhibited a coercivity of 155 Oe.  These data are depicted in Figure 

14 and 15 respectively. Also apparent from the figures, is the significantly 
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larger saturation magnetization (Ms) for the nanocomposite materials (Ms ~ 186 

emu/g) and (Ms ~ 140 emu/g) compared to the untreated magnetite (Ms ~ 90 

emu/g). 
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Figure 14. Hysteresis loop for gold-magnetite nanocomposite material 
in DEG at 5K. 
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Silver

htly enough to cause the 

silver to move towards the magnet with the magnetite. 

 Magnetite Nanoparticles  

In addition to the studies utilizing gold, we have also investigated the 

ability to form silver-magnetite nanocomposite materials. Initial experiments met 

with limited success. While silver-magnetite nanocomposites were formed, there 

were few silver particles, and those that were formed were relatively large (~50-

100 nm) as depicted in Figures 16 and 17. However, as with the gold-magnetite 

nanocomposite, the silver-magnetite material was magnetically separated, 

indicating that the silver and magnetite were bound tig

Figure 16. Silver magnetite 
nanocomposites. 

Figure 17. Silver 
nanoparticle with magnetite 
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Titanium dioxide-Gold and Titanium dioxide-Magnetite Nanoparticles 

 Furthermore some preliminary work has been done with titanium. Firstly 

gold was tried to be coated on titanium by sonochemical process. But we saw no 

success in this method. So we tried a different approach by using UV light to 

coat titanium with gold. In this process we became successful and got good 

results which are shown in Figure 18 and 19.  

 

Since this was successful we now tried to make these particles magnetic 

in nature. This would give the particles more useful properties. Firstly they will 

be magnetic in nature, secondly they will have a photocatalytic surface and 

moreover it will have a functionizable surface of gold. For this purpose we 

followed the procedure by R. Amal et al 31,32. They have shown that they were 

able to coat magnetite with titanium. A sol-gel technique was used during the 

coating process. This involved the hydrolysis of titanium butoxide in the presence 

Figure 18. The smaller white 
particles are Au and the large 
gray particles are TiO2. 

Figure 19. TEM image of Au 
nano particles adhered to the 
larger TiO2 particles 

20 nm 20 nm
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of magnetite seed particles, and resulted in the deposition of titanium dioxide 

layer onto the surface of the magnetite particles. The magnetite particles were 

dispersed in ethanol in an ultrasonic bath. Water was added followed by the 

rapid addition of titanium butoxide which has been dissolved in a separate 

volume of ethanol. The final reaction mixture was aged in an ultrasonic bath at a 

temperature of 20 oC. The reaction was stopped by immersion in an ice-water 

bath and dilution with ethanol. The grayish black particles that were formed were 

magnetically separated and washed three times with ethanol followed by two 

rinses with water. These particles were then dissolved in ethanol and the 

resulting solution was used for TEM measurements. Several sets of experiments 

were performed to figure out the appropriate amount of titanium butoxide that 

needs to be dissolved in ethanol. The Figures 20 and 21 show the TiO2-

magnetite nanocomposites that were formed when a higher concentration of 

Figure 20. TEM image of 
Titaniumdioxide magnetite 

Figure 21. TEM image of a
Titanium dioxide magnetit
nanoparticles 

nother 
e 

20 nm

20 nm
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titanium butoxide was added. From the figures it is evident that the darker 

magnetite particles are covered with the titanium dioxide layer. EDS spectra 

 

 

 

 

 

 

 

 

were taken which show the presence of both Ti and Fe. (Figure 22) 
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Figure 22. EDS spectrum of titanium dioxide – magnetite 
nanocomposite corresponding to Figure 20
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Conclusion 

he experiments conducted to date have resulted in a novel method for 

reparation of gold-magnetite nanocomposite materials. These materials 

lly maintain the optical properties of gold. At the same time, the gold 

can be separated or otherwise manipulated with a magnetic field. The new 

methodology also includes parameters that can be adjusted to vary the Au/Fe 

tio and particle sizes of the gold structures within the nanocomposites. These 

ew particles have potential use in biomedical applications, in sensor 

nd in electronic, optoelectronic, and magnetooptic devices. 

T

p

substantia

ra

n

applications, a

Furthermore, the fundamental interactions occurring at the gold-magnetite 

interface are poorly understood. These new nanocomposite materials provide an 

opportunity to study these interfaces and gain knowledge about interparticle 

interactions within nanoscale materials. 

 
 
 

 

 

 

 

 

 

 

 25



Future Research 

The future research plan can be broadly divided into three parts: 

a) Gold magnetite research:  

Further research work will include  

• Measuring the magnetic properties as well as the magneto-optical 

properties of the nanoparticles. But for these experiments we will 

need large amounts of Au-magnetite nanocomposites.  

• Change the concentration of the gold and see the shape and 

gy of the particles. All the experiments need to be verified 

oparticles as well as the synthesis of 

magnetite particles.  

• Further modify the shape and size of the nanocomposites by 

reacting the preformed gold and preformed magnetite 

nanoparticles. 

b) Bio a

Nanom

nanote ependent properties make these 

ma i

list of ns of nanomaterials to biology or medicine is 

given below: 

• Probing of DNA structure  

 

morpholo

by TEM, EDS, SQUID and ICP.  

• Synthesis of gold nan

m gnetic research 

aterials are at the leading edge of the rapidly developing field of 

chnology. Their unique size-d

ter als superior and indispensable in many areas of human activity. A 

some of the applicatio
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• Fluorescent biological labels 

• Detection of proteins  

ct that nanopaThe fa rticles exist in the same size domain as proteins 

makes nanomaterials suitable for bio tagging or labelling. It can be used 

as a convenient surface for molecular assembly, and may be composed of 

inorganic or polymeric materials. There are some developments in 

directing and remotely controlling the functions of nano-probes, for 

example driving magnetic nanoparticles to the tumour and then making 

them either to release the drug load or just heating them in order to 

destroy the surrounding tissue. The major trend in further development of 

nanomaterials is to make them multifunctional and controllable by 

external signals or by local environment thus essentially turning them into 

nano-devices. 

c) 

 

 

 

Titanium-gold-magnetite nanocomposite 

In this part the main focus would be  

• Synthesizing smaller Ti nanoparticles 

• Varying the irradiation time of the UV light to cover surface 

of TiO2 with gold nanoparticles 

• Synthesis of Gold coated Magnetite-TiO2 core shell particles 

 27



Refer

 
1. Yin Y.et al; Science, 2004, 304, 711-714 

2. ater. 2002, 14, 2004. 

3. Rei 002, 2, 781. 

4. Peng, X.; Schlamp, M. C.; Kadava tos, A. P J.Am. Chem. 

Soc. 1997, 119, 7019-7022. 

5. Cao, Y.; Jin, R.; Mir 2001, 123, 7961. 

6. Sun, S.; J. Am. Chem. Soc.

. Giorgi, Rodorico, et al.. Langmuir, 2002, 18, 8198-8203. 

. Batlle, X; Labarta, A.; J. Phys. D: Apply. Phys., 2002, 35, R15 

. Bangs, L.B.; Pure Appl. Chem., 1996, 68, 1873 

nguy, G.; Hindre, F.; Rump, E; Lejeune,J.J.; J. Colloid Interface 

Sci, 1999, 209, 66 

11. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra 

H, Schmidt H, Deger S, Loening S, Lanksch W and Felix R 2001 J. Magn.  

Mater. 2001, 225, 118 

12. Lyon J. L.; Fleming D. A.; Stone M.B.; Schiffer P.;Williams M.E., Nanoletters, 

2004, 4, 719-723 

13. Salata, O.V.; J. of Nanobiotecnology, 2004, 2 

14. Hirsch, L.R.; Jackson, J.B.; Lee, A.; Halas, N.J.; West, J.L., Anal Chem, 2003, 

75, 2377-2381 

ences: 

Malik, M. A.; O’Brien, P.; Revaprasadu, N. Chem. M

ss, P.; Bleuse, J.; Pron, A. Nano Lett. 2

nich, A. V.; Alivisa

kin, C. A. J. Am. Chem. Soc. 

, 2002, 124(12), 2884-2885. 

7

8

9

10. Denizot, B; Ta

 28



15. Halbreich, A.; Roger, J.; Pons, J. N.; Geldwerth, D.; Da Silva,M. F.; Roudier, 

16. Raschke, G.; Brogl, S.; Susha, A.S.; Rogach, A.L.; Klar, T.A.; Feldmann, J., 

17.

2

482 

irkin, C. A.; Letsinger, R. L. J. 

20. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.; Whyman, R. J. Chem. Soc. 

21. . W. Langmuir 1999, 15, 66-76  

 

24. nov, G., J. Phys. Chem. B, 2004 108, 13957-13962 

26. wamy, L.K., Ind. Eng. Chem. Res., 1999, 38, 1215-

27. O to, H.; Yobiko, Y., Langmuir, 2001, 

17, 7717-7720 

M.; Bacri, J. C. Biochim. 1998, 80, 379-390. 

Nanoletters, 2004, 4(10), 1853-1857 

 Templeton, A.C.; Pietron, J.J.; Murray, R.W.; Mulvaney, P., J. Phys. Chem. B, 

000, 104, 564-570 

18. Malinsky, M.D.; Kelly, K.L.; Schatz, G.C.; Van Duyne, R.P., J. Am. Chem. Soc., 

2001, 123, 1471-1

19. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; M

Am. Chem. Soc. 1998, 120, 1959-1964  

Chem. Commun. 1994, 801-802  

 Templeton, A.; Chen, S.; Gross, S.; Murray, R

22. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. 

Am. Chem. Soc. 1998, 120, 1959-1964

23. He, B.; Tan, J.J.; Liew, K.Y.; Liu, H., J. Mol. Catalysis A, 2004, 221, 121-126 

 Evanoff, D.D.; Chuma

25. Ferrel, G.W.; Crum, L.A., J. Acoustical Soc. Am., 2002, 112, 1196-1201 

 Thompson, L.H.; Dorais

1249  

kitsu, K; Yue, A.; Tanabe, S.; Matsumo

 29



28. Su, C.H.; Wu, P.L.; Yeh, C.S., J. Phys. Chem. B, 2003, 107, 14240-14243 

29. Caruntu, D.; Remond, Y.; Chou, N.H.; Jun, M.; Caruntu, G.; He, J.; 

30. C ; O'Connor, C.J.; Goloverda, G.; 

and 

 1(4),  439-458 

 

 

 

 

 

 

Goloverda, G.; O’Connor, C.; Kolesnichenko, V, Inorg. Chem, 2002, 41, 

6137-6146 

aruntu, D.; Caruntu, G.; Chen, Y.

Kolesnichenko, V.L.; Chem. Mater., 2004, 16(25), 5527-5534 

31.  Watson, S; Beydoun, D.; Amal, R., Journal of Photochemistry 

Photobiology, A: Chemistry,  2002,  148(1-3),  303-313 

32. Beydoun, D.; Amal, R.; Low, G.; McEvoy, S.  Journal of Nanoparticle Research  

1999, 

 

 

 

 

 

 

 30



VITA 

nindya Pradhan was born in Kolkata, India. In 1998, he completed his 

ndergraduate Degree from Ramakrishna Mission Residential College (Calcutta 

niversity), where he received a Bachelor of Science degree, majoring in 

hemistry. Further he pursued Master of Business Administration in Systems 

om IMM, Kolkata under Viswabharati University. He completed his master’s 

egree in 2001. In Fall 2002, he started attending University of New Orleans and 

ined Dr. Matthew A. Tarr’s group to follow his interest in analytical chemistry.                       

A

U

U

C

fr

d

jo

 31


	Novel Synthetic Routes to Formation of Magnetic Nanocomposites
	Recommended Citation

	Table of Contents
	List of Figures
	Abstract
	Introduction
	Experimental Procedures
	Results and Discussion
	Conclusion
	Future Research

