A Parallel Architecture for Analog-to-Digital Conversion with Improved Dynamic Range

Brandy Sausse
University of New Orleans

Follow this and additional works at: http://scholarworks.uno.edu/td

Recommended Citation
http://scholarworks.uno.edu/td/502

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The author is solely responsible for ensuring compliance with copyright. For more information, please contact scholarworks@uno.edu.
A Parallel Architecture for Analog-to-Digital Conversion with Improved Dynamic Range

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

In partial fulfillment of the

Requirements for the degree of

Master of Science

in

Engineering

by

Brandy Sausse

B.S. University of New Orleans, 1998

December 2006
Dedication

I am dedicating this work to my late mother. She was a pillar of strength even while she was battling ovarian cancer. She always had a smile and never complained. I only hope that I can become half the person that she was. I love you and miss you.

To my loving husband, I am so much more since you have come into my life. Thank you for all of your support though this endeavor. I look forward to starting the next phase of our life together. I love you always.
Acknowledgements

First I would like to thank Dr. Huimin Chen for taking me as his graduate student. You were always more than willing to help me out even with your busy schedule. When I wanted to change my topic after first struggling with my first topic choice, you cheerfully went along and let me do my work. Thank you for steering my in the right direction when I was off-track and creating a paper that I can be proud of. I know that it wasn’t easy since I was working full-time and you were always willing to work around my schedule even if it meant working on the weekends or late at night.

To my in-laws, I want to thank you for taking care of me while Bert was away. I appreciate you fixing me dinner and keeping me company. Thank you for running the errands when I didn’t have time to do them and for telling me that I could do this.

Dad, thank you for believing in me. You always knew that I could be anything that I wanted. I know that you have not had an easy time lately, and I regret that my schoolwork kept me away for being there for you as you had always been for me when I needed it.

Lastly, I would like to thank my loving husband, Bert. If it was not for you I would not have even had the confidence in myself to go back to school. You knew that I was capable of so much more. You had faith in me even when I didn’t have faith in myself. You had sacrificed so much so I could have this opportunity. Thank you for supporting me, taking care of everything, and letting me vent to you even if I did not show you my appreciation. Thank you for pushing me through this even when I did not feel like working. I know that I would not have been able to do this without your support. I know that with you I can achieve anything and I look forward to accomplishing wonderful things with you. I love you and I always will.
Table of Contents

List of Figures .. vii
Abstract .. viii
Introduction ... 1
Chapter 1 – Background ... 3
 1.1 Motivation of This Work ... 3
 1.2 Survey of Existing High-Speed COTS Components ... 6
 1.3 Existing Techniques and Their Drawbacks .. 11
 1.3.1 Stacked ADC ... 11
 1.3.2 Time Interleaved ADCs ... 13
Chapter 2 - Design of the Parallel ADC System ... 15
 2.1 System Overview .. 15
 2.2 System Components .. 17
 2.2.1 Signal Preprocessing ... 17
 2.2.1.1 DC Block .. 17
 2.2.1.2 DC Bias ... 17
 2.2.1.3 Clamping Diodes ... 18
 2.2.1.4 AC Coupling .. 18
 2.2.2 Analog to Digital Conversion ... 18
 2.2.3 Digital Bias .. 18
 2.2.4 Digital Summation ... 19
 2.3 Performance Metrics .. 19
 2.3.1 Sine Wave Reconstruction ... 20
 2.3.2 Static Transfer Testing ... 22
 2.3.3 Analog Power Test ... 23
 2.4 Analysis of Performance Improvement .. 23
 2.4.1 Number of Bits of the Parallel ADC Architecture .. 23
 2.4.2 Dynamic Range of the Parallel ADC Architecture 24
Chapter 3 - Design Example ... 25
 3.1 Actual Design .. 25
 3.2 Design Summary .. 28
 3.3 Simulation Study .. 28
 3.3.1 ADC Model Description ... 28
 3.3.2 Simulation Results of the Parallel ADC System .. 29
 3.3.2.1 Sine Wave Reconstruction ... 32
 3.3.2.2 Static Transfer Testing .. 36
 3.3.2.3 Analog Power Test .. 39
 3.3.3 Summary of Simulation Results ... 53
Chapter 4 - Conclusions and Future Work ... 54
 4.1 Summary of Thesis .. 54
 4.1.1 Findings ... 55
 4.1.2 Limitations ... 56
 4.2 Future Work .. 56
Appendix ... 58
A1 ... 58
List of Figures

Fig. 1. CWSF Block Diagram ... 3
Fig. 2. Stated Number of Bits vs. Sampling Rate of COTS ADCs .. 7
Fig. 3. ENOB vs. Sampling Rate of COTS ADCs .. 8
Fig. 4. Performance Metric vs. Stated Number of Bits in COTS ADCs .. 10
Fig. 5. Performance Metric vs. Sample Rate in COTS ADCs ... 11
Fig. 6. Parallel system voltage divisions ... 16
Fig. 7. System Block Diagram with n-Parallel ADCs ... 16
Fig. 8. Signal Preprocessing ... 17
Fig. 9. Histogram of the Number of Converters .. 26
Fig. 10. Power Performance Metric for Remaining ADCs .. 27
Fig. 11. Analog Devices ADCs Performance Metric ... 28
Fig. 12. Noise Floor, 210MHz f_s .. 31
Fig. 13. Noise Floor, 10MHz f_s ... 32
Fig. 14. Signal -0.5dBFS, 210MHz f_s, 31.7038MHz f_{in} .. 33
Fig. 15. Signal -0.5dBFS, 210MHz f_s, 103.0197MHz f_{in} ... 34
Fig. 16. Signal -0.5dBFS, parallel and single, 10MHz f_s, 1.5097MHz f_{in} 35
Fig. 17. Signal -0.5dBFS, parallel and single, 10MHz f_s, 4.9057MHz f_{in} 36
Fig. 18. Code Differences at 10MHz ... 37
Fig. 19. Code Differences at 100MHz .. 37
Fig. 20. Composite DC Static Transfer Curve .. 38
Fig. 21. Averaged DC Static Transfer Curve .. 38
Fig. 22. Amplitude Matching, 210MHz f_s, 31.7038MHz f_{in} .. 40
Fig. 23. Amplitude Matching, 210MHz f_s, 103.0197MHz f_{in} ... 41
Fig. 24. Amplitude Matching, 10MHz f_s, 1.5097MHz f_{in} ... 42
Fig. 25. Amplitude Matching, 10MHz f_s, 4.9057MHz f_{in} ... 43
Fig. 26. SFDR, 210MHz f_s, 31.7038MHz f_{in} ... 44
Fig. 27. SFDR, 210MHz f_s, 103.0197MHz f_{in} ... 45
Fig. 28. SFDR, 10MHz f_s, 1.5097MHz f_{in} .. 46
Fig. 29. SFDR, 10MHz f_s, 4.9057MHz f_{in} ... 46
Fig. 30. ENOB, 210MHz f_s, 31.7038MHz f_{in} ... 48
Fig. 31. ENOB, 210MHz f_s, 103.0197MHz f_{in} ... 49
Fig. 32. ENOB, 10MHz f_s, 1.5097MHz f_{in} .. 50
Fig. 33. ENOB, 10MHz f_s, 4.9057MHz f_{in} .. 51
Fig. 34. THD, 210MHz f_s, 31.7038MHz f_{in} .. 52
Fig. 35. THD, 10MHz f_s, 1.5097MHz f_{in} ... 53
Abstract

In this thesis, a parallel architecture for Analog-to-Digital Converters (ADCs) is developed to increase the system dynamic range. The proposed architecture is a critical component for a Continuous Wave Stepped Frequency (CWSF) radar system. Existing Commercial Off-The-Shelf (COTS) components are inadequate to meet the demands of a high sample rate and a high dynamic range specification. The proposed parallel architecture meets the design criteria by extending the upper voltage limit of high sample rate converters. Extensive simulation study verifies that the desired high sample rate and increased resolution is achieved.
Introduction

The main focus of this thesis is to determine if a parallel architecture of Analog to Digital Converters (ADCs) can be used to obtain a better system dynamic range than that of a single converter. This type of configuration is applicable to a Continuous Wave Stepped Frequency (CWSF) radar system. Existing CWSF radar system has to use less power than those using a pulsed frequency. This is due to the cross-coupling term from the transmitter to the receiver. As a result, there is less power to be illuminated to the target. If the power that can be received is increased, it will lead us to believe that extra power can be used to transmit to the target—allowing targets with a smaller Radar Cross Section (RCS) to be seen.

Chapter 1 provides more details of the CWSF radar, the ADC survey, and several techniques that have been developed over the years in order to increase either the dynamic range of ADCs or their sampling rates. The stacked ADC approach is a multi-chip solution that has a fixed gain state before each converter. The time-interleaved system is also a multi-converter system. However, it increases the overall sampling rate by having the converters sample the same signal at different points in time. Each individual converter cannot exceed its limit in the sample rate.

The design of the parallel ADC system is closely examined in Chapter 2. The objective is to increase the dynamic range of the system so that the transmit power of a CWSF radar can be increased. By assigning each individual converter a particular voltage range to digitize, the incoming signal will then have the amplitude n times greater than that of the individual converter.

A design example is provided in Chapter 3 illustrating the design considerations for part selection when applying this approach to build an ADC system. The system is designed to have
an overall dynamic range of 80dB. Several manufacturers’ components were examined and analyzed. Performance metrics are used to make the final component selection. A practical system analysis is performed to determine the overall system performance against several metrics. Extensive simulation study has also been performed to determine the dynamic performance. Although the system has an increase to the voltage amplitudes that can be input into the system, several other related issues have been examined and further simulation study has been suggested.

Conclusions are presented in Chapter 4. This includes the findings from the theoretical analysis and simulation as well as some known limitations of the parallel architecture for the ADC system design. Finally, possible future work along this topic is discussed.
Chapter 1 – Background

1.1 Motivation of This Work

In order for a radar system to detect a target, an electromagnetic wave is transmitted into the air. If a target is located in this transmit path, then part of the signal can be reflected back to the radar receiver. The amount of energy that is reflected back depends partially on the target’s Radar Cross-Section (RCS). A basic block diagram of a Continuous Wave Stepped Frequency (CWSF) radar system can be seen in Fig. 1 [1], [2] and will be described in detail below.

![CWSF Block Diagram](image)

A CWSF radar differs from a traditional radar in two ways. First, it sends out a set of discrete frequencies instead of one pulse that has a continuous frequency sweep [3]. Second, it continuously sends out this signal – necessitating a need for two separate antennas.

The sets of discrete frequencies that are spaced equally apart are usually generated by the Direct Digital Synthesizer (DDS) component. The DDS acts as a function generator by using digital data to perform a phase-to-amplitude conversion that is then output to a Digital-to-Analog
Converter (DAC) [4]. These frequencies are then upconverted and transmitted out of the
transmit antenna. Typically, an ultra wideband Archimedean spiral antenna is used in these
systems [5]. A target will reflect a portion of this signal back to the receive antenna. The
amount of reflection is determined in part by the target’s Radar Cross Section (RCS) as well as
by the power transmitted by the radar system. The energy of the signal that is received at the
radar is expressed in equation (1) [6]. In this equation, “P_r is the received peak power (W), P_t is
the transmitted peak power (W), G_t is the gain of the transmitter antenna (ratio, not dBi), G_r is
the gain of the receiver antenna, σ is the radar cross-section of target (RCS), c is the speed of
light, f is the transmitted frequency, R_{Tx} is the transmitter range to target, and R_{Rx} is the receiver
range from target.”

\[
P_r = 10\log_{10} \left[P_t G_t G_r \left(\frac{\sigma c^2}{(4\pi)^3 f^2 R_{Tx}^2 R_{Rx}^2} \right) \right] [dBW] \tag{1}
\]

The received signal is down converted into a signal that can be processed by an analog-
to-digital converter. After the signal is digitized, advanced digital signal processing techniques
can be performed – such as applying a window function to shape the power spectral density to
attenuate the sidelobe effect [5].

The performance of the CWSF radar is determined from the unambiguous range and the
range resolution [5]. The unambiguous range (R_{un}) is calculated from the propagation velocity (v
$= 3\times10^8$ m/s) and the frequency step (Δf) as shown in (2). From this equation, we can see that the
smaller the frequency step, the greater the unambiguous range of the system.

\[
R_{un} = \frac{v}{2\Delta f} \tag{2}
\]
The bandwidth (B) of the system (defined as $f_{\text{max}} - f_{\text{min}}$) plays a crucial role in the range resolution (Δr). Equation (3) shows the importance of this specification. It is shown that an increase in bandwidth of the system will give a smaller range resolution. To reduce the number of downconverters that are needed, the analog-to-digital converter needs to be able to accommodate the high-sampling rates that are required from the large bandwidths.

$$\Delta r = \frac{v}{2B}$$ \hspace{1cm} (3)

However, as stated by Pieraccini [7], the receiver in a continuous wave radar can be blinded by the direct transmit power. This stems from the fact that the transmit and receive antennas are closely located so that there are no periods where the system is not transmitting – resulting in a cross-coupling signal. One possible way to reduce this effect is to have the receive Archimedean spiral antenna with an opposite rotation of that of the transmit antenna [5]. However, the resulting system will still have the cross-coupling signal present and will typically have to use less transmit power than that of a conventional pulsed radar. By referring back to (1), with the reduced transmitted energy we can see that the signal received at the radar will be reduced. Since the transmit power is limited, the size of the RCS that can be seen by the system is reduced. If the input voltage of the analog-to-digital converter is increased, the power at the radar receiver will also be increased provided that the downconverters before the ADC are chosen to accommodate these increased power levels. With the increase in receiver power capability, the transmit power will then be increased because the receiver is able to handle the higher cross-coupled signal. Taking the ratio of the newly received power to the old one, the new RCS can be calculated. The derivation is provided in the Appendix. The minimum size of target that can be detected by the radar at the same range is reduced as shown in equation (4).
\[\sigma_{\text{New}} = 10^B, \quad B = \frac{\log_{10}\left[\frac{P_{\text{Old}}G_rG_t(A\sigma_{\text{Old}})}{P_{\text{New}}G_rG_t(A)} \right]}{\log_{10}\left[\frac{P_{\text{Old}}G_rG_t(A)}{P_{\text{New}}G_rG_t(A)} \right]} - A = \frac{c^2}{(4\pi)^3 f^2 R_t^2 R_c^2} \quad (4) \]

1.2 Survey of Existing High-Speed COTS Components

There are several types of analog to digital converters being used in the existing radar systems [8]. The ΣΔ converters are typically lower speed and higher resolution converters because they use an oversampling technique to shape the noise floor. Higher speed converters typically use either a successive approximation (SAR) or a pipeline – or flash – architecture. The SAR architecture utilizes a sample-and-hold scheme. The output of the sample-and-hold is then fed into a comparator, which compares the input signal with a signal from a DAC that is controlled by a successive approximation register. The accuracy of this converter is limited by the internal DAC. It is a serial output device that has no “pipeline” delay.

The flash architecture utilizes a sub-ranging technique that employs a bank of parallel comparators with different voltage references determined by a resistor divider network. It does not require a sample-and-hold step. These chips are generally used for applications with 1Gsp or higher because they are high-powered GaAs devices.

An ADC survey of components with 100Msps sampling rate or higher was performed to determine what was the latest in high-speed converters on the market today – see Table 1 in the Appendix for component specifications. Fig. 2 shows the sampling rate of the COTS ADCs vs. the stated number of bits of components from several manufacturers. These included Analog Devices [9], Atmel [10], Datel [11], Linear Technology [12], Maxim [13], National Semiconductor [14], and Rockwell Scientific [15]. From this plot, we can conclude that higher sampling rate converters will have a reduced dynamic range.
The performance of ADCs is best indicated when the effects of distortion are taken into account. The Effective Number Of Bits (ENOB) is used as an indicator of how well the converter digitizes without distortion due to the sample-and-hold operation [16]. Fig. 3 shows how the actual performance of the converters differs from the stated number of bits. We can see that converters with the same stated number of bits on the datasheet have a variance in their performance. As the sample rate of the converter increases, the ENOB of these converters decrease.

Fig. 2. Stated Number of Bits vs. Sampling Rate of COTS ADCs
Another useful metric first proposed by Walden in his 1999 ADC survey [17] and then again in Le, Rondeau, Reed, and Bostian’s survey [16] can be used to compare the different ADCs as shown in equations (7) and (8). In [16], several important performance metrics have been discussed. Two of them are of particular importance to the design of the parallel ADC system in this thesis. The first uses the Effective Number of Bits (ENOB) to determine how well the system converts the analog signal into a digital one without introducing distortion. The theoretical signal-to-noise ratio (SNR) is calculated from the number of bits in the converter as shown in equation (5) [8] where N is the number of bits used in the ADC.

$$\text{SNR} = 6.02N - 1.76\text{dB}$$ \hspace{1cm} (5)

However, with the distortion that is introduced by the ADC, we can derive an equation similar to (5) to calculate the ENOB using the signal-to-noise-and-distortion ratio (SINAD). The resulting formula is given in (6) [8].
The performance metric then can be calculated from the ENOB and the sampling rate of the converter \(f_s\) as seen in (7) [16]. The importance of the ENOB of the converter is weighted more heavily in (7) than that of the sample rate. An increase in \(P\) indicates a better performing converter.

\[
P = 2^b \cdot f_s
\]

The second metric that was proposed in [16] was used in order to determine the power efficiency of the converter. It takes the \(P\) metric from above and divides it by the amount of power that the chip uses. This will give an idea of how much power \(P_{\text{diss}}\) is needed for a certain resolution and sampling rate. The formula is shown in equation (8). As evidenced by this equation, the lower the amount of power that a converter uses will translate to an increase in \(F\) because it is more efficient than a converter that has the same ENOB and sampling rate.

\[
F = \frac{2^b \cdot f_s}{P_{\text{diss}}}
\]
The performance metrics \(P \) of the sampling rate and ENOB of the COTS ADCs are shown in Fig. 4. It is plotted against the stated number of bits \(N \) from each component’s datasheet. As can be seen in this figure, the ADC with the highest performance metric is a 12-bit converter [9]-[15].

![Fig. 4. Performance Metric vs. Stated Number of Bits in COTS ADCs](image-url)
The performance metric is then plotted against the sample rate in Fig. 5. The converter that has the highest performance metric in this plot is one with a sample rate of 500Msps.

\[\text{Performance Metric (P)} \]

\[\text{Sample Rate (Msps)} \]

Fig. 5. Performance Metric vs. Sample Rate in COTS ADCs

1.3 Existing Techniques and Their Drawbacks

Techniques have been devised and studied to increase the performance of COTS ADCs in systems. These consist of two main methods – increase the dynamic range of high-speed converters, or increase the sample rate of high-dynamic range converters. Both of these will increase the performance metric P. However, the increase in P comes at a cost of increased power, which could potentially cause F to decrease. Two examples of these methods will be discussed in detail in the following sections.

1.3.1 Stacked ADC

The stacked Analog-to-Digital Converter concept was first introduced by V. Gregers-Hansen, S.M Brockett, and P. Cahill [18]. It was then refined by S. R. Duncan, V. Gregers-Hansen, and J. P. McConnell [19]. The stacked ADC concept was developed because the
ADCs that are available do not possess the dynamic range that is required for modern radar systems. A dynamic range of 80 to 100 dB of dynamic range is required to detect the smallest signals of the target return, yet still operate linearly in the presence of a large signal return. Traditional techniques such as sensitivity time control (STC), automatic gain control (AGC), and bandpass intermediate frequency (IF) limiting all have undesirable effects in a radar system, such as short-range detection degradation and pulse compression sidelobe degradation, transients that can trigger false alarms, and nonlinearities. The stacked ADC approach was proposed to eliminate these effects while improving the dynamic range of the system as will be explained next.

To test the response of the stacked ADC approach, test circuits were designed and prototyped. The configuration consists of parallel ADC that each has an individual gain step before the conversion stage. Each gain step is spaced Δ dB apart from the previous stage, for a total system gain of $(n-1)\Delta$ dB over a single ADC, where n is the number of converters in the stacked system. To determine which converter would be used for the signal, a receive level indicator is placed before any of the gain stages. Also, the indicator serves a purpose to switch off inputs to the gain stages so damaging signals would not be seen by the gain components and so noise would not be introduced into the system. Once this system was tested, the results were shown to improve upon the current single ADC by approximately 30 dB.

The only limitation is that this configuration would not improve the signal-to-noise ratio (SNR) or the spurious response of any individual ADC component. This system could not be used in the CWSF radar system due mainly to the cross-coupling signal. This signal has the largest amplitude and is always present. As such, the stacked ADC system would trigger off of this signal when determining which gain stage to use.
1.3.2 Time Interleaved ADCs

Another approach that has been researched to improve the performance of ADCs is to have multiple ADCs that are time interleaved. This will increase the effective sample rate of a system to \(n f_s \), where \(n \) is the number of ADCs used and \(f_s \) is the sample rate of one converter. This will enable having higher resolution at a faster sampling rate because often the slower ADCs have a higher resolution, thus achieving a similar effect as previously discussed by using a different approach. However, due to manufacturing variations between components such as gain, offset, and timing mismatches, the spurious free dynamic range (SFDR)/signal to noise and distortion ratio (SINAD) will be decreased. This topic has been studied in several IEEE journal articles briefly summarized as follows.

C. Vogel’s article [20] dealt with studying the effects of these mismatches on the SINAD and calculating the explicit effects each of these individual components directly has upon the SINAD ratio. The equations were derived and a statistical analysis was performed. The interaction of these effects was also studied to determine where designers of time-interleaved systems should focus their efforts to minimize these mismatches. Techniques to mitigate these effects were not covered in this research.

N. Vun and A. B. Premkumar [21] proposed a mitigation technique using a polyphase decimation filter. It was proposed to perform both the multirate processing that is required for software defined radios (SDRs) and to reduce the effects of the mismatch errors. The theory is that the mismatch would be reduced because of the interleaving process of the polyphase filter. However, research was not proven in the framework of the article.

J. Elbornsson, F. Gustafsson, and J. E. Elkund’s [22] article presented a randomly interleaved ADC system to reduce the mismatch effects. M converters would achieve the sample
rate, but having ΔM extra converters would enable converters to be chosen at random as long as the individual ADC sampling rates would not be exceeded. A probabilistic analysis was performed on the randomly interleaved system and was shown to reduce the distortion to noise-like levels. In this article linearity errors were not studied.

Although this technique has much research put forth, it cannot be directly applied to the CWSF radar system. This method utilizes slower converters that have a higher resolution. However, the resolution converters that are needed to meet the dynamic range requirements of the radar system require too many converters to be practical. For example, if we choose the fastest 24-bit converter made by Analog Devices, i.e., the AD7760 that had a throughput rate of 2.5Msps [23], it would require 40 converters to build a 100Msps system.
Chapter 2 - Design of the Parallel ADC System

2.1 System Overview

The purpose of the design of an ADC system with improved dynamic range is to increase the performance of the CWSF radar. When a higher output signal can be transmitted from the radar, then smaller targets can be illuminated. However, with the increase in transmit power, there will be an increase in the received signal from the cross coupling. To accommodate this undesirable effect, the parallel ADC configuration is a natural candidate that can increase the amplitude of the signal being received by the system.

The parallel architecture of this system is designed so that separate converters will process the incoming signal simultaneously in order to preserve the ADC sampling rate. Each ADC converter will have a separate designated voltage range of the incoming signal that it will process as shown in Fig. 6. For this representation, the signal will be processed by nine ADCs. The original signal is the blue waveform whereas the red lines show the voltage limits for each ADC. For instance, ADC 1 will process the signal from 6.912V to 5.376V. Fig. 7 shows the top-level block diagram of this system. After the signal pre-processing block, only the voltage level assigned to the ADC will be available, shifted to the input voltage range of the individual converter. The signal pre-processing block can be seen as in Fig. 8. Next, the digital signal will have to be processed to convert it into the correct output code for the parallel system. This step is achieved through the digital bias. Afterwards, the signals are summed together to form the final digital signal. The whole processing scheme and system components will be discussed in further detail in the next section.
Fig. 6. Parallel system voltage divisions

Fig. 7. System Block Diagram with n-Parallel ADCs
2.2 System Components

2.2.1 Signal Preprocessing

2.2.1.1 DC Block

The purpose of this component is to block the DC bias that will be added in the next processing step.

2.2.1.2 DC Bias

The DC biasing step is used to set the voltage range of the signal that will be digitized by the ADC. Equation (9) is used to calculate the voltage level needed for each segment, where \(b_{ai} \) is the analog bias level at the \(i^{th} \) converter, \(s \) is the input span of the individual converter, and \(n \) is the number of converters.

\[
b_0 = -\frac{(sn)}{2} + \left\lfloor \frac{s}{2} \right\rfloor
\]

\[
b_{ai} = b_0 + \left\lfloor (i-1)s \right\rfloor
\]

Fig. 8. Signal Preprocessing
The positive segments of the signal will need to be biased negatively to shift the top part of the signal to the range of the ADC. The opposite is needed for the negative segments of the signal. Each DC bias can be generated by a precision voltage reference.

2.2.1.3 Clamping Diodes

In order to keep the ADC from saturating, clamping diodes will be used. Any part of the signal that lies outside of the voltage range of the ADC will be held to the voltages connected to the diodes. The voltage references for each diode will be determined by equation (10), where \(d_{a+} \) is the positive diode rail, \(d_{a-} \) is the negative diode rail, and \(v_d \) is the voltage drop across the diode.

\[
\begin{align*}
 d_{a+} &= b_{at} + \frac{s}{2} + v_d \\
 d_{a-} &= b_{at} - \frac{s}{2} - v_d
\end{align*}
\]

(10)

2.2.1.4 AC Coupling

The last step before the digitization involves ac-coupling the signal into the ADC via a capacitor. This step is necessary to bring the signal back into the input range of the ADC. Instead of having the signal biased around the DC bias voltage, it will bias back to 0V and the portion of the signal of interest will be able to be digitized.

2.2.2 Analog to Digital Conversion

Each signal piece is then converted by their individual ADCs. The output of the converters will all have the same span of output codes.

2.2.3 Digital Bias

To get the digital signal back to its correct level, a digital bias has to be added in the same way that the DC bias was added to the analog signal before the conversion. Equation (11) shows
how these bias levels are calculated. This assures that the each digital signal will be converted to its correct quantization level.

\[
d_{o} = \frac{1}{2} \left(\frac{2^{N}}{2} - 1 \right) n - \left[\frac{1}{2} \left(\frac{2^{N}}{2} - 1 \right) \right] \tag{11}
\]

\[
d_{a} = d_{o} - \left(i - 1 \right) \left(\frac{2^{N}}{2} - 1 \right)
\]

2.2.4 Digital Summation

The final step in the processing is to take all the digital outputs and sum them together. This will result in a digital signal that is representative of the original analog signal. The number of codes in the system is calculated using equation (12).

\[
C_{\parallel} = n2^{N} \tag{12}
\]

2.3 Performance Metrics

In order to evaluate the performance of the parallel ADC system, tests that are typically used to evaluate the performance of ADC converters were performed [24]. Before the system specifications are determined, a test of the basic functionality needed to be executed. After the model of the system is validated, the static transfer code of the system is calculated. Estimates of static gain errors, offset errors, missing codes, and code width errors can be determined by this test. These errors can impact the radar system by creating uncertainty of the target locations. Differences between the amplitude matching from the ideal digital signal to the signal output by the system can also be translated to target location uncertainties.

The next several metrics are used to determine the range of radar returns that can be processed by the parallel system. This is important because the range will allow a small target
return to be processed in the presence of a large return. The first metric is spurious free dynamic range (SFDR). If a high SFDR is achieved, then smaller returns can be distinguished from the noise floor. However, if there is a great amount of distortion that is present, then the smaller returns will be lost – decreasing the range of target returns that can be processed. The range of targets that can be processed by the system can also be determined by the ENOB since this is calculated using the signal to noise and distortion ratio. Finally, the total harmonic distortion (THD) is determined. A simulation study using MATLAB has been performed for the designed ADC system – as explained in Section 0 – using the performance metrics below. However, the main performance constraint in this system will be the amount of power required to operate. This will be considered in the design of the system.

2.3.1 Sine Wave Reconstruction

The first step was to determine if a sine wave could be digitized properly. It is used to test the basic functionality of the simulation. A sine wave at –0.5dB below the full-scale parallel system range was input into the simulation and the resulting digital output was plotted to verify correctness of the simulation. In addition, the ratio of the parallel system output level to the single converter output level was taken to determine if the expected output increase was achieved.

Several steps had to be taken to assure that the input signal would give data that would be easier to process. First, if a sine wave was a direct multiple of the sample rate (f_s), then the sample values in the output of the FFT could become very repetitive and could potentially mask any problems [25]. To assure that this would not occur, (13) was used to obtain a signal frequency (f_i) close to the user input (f_u).
\[n = \frac{26.5(f_i - 0.1)}{f_s} \]
\[f_i = \left(\frac{f_{\text{round}}(m)}{26.5}\right) + 0.1 \]

Once the input frequency was determined, the frequency bin width of the FFT could be calculated. This was used to determine which FFT bin the input frequency would be located. To assure that distinct phases were sampled by the FFT, an odd numbered bin was used for the signal location [24]. For example, if an input signal of 71.3208MHz was being sampled by a 210MHz signal, and the FFT size is 32,768 samples, the frequency bin spacing would be 6.4087kHz. The fundamental frequency would be in bin number 11,129. If this number had been even when calculated, the next bin would be used. The input signal is then recalculated again to be the FFT bin number of the fundamental frequency multiplied by the FFT frequency bin spacing.

To assure that all of the energy from the fundamental signal was located into one FFT bin, the sampling had to be coherent [26]. Coherency is a way to ensure that the FFT \((N)\) takes an integer number of samples of the input signal \((f_i)\). To calculate how many periods \((m)\) need to be taken, (14) was used. Basically, we can view this as a conversion factor going from the FFT samples into the time domain samples.

\[m = \frac{f_iN}{f_s} \]

Next, the input signal step size and duration were calculated. The step size is just the reciprocal of the sampling rate and the duration is the number of cycles that was calculated above divided by the sampling rate. The final step in creating the analog signal has to do with the ADIsimADC™ simulator – explained in Section 3.3.1 – for the analog-to-digital conversion. Each model has a latency associated with the part [27]. This is the time that it takes before valid
data appears at the output of the ADC. Also, data is available for this same period of time after
the conversion period ends. To accommodate this step in the ADC conversion, zeros are
appended onto the input signal equal to the latency time.

After the signal was outputted by the system, the FFT of the data could be taken.
Because of the latency issue mentioned in the above paragraph, the FFT had to be taken starting
at the sample after the last one that corresponded to the latency period. In order to obtain the
frequencies for the x-axis of the FFT plot, zero to half of the FFT size was multiplied by the
conversion factor – sample frequency divided by the FFT size.

2.3.2 Static Transfer Testing

In this test, the output codes are plotted against the input voltages. This is used to
determine the linearity of the ADC system. Ideally, the voltage span of one Least Significant Bit
(LSB) would only map to one output code. However, this is not always true and the code width
– the minimum input voltage for a particular ADC output code – can vary due to processing and
manufacturing defects. To test the code width, eight individual voltages are tested for each
output code. IEEE standard 1241 ADC set this method forth for static transfer testing. This
allows an accurate measurement of the individual code width. To calculate the size of the
voltage steps, we use equation (15), with \(v_s \) as the voltage step, \(s_{||} \) as the voltage span of the
parallel system, and \(N \) as the number of bits in an individual converter. This test was performed
at sample rates from 100 Hz to 100MHz to determine how the output was impacted.

\[
v_s = \frac{s_{||}}{8 \times 2^N}
\]

(15)
2.3.3 Analog Power Test

The purpose of this test is to determine how closely the output signal matches the ideal digital signal, the Spurious Free Dynamic Range (SFDR), and the Effective Number Of Bits (ENOB) of the system. The input amplitude is swept from the minimum voltage level to 0.5dB below full-scale in 50 steps. After the digital signals were obtained, the Fast Fourier Transform (FFT) was performed to determine the SFDR – the difference between the maximum signal and the next highest spurious tone in the noise floor. To calculate the ENOB, the signal-to-noise-and-distortion Ratio (SINAD) is taken of the digital signals. The SINAD is the ratio of the rms fundamental frequency to all of the noise including the harmonics. This is then put into (6) [8]. The distortion that is caused by the converter decreases the dynamic range that is available, resulting in a loss of the number of bits. These signals are plotted against the analog input power in dBm to determine the change of SFDR and ENOB.

2.4 Analysis of Performance Improvement

2.4.1 Number of Bits of the Parallel ADC Architecture

The number of output codes of an ADC is defined by equation (16), where C is the number of output codes and N is the number of bits in the ADC.

$$C = 2^N \quad (16)$$

In the parallel ADC system, the number of output codes is just the number of codes of the single ADC multiplied by the number of ADCs in the parallel system as shown in (17). C_\parallel is the number of different codes in the parallel system and n is the number of ADCs in parallel.

$$C_\parallel = n \times 2^N \quad (17)$$
Using (16) and (17), we can calculate the number of bits \((N||) \) that is represented by the parallel system.

\[
N|| = \log_2 \left(n \times 2^N \right)
\]

(18)

2.4.2 Dynamic Range of the Parallel ADC Architecture

The dynamic range of a system is an indication of the difference between the smallest and largest signals that can be detected by the system as shown in equation (19), where \(dr \) is the dynamic range of the ADC, \(s \) is the input range of the converter, and \(e \) is the minimum signal that can be digitized by the ADC.

\[
dr = 20 \log_{10} \left(\frac{s}{e} \right)
\]

(19)

Because the individual ADC has not changed in the parallel system, the minimum detectable signal is the same as for the single ADC. The number of ADCs that are needed to reach a specific dynamic range for the system can be determined from equation (20). Since there can only be an integer number of converters in the parallel system and to assure that the dynamic range requirements are met, the result will need to be rounded up.

\[
n = \left\lfloor \frac{dr}{20} \right\rfloor
\]

(20)

This system still needs to be simulated in order to determine the dynamic performance characteristics, such as ENOB, SFDR, etc.
Chapter 3 - Design Example

3.1 Actual Design

For this design, we are going to perform an analysis on the converters surveyed in Chapter 1 to determine which ones might provide a reasonable solution to obtain an 80dB system dynamic range. This would result in a minimum 5dB increase in the maximum dynamic range of the system from the surveyed ADCs [9] – [15]. This range was chosen because the clutter to noise ratio (CNR) in radar systems can exceed 80 – 100dB [19]. Also, the higher dynamic range allows a larger range of radar returns that can be processed – allowing a small return to be seen simultaneously as a large return. For the first stage of the design, the sampling rate will not have any bearing. This specification will follow later on in the design. An analysis was performed to determine how many of each converter would be needed to obtain a system dynamic range \((dr) \) of 80dB. To calculate this, we need to first look at the specified dynamic range for each converter (SNR) and the input voltage span. Equation (17) was used with the specifications from the datasheet of each individual converter and placed in a spreadsheet in order to determine how many ADCs would be required. A spreadsheet was generated to keep track of all of the components being surveyed along with their specifications. A histogram plot was created as shown in Fig. 9 to determine what components would have a reasonable part count for the system [9] – [15]. For the design example, only ADCs that require 10 or fewer in the parallel system will be considered – leaving us with 35 ADCs still under consideration.
These remaining converters were then examined by using the performance metric F as specified in (8). An assumption was made that the ENOB would be calculated in a similar manner to (18) except that instead of having the number of bits of the converter \(N\), the ENOB \(B\) of the individual converter would be used. The power dissipation was assumed to be just the number of converters in the system \(n\) multiplied by the power dissipation of the individual converter. In the actual system, the power dissipation will be higher than this number because of the supporting components that are required. However, this approximation will be suitable to determine the performance metric of the proposed system in order to best choose an ADC for the design. The ADC power metric was then plotted as shown in Fig. 10. The component with the highest performance metric was the Linear Technologies LTC2254, 14-bit 105Msps converter. However, to quickly determine the system performance a simulation study was performed based on a free software-modeling tool provided by Analog Devices. This approach could also allow for testing of different converters. The simulation procedure is described in detail in the following section.
The performance metric (P) is plotted in Fig. 11 for only the Analog Devices components in the single and parallel configurations. The Analog Devices AD9430, 12-bit 210Msps was chosen for the parallel system. It requires nine converters to achieve an 80dB dynamic range with an approximate power requirement of 13.5W for the converters. The estimate of the ENOB used for the performance metric was 12.84 bits. The number of bits in the parallel system is calculated to be 15.17.
3.2 Design Summary

The system was designed to have the following specifications:

- Dynamic range: 80dB
- ADC: AD-9430
- Max sample rate: 210Msps
- Minimum power: 13.5W
- ENOB: 12.84

3.3 Simulation Study

3.3.1 ADC Model Description

The ADC model used in this thesis is a MATLAB tool that is provided free of charge from Analog Devices website (http://www.analog.com) called ADIsimADC™ [27]. It consists of DLL files (adimodel.dll and mxadimodel.dll) and adc model files. These model files allow the user to call a function that will determine the digital output of the input signal. The function call
is output=mxadimodel(input, encoderate, freq, jitter, 0, key) or output=mxadimodel(input, encoderate, 0, jitter, Nyquist, key). It requires the input signal that represents the analog voltage to be converted. The encode rate is the sampling rate of the converter in Hertz. The freq is the analog frequency in Hertz, however, this input can be determined from the Nyquist parameter. The jitter allows the user to change the clock jitter going into the model. As mentioned above, if the analog frequency is not known, then the required Nyquist frequency can be input. The key is obtained from key=mxadimodel(‘input model file’).

These tools were designed by Analog Devices to provide engineers with a quick and simple way to evaluate converters to determine if the performance of the ADC will be suitable for their designs. These models are not bit-exact models. Bit-exact models will have a known response to any analog input. However, this is not the case in real systems. Variations from component to component, noise, and distortion are all part of systems. The models that were developed were meant to be able to more accurately determine the dynamic performance of each individual converter before building the hardware. The model takes into account the effects of offset, gain, sample rate, bandwidth, jitter, latency, and both ac and dc characteristics.

3.3.2 Simulation Results of the Parallel ADC System

The simulations below were performed with the parallel ADC system to have a dynamic range of 80dB. This was accomplished using nine Analog Devices AD9430 12-bit 210Msps converters. This allowed for maximum voltage amplitude of 6.9120Vpp for the system. When comparisons were made against the single converter configuration, the same sample rate and input frequencies were used. The single converter configuration has a maximum voltage amplitude of 0.7680Vpp.
The noise floor of the system was compared to that of the single system. A signal of all zeros was input into the system to determine the noise floor. After the signal was digitized, the 32k FFT was taken, and then normalized to the digital full-scale signal of a single converter. Taking a signal with the maximum amplitude of a single converter and multiplying it by a conversion factor \(c \) mentioned in (21) gives the ideal digital full-scale signal, which then needs to be converted to the frequency domain (in dB). \(N \) is the number of bits and \(A_M \) is the maximum signal amplitude \((V_p) \) of a single converter.

\[
c = \left(\frac{2^N}{A_M} \right)
\] (21)

The FFT signal acts as a narrowband spectrum and will introduce a processing gain dependant on the FFT size \(M \) as shown in (22) that will lower the noise floor [8]. The single system will have a noise floor of approximately –116dB after taking into consideration the processing gain of the FFT signal. The parallel system should have the same noise floor of the single ADC system since the properties of the individual converters are not changed – only the maximum signal amplitude that can be processed has changed.

\[
g = 10\log_{10}\left(\frac{M}{2} \right)
\] (22)
Fig. 12. Noise Floor, 210MHz f_s

The noise floor of the parallel system is approximately 9dB higher than that of the single converter configuration. This is likely due to the manufacturing variations of the separate converters and the digital biasing performed.

The noise floor was then calculated for a sampling rate that was equal to the minimum sample rate of the converter (10MHz) to see the effects of the lower sampling rate. The noise floor should be the same as the previous results. As shown in Fig. 13, the noise floor for the single converter is 2.5dB below that of the maximum sample rate. In addition, the noise floor of the parallel system is only 1dB higher than the single converter. This increase in performance is likely obtained because the system is not at the threshold of performance.
3.3.2.1 Sine Wave Reconstruction

With this test, a sine wave was input into the system to validate the functionality of the model and the system design. The input sine wave with a frequency of 31.7038MHz that was 0.5dB below full-scale was input into the system that had a sampling rate of 210MHz. The FFT of the resulting digital signal was taken and normalized to the maximum digital signal of a single converter. This was done to be able to compare the performance of the two systems. Since the output amplitude of the system \(A_\parallel\) is nine times the single converter input amplitude level \(A_s\), the expected output level \(\Delta A\) of the parallel system will be approximately 19dB higher than that of the single converter using equation (23). This performance that was expected was obtained as shown in Fig. 14.

\[
\Delta A[dB] = 20\log_{10}\left(\frac{A_\parallel}{A_s}\right)
\]

(23)
As is noticed in the graph, the parallel system appears to have more distortion present than the single converter. This conclusion will be examined later when determining the Effective Number of Bits.

The output signal near the Nyquist rate should remain the same as that from the lower input frequency because the AD9430 has a 700MHz analog input bandwidth [28]. The results showed that with the input signal increased to just below the Nyquist rate there is no change in the output amplitudes of the signals as evidenced by Fig. 15.
The next step was to determine what effect slowing down the sample rate would have on the output of the system. The datasheet states that the SINAD of the converter will increase by about 4.5dB [28] – meaning that the distortion present should be reduced. The sample rate was the converter’s lowest specified limit – 10Mhz. Again the input frequency was chosen to be at one-sixth of the sample rate - 1.5097MHz.

With the slowing of the sample rate, the amplitudes of the signals were slightly higher than that of maximum sample rate. However, the ratio of the signals between the two systems remains at 19dB.
Fig. 16. Signal –0.5dBFS, parallel and single, 10MHz f_s, 1.5097MHz f_{in}

Fig. 16 shows that the distortion present was at lower levels than that which was present at the higher sampling rate. This will be quantified later in this section when the ENOB is determined for this sample rate and input frequency.

Finally the system was tested with a sample rate of 10MHz and an input frequency of 4.9057MHz. The results are shown in Fig. 17.
3.3.2.2 Static Transfer Testing

The ideal slope for the static transfer testing was calculated by taking the maximum output code minus the minimum output code divided by the analog input span – giving 2.6667×10^3. The slope for the output data was generated from the averaged static transfer curve from all of the sampling rates. Since the input voltage was swept starting at voltages outside of the limits of the system, the slope was calculated using the specified voltage limits. The output codes at these points were also used to give a slope of 2.6630×10^3. We can see that overall the slope for the parallel system is in good agreement with the ideal case.

The static transfer test showed that for frequencies from 100Hz to 10MHz the output was the same. However, when the sample rate was set to 100MHz – close to the maximum sample rate of 105MHz for the ADC – the static transfer test did not do as well.
Fig. 18. Code Differences at 10MHz

Fig. 19. Code Differences at 100MHz
Fig. 20. Composite DC Static Transfer Curve

Fig. 21. Averaged DC Static Transfer Curve
3.3.2.3 Analog Power Test

These tests were performed at the converters maximum and minimum sample rates \(f_s \) and with the inputs \(f_{in} \) at one-sixth the sample rate and at 100kHz less than one-half of the sample rate. The intention was to determine how the system performed at the different sampling rates and different input frequencies. The amplitudes of the signals were swept from the minimum detectable level – as calculated from the datasheet’s Signal-to-Noise Ratio – to –0.5dB of the full-scale input amplitude. This value was chosen to minimize the effects of overloading the ADC that would introduce clipping. Both results were normalized against the single full-scale digital output in order for a valid comparison could be made.

To determine the accuracy of the output amplitude of the signal, a difference plot was generated. First the ideal digital signal was generated using the analog signal and the analog to digital conversion factor. After the ideal digital signals were generated for all the input signal amplitudes, the FFT was taken and normalized to the fundamental frequency of the system output. The result was then plotted against the analog input power as shown in Fig. 22. Overall, the magnitudes of the output matched the ideal digital output fairly accurately for both sampling frequencies and input signals. The amplitude matching seemed to be independent of the input frequency. However, there was a slight difference in magnitudes based on the sampling rate of the converter.
Fig. 22. Amplitude Matching, 210MHz f_s, 31.7038MHz f_{in}
Since the noise floor of the parallel system is higher for the parallel system than the analog at the highest sample rate, it is possible that this will cause some discrepancies when the signal does not have enough amplitude to overcome the noise effects.

The figures below are taken from the maximum sampling rate and 100kHz less than the Nyquist rate.

![Graph showing amplitude matching comparison between single and parallel systems](image)

Fig. 23. Amplitude Matching, 210MHz \(f_s \), 103.0197MHz \(f_{in} \)

As can be seen in the next few graphs below, when the sampling rate of the converter was reduced, the magnitude matching was almost identical to the ideal digital output.
Fig. 24. Amplitude Matching, 10MHz f_s, 1.5097MHz f_{in}

The final plots show that the input frequency that is very close to the Nyquist rate still closely matches the ideal digital output. The amplitude matching between the ideal digital output and the system output shows that the system can correctly digitize the levels of the input signal.
The Spurious Free Dynamic Range (SFDR) was then determined for the varying input signal levels. The ratio of the fundamental frequency to the largest spur in the noise floor determines this specification. As shown in section 3.3.2.1, there were noise spikes present in the noise floor, but the largest spur in the single system is greater than that of the parallel system. This indicates that the SFDR of the parallel system would be greater. Nonetheless, the noise of the parallel system is greater than that of the single converter. Because of the higher noise, there is a potential that the SFDR at the lower frequencies will be lower than that of the single system. When the input signal is close to the individual converter’s input limit, the performance of the parallel system will be either the same or lower than the single converter. This happens because the system cannot eliminate any spurs that were originally present from an individual converter or exceed the output span of that converter when only one is being used. The system can introduce more noise and have a higher spur that could decrease the performance. However, when the input amplitude is increased to the point where more than one converter is used, the
SFDR should increase again as the output level is increased. This result is verified as shown in Fig. 26.

![Spurious Free Dynamic Range](image)

Fig. 26. SFDR, 210MHz \(f_s \), 31.7038MHz \(f_{in} \)

The parallel system has more noise present than the single converter configuration, so at the lower input amplitudes, the SFDR performance is reduced. There is no performance impact that can be decimated in the SFDR when the input signal frequency is increased as evidenced by Fig. 27.
Again, as with the case of the amplitude matching above, the lowering of the sampling frequency improves the performance of the SFDR. In the two systems, we do not see a decrease in performance when the input signal power is close to that of the individual converter limit. The discrepancy at the lower amplitude inputs are not seen as in the higher sample rate because the noise floor for the lower sample rate has approximately the same noise floor for the two system configurations.
Fig. 28. SFDR, 10MHz f_s, 1.5097MHz f_{in}

The sampling close to the Nyquist frequency has no effect on the SFDR.

Fig. 29. SFDR, 10MHz f_s, 4.9057MHz f_{in}
The Effective Number of Bits (ENOB) were determined for the input signals. First, the Signal to Noise plus Distortion (SINAD) had to be calculated. The root mean square (RMS) was calculated for all the noise including the distortion, but excluding the DC component, and the fundamental frequency. The FFT processing gain of the noise was removed using equation (22). Then the normalized fundamental signal was divided by the corrected noise. To correct for the lower input amplitudes (A) a correction factor is used to normalize the signal to full-scale (A_{FS}). Equation (24) shows the ENOB using this correction factor [29].

$$\text{ENOB} = \frac{\text{SINAD} - 1.76dB + 20\log_{10}\left(\frac{A_{FS}}{A}\right)}{6.02}$$

(24)

The ENOB for the single converter was stated on the datasheet to be 10.5 bits typical [28]. When running the simulation, 10.8 bits were obtained for the single converter. If the ENOB for the parallel system followed the calculation for the number of bits in the system, the parallel system should have about 14 ENOB. However, as seen in Fig. 30 the distortion that was seen in the FFT plots above has decreased the performance and only 12.5 ENOB were obtained. This decrease is due to the distortion that is present in the noise floor. Although the SRDR is greater for the parallel system, the overall distortion that is present decreases the performance for the ENOB. However, when doing the ADC selection criteria, an expected output of 12.84 ENOB was calculated. This number was based on the lower limit of the individual converter specification of 9.67 ENOB. So, even with the decrease in performance, the overall specification is still a reasonable result.
The input frequency was then increased while maintaining the same sample rate. There should be a minimal decrease in the ENOB because there is a slight decrease in the SINAD from 31MHz input frequency to 103MHz input [28]. This result is verified in Fig. 31.
Single RMS ENOB =10.8437
Parallel RMS ENOB =12.4804

Fig. 31. ENOB, 210MHz f_s, 103.0197MHz f_{in}
With a lower sampling rate, the ENOB for the single converter increased to approximately 11.4 bits. This is in agreement with Fig. 16 where the output level of the signal is higher than that of the maximum sampling rate. The ENOB for the parallel system is then calculated to be 14.6 bits using this figure. The parallel system is only about 0.3 bits lower than what is estimated showing again that the performance of the system is improved with the lower sample rate. This result also shows that the distortion is less than the signal at the maximum sample rate since the ratio of the two signals remained the same at the two different sampling rates.

![Graph showing effective number of bits vs analog power for single and parallel systems.]

Fig. 32. ENOB, 10MHz f_s, 1.5097MHz f_{in}

The results for the increased input frequency at the lowest sample rate shows that the input frequency has no effect on the ENOB.
Effective Number of Bits

Single RMS ENOB = 11.3122
Parallel RMS ENOB = 14.3045

Fig. 33. ENOB, 10MHz f_s, 4.9057MHz f_{in}
The final metric used to determine the system dynamic range performance is the total harmonic distortion (THD) ratio. This is the result of taking the ratio of the fundamental frequency to the RMS sum of the first five harmonic components in the noise floor. From previous results, we know that the amount of distortion present in the parallel system will decrease the performance for the higher sample rates – indicating a lower THD than the single system. The lower sample rate will favor the parallel system because the amount of distortion was decreased when the ADC wasn’t operating at it’s upper limit on sample rate. Fig. 34 and Fig. 35 verified these assumptions.

Fig. 34. THD, 210MHz f_s, 31.7038MHz f_{in}
3.3.3 Summary of Simulation Results

A parallel ADC system was designed in order to achieve a desired performance of 80dB dynamic range. The performance metrics were evaluated based on the Analog Devices AD9430, 12-bit 210Msps components. A total of nine converters were used in order to obtain the desired system performance.

After the converter was chosen, the system was simulated to verify these performance metrics. The system was able to digitize an analog signal. The system did meet the goal of being able to digitize a higher-powered signal at the input of the system. The ENOB was increased by 1.7 bits giving an average SINAD of 77dB compared to 66.8dB for the single converter. This increased the performance of the system at a cost of having higher supply power demands.
Chapter 4 - Conclusions and Future Work

4.1 Summary of Thesis

The goal of this thesis is to determine if a parallel ADC system can be designed in order to meet the desired dynamic range of a CWSF radar system. The proposed design accomplished the desired performance goal of having a high-speed, high dynamic range ADC system. To achieve this, ADCs will be placed in parallel and each converter will have a specific voltage range of the incoming analog signal that it will convert. This technique varies from the approaches used previously.

Several existing approaches have been studied to extend the range of COTS ADCs – either by increasing the dynamic range of the system or by increasing the sample rate. Both techniques used a multiple converter design to achieve this goal.

The first approach increases the dynamic range of a converter by using a stacked configuration. In this design, gain steps placed Δ dB apart precede the ADCs, resulting a system dynamic range of $(N-1) \Delta$ greater than that of a single ADC [19]. Nonetheless, this system cannot be used in the CWSF radar system because of the cross-coupling signal that is present from the transmitter to the receiver.

The second design uses multiple converters to increase the effective sampling rate of the system. The converters operate at the same sampling rate as the others in the system. However, the clocks going to the individual converters are delayed from one another. By operating the n converters each with a sampling rate of f_s, the overall sample rate of the system will increase to nf_s [22]. This technique used an unfeasible amount of converters in order to achieve a sampling rate of 100Msps with the desired dynamic range.
To provide a method that could be used with the CWSF radar, the parallel architecture was proposed. The system was designed to have an 80dB dynamic range. Current ADCs from several manufacturers were inserted into a spreadsheet to determine the number of converters that would be needed for each one to achieve this design criterion. Once the number of converters that we needed for the system was calculated, the choices were then narrowed to the ones that required 10 or fewer. This was done in order to keep the power levels and component count of the system to a reasonable level. To quickly determine the system performance with a great deal of flexibility, a free Analog Devices MATLAB simulation – ADIsimADC™ – was used to simulate the system. To determine which converter to use in the simulation, the performance metric was calculated using the estimated ENOB of the parallel system and the converter-sampling rate. From this performance metric, the Analog Devices AD9430 210Msps 12-bit converter was chosen for the simulation. Several performance criteria were simulated to evaluate the overall system performance.

4.1.1 Findings

The first test was a basic sine wave test used to verify that the system was set up correctly. A signal that was 0.5dB below full-scale was able to go through the system. The FFT plot was generated to verify the signal frequency and amplitude relative to the digital full-scale signal. After this test, a static transfer test was executed to determine how well the output codes matched to the input voltages. The analog power test was run at the minimum and maximum sample rates for two different input signals to determine the dynamic performance of the system. The input signal frequency did not have an impact on the output such as one that was seen by the change in sampling frequency. These sets of tests showed that the parallel system was successful
at increasing the ENOB of the system. However, at the highest sampling rate, distortion
decreased this performance by approximately 1.5 bits.

The system was determined to have the following specifications:

- Amplitude Matching to Ideal: +/- 0.5dB
- SFDR: 86dBc @ $f_{in} = 31.7$MHz @ 210Msps (-0.5dBFS)
- ENOB: 12.5dB @ $f_{in} = 31.7$MHz @ 210Msps
- THD: 100dBc@ $f_{in} = 31.7$MHz @ 210Msps (-0.5dBFS)

4.1.2 Limitations

When designing this simulation, several constraints were introduced in order to maintain
the feasibility of this first attempt simulation. First, the power of the system was not taken into
account. In a real system, this specification would need to be known. However, the minimum
power increase would be the number of converters multiplied by the power of each converter.

Also, several components that could lead to distortion were not modeled in this design.
This included noise on the voltage references, diodes that do not have a fast enough slew rate,
gain and offset mismatches of the converters themselves, clock jitter, and voltage variances on
the references.

4.2 Future Work

In future work, the source of the distortion that was present at the maximum sample rate
needs to be determined. One possible solution is to change the bias levels and the clamping
voltages in order to keep the signals below the full-scale input levels of the ADC. In addition,
the other sources of distortion could be examined to determine their impact on the system output.
The power consumption of this system needs to be determined so that it can be compared to
other analog to digital converters using the performance metric shown in equation (8). Finally, the system has to be prototyped to determine if the bench top results coincide with the simulation.
Appendix

A1

The appendix provides the derivation of equation (4) for the new radar cross section. The derivation assumes that there are no losses introduced by the parallel system and any increase in power in the transmit will translate directly to an increase in power in the received signal.

\[
\frac{P_{r_{\text{New}}}}{P_{r_{\text{Old}}}} = \frac{10 \log_{10} \left[P_{t_{\text{New}}} G_{i} G_{r} \left(\frac{\sigma_{\text{New}} c^2}{(4\pi)^2 f^2 R_{T_{x}}^2 R_{R_x}^2} \right) \right]}{10 \log_{10} \left[P_{t_{\text{Old}}} G_{i} G_{r} \left(\frac{\sigma_{\text{Old}} c^2}{(4\pi)^2 f^2 R_{T_{x}}^2 R_{R_x}^2} \right) \right]}
\]

\[
\log_{10}(\sigma_{\text{New}}) = \frac{P_{r_{\text{New}}} \log_{10} \left[P_{t_{\text{Old}}} G_{i} G_{r} \left(\frac{\sigma_{\text{Old}} c^2}{(4\pi)^2 f^2 R_{T_{x}}^2 R_{R_x}^2} \right) \right]}{P_{r_{\text{Old}}}} - \log_{10} \left[P_{t_{\text{New}}} G_{i} G_{r} \left(\frac{c^2}{(4\pi)^2 f^2 R_{T_{x}}^2 R_{R_x}^2} \right) \right]
\]

Let \(A = \frac{c^2}{(4\pi)^2 f^2 R_{T_{x}}^2 R_{R_x}^2} \)

\[
\log_{10}(\sigma_{\text{New}}) = \frac{P_{r_{\text{New}}} \log_{10} \left[P_{t_{\text{Old}}} G_{i} G_{r} \left(A \sigma_{\text{Old}} \right) \right]}{P_{r_{\text{Old}}}} - \log_{10} \left[P_{t_{\text{New}}} G_{i} G_{r} (A) \right]
\]

Let \(B = \frac{P_{r_{\text{New}}} \log_{10} \left[P_{t_{\text{Old}}} G_{i} G_{r} \left(A \sigma_{\text{Old}} \right) \right]}{P_{r_{\text{Old}}}} - \log_{10} \left[P_{t_{\text{New}}} G_{i} G_{r} (A) \right] \)
The table below represents the ADCs from each manufacturer that has the highest number of bits and the highest sample rate with a sample rate of 100Msps or higher [9]-[15]. Please refer to the manufacturers’ websites listed in the bibliography for the full list of ADCs.

Table 1- 100Msps or Greater COTS Analog-to-Digital Converters

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Resolution (bits)</th>
<th>Sampling Rate (Msps)</th>
<th># Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmel</td>
<td>AT84AS001</td>
<td>12</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Atmel</td>
<td>AT84AS008</td>
<td>10</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>Maxim</td>
<td>MAX1430</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Maxim</td>
<td>MAX1429</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Maxim</td>
<td>MAX108</td>
<td>8</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD9446</td>
<td>16</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD12501</td>
<td>12</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>ADC081500</td>
<td>8</td>
<td>1500</td>
<td>1</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>ADC08D1500</td>
<td>8</td>
<td>1500</td>
<td>2</td>
</tr>
<tr>
<td>Linear Technology</td>
<td>LTC2208</td>
<td>16</td>
<td>130</td>
<td>1</td>
</tr>
<tr>
<td>Linear Technology</td>
<td>LTC2242-10</td>
<td>10</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>Linear Technology</td>
<td>LTC2242-12</td>
<td>12</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Part Number</td>
<td>Resolution (bits)</td>
<td>Sampling Rate (Mfps)</td>
<td># Channels</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Rockwell Scientific</td>
<td>RAD004</td>
<td>6</td>
<td>4000</td>
<td>1</td>
</tr>
</tbody>
</table>
References

http://www.linear.com/pc/viewCategory.do?navId=H0,C1,C1155,C1001,C1150.
[Accessed: Mar. 21, 2006].

increased radar signal processor dynamic range,” Proceedings of the 2001 IEEE
IEEE Xplore, Article 7005676. [Accessed Feb. 4, 2006].

converter providing 100 dB of dynamic range,” 2005 IEEE International Radar
[Accessed Feb. 4, 2006].

the Ninth International Symposium on Consumer Electronics, 2005 (ISCE 2005), pp. 359-
2006].

interleaved A/D converter system,” IEEE Transactions on Circuits and Systems I: Regular

[23] Analog Devices, “AD7760 2.5 Msps, 24-bit, 100dB, sigma-delta ADC with an on-chip
2006].

B. K. Gilbert, “Design and test methodology for an analog-to-digital converter multichip
module for experimental all-digital radar receiver operating at 2 gigasamples/s,” IEEE

Vita

Brandy Sausse received her BSEE from the University of New Orleans in December, 1998. She joined Planning Systems, Inc. (PSI) shortly thereafter in January, 1999. During her 7-1/2 years of employment with PSI, she has developed numerous skills ranging from analog to digital design, component level to system level testing, and requirements specification to requirements validation. Most of her work involved systems that dealt with signal processing that involved low power, low noise, and high reliability. Because of her successes with these systems and other important projects, she was promoted to systems engineer.