
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-18-2007

Keyword Indexing and Searching for Large Forensics Targets Keyword Indexing and Searching for Large Forensics Targets

using Distributed Computing using Distributed Computing

Sanjeeb Mishra
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Mishra, Sanjeeb, "Keyword Indexing and Searching for Large Forensics Targets using Distributed
Computing" (2007). University of New Orleans Theses and Dissertations. 510.
https://scholarworks.uno.edu/td/510

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/510?utm_source=scholarworks.uno.edu%2Ftd%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Keyword Indexing and Searching for Large Forensics Targets using Distributed
Computing

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

By

Mr. Sanjeeb Mishra

BE, Bangalore University, Bangalore, India, 2000

May, 2007

 ii

ACKNOWLEDGEMENTS

The mediocre teacher tells, the good teacher explains, the superior teacher demonstrates,
but the great teacher always inspires and Prof. Dr. Golden Richard III is one of the very
few who always believed in his students; who tugged, pushed and lead them to the next

plateau inspiring them achieve the unattainable.

People will come and go, but UNO will never see a Teacher in the form of his stature
who has created a mark for himself in the student community inspiring them think big

like leaders and making them better human beings in the society giving something back
to their learned fraternity.

In a time where people win wars through tools he tries to win the minds of students

providing them with unending freedom and bestows faith stimulating them in all possible
ways.

Prof. Dr. Golden is one of the very few among our other beloved CS Dept. Professors

like Prof. Dr. Adlai Depano, Prof. Dr. Chiu, Prof. Dr. Korthright, Prof. Dr. Shengru Tu &
Prof. Dr. Vassil, on whom we can proudly tell:

"One looks back with appreciation to our brilliant teachers, but with gratitude to those
who touched our human feelings. The curriculum is so much necessary raw material, but

warmth is the vital element for the growing plant and for the soul of the child."

I have always tried to learn something from him and my Thesis on Grid Computing is his
vision to make me do something big not done before by anybody.

It is a dream come true to get associated with a person of such humility who always

stands by his pupils in their time of need and would like to extend my heartiest regards to
him and his family.

I am grateful to Madam Janice Thomas, President, OISS, UNO; Mr. Jason Keller, Vice
President, OISS, UNO & Mr. Willams, Placement Officer, for their valuable support

throughout my study at University of New Orleans encouraging and supporting me when
I missed deadlines in paying fees and allowing me for valuable internship experience

whenever there was an opportunity. I am always indebted to Dr. Eason, Graduate School,
UNO and Madam Amanda, Graduate School, UNO, for their support in allowing me for
all Thesis and Graduation Proceedings whenever I missed deadlines considering my hard
work and commitment towards my fulfillment of all requirements. These people are the

livewires of UNO and the love, affection and care they have shown to all students
throughout is exemplary which will put UNO in the forefront list where students’ voices

never go unheard.

As alumnus, our responsibilities won’t end here but starts here to remind us to give
something back to our UNO community in our lifetime which ever position wherever we

are in our odyssey of life; it is a pride and honor to be associated with such lovely and

 iii

caring people of UNO and saluting the true spirit of New Orleans I admit that I have had
the best time in life here at UNO. Long live University of New Orleans, New Orleans!

I would like to thank all my friends and critiques whose valuable inputs and criticism

helped me hone my skills to my best and to all my juniors who always found my door to
clear their doubts and put up challenges to solve their strenuous programming problems.

I am grateful to my parents and my sister whose blessings helped me come here to realize

my goals and I owe them everything for their toil of many years to send me here.

 iv

TABLE OF CONTENTS

LIST OF FIGURES..viii

ABSTRACT... x

Chapter 1 INTRODUCTION ...1

 1.1 Background and Motivation..1

 1.2 Existing Systems and their Pitfalls ..5

 1.3 Objective ..7

 1.4 My Different Approach ...9

 1.5 Overview .. 10

Chapter 2 DISTRIBUTED FRAMEWORK DEVELOPED 11

 2.1 Overview .. 11

 2.2 Distributed Framework Goals... 11

 2.3 Use of Microsoft C# NET for Application Development 12

 2.4 Use of Microsoft NET Remoting for Distributed Framework Development. 12

 2.5 Basics of Microsoft NET Remoting... 13

 2.5.1 NET Remoting Introduction... 13

 2.5.2 Inter Process Communication .. 14

 2.5.3 NET Remoting Advantages ... 14

 2.5.4 NET Remoting Disadvantages.. 14

 2.6 Distributed Framework Architecture and Design.. 15

 2.6.1 Individual Units of Distributed Framework .. 16

 2.6.2 Tasks for Individual Units .. 16

 2.6.3 Steps of Execution in Distributed Framework....................................... 18

 v

 2.7 Design and Implementation... 20

 2.7.1 Task Component ... 20

 2.7.1.1 Task Component Interfaces ... 21

 2.7.1.2 Task Message Objects .. 25

 2.7.1.3 Task Logic... 26

 2.7.2 Work Manager .. 28

 2.7.2.1 Work Manager ... 28

 2.7.2.2 Tracking Workers .. 29

 2.7.2.2.1 Add Worker ... 29

 2.7.2.2.2 Remove Worker ... 30

 2.7.2.3 Tasks ... 31

 2.7.2.3.1 Tasks for Joining Index Results .. 32

 2.7.2.3.2 Tasks for Joining Search Results .. 32

 2.7.2.4 Dispatching Tasks... 32

 2.7.2.4.1 Submit Task for Indexing.. 33

 2.7.2.4.2 Submit Task for Searching.. 33

 2.7.2.5 Completing Tasks ... 34

 2.7.2.5.1 Receive Task Complete for Indexing 34

 2.7.2.5.2 Receive Task Complete for Searching 35

 2.7.3 Task Worker ... 37

 2.7.3.1 Creating Task Worker ... 38

 2.7.3.1.1 Client Startup... 38

 2.7.3.1.2 Find Button .. 39

 vi

 2.7.3.1.2 Search Button ... 40

 2.7.3.2 System Tray Interface ... 40

 2.7.3.3 Client Process ... 40

 2.7.3.3.1 Client Process.. 40

 2.7.3.3.2 Login ... 41

 2.7.3.3.3 Logout ... 42

 2.7.3.3.4 Life Time... 42

 2.7.3.3.5 Index Results Received ... 42

 2.7.3.3.6 Search Results Received ... 43

 2.7.3.3.7 Indexing... 44

 2.7.3.3.8 Searching... 55

2.8 Summary.. 46

Chapter 3 FORENSICS APPLICATION DEVELOPED USING THE
DISTRIBUTED FRAMEWORK.. 47

 3.0 Motivation.. 47

 3.1 Application Goals... 48

 3.2 Design ... 49

 3.2.1 Distributing Forensics Disk Image ... 51

 3.2.2 Indexing ... 54

 3.2.3 Searching ... 55

 3.2.4 Important Features during Indexing and Searching 56

 3.2.5 Results Display .. 58

 3.3 Implementation.. 59

 3.3.1 Indexing Options (Many Ways of Indexing) .. 59

 vii

 3.3.1.1 Multiple Sorted Index Files.. 60

 3.3.1.2 Single Unsorted Index File ... 60

 3.3.1.3 Single Sorted Index File ... 61

 3.3.1.4 No Index File, Only Tree Structure ... 62

 3.3.2 Searching Options (Many Ways of Searching) 63

 3.3.2.1 Binary Search ... 63

 3.3.2.2 Linear Search ... 63

 3.3.2.3 Searching in Multiple Sorted Index Files 64

 3.3.2.4 Searching in Single Unsorted Index File.. 65

 3.3.2.5 Searching in Single Sorted Index File .. 66

 3.3.2.6 Searching in Tree Map Data Structures.. 68

 3.3.3 Indexing Component... 69

 3.3.4 Data Structures for Indexing .. 72

 3.3.5 Searching Component... 77

 3.3.5.1 Binary Search for Non-Regular Expression Search...................... 77

 3.3.5.2 Linear Search for Regular Expression Search 80

 3.3.5.3 Various Search Features .. 80

 3.3.6 Other Features Implemented.. 83

Chapter 4 RESULTS AND PERFORMANCE FIGURES .. 85

Chapter 5 CONCLUSIONS.. 87

Chapter 6 FUTURE WORK... 89

Chapter 7 REFERENCES .. 91

VITA .. 96

 viii

LIST OF FIGURES

Figure 2.1: Distributed Framework Architecture.. 15

Figure 2.2: Message Passing between Worker and Manager 22

Figure 2.3: Steps for Index Task... 23

Figure 2.4: Steps for Search Task... 24

Figure 2.5: Server Startup Form .. 28

Figure 2.6: Add Worker.. 30

Figure 2.7: Remove Worker.. 31

Figure 2.8: Index Task Assigned... 33

Figure 2.9: Search for a string “golden” .. 34

Figure 2.10: Index Task Complete Notification ... 36

Figure 2.11: Search Task Complete Notification ... 36

Figure 2.12: Client/Worker Startup Form ... 39

Figure 2.13: Index Button ... 40

Figure 2.14: Search Button ... 40

Figure 2.15: Index Completed... 43

Figure 2.16: Search results for “golden” .. 44

Figure 2.17: Indexing .. 44

Figure 2.18: Searching .. 45

Figure 3.1 Architecture of Forensics Application .. 50

Figure 3.2: Disk Image distribution; At Client, At Server, At Coordinator 52

Figure 3.3: Parameters for Indexing .. 55

Figure 3.4: Parameters for Searching... 56

 ix

Figure 3.5: Other Search Features ... 58

Figure 3.6: Multiple Sorted Index Files.. 60

Figure 3.7: Single Unsorted Index Files.. 61

Figure 3.8: Single Sorted Index Files.. 62

Figure 3.9: Index Tree... 74

Figure 3.10: Red Black Tree ... 76

Figure 3.11: Keywords inside the Index File .. 76

Figure 3.12: Boolean OR “golden vassil adlai” .. 81

Figure 3.13: Boolean AND “golden vassil adlai”.. 81

Figure 3.14: Fuzzy Search lists all words close to “reading” ending in “ing”........... 82

Figure 3.15: Stemming of the word “readingness” .. 83

 x

ABSTRACT

When computer forensics investigation is carried out on single workstations and
the forensics image in hand is of terabytes of length, indexing of keywords takes a heavy
toll. With the manifold increase of forensics data, there is an urgent need to develop a
distributed digital forensics toolkit associated with sophisticated indexing and searching
capabilities which utilizes multiple idle computers to index forensics images. This toolkit
will deliver fast paced search performance running indexing of large forensics data and
will produce smaller indexing time and faster search speeds as compared to non indexed
searches on standalone workstations. The distributed resources of available computers
thus make an ideal platform for virtual supercomputing performing indexing and
searching on available machines.

 1

Chapter 1. INTRODUCTION

1.1 Background and Motivation

Digital Forensics is the field of analyzing and evaluating digital data as evidence.
Computer forensics is the application of computer investigation and analysis of
procedures in the process of determining evidence for computer crime, misuse or theft of
trade secrets, theft or destruction of intellectual property, and fraud. Computer Forensics
involves an array of methodologies for discovering data that resides in a suspect's
computer system or recovering encrypted, deleted, and damaged file contents which help
during the discovery and investigation process [1].

The responsibilities of the people who are involved in forensics activities are
enormous as they can make innocent people guilty of crimes if minor or major mistakes
creep into their investigative process.

The forensics science has matured and developed significantly during the last
decade and is now regarded as a science of its own standing with a solid foundation built
on the acceptance of numerous certified forensic techniques and methodologies devised
by scientific and law communities. The research and overall interest in computer
forensics has increased manifold during the last few years, but it is still in its infancy
stage.

Digital forensics practice is currently performed in many stages:

 Securing of evidence. This involves the process of producing exact replicas of
seized medium, i.e., imaging. The copies must be imaged exactly and
cryptographic hashing techniques are used to prove that the copy contains the
exact information as the original one had. Several steps are taken carefully to
identify and retrieve evidence which may exist on a suspect’s computer system.
These steps protect the computer system from possible damage, corruption or
virus introduction during the investigation process. This process uncovers all files
such as normal files, deleted files, hidden files (password protected and encrypted
files). It recovers or tries to recover all deleted files. It reveals hidden files and
swap files. It accesses or tries to access the contents of all encrypted files. It also
analyzes all relevant data found in special areas of the disk and prints out an
overall analysis of the computer system.

 Analysis of evidence. This involves the analysis of evidence items in the large
data set when it is unknown which pieces of information may have value as
evidence.

 2

A broad description of the forensics process includes the following:

 Identification – This recognizes an incident and determines its type.

 Preservation – This isolates, secures and preserves the state of physical
and digital evidence.

 Collection – This records physical scene and duplicates digital evidence
using established and proved methods.

 Examination – This involves a through search of evidence relating to the
suspect’s crime.

 Analysis – This determines facts, joins all necessary fragments of
information, and draw conclusions based on evidences seized.

 Presentation – This summarizes and provides explanations of conclusions.

 Return of Evidence – This ensures that physical and other property is
returned to legal owner.

 Evaluation. This involves assessing what implications the listed evidence items
have in the investigation process and what the evidence tells us about the use of
the computer and the actions of the user. It requires deep understanding of
practices, definitions, effective use of proper forensics instruments, writing
effective reports, and testifying on findings in an appropriate way based on
observations and opinions derived from the course of forensics investigation.
These tasks must be executed with professional excellence as per the rules and
regulations of law systems.

 3

Many methods and scientifically evaluated software packages exist for image copying
and securing of digital evidence

Forensics investigation is a difficult task to handle with a single workstation or a
standalone computer facility where processing power is limited by scarcity of resources,
inefficient CPU power, and low level performance. With the increase of forensics data by
thousands of gigabytes, it is intolerable to do digital forensics with a single workstation
as it is more time-consuming. When the first hard disk drives came to market, a 5.25-inch
hard disk held about five to ten Megabytes of data. Today, it is not uncommon for simple
home computers to have something like two hundred Gigabytes of storage. In order to
keep up with the increasing amount of forensics data, advanced systems have to be
designed for expediting forensics analysis. The process of forensics investigation is
mainly dependent on correct and flawless analysis of given data and, to assist
investigators, this analysis should be conducted in a reasonable amount of time
irrespective of the exponential growth in size of disk images.

We are going to focus on analysis of forensics images using effective indexing and
searching techniques to find traces of crime evidence in a suspect’s computer system.
Many commercial forensics toolkits such as FTK, Sleuth Kit, and Autopsy are available
in the market now. There already exist some commercial software applications for
keyword indexing and searching of forensics images, e.g., dtSearch. Such applications,
however, have a lot of limitations:

 They work on single workstation systems and are very slow to deal with large
gigabytes of forensics targets. Their processing is limited by inefficient CPU
power. They demonstrate below par performance when they try to read and search
for keywords in disk images. Single workstation systems consume more time for
indexing and, searching of keywords unfolds at a very slow speed. The
investigator has to wait long hours to start his usual search operations and the
process is intolerable when the forensics image is thousands of gigabytes of
length.

 Great tools mainly useful for UNIX-like systems, “Grep” and “Strings”

commands, are used for searching files for occurrence of input patterns. It
becomes very tedious to search for appropriate data using “grep” and “strings”
commands since one has to scroll through a large pool of redundant data to pin-
point valuable information. As a standalone tool, “grep” can be cumbersome
when dealing with computer forensics evidence, as there might be no actual file
system, but massive chunks of data imaged from a suspects hard disk drive. The
investigator has to correlate the search results to actual files and folders. This
process is time-consuming and error-prone even if utmost care is taken to handle
it properly.

 4

 Lack of indexing before keyword searching is a drawback in some forensics

applications when the tool searches for occurrence of a keyword within the
forensics image taking considerable amount of time. Whenever keywords are
searched, the whole disk image is read again for available data and, if there is a
match for the specified search keyword, it is printed.

 Sleuth Kit and Autopsy toolkits fail when it comes to sophisticated text analysis

for indexing and searching. dtSearch toolkit also fails when it tries to index
forensics images without a file system.

 There are currently no distributed tools for indexing and searching of keywords in
digital forensics. The need is to conduct analysis and investigation operations in a
fast paced environment. Sleuth Kit and Autopsy do not support distributed
processing. Distributed Processing consumes less time for indexing and keyword
searches happen at a breathtaking speed.

 In many forensics applications which are based on keyword indexing and

searching of disk images, when we search for keywords in the index file, we miss
some hits as some are case sensitive and the software does not allow case
sensitive searches; some are typed wrongly and cannot be searched as there is no
provision in the software to make them correct; some are derived from their root
words and although root words exist, these derived words cannot be searched in
the index; some words are synonyms to other words and cannot be searched
effectively; regular expression search is also sometimes not feasible as these
searches do not support regular expressions; boolean search is also not possible
with two or many keywords; Unicode foreign language search is also not possible
when we deal with disk images seized in foreign countries as they are dealt in
ASCII text but not in Unicode formatting.

 5

1.2 Existing Systems and their Pitfalls

dtSearch

When a suspect’s system is seized, its hard disk is imaged and all analysis
and investigation are carried out on the image file for finding evidence. The
dtSearch forensics toolkit operates on disk images which have a file system stored
in them. When it comes to disk images without file system, it fails as it does not
support them. dtSearch heads the list of forensics toolkits which employs a faster
indexing and searching mechanism.

Sleuth Kit

 Sleuth Kit, a command line based utility, is a formidable computer forensics tool.

Although fast and efficient for smaller investigations, it is cumbersome to use
when handling large sets of data.

Autopsy

Autopsy, a graphical user interface based utility, mainly used for large

scale case management, adds further functionality as compared to Sleuth Kit.
Autopsy correlates the search results to actual files and folders automatically
which saves time and eliminates errors while handling the forensics image.
Autopsy does not support sophisticated text analysis during indexing and
searching.

Grep/String Commands

 Mainly useful for UNIX-like systems, “Grep” and “String” commands are great

tools, which are used for searching occurrence of some input patterns in files. It
becomes a tedious process to search for appropriate data using “grep” or ”string”
commands since one has to scroll through a large pool of redundant data inside
huge disk image files to pin-point valuable keywords.

Pyflag

 Pyflag toolkit is another example of a keyword indexing and searching toolkit

which incorporates effective index and search algorithms for it operations. Pyflag
fails when the data size is of terabytes of length because it is designed for
standalone systems which can handle only a few hundred gigabytes of data.

Searchtools

 Searchtools toolkit is another example of keyword indexing and searching toolkit

that incorporates efficient index and search algorithms for its operations. It is

 6

designed for standalone systems which can handle only a few gigabytes of data
and, therefore, fails like Pyflag when the data size is of larger length.

FTK

FTK has the best functionalities for indexing and searching of keywords,
but fails when the dataset is of terabytes of length. Indexing of all possible
keywords using a standalone system takes a lot of time even before the actual
search starts.

Microsoft Index Server

In view of searching website contents, Microsoft came up with a version
of Microsoft Index Server which is used to search website contents. For the Index
Server to work, all the website files are stored into the server first. Once all the
website files are stored, indexing and searching operates as usual where indexing
of all website keywords are carried out first and they are searched thereafter for
possible hits. Microsoft Index Server, however, works on website contents and is
limited to website files only.

Google Indexing and Searching

The way Google has revolutionized the way we do search is
unprecedented. The Google site indexes all websites’ contents. While searching
for keywords, it gives hits to those websites which can be referenced from the
indexes stored in the index file: if you get a hit on a keyword, it displays all the
sites which reference that word. Google is a perfect example of keyword indexing
and searching, but like Microsoft Index Server it works exclusively on website
contents and is limited to internet or web.

 7

1.3 Objective

When computer forensics investigation is carried out on single workstations and
the forensics image is thousands of gigabytes of length, indexing of keywords takes
considerable time. To start searching for keywords, one has to wait until indexing of the
entire image is completely done. This is tiresome and time-consuming on the part of the
user and could be eliminated if multiple computers are utilized to index the forensics
image. Indexing forensics images without the use of the distributed resources of available
computers is a strenuous task for forensics investigation when one’s scope is limited by
scarcity of resources, insufficient CPU power, and various performance issues. With the
manifold increase of forensics data, it is absolutely necessary to develop a distributed
digital forensics toolkit to perform indexing and searching on large forensics targets.

The most desirable method for keyword searching is to provide a single keyword
and to have the tool to search for occurrence of that keyword within the entire forensics
image. This is time-consuming because the search engine needs to read the whole
forensics image and then search for the keyword within it. A better way should be to
index the data in the first phase and then use the index file to read the offsets of keywords
within it. This allows that the next time keywords are searched, the whole disk image is
not read for available data but the index is read and if there is a match for the specified
keyword, it is printed. We are going to create a tool just like “grep” or ”strings”
commands, which is specifically used for searching forensics images for occurrence of
some input patterns.

In the indexing phase, in order to limit the complexity and size of the index,
restriction on the type of keywords which are indexed is required. The indexing can be
set to simply index the keywords which consist of sequences of 4 or more printable
characters. Although it may seem more convenient to index the entire image for all the
possible keywords that may occur within it, it is extremely inefficient as most
investigators are unlikely to search for arbitrary sequences of printable characters which
may appear within the image. Usually investigators have a list of words and a hit on these
words signifies an area of interest.

In the searching phase, the index file which is a list of offsets is read first and the
indexer prints the offset of each hit with few lines or single line contexts. While
searching, the source file is provided for the indexer to print some context around each
hit. While searching for keywords, care should be taken to utilize stemming, fuzzy logic,
boolean, and thesaurus searches as well as regular expression searches with provision for
single word and multiple words searches. We will employ various search mechanisms to
generate more search hits. When the search words are typed wrongly, we can use fuzzy
logic to correct them to a large extent. Using stemming, we can find the root words of the
search word. Using dictionary or thesaurus search, we can find all words similar in
meaning to the search keyword. Case insensitive search can also be carried out if we do
not need case sensitive search. Regular expression search can be provided to implement
regular expression searches and appropriate patterns in the index file can be found out.
Boolean search using operators “or” and “and” can be possible among search keywords.

 8

Single and multiple word searches can also be employed so that single words as well as
multiple words can be searched sequentially.

The main objective is to make the index time faster and not only the search time
but the regular expression search time also is to be made faster with the introduction of
effective algorithms during indexing and searching. Search time has to be less than 1 sec
and, the regular expression search time, although it depends upon the dataset size, should
be made minimum only to a few seconds probably less than a minute even for terabytes
of dataset.

The distributed digital forensics toolkit should be comparable to dtSearch, the
industry rated software toolkit for indexing and searching and should eliminate all bad
features found in contemporary forensics toolkits such as Autopsy and Sleuth kit.
Autopsy and Sleuth kit work on non-distributive environments and make index and
search processes time-consuming. To make indexing considerably faster, there is no
better way than the distributed framework which indexes and searches large datasets.

Our forensics toolkit should index Forensics Images (Terabytes of Length), not
simple .html/.htm/.txt or other text file formats.

Even in scenarios when the index file grows bigger, using index file
customization index can be made comparably shorter. This makes data retrieval faster.

 9

1.4 My Different Approach

The Distributed Digital Forensics Application will consist of two parts: the
Distributed Framework and the Forensics Application.

In view of department security and intranet based development work, Microsoft
.NET Remoting will be chosen to do the bulk of distributed programming work, which
will use idle CPU computers and other Beowulf cluster nodes for faster performance.
Choice of .NET Remoting over other available distributed technologies is that .NET
Remoting is reliable, flexible, easy to use, and suitable for enterprise network computing.
.NET Remoting is a generic method of inter-process and remote communication available
in Microsoft .NET and is the backbone of our distributed framework.

The Forensics Application will be implemented using Microsoft C# language
which is upper compatible to C, C++, and Java programming languages. The whole
forensics application will be written in Visual C# using Visual Studio.NET 2005. C#
Windows Forms will be used to create the windows forms and modules will be developed
using C# 2.0 on VS.NET 2005. C# Generics will be used which is a part of VS.NET
2005 implementation and was not a part of earlier VS.NET 2003 implementation. .NET
Framework 2.0, which is default with VS.NET 2005, will be the platform on which our
application will be built. Choice of Microsoft C# language over C/C++/Java
programming languages is due to its advanced object oriented capabilities, greater user
interface design using Windows Forms and Web Forms, enhanced capabilities for
Generics, ease of network programming, rapid application development, and faster web
services development time.

 10

1.5 Overview

This Master's Thesis is organized into eight chapters as follows:

Chapter 1 includes background, motivation, thesis objective, and thesis outline.

Chapter 2 describes the design and implementation of the distributed framework.

Chapter 3 explains the design and implementation of the forensics application.

Chapter 4 mentions the results and the performance figures for different data sizes.

Chapter 5 shows the conclusions made out from Master’s Thesis work.

Chapter 6 discusses the avenues for future work and further discussions.

Chapter 7 cites the list of references used.

 11

 Chapter 2. DISTRIBUTED FRAMEWORK TO DEVELOP

2.1 Overview

The need of distributed processing for keyword indexing and searching is enormous.
Many forensics applications do not have distributed processing. Distributed Processing
does not consume much time for indexing and keyword searches happen at a breathtaking
speed.

Distributed Computing is defined as a way to break down a single problem into multiple
pieces that can be worked on independently by multiple machines. Distributed
computing, often described as grid computing, parallelism or clustering, is not suitable
for all types of tasks because application environments vary depending upon the
requirement. Grid computing deals with heterogeneous systems, parallelism deals with an
application being divided and performed at its participating peers, while clustering works
with homogeneous systems. An operation that takes a short amount of time may be
lengthened by the overhead needed to send messages to other participating computers in
the network and extra work is needed to divide the problem into multiple parts and
reassemble the result. This extra work is in fact an overhead on part of the running
application. It also raises the complexity of the system to different levels, creates
complex issues which are not easily encountered in a single process system, and should
be kept to a minimum.

So the need of the hour is to come up with a Distributed Framework which taps the CPU
power of all available computers, but does not need much interaction across the network
with other computers. The computers will run independently to perform their assigned
task and messages will be exchanged between them while starting or completing a task.

2.2 Distributed Framework Goals

The Distributed Framework has to follow certain programming guidelines to ensure it
that it will be easy to handle and maintain once it is built. The features to be considered
are as follows:

Ease of Programming: The Distributed Framework will be developed using a high level
programming language that will handle many critical language, networking, and future
technology issues. The framework has to be designed using the latest technologies and
should be upper compatible to existing languages. The framework should support many
advanced and evolving technologies such as security, threading, web services, and remote
networking. Although C/C++/Java programming languages have many existing features,
to design and implement a whole Distributed Framework with all the latest state of the art
technologies, we have to choose a language which not only solves the problem of
complex distributed programming, but should also give us features for its maintenance as
well as high productivity in the future. Hence, a suitable choice of a programming

 12

language with its associated networking technologies is the need of the hour to develop
our desired Distributed Framework solution.

Platform Independence: Different OS systems can be connected to the distributed
framework. For Linux machines to talk to Windows systems, Linux systems can be
added having VMware installed on them and guest OS should be Windows so that any
number windows machines as well as any number of Linux machines can be added to the
network.

Robustness: Tool should raise exceptions and can easily be handled.

Extensibility: Must allow us to add new features and remove existing features with ease.

Interactivity: Server and Clients have to be interactive.

Testing: The indexing and searching application will be tested on a cluster of machines at
NSSAL Lab, Department of Computer Science, University of New Orleans, which
consists of 10 Windows XP Pro 3.0 GH Multithreading Intel Xeon High Speed
Processors and a Beowulf Cluster of 72 nodes for high performance computing. They are
used primarily for building and testing high performance distributed systems.

2.3 Use of Microsoft C# .NET for Application Development

 Rapid Application Development as compared to other languages such as
C/C++/Java

 Object Oriented Programming in C#
 All phases of Product Development are made easy using Microsoft .NET Tools
 Suitable for Enterprise Application Development
 User Interface Design using C# Windows Forms is quite easy
 Use of C# Generics while Indexing
 Networking is made easy using .NET Remoting
 Future Goals in Mind (XML Web Services)

2.4 Use of Microsoft .NET Remoting for Distributed Framework Development

.NET Remoting will be best suited for this sort of distributed application because we are
creating a distributed supercomputer that taps CPU power of all available computers.
This distributed application supports the Remoting architecture as it does not need much
interaction across the network with other client computers. Clients will run independently
to perform their assigned work and messages will be exchanged between the available
computers while starting or completing a task. Although this suits .NET Remoting, the
tedious task lies in coding the communication protocols and the message format between
clients or workers since a lot of issues have to be dealt while coding for them.

 Does not need much interaction across the network, messages are just exchanged,
and bulk of the work is done at the client or worker computers.

 13

 Remoting is a generic method of inter-process and remote communication in
.NET.

 Allows applications in different processes and computers to communicate
seamlessly and is designed to use the objects in another application the same way
one uses the objects.

 It can be used with various protocols and in various cross-platform environments.
 Easy to configure, is reliable, and maintains a high level of abstraction with

networking code.
 .NET Framework CLR takes care of connections, objects creation, and

destruction.
 .NET Remoting deals with how objects communicate out-of-process, how to

serialize data that must be sent across the network, how to handle concurrent
access, bidirectional communication, callbacks and events, and object lifetime.

 It handles state management and object lifetime to ensure that objects time out
when the client is not using them and, thus, implements security by safeguarding
the system from hacking and other malicious attacks.

 In Remoting, we have the choice of different activation types, transport protocols,
serialization formats, and object-lifetime policies. These choices can be carried
out with few lines of code changes in the configuration file, but the code for using
the remote object remains unchanged.

 Remoting supports many types of objects such single client or multiple clients.

2.5 Basics of Microsoft .NET Remoting

2.5.1 What is .NET Remoting?

Remoting is flexible, reliable, easy to configure, and a high-level abstraction that wraps
networking code. With Remoting, the common language runtime (CLR) in .NET
Framework takes care of releasing unneeded objects, creating and closing connections,
and managing requests with a pool of threads. Remoting works better for brokered
communication with a coordination server than for decentralized peer-to-peer
applications.

.NET Remoting deals with how objects communicate out-of-process, how to serialize
data that must be sent across the network, how to handle concurrent access, bidirectional
communication, callbacks and events, and object lifetime issues.

Remoting is a generic method of inter-process and remote communication in .NET. It
allows applications in different processes and different computers to communicate
seamlessly and is designed to use the objects in another application the same way we use
the objects.

In Remoting, we have the choice of different activation types, transport protocols,
serialization formats, and object-lifetime policies. One can change these options with few
lines of code in the configuration file but the code for using the remote object remains
unchanged.

 14

2.5.2 Inter-Process Communication

To bridge the gap between more than one application domains, .NET Remoting is used.

Remoting is often described as the way programs communicate with each other in .NET.
There are literally dozens of different ways for applications to communicate on any
platform. Some of the options for inter-process communication include: serialization of
information to a data store that any applications can access, sending a message to a
Microsoft Message queue, calling an ASP.NET web service with a SOAP message,
creating a connection by using .NET's networking support which provides classes that
wrap Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) channels
or raw sockets, and using services based on COM/DCOM.

2.5.3 Advantages of .NET Remoting:

Remoting is suited for any type of distributed application. It can be used with various
protocols and in various cross-platform applications. It handles state management and
object lifetime to ensure that objects time out when the client is not using them. It is
extensible. It allows one to use Secure Sockets Layer (SSL) security to encrypt messages
when used with Internet Information Server (IIS).

Remoting supports many types of objects including Client-Activated, SingleCall, and
Singleton objects. Singleton objects are the most complex types of objects because they
deal with scenarios where multiple clients may use them at once.

2.5.4 Disadvantages of .NET Remoting

Remoting sends objects in all or nothing chunks. If one needs to stream large files across
the network, Remoting may not be the most suitable approach.

 15

2.6 Distributed Framework Architecture and Design

2.1: Distributed Framework Architecture

Here we are creating a distributed-computing framework which breaks down an
individual task into multiple pieces and reassembles the results afterwards. In order to
reduce the time taken to complete the original task, parallelism methodology is utilized
by dividing each task into multiple pieces. Speed and overall efficiency have been
achieved at the expense of lot of complex distributed programming.

The distributed system is designed to find a solution for our indexing and searching task:
the indexing of large gigabytes of digital forensics data and searching these indexed
contents for possible keywords. For maximum speed and efficiency, the system uses
multiple workers and assembles their results on a work manager or a server. Here the
workers are described as clients and the work manager acts as a server which co-
ordinates all clients’ interactions.

The whole application is written in Visual C# using Visual Studio.NET 2005. .NET
Remoting (VS.NET 2005) is used for distributed application development. C# Windows
Forms has been used to create all user friendly Windows Forms and all code modules
have been developed using C# 2.0 on VS.NET 2005. VS.NET 2005 was officially
released in 2005. .NET Framework 2.0 comes with VS.NET 2005 by default.

 16

2.6.1 Individual Units of Distributed Framework

Server/Manager

 Distributor-Assembler (Distributes Task, Assembles them)
 Requester-Assembler (Requests Task, Assembles them)

Client/Worker

 Requester (Requests Task)
 Worker (Works on Task)

Task/Work

Customizable to any Distributed Application

Display/Notification

Results Display/Output

2.6.2 Tasks for Individual Units

Server/Manager

App.Config: Configuration Settings for Task Server

Server Startup: Main Form for Task Server and loads when the Task Server starts

Server Methods: Task Submission for Indexing

Task Submission for Searching

Task Complete for Indexing using one way Remoting

Task Complete for Searching using one way Remoting

Adding Worker

Removing Worker

Server Task:Worker Record which records workers history/details

Join Results for Indexing

 17

Join Results for Searching

Client/Worker

App.Config: Configuration Settings for Task Worker

Worker Startup: Main Form for Task Worker and loads when Task Worker starts

MainForm Methods: Index Options for Indexing Task and Index Button Press

Search Options for Search Task and Search Button Press

Worker Methods: Login for Client

Logout for Client

Receive Results for Indexing One way Remoting

Receive Results for Searching One way Remoting

Index Task Submission to Task Manager

Search Task Submission to Task Manager

Task/Work

Task (Class/Interface) TaskRequest, TaskSegment and TaskResults Classes and
Interfaces for both Indexing and Searching

Data Structures: Implementation of Complex Data Structures for Indexing

Task (Index/Search): Index and Search Method Implementation

Display/Notification

DisplayForm:Display Form to be invoked by Task Server while Startup

DisplayInterface:Interface

 18

2.6.3 Steps of Execution in the Distributed Framework

 Server/Manager

App.Config: Configuration Settings for Task Server

 Display/Notification

Display Form:Display Form to be invoked by Task Server while Startup

Display Interface: Interface

 Server/Manager

Server Startup: Main Form for Task Server (Loads when the Task Server starts)

 Worker/Client

App.Config: Configuration Settings for Task Worker

Worker Startup: Main Form for Task Worker (Loads when Task Worker starts)

MainForm Methods: Index Options for Indexing Task (Index Button is pressed)

MainForm Methods: Search Options for Search Task (Search Button is pressed)

 Worker/Client

Worker Methods: Login for Client

Index Task Submission to Task Manager

Search Task Submission to Task Manager

 Server/Manager

Server Methods: Adding Worker

Server Task:Worker Record (Records workers history/details)

Server Methods: Task Submission for Indexing

Task Submission for Searching

 Task/Work

 19

Task(Class/Interface):TaskRequest, TaskSegment and TaskResults Classes and Interfaces
for both Indexing and Searching

Task (Index/Search): Index and Search Method Implementation

Data Structures: Implementation of Complex Data Structures for Indexing

 Server/Manager

Server Methods: Task Complete for Indexing using one way
Remoting

Server Methods: Task Complete for Searching using one way Remoting

 Server/Manager

Server Task: Join Results for Indexing

Server Task: Join Results for Searching

 Worker/Client

Worker Methods: Receive Results for Indexing One way Remoting

Worker Methods: Receive Results for Searching One way Remoting

 Worker/Client

Worker Methods: Logout for Client

 Server/Manager

Server Methods: Removing Worker

2.7 Design and Implementation

The major units of Distributed Framework are as follows:

 Task Component (Task)
 Task Manager (Server)
 Task Worker (Client)

2.7.1 Task Component

 20

The objects which are used to transmit messages between the server and available
clients and the interfaces they are exposed to are described here.

 Task Component Interfaces

This describes all interfaces used in the application. Individual interfaces exist for
the server, the client, and the requester/coordinator computers.

The Server interface ITaskServer is used for defining methods for registering and
un-registering client computers, for receiving task request, and task complete
notification.

The Client interface ITaskWorker is used for defining a method for receiving the
task assignment.

The Requester interface ITaskRequesterIndex is used for defining a method for
receiving the final index task results.

The Requester interface ITaskRequesterSearch is used for defining a method for
receiving the final search task results.

For a client to request and perform task simultaneously, the client and the
requester/coordinator interfaces will be implemented by the same application.

 Task Message Objects

The objects that are created from the time index request is submitted to the time
index request is completed are as follows:

TaskRequestIndex

This identifies initial task parameters for indexing.

TaskSegmentIndex

This identifies task parameters for a portion of the indexing task.

TaskResultsIndex

This contains the aggregated index results from all task segments which
are delivered to the client that made the initial request.

 21

The objects that are created from the time search request is submitted to the time
search request is completed are as follows:

TaskRequestSearch

This identifies initial task parameters for searching.

TaskSegmentSearch

This identifies task parameters for a portion of the search task.

TaskResultsSearch

This contains the aggregated search results from all task segments which
are delivered to the client that made the initial request.

 Task Logic

Task Logic describes the index and search components which are used for
carrying out the indexing and searching operations.

2.7.1.1 Task Component Interfaces

Three interfaces are required: a client/worker, a server/manager, and a task
requester for each index and search phase. The client/worker and requester
interfaces will be implemented by the same application so that all available clients
can perform and request work.

Message passing in the Server/Manager-Client/Worker Distributed System is
performed as follows:

 22

2:2: Message Passing between Worker and Manager

The objects for indexing are TaskRequestIndex, TaskSegmentIndex and
TaskResultsIndex. Steps that occur from the time an index request is submitted to
the completion of the index request are as follows:

 Server/Manager receives TaskRequestIndex object.
 Server/Manager stores Task object internally in a collection.
 Server/Manager divides the work into segments and sends available

workers/clients TaskSegmentIndex object with a part of the work.
 When workers/clients finish, they send back the TaskSegmentIndex with

the result information added.
 When all task segments are received, server/manager compiles the

information into TaskResultsIndex object and sends it to the client.

 23

2.3: Steps for Index Task

The objects for searching are TaskRequestSearch, TaskSegmentSearch and
TaskResultsSearch. The steps that occur from the time a search request is
submitted to the completion of the search request are as follows:

 Server/Manager receives TaskRequestSearch object.
 Server/Manager stores Task object internally in a collection.
 Server/Manager divides the work into segments and sends available

workers/clients TaskSegmentSearch object with a part of the work.
 When workers/clients finish, they send back the TaskSegmentSearch with

the result information added.
 When all task segments are received, server/manager compiles the

information into TaskResultsSearch object and sends it to the client.

 24

2.4: Steps for Search Task

Methods which allow users to be registered and unregistered with the server are:

 Guid AddWorker(ITaskWorker callback); //Add Worker

 void RemoveWorker(Guid workerID); //Remove Worker

Methods used to register a task are as follows:

 Guid SubmitTaskIndex(TaskRequestIndex taskRequestIndex; //For Indexing

Guid SubmitTaskSearch(TaskRequestSearch taskRequestSearch); //For
Searching

Methods used by the server to submit a task to a client are:

 void ReceiveTaskIndex (TaskSegmentIndex taskIndex); //For Indexing

 void ReceiveTaskSearch(TaskSegmentSearch taskSearch); //For Searching

Methods which are invoked to send task complete notification are:

void ReceiveTaskCompleteIndex (TaskSegmentIndex taskSegmentIndex,
Guid workerID); //For Indexing

voidReceiveTaskCompleteSearch(TaskSegmentSearch
taskSegmentSearch, Guid workerID); //For Searching

 25

ITaskServer interface defines the methods for registering and un-registering
clients, for receiving task request, and task-completed notification.

ITaskWorker interface defines a single method for receiving task assignment.

ITaskRequesterIndex defines a single method for receiving final index task
results.

ITaskRequesterSearch defines a single method for receiving final search task
results.

2.7.1.2 Task Message Objects

Objects for Indexing:

TaskRequestIndex identifies initial task parameters for indexing

 TaskSegmentIndex identifies task parameters for a portion of the index

task and the index task result for that segment once it is complete.

 TaskResultsIndex contains the aggregated index results from all task
segments which are delivered to the client that made the initial request.

Objects for Searching:

TaskRequestSearch identifies initial task parameters for searching

 TaskSegmentSearch identifies task parameters for a portion of the search

task and the search task result for that segment once it is complete.

 TaskResultsSearch contains aggregated search results from all task

segments which are delivered to the client that made the initial request.

TaskRequestIndex, TaskSegmentIndex, TaskResultsIndex, TaskRequestSearch,
TaskSegmentSearch and TaskResultsSearch classes are task specific. The server
uses a Task object to store information about requested and in-progress tasks. The
TaskRequestIndex, TaskSegmentIndex, TaskResultsIndex, TaskRequestSearch,
TaskSegmentSearch and TaskResultsSearch classes are all necessary parts of the
interface between the remotable components. These classes are called Message
objects since they are used mainly for message passing between components.

The TaskRequestIndex and TaskRequestSearch classes indicate
ITaskRequesterIndex and ITaskRequesterSearch interfaces that they should be
notified when the indexing and searching task is completed.

 26

The TaskSegmentIndex and TaskSegmentSearch class resembles
TaskRequestIndex and TaskRequestSearch classes respectively with few new
additional features. TaskSegmentIndex and TaskSegmentSearch classes store a
TaskID and a SequenceNumber. The SequenceNumber is used to reassemble
segments to ensure that results are ordered properly. The TaskSegmentIndex and
TaskSegmentSearch classes identify GUID of workers who assigned the task.
String array is used to hold results when TaskSegmentIndex and
TaskSegmentSearch classes send results back to the server.

The TaskResultsIndex and TaskResultsSearch classes store the index and search
result respectively inside a string array.

2.7.1.3 Task Logic

Task Logic for Indexing and Searching has been described in the next section for
design and implementation of the forensics application.

2.7.2 Work Manager

 Work Manager

Work Manager acts as a server and takes care of all client interactions, divides the
specified task into parts, and assembles the result. Server Startup Form is
displayed when the server starts. Manager stores the collection of Workers and
Tasks in its memory. It creates hash table data structures to store these collections.

 Tracking Workers

Server provides add and remove methods that allows clients to register
themselves in the Workers collection and allows clients to remove them from the
same collection.

Add Worker

Server provides a method that allows clients to register themselves in the
Workers collection

Remove Worker

Server provides a method that allows clients to remove themselves from
the collection.

 Tasks

This gives complete information about a new task and contains methods for
joining task results from individual clients/worker computers through their
sequence numbers.

 27

When the server receives a task request, a new Task is created. This task request
stores the original task, along with additional information including ID
information which the task generates, the collection that contains workers
information that are processing the segments of this task, and a hash table with an
entry for each task segment result specified by sequence numbers.

 Task for Joining Index Results

This describes how index results from various workers are joined and the
final index result is calculated.

 Task for Joining Search Results

This describes how search results from various workers are joined and the
final search result is calculated.

 Dispatching Tasks

Manager/Server receives a task request; breaks it into multiple segments, and
assigns it to available workers. This phase is used for dispatching tasks to
available client/worker computers.

 Submit Task Index

Manager/Server receives an indexing task request, breaks it into multiple
segments, and assigns it to available workers.

 Submit Task Search

Manager/Server receives a search task request, breaks it into multiple
segments, and assigns it to available workers.

 Completing Tasks

Manager/Server receives completed task segment objects, adds them to the
corresponding task (Tasks collection), and marks the worker as available after the
worker finishes its assigned task.

 Receive Task Complete Index Remoting

Manager/Server receives completed index task segment objects, adds them
to the corresponding indexing task (Tasks collection), and marks the
worker as available after the worker finishes its assigned indexing task.

 28

After this, index results from various workers are joined and the final
index result is calculated as described in “Task for Joining Index Results”.

 Receive Task Complete Search Remoting

Manager/Server receives completed search task segment objects, adds
them to the corresponding searching task (Tasks collection), and marks the
worker as available after the worker finishes its assigned search task. After
this, search results from various workers are joined and the final search
result is calculated as described in “Task for Joining Search Results”.

2.7.2.1 Work Manager

 2.5: Server Startup Form

Work Manager is the Task Manager which acts as a server and takes care of all
client interactions, divides the distributed application into parts and assembles the
result. Server Startup Form (Fig 2.3) is displayed when the server starts. Work
manager/server stores the collections of Workers and Tasks in its memory. It
creates hash table data structures to store these collections as shown below:

private Hashtable Workers = new Hashtable();
private Hashtable Tasks = new Hashtable();

 29

Tasks collection holds a collection of Task objects which represent the ongoing
tasks. Objects in the Tasks collection are indexed by TaskID. The Workers
collection keeps track of information about all registered clients/workers using
WorkerRecord objects. WorkRecord objects are indexed by the WorkerID.

Using one setting in the configuration file, an integer that sets the maximum
number of workers in the system can be assigned to a task which ensures that
other available workers will be free to serve new incoming requests. This in turn
prevents a task from being divided into so many pieces that the communication
time becomes an extra overhead.

To display all clients’ interactions as they happen, a window with a message that
indicates what actions the server has performed, is loaded when the manager
starts.

2.7.2.2 Tracking Workers

Server provides an AddWorker() method that allows clients to register themselves
in the Workers collection which is a collection of all available workers. It also
provides RemoveWorker() method that allows clients to remove themselves from
the collection.

2.7.2.2.1 Add Worker

The AddWorker() method, provided by the Server, allows clients to register
themselves in the Workers collection. The below figure shows how a worker is
added to the available list of workers collection.

 30

2.6: Add Worker

2.7.2.2.2 Remove Worker

The RemoveWorker() method allows clients to remove workers from the Workers
collection. The below figure shows how a worker is removed from the available
list of workers collection.

 31

2.7: Remove Worker

RemoveWorker() method makes sure that the worker has finished all its tasks
before exiting and a worker cannot exit before finishing its pending task. One,
however, can make the worker exit the application deterministically by closing
the client/worker application.

Workers are stored as WorkerRecord objects and to identify workers uniquely on
a network, each worker has a globally unique identifier (GUID) which is
generated automatically when the WorkerRecord class is instantiated. This is
primarily used for not assigning them any preexisting names as they are only
known by their GUID values.

A worker can be assigned at most one task at a time and not more than that
because application exception will halt the worker to proceed with many tasks
since it can handle only one task at a time.

2.7.2.3 Tasks

When server receives TaskRequestIndex, a new index Task object is created. The
TaskRequestIndex stores the original index Task, along with additional
information including GUID information which Task class generates
automatically, the collection that contains workers information that are processing
the segments of this task, and a hash table with an entry for each

 32

TaskSegmentIndex result indexed by sequence numbers. In the same way, a new
search Task object is created when the server receives a TaskRequestSearch.

Task class contains GetJoinedResultsIndex() and GetJoinedResultsSearch()
methods. It combines all results into a large array, which is returned to the client.
Each entry in the hash table is an array of strings that represents the solution for
part of the original requested range. The entries in the hash table are indexed by
their sequence numbers and they can be reassembled in order by starting with
sequence number 0 which is the first sequence number and so on, regardless of
the order in which the results were received.

2.7.2.3.1 Task for Joining Index Results

This describes how index results from various workers are joined and the final
index result is calculated.

2.7.2.3.2 Task for Joining Search Results

This describes how search results from various workers are joined and the final
search result is calculated.

2.7.2.4 Dispatching Tasks

While indexing, Manager/Server execution takes place in the SubmitTaskIndex()
method. The SubmitTaskIndex() method receives an index task request, breaks it
into multiple segments, and assigns it to available workers. When Manager/Server
execution takes place in the SubmitTaskSearch() method during searching, the
SubmitTaskSearch() method receives a search task request, breaks it into multiple
segments, and assigns it to available workers.

It uses maximum workers allowed by MaxWorkers. A new Task object is created
as follows:

 Task Task = new Task(taskRequest);

Search for available workers is carried out. All available workers are used. All
workers including the worker making the task request are taken into consideration
and are placed inside the workers collection. All participating workers are marked
as assigned for the same task.

To ensure that there is at least one worker, proper error checking is performed
otherwise an exception will be thrown.

The task of dividing the assigned work into segments is straightforward. Once the
segment is constructed, it is sent asynchronously to the worker by calling the

 33

worker's ReceiveTaskIndex() method for indexing and ReceiveTaskSearch()
method for searching. At last, the Task object is stored in the Tasks collection.

2.7.2.4.1 Submit Task for Indexing

 2.8: Index Task Assigned

The above figure shows how index task is submitted to the available workers.

2.7.2.4.2 Submit Task for Searching

 34

 2.9: Search for a string “golden”

The above figure shows how search task is submitted from the server to the
available workers.

2.7.2.5 Completing Tasks

Work Manager’s ReceiveTaskCompleteIndex() and
ReceiveTaskCompleteSearch() methods for indexing and searching receive
completed TaskSegmentIndex and TaskSegmentSearch objects, add them to the
corresponding Task (Tasks Collection), and mark the worker as available since
the worker finishes its assigned task. When the number of received results equals
the number of task segments, the task is declared complete and a message is sent
to the task requester with the list of results and the task is removed from the
memory collection.

2.7.2.5.1 Receive Task Complete for Indexing

 35

2.11.1: Index Complete Notification

The above figure shows how index complete notification is received when
indexing is completed.

ReceiveTaskCompleteIndex() method for indexing is implemented as a one-way
method for maximum performance and efficiency since the workers do not need
to receive any information back.

2.7.2.5.2 Receive Task Complete for Searching

 36

2.10: Index Task Complete Notification

 2.11: Search Task Complete Notification

 37

The above figure shows how search complete notification is received when search
is completed.

ReceiveTaskCompleteSearch() method for searching is implemented as a one-
way method for maximum performance and efficiency since the workers do not
need to receive any information back.

2.7.3 Task Worker

 Creating the Task Worker

It allows users to submit task requests for indexing.

It allows users to submit task requests for searching.

 Client Startup

This is started when the client form loads.

 Find Button

This describes the index button and its associated index features in the
main form.

 Search Button

This describes the search button and its associated search features in the
main form.

 The System Tray Interface

This holds logic for the display controls which is loaded when the
application starts. This makes it certain that display icons are visible all
the time for gathering status information to verify whether the
client/worker computer is in the process of something or is idle.

 ClientProcess

 Client Process

This describes the client constructor, which tells about the configuration of
the client/worker computer and the server IP port it should be connected
to. This is invoked when the client starts since the client will be connected
to a specified server.

 38

 Login

This adds a worker to the workers collection.

 Logout

 This removes a worker from the workers collection.

 Life Time

 This describes how lease time of client/worker computer is affected.

 Index Results

 This mentions the index results received by the client/worker process.

 Search Results

 This lists the search results received by the client/worker process.

 Indexing

 Index information is submitted as an index task to the server.

 Searching

 Search information is submitted as a search task to the server.

2.7.3.1 Creating the Task Worker

It allows a user to submit task requests for indexing.

It allows a user to submit task requests for searching.

2.7.3.1.1 Client Startup

 39

 2.12: Client/Worker Startup Form

Client start up form shown above is started when the client form loads.

2.7.3.1.2 Find Button

 40

 2.13: Index Button

The above figure displays the Index Button and its associated features in the MainForm.

2.7.3.1.3 Search Button

 2.14: Search Button

The above figure shows the Search Button and its associated features in the MainForm.

2.7.3.2 The System Tray Interface

The class that holds the logic for ContextMenu and NotifyIcon controls is created.
This makes it certain that the NotifyIcon control is visible.

2.7.3.3 ClientProcess

2.7.3.3.1 Client Process

The following code mentions the ClientProcess constructor which tells about the
configuration of the client/worker computer and the server IP port it should be
connected to.

public ClientProcess()

 41

{

RemotingConfiguration.Configure("TaskWorker.exe.config", false);
string ServerIP_Port = ConfigurationSettings.AppSettings.Get("ServerIP_Port");
Server = (ITaskServer)Activator.GetObject(typeof(ITaskServer), ServerIP_Port);

}

It calls server methods to request a new task, receives task complete notifications
or task requests. It also includes two read only properties, which provide the
server-generated GUID and the current status. Two status values exist which the
client/worker can possess: the client can be idle or the client can be in the process
of performing some task/work. Status values are provided in an enumeration as
shown by the following:

public enum BackgroundStatus

 {

 Processing,

 Idle

 }

ClientProcess class works as a task worker by implementing ITaskWorker and as
a task requester by implementing ITaskWorker interfaces.

The ReceiveTaskIndex() and ReceiveResultsIndex() methods for indexing and
ReceiveTaskSearch() and ReceiveResultsSearch() methods for searching are
implemented as one way methods to ensure that the server will not be put on hold
while the client is performing. ReceiveTaskIndex() and ReceiveTaskSearch()
methods perform their task in the method body and return the completed segment
to the server.

2.7.3.3.2 Log in

This mentions the log in sample code of the worker which adds the worker to the
workers collection, i.e. the worker is added.

public void Login()
{

Control.CheckForIllegalCrossThreadCalls = false;
_ID = Server.AddWorker(this); //Add Worker

 42

}

2.7.3.3.3 Log Out

This mentions the logout sample code of the worker which removes the worker
from the workers collection, i.e. the worker is removed.

public void LogOut()
{

Server.RemoveWorker(ID); //Remove Worker

}
2.7.3.3.4 Life Time

The following code sample shows how the lease time of client/worker is affected.
As per the code the client/worker never dies and continuously tries for connection
to the server. If one closes the worker application, its lease ends and the
application closes down as expected. In the sample code below, “return null”
shows that connection to the server will always be there.

public override object InitializeLifetimeService()
{
return null; //Connection never dies
}

2.7.3.3.5 Index Results Received

 43

2.15: Index Completed

The above figure mentions the index result received by the client/worker process.

2.7.3.3.6 Search Results Received

 44

2.16: Search results for “golden”

The above figure lists the search result received by the client/worker process.

2.7.3.3.7 Indexing

 45

2.17: Indexing

Index information is submitted as a task to the server. Code sample shows the
index method in MainForm.

public void FindIndex(long fromNumber, long toNumber,
Index.IndexCombination indu)
{
Server.SubmitTaskIndex (new TaskRequestIndex(this, fromNumber, toNumber,
indu));
}

2.7.3.3.8 Searching

2.18: Searching

Search information is submitted as a task to the server. Code sample shows the
search method in MainForm.

public void FindSearch(long fromNumber, long toNumber,
Search.SearchCombination stru)

{
//MessageBox.Show("Inside"); //
Server.SubmitTaskSearch(new TaskRequestSearch(this,
fromNumber, toNumber, stru));

 46

}

2.8 Summary

Distributed work manager provides improved performance and efficiency by
dividing the work and reassembling it, thus reducing the overall time for finishing
the assigned task. But it requires more programming than a single stand-alone
application. Moreover, its benefits increase as the number of available clients
increase and the work load mounts for the application, thus reducing the overall
time. It divides the work load into multiple parts and sends them to available
workers separately, thus reducing the overall time of execution.

We can see that distributed computing is always dependent on the problem or task
in hand since some solutions are well-suited for certain types of problems while
other applications are more oriented towards distributed computing. Most
distributed supercomputers have their own individual approaches, which are
customized based on the task and type of data they deal to provide an efficient
and improved solution.

 47

Chapter 3. FORENSICS APPLICATION DEVELOPED USING THE
DISTRIBUTED FRAMEWORK

3.0 Motivation

Lack of indexing before keyword searching is a drawback in some forensics
applications. Many applications search for occurrence of a specified keyword
within the forensics image and take considerable amount of time. Due to lack of
indexing, keyword searches cannot be carried out at a fraction of a second.
Whenever keywords are searched, the whole disk image is read and if there is a
match for the specified keyword, it is printed.

Many available forensics applications consume too much time for indexing and
keyword searches are no faster. They lack efficient algorithms for faster indexing
and the search operations lack depth while searching for keywords.

In many forensics applications which are based on keywords indexing and
searching of disk images, when we search for keywords in index file, we miss
some keywords as some are case sensitive and the software does not allow case
sensitive searches, some are typed wrongly and cannot be searched as there is no
provision in the software to make them correct, some are derived from their root
words and although root words exist these derived words can’t be searched in the
index, some words are synonyms to other words and cannot be searched
effectively, regular expression search is also sometimes not feasible as search
functions do not have regular expressions facility, boolean search is also not
possible with two or many keywords, and Unicode foreign language text search is
also not possible when we deal with disk images seized in foreign countries as
they are dealt in ASCII but not in Unicode formatting.

So the need of the hour is to design a forensics application which will employ
efficient indexing techniques and while searching for indexed keywords, will care
for stemming, fuzzy logic, boolean, and thesaurus search as well as regular
expression search with provision for single word and multiple words search to
increase the number of keyword hits. It should employ various search features to
make keyword searches efficient and faster.

 48

3.1 Application Goals

 Indexing algorithm should be efficient.
 Introduction of Index File in binary format is required for faster search.
 To remove unnecessary words from the index file, Index words of length

at least 5/more are to be considered.
 Noise words are to be removed.
 The index has to run against a dictionary file.
 Index file should consume less storage.
 Overhead code should be removed (comparisons, redundant variable

declarations/array declarations, disposing objects when not needed etc).
 Application should have good User Interface.
 Application should demonstrate Faster Index and Search Time.
 Effective Utilization of Appropriate Data Structures for faster index time

is required.
 To get less than a second search time, Binary Search should be

implemented.
 Faster Regular Expression Search Time (less than a minute) is needed

depending upon the dataset size.

 49

3.2 Design

Best solutions for indexing and searching not only employ faster indexing time,
but less than a second of search time and a few seconds of regular expression
search time.

Forensics Disk Image is a massive chunk of data imaged from a suspect’s hard
disk drive. A dictionary is a list of words one word per each line. This list may
exist in a txt file or flat file one word per line. The dictionary file is used during
indexing to minimize words in the index file. We can create a dictionary file with
3 letters or more to be used in the indexing phase [10].

An index is a binary file which stores a list of offsets for each word in the
dictionary. Searching the index amounts to looking up the index file for a list of
offsets. Metadata is compiled to index file and metadata contains information
about locations, frequency, and so on about all significant words [10]. The
algorithm for indexing takes approximately the same time for indexing a large
number of keywords as it does to index a single keyword [10].

Typically when indexing the entire image indiscriminately, the tool tries to
distinguish key words from random data in the image. A common technique is to
simply index the disk image file through a strings program - i.e. we assume that
key words consist of sequences of 4 or more printable characters. This arbitrary
restriction on the type of keywords which are indexed is required in order to limit
the complexity and size of the index. This restriction breaks when considering
keywords which are binary in nature. Such keywords may occur in foreign
language systems using Unicode for example [10].

Although it may seem more convenient to index the entire image for all the
possible keywords that may occur within it, it is extremely inefficient. Most
investigators are unlikely to search for arbitrary sequences of printable characters
which may appear within the image. Usually investigators have a list of words - a
hit on these words signifies an area of interest [10].

In order to improve the index file we have to consider many things:

Index file should consume less storage.
Index file should be user defined.
Words are to be filtered out from the index file as much as possible.
Noise Filters are to be used to minimize words in the index file.
Dictionary files are used while indexing.

In the searching phase, the index file which is a list of offsets is read and the
indexer prints the offset of each hit with few lines or single line contexts. While
searching, the source file should be provided for the indexer to print some context

 50

around each hit. It is impossible to search for a word which has not been
previously indexed.

In order to improve searching we have to consider many things:

Boolean Searching
Stemming
Thesaurus Search
Fuzzy Search
Text Categorization
Information Retrieval

The architecture of the system is as shown below:

3.1: Architecture of the Forensics Application

Note:

Brown Arrow: A Client/Worker Requesting a task for server to perform

using other available Clients/Workers

 51

Green Arrows: Server requesting task/work to be performed at available

clients/workers

Red Arrows: Available Clients/Workers getting their file chink from the

shared store

Black Arrows: Available clients/workers giving results back to the server

Blue Arrow: Server sending results back to the Requester: the

client/worker who had requested the server to handle the
task

The overview of the tasks for our Digital Forensics Application is as follows:

 Distributing Forensics Disk Image

 Indexing

 Searching

 Important Features supported during Indexing/Searching

Results Display

3.2.1 Distributing Forensics Disk Image

Disk Image can be distributed at three places such as:

Done at Coordinator/Requester
Done at Server
Done at Client

When done at client, the image file chunk is downloaded from the shared store,
which is accessible to all client computers. The individual clients start indexing
their respective image file chunk.

When done at server, the image file is divided into number of parts equal to the
number of clients available and respective parts are transferred to the available
clients over TCP\IP.

When done at Requester or Coordinator, the requester divides the original
forensics image file into number of parts and respective parts are transferred to
the available clients over TCP\IP.

 52

3.2: Disk Image distribution; At Client, At Server, At Coordinator

Done at Coordinator/Requester

A Worker requests to perform a task utilizing other available Worker
computers. This Worker becomes a Coordinator/Requester. This
Requester divides the original forensics image file into a number of parts
and respective parts are transferred to the available Worker computers
over TCP\IP.

When this Requester does not act as a Server, it requests a task for the
Server to perform using other available Workers. Server assigns part of the
work to this Requester since it is available for work and this Requester in
turn gets the needed file chunk from a shared store. Other Workers get
their own image file chunk and start indexing and searching on this chunk
sending results back to the server. After the Server collects all results from
all individual Workers, it sends the final result back to the Requester for
display. Performance depends upon where the image file is getting
divided: if it is done at the Server, performance is slow and if it is done at
the Worker, performance is higher.

 53

When this Requester acts as a Server, it requests to perform a task using
other available Workers. The image file is divided into a number of parts
equal to the number of Worker computers available and respective parts
are transferred to the available Workers over TCP\IP under supervision of
Requester which in turn also gets a part of the work since it is available for
work. Performance is slow as Workers get their respective file chunk from
the Server and the Server gets the whole file from the shared store. This
increases the performance overhead as it would have been much better had
the Workers got their file chunk from the shared store directly.

Done at Server

When done at Server, the image file is divided into a number of parts
equal to the number of Worker computers available and respective parts
are transferred to the available Workers over TCP\IP under supervision of
the Server. Server computer is the node where server is running.

Server assigns part of the work to available Workers and Workers in turn
get the needed file chunk from a shared store. Workers carry out the
desired indexing and searching task on their chunk sending results back to
the Server. After the Server collects all results from all individual
Workers, it sends the final results back to the Requester for display.

Performance is slow as Server reads the image file, divides the file into
number of available Workers, and sends the respective file chunk to
available Workers. This is an extra overhead, which could have been
eliminated had the Workers got their parts from the shared store directly
rather than getting it from the Server.

Done at Client

The file chunk is downloaded from the shared store to all individual
Worker computers directly and the individual Workers start indexing on
their image file chunk.

Performance is higher as Workers get their respective file chunk from the
shared store directly rather than involving the Server.

3.2.2 Indexing

 54

Various indexing options are available to be given as input before starting the
indexing phase such as whether to do indexing at server, at client, or at
coordinator/requester. Many indexing parameters are required for indexing such
as requirements for dictionary file and noise word list file. Others include
specifying the given file name, whether to send file contents in an array, whether
startup or shutdown is required, mentioning line and dictionary word length,
whether Unicode encoding is required for image file and mentioning cache, fetch,
load and store options for image file at either server or client computer.

The parameters passed for indexing are as follows:

FileName: File Name as a string
Array: File Contents sent in an array
DictionaryFile: Denotes a Boolean whether a Dictionary File is needed
DictionaryFile: Dictionary File
NoiseFile: Denotes a Boolean whether a Noise File is needed
NoiseFile: Noise File
Cache: RAM to Disk
Fetch: Get the required file from Disk to RAM
Load: Load the file from a shared storage to RAM
Store: Store the file in shared storage from RAM
StartUp: At Startup of the client/worker processes
ShutDown: At shutdown of client/worker processes
AtServer: At Server
AtClient: At Client
AtCoordinator: At Coordinator/Requester
LineSize: Line Size (64 bytes/128 bytes etc)
OffsetSize: Offset Size in calculation of a line (64 bytes/128 bytes etc)
DictionaryWordLength: Index Word Length
UnicodeEncoding: Denotes a Boolean whether Unicode encoding is required

 55

3.3: Parameters for Indexing

3.2.3 Searching

Various search options are available to be given as input before starting the search
phase such as regular expression or non-regular expression searches. Search
parameters are needed while searching for keywords in the index file such as:
single word search, multiple word searches, boolean search, fuzzy search,
thesaurus search, stemming, ignore case search, and regular expression search.

The parameters passed for searching are as follows:

CleanIndex: Clean the Index File
SingleWord: Single Word/String Search
MultipleWord: Multiple Words/Strings Search
SearchStrings: Search String Array
RegularExpression: Denotes a Boolean whether Regular Expression is required
IgnoreCase: Denotes a Boolean whether Case is ignored
LineNumbers: Denotes a Boolean whether Line Numbers is required
CountLines: Denotes a Boolean whether line count is required
BooleanSearch: Denotes a Boolean whether Boolean search is required
Stemming: Denotes a Boolean whether stemming is required
FuzzySearch: Denotes a Boolean whether fuzzy search is required
HexEditor: Denotes a Boolean whether hex editor implementation is required

 56

DictionarySearch: Denotes a Boolean whether dictionary search is required
StartUp: Denotes a Boolean whether to search at start up for worker process
LineSizeSearch: Denotes a Line Size Length
OffsetSizeSearch: Denotes a Offset Size Length

 3.4: Parameters for Searching

3.2.4 Important Features during Indexing and Searching:

Other important features added to the toolkit are as follows:

 Ordinary Search

This search is done without regular expression search capabilities and is used only
for normal keyword search. This is a basic search and does not give satisfactory
results when we deal with collection of strings or regular expression searches.

Regular Expression

Regular expression search is a powerful feature which is used for performing
regular expression searches.

Single Word Search

 57

Only a single word is searched with no features for thesaurus, fuzzy and
stemming search available.

Multiple Words Search

Multiple words search is enabled in order to increase the keyword hits as this
search is corroborated by thesaurus, fuzzy, and stemming searches.

Word Selection Search (Select the words you want to search and delete others)

This search option is allowed to delete all unnecessary keywords from the search
list, which the user does not want to search after they are added to the list during
fuzzy, thesaurus, and stemming searches.

Dictionary File

Dictionary file is used to reduce the size of the index file which takes considerable
storage. If there is a hit on any word in the dictionary file, that word is indexed
otherwise it is passed on.

Noise Word List File (I, me etc words not in Index file)

Noise word list file is used to reduce the size of the index file. If there is a hit on
any word in the noise word list file, that word is not indexed. It eliminates the
noise words such as the, he, she, me etc during the indexing phase.

Alphabet File (Which characters are not printable etc and how to show them)

This demonstrates which non printable characters are to be displayed by which
character set.

Stemming

Stemming is used for getting the root words of the specified keyword and adds all
stem words to the current list.

Boolean Search

Boolean search is used for “ORing” or “ANDing” two keywords while searching
for combination of words.

Fuzzy Search (Words Correction and More Words in search criteria)

This is used for correcting the misspelled keywords. Fuzzy Search adds all fuzzy
words to the search list so that search hits will be more.

 58

Thesaurus Search (Similar Words Search)

This is used primarily for getting all similar words of a keyword. Thesaurus
Search adds all these similar words to the list. Hits will be more as more
keywords are searched against the forensics image.

Unicode Implementation (Language Packs)

Unicode search is used for searching foreign language text in foreign languages.

3.5: Other Search Features

3.2.5 Results Display

This is the phase where the index and search results are displayed.

After indexing, index results are displayed. This outputs the indexed parts with
their file size in bytes and other client computer information such as start time of
index, end time of index, and its sequence number.

After searching, search results are displayed. This outputs the search string with
its number of occurrences and some context around each hit inside the forensics
image.

 59

3.3 Implementation

The whole forensics application is written in Visual C# using Visual Studio.NET
2005. C# Windows Forms has been used to create the windows forms and
modules have been developed using C# 2.0 on VS.NET 2005. C# Generics is
used which is a part of VS.NET 2005 implementation and was not a part of
VS.NET 2003 implementation. .NET Framework 2.0 has been used which is
default with VS.NET 2005. VS.NET 2005 was officially released in 2005. The
distributed framework has been designed using .NET Remoting.

.NET Remoting enables one to work with stateful objects and, hence, it is the
future of distributed applications. .NET Remoting gives one a flexible and
extensible framework that allows for different transfer mechanisms (HTTP and
TCP), encodings (SOAP and binary), and security settings (IIS and SSL). .NET
Remoting is well suited for any distributed application. One can choose between
HTTP/SOAP for the Internet and TCP/binary for LAN applications by changing a
single line in the configuration file. Remoting is the process of programs or
components interacting across certain boundaries. These contexts will normally
resemble either different processes or machines.

C# Generics in VS.NET 2005 adds type safety that was lagging in VS.NET 2003.
Using C# Generics, it is no longer necessary to employ casts to translate between
object and the type of data that is actually being operated upon. C# Generics
expands one’s ability to reuse code and it does that safely and easily.

3.3.1 Indexing Options

Indexing Options are various index options available to be given as input before
starting the indexing phase. Many indexing options are added such as
requirements for dictionary file, noise word list file, whether the forensics disk
image file will be divided at client or at server or at co-coordinator. Other
indexing options include file name details, file contents sent in an array, whether
startup or shutdown is required, line length, dictionary word length, whether
Unicode encoding is required for image file and cache, fetch, load, store options
for image file at either server or client.

Many Ways of Indexing

Multiple Sorted Index Files
One Unsorted Index File
One Sorted Index File
No Index File, only Tree Structure

3.3.1.1. Multiple Sorted Index Files

 60

In this indexing type, multiple sorted index files are created. All these sorted
index files are searched for the specified keyword one by one which takes a lot of
time.

3.6: Multiple Sorted Index Files

(Pseudo Code)

Create a TreeMap

TreeMap cannot grow much due to limited RAM Size

Dump all TreeMap entries to an Index File

Create a new TreeMap and dump all its entries to a new Index File

3.3.1.2 Single Unsorted Index File

In this indexing phase, no multiple indexes are created. Only one unsorted index
file is created. But this unsorted index file is a collection of many sorted index file
entries. We are going to search for keywords in this unsorted index file.

 61

3.7: Single Unsorted Index Files

(Pseudo Code)

Create a TreeMap

TreeMap cannot grow much due to limited RAM Size

Dump all TreeMap entries to an Index File

Create a new TreeMap and dump all its entries to the same Index File

3.3.1.3 Single Sorted Index File

In this indexing procedure, no multiple indexes are created. One sorted index file
is needed. Indexing takes little longer but search time is fastest due to binary
search. Extra overhead for sorting entries in the index file adds up the index time.
The sorting of entries in the index file can be done after all entries are created or
when new entries are added to the index file.

 62

3.8: Single Sorted Index Files

(Pseudo Code)

Create a TreeMap

TreeMap cannot grow much due to limited RAM Size

Dump all TreeMap entries to an Index File

Create a new TreeMap and merge all its entries to the existing entries in the same
Index File

3.3.1.4 No Index File, only Tree Structure

This indexing technique takes time for serialization and de-serialization. This type
of indexing is faster for low disk sizes such as 50 MB/100 MB etc.

(Pseudo Code)

Create a TreeMap

TreeMap cannot grow much due to limited RAM Size

Serialize the TreeMap to a disk file

Create new TreeMaps one by one and Serialize them to respective disk files

While Searching for Strings

 63

{

DeSerialize disk files into corresponding TreeMaps one by one

Search for Strings inside TreeMap //(TreeMap.contains(golden))

}

3.3.2 Searching Options

Searching Options are various search options available to be given as input before
starting search phase. Many search options are added such as: single word search,
multiple word search, boolean search, fuzzy search, thesaurus search, stemming,
case insensitive search, and regular expression search.

Many Ways of Searching

Binary Search (Faster)
Linear Search (Slow)
Multiple Sorted Index Files
 No Multiple Index Files, One Unsorted Index File (Many Sorted Index

Files existing in One Big Index File one by one)
No Multiple Index Files, One Sorted Index File
No Index File, Only TreeMap Data Structure

3.3.2.1 Binary Search

For Non Regular Expression Search, Binary Search is the best bet. It does not
matter whatever big the index is, the keyword is found in the index file in few as 7
or 8 steps and, thus, the search for a keyword in an 80 GB forensics image file
takes the same amount of time as against a 20 GB forensics image file. This type
of search mechanism is not employed for Regular Expression as for them we use
linear search and all entries in the wordlist are compared to find the search item.
This search is faster, takes less time, and is suitable for non regular expression
searches. This search time is mostly less than a second for most cases as we have
to deal with 7 or 8 steps in all cases irrespective of the dataset size.

3.3.2.2 Linear Search

Regular Expression Search is implemented through Linear Search as all entries in
the wordlist are to be compared to find the search item. This search is not faster,
takes more time as it has to compare all words in the image file, and is suitable
only for regular expression searches. Here the search time depends upon the
dataset size.

 64

3.3.2.3 Searching in Multiple Sorted Index Files

In this search procedure, all sorted index files are searched for the specified
keyword one by one and this increases the usual search time.

(Pseudo Code)

For each Index File.dat, StartString-EndString.dat, StringNumber-
OffsetNumber.dat

{

Read the file “StartString-EndString.dat” which mentions Start String and
End String Number (Start String is the first indexed string and End String
is the last indexed string in the forensics image)

Read Start String and End String Number

Do Binary Search on these Start String and End String Number till you get
the Search String.

If Search String is found

{

Find the Search String Number

Read the file “StringNumber-OffsetNumber.dat” which denotes
String Number as well as its Offset Number

Using the Search String Number, find the Offset Number in
“StringNumber-OffsetNumber.dat” file

Locate the Search String inside the Index File using the Offset
Number and Print all its details: String Name, Number of Times it
Appeared, Places it Appeared etc.

}

If Search String is Not Found

 Continue

}

 65

3.3.2.4 Searching in Single Unsorted Index File

In this search type, all sorted index file entries in the unsorted index file are
searched one by one for the particular keyword. This adds extra overhead to the
usual search time. Since we have many sorted index files existing in one big index
file, searching the big index file for a particular keyword is equivalent to
searching that keyword inside many sorted index files one by one.

StartString-EndString.dat (File denoting Start String and End String Number)

 1 74903 (Start String Number = 1 and End String Number = 74903)
 74904 149806
 149807 224709
 224710 284512
….

StringNumber-OffsetNumber.dat (File denoting String Number and its Offset
Number)

 1 …
 2 …
 … …
 7 31 (String Number = 7 and Its Offset = 31)
 9 51
 13 108
 15 138
 … …
 … …

IndexFileName.dat (Index File)

 ….

 CreateStroke 2 39565 39968 (String = CreateStroke, Times Appeared = 2)
 CreateStrokes 2 39954 39955 (String Positions: 39954 and 39955)
 CreateTextServices 1 558198
 ….

(Pseudo Code)

 66

Read the file “StartString-EndString.dat” which mentions Start String and End
String Number.

For Each Start String and End String Number in file “StartString-EndString.dat”

{

Do Binary Search on these Start String and End String Number till you get
the Search String

If Search String is found

{

Find the Search String Number

Read the file “StringNumber-OffsetNumber.dat” which denotes
String Number as well as its Offset Number

Using the Search String Number, find the Offset Number in
“StringNumber-OffsetNumber.dat” file

Locate the Search String inside the Index File using the Offset
Number and Print all its details: String Name, Number of Times it
Appeared, Places it Appeared etc.

}

If Search String is Not Found

 Continue

}

3.3.2.5 Searching in Single Sorted Index File

Search time is fastest due to binary search and Google supports this type of search
for faster data retrieval. This is the fastest way of finding the keyword inside the
sorted index file.

For example, consider a search string “CreateStrokes” which has to be searched
inside the forensics image with its number of appearances and its context around
each hit.

 67

The file denoting Start String and End String Number is described as follows
where Start String is the first indexed string and End String is the last indexed
string inside the forensics image:

IndexFileNameStartEnd.dat (File denoting Start String and End String Number)

 1 74903 (Start String Number = 1 and End String Number = 74903)

Performing Binary Search to find the search string “CreateStrokes” using String
Number 1 and String Number 74903 as two input values, we get the String
Number 7 as the search string number since it holds the search string
“CreateStrokes”.

The file denoting String Number and its Offset is described as follows:

IndexFileNameNumberOffset.dat (File denoting String Number with its Offset
Number)

1 …
2 …
… …
 7 31 (String Number = 7 and Its Offset Number= 31)
9 51
13 108
15 138
… …
… …

We find that the search string “CreateStrokes” (String Number 7) has got Offset
Number 31. This Offset Number is the offset where the search string
“CreateStrokes” can be found with other important details inside the index file.

The index file is described as follows:

IndexFileName.dat (Index File)

 ….

CreateStroke 2 39565 39968 (String = CreateStroke, Times Appeared = 2)
CreateStrokes 2 39954 39955 (String Positions: 39954 and 39955)
CreateTextServices 1 558198
….

The search string “CreateStrokes” is found out traversing the same offset value
from the beginning of the index file. The search string “CreateStrokes”, its

 68

number of appearances (2) and its context around all places/positions (String
Positions: 39954 and 39955) are printed.

39954: CreateStrokes Found
I am going they are not coming I am loving them CreateStrokes car lollypop
39955: CreateStrokes Found
CreateStrokes I am fine and they are good for the sake of I am going there
CreateStrokes Found 2 Times

 (Pseudo Code)

Read the file “StartString-EndString.dat” which mentions Start String and End
String Number (Start String is the first indexed string and End String is the last
indexed string in the forensics image)

Read Start String and End String Number

Do Binary Search on these Start String and End String Number till you get the
Search String

If Search String is found

{

Find the Search String Number

Read the file “StringNumber-OffsetNumber.dat” which denotes String
Number as well as its Offset Number

Using the Search String Number, find the Offset Number in
“StringNumber-OffsetNumber.dat” file

Locate the Search String inside the Index File using the Offset Number
and Print all its details: String Name, Number of Times it Appeared,
Places it Appeared etc.

}

If Search String is Not Found

 Quit the Program

 69

3.3.2.6 Searching in TreeMap Data Structures

This search mechanism is faster as it finds its result only using a single statement
such as “TreeMap.contains (Keyword)” and no other overhead is required. The
search time is more when the tree size is big, but such is not the case with binary
search which is the fastest way of finding the search string inside the sorted index
file.

While Searching for strings:

DeSerialize disk files into corresponding TreeMaps one by one

Search for Strings inside TreeMap //(TreeMap.contains(golden))

If (TreeMap.contains(golden)) //If TreeMap contains Search String

{

 “golden” Found //Search String Found

}

Else

{

“golden” Not Found //Search String Not Found

}

3.3.3 Indexing Component

Indexing component is used for describing how the index task is carried out by
the toolkit. It also mentions other index features implemented by the toolkit.

Design and Implementation

Index Method is used for indexing and is the main part where indexing of the
forensics disk image is performed. But before Indexing, many other operations
are carried out such as Image File Division to divide the image file, testing for
Unicode Operation to find whether Unicode functionalities are to be carried out,
Dictionary File attachment to index words found in the dictionary file, Noise
Word File attachment to eliminate unnecessary words from the index file. Image
File division is used for disk image file division and its distribution among clients.
For faster indexing, the file division calculation is performed at the client and
parts are fetched from a common storage for each client. For Unicode encoding,

 70

the disk image file is converted to Unicode format. Here we have considered only
UTF-16, but other Unicode formats also can be considered such UTF 8 and UTF
32. Before the client shuts down, whatever the client has in its RAM is stored into
its ROM and when the client starts, the ROM contents get back to RAM. The
dictionary files are attached and the words which are found in the dictionary files
are only indexed. The noise wordlist files are used for removing noise words from
the index file.

The core part where indexing of the forensics image is done is very simple. It
searches for strings inside a line of some byte length in the forensics image and
indexes these strings one by one. TreeMap is a sorted binary tree implementation
of maps and contains MapEntry objects, where each MapEntry object contains
two parameters: one is a string and the other one is a TreeSet (contains integer
parameters). Moreover, TreeSet is a binary tree implementation of sets. So,
TreeMap stores the string with its line numbers/positions (TreeSet) in each of its
MapEntry object. The TreeMap contains a number of MapEntry objects and their
number is equal to the number of strings indexed in the forensics image.

The forensics disk image is divided into lengths of 64/128/256/512/1024 bytes.
These byte length units are called lines. First an empty TreeMap is declared. The
forensics disk image is read line by line, the chosen line is divided into possible
strings, and all strings are put into an array. For each string in the given line, if the
string is non-empty and the declared TreeMap doesn’t contain the string,
TreeMap stores the string and its line number in a new MapEntry object. If the
string already exists, TreeMap adds the line number of the string to the existing
TreeSet entry of the existing MapEntry object. In summary, MapEntry object is
used for storing string and its line numbers, TreeSet is used for storing all line
numbers inside the MapEntry object, and TreeMap stores all MapEntry objects.

String[] res = delim.Split(line); //divides the line into strings and stores them into
an array
lineno++; //Console.WriteLine(lineno);
foreach (String s in res) //for each string found in array
{

if (s != "") //if string is not null, then process that
 {

if (!index.Contains(s)) //if string doesn’t exist
index[s] = new OTreeSet<int>(); //Create new TreeSet

index[s].Add(lineno); //Add Line No.
}

}
tlineno++;
}

Index file stores strings with their offsets for future retrieval. “wordlist.Key” is the
string and “wordlist.Value.Count” is the number of times the string appears.

 71

Using a foreach statement the lines where the string is found can be found out. As
the code snippet shows below, using a foreach statement all MapEntries objects in
the TreeMap data structure are iterated and “wordlist.Key”,
“wordlist.Value.Count” and its different line numbers are printed. MapEntry
object is a collection of string and its line numbers. For each MapEnrty object,
“wordlist.Key” is the string, “wordlist.Value.Count” is the number of times the
string appears, and “ln” is its line number in the forensics image.

foreach (MapEntry<String, TreeSet<int>> wordlist in index)
{
try
{

dataOut.Write(wordlist.Key); //string
dataOut.Write(wordlist.Value.Count); //Number of times string appears
foreach (int ln in wordlist.Value) //Lines where the string is found
{

dataOut.Write(ln);
}

}
catch (IOException exc)
{

MessageBox.Show(exc.Message);
}
}

(Pseudo Code)

Get Forensics Image File as Input

Divide it into 64 Bytes length (Can Changeable: 128/256/512/1024 etc)

Create a TreeMap

Store all Strings found in the 64 bytes length image file chunk into an array

Scan the array for each String

{

If the String doesn't exist in the TreeMap

{

Create a new MapEntry object with the String and its Line Number
//TreeMap contains different MapEntry objects

 72

}

If the String exists in the TreeMap

{

Add a new Line Number value to the existing TreeSet entries of
the MapEntry object //MapEntry stores string and TreeSet entries
//TreeSet contains different Line Numbers/Positions of the string

}

}

For Each MapEntry objects in TreeMap

{

Print “wordlist.Key” //string

Print “wordlist.Value.Count” //Number of times the string appears

For Each (Entries in wordlist.Value) //Lines where the string is found

{

Print "wordlist.Value" //Line where the string is found

}

}

3.3.4 Data Structures for Indexing

This explains how various data structures are used to index strings.

Use of Specialized Data Structures

 Specialized data structures have to be used for faster indexing and

searching of forensics data.

 Since we are dealing with keywords and their offsets inside the forensics
image, use of special data structures which can store key and value pairs is
needed.

 73

 Data Structures are stored in memory and are read when needed. To make
these read and write operations faster, use of Generics is highly required
which makes data conversion easy and more flexible. Data Structures
designed using Generics perform faster and have many storage benefits.

Use of C# Generics

 In C# everything is an object. To store strings and their places in the nodes

of a treelike data structure, most times we have to convert string and
integer types into objects. To store them back from objects to their
respective types, they have to be unboxed again. This boxing and
unboxing running several times during the process of an application makes
the application slower. To eliminate this conversion time, use of C#
Generics is highly recommended as Generics add type safety to the
existing data structures and make the process easier and faster without
considering boxing and unboxing overheads.

 Using Generics, code can be generalized so that it can be used by many

types of data

 Performance is higher since boxing and unboxing of data is eliminated.

 More clarity to code as many data types can be used with a single

generalized data type which removes a lot of redundant code.

Design and Implementation

In order to visualize the data that is contained in an index, a small example is
presented. Consider an example where we have a line "This looks like a sentence:
look looks looked". If we index this line considering indexed words of length at
least 4, we get the following index information [68]

 0 this 22 ence
 5 looks 28 look
 6 ooks 33 looks
11 like 34 ooks
18 sentence 39 looked
19 entence 40 ooked
20 ntence 41 oked
21 tence

When we represent this in a tree structure, we get the index tree as follows:

 74

 3.9: Index Tree

The tree representation uses the letters of the indexed strings as nodes in a tree
and at the node of the final letter of an indexed string, the offsets of that string are
located. When we search for the string "look", only the letters of the string have to
be walked in the tree from the root node to see that the string is present at location
28. If all strings starting with "look" are to be found, all nodes beneath that node
have to be accounted for too, thus resulting in the locations 5, 28, 33 and 39.
Although various data structures exist for faster indexing, an efficient data
structure is described below on which based is our forensics application.

For faster indexing, TreeMap is used. TreeMap is a list of items which have a tree
like relation to each other. It has one root, several branches and leaves. To add a
new item to the TreeMap, a suitable place is found out and the new item is
inserted there. If the TreeMap does not have a root, the first item will be inserted
at the root. When new items are inserted to the TreeMap, the key of the new item
is compared to the key of the root. If it is greater than the root, then it will be
added to the right node. If it is less than the root, it will be added to the left node.
If the left or right node is occupied by an item, it will be added to that item.
TreeMap stores items in their sorted natural order since 2 is stored before 5 and
"cat" is stored before "zebra" for example. TreeMap helps to find stuff quickly in
memory. To make it easier to work with, C# Generics can be utilized to design
TreeMaps.

 75

A TreeMap is implemented using red-black balanced ordered binary trees. It
performs Add, Remove, and Contains operations to operate on data inside it.
TreeMap is used to create maps/dictionaries. A map/dictionary is a data structure
which stores key and value pairs. In our forensics application key is the string and
the value is its position inside the forensics image. The Key-Value pairs are stored
as MapEntry objects inside the TreeMap. Key and Value methods are used to
retrieve the actual values in a MapEntry object. These methods return the stored
values when a key–value pair is entered into the map/dictionary (TreeMap).
While searching for a keyword in the index file, the word which is searched is the
key and its offset is the value. When a keyword is found at different places inside
the forensics image, the MapEntry object uses TreeSet to store different line
numbers inside its value entry. Thus, MapEntry object stores two parameters: one
is a string and the other one is a TreeSet (contains line numbers). TreeSet is a
binary tree implementation of sets and contains integer parameters. TreeSet can
contain one or many value entries depending upon the number of times the
keyword has appeared inside the forensics image. In summary, TreeMap stores
the string with its line numbers/positions (TreeSet) in each of its MapEntry object.
Since TreeMap and TreeSet are implemented using red-black balanced ordered
binary trees, design and implementation of red black trees is of utmost importance
to understand the critical data structures used during indexing phase of the
forensics application.

A Red Black tree is an ordered binary tree and each node of the Red Black tree
uses a color attribute: red or black to keep the tree balanced. While an AVL Tree
uses balance factor to balance the tree, a Red Black tree uses color attributes to
balance the tree [70].

The Red Black tree has the following properties:

1. Its root is black

2. All of its leaves are black

3. All of its red nodes can only have black children

4. All paths from a node to its leaves contain the same number of black nodes

Since all paths of a Red Black tree from any node to its leaves have the same
number of black nodes, this fact keeps the tree height short and increases the
breadth of the tree. This is in turn makes the tree to grow horizontally and
increases the performance of the tree. When all leaf nodes of a tree are at the same
level, it is said to be perfectly balanced. The performance of a tree depends on
how perfectly balanced it is.

 76

Red Black tree leaf nodes are called sentinel nodes, contain null values, and are
always black. Sentinel nodes are not always displayed but they are implied in Red
Black trees. A sample Red Black tree figure is shown below:

3.10: Red Black Tree

Red Black trees perform well in time bound applications. Red Black trees are
used in applications where the data changes constantly. Since our forensics
application deals with large amount of data to be indexed and stored inside the
index file, red black tree data structure is of utmost importance to perform faster
and effective indexing and storage of data.

In our forensics application, indexed strings and their offsets are stored as nodes
in a tree and the tree stores them in their natural order. If we go on indexing the
line “DAWN DAVE MIKE BETH DAVID GINA PAT CINDI SUE” and try to
display the index file using a tree structure, we get the index file as:

 3.11: Keywords inside the Index File

 77

If one tries to read all the words from the index file, the words are read out in a
sorted order as: BETH, CINDI, DAVE, DAVID, DAWN, MIKE, GINA, PAT
and SUE. The above diagram demonstrates how keywords are placed in the index
tree and how they are dumped into the index file in a sorted manner once the
indexing is complete.

3.3.5 Searching Component

Searching Component is used for describing how the search task is carried out by
the toolkit. It also mentions other search features implemented by the toolkit.

The search functionality which has been implemented to search the index file for
possible keywords is very simple. First the index file is searched for a particular
keyword and if the keyword is found, its position and count are found out from
the index file and then the keyword is printed with its position and count. The
keyword is searched using Binary Search and it does not matter how big the index
is, the keyword is found out in the index file in as few as 7 or 8 steps. So the
search for a keyword in an 80 GB forensics disk image file takes the same amount
of time when it is searched against a 20 GB forensics disk image file. Binary
Search does not exist in regular expression searches because in regular
expression, one has to search for patterns in the index file comparing all words
one by one and the search time depends on the index file length.

3.3.5.1 Binary Search for Non-Regular Expression Search

Binary Search for Non Regular Expression Search is the best bet for getting
search results quickly because it does not matter how big the index is, the
keyword is found in the index file in as few as 7 or 8 steps. Thus the search for a
keyword in an 80 GB forensics image file takes the same amount of time as
against a 20 GB forensics image file. Binary Search is not implemented for
Regular Expression Searches because in regular expression all entries in the
wordlist are compared to find the search item. Binary Search is faster, takes less
time, and is most suitable for non regular expression searches. Binary Search
should be less than a second in most cases as we have to deal with 7 or 8 steps in
all cases irrespective of the dataset size.

Design and Implementation

For non regular expression search, firstly the specified keyword is found using
binary search method and then its offset is determined. That offset is used to find
all occurrences of the word in the index file which in turn displays the results in
an interactive way. The design and pseudo code of the binary search component is
described below.

 78

For example, consider a search string “CreateStrokes” which has to be searched
inside the forensics image to find its number of appearances and context around
each hit.

The file denoting Start String and End String Number is described as follows
where Start String is the first indexed string and End String is the last indexed
string inside the forensics image:

IndexFileNameStartEnd.dat (File denoting Start String and End String Number)

 1 74903 (Start String Number = 1 and End String Number = 74903)

Performing Binary Search to find the search string “CreateStrokes” using String
Number 1 and String Number 74903 as two input values, we get the String
Number 7 as the search string number since it holds the search string
“CreateStrokes”.

The file denoting String Number and its Offset is described as follows:

IndexFileNameNumberOffset.dat (File denoting String Number with its Offset
Number)

1 …
2 …
… …
 7 31 (String Number = 7 and Its Offset Number= 31)
9 51
13 108
15 138
… …
… …

We find that the search string “CreateStrokes” (String Number 7) has got Offset
Number 31. This Offset Number is the offset where the search string
“CreateStrokes” can be found with other important details inside the index file.

The index file is described as follows:

IndexFileName.dat (Index File)

 ….

CreateStroke 2 39565 39968 (String = CreateStroke, Times Appeared = 2)
CreateStrokes 2 39954 39955 (String Positions: 39954 and 39955)
CreateTextServices 1 558198

 79

….

The search string “CreateStrokes” is found out traversing the same offset from the
beginning of the index file. The search string “CreateStrokes”, its number of
appearances (2) and its context around all places/positions (String Positions:
39954 and 39955) are printed.

39954: CreateStrokes Found
I am going they are not coming I am loving them CreateStrokes car lollypop
39955: CreateStrokes Found
CreateStrokes I am fine and they are good for the sake of I am going there
CreateStrokes Found 2 Times

 (Pseudo Code)

Read the file “StartString-EndString.dat” which mentions Start String and End
String Number (Start String is the first indexed string and End String is the last
indexed string inside the forensics image)

Find Start String and End String Number

Do Binary Search on these Start String and End String Number till you get the
Search String

If Search String is found

{

Find the Search String Number

Read the file “StringNumber-OffsetNumber.dat” which denotes String
Number as well as its Offset Number

Using the Search String Number, find the Offset Number in
“StringNumber-OffsetNumber.dat” file

Locate the Search String inside the Index File using the Offset Number
and Print all its details: String Name, Number of Times it Appeared,
Places it Appeared etc.

}

If Search String is Not Found

 Quit the Program

 80

3.3.5.2 Linear Search for Regular Expression Search

Linear Search is implemented for Regular Expression Search because all entries
in the wordlist are to be compared to find the search item. Linear Search is not so
fast, takes more time because it has to compare all entries, and is most suitable for
regular expression searches. Linear Search time depends upon the dataset size but
care should be taken to make it more efficient using appropriate algorithms.

Design and Implementation

For Regular Expression search, a pattern is created first and that pattern is
compared to all strings inside the disk image one by one and if there is a match
for the pattern, that string is added to the search list. The pseudo code for the
regular expression search module is described below.

(Pseudo Code)

Declare and define a string named pattern to hold a regular expression pattern
For each string inside the disk image
{
If the pattern string matches the string inside the disk image
{
String matches pattern

}
Else
String does not match pattern

}

3.3.5.3 Various Search Features

The search features implemented in the forensics application make the search hits
more probable. Boolean search of two or more keywords is implemented.
Boolean search such as “and” and “or” has been implemented implicitly. To
ignore case so that case insensitive search can be performed on the keyword,
ignore case feature has been implemented.

 81

3.12: Boolean OR “golden vassil adlai”

3.13: Boolean AND “golden vassil adlai”

 82

Fuzzy search, stemming, and thesaurus search are carried out to increase the
keyword hits while searching for keywords. Fuzzy search is used to find all words
which are very close to the misspelled keyword. Stemming is used to find all
words of the given keyword which are its origin and thesaurus search is
incorporated to find all similar words of the given keyword.

Fuzzy Logic is used for fuzzy search. When the search words are misspelled,
fuzzy search returns the appropriate words, which are very close to the misspelled
keywords [12].

3.14: Fuzzy Search lists all words close to “reading” ending in “ing”

Stemming searches for root words of the given keyword. It transforms the word
into its root forms and adds all the stem words to the list.

 83

3.15: Stemming of the word “readingness”

Thesaurus Search includes all the words which are similar in meaning to the
search word and adds all the similar words to the search list.

3.3.6 Other Features Implemented

Many other features are implemented including byte to string conversion to
convert byte data to string data, Unicode encoding to encode to Unicode format,
hex editor implementation to display hexadecimal contents, string to byte
conversion to convert string data to byte data. To convert a byte to string, byte to
character conversion is carried out first and then all characters are combined
together to create the string. Unicode encoding is used for foreign language
investigations as ASCII does not represent all character sets. An Alphabet file, a
user generated file, is used to print non-printable characters using printable
character sets. Non-Printable characters are represented by “.” character in our
solution. Hex Editor is used for printing the hex contents of a particular line in
disk image in case one wants to do further investigation or wants to display the
hexadecimal contents of parts of that disk image. Saving Memory Stream feature
is used for saving the memory stream to a file. String to byte conversion feature
takes a string, reads all characters in the string, and converts all characters to its
respective byte representation.

 84

Apart from these features, many other application specific operations are carried
out such as deleting the index file and making the application to restart after the
client shuts down. When “clean the index” button is pressed, the stored index file
is deleted. Once the index file is deleted, one has to create a new index file to
search for keywords. When the client restarts, there are two things which can
happen. If the index file exists, the client will search for keywords in the existing
index file and if the index file does not exist, the client/worker will go on indexing
the image and then search for keywords in the new index file.

 85

 Chapter 4. RESULTS AND PERFORMANCE FIGURES

For a 20 GB Image File, the index and search results are as follows:

Number of
Clients

1 2 3 4 5

Total Index
Time (Image
Copy Time
+ Index
Time)

4 Hr 44 Min 2 Hr 15 Min 1 Hr 50 Min 1 Hr 40 Min 1 Hr 36 Min

Keyword
Search Time
(Secs)

< 1 < 1 < 1 < 1 < 1

Regular
Expression
Search Time
(Secs)

< 1 < 1 < 1 < 1 < 1

For a 20 GB forensics image, we see that with the increase of client computers the total
index time which is a combination of image copy time and index time, reduces depending
upon the number of clients.

We have, Total Index Time= Image Copy Time + Index Time, where Image Copy Time
is the time it takes to copy chunks of original forensics image to individual clients
connected to the server and Index Time is the time it takes to index the image file chunks
for individual clients. The search time is less than 1 sec as we have incorporated binary
search for keyword searches and the regular expression search is also around a few
seconds to list all regular expression keywords.

For an 80 GB Image File, the index and search results are as follows:

Number of
Clients

3 4 5

Index Time 4: 30 hr 3 Hr 2. 20 Hr
Keyword
Search Time
(Secs)

< 1 < 1 < 1

Regular
Expression
Search Time
(Mins)

< 1 < 1 < 1

For an 80 GB forensics image, we see that with the increase of client computers the index
time reduces depending upon the number of clients. The search time is less than 1 sec and

 86

the regular expression search is also around a few seconds to list all regular expression
keywords.

 87

Chapter 5. CONCLUSIONS

We have many digital forensics toolkits (FTK, DNA, Encase etc.) available in the market
now, but when we mention distributed digital forensics toolkits performing indexing and
searching of disk images, there is no available prototype. Our implementation is one of a
kind and is based on Distributed Computing using Microsoft .NET Remoting.

Forensics toolkits for keywords indexing and searching available in the market now
support only single desktop processing and are very slow for indexing as well as simple
search operations. Although Non-indexed search operations are very slow, even with
indexed searches without the use of networked systems, the search activities are
considerably slower and index time is enormous. There are no commercial distributed
digital forensics toolkits available for indexing and searching dealing with large
gigabytes of forensics data. The designed distributed forensics toolkit here is faster and,
since we deal with a number of computers rather than a single machine, this toolkit raises
the forensics analysis procedure to new heights. Rather than having a cluster of machines,
we have dealt with Distributed Grid Computing to build a system, where we have
disparate systems running different OSs and these systems performing as workers to
carry on with a portion of the assigned task.

When we created the index file using multiple computers, the average index file creation
time decreased while the size of individual index files created by respective workers
reduced considerably. Therefore, when we deal with large gigabytes of disk images,
index file creation with single workstation is time-consuming. Use of multiple systems is
needed as they save a lot of time and index file is also created at a faster speed depending
upon the number of machines or workers available.

For a 20 GB forensics image, we see that with the increase of client computers (1, 2, 3, 4
and 5) the total index time, which is the combination of image copy time and index time,
reduces (4 Hr 44 Min, 2 Hr 15 Min, 1 Hr 50 Min, 1 Hr 40 Min and 1 Hr 36 Min)
depending upon the number of clients where Image Copy Time is the time it takes to
copy the chunk of original forensics image to individual clients. Index Time is the time it
takes to index the supplied image file chunk. The search time is less than 1 sec as we
have incorporated binary search for searching the keywords and the regular expression
search is also around a few seconds to list all regular expression keywords.

For an 80 GB forensics image, we see that with the increase of client computers (3, 4, and
5), the index time reduces (4.30 Hr, 3 Hr, and 2.20 Hr) depending upon the number of
clients. The search time is less than 1 sec and the regular expression search is also around
few seconds to list all regular expression keywords.

While creating the index file, filters were added to make the index file consume less
storage and dictionary files were used for index file creation. Although it took a little
more time for index file creation, due to fewer words in the index file, its size was
decreased and it consumed less storage. Due to the use of filters and dictionary files,
small sized index files were created and keyword searches happened relatively faster.

 88

Without this one would have got the same size index file as the forensics image file. Two
types of filters were maintained while creating index files: dictionary file and noise word
list file. Dictionary file is a list of keywords which describes a list of words to index
rather than indexing the whole disk image. Noise word list file describes a list of words
which are not indexed in the index file as they are used for noise reduction in the index
file, e.g., me, this, he, she etc. Indexing techniques are vital to the success of text analysis
since they provide speed and overall efficiency. Index files were opened as binary ones
so that keyword searches would be faster.

In order to get tremendous speed in indexing, proper indexing techniques should be
chosen. When image file was distributed among available workers for index file creation,
overlapping of image contents (Offsets) were considered so that all words in the disk
image were chosen for indexing and no words were left unnoticed which would have
been the case had one simply divided the image file and had sent the parts to available
workers for indexing.

Although Sleuth Kit and Autopsy are great forensics toolkits available in the market now,
they lack a lot of key features while performing text analysis. “grep” and “strings”
commands in Autopsy and Sleuth Kit search commands are not able to match up with the
sophisticated text analysis tools available in the market now as they lack a lot of high end
features, which are required for speed and overall efficiency for text analysis. Sleuth Kit
lacks text analysis based indexing which makes the life of an examiner difficult because
every time he hits the search button, a new search is generated and he has to wait long
enough to get the search results when the data to be searched is of thousands gigabytes of
length.

While searching for indexed words, we tried to increase the hits of those words in index
file using stemming, fuzzy search, thesaurus search and boolean search. Fuzzy search
enabled search for misspelled words. Thesaurus search specified all synonyms or similar
words for the given search word. Stemming added more words to the search list as it
always refers to the root words of the search word. Boolean search added combination of
words to the search list. Regular expression and normal search operations also worked
superbly.

Rather than having single word search, we implemented multiple words search which
increased productivity. During the time these tasks were running on the foreground,
background tasks were performed by the user. We also tested Unicode word search,
which can be possible for image files in Unicode format, which is required for
investigation in foreign countries where the language of computer is not English but its
culture specific language.

PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) have their own
architecture for how to make an application distributed, but utilizing the architectural
design this toolkit adheres to, any application can be customized to be distributable if it
allows for task parallelization.

 89

 Chapter 6. FUTURE WORK

New algorithms can be added for faster indexing and unnecessary code can be removed
to avoid extra overhead. Indexing techniques are vital to the success of text analysis as
they provide greater advantage through their speed and overall efficiency.

Various search features and new algorithms for fuzzy logic, stemming, and thesaurus
search can be added to make the keyword searches more robust. By eliminating overhead
code, these algorithms can be optimized to be more efficient. In order to expand the
search capabilities further, one can think of adding more search features such as natural
language processing, phonic searches, and text categorization.

The current system runs only on windows machines. To run it on Linux machines, one
has to install VMware on Linux host and inside that he has to install Windows OS as
guest OS. To run the application inside Beowulf Cluster of machines, he has to install
VMware followed by Windows OS in all cluster processors and then he has to copy the
VMware image file to all machines one after another. This is not only time-consuming,
but the installation and setting up phase is also tiresome on the part of even a seasoned
network administrator.

In order to make it widely accepted, one should try to make it run on .NET Mono, the
Open Source Implementation of .NET. Using this, he will be able to run the system using
any machine not specific to any OS. Rather than running the forensics application using
Visual Studio.NET 2005 for Windows, he can run the application using .NET Mono for
Windows and .NET Mono for Linux at the same time. For the forensics application to run
in .NET Mono, the application has to go through many code modifications from Visual
Studio.NET to .NET Mono. .NET Mono also exists for other UNIX flavors and support
for new flavors are evolving everyday. .NET Mono is funded by Novell Corp. and its
wide-spread marketing is underway to make it run on any OS platform [29].

For Unicode search, many language packs should be added to search for keywords in
foreign languages. After Unicode search features have been added, testing should be
carried out by respective language experts or linguistics for error detection, which might
have crept into the system due to ignorance on the part of the programmer while trying to
handle foreign languages. Keywords can be binary in nature in foreign languages using
Unicode and efficient search mechanisms should be employed to tackle this situation.
While using Unicode, various strategies should be implemented to change the internal
structure of the index file that recognizes different Unicode supported languages
otherwise it will be of very large size due to their Unicode structure.

The system is designed to run only in department or in-house networks. Using XML Web
Services, it can be made to run anywhere with forensics investigators or researchers
doing online collaboration while searching for keywords. If one is able to do this, then he
will have a running version of a web application operating exclusively on XML Web
Services.

 90

To effectively utilize the idle CPU time, Multithreading can be utilized on available client
or worker machines if they run on Intel Core Dual or Other High Speed Multithreading
Processors. Multithreading makes index and search time faster.

 91

Chapter 7. REFERENCES

[1] Computer Forensics
 http://www.louisville.edu/speed/cecs/research/compforensics/index.html

[2] Resource Sharing Over Wireless Grid
 http://www.eecs.tufts.edu/~hchang/wirelessgrid.html

[3] IEEE Distributed Systems Online
 http://dsonline.computer.org

[4] Achieves DS Online IEEE

http://dsonline.computer.org/archives/index.htm

[5] Grid Resources
 http://search2.computer.org/advanced/simplesearch.jsp

[6] Grid Reading Topics
 http://www.ece.rutgers.edu/~parashar/Classes/02-03/ece572/readings-grid.html

[7] Grid Computing Course Online
 http://www.cs.wcu.edu/~abw/CS493F04/

[8] Programming and Design Grid Computing
 http://dps.uibk.ac.at/index.pl/grid

[9] Grid Application Samples

http://www-106.ibm.com/developerworks/grid/library/gr-exist/?ca=dgr-
lnxw16EnableGridApp

[10] Keywords Indexing & Searching
 http://pyflag.sourceforge.net/Documentation/articles/indexing/index.html

[11] Microsoft .NET
 http://msdn.microsoft.com/netframework/

[12] Fuzzy Logic C# Sample Application
 http://www.codeproject.com/csharp/fuzzy_dot_net_fuzzy_word.asp

[13] Thesaurus Search
 http://www.codeproject.com/csharp/spellcheckparser.asp

[14] Porter Stemmer
 http://www.tartarus.org/~martin/PorterStemmer/csharp.txt

[15] Grid Computing Class Notes

 92

 http://www-csag.ucsd.edu/teaching/cse225w03/cse225-readings.html

[16] Grid Computing Sample Code
 http://www.java201.com/resources/browse/45-2004.html

[17] Grid Computing Sample Server Java Code

http://www.cs.binghamton.edu/~mgovinda/courses/introToGridComputing/assignme
nts/assign1/Server.java.html

[18] Grid Computing Sample Client Java Code

http://www.cs.binghamton.edu/~mgovinda/courses/introToGridComputing/assignme
nts/assign1/Client.java.html

[19] Grid Papers
 http://apples.ucsd.edu/hetpubs.html

[20] IT Research Grid Computing
 http://ostg.bitpipe.com/

[21] Alchemy Documentation Grid Computing
 http://www.alchemi.net/doc/0_6_1/index.html

[22] Resource Sharing Over Wireless Grid
 http://www.eecs.tufts.edu/~hchang/wirelessgrid.html

[23] Code Project
 www.codeproject.com

[24] MSDN Library
 www.msdn.com

[25] C5 Code Documentation
 http://www.itu.dk/research/c5/

[26] Dictionary Code Sample
 http://www.codeproject.com/useritems/Dictionary.asp

 [27] Research Grid Computing
 http://mrccs.man.ac.uk/research/grenade/

[28] Search Tree C# Implementation
 http://www.codeproject.com/vb/net/searchtree.asp

[29] .NET Mono
 http://www.mono-project.com/Books

 93

[30] Grid and Peer to Peer Information
 http://dsl.cs.uchicago.edu/

[31] Grid Thesis Report
 http://www-d0.fnal.gov/computing/grid/papers/Thesis-A.S.Rana.doc

 [32] Grid Thesis Report
 http://www.caip.rutgers.edu/TASSL/Thesis/MsThMain_vincent.pdf

[33] Ian Foster Presentation Future of Grid
 http://csce.uark.edu/~aapon/courses/gridcomputing/notes/IanFoster2004-9-14.ppt#23

 [34] Grid Computing
 http://wwwd0.fnal.gov/computing/grid/

[35] Wireless Grid Information with complete implementation
 http://www.eecs.tufts.edu/~brchen/wirelessgrid.html

[36] Grid Information
 http://www.cs.unc.edu/~alok/

[37] Grid Information
 http://informatik.uibk.ac.at/users/c703251/bachelor.html

[38] Publications Thesis
 http://www.logos.ic.i.utokyo.ac.jp/phoenix/publications.shtml

 [39] Publications Thesis
 http://hst.home.cern.ch/hst/publications.html

[40] Research Thesis
 http://www.cise.ufl.edu/~ppadala/research/thesis/

[41] Wireless Grid
 http://www.eecs.tufts.edu/~brchen/wirelessgrid.html

[42] Publications on Grid
 http://www.cs.nwu.edu/~pdinda/papers.html

[43] Publications on Grid
 http://hst.home.cern.ch/hst/publications.html

[44] C# Notes
 http://dynamo.ecn.purdue.edu/~cath/ee647/notes.html

[45] Code Project

 94

 www.codeproject.com

[46] Microsoft
 www.microsoft.com

[47] MSDN Library
 www.msdn.com

[48] MIT Bayanihancomputing
 http://bayanihancomputing.net/BayanihanAsiaStudentPaper.pdf

[49] Sample C# Code
 http://www.fsl.cs.sunysb.edu/docs/sca/node3.html

[50] Code Project Wingrep Search Sample Code
 http://www.thecodeproject.com/csharp/wingrep.asp

[51] Sample Code
 http://www.daimi.au.dk/~gerth/webalg02/

[52] dtSearch Indexing
 http://www.dtsearch2.com/webhelp/dtengine/default.htm#indexing_options.htm

[53] dtSearch Indexing Materials

http://support.dtsearch.com/webhelp/dtsearchCppApi/frames.html?frmname=topic&f
rmfile=Creating_an_index.html

[54] C# Materials on C# Generics
 http://www.dina.kvl.dk/~sestoft/gcsharp/index.html

[55] Research Paper on Grid Computing
 http://www.dfrws.org/2004/bios/day2/Golden-Perfromance.pdf

[56] Keyword Indexing & Searching of Forensics Images
 http://pyflag.sourceforge.net/Documentation/articles/indexing/index.html

[57] Text Analysis Master’s Thesis
 http://www.fukt.bth.se/~uncle/papers/master/thesis.pdf

[58] Article on Keyword Indexing & Searching of Forensics Images
 http://pyflag.sourceforge.net/Documentation/articles/fuse.html

[59] Microsoft Express Editions Downloads
 http://msdn.microsoft.com/vstudio/express/

[60] Microsoft Developer Centre

 95

 http://msdn.microsoft.com/developercenters/

[61] Microsoft Downloads
 http://msdn.microsoft.com/downloads/

[62] MSDN Library
 http://msdn.microsoft.com/library/default.asp

[63] C# Generic
 http://www.dina.kvl.dk/~sestoft/gcsharp/index.html

[64] C# Generic Documentation
 http://www.itu.dk/research/c5/Release1.0/c5doc/frames.htm

 [65] C# Book
 http://www.dina.kvl.dk/~sestoft/csharpprecisely/

 [66] Red Black Tree Creation C#
 http://www.codeproject.com/csharp/redblackcs.asp

[67] Tree Dictionary

http://www.koders.com/csharp/fidF2CAD8075C711A9E6AC6F9E797F1D94706BB
26C7.aspx

[68] Indexing Example
 http://www.brainspark.nl/articles/searchtools-introduction

[69] Peer to Peer Computing with VB.NET
 http://www.apress.com/author/authorDisplay.html?aID=111

[70] Red Black Trees
 http://www.codeproject.com/csharp/redblackcs.asp

 96

 VITA

Sanjeeb Mishra was born on March 13th 1978 in Bhubaneswar, Orissa, the temple city of
India. He graduated from Bangalore University, Bangalore, the Silicon Valley of India
and worked as an Intern at DIGITAL Equipment/COMPAQ Ltd. Bangalore, in C/C++
Programming Group.

He joined University of New Orleans for Master of Science in Computer Science with
high academic scores and despite all his efforts was unable to find any school jobs but
landed directly in company internship jobs.

Now he works as a C# .NET Programmer Specialist with Programming expertise in C#
WinForms, ASP.NET Web Forms, ADO.NET, and VC++.NET.

He is Specializing in Microsoft related Technologies and Tools and has got expertise in
.NET Enterprise Application Development(.NET Remoting, XML Web Services, SOAP,
UDDI, WSDL), Web/E-Commerce cum Database Development (SQL Server 2000 and
Oracle 9i/10g), and Systems Software Development (C/C++/VC++).

He has Volunteered Programming Assignments for various organizations in New Orleans
and is highly admired by his employers for his motivation, dedication, and commitment
to his work. He is highly popular among his friends and juniors.

He plans to pursue PhD and MBA in the near future and would like to return to his home
country to realize his other dreams.

	Keyword Indexing and Searching for Large Forensics Targets using Distributed Computing
	Recommended Citation

	Microsoft Word - SanjeebMishraThesisReportMay8th5PM.doc

