
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-18-2007

Automated Discovery, Binding, and Integration Of GIS Web Automated Discovery, Binding, and Integration Of GIS Web

Services Services

Lev Shulman
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Shulman, Lev, "Automated Discovery, Binding, and Integration Of GIS Web Services" (2007). University of
New Orleans Theses and Dissertations. 539.
https://scholarworks.uno.edu/td/539

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/539?utm_source=scholarworks.uno.edu%2Ftd%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Automated Discovery, Binding, and Integration

Of GIS Web Services

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

 in partial fulfillment of the

requirements for the degree of

Master of Science

in

The Department of Computer Science

By

Lev Shulman

B.S., University of New Orleans, 2004

May 2007

 ii

Copyright 2007, Lev Shulman

 iii

ACKNOWLEDGEMENT

This thesis is the result of two years of work whereby I have been accompanied

and assisted by many people. I am highly indebted to my advisor, Dr. Mahdi Abdelguerfi,

for providing the guidance and direction that was substantial to this research. I would also

like to thank Dr. Nauman Chaudhry and Dr. Shengru Tu, for their teaching provided

fundamental knowledge crucial to understanding and designing data driven applications.

Finally, I would like to acknowledge Kevin Shaw, Dr. John Sample, and the entire NRL

DMAP team for their support.

 iv

Table of Contents

List of Figures …………………………………………………………………………...vii

List of Tables .. x

Abstract ………………………………………………………..xi

Chapter 1: Introduction……………………………………………………………………1

Chapter 2: Background……………………………………………………………………3

2.1: Web Service Technology……………………………………………………..3

2.1.1: Extensible Mark-Up Language……………………………………..3

2.1.2: SOAP/WSDL/UDDI ………………………………………………4

2.1.3: OpenGIS Web Services…………….………………………………5

2.1.4 Web Map Service……………………………………………………7

2.2: Google API…………………………………………………………………...9

2.3: Previous Research…………………………………………………………….9

Chapter 3: Web Service Discovery………………………………………………………12

 3.1: Reducing the Search Space of URLs………………………………………..12

 3.2: Crawling for GIS Web Services…………………………………………….13

Chapter 4: Web Service Validation……………………………………………………...17

 4.1: Eliminating Duplicates……………………………………………………...17

 4.2: Quality of Service…………………………………………………………...20

Chapter 5: Results………………………………………………………………………..22

Chapter 6: Integration with Existing Applications………………………………………24

 6.1: Naval Research Laboratory GIDB Portal…………………………………...24

 6.1.1: WMS Driver………………………………………………………25

 v

 6.1.2: Integration with the GIDB Portal………………………………….27

Chapter 7: Conclusion……………………………………………………………………29

 7.1: Overview…………………………………………………………………….29

 7.2: Contributions to Research...…………………………………………………30

 7.3: Future Work…………………………………………………………………31

References………………………………………………………………………………..34

Vita……………………………………………………………………………………….36

 vi

List of Figures

Figure 1: Example of the drawback of the Google API search for WMS……………….11

Figure 2: Two URLs map to the same WMS……………………………………………18

Figure 3: Two web servers provide the same WMS……………………………………..18

Figure 4: Logical equivalence of XML………………………………………………….19

Figure 5: Web Service Discovery Process……………………………………………….20

Figure 6: GIDB Portal System Architecture……………………………………………..25

Figure 7: GIDB Portal System Architecture with Crawler Component…………………28

 vii

List of Tables

Table 1: Web Crawler Results and Comparison……………………………………..23

 viii

Abstract

The last decade has demonstrated steady growth and utilization of Web Service

technology. While Web Services have become significant in a number of IT domains

such as eCommerce, digital libraries, data feeds, and geographical information systems,

common portals or registries of Web Services require manual publishing for indexing.

Manually compiled registries of Web Services have proven useful but often fail to

include a considerable amount of Web Services published and available on the Web.

We propose a system capable of finding, binding, and integrating Web Services into

an index in an automated manner. By using a combination of guided search and web

crawling techniques, the system finds a large number of Web Service providers that are

further bound and aggregated into a single portal available for public use. Results show

that this approach is successful in discovering a considerable number of Web Services in

the GIS(Geographical Information Systems) domain, and demonstrate improvements

over existing methods of Web Service Discovery.

Keywords: GIS Web Services, Web Services, Web Crawling, Web Map Services, XML

Data Management, Automated Discovery of Web Services, Web Service Portal

 1

Chapter 1 Introduction

As the number of Web Services has grown significantly over the last several years,

Web Service portals, catalogs, and registries have sprouted to provide the user with a

single access point or index from which to search and browse for Web Services of

interest. The greater the size of the index, the greater is its value to the user as a service

portal. This type of index typically grows by allowing Web Service providers to manually

publish their services, or by employing an operator responsible for seeking out new Web

Services of interest on the web and configuring the services into the index.

By taking advantage of Web Services that adhere to well-defined open standards,

such as a common XML schema, we present the design and implementation of a Web

Service Portal System that is fully capable of search, discovery, and integration of Web

Services in a fully automated manner using scalable web crawling techniques. By

acquiring the set of all valid HTTP URLs on the web, and validating each to a common

XML schema, we could discover all such Web Services. However, such an approach is

clearly impractical as the time and resources required to crawl the entire web for all

possible HTTP URLs are out of scale for all but the most sophisticated major systems.

Therefore, the preferred method of selecting URLs for validation should be scalable as

well as intelligent enough to select URLs which are more likely to validate to a Web

Service. By using domain knowledge and fine tuning some parameters of the web crawl,

we can significantly reduce the number of possible HTTP URLs to test allowing the

crawling process to perform on a tenable scale.

 2

We focus on GIS Web Services for this research, as geospatial data is often most

useful when aggregated together in a portal or index for browsing and search. This

document is organized as follows. Chapter 1 provides an introduction. Chapter 2 contains

some background on Web Services in general, GIS Web Service standards, some

Geospatial Portals available on the web today, and previous research on discovery of

Web Services. Chapter 3 follows with a discussion of using the Google APIs to generate

a set of seed URLs which are in turn fed to the crawler in order to find more URLs to

validate to a Web Service XML Schema. Chapter 4 depicts the validation process for the

crawler’s findings, specifically validation to the OpenGIS Consortium Web Mapping

Service Standard Schema, and their integration into a unified Web Mapping Service

Portal. In Chapter 5, results are presented which demonstrate the effectiveness of our

approach in comparison to other research. Chapter 6 outlines the implementation and

automated binding to an existing Naval Research Laboratory GIDB Web Map Service

Portal. Finally, Chapter 7 provides an overall conclusions and discussion on future

enhancements to this research.

 3

Chapter 2 Background

This chapter provides a review of Web Service technology and XML. It follows with

an overview of the SOAP/WSDL/UDDI SOA model of web service technology, and

introduces OpenGIS Web Services with a description of the OpenGIS Web Mapping

Service is provided. The chapter follows with a brief overview of the Google API and its

relevance to this work, and concludes with a survey of previous research into automating

search and discovery of OpenGIS Web Services.

2.1 Web Service Technology

 According to the World Wide Web Consortium (W3C)[1], a Web Service is a

software system designed to support interoperable machine to machine interaction over a

network. In general, a Web Service is an API that can be accessed over a network, such

as the Internet, and executed on a remote system hosting the service. Such an API is

typically defined using the XML language [2].

2.1.1 Extensible Mark-up Language (XML)

XML is a general purpose W3C recommended mark-up language widely employed in

a variety of software applications for the web. Its primary purpose is to facilitate the

sharing of data across different information systems, and its popularity is due to its

platform independence, self-describing format, and a variety of standardized tools to

 4

parse and generate XML content. Of particular interest to this research, an advent of

XML is validation to an XML Schema. An XML Schema employs a rich data-typing

system allowing for detailed constraints on the logical structure on an XML document,

and can serve as a set of rigid specifications for the structure and content that an XML

document may contain. For an XML document to validate to an XML Schema entails

that its content passes the set of specifications laid out in the schema. Another way of

describing the relationship is to refer to an XML document that validates to an XML

Schema as its instance document. This feature is relevant to this research as when we

discuss the automated discovery of Web Services, we imply those Web Services whose

XML definitions validate to a common XML Schema.

2.1.2 SOAP/WSDL/UDDI

A common usage of the term Web Service relates to SOAP formatted XML message

envelopes and have their APIs described via the XML derived Web Service Definition

Language Schema(WSDL)[3]. In this model, a Web Service is advertised as an XML

document that validated to a particular WSDL Schema. A WSDL describes the service

interface, bindings, protocols, and other details necessary to bind to and communicate

with the service. In this model, UDDI is a protocol for registering and discovering

metadata for a Web Service to a registry.

We define a Web Service domain as a collection of published Web Services that

validate to a common standard WSDL Schema, and formulate a problem addressed in

 5

this research as follows: how do we automatically find Web Services within a particular

Web Service domain given the WSDL Schema for that domain? For example, several

online news media providers such as the New York Times, the Washington Post, and the

Houston Chronicle each provide a Web Service for user applications to bind to and

retrieve news feeds on a daily basis. The functionality is very similar for each provider,

and each newspaper site’s Web Service is an XML Document that validates to a common

WSDL Schema. With automatic discovery and integration, a portal system in the online

news media domain can be programmed to automatically find and integrate Web Services

from other online news media providers that validate to the same WSDL schema,

forming an aggregate of news media from a single access point or portal.

2.1.3 OpenGIS Web Services

The Open Geospatial Consortium (OGC) provides a set of Web Service specifications for

a variety of applications related to geospatial applications and geographical information

systems such as the Web Mapping Service (WMS), Web Feature Service(WFS), and the

Web Coverage Service(WCS)[4]. The OGC Web Services paradigm is analogous to its

SOAP/WSDL/UDDI counterpart in that an OGC Web Service provides an XML

document that consists of service interface descriptions, along with the details of their

bindings. Such a document is called a Capabilities document by the OGC, and serves as

an API used to generate server and client code. Each Web Mapping Service, for example,

advertises a Capabilities XML document that validates to a public standard Web

Mapping Service XML Schema published by the OGC, similar to a WSDL in the

 6

SOAP/WSDL/UDDI model. A Web Mapping Service Client program retrieves such a

document, scans it, and then is able to issue requests for map layers featured within the

document.

Here is an example of a simple Web Mapping Service Capabilities document with two

map layers:

<WMT_MS_Capabilities version="1.1.1" updateSequence="0">

 <Service>

 <Name>OGC:WMS</Name>

 <Title>NRL GIDB Portal: GIDBImageServer</Title>

 <Abstract>WMS-based access to NRL's GIDB Portal. Try NRL's GIDB Portal

System at http://dmap.nrlssc.navy.mil.</Abstract>

 <KeywordList>

 <Keyword>GIDB</Keyword>

 <Keyword>DMAP</Keyword>

 </KeywordList>

 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://columbo.nrlssc.navy.mil/ogcwms/servlet/WMSServlet/GIDBImageServer.wms?

" />

 <ContactInformation>

 <ContactPersonPrimary>

 <ContactPerson>Kevin Shaw</ContactPerson>

 <ContactOrganization>NRL</ContactOrganization>

 </ContactPersonPrimary>

 <ContactPosition>software developer</ContactPosition>

 <ContactAddress>

 <AddressType>postal</AddressType>

 <Address>NRL Code 7440.2</Address>

 <City>Stennis Space Center</City>

 <StateOrProvince>MS</StateOrProvince>

 <PostCode>39529</PostCode>

 <Country>USA</Country>

 </ContactAddress>

 <ContactVoiceTelephone>+1 228 688-4197</ContactVoiceTelephone>

 <ContactFacsimileTelephone>+1 228 688-

4853</ContactFacsimileTelephone>

 <ContactElectronicMailAddress>kshaw@nrlssc.navy.mil</ContactElectronicMailAddress>

 </ContactInformation>

 <Fees>none</Fees>

 <AccessConstraints>none</AccessConstraints>

 </Service>

 <Capability>

 <Request>

 <GetCapabilities>

 <Format>application/vnd.ogc.wms_xml</Format>

 <DCPType>

 <HTTP>

 <Get><OnlineResource

xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="http://columbo.nrlssc.navy.mil/ogcwms/servlet/WMSServlet/GIDBImageServer.wms"

/></Get>

 </HTTP>

 </DCPType>

 </GetCapabilities>

 <GetMap>

 <Format>image/jpeg</Format>

 <Format>image/png</Format>

 <DCPType>

 <HTTP>

 <Get>

 7

 <OnlineResource

xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="http://columbo.nrlssc.navy.mil/ogcwms/servlet/WMSServlet/GIDBImageServer.wms"

/></Get>

 </HTTP>

 </DCPType>

 </GetMap>

 </Request>

 <Exception>

 <Format>application/vnd.ogc.se_xml</Format>

 </Exception>

 <VendorSpecificCapabilities />

 <Layer>

 <Title>GIDBImageServer</Title>

 <SRS>EPSG:4326</SRS>

 <Layer>

 <Name>:1</Name>

 <Title>Georgia Aerial Imagery</Title>

 <LatLonBoundingBox minx="-180.0" miny="-90.0" maxx="180.0"

maxy="90.0" />

 <ScaleHint min="0" max="1000000000" />

 </Layer>

 <Layer>

 <Name>:0</Name>

 <Title>NASA Blue Marble</Title>

 <LatLonBoundingBox minx="-180.0" miny="-90.0" maxx="180.0"

maxy="90.0" />

 <ScaleHint min="0" max="1000000000" />

 </Layer>

 </Layer>

 </Capability>

</WMT_MS_Capabilities>

The above Capabilities Document applies to a Web Map Service(WMS) that returns Map

Images to the client, and in this case the WMS server advertises only two layers of

maps—Georgia Aerial Imagery and NASA Blue Marble. There are WMS Servers on the

web today that advertise hundreds and hundreds of such map layers. Therefore, it is easy

to see how a portal that automatically finds and aggregates such services can provide a

rich and valuable resource to the GIS user. For this research, while our approach applies

to a variety of Web Service domains, we focus mainly on the Web Mapping Service

domain.

 8

2.1.3 Web Map Service (WMS)

Access to a WMS Server [13] is most often advertised by a typical HTTP URL such

as

http://www.wmsServerHost.com/path

Requests to the WMS server are constructed by configuring key-value pairs to the query

part of the URL. For example, a URL of the form

http://www.wmsServerHost.com/path?REQUEST=GetCapabilities&Service=WMS

should return a XML WMS Capabilities document that adheres to a WMS Capabilities

Schema as published by the Open Geospatial Consortium. Similar to the example above,

the Capabilities document should describe the map layers that the WMS server provides,

along with the WMS server’s contact info and metadata.

Fetching a map from a WMS server can be as simple as typing a WMS URL request

in an internet browser to retrieve the image. For example,

http://dmap.nrlssc.navy.mil/ogcwms/servlet/WMSServlet/GIDBImageSERVER.wms?RE

QUEST=GetMap&SERVICE=WMS&LAYERS=NASA_BLUE&BBOX=-180.0,-

90.0,180.0,90.0&WIDTH=800&HEIGHT=600&FORMAT=image/png.

This HTTP URL would return a NASA Blue Marble PNG map image of 800 pixels

width and 600 pixels height for the geographic region bounded by -180 and 180 longitude

and -90 and 90 latitude. The WMS server host is “dmap.nrlssc.navy.mil”, and the URL

path is “/ogcwms/servlet/WMSServlet/GIDBImageServer.wms?”. The various map

request parameters in the query part of the URL,

 9

“REQUEST=GetMap&SERVICE=WMS&LAYERS=NASA_BLUE&BBOX=-180.0,-

90.0,180.0,90.0&WIDTH=800&HEIGHT=600&FORMAT=image/png”, are simple

HTTP key-value pairs that specify the geometric bounding box of the map image, pixel

width and height, etc.. There are a number of user-friendly WMS client applications that

provide a variety of mapping capabilities such as zoom in/out, map image transparency,

layering, etc.., by configuring the HTTP key-value pairs according to user actions.

2.2 Google APIs

The Google API[5] is relevant to this research because its functionality allows the

proposed system to query the Google Indexes of online resources and retrieve a set of

URLs. Without going into much detail of the Google API, much in the same manner as

you would if you manually typed in “Web Service” into a www.google.com page and hit

the “Search” button, the Google API allows us to write a program that can query the

Google indexes with search strings such as “Web Map Service”, “maps”, or “GIS”, and

get back a set of related URLs without manual entry.

2.3 Previous Research

Previous research on the discovery of Web Services is somewhat limited. Currently,

Web Services compiled in registries or portals mostly require manual entry or

registration. For Web Services adherent to the SOAP/WSDL/UDDI model, UDDI [14]

provides the client/server protocol for publishing and querying the registry, and is most

 10

commonly used inside a company or enterprise to dynamically bind client systems to

implementations. For GIS Web Services, the OGC defines a Catalog Service

Interfaces[6], but this standard has had a relatively low level of success and

implementation[17]. Most registries are ad hoc manually compiled indexes such as the

US Geological Survey’s National Map[7] and the National Spatial Data Infrastructure

Celaring-house portal.

Automating the search and discovery process of GIS Web Services has been

investigated by several research groups. The Refractions Research OGC Survey[9]

employs the Google APIs to search the internet for possible OGC Web Services. With

this approach, the Google APIs are queried with search strings such as

“inurl:Request=GetCapabilities”. This returns a set of URLs with

“Request=GetCapabilities” as a substring, and clearly is likely to return some URLs that

point to OGC Web Service Capabilities documents. However, as in Figure 1, many OGC

Web Service providers advertise by simply posting a URL of the form

http://OGCWebServiceHost.com/path?

instead of

http://OGCWebServiceHost.com/path?Request=GetCapabilities

Such URLs would not be hit by the Google API query, and though this approach has high

probability of finding OGC Web Services, many such services won’t be discovered. The

Mapdex map server index[8] uses a similar approach using the Google APIs to find OGC

Web Services as well as non-standard ArcIMS Services(a commonly used proprietary

solution similar to WMS).

 11

Figure 1

This snippet from a web page listing

WMS, shows WMS URLs that would

not be discovered using the Google API

with search string

“Request=GetCapabilities”.

 12

Chapter 3 Web Service Discovery

3.1 Reducing the Search Space of URLs

While the number of available WMS Servers on the web has been growing at an

impressive rate for the past couple of years, searching for new WMS sources is often

reduced to simply “googling” to find WMS servers on the internet. We have devised an

automated approach to discovering Web Services such as WMS by reformulating the

problem and considering the following assertions:

• Every WMS Server has a published XML document that validates to a common

XML schema as published by the Open Geospatial Consortium

• Every WMS Server will return a valid OGC WMS Capabilities Document when

issued a HTTP GET to its URL with the “Request=GetCapabilities” string

attached

With this in mind, we can solve the problem by gathering the set of all HTTP URLs on

the web, and for each URL, append the “Request=GetCapabilities” string and test for

validation to the OGC WMS Schema. If validation is a success, and the HTTP Response

is an instance of the Schema, we have found a WMS. Clearly, this approach is untenable

because crawling the entire web for all possible URLs would take an impractical amount

of execution time and resources even for the most advanced systems. Some filter is

needed to scale down the set of URLs to be validated.

 13

An appropriate filter would reduce the set of URLs to those related to the Web

Service Domain, such as http://www.washingtonpost.com and http://www.nytimes.com

for a Web Service domain related to news media, or http://www.opengis.com and

http://www.esri.com for the GIS Web Service domain. By using the Google API to query

the Google web indexes with search strings like “maps” or “WMS maps”, we acquire a

set of URLs likely related to the GIS Web Service domain. These URLs are then fed to a

web crawler as seed URLs to gather more URLs in the domain.

3.2 Crawling For GIS Web Services

Typically, a web crawler program is fed a set of seed URLs to crawl for more seed

URLs. Given a seed HTTP URL, the crawler fetches the URL HTTP Response, and

traverses the content to find pointers to other HTTP URLs. The method of extraction

varies in complexity depending on the objective of the crawl. If the objective is as simple

as crawling through HTML links embedded in HTML <href> elements, the crawler

would completely ignore downloads of file types such as Word documents, audio files,

Excel spreadsheets, executables, etc.. If the objective is to find all embedded HTTP

URLs, the crawler can be programmed with tools to read Excel or Word formats for text

and employ pattern matching to find URLs. The approach can be as granular as parsing

the raw binary data of the HTTP Response to find URLs if necessary, although this

would consume a greater amount of resources. Unless there are filters and limits to the

potential search space of URLs for a crawl job, the crawler may crawl the web

indefinitely or until the program runs out of memory.

 14

 The web crawler employed within the system is the scalable and highly configurable

Java Heritrix Open Source Web Crawler[10]. Heritrix can be configured and

reprogrammed to carry out highly specialized crawl jobs by fine tuning several

parameters of a crawl job. Here are a few of interest:

Scope: for each discovered URI, the crawl scope decides if it is within the scope of the

current crawl. Here are some levels of scope provided with Heritrix:

• Broad Scope: allows for limiting the depth of the scope, but has no constraints on

the hosts, domains, or URI paths crawled.

• Domain Scope: limits discovered URIs to the set of domains of the crawl job’s

seeds. For example, given a seed “http://www.uno.edu”, domain scope would

allow URIs with cs.uno.edu and math.uno.edu to be fed as seeds for further

crawling.

• Host Scope: limits discovered URIs to the set of hosts of the crawl job’s seeds.

Given a seed “http://www.uno.edu”, the host scope would not allow cs.uno.edu or

math.uno.edu

• Path Scope: limits discovered URIs to a section of the paths on hosts defined by

the seeds.

Focus: defines a set of filters for URIs to be considered within scope. A filter may set

constraints on the size of a download from a URI, set a regular expression to match

for discovered URIs, or set constraints on the types of data to be downloaded. An

 15

HTTP Response usually contains some key-value pairs as metadata in a section called

the HTTP Header, which can be fetched separately prior to downloading the whole

response. The MIME type, such as ‘image/png’ or ‘text/xml’ or

‘application/msword’, is typically included in the header to indicate what type of file

the response is sending to the client. Because we want to crawl for XML Web

Services, crawl focus is significant in limiting the seed space to URIs that return only

text or XML and avoiding downloading irrelevant types of data such as video or

audio.

Exclude: defines a set of filters for URIs to be considered out of scope.

Depth: the number of link hops the crawl job can make from its initial seed URIs. This

parameter can substantially impact the time it takes to complete a crawl job. Consider

that a crawl job with Broad Scope and no depth limit will go on indefinitely.

To avoid unnecessary crawls, it is important to seed the crawler with URIs that will

have high probability of crawling relevant hosts and domains. The crawl jobs for our

system are fed with seed URIs gathered from queries to the Google APIs, using search

strings like “WMS Maps” or “OpenGIS Web Services”. To improve the performance of

the Web Crawler and limit unnecessary downloads, the crawler focus is configured to

exclude data types such as images, video streams, executables, etc., and include relevant

data types such as HTML, XML, Word, Text, Excel, etc..

 16

Note that our approach is somewhat superior to that which relies solely on the Google

Search API to find WMS sources because it will find sources whose URIs do not include

the query string “Request=GetCapabilities” to retrieve the Capabilities Document. For

example, our crawler was able to find the WMS Server advertised by the URI

http://mesonet.agron.iastate.edu. Because

http://mesonet.agron.iastate.edu?Request=GetCapabilities is not explicitly advertised

anywhere on the web and therefore not indexed by Google, the Google API approach

does not find this WMS server.

 17

Chapter 4 Web Service Validation

4.1 Eliminating Duplicates

As the crawler carries out its tasks, the discovered URIs are stored in a database for

later validation. In addition to ensuring that there are no duplicate URIs, the system

checks for host aliases by resolving to IP. For example, the crawler has found two

different URIs http://dmap.nrlssc.navy.mil/ogcwms/GIDBImageServer.wms and

http://columbo.nrlssc.navy.mil/ogcwms/GIDBImageServer.wms. The hosts

dmap.nrlssc.navy.mil and columbo.nrlssc.navy.mil actually map to the same IP

55.345.23.22. The system resolves both URIs to

http://55.345.23.22/ogcwms/GIDBImageServer.wms, thereby eliminating duplicates.

Every online WMS Server must respond to a request for its Capabilities document,

which is made by an HTTP GET request to the server URL with the query string

“REQUEST=GetCapabilities&SERVICE=WMS”, such as

http://wmsHost.com/path?REQUEST=GetCapabilities&SERVICE=WMS

The response is an XML document that validates to the OGC Web Mapping Service

XML Schema. With this in mind, every URL gathered by the crawler is a valid WMS

source only if it responds correctly to the Capabilities query with a valid Capabilities

document. A validation component of the system traverses the list of the crawler’s

findings by appending the query string and attempting to validate the HTTP Response.

 18

Note that by performing hostname resolution to IP, we can eliminate URL duplicates

that point to the same location. However, we have not taken into account the case where

two URLs point to two different locations but return the same content. Figure 2 illustrates

this point.

Figure 2

Figure 3

It is possible for two different URLs to refer to the same WMS. For example, Figure 3

depicts a scenario in which the sherlock.nrlscc.navy.mil WMS provides the same

collection of maps as columbo.nrlssc.navy.mil WMS. For our portal to index both of

these sources in such a scenario would introduce a level of redundancy. The simple

solution to detect such redundancy would be to test for string equality between the two

Two different URLs from the same

web server point to same WMS

Two different web servers provide

identical WMS content

 19

entire XML Capabilities documents from the two hosts. However, testing for XML

document equivalence by simply comparing the bare text does not entirely solve the

problem. The system must be able to detect such redundancy given the structure or

‘canonical’ representation[11] of an XML document, not just its text representation. For

example, consider the two very simple XML files in Figure 4.

The text representations of the two files would not be equal because the order of child

elements for the <fruit> element is different. Notice also that the order of attributes for

the <cherry> and <watermelon> elements is different between the two files. Though

string equivalence would fail, the two files are clearly logically equivalent. The two files

in Figure 4 are different, but represent the same collection of fruit. Similarly, if our web

crawler finds two WMS sources offering the same map content, the system indexes a

single source.

To test for logical XML document equivalence, we recognize that a well-formed

XML document is a tree of elements. The system implements logical equivalence

between two XML elements, and tests for document equivalence by recursively applying

the equivalence test of the root element.

<fruit>

 <cherry color=”red” size=”small”/>

 <watermelon color=”green” size=”large”/>

</fruit>

<fruit>

 <watermelon size=”large” color=”green”/>

 <cherry size=”small” color=”red”/>

</fruit>

File A File B

Figure 4

 20

Figure 5: Web Service Discovery process

4.2 Quality of Service

Once the set of found URLs has been processed, the system discards those URLs that

do not validate to the OpenGIS Web Map Service Schema. At this stage, the system has

acquired a set of potential WMS sources. Note, however, that simply because the system

has found links to valid WMS XML Capabilities documents, does not entail that each

pertains to an actual online WMS Server. There are likely XML Capabilities documents

published on the web that serve as examples. It is also possible that the server itself is

down or inactive. This thesis document contains an example Capabilities XML text for a

WMS with two layers, and the XML contains an HTTP URL for a dummy WMS. You

 21

are now probably aware that if this particular thesis document was published on the web,

the system crawler might very likely find this document and extract the URL as a

potential WMS source!! To handle such cases, some quality of service should be

introduced for each candidate WMS source found by the crawler.

All of the WMS sources indexed in the system are periodically invoked to check

availability of service. A multi-threaded program was implemented for this purpose,

where a thread attempts to fetch a generic map image from the WMS. The thread

sequentially invokes each map layer advertised in the Capabilities document until an

image is returned. Once a map is successfully retrieved, the system closes the thread.

This at least assures that the Capabilities document found by the crawler did not point to

a dummy WMS, but finer granularity can be configured into the system to ensure better

quality of service.

In our research, of the number of WMS sources indexed that were at some point

assured to have a back end server, at any given time approximately 2% to 3% are down

and inactive. Observations show that these inactive services are not necessarily recurring.

In other words, the system’s periodic checks for availability of service show that the set

of inactive servers at a given point in time may change at the next check. For these

reasons, the system does not discard a found WMS source if it is off line.

 22

Chapter 5 Results

The result of using our approach to facilitate the search and discovery for Web Map

Services is promising [15, 16]. Using the Google APIs in conjunction with a focused

web crawler has discovered scores of services published on servers scattered all over the

globe. Currently the index houses around 1400 WMS sources, for a total of close to

330,000 various map layers. With the advent of the system’s index, today the GIDB

brokers access to the largest number of Web Map Services on the web.

Web Services allow for a great level of interoperability, and as an example of the

utility and flexibility of this automated system, its index has been integrated into the

existing Naval Research Lab GIDB Portal[12](see chapter 6 below). The GIDB Portal

publishes WMS access to all of the system’s findings on the web, and fully integrates

with many popular GIS products such as ESRI, and popular mapping applications like the

UDIG WMS map client, NASA’s World Wind application, and Google Earth. Currently,

GIDB is a leading provider of electronic map content.

We compare the results of our approach to that of the Refractions Research WMS

survey. Table 1 shows a comparison between the two methods of WMS search and

discovery. Our approach found twice as many WMS Servers and thirty-four more unique

hosts, each of which may provide multiple Web Mapping Services. Considering the ratio

of WMS servers and unique hosts, our approach is somewhat superior. The primary

reason why using the Google API in conjunction with a web crawler is more efficient

than using the Google API alone is depicted in this work.

 23

Table 1

GDIB WMS

Crawler
Refractions Research

Google Search

WMS Servers 761 309

Unique Hosts 174 140

Servers Uniquely Found By

Method

436 84

The performance of the crawler itself depends highly on the configuration of the crawl

jobs. For this research, the WMS survey results were compiled by running several crawl

jobs on one machine over a period of approximately twelve days. About 15 different

search strings were used to query the Google APIS, such as “maps”, “WMS”, “Web

Mapping Service”, “OpenGIS Web Services”, etc.. The crawls were highly focused to

avoid extraneous downloads, of domain scope, and limited to 3 and 4 hops. The crawls

executed on a 3.0GHz processor with 1GB memory. From this configuration, it is more

evident how scalable and adaptable this approach when faced with limited computing

resources. For example, when attempting to run the crawls with 6 to 7 hop limits, the

system ran for two weeks, while estimating only ~15% completion.

 24

Chapter 6 Integration with Existing Applications

The utility of the system proposed in this work lies not only in providing access to a

vast array of Web Map Services, but in its interoperability with other existing

applications and system. A major benefit of utilizing Web Service technology is the

flexibility of integrating systems by implementing to a well defined, highly interoperable

interface. The Naval Research Lab’s GIDB Portal [12] is an example of an existing

application that has been successfully integrated with the automated WMS

search/discovery system depicted in this work.

6.1 Naval Research Lab GIDB Portal

The NRL GIDB Portal System brokers access to thousands of maps from hundreds of

various internet map servers such as JPL’s NASA Blue Marble server, ArcIMS servers,

Satellite Imagery Servers, National Weather Service server, as well as WMS servers.

While the various map servers may have client applications specifically designed to work

with the particular type of map server, the GIDB Portal provides the user access to all of

the map server through a single mapping client application. Because the map servers have

different implementations and access formats, drivers are programmed to convert map

requests for a particular map server to the GIDB Portal Interface Java API. The major

benefits of using the GIDB Portal to access maps online are the copious amount of maps

the Portal brokers, and homogeneous access to a variety of heterogeneous map servers

via thick/thin client applications provided by NRL.

 25

Of particular interest to this work is the GIDB portal WMS Driver component, which

converts GIDB Portal map requests to WMS map requests, which are in turn relayed to

various WMS servers brokered by the GIDB Portal. The system architecture is shown in

Figure 6.

Figure 6

6.1.1 WMS Driver

To add a new map server to the GIDB Portal, a Driver component must be

implemented according the JAVA API provided by NRL. The JAVA API is a series of

Java interfaces, the methods of which are to be implemented in the Driver component to

map request/response communication between the GIDB Portal and the map server. For

 26

example, the GIDB Java API contains an interface with the method cutRasterForAOI,

which fetches a map image to the client application

public RasterImageData cutRasterForAOI(long[] idPath, BoundingBox bb,

 int width, int height, int quality,

 long scale, boolean legend) throws

 Exception;

The method arguments are as follows:

• idPath—unique identifier for a map layer in the GIDB Portal

• bb—this is a geographic lat/lon bounding box such as (-90,90)(-90,90)

• width—width of the image to be returned in pixels

• height—height of the image to be returned in pixels

• quality—this parameter is irrelevant to our discussion

• scale—the scaling factor

• legend—include the legend in the image returned

Note that these parameters are similar to the parameters needed to construct a WMS map

request. Consider the xml snippet from our sample WMS Capabilities document:

<Layer>

 <Name>:1</Name>

 <Title>Georgia Aerial Imagery</Title>

 <LatLonBoundingBox minx="-180.0" miny="-90.0" maxx="180.0" maxy="90.0" />

 <ScaleHint min="0" max="1000000000" />

</Layer>

The snippet describes a layer available from the WMS, and we can issue a map request to

the WMS by constructing the following URL

http://dmap.nrlssc.navy.mil/ogcwms/servlet/WMSServlet/GIDBImageSERVER.wms?RE

QUEST=GetMap&SERVICE=WMS&LAYERS=NASA_BLUE&BBOX=-180.0,-

90.0,180.0,90.0&WIDTH=800&HEIGHT=600&FORMAT=image/png

 27

Building a WMS driver for the GIDB Portal entails mapping the parameters of WMS

requests such as the URL above to the arguments of GIDB Java API methods such as the

cutRasterForAOI() method.

The GIDB WMS Driver converts GIDB Portal map requests to WMS Map requests

by constructing the appropriate WMS URLs. Essentially, this system component behaves

as a WMS client that reads the Capabilities document of a WMS Server configured into

the GIDB Portal. Based on the contents of the document, the WMS Driver advertises the

particular WMS Server’s map content to the GIDB Portal user. As the user selects to

view a particular map layer, a GIDB Portal fetch map request is issued and processed into

a WMS fetch map request to the selected WMS Server. The only piece of information

that is needed for the WMS driver to configure a WMS Server into the GIDB Portal is the

WMS Server URL as described above. Communication from the WMS Driver to the

WMS Server is performed by configuring HTTP query key-value pairs to the

corresponding WMS Server URL and fetching the HTTP response.

6.1.2 Integration with the GIDB Portal

To integrate our system with the GIDB Portal, the system was implemented to make

its list of WMS sources available to the WMS Driver. The WMS Driver was programmed

to periodically check the list for new sources. If a new WMS source has been discovered

by our system, the WMS Driver fetches its URL and makes access available through the

GIDB Portal. In this manner, the GIDB Portal grows as our system grows by

 28

automatically searching and discovery new WMS sources. Figure 7 demonstrates the

revised diagram of the GIDB Portal System integrated with the system addressed in this

work.

Figure 7

 29

Chapter 7 Conclusion

7.1 Overview

Web Service portals that broker access to Web Services of a particular interest

provide highly interoperable, platform independent means of binding and integration to a

vast array of services from a single aggregated source. The greater the number of Web

Services compiled by such a portal, the greater its utility and benefit to the user. Most

search and discovery methods for such Web Services are limited to manual publishing to

a registry or require an operator to manually search for new sources on the web and

configure the findings to the portal index.

This work has presented a highly scalable, practical approach to designing and

implementing a system capable of automated search and discovery of Web Services that

adhere to well defined standards and a common schema. By employing a topic driven,

highly focused web crawler, the system is scalable and flexible enough to meet the

constraints of fairly limited computing resources, and demonstrates interoperability to

fully integrate with a modern applications for automated binding. Overall, the system is

capable of search, discovery, and integration of Web Services in a fully automated

manner, thereby reducing the need for manual search and publishing of such services to a

registry.

 30

7.2 Contribution to Research

In addition to coming up with the original concept for the unique way of searching

and discovering GIS Web Services depicted work, the following is a broad list of

contributions to this research:

• System Design

o Conceptualized the various functions of system components and assessed

the feasibility of implementation

o Analyzed the various versions of the WMS and WFS GIS Web Service

format, and designed QOS methods to implement in the system

o Researched and designed the system component responsible for tracking

duplicate sources indexed by the system

o Fully designed the PostgreSQL geospatial database responsible for the

indexing of the Web Crawlers Findings

o Fully designed the aggregation and generation of all sources in the index

into one singe web service

• System Implementation

o Reprogrammed and reconfigured the Heritrix Open Source Java code to

suit the objectives of the system.

o Fully implemented all data connections and flow between the system

components.

o Created a Java package for validating the discovery of Web Services,

tracking duplicates within the index, and QOS of sources

 31

o Fully implemented the WMS connector code needed to integrate the

Crawler findings with the GIDB Portal.

o Created a user friendly Web Interface for browsing the index by test

keywords as well as geospatial criteria.

7.3 Future Work

While the system has been highly successful at finding WMS sources, there is room

for improvement. In generating the seed URL search space, the system uses a linear

approach and considers each URL to have the same probability crawling to a WMS as the

next. In other words, as the crawler is configured to execute another general web survey

of WMS sources, it has no memory of its previous findings. However, our results show

that a number of WMS sources are often published as a group on the same host or

domain. In order to increase the probability of success for a seed URL, the system should

maintain a history of previously crawled hosts or domains and assign weights

accordingly. For example, consider the following six WMS sources for the Charleston

County North Carolina maps:

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_county

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_1_foot

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_1_meter

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_geology

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_hydro

http://ergmap.er.usgs.gov/OGCConnector/servlet/OGCConnector?servicename=charleston_roads

 32

The six URLs are Web Map Services all from the same host ergmap.er.usgs.gov. The

system is configured to run a new crawl survey every month. Suppose USGS publishes a

new WMS. At the start of the survey, the crawler will give no preference to crawling host

ergmap.er.usgs.gov over host www.cs.uno.edu, although er.usgs.gov clearly has more

probability of producing new results. The system can be reconfigured to run two types of

crawl surveys—a general survey of the web, and a survey of all domains which have

produced results in the past. The domain specific survey would require dramatically less

amount of resources and time, and could be configured to reiterate every day, whereas the

general survey would run every month.

It is relevant to reiterate that the solution outlined in this research is not only to the

problem of finding GIS web services, but can be extended to the general problem of

finding XML content of a particular interest that validates to a common XML Schema.

While the system is capable of finding such content without any requirements on the

content provider, there are ways to make discovery more efficient by introducing a few

demands on the server side. When the system starts a crawl on a base URL returned by

the Google API, such as http://www.host.com/path?, it first retrieves the contents of the

top of the host hierarchy http://www.host.com/index.html, and further crawls down the

host’s tree of URLs. An HTML document can contain a wealth of meta data, invisible to

the web user. The crawler can be programmed to avoid downloading and extracting

unnecessary URLs from the host if the host index.html page contains a simple meta data

element such as:

<web crawl metadata>

 <Web Service href=”http://www.host.com/path1? />

 33

 <Web Service href=”http://www.host.com/path2? />

 <Web Service href=”http://www.host.com/path3? />

</web crawl metadata>

This would eliminate the need to crawl the entire host. By introducing such a protocol

between the client web service discovery system and the server web service content

provider, this research can be extended to construct a well defined framework for a much

more efficient method of automated web service discovery.

 34

References

1. World Wide Web Consortium, Web Services Activity,

http://www.w3.org/2002/ws

2. T. Bray, et al, Extensible Markup Language (XML) 1.0, W3C Recommendation,

Feb. 2004.

3. E. Christensen, et al, Web Services Description Language(WSDL) 1.1, W3c Note,

March 2001.

4. Open Geospatial Consortium Specifications, January 2007.

 http://www.opengis.org/standards

5. Google API Specifications, March 2006. http://code.google.com/

6. OpenGIS Catalog Service, Jan 2002. http://www.opengeospatial.org/standards/cat

7. National Spatial Data Infrastructure Portal. http://geodata.gov

8. Mapdex. http://mapdex.org

9. Refractions Research OGC Web Services Survey, March 2006.

http://www.refractions.net/white_papers/ogcsurvey.

10. Heritrix Open Source Web Crawler, March 2006. http://crawler.archive.org/

11. XML Canonicalization Requirements, June 1999.

http://www.w3.org/TR/1999/NOTE-xml-canonical-req-19990605

12. J. Sample and F. McCreedy, “Distributed Geospatial Intelligence Integration and

Interoperability through the GIDB Portal System, “ Chapter 7, Net-Centric

Approaches to Intelligence and National Security, Springer, 2005. Pp 55-81

13. J. Beaujardier, Web Map Service Implementation Specifications, Version 1.3,

Aug. 2004: http://portal.opengis.org/files/index.php?artifact_id=5316

 35

14. UDDI Version 2.03 Data Structure Reference, UDDI Committee Specification,

July 2002

15. John T. Sample, Roy Ladner, Lev Shulman, Elias Ioup, Fred Petry, Elizabeth

Warner, Kevin Shaw, Frank P. McCreedy, “Enhancing the US Navy’s GIDB

Portal with Web Services,” IEEE Internet Computing, vol. 10, no. 5, pp. 53-60,

Sept/Oct, 2006.

16. Lev Shulman, Elias Ioup, John T. Sample, Kevin Shaw, Mahdi Abdelguerfi,

“Automated Web Service Discovery”, SWIIS Workshop, 2007.

17. Paul Ramsey, “Simple Web Services Catalogues”,

http://geotips.blogspot.com/2005/10/simple-web-services-catalogues.html

 36

Vita

Lev Shulman was born in Moscow, Russia. He received his Bachelor of Science degree

from University of New Orleans, in Spring 2004, with a major in Computer Science.

In the Fall of 2004, he was awarded the Louisiana Board of Regents Masters Fellowship,

and started a Masters program in Computer Science at the University of New Orleans. He

currently resides in New Orleans, LA.

	Automated Discovery, Binding, and Integration Of GIS Web Services
	Recommended Citation

	Microsoft Word - LevShulman_thesis.doc

