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Abstract 
 

 A new approach to improve the determination of building boundaries through automatic 
processing of light detection and ranging (LIDAR) data is presented.  The LIDAR data is 
processed and interpolated into a grayscale image of intensity values corresponding to height 
measurements.  Ground measurements are separated from non-ground measurements by using a 
progressive morphological filter.  With these measurements now distinct, further separation of 
non-ground measurements into building and non-building measurements is performed by 
growing regions with similar characteristics.  These building areas are then refined, resulting in a 
ground plan representation of building boundaries, known as building footprints.  Several 
algorithms are then implemented to clean these footprints.  A new method is developed to 
analyze actual known satellite imagery in order to confirm identified building footprints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: morphological filter, building footprints, LIDAR data, region growing, satellite 

image  
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Chapter 1 
 

Introduction to LIDAR 
 
Light detection and ranging (LIDAR) is an application of lasers used to discover information 
about a distant object, usually some form of distance information.  LIDAR data are usually 
collected via airplane, with the airplane traversing a subject area of interest and collecting data 
about this area through the use of laser pulses.  These laser pulses are emitted from the airplane 
fuselage from a laser scanner device, and the round trip travel time from this emission and the 
returning light is measured.  This time delay is then used to determine the elevation of the ground 
in this particular area.  LIDAR equipment is usually paired with a global positioning system 
(GPS) in order to accurately pinpoint the x and y coordinates of a specific data measurement. 
 

The LIDAR Collection Process 
 

The way in which LIDAR data is collected is a very detailed one that needs to be explained more 
thoroughly in order to appreciate it fully.  This information as released by the National Oceanic 
and Atmospheric Administration (NOAA) details in depth about how this data is so intricately 
extracted.  Already discussed is the use of laser pulses, which scan the area of interest up to 5000 
pulses per second.   
 
The laser type used is generally the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser 
with a wavelength around 1064 nanometers, placing the laser in the infrared range of light.  This 
pulsed laser is emitted when the population inversion in the resonator has reached its maximum, 
achieved by what is known as Q-switching, which places a switch inside the resonator which 
releases the stored pulse when the maximum amount of atoms are in an excited state. 
 
Of major interest is the mechanism which allows this technology to perform its task of collecting 
LIDAR data.  Two mirrors, one a 45-degree angled folding mirror and the other a moving 
mirror, combine to direct the laser pulses towards the ground.  The laser pulses encounter the 
folding mirror first, with the reflection directed towards the moving mirror below.  The reflection 
from the moving mirror directs the laser pulses towards the ground, with an overall coverage 
angle of 30 degrees.  Since these aircraft fly at heights of around 700 meters, the 30 degree angle 
allows an overall circular coverage area with a diameter of approximately 350 meters.  
Therefore, in order for the aircraft to cover a broad area of land, multiple paths are usually flown, 
resulting in some overlap between coverage areas, as illustrated in Figure 1 below [8]. 
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Figure 1: Aircraft Emitting Laser Pulses for LIDAR Collection 
 

LIDAR Data 
 
With the LIDAR data collected, the real question becomes apparent: how is LIDAR data 
processed?  LIDAR data in combination with a GPS allow for each measured elevation to be 
paired with its location, effectively creating a three-dimensional coordinate for each measured 
elevation.  The x and y coordinates are usually latitudes and longitudes derived from the GPS 
system, while the z coordinate is the measured elevation using the LIDAR collection device, 
measured usually in either meters or feet.  An ASCII file with each line containing a 
measurement point (x,y,z) having each coordinate separated by either a tab or comma is common 
when working with LIDAR data.  The precision on this height measurement is usually in the 
range of 10-25 centimeters, allowing for a very accurate measurement of ground elevation.    



 3

Chapter 2 
 

LIDAR Processing Applications 
 

LIDAR data is currently being used in a diverse array of applications, ranging from the study of 
seismology to traffic control analysis.  LIDAR is used in seismology to detect faults, with one 
such example relating to a particular fault in Seattle.  LIDAR allowed the detection of the Seattle 
fault from an earthquake that occurred over 1000 years ago, effectively painting a picture of the 
surface in the area by penetrating through tree canopies, allowing for a view of what is now 
known as the Seattle fault.  LIDAR data is also used in traffic law enforcement, replacing radar 
as a speed detector in police laser systems.  Other applications of LIDAR relate to its use in 
adaptive cruise control systems in cars and its use as a height measuring tool in the forestry 
industry.  
 
One of the main uses of LIDAR data and an important idea in the development and identification 
of building footprints pertains to its ability to create topographic maps of areas.  LIDAR data is 
able to be manipulated and processed in such a way to allow a visual representation of an area 
based on the time delay measurements translated into heights along with the paired GPS 
coordinates.  The final result of such processing techniques on this data is known as a digital 
elevation model (DEM).   
 
Creation of Digital Elevation Models 
 
While the creation of DEMs is not directly considered here, it is important to note its use as it is 
the main scientific and image processing based application of LIDAR data.  In the figure below, 
a DEM of Mount Saint Helens is shown as an example of this particular LIDAR application 
performed by LIDAR mapping company EarthData [9]. 
 

 
 

Figure 2: Mount Saint Helens Digital Elevation Model 
 

Colors gravitating towards the red end of the spectrum represent areas of higher elevation, 
whereas colors present on the blue end of the spectrum represent areas of lower elevation.  This 
particular DEM is shown in three dimensions in order to enhance the view and appearance of the 
elevation data generated using LIDAR. 
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LIDAR intensity images are also an important visualization of LIDAR data, allowing irregularly 
spaced LIDAR data to be represented as a digital grayscale image of varying intensities, with 
higher intensities representing higher elevations, and lower intensities representing lower 
intensities.  This particular creation of grayscale intensity images will prove extremely important 
in the classification of particular areas of interest, in this case, the classification of buildings.    
 
Building Identification and Modeling 
 
LIDAR intensity images can be examined using image processing techniques.  These techniques 
allow the visual representation of LIDAR data to be identified, classified, and separated into 
areas of interest to be analyzed.  One such classification involves the identification of buildings, 
with this identification proving important in various real life applications, including the study of 
urban population and the development of ground plans.  The identification of buildings can also 
be extended into the development of three-dimensional building models. 
 
Previous work has successfully identified building footprints through the use of filtering, region 
growing, and dominant direction estimation [1].  However, the use of dominant direction 
estimation as a means of cleaning building footprints assumes a particular relationship between 
perpendicular/parallel building edges and oblique building edges.  Also, a visual comparison to 
aerial imagery was used to detect omission and commission errors.  With a refined definition of 
what constitutes a building boundary along with a new method for confirming building 
boundaries through the use of a satellite image region growing algorithm, this work provides a 
new view of building footprint detection. 
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Chapter 3 
 

Building Footprint Extraction 
 

One of the major applications of LIDAR technology has been the ability to use the data for 
feature extraction and identification.  Building footprint extraction is just one of the many feature 
extraction opportunities provided by airborne LIDAR data.  The goal is to determine the location 
of buildings in the area of interest, effectively separating buildings by determining their 
boundary.  There are many ways to accomplish this task, with commonalities along the way in 
each.  One such method of extracting building footprints will be described in great detail here.   
 
Pre-Processing Techniques 
 
Before any analysis can be done on LIDAR data, the data must become useful in a way that 
allows understanding and interaction.  Once the area of interest has been determined, the LIDAR 
XYZ files need to be interpreted in a way to allow such an understanding to be possible.  A 
visual depiction of LIDAR data becomes a necessary means for understanding and future 
analysis, and the use of image processing provides such a means to the researcher.  The LIDAR 
data will be visualized in a digital image, with the x and y values representing pixel coordinates 
of the image, and the elevation value z representing the intensity value of the grayscale image.  
This pre-processing stage sets up the ability for any application of LIDAR data and will help to 
extract building footprints.   
 
First, the LIDAR data XYZ files are read into a three-dimensional array, with each coordinate 
(x,y,z) being read into a row of the array.  The goal is to create an image using the LIDAR data 
points that maps each coordinate to a pixel or group of pixels.  LIDAR data by its very nature has 
a randomness to its data points, which prohibits a one-to-one mapping of each LIDAR point to a 
pixel, as some areas have such a dense coverage but others are sparsely sampled.  Upon reading 
the data into the array, the number of points read is determined and stored in order to find the 
minimum x and y values of the LIDAR data.  The horizontal size of the image is determined by 
the user, and the vertical size is derived based on this horizontal size by manipulation of the 
maximum and minimum coordinates, as indicated in the following equation. 
 

)min()max(
)min()max(

yy
xxwidthheight

−
−

×=   (1) 

 
Basically, the user controls how large of an image the LIDAR data will be processed into, but 
only to an extent.  The LIDAR data itself and its range determines the height to prohibit too 
small or too large an overall image size chosen.  However, this can result in some information 
loss because of the lack of a one-to-one mapping as stated above.  Also, each pixel could contain 
more than one LIDAR coordinate point, in which case the smallest elevation value is chosen as 
the pixel value at that location.  This would seem to grid the LIDAR data into an image 
reasonably, but not all pixels have a corresponding LIDAR data point and elevation value.  In 
this case, a value is used as a place holder if there is no corresponding LIDAR point for that 
pixel. 
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Once the above step is performed, the image is processed further by interpolation of pixel values.  
The image is interpolated in order to replace the place holder points described above with a 
minimum elevation value in a window.   A window size w is specified for this interpolation with 
a value of 3.  Each pixel value is scanned in a search for the place holder value, indicating that 
there is no data for this specific location in the area of interest.  When a pixel of this value is 
found, the pixel values in the window are scanned.  If less than 25% of the pixel values in the 
window contain the place holder value, the minimum pixel value in the window is determined 
and assigned to the pixel in question.  However, if more than 25% of the pixel values in this 
window also contain the place holder value, then the pixel value in question remains the place 
holder value, but the window size is increased by two.  This process continues up to a maximum 
window size specified by the user, in this case the maximum window size being 15.  This 
progressive window operation allows stray place holder pixels to be replaced by surrounding 
values in order to have a more complete image, but place holder pixels that do not get replaced 
through this interpolation remain as such and are represented in the resulting pre-processed 
grayscale image as the highest intensity possible, resulting in a white color.  The resulting image 
after interpolation is shown in Figure 3 below. 
 

 
 

Figure 3: Pre-Processed LIDAR Image After Interpolation 
 
This image represents a subset of Lenoir County, North Carolina.  The pre-processed image 
above is of size 1201x401, obtained through the interpolation methods discussed above.  Upon 
examination of this final pre-processed image, a few traits are immediately noticeable.  First, the 
portions of the image that had no LIDAR data points corresponding to the actual pixel coordinate 
have a white intensity.  Also, the overall intensity differences, ranging from light grey to a 
grayscale intensity that is close to black in color, indicate elevation differences of the LIDAR 
data coverage area.  The lower intensities (dark grey / black) represent very low-lying areas 
relative to the rest of the coverage area, indicating that these points are most likely ground points.    
The higher intensities (lighter grey) indicate that the elevation is higher in those locations and 
could therefore correspond to buildings, but further detail will be necessary to make such a 
determination.  This pre-processed image represents the starting point for all further analysis, as 
various image processing techniques will be employed in order to accomplish the task of 
identifying building footprints.        
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The Progressive Morphological Filter 
 
With the pre-processed image obtained, and the overall goal being to determine the locations of 
buildings and their boundaries, a method must be determined to perform such a separation of the 
building pixels from the rest of the image.  However, one cannot simply separate the building 
objects from the rest of the image immediately.  First, the pixels representing ground elevations 
must be separated from the pixels representing non-ground elevations.  Non-ground elevations 
refer to any pixel whose intensity has a value greater than a predefined threshold for height, 
regardless of whether or not the point corresponds to a building, vegetation, or other object that 
is higher off the ground than this predefined threshold. 
 
There are many methods that have been employed in order to accomplish this task of separating 
non-ground points from ground points.  One such way was formulated by Vosselman, who 
identified non-ground points and separated them from ground points by analyzing the slope 
between a given pixel and the eight neighbors of the pixel.  Vosselman determined the slope 
from a given pixel to each of its neighbors, and then found the overall maximum slope.  If the 
maximum slope was less than a predefined threshold, then the point was labeled a ground point; 
otherwise, the point was considered a non-ground point. 
 
The major pitfall with separating non-ground points from ground points arises in the derivation 
of a best-fit filtering threshold.  Zhang [2] has identified the following two general problems with 
separating ground points from non-ground points: commission errors and omission errors.  
Commission errors refer to mistakenly identifying non-ground points as ground points, while 
omission errors refer to mistakenly including ground points as non-ground points.  If one selects 
the best-fit threshold for the filtering method of choice, then these errors will be minimized, and 
the resulting separation will be as accurate as possible.  Zhang proposed what is known as the 
progressive morphological filter to mathematically remove non-ground points from a processed 
grayscale image like the one in Figure 3 above.         
 
A morphological filter is a filter that utilizes a combination of dilations and erosions in order to 
dilate and/or erode features of an image.  When dealing with a grayscale image as in the pre-
processed image of Figure 3, these dilation and erosion operations actually become maximum 
and minimum operations.  The progressive morphological filter combines the use of maximum 
filters and minimum filters in order to detect the non-ground elevations by effectively replacing 
all of these values with ground pixel values, removing the non-ground pixels from the image.   
 
In order to implement progressive morphological filter, an initial window size w is chosen (3 in 
this case).  A minimum filter of size w x w (3x3) was performed on the pre-processed image of 
Figure 3.  This minimum filter operates on the original image by sweeping the window over the 
entire image, and for each given pixel, replacing the pixel’s value with the minimum pixel value 
included in the window neighborhood.  This effectively removes any non-ground object smaller 
than the window size because it changes the appropriate pixel value to the minimum value in the 
region.  This minimum filter is immediately followed by a maximum filter of the same window 
size, effectively repairing any damage done to non-ground objects that are larger than the 
window size by replacing the pixel value with the maximum value in the window area.  This 
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combination of a minimum filter following by a maximum filter is known as an opening 
operation of the morphological filter.   
 
Once this initial opening operation is performed, the difference between the original image and 
the new image filtered using the opening operation is obtained.  This image should therefore 
have pixel intensity values of zero for all ground pixels since the ground pixels were not 
removed in the opening operation performed.  However, this image should have pixel values 
relating to the non-ground values in the original image, as the difference image was obtained by 
subtracting each intensity value of the filtered image from the original image.  This difference 
image now becomes extremely important in the implementation of the progressive 
morphological filter as it relates directly the best-fit threshold described above.  The height 
threshold was predefined to be 0.1 for this morphological operation.  However, the best-fit 
threshold was determined to be dependent on the window size in the following way: 
 

thresholdheightwthresholdmorphbest ___ ×=   (2) 
 

Therefore, the actual filtering operation occurs by comparing each difference image pixel value 
with this best-fit threshold value.  If the given difference image pixel value is greater than this 
best-fit threshold value, then the corresponding original pixel value is replaced with the pixel 
value of the image obtained after the opening operation.  If the given difference image pixel 
value is less than the best-fit threshold value, then the corresponding original pixel value remains 
the same.  This process repeats every pixel of the image is traversed.   
 
Upon initial viewing, one would think that the operation performed in equation (2) would simply 
set the best-fit threshold to a value of 0.3 since the window size above was chosen to be three.  
However, this is not the case, as this morphological operation is progressive in nature.  The 
progressive nature of the morphological filter refers to the fact that the window size progresses to 
a higher value after each performance of this algorithm.  A maximum window size is set by the 
user initially.  A window step size is also set initially by the user, which indicates how much the 
window will increase after each traversal of the algorithm.  In this particular case, a maximum 
window size of 40 and a window step size of 10 were chosen.  The following table shows the 
progressive increasing nature of the window size for the morphological filtering operation. 
 

Table 1: Progressive Morphological Filter Window Sizes 
 

# of 
Executions 

Window
Size (w) 

Best Fit 
Threshold

1 3 0.3 
2 13 1.3 
3 23 2.3 
4 33 3.3 

 
This table above shows that the initial window size was set by the user at a value of 3.  The 
opening operation was performed with a window size of 3x3, and then the difference image 
values were compared to the best-fit threshold as described above.  The window step size was 
then added to the initial window size to achieve a new window size of 13x13 for the opening 
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operation.  This process is repeated until the maximum window size of 40 was achieved.  The 
best-fit threshold also progressively changes with respect to the window size according to 
equation (2) above.  The grayscale image obtained after removal of all non-ground objects 
through the implementation of the progressive morphological filter is given in Figure 4 below. 
 

 
 

Figure 4: Grayscale Image After Morphological Processing 
 

In comparison to the original pre-processed image in Figure 3, one can see that the areas of 
higher intensity are now completely removed in Figure 4.  This proves that the progressive 
morphological filter performed well in separating ground pixel values from non-ground pixel 
values. 
 
The Region Growing Algorithm 
 
With the non-ground pixel values successfully separated from the ground pixel values and 
identified, the algorithm to identify building areas and their boundaries becomes the focus.  The 
algorithm proposed to accomplish the task of separating building areas from other non-building 
non-ground objects is the region growing algorithm.  The region growing process will iteratively 
separate the non-ground pixels into distinct regions of interest which will allow a successful 
building footprint extraction. 
 
Region growing is an image processing concept that allows an image to be separated into areas 
(regions) that have a predefined characteristic.  This process starts from a single pixel that 
satisfies a given condition, effectively becoming the first pixel of the region.  Then, the eight 
neighbors of the pixel are examined against the same condition that included the first pixel in the 
region.  If any of these pixels also satisfy the criteria given for acceptance, these pixels are also 
considered part of the region and indicated as such.  Then, the eight neighbors of each of these 
added pixels are examined, with the process continuing in this way until no new pixels are added 
to the region.  Figure 5 below shows the beginning of the region growing process, the choice of a 
seed point that meets the specific condition under testing. 
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Figure 5: Region Growing - A Graphical Example 
 

The seed pixel is the first pixel in the scanned image containing a “true” output to the testing 
condition.  The region will then grow outward from this pixel by testing each of the pixels eight 
neighbors individually, adding said pixels to the region if the condition is satisfied.  Figure 6 
below illustrates the region growing process after multiple iterations of the condition check.  

 

 
 

Figure 6: Region Growing – Example After Multiple Iterations 
 

As can easily be seen, the highlighted area in the above figure indicates that these particular 
pixels satisfied the condition for inclusion and therefore are now members of the region.  This 
process continues until no new neighboring pixels can be added to the region, creating an 
effective boundary for the region in question. 
 
With the basics of the region growing process now explained, the detailed region-growing 
algorithm applied to the specific Lenoir County area of North Carolina is performed.  The 
progressive morphological filter has effectively separated the ground and non-ground pixels by 
creating an output image that has removed all non-ground pixels and replaced them with average 
ground pixel values.   
 
With this initial separation complete, the non-ground pixels must be further segmented into 
consolidated regions of interest, as each non-ground pixel should belong to an area of non-
ground pixels, representing anything from a car to a building to an area of vegetation.  Zhang [2] 
referred to two different types of non-ground pixels as inside points and boundary points.  An 
inside point is a non-ground pixel whose eight neighbors are also non-ground pixels.  A 
boundary point is defined as a non-ground pixel with at least one of its eight neighbors being a 
ground pixel.  Therefore, all non-ground pixels can be segmented further into two distinct 
subsets of pixels, classified based on whether the pixel is an inside point or a boundary point.  
This revelation allows the first region growing segmentation to take place.  The desired outcome 
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is a set of regions of inside points, along with a set of regions of boundary points corresponding 
to these inside point regions.   
The region growing process for segmenting regions of inside points is the first task after the 
progressive morphological filtering operation is performed.  First, a testing condition must be 
established which will allow for a new region to begin from an initial seed point with properties 
that satisfy the condition.  A height (pixel intensity value) threshold is chosen as this initial 
condition, given a value of 10, and this threshold will be the first testing condition upon which a 
region is initiated.  This threshold is variable, allowing the algorithm to run with any threshold 
with value greater than zero desired.  The image to be operated on is the difference image, which 
now contains intensity values near zero for ground pixels and intensity values equal to the height 
of non-ground objects for all pixels that are not considered part of the ground area.  The 
difference image is scanned, starting from the upper left corner, until a pixel with intensity value 
greater than the threshold is found.  This initial conditioning does not identify the point as an 
inside point, so the pixel cannot yet be added to a region.   
 
Once a pixel satisfying the initial threshold condition is found, further conditioning is performed 
to determine whether or not this pixel is an inside point.  Of note is the fact that each pixel will 
be identified as “belonging to a region” or “not belonging to a region” by a labeling scheme 
within the algorithm itself.  Initially, all pixels will contain a label of “not belonging to a region.”  
The second condition tests whether the pixel belongs to a region already by scanning the pixel’s 
label for this information, represented in the algorithm as a Boolean ‘1’ (belongs to a region) or 
‘0’ (does not belong to any region).  If the pixel does not belong to any region as of yet, the 
second condition is satisfied and further conditioning is performed.  The third and final condition 
does not test the pixel in question itself, but the pixel’s eight neighbors.  The third condition 
checks whether all of the eight neighbors satisfy the initial condition of having an intensity value 
greater than the threshold.  This is accomplished by performing an AND operation of each 
neighbor condition, resulting in a satisfied condition only when all pixels are greater than the 
threshold.  If all of the eight neighboring pixels have a value greater than this threshold, then the 
pixel in question is indeed an inside point.  Therefore, the pixel is added to the region as the seed 
point and labeled as described above as “belonging to a region” to avoid placing the same pixel 
in multiple regions or in the same region more than once.  The pixel is added to the region in the 
algorithm itself by utilizing linked lists, with each region being identified by its own linked list.  
This allows for each region to have varying size along with the possibility of adding pixels at a 
random rate based on condition testing.  If the above process fails to produce a pixel that satisfies 
the conditions of an inside point, the difference image scan continues until the first inside point is 
found, making it the initial seed point for the region.   
 
With the seed point for the inside point region determined, the region must then be grown.  Since 
a seed inside point was found, the scanning of the difference image stops.  The location of the 
scan is saved so that when the region is completely grown, the scan can begin again from the 
same location, looking for another region to grow.  As shown in Figure 5 above, the region 
growing process grows outward from the seed point, so the conditioning moves on to the eight 
neighbors of the seed point. 
 
First, the upper-left neighbor of the seed point is identified for testing.  Since the seed point itself 
was labeled as an inside point, by definition this already indicates that this upper-left neighbor 
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passes the initial threshold test.  Therefore, the upper-left neighbor is tested based on whether or 
not it already belongs to a region.  If it already belongs to a region, then the testing of this pixel 
fails, and the upper neighbor of the seed point is identified for testing.  However, if the upper-left 
neighbor is not already included in a region, then further testing is performed to determine 
whether this neighbor is also an inside point of the region in question.  This further testing 
involves the eight neighbors of this upper-left neighbor.  If all of the eight neighbors of the 
upper-left neighbor have intensity values greater than the threshold, then the upper-left neighbor 
is considered an inside point, labeled, and added to the region.  This process continues, with each 
neighbor of the original seed point being checked for its possibility of belonging to the region.   
 
Once all of the eight neighbors of the original seed point are tested, the linked list which contains 
the pixels in the region will now have a maximum of nine pixel members.  The region growing 
implementation does not stop here, however, as some regions may have more than nine total 
pixels in the region.  Assuming all of the eight neighbors of the original seed point have been 
added to the region, the region contains nine pixel members, and the next available pixels to 
undergo testing for inclusion in the region are the neighbors of these eight neighbors.  Therefore, 
the linked list’s link is incremented in order to get to the second pixel that was added to the 
region.  Then, the algorithm tests all of its eight neighbors in the same way as the original seed 
point was tested, and if any of its neighbors meet the conditions for inclusion, these pixels are 
added to the list.  This process continues until the end of the linked list is reached, successfully 
exhausting all possible pixel values to be included in the region, effectively creating a region of 
labeled pixels with a defined boundary. 
 
With the end of the region determined, the difference image scan continues from the same pixel 
in which it left off, checking for the next seed point for a new region to begin.  The image is 
scanned until the next pixel with intensity greater than the threshold and with property of not 
already belonging to a region is found.  If a pixel value is found to successfully meet this 
condition, another region is grown as described above.  This region growing process for inside 
points continues until the entire difference image is scanned, effectively segmenting the non-
ground pixels into regions of inside points with well defined boundaries.   
 
With the inside points completely separated into regions, the determination of boundary points 
becomes the important priority.  These inside point regions are incomplete in the sense that along 
their boundaries, there are still non-ground pixels that are not members of the region.  This 
occurs due to the definition of an inside point, which states that all eight of its neighbors must be 
non-ground points as well.  With this in mind, what if one or more of these eight neighbors 
already defined as non-ground points have neighbors that are ground points?  These pixels are 
also part of the non-ground region of interest, just not part of the specific inside point regions.  
These pixels are the boundary points for the inside point regions, and they need to be separated 
as such in order to identify every non-ground point as either an inside point or a boundary point. 
 
In order to determine these boundary point regions, a new scan of the difference image is 
performed after each inside point region is determined.  The initial condition for inclusion in a 
boundary point region is threefold: the pixel must not already be included in an inside point 
region, the pixel must have an intensity value greater than the threshold, and the pixel must have 
at least one of its neighbors be an inside point.  Once the seed point for the boundary point region 
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is found, further conditioning is performed similar to the conditioning described above for 
determining inclusion in the inside point regions.  If at least one of the eight neighbors of this 
new seed point is a ground point, and at least one of the eight neighbors of this new seed point is 
labeled as belonging to an inside point region, then the pixel is labeled as belonging to a 
boundary point region and added to the region as the initial seed point.  The key element to this 
conditioning allowing the boundary point regions to be separated according to their relevance to 
other inside point regions is the fact that at least one of the eight neighbors already belongs to a 
ground point region.  Otherwise, without this condition there would be no way to separate each 
boundary point region, resulting in one large region of boundary points.  However, as will be 
described in the post-processing stages of the building footprint algorithm, the boundary point 
regions must be separated here as such. 
 
The following table shows the pseudo code for the region growing separation algorithm, 
resulting in distinct regions of inside points and boundary points. 
 

Table 2: Pseudo Code for Inside Point / Boundary Point Region Growing 
 

1. Scan the Difference Image I(x,y). 
       for x=0->size(x) 
          for y=0->size(y) 
2. Check for Initial Condition. 
               if (intensity > threshold) AND if("not in a region") 
3. Check the Eight Neighbors.   
                    if(all 8 neighbors' intensity > threshold) 
4. Seed Point Found.  Add to Region and Check Neighbors. 
                         Region<-Pixel(x,y); 
                         if (neighbor satisfies condition) 
                              Region<-Neighbor(x,y)…; 
5. Increment the Region List and Check Neighbors. 
                         if (neighbor satisfies condition) 
                              Region<-Neighbor(x,y)…; 
6. Loop to Step 5 Until End of List Reached. 
                              if(end of list) 
                                   repeat algorithm for boundary regions; 
                                   go to step 1; 

 
Once this algorithm is performed, the non-ground pixels are successfully separated into regions 
of inside points and regions of boundary points.  Figure 7 below shows the inside point regions, 
identified by the pixels that are shaded white in the image. 
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Figure 7: Inside Point Region Identification 
 

In a direct comparison with Figure 3, Figure 7 illustrates the algorithms ability to identify non-
ground pixels effectively.  Moreover, it also illustrates the ability of the algorithm to identify 
regions of interest based upon a defined threshold that can be preset by the user.  This allows for 
a height threshold specification for inclusion, allowing for the elimination of other non-ground 
objects that are not necessarily buildings, objects such as cars, shrubs, and other vegetation.   
 
Figure 8 below shows the boundary point regions, once again identified by the shade of white in 
the image.  

 

 
 

Figure 8: Boundary Point Region Identification 
 

The result of the figure above is an illustration of the automated determination of building 
ground plans and outlines found using the region growing algorithm for the segmentation of 
boundary points.  The figure clearly defines non-ground regions, including those of smaller 
building areas.  It can be noticed in this image as well that the effects of small distinct non-
ground pixels are not included in the region identification, having successfully been removed as 
not belonging to a building region.  Further comparison of these two figures with the original 
pre-processed image will be performed after a discussion of a more advanced region growing 
algorithm implementation next. 
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 Plane-fitting techniques 
 
The above algorithm successfully resolved the non-ground pixels into two distinct types, 
boundary points and inside points.  The region growing process allowed these two distinct types 
of pixels to be represented as grown region areas with clearly defined boundaries.  However, in 
order to reduce inclusion errors present in any region growing process, further segmentation of 
the inside point regions is necessary.  The process involved in this further segmentation employs 
the use of a plane-fitting technique to separate inside point regions into smaller regions 
representing building surfaces.  The overall goal is to segment each inside point region into 
smaller regions based on the formation of best-fit planes of pixels and their neighbors, resulting 
in a representation of planar surfaces within each inside point region. 
 
The plane-fitting process used is a least-squares method of determining a best-fit plane from a 
given number of three-dimensional points.  The algorithm determines a plane that best fits nine 
distinct three-dimensional points, in this case an inside point pixel and its eight neighboring 
pixels.  The solution provides the least squares solution to the following equation: 
 

CByAxyxI ++=),(    (3) 
 

with I(x,y) representing the intensity of the pixel located at coordinate (x,y) and A,B,C 
representing parameters of the best-fit plane determined from the nine pixels in question.  The 
goal of this least squares solution is to minimize the sum of the squared errors between the pixel 
intensity values and the resulting intensity value when using the plane equation (3).  
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The function is defined in such a way that all values are positive and the vertex of the resulting 
hyperparabaloid occurs when the gradient satisfies the condition ( )0,0,0=∇E .  This condition 
results in the following system of three simultaneous equations which can be solved for the best-
fit plane of the given nine pixels: 
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The above matrix equation is solved for the parameters A, B, and C respectively which defines 
the best-fit plane of the nine pixels in question.  With these parameters determined, a plane-fitted 
intensity value can be found for any of the pixels in question.  This plane-fitted intensity value 
can then be used in comparison with the actual intensity value observed at the pixel in question 
in order to create a condition for a region growing procedure that will allow segmentation into 
surface regions.   
 
In order for this condition to be used in the region growing process, an initial seed point must be 
determined.  Therefore, an additional detail is added to the region growing processes above – the 
calculation of the ABC parameters for each inside point pixel determined in the inside point 
segmentation process.  Therefore, when a pixel meets all criteria for inclusion in an inside point 
region, a best-fit plane for the pixel and its eight neighbors is calculated.  Along with these ABC 
parameters for the plane equation, the minimum sum of squared errors (SSE) is also calculated 
for each inside point according to the following equation: 
 

( )[ ]2, iiactualii yxICByAxSSE −++=    (7) 
 

with xi and yi representing the coordinate of the pixel in question and Iactual(xi,yi) representing the 
actual intensity value at the pixel in question.  This equation represents the sum of squared error 
calculation, determined by the square of the difference between the calculated best-fit intensity 
value and the actual pixel intensity value at the specific coordinate being analyzed.   
 
This SSE calculation allows an initial seed point to be determined for the surface growing 
algorithm.  Once an inside point region is completely grown, all best-fit plane parameters and the 
corresponding SSE for any inside point and its eight neighbors has been determined using the 
matrix equation (6).  The linked list that houses the inside point region pixels and this best-fit 
plane data is now sorted in ascending order according to the SSE, effectively determining the 
minimum SSE value for the inside point region in question.  The inside point with the minimum 
SSE determined through the plane-fitting algorithm is added to the surface region.  The reason 
for this minimum SSE being the condition for initial inclusion in the surface algorithm is that the 
inside point with the smallest SSE value has the most accurate best-fit plane associated with it 
and its eight neighbors.  This allows a fairly accurate plane representation, and therefore the best 
chance for a smooth surface to be determined from pixels in a particular area, for example a face 
on a roof of a building.  The goal is to grow surfaces in this particular algorithm, so the condition 
must allow for the best possible surfaces to be grown, which is accomplished by selecting the 
inside point with this minimum SSE value. 
 
With the initial seed point selected, the conditional testing proceeds to the eight neighbors of this 
seed point.  The testing first checks if the neighbor is an inside point, using the same conditions 
described above in the general region growing algorithm.  If the neighbor is an inside point, then 
additional surface testing is performed.  Using the ABC parameters of the initial seed point and 
the specific x and y coordinates of the neighbor in question, a calculated intensity value is 
determined using the plane equation (3).  This calculated intensity value is then compared to the 
actual intensity value at this point, and the absolute value of the difference between the two 
values is calculated.  If this difference is greater than a specific Δh threshold (usually 15-30 cm 
according to Zhang [1]), then the pixel in question has an intensity that is not within the desired 
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range and therefore is not a close enough fit to be included in the surface.  However, if the 
calculated height difference is less than this Δh threshold, then the pixel is a close enough fit to 
the growing surface and is included in the surface region.   
 
This testing continues until all eight neighbors have been tested for inclusion in this particular 
surface region.  Once the eight neighbors have been completely checked, the pointer to the 
linked list containing the surface region values is incremented, and further testing is performed 
on the eight neighbors of this point.  This process continues until the surface region has been 
fully traversed and no further growing can be performed, effectively ending the surface in 
question.   
 
However, testing does not stop here.  Every point within the inside point region must be added to 
a surface, and thus far, only the initial surface determined from the minimum SSE inside point 
has been accounted for.  Therefore, the linked list pointer to the inside point region is 
incremented, finding the second smallest SSE value.  If this point does not already belong to a 
surface, then this inside point becomes the new initial seed point, and surface growing begins 
again in the same fashion.  This process continues until the end of the inside point region is 
reached, completing the traversal of the entire inside point region.        
 
The fact that every inside point must belong to a surface results in surfaces of various sizes.  If, 
for instance, an inside point on the outer edge of an inside point region becomes the seed point, 
the SSE may be the largest without regard to the plane-fitting algorithm’s calculations on the 
“smoothness” of a group of pixels, and the surface grown would be extremely small because the 
surrounding pixels may not lie within the defined height threshold, possibly resulting in a surface 
of only one pixel if no other points fit the plane for that seed point.  The process is rather 
complicated in this sense but works as desired for breaking up the larger inside point regions into 
sub-regions with conditions that define well defined surfaces.  This further segmentation results 
in many more surfaces than inside point regions, separated by their relative fit to the region in 
general. 
 
For the test area in Lenoir County, North Carolina shown in figure 3, there were 218 inside point 
regions found and 1655 surfaces determined from these points.  This much greater number of 
surfaces shows that the conditioning performed in this surface growing algorithm vigorously 
separate the inside point regions, resulting in a much finer conditioning and therefore datasets 
that share very similar properties which can be used to refine the building footprint algorithm 
drastically.          
 
 Merging of Building Surfaces 
 
With the non-ground points now completely segmented into surfaces, the next step is simply an 
adjustment phase, hoping to help eliminate any errors that may have become prevalent in the 
previous steps.  Because the segmentation above relies on thresholds in order to separate pixels 
and determine building footprints from these separated pixels, the quality of the building 
footprints and the amount of errors present in them are all determined by how closely the 
thresholds chosen are to the optimum threshold.  After much testing, the values for the thresholds 
were chosen as indicated above, with a summary of the threshold values given in Table 3 below. 
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Table 3: Various Thresholds Used in Algorithms 
 

Use Value 
Progressive Morphological Filter multiplicative threshold (k_threshold) 0.1 
Progressive Morphological Filter maximum size threshold (max_size) 40 
Progressive Morphological Filter step size threshold (step_size) 10 
Non-ground pixel minimum intensity threshold (ng_threshold) 10 
Plane-fitting best-fit plane inclusion in surface region threshold 
(z_threshold) 0.2 
Minimum building area threshold (min_building) 60 

 
All of the above threshold values have been explained in the sections above relative to their use 
in the algorithms they are associated with.  However, there is another threshold mentioned here 
that has not been discussed yet, which relates to the merging of building surfaces which allows 
the final building footprints to be determined.  In order to eliminate small patches of vegetation, 
a minimum building area must be determined.  This minimum area threshold is set to 60 square 
meters, encompassing an area of three pixels on average, so any inside point regions having less 
than three pixels are neglected in the building separation process.     
 
Building Footprint Post-Processing 
 
The building footprints for the particular area of Lenoir County, North Carolina considered thus 
far have been determined using the region growing algorithm.  Inside points and boundary points 
were identified, and the resulting images have been displayed.  However, the building footprints 
that have been identified are noisy since LIDAR data is inherently irregularly spaced.  Therefore, 
some simplification of these noisy footprints must be performed.  In the boundary point figure 
above, the edges of identified buildings have a zigzag quality and need to be simplified into a 
line that represents the true building boundary.  Many simplification algorithms exist, but the 
Douglas-Peucker algorithm was implemented to simplify the noisy building footprints. 
 
 The Douglas-Peucker Algorithm 
 
One such technique to develop a cleaner building footprint is the Douglas-Peucker algorithm, an 
algorithm developed by cartographers D.H. Douglas and T.K. Peucker in [7].  The Douglas-
Peucker algorithm allows for a simplification of any polyline by a recursive threshold technique.   
 
The Douglas-Peucker algorithm operates on the boundary point regions identified by the 
conditioning described above.  An initial simplification guess begins the process.  For each 
boundary point region, the initial guess contains the first boundary pixel in the region and the last 
boundary pixel in the region connected together to form a line segment.  The algorithm then 
determines whether the initial guess of a line segment is a good enough simplification for the 
polyline in question.  This determination is performed based on a user-defined distance 
threshold.   
 
Assuming the boundary point regions represent buildings, a line segment should never be a good 
enough simplification in this case.  Therefore, further processing is necessary.  The entire 
boundary point region is scanned, and the distance from each boundary pixel to the initial guess 
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line segment is calculated.  If the boundary point in question is within the outer limits of the 
initial guess line segment, a perpendicular distance is calculated.  If the boundary point in 
question is on either side of the outer limits of the initial guess line segment, then the distance 
from either the left endpoint of the initial guess (the boundary point is on the left side of the 
initial guess line segment) or the right endpoint of the initial guess (the boundary point is on the 
right side of the initial guess line segment) is calculated.  This distance calculation is measured in 
pixel units, with each side of a pixel considered to have unit length.   
 
Once all boundary point pixels in the region have had distances from the initial guess line 
segment calculated, the boundary point pixel at which the maximum distance from the initial 
guess line segment is identified.  This maximum distance value is compared to the distance 
threshold provided by the user, and if the maximum distance is less than this threshold value, 
then the initial guess line segment was an accurate enough simplification, and the new boundary 
point region contains only two points, the endpoints of the initial guess line segment.  However, 
if the maximum distance is greater than the threshold value, then the initial guess line segment 
was not accurate enough, and further processing must be performed. 
 
Assuming the initial guess line segment was not accurate enough, a new guess is determined.  
The pixel at which the distance threshold was exceeded becomes one of the endpoints of two 
new line segments representing the new guess.  The first point of the boundary point region is 
connected to this maximum distance pixel to form a line segment, and this maximum distance 
pixel is connected to the last of the boundary point region to form another line segment.  Each 
line segment is now assumed to be a new initial guess, and the process continues recursively 
until all boundary point calculated distances are less than the user-defined threshold.  The figure 
below illustrates the process described above. 
 

 
 

Figure 9: Visualizing the Douglas-Peucker Algorithm 
 
Stage 1 in the figure shows the initial guess line segment, clearly not representing an accurate 
estimate of the polyline shown.  Therefore, a maximum distance is determined that eclipses the 
user-defined threshold, and the stage 2 guess is obtained.  These two new line segments represent 
two new initial guesses.  Assuming the user-defined threshold is again eclipsed by both new 
initial guesses, stage 3 results with four new initial guesses.  Assuming that one more maximum 
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distance results in one final user-defined threshold being exceeded, stage 4 results in the 
simplified polyline shown above. 
 
The figure below shows the Douglas-Peucker algorithm result with a distance threshold value of 
2.4. 
 

 
 

Figure 10: Douglas-Peucker Algorithm Resulting Image 
 
The boundary points that remained after the Douglas-Peucker algorithm was performed are 
colored white above.  The building footprint simplifications are obtained by connecting each 
consecutive Douglas boundary point together as line segments.  While most buildings are 
identified fairly well, some of the smaller buildings were unsuccessfully simplified.  This 
problem is due to the order that the boundary point regions were identified in.  This problem is 
considered and eliminated in the next chapter containing improvements to the above algorithms.   
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Chapter 4 
 

Region Growing Algorithm Improvements 
 

With the algorithms completed and the building footprints successfully extracted, ways to 
possibly improve results were considered.  It was noted that the possible improvements could 
exist when the boundary point regions were initially identified.  The resulting footprints were 
extremely noisy, and therefore simplification seemed to be a difficult process.  Therefore, a new 
way of defining boundary points was considered, and a new method of growing the boundary 
point regions was developed. 
 
Boundary Point Identification 
 
Boundary points were initially identified as any pixel in the difference image which had a value 
greater than a height threshold that also had at least one neighboring pixel identified as a ground 
pixel.  This definition is somewhat incomplete, considering that any boundary point should also 
have a neighboring pixel identified as an inside point.  Therefore, the definition of what 
constitutes a boundary point was made more strict, requiring the intensity of the difference image 
to be greater than the given height threshold, at least one neighboring pixel identified as a ground 
pixel, and at least one neighboring pixel identified as an inside point.  It was believed that this 
extra condition would obviously result in fewer pixels to pass the boundary pixel test, and 
therefore result in less overall boundary pixels and a better overall simplification of the building 
footprints and a less noisy one as well.  The figure below shows the identification of boundary 
footprints with this new definition. 
 

 
 

Figure 11: Boundary Point Region Identification – New Definition 
 
The above image with boundary pixels colored white shows a definite improvement in the 
reduction of noisy edges from the original boundary point figure identified in Chapter 3.  A 
visual comparison between specific buildings in the two images will be given in the next chapter.   
 
 
 
 



 22

Boundary Point Region Growing 
 
While there is a noticeable improvement in the identification of boundary points via the new 
definition, the footprints are still noisy enough to require further processing improvements.  The 
Douglas-Peucker algorithm result illustrated above was not an acceptable simplification in all 
cases.  It was determined that the Douglas-Peucker algorithm is extremely order intensive, in the 
sense that the order that the boundary points were placed into regions was extremely important in 
the determining a successful resulting simplification.   
 
Boundary points were initially sorted through by scanning the difference image from the left 
portion of the image to the right part of the image in a top-down manner.  The entire difference 
image was scanned for each boundary point region, a fairly inefficient process.  Also, because of 
the left-to-right, top-down identification of the boundary point regions, the order of the boundary 
points could become scattered and not representative of buildings.  Initially, this did not seem to 
be causing a problem, but once the Douglas-Peucker algorithm was implemented on these 
unordered boundary point regions, the result was clear.  Because the Douglas-Peucker algorithm 
only checks distances of points to the initial guess on points that exist between the endpoints of 
the initial guess, ordering is extremely important.  The Douglas-Peucker algorithm approximates 
the polyline obtained by connecting every boundary point in the order that they are added to the 
region.   
 
Therefore, the goal was set to develop a sorting algorithm that would order boundary points in a 
way that, if each boundary point in the region were connected to the adjacent boundary points in 
the region, the result would be exactly as shown in the boundary point region figure above, that 
is they would represent the buildings that are to be simplified.  The sorting was performed by 
using a variation on the region growing algorithm.  First, the definition condition of a boundary 
point must be satisfied.  Once a pixel satisfied this condition, the pixel was labeled as a boundary 
point and added to the region.   
 
The next step is key to the development of a successful sort.  The region growing algorithm 
described above would check every neighbor and add any pixels that satisfied the condition to 
the region.  However, this could in some cases add more than neighbor to the region if more than 
one neighbor satisfied the condition.  This would cause a problem in the ordering, as it is desired 
for the sort to represent a point-to-point connection of the boundaries of buildings.  If more than 
one neighbor were added to the boundary point region for satisfying the boundary condition, 
then the corners of buildings would not contain a point-to-point connection.  Therefore, once a 
seed point for the boundary point region was determined, the region growing algorithm begins.  
However, if two or more neighbors satisfy the boundary condition, only the first point is added to 
the list, and the region growing process continues in whatever direction this point was from the 
seed point.  All boundary points obtained via the new definition by the original left-to-right, top-
down scan are contained in this new region growing scan. 
 
Once the sorting was complete and all boundary points were identified, the Douglas-Peucker 
algorithm was run on this new boundary point data.  The image below shows the result of the 
Douglas-Peucker algorithm with this new modified region growing algorithm sort. 
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Figure 12: Douglas-Peucker Algorithm – Improved Sort 
 

The resulting image shows that the Douglas-Peucker algorithm with this modified sorting 
mechanism improves upon the previous top-down sorting run.  A comparison of particular 
problem areas will be shown in the next chapter. 
 

Satellite Image Processing 
 

The resulting images above show that the algorithms for identifying building footprints 
successfully identify buildings.  However, it was desired that there be data available to use in the 
future for possible comparison purposes, that is the ability to compare the obtained LIDAR 
building footprints with some other form of data to determine how accurate the LIDAR building 
footprints were.   
 
In [1] Zhang performs a visual comparison to aerial photos by overlaying the obtained footprints 
over the aerial image to determine how accurate the LIDAR building footprints were.  Contrary 
to Zhang, this particular satellite comparison algorithm attempts to provide a tool to compare the 
obtained LIDAR footprints to satellite imagery automatically. 
 
The following image shown in Figure 13 was obtained by performing a screen capture of a 
satellite image of Lenoir County using Yahoo Maps.  The image was resized to match the 
LIDAR data image as closely as possible (the LIDAR image has size 1201x401 and the satellite 
image has size 1203x420).   
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Figure 13: Satellite Image Data 
 

The goal is to perform a region growing algorithm on the above satellite image.  The condition to 
include a point in a particular region is the Euclidean distance between the associated RGB color 
intensities.  This color region growing algorithm will provide regions that have similar color 
within a user-defined color threshold.  The area of each region along with the average values of 
the x and y coordinates of the pixels in each region are calculated.  The areas of the inside point 
and boundary point regions along with their average x and y coordinates were calculated with the 
region growing approach above.  The claim is that with this data, buildings can be separated 
from vegetation based on color characteristics, which could prove helpful in removing false 
building identifications that could occur in dense forest areas.  Also, if some areas and averages 
obtained from the inside/boundary region growing algorithm are similar to the areas and 
averages obtained from this color region growing algorithm, this algorithm could provide 
confirmation that the LIDAR building footprints were obtained accurately without visual 
inspection.   
 
Because all points must be grown into corresponding color regions, there is no initial condition 
for selection of a seed point.  The seed point is selected on the condition that it has not already 
been placed in a region, and it is then added to a region, and its color is identified according to its 
red, green, and blue components.  Then, a condition is placed on its eight neighbors according to 
the following equation: 
 

222 )()()( neighborseedneighborseedneighborseedcolor BBGGRRD −+−+−= .  (8) 
 

A user-defined color threshold is provided.  If the above calculated distance is less than the color 
threshold, then the pixel is considered close enough in color to the seed point and added to the 
region.  This process continues until all 8 neighbors of the original seed point have been tested.  
Once this process is complete, the neighbors of the neighbors that were just added to the color 
region are tested based on their distance away from the seed point color.  This process continues 
until all neighbors fail the color threshold test, effectively ending the region.  Then, another 
region is started by selecting a point that has not yet been included in a region, and the process 
continues until every point has been assigned to a region. 
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The threshold provided to the algorithm for testing was based upon the maximum value of Dcolor.  
The satellite image was normalized so that the minimum possible color value was 0 and the 
maximum possible color value was 1.  Therefore, the maximum color difference would result in 
a Dcolor value of approximately 1.7.  The user-defined threshold therefore is limited to a value 
between 0 and 1.7 for this particular algorithm.  The algorithm successfully provides the area of 
each region along with x coordinate and y coordinate averages for each region.  This data is 
available for comparison purposes to the LIDAR obtained building regions. 
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Chapter 5 
 

Comparative Results 
 

In Chapter 4, the results of changing the original approach to the region growing algorithm were 
presented, and it was shown that there was visual confirmation of improvement in the 
identification of building footprints.  However, a side-by-side comparison will further show the 
effect the above changes have had on the building footprint results.   
 
The figure below shows an enlarged section of the Lenoir County study area, comparing the old 
boundary point definition to the new boundary point definition. 
 

 
 

Figure 14: Boundary Point Identification – Comparison 
 

This building footprint comparison clearly shows that redefining what a boundary point really is 
results in a less noisy and simplified footprint that more accurately represents the actual building 
boundaries.  The extreme jagged nature of the footprint on the left is replaced by a fairly smooth 
representation on the right, considering that LIDAR data is irregularly spaced and therefore noisy 
to begin with. 
 
Yet another comparison figure below shows a problematic area in the original Douglas-Peucker 
algorithm and its improved result. 
 

 
 

Figure 15: Douglas-Peucker Algorithm – Comparison 
 

This simplification comparison shows the obvious improvement in building footprint 
simplification.  The image on the left has particular problems with the smaller buildings, only 
identifying line segments as the correct building simplification.  However, this is corrected fairly 
well in the image on the right with the improved boundary point sorting, resulting in successful 
identification of corners.  With these Douglas-Peucker boundary points connected together, it is 
clear that the image on the right would have a more successful identification of building 
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footprints.  The figure below shows the connection of points for two buildings after Douglas-
Peucker simplification, clearly showing the successful simplification. 
 

  
 

Figure 16: Douglas-Peucker Algorithm – Example Simplification 
 

Conclusions 
 

The goal of extracting building footprints from a LIDAR dataset was completed successfully.  
Redefining what constitutes a building boundary point helped to improve the Douglas-Peucker 
algorithm’s identification of building corners and improved the simplification process.  The 
additional ability to grow regions based on the RGB color attributes in a satellite image allows 
for confirmation or disconfirmation of building footprints.  This ability to automatically prove or 
disprove the validity of the extraction of building footprints improves upon simple visual 
inspection of aerial or satellite imagery for such purposes.    

 
Future Work 

 
Even though the algorithms above successfully identify building footprints and provide a means 
for comparison with satellite imagery, future work is available.  Actual comparisons could be 
performed by sorting the color regions and inside/boundary regions according to areas and 
attempting to find similarities between them, confirming building locations and possibly 
removing dense forestry areas misidentified as buildings.  Also, with building footprints 
successfully identified, a next step would be to perform some three-dimensional modeling using 
the building footprints as a guide to the type of building model and the locations of these models. 
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