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ABSTRACT 

 

Two novel synthetic routes to formation of gold-magnetite nanoparticles have been designed. 

Treatment of preformed magnetite nanoparticles with ultrasound in aqueous media with 

dissolved tetrachloroauric acid resulted in the formation of gold-magnetite nanocomposite 

materials. The other route involved irradiation of preformed magnetite nanoparticles by UV light 

in aqueous media with dissolved tetrachloroauric acid. This method resulted in the formation of 

gold-magnetite nanocomposite materials.  These materials maintained the morphology of the 

original magnetite particles.  The morphology of the gold particles could be controlled by 

adjusting experimental parameters, like addition of small amounts of solvent modifiers such as 

methanol, diethylene glycol, and oleic acid as well as variation of the concentration of the 

tetrachloroauric acid solution and time of the reaction.  The nanocomposite materials were 

magnetic and exhibited optical properties similar to gold nanoparticles. 

 

Since we were not able to directly synthesize core shell gold magnetite nanoparticles, TiO2 was 

used as a bridging material. TiO2 nanoparticles with embedded magnetite were suspended in 

aqueous HAuCl4 and irradiated with ultraviolet light to photodeposit gold. The degree of gold 

coating and the wavelength of absorbance could be controlled by adjusting concentration of 

HAuCl4. Absorbance maxima were between 540-590 nm. Particles exhibited superparamagnetic 

properties (blocking temperature ~170 K) whether or not coated with gold. These particles have 

potential applications as drug delivery agents, magnetic imaging contrast agents, and 

magnetically separatable photocatalysts with unique surface properties. 

 



 xviii  

Another goal was to synthesize and characterize indium doped magnetite nanoparticles for 

application as radiotracers for in vivo fate studies.  The labeled particles will be useful for 

determination of pharmacological behavior in biological systems.  Indium doped magnetite 

particles with varying size and surface chemistry were synthesized with wet chemical 

techniques. The synthesized nanoparticles were characterized in terms of the size and shape with 

the help of TEM, the elemental composition by ICP and EDS, the crystal structure by XRD and 

magnetic properties by SQUID measurements. It was found that the indium loading could be 

controlled even though the magnetic properties were similar to undoped magnetite.  

 

 
 

 

Keywords: magnetite nanoparticles, gold magnetite nanocomposites, TiO2 nanoparticles, indium 

magnetite nanocomposites, radiotracers 
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Chapter 1. Introduction 

1.1 General Perspective 

Scientists around the world are storming the nanoscience and nanotechnology field. 

Researchers aim to revolutionize the world in which we live with radical breakthroughs in areas 

such as materials and manufacturing, electronics,1-3 medicine and healthcare4, biotechnology4-6, 

agriculture and environment,7,8 computation and information technology as well as chemical9-12 

and pharmaceutical areas.13-17 Nanotechnology is combining all areas of science and technology. 

 

1.2 Nanoparticles 

The question still remains, what are nanoparticles?  There is no particular definition for 

nanoparticles.  The internationally accepted definition is that any particle which has at least one 

dimension less than 100nm is called a nanoparticle. Nano actually comes from the Greek word 

"nanos” which means dwarf or extremely small in size.  It can be used as a prefix for any unit to 

mean a billionth of that unit. 

 

Nanoparticles are larger than individual atoms and molecules but are smaller than the 

bulk material.  Since there is a size variation they do not obey the absolute quantum chemistry 

nor the laws of classical physics and have properties that are very different from that of the bulk 

material. This makes the size of the particles or the scale of its features the most important 

attribute of nanoparticles. 

 

Ever since it was recognized that the particles on the nanoscale have very different and 

interesting properties,18-22 scientists have been looking at how they may be applied for their own 
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purposes.  There is no strict dividing line between nanoparticles and non-nanoparticles.  The size 

at which materials display different properties to the bulk material and are less than hundred 

nanometers are generally defined as nanoparticles. 

 

1.3 Nanotechnology 

Nanotechnology refers broadly to a field of applied science and technology whose 

unifying theme is the control of matter on the molecular level on scales smaller than 1 µm and 

the fabrication of devices within that size range.  Nanotechnology can be viewed as a 

combination of the existing sciences into the nanoscale science.  It is a new field of study, and 

the fate of nanoparticles23-25 in biological and environmental systems is in general still unknown. 

There are several approaches for manufacturing nanoparticles,26-28 but two main approaches are 

generally dominant. One is the bottom up approach in which the materials are built from their 

atomic or molecular counterparts which assemble themselves chemically and physically by the 

principles of particular molecular recognition.  The other approach is the top-down one where 

the nanoparticles are constructed from larger entities without atomic level control.  Examples of 

nanotechnology in the modern day world are designing of computer chip layouts based on 

surface science as well as manufacturing of biosensors and drug delivery devices.  Nowadays 

nanoparticles are being used in real commercial applications such as suntan lotion, cosmetics, 

protective coatings and stain resistant clothes. 
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1.4 Synthesis of Nanoparticles 

Nanoparticles are synthesized in various methods like gas phase29-31 and sol-gel 

processing32-36, sonochemical synthesis,37-39 cavitation processing, microemulsion processing40-42 

and high-energy ball milling.  

The characteristics of different synthesis are as follows: 

1.4.1 Gas phase synthesis 

� Consistent crystal structures 

� Diameters ranging from 1 – 10 nm 

� Nucleation and growth 

� Use of inert gas atmosphere 

 

1.4.2 Sol-gel processing 

� High degree of monodispersity 

� Surface modification 

� Consistent particle shape 

� Can be manipulated by dopant, surfactant, and capping agents 

 

1.4.3 Sonochemical synthesis 

� Generates transient localized hot zone 

� High gradient of temperature and pressure 

� Formation of hydroxyl radical and hydrogen atom 

� Sonochemical precursor 

� Can be used for large quantity manufacturing 
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1.4.4 Cavitation processing 

� Creation and generation of gas bubbles 

� Supercritical drying chamber 

� Nucleation, growth and quenching of nanoparticles 

� Particle size controlled by pressure and retention time 

 

1.4.5 Microemulsion Processing 

� Synthesis of metallic, silica, semiconductor and magnetic nanoparticles 

� Use of surfactants to control size 

� No need for significant mechanical agitation 

� Large scale production 

� Simple and inexpensive hardware 

 

1.4.6 High energy ball milling 

� Used as a commercial technique 

� Large particle to smaller versions 

� Generation of magnetic nanoparticles 

� Contamination problem 

� Low surface areas 

� Highly polydisperse size distribution 
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1.5. Characterization of Nanoparticles 

Nanoparticles are generally characterized by the following techniques: 

• Transmission Electron Microscope (TEM) 

• Aerosol Mass Spectroscopy (Aerosol MS) 

• Laser Light Diffraction or Static Light Scattering 

• Light Microscopy or Optical Imaging 

• Condensation Nucleus Counter (CNC)  

• Microelectrophoresis 

• Differential Mobility Analysis (DMA)  

• Scanning Electron Microscopy (SEM) 

• Electrical Zone Sensing (Coulter Counting)  

• Sieving 

• Gas Adsorption Surface Area Analysis (e.g. BET) 

• X-ray Diffraction (XRD)  

• Dynamic Light Scattering (DLS)  

• Inductively Coupled Plasma (ICP) 

• Superconducting Quantum Interference Device (SQUID) Magnetometry 

There are several other techniques but the above mentioned ones are the most common. 

Scientists use a combination of the listed methods to characterize and illustrate the physical and 

chemical properties of the nanoparticles. Some of the techniques are qualitative and some are 

quantitative but a combination of these techniques can always give a clear picture of the shape, 

size and morphology of the nanomaterials. Some of the techniques that have been used in the 

research are described below. 
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Transmission Electron Microscope (TEM) 

Transmission electron microscopy (TEM) is an imaging technique whereby a filament (Tungsten 

or LaB6) is heated to produce a beam of electrons. The voltages generally range from 100 to 

200kV. The sample that is being observed is held in a high-vacuum object chamber that can be 

reached from outside through an inside chamber43,44. The electron beam is focused with the help 

Electron beam source 

First Condenser Lens 

Second Condenser Lens 

Condenser Aperture 

Sample 

Objective Lens 

Objective Aperture 

First Intermediate Lens 

Second Intermediate Lens 

Projector Lens 

Phosphor Screen 

Fig 1.1. Schematic of Transmission Electron Microscope 
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of the first and second condenser lenses which are user selectable and allowed to focus on the 

sample. Most of the times the sample has to be thin enough so that the electrons can pass through 

them to form the image44,47. The electrons interact with the sample and only those that go past 

unobstructed hit the phosphor screen at the end. The image is then imposed on a photographic 

film or detected by a sensor such as a CCD camera44.  

The darker areas of an image represent those areas of the sample that fewer electrons 

were transmitted through (they are thicker or denser). The lighter areas of the image represent 

those areas of the sample that more electrons were transmitted through (they are thinner or less 

dense). The advantages of TEM are small sample loading, less preparation time and moreover 

the ability to see nanometer range particles.  
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Inductively Coupled Plasma (ICP) 

Inductively coupled plasma (ICP) is a type of emission spectroscopy that uses a 

plasma to produce excited atoms that emit electromagnetic radiation at a wavelength 

characteristic of a particular element.44,45 The intensity of this emission is indicative of the 

concentration of the element within the sample. This is a technique that is used primarily for the 

determination of trace concentrations of metals.  

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Sample Solution 

Peristaltic pump 

Nebulizer 
To Drain 

Spray Chamber 

Torch 

Flame 

Detector 

Fig 1.2. Schematic of Inductively coupled plasma 
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The fluid sample is pumped into the nebulizer via the peristaltic pump. The nebulizer 

generates an aerosol mist and injects humidified Ar gas into the chamber along with the sample. 

This mist accumulates in the spray chamber, where the largest portion settles out as waste and 

the finest particles are subsequently swept into the torch assembly.45-47 Approximately 1% of the 

total solution eventually enters the torch as a mist, whereas the remainder is pumped away as 

waste. The fine aerosol mist containing Ar gas and sample is injected vertically up the length of 

the torch assembly into the plasma. The plasma, which is as hot as 10,000 K45-46, excites the 

electrons. The electrons emitted are particular to the sample's elemental composition. Light 

emitted from the plasma is focused into the spectrometer. The detector (photomultiplier tube) is 

fixed in space at the far end of the spectrometer.   

 

The largest advantage of employing an ICP when performing quantitative analysis is the 

fact that multielemental analysis can be accomplished, and quite rapidly. Another advantage is 

the detection limit which in general is really low for almost all the elements. 
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Energy Dispersive Spectra 

 Interaction of an electron beam with a sample target produces a variety of emissions, 

including x-rays. An energy-dispersive (EDS) detector is used to separate the characteristic x-

rays of different elements into an energy spectrum, and EDS system software is used to analyze 

the energy spectrum in order to determine the abundance of specific elements. EDS can be used 

to find the chemical composition of materials. EDS capabilities provide fundamental 

compositional information for a wide variety of materials46, 48. 

 

 EDS systems are typically integrated with either a scanning electron microscope or 

transmission electron microscope instruments. EDS systems include a sensitive x-ray detector, a 

liquid nitrogen chamber for cooling, and software to collect and analyze energy spectra. The 

detector is mounted in the sample chamber of the main instrument. An EDS detector contains a 

crystal that absorbs the energy of incoming x-rays by ionization, yielding free electrons in the 

Electron Beam 

Sample 

X-Rays 

Proportional Counter 

Preamplifier 

Amplifier 

Ratemeter 

Scaler 
Counter 

Computer 

Fig 1.3. Schematic of Energy Dispersive Spectra instrument 
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crystal that become conductive and produce an electrical charge bias. The x-ray absorption thus 

converts the energy of individual x-rays into electrical voltages of proportional size; the 

electrical pulses correspond to the characteristic x-rays of the element.46, 48, 50 

 

The advantages of EDS Spectra are a user can acquire a full elemental spectrum in only a few 

seconds. Supporting software makes it possible to readily identify peaks, which makes EDS a 

great survey tool to quickly identify unknown phases prior to quantitative analysis.  
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X-ray Diffraction Spectrometer  

 X-ray Diffraction (XRD) is a powerful non-destructive technique for characterizing 

crystalline materials. It provides information on structures, phases, preferred crystal orientations 

and other structural parameters such as average grain size, crystallinity and crystal defects. The 

X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given 

material.45,47-51  

 

 

 

When electrons strike a metal anode with sufficient energy, X-rays are produced.  This 

process is typically accomplished using a sealed x-ray tube, which consists of a metal target 

(often copper metal) and a tungsten metal filament, which can be heated by passing a current 

through it resulting in the emission of electrons from the tungsten filament.49,50  These electrons 

are accelerated from the tungsten filament to the metal target by an applied voltage. The collision 

between these energetic electrons and electrons in the target atoms results in electron from target 

atoms being excited out of their core-level orbitals, placing the atom in a short-lived excited 

X-ray tube 

Tungsten 
Filament 

Sample 

Scatterered 
Radiation 
Diaphragm 

Detector 
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Detector 

Fig 1.4. Schematic of XRD instrument 
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state.  The atom returns to its ground state by having electrons from lower binding energy levels 

making transitions to the empty core levels.  The difference in energy between these lower and 

higher binding energy levels is radiated in the form of X-rays.  This process results in the 

production of characteristic X-rays.47-51 X-ray powder diffractometers record all reflections using 

a detector.  The pattern of diffracted X-rays is unique for a particular structure type and can be 

used as a fingerprint to identify the structure type.  

The main types of applications for the characterization of solid particles are  

• Determination of phase contents of particles 

• Measurement of average crystallite size 
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Chapter 2. Applications of Nanoparticles and Previous Research 

  

Materials on the nanoscale exhibit unique properties that, while in it's very early days yet,  

are potentially useful for various applications. The applications of these particles range from the 

research areas to the real world. Titanium dioxide nanoparticles have been used in sunscreen, 

cosmetics and some food products; silver nanoparticles in food packaging, clothing, disinfectants 

and household appliances; zinc oxide nanoparticles in sunscreens and cosmetics, surface 

coatings, paints and outdoor furniture varnishes; and cerium oxide nanoparticles as a fuel 

catalyst. Various fields where nanotechnology can and have been used are discussed below. 

 

2.1 Medicine 

 Due to their exclusive properties, nanomaterials have been extensively used in biological 

and medical fields. They have been used as contrast agents for cell imaging1-3 and therapeutics 

for curing cancer4. This hybrid between nanotechnology and medicinal studies has been called 

by various names as medical nanotechnology, nanomedicine or bionanotechnology. 

 

2.2 Drug delivery 

According to the census in 2006, 47 million people in the US live without health insurance. 

There is an urgent need to reduce the cost of public health care so that more people can be 

accommodated in the system. Drug consumption and side-effects can be drastically lowered by 

depositing the active agent in the morbid region only and in no higher dose than needed. This 

highly selective approach reduces costs and human suffering. An example can be found in 

dendrimers and nanoporous materials. These materials can hold small drug molecules, 
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transporting them to the desired location. Some potentially important applications include cancer 

treatment with iron nanoparticles or gold nanoshells. 

Nanotechnology has also helped in the implantable delivery systems, which are often 

preferable to the use of injectable drugs5 because the latter frequently display first-order kinetics 

(the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may 

cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls 

below the targeted range. 

 

2.3 Tissue engineering 

When nanotechnology is also used for repairing and reproducing damaged tissue, it is 

called tissue engineering.6-8 Tissue engineering uses artificially simulated cell propagation by 

making use of nanomaterials-based scaffolds and growth factors. On one hand, scientists believe 

that tissue engineering is a boon and can substitute for conventional treatment methods like 

organ transplants or artificial implants.  On the other hand it also involves the ethical dilemma of 

human stem cells and its implications. 

 

2.4 Diagnostics 

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. 

Biological tests measuring the presence or activity of selected substances become quicker, more 

sensitive and more flexible when certain nanoscale particles are put to work as tags or labels. 

Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, 

structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be 

used for detection of the genetic sequence9,10 in a sample. Multicolor optical coding for 
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biological assays11,12 has been achieved by embedding different-sized quantum dots into 

polymeric microbeads. Nanopore technology for analysis of nucleic acids13-16 converts strings of 

nucleotides directly into electronic signatures. 

 

2.5 Chemistry and Environment 

Nanotechnology is used in many areas in chemistry but it is mainly used in chemical 

catalysis16,17 and filtration techniques.18 Nanoscale synthesis results in novel materials which 

have certain customized features and chemical properties. In a short-term perspective, chemistry 

will provide novel “nanomaterials” and in the long run, superior processes such as “self-

assembly” will enable energy and time preserving strategies. Nanomaterials with unique 

chemical surroundings (ligands) or precise optical properties are a few examples.  

 

2.6 Catalysis 

Due to the high surface to volume ratio in nanomaterials, they are highly beneficial in 

chemical catalysis. Though catalysis is most important in the manufacturing of chemicals, it also 

has a large range of other applications, from fuel cells19,20 to catalytic converters and 

photocatalytic devices. 

 

2.7 Filtration 

A strong influence of nanochemistry on waste-water treatment, air purification and 

energy storage devices is to be expected. Mechanical or chemical methods can be used for 

effective filtration techniques. One class of filtration techniques is based on the use of 

membranes with suitable pore sizes, whereby the liquid is pressed through the membrane. 
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Nanoporous membranes are suitable for mechanical filtration with extremely small pores of less 

than 10 nm (“nanofiltration”) and may be composed of nanotubes21. On a larger scale, the 

membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 

nm. One important field of application for ultrafiltration is medical purposes as can be found in 

renal dialysis. 

Magnetic nanoparticles offer an effective and reliable method to remove heavy metal 

contaminants from waste water by making use of magnetic separation techniques. Using 

nanoscale particles increases the efficiency to absorb the contaminants and is relatively 

inexpensive compared to traditional precipitation and filtration methods. 

 

2.8 Energy 

Nanotechnology taps on various aspects of energy, but the most advanced and beneficial 

projects are related to the storage, conversion, and manufacturing improvements of energy. The 

manufacturing improvements are achieved by reducing materials and process rates. This results 

in energy savings by better thermal insulations and enhanced renewable energy sources. 

 

2.9 Reduction of energy consumption 

The energy crisis in the world is a major concern for all.  Scientists have been extensively 

researching new technologies to reduce energy consumption. Nanotechnological methods like 

light-emitting diodes (LED)22 or quantum caged atoms (QCAs)23  could lead to a reduction in 

energy consumption for illumination, as compared to the currently used light bulbs which 

convert very little of the electrical energy into light. 
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2.10 Increasing the efficiency of energy production 

Due to the energy crisis in the world, we have to tap into various forms of energy 

sources. One of the cleanest sources of energy in the world is solar energy. Today’s best solar 

cells have layers of many different semiconductors stacked together to absorb light at different 

energies, but they are still not able to efficiently absorb all the energy available. They only make 

use of 40% of the sun’s energy. Nanotechnology can help in increasing the efficiency of light 

conversion by using nanostructures with a continuum of bandgaps. Nanotechnology could 

improve combustion by designing specific catalysts with maximized surface area. Scientists have 

recently developed tetrad-shaped nanoparticles that, when applied to a surface, instantly 

transform it into a solar collector. 24  

 

2.11 The use of more environment friendly energy systems 

An example for an environmentally friendly form of energy is the use of fuel cells19-22 

powered by hydrogen, which is ideally produced by renewable energies. Probably the most 

prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported 

noble metal particles with diameters of 1- 5 nm. Suitable materials for hydrogen storage contain 

a large number of small nanosized pores. Therefore many nanostructured materials like 

nanotubes, zeolites or alanates are under investigation.21,22  

Nanotechnology can contribute to the further reduction of combustion engine pollutants 

by nanoporous filters, which can clean the exhaust mechanically, by catalytic converters based 

on nanoscale noble metal particles or by catalytic coatings on cylinder walls and catalytic 

nanoparticles as additive for fuels. 
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2.12 Recycling of Batteries 

In today’s world, batteries have become a very integral part of our daily lives. Batteries 

have a very low energy density and therefore have a very short operating time. Consequently, 

they must be replaced or recharged very often. The huge consumption and disposal of batteries 

can pose a threat to the environment. Nanotechnology can create high energy batteries22,23 which 

can also be recharged. Thus use of these high energy and rechargeable batteries or 

supercapacitors25 will be helpful in reducing the disposal problem. 

 

2.13 Information and communication 

Information technology has been utilizing nanotechnology without any formal 

introduction of this science. The critical length scale of integrated circuits is already at the 

nanoscale (50 nm and below) in regards to the gate length of transistors in CPUs. The high-

technology production processes which are based on conventional top down strategies, already 

make use of nanotechnology. 

 

2.14 Novel optoelectronic devices 

In modern communication technology, traditional analog electrical devices are 

increasingly replaced by optical or optoelectronic26 devices due to their enormous bandwidth and 

capacity. Two promising examples are photonic crystals and quantum dots. 

Quantum dots are nanoscaled objects, which can be used, among many other things, for 

the construction of lasers. The advantage of a quantum dot laser27 over the traditional 

semiconductor laser is that their emitted wavelength depends on the diameter of the dot. 

Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes. 
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2.15 Displays 

 Displays have become a major part of advertising industry.  There is a need for creating 

displays with low energy consumption, and this goal can be attained by using carbon 

nanotubes28,29 (CNT). Carbon nanotubes are electrically conductive, and because of their small 

diameter (~ several nanometers), they can be used as field emitters with extremely high 

efficiency for field emission displays29-31 (FED). This method is close to the cathode ray tube but 

it is on a much smaller length scale. 

 

2.16 Consumer goods 

Consumer goods are becoming more user friendly and easy to use. Nanotechnology is 

making an impact in this field by providing consumers with easy-to-clean and scratch-resistant 

products. Textiles made with nanotechnology are wrinkle-resistant and stain-repellent and are 

gradually becoming “smart”. Products made with nanoparticles are increasingly hitting the 

consumer market, especially in the fields of cosmetics.  

 

Foods 

Nanotechnology has been extensively and routinely used in the food production,32 

processing, safety32 and packing.32,33 The nanocomposite coating process improves the food 

packaging by placing anti-microbial agents on the surface of coated film. Research is being 

performed to apply nanotechnology to the detection of chemical and biological substances for 

sensing biochemical changes in foods. 32,33 Nanocomposites can drastically increase and decrease 

gas permeability of the various fillers as they are required for the various products. 
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Household 

“Self-cleaning”33 or “easy to clean” surfaces34,35 in a household can reduce the extent of 

household chores. Nanotechnology has made that possible by providing us such materials in the 

form of ceramics and glasses.  It has also improved the smoothness and heat resistance of 

common household equipment such as the flat iron which provides better results. 

 

Optics 

Sunglasses save our eyes from the harmful UV rays. Sunglasses which are now available 

on the market, with protective and antireflective ultrathin polymer coatings make them close to 

impenetrable. Nanotechnology has also helped in providing scratch resistant surface coatings36 

based on nanocomposites for a longer life of the sunglasses. The most significant application of 

nanotechnology in optics is the increased precision in pupil repair and other types of laser eye 

surgery. 

 

Textiles 

Nanoparticles have also played a very important role in the textile industry. In today’s 

world, a need for wrinkle-free, stain-repellent and water-repellent cloth is satisfied by 

nanofibers.37 This has made the use of nanofibers in the manufacturing of cloth inimitable. 

Furthermore, textiles manufactured with nanotechnological finishes are created in such a way 

that they require less washing and can be washed at lower temperatures. The latest application of 

nanoparticles is in military applications as camouflage. In these applications nanocameras along 

with nanodisplays are incorporated in the textile material and this could create an “invisibility 

coat” acting as a skin like a chameleon.  



 27 

Cosmetics 

In the present world of cosmetic preference and cancer awareness, it is required to 

produce effective products which can be used on a long-term basis. Sunscreens38 are one of the 

most used products in the market. In earlier days, sunscreens were made out of traditional 

chemicals that absorbed UV radiation.  However, these compounds suffer from poor long-term 

stability. Whereas, sunscreens made out of mineral nanoparticles such as titanium oxide are more 

durable and have a comparable UV protection property.39,40 Furthermore, nanoparticle sized 

oxides decrease the cosmetically undesirable white color as the particle size decreases. 

 

2.17 Previous Research on Magnetic Nanoparticles 

Magnetic nanoparticles have been a key area of research in biomedical applications of 

nanomaterials. In many cases, the properties and characteristics of the bulk materials are well 

understood, but when materials are transformed into the nanoscale region their behavior changes 

dramatically and cannot be easily predicted. Consequently, efforts to understand biological 

responses to nanomaterials has been of interest to researchers for many years.  

There are two reasons why magnetic nanoparticles or magnetic nanocomposites have 

attracted scientists so much. First, magnetic nanoparticles can be controlled externally to the 

body by application of magnetic fields. Second, magnetite can be combined with gold, silica or 

other materials and thus the surface properties of the magnetic nanomaterials can be modified 

according to the necessity of their application.  

Previous research has shown that magnetic nanocomposites not only have their 

application in the medical field but also it can be used in the household uses. There have been 

advances in the handling and manipulation of magnetic particles in microfluidic systems41,42.  
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Starting from the properties of magnetic nanoparticles and microparticles, they have been used in 

magnetic separation43, immunoassays, magnetic resonance imaging44-48, drug delivery49-53, and 

hyperthermia54,55. Magnetic nanoparticles that are applied as markers for the specific analysis of 

biomolecules have the advantage that they are stable, mostly non-toxic and can be used for in 

vitro as well as in vivo experiments.  

Magnetic nanoparticles, sometimes with their surfaces modified by polymers or different 

noble metals, have been also used for treatment of water56,57. Moreover surface-modified 

magnetic nanoparticles synthesized for cellular interactions have shown improved biological 

applications. Bifunctional nanomaterials have been used for detection of very low concentrations 

of bacteria58 and also to probe pathogenic bacteria59.  

Scientists have reviewed some relevant aspects of the magnetic properties of metallic 

nanoparticles of different shapes and sizes and how they differ from their bulk counterpart. The 

magnetic properties of nanoparticles enable them to be used as storage devices and for targeted 

drug delivery systems49-53. Moreover they are also used for targeted heating of cancerous cells 

and tumors60-63. Serial heat treatments were possible without repeated injection of magnetic fluid. 

The popularity and practicality of nanoparticle materials create a need for a synthesis method 

that produces quality particles in sizable quantities. 

To further the application of nanoparticles in disease diagnosis and therapy, it is 

important that the systems are stable, capable of being functionalized, biocompatible, and 

directed to specific target sites in the body after systemic administration. For this reason the 

magnetic nanoparticles need to be coated or made core shell so that they are not toxic and are not 

easily oxidized. The surface modification helps the nanoparticles to be evenly dispersed and 

stable in aqueous medium.  
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Lee et al. have capped the surface of monodispersed maghemite (γ-Fe2O3) to increase the 

stability of the particles in polar solvents.64  Interfacial ligand exchange of the capping molecules 

was done to make the particle surface more hydrophilic.  The maghemite particles showed 

enhanced miscibility and short-term stability in water after interfacial ligand exchange. 

Gajdosikova et al. have been able to reduce the acute toxicity of magnetite nanoparticles by 

coating them with poly (D,L) lactide.65 Olle and coworkers observed enhancement of oxygen 

mass transfer in the presence of colloidal dispersions of magnetite nanoparticles coated with 

oleic acid and a polymerizable surfactant.66  These fluids improved gas-liquid oxygen mass 

transfer up to six fold in an agitated, sparged, cell-free reactor and showed remarkable stability in 

high-ionic strength media over a wide pH range. Nishiya and research group coated the magnetic 

nanoparticles with hydroxyapatite67 which is not only an important material for bone and tooth 

implants, but is also commonly used in protein purification. These particles could be directly and 

readily used in biomedical applications. Moreover, they showed that these particles could be 

controlled by an external magnet. 

Feng et al. synthesized HSA-coated magnetic nanoparticles labeled with rhenium-188 for 

the purpose of regional target therapy.68 These radioactive Re doped magnetite particles are used 

for the γ-imaging technique. To investigate the different magnetic properties scientists have 

doped the magnetite particles with various other metals like tin69,70, zinc71, cobalt72,73 or 

nickel74,75. 

One other important area of research was attaching or coating magnetite particles with 

noble metals like gold. This not only makes the magnetite particles less susceptible to oxidation 

but also helps in attaching a linker to the surface of gold. Gold surfaces are very readily modified 

using sulfide linkages and thus antibodies could be subsequently attached to gold and used for 
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targeted drug delivery. Sun et al. were able to synthesize dumbbell shaped bifunctional gold 

magnetite nanoparticles76, and Caruntu and coworkers were able to attach gold nanograins on 

larger magnetite particles using different wet chemical methods of synthesis.77 Kawaguchi and 

his group have prepared gold/iron-oxide composite nanoparticles by a unique laser process in an 

aqueous medium78. 

Scientists have used different approaches for synthesizing the nanoparticles, with one of 

the most amazing techniques being sonochemistry. Polycrystalline iron phosphide coated iron 

oxide and hollow iron phosphide nanoparticles were synthesized by sonochemistry79. Moreover 

it has already been proven that scientists can control the shape and size of the noble metals by 

adjusting the parameters in sonochemical processes80. Researchers were also able to produce 

coated or bare magnetite particles of desired size and morphology80-83.  

The nanocomposites produced in various different ways can be used in biomedicine, drug 

delivery, MRI contrast agents and in household applications. Though the research area is in its 

early stages, scientists have successfully shown that some of the nanoparticles can be used in 

fields ranging from targeted cancer therapy to textile industry. So it can be seen that the use of 

nanoparticles are widely varied and thus have become an important area of scientific research. 
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Chapter 3:  Synthesis and Characterization of Gold- Magnetite Nanoparticles  

3.1 Abstract 

Two novel synthetic routes to formation of gold-magnetite nanoparticles have been 

designed. The first method involved treatment of preformed magnetite nanoparticles with 

ultrasound in aqueous media with dissolved tetrachloroauric acid. The other route involved 

irradiation of preformed magnetite nanoparticles by UV radiation in aqueous media with 

dissolved tetrachloroauric acid. Both the methods resulted in the formation of gold-magnetite 

nanocomposite materials.  These materials maintained the morphology of the original magnetite 

particles.  The morphology of the gold particles could be controlled by adjusting experimental 

parameters, like addition of small amounts of solvent modifiers such as methanol, diethylene 

glycol, and oleic acid as well as variation of the concentration of the tetrachloroauric acid 

solution and time of the reaction.  The nanocomposite materials were magnetic and exhibited 

optical properties similar to gold nanoparticles. 
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3.2 Introduction 

Nanoparticles are small crystalline particles with sizes in the range of 1-100 nm, located 

in the transition region between molecules and microscopic (micron-size) structures. There are 

various types of nanoparticles synthesized, such as insulating (ceramics), metallic and 

semiconductor. Recently, hollow nanocrystals have also been synthesized which are spherical 

shells on the nanoscale1. 

Surface modification of nanometer sized inorganic-core particles with a different 

inorganic shell material to form core/shell type nanostructures has become an important route to 

functional nanomaterials. Such modification has brought about interesting physical and chemical 

properties of nanostructured materials that have shown important technological applications2-4. 

Monodisperse particles (i.e. particles of uniform size) dispersed in a fluid are achievable 

and this is one of the reasons for the increased interest in nanoparticles in recent times6. Nanosize 

particles have a tendency to stick to surfaces and in some cases to each other, forming clusters of 

particles. This is caused by the relatively large electromagnetic forces, i.e., when particles carry a 

net charge there is a strong electrostatic repulsion between them, by Coulomb’s law, and they 

stick strongly to oppositely charged particles, or uncharged polarizable surfaces. Nanoparticles 

of ferroelectric or ferromagnetic materials demonstrate a strong dipole-dipole interaction while 

nonpolar particles polarize and interact through van der Waals forces. Nanoparticles can be self-

assembled, which is another reason for interest in them. 

Nanoparticles have been produced and used for a very long time. They are usually used 

as pigments in inks, paints and glazes7. They are also an essential ingredient in sun protection 

lotions, and in other cosmetics. Nanoparticle applications can be separated into different 

categories according to the role played by the particles. The simplest case is where their size, 
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shape, surface chemistry, or other physical properties, affect their immediate environment. They 

have also been recognized to function as catalysts for carbon nanotube growth. Another 

application is where the particles communicate information on the local environment or modify 

some local physical property in a way that can be detected in real-time.  

The finite size and surface effects gives rise to some noteworthy phenomena of magnetic 

nanoparticles including superparamagnetism, high field irreversibility and high saturation field8. 

The fact that particles of a ferromagnetic material below a critical size (<15 nm) would consist of 

a single magnetic domain was evident from the work of the researchers.9 The particles show an 

atomic paramagnetic behavior (superparamagnetism) and have an extremely large magnetic 

moment above a certain temperature called the blocking temperature. 

Applications such as medical diagnosis and curative therapy require these particles to be 

stable at physiological pH and salinity conditions. The particle size is a key issue since the 

precipitation due to gravity can be avoided with smaller particles. On the other, hand steric and 

coulombic repulsions can also be of importance with respect to charge and surface chemistry.  

It is necessary to coat these magnetic nanoparticles with a biocompatible polymer during 

or after synthesis to prevent formation of large aggregation and biodegradation in systems for in 

vivo applications10. Among the range of magnetically responsive components (from magnetite to 

summarium-cobalt systems) magnetite and its oxidized form (γ-Fe2O3) are most commonly 

employed. Nickel and cobalt are susceptible to oxidation and have alarming toxicity. So they are 

of little or no interest for in vivo application. Thus for in vivo biological applications the 

magnetic particles must be synthesized from non-toxic, non-immunogenic material with small 

particle size to maintain after-injection circulation through the capillary systems of organs and 

tissues. Furthermore it is also necessary to have a higher magnetization for the particles so that 
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their movement can be controlled by an external magnetic field and can be immobilized to the 

targeted pathogenic tissue11. 

For in vitro applications, restrictions are a bit relaxed with respect to sizes. 

Superparamagnetic nanocrystals dispersed in submicrometric diamagnetic particles with long 

sedimentation times can be used. The advantage appears in the functionality of the nanoparticles. 

For all applications, the size, shape, and surface chemistry of the particles as well as their 

magnetic properties are always of prime importance.  

Recently many attempts have been made to develop processes and techniques that would 

yield core shell uniform nanoparticles with controlled size and shape. Developments in 

nanotechnology demand building blocks with increasing structural and compositional 

complexity, which can be reproducibly self-assembled into functional materials. In this regard, 

nanoparticles with core-shell morphologies represent a new type of construction unit consisting 

of two dissimilar compositional and structural domains. Such materials should have enhanced 

physical and chemical properties and a broader range of applications than their single-component 

counterparts.12-15 

During the last several years, interest in the study of nanostructured materials has been 

increasing at an accelerating rate, stimulated by recent advances in materials synthesis and 

characterization techniques and the realization that these materials exhibit many unique and 

interesting physical and chemical properties with a number of potential technological 

applications. As never before, magnetic materials are the key to the future of the storage 

industry. 

Preparation of gold-magnetite nanocomposites, especially those with a core-shell 

structure12, has been a topic of much interest.  Magnetic nanoparticles have a wide range of 
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potential applications13, including uses as medical diagnostic tools13, drug delivery systems13-15, 

and biosensors13,14 as well as molecular sensors16.  Effective use of magnetic nanoparticles for 

these purposes requires several characteristics such as uniform and controllable particle size, 

shape, and morphology, substantial and reliable magnetic properties17,18, low toxicity, stability in 

biological or environmental systems13,14, and readily functionalizable surfaces to allow chemical 

and biological selectivity19.  Gold coated magnetite has been proposed as an effective material 

that would meet these requirements. It has been well established that gold can be functionalized 

with thiolated organic molecules20 and via amide coupling chemistry21. Researchers have 

successfully bound thiol modified DNA and various other enzymes to gold particles22. 

Obtaining novel materials with controlled size or shape23,24 under mild conditions and 

with safe precursors is an issue that has engaged many researchers. Sonic energy has been 

routinely used in the field of materials science for many years. Its chemical effects have recently 

come under investigation for the acceleration of chemical reactions25,26 and for the synthesis of 

Figure 3.1. Schematic of Sonochemical Process 
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new materials25, as well as for the generation of novel materials with unusual properties26. Many 

reactions which are normally sluggish can be accelerated by application of ultrasound.  The 

acceleration is due to either physical or chemical effects of cavitation. Physical effects can 

enhance the reactivity of a catalyst by enlarging the surface area or by improving mass 

transport26. Chemical effects of ultrasound enhancement of reaction rates occur through high 

temperature, high pressure, and highly reactive radical species formed during cavitation26. 

Cavitation in a liquid occurs due to the stresses induced in the liquid by the passing of a 

sound wave through the liquid25. A sound wave consists of compression and 

decompression/rarefaction cycles.  If the pressure during the decompression cycle is low enough, 

the liquid can be torn apart to leave small bubbles25,26. These cavitation bubbles grow during 

subsequent decompression phases, and contract during compression phases.  Because of an 

imbalance between growth and contraction, the bubbles increase in size until they are no longer 

stable.  At this point the bubbles implode violently during the next compression. During 

implosion temperatures can reach an estimated 5000°C, pressures can reach several hundreds of 

atmospheres, and solvent molecules can be homolytically cleaved to form species such as 

hydroxyl radical and hydrogen atoms26.  Formation of gold nanoparticles during sonication has 

been previously reported, and the mechanism was proposed to occur through hydrogen atom 

reduction of dissolved gold27. 
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3.3 Experimental Procedure 

In our study we have introduced two new approaches of synthesizing magnetic 

nanoparticles. They are 

1. Sonochemical synthesis of gold magnetite nanoparticles with various surfactants. 

2. Synthesis of gold magnetite nanocomposites by UV radiation (variation of time 

and variation of concentration)  

Hydrogen tetrachloroaurate trihydrate (HAuCl4.3H2O), methanol, ethanol, diethylene 

glycol, and oleic acid were obtained from Aldrich.  Purified water was obtained by using 

NANOpureUV water system (Barnstead) with a distilled water feed. 

 Magnetite was prepared as reported29,30,31 by dissolving FeCl2.4H2O and FeCl3.6H2O in 

diethylene glycol in a Schlenk flask under protection with argon. Separately, NaOH was 

dissolved in diethylene glycol. The solution of NaOH was added to the solution of metal 

chlorides while stirring at room temperature causing an immediate color change. The 

temperature of the resulting solution was raised during 1-1.5 h to 210-220 oC and then kept 

constant for 0.5-1 h. As the solution turned turbid, the reaction was terminated by adding oleic 

acid dissolved in DEG. This addition caused immediate precipitation of solids. The mixture was 

cooled to room temperature and then centrifuged. The precipitate was washed with methanol and 

redissolved in toluene. The resulting solution was centrifuged and mixed with 1-2 volumes of 

methanol. The precipitate was separated by centrifuging, washed with methanol, then stored in 

methanol. 
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3.4 Experimental Procedure of Sonochemical Synthesis 

In this study, sonochemical methods were utilize to produce gold-magnetite nanocomposite 

materials. A stock solution of 0.1 mM HAuCl4 (aq) was prepared. An aliquot (50 mL) of this 

solution was sparged with argon for 20 min.  Methanol (100 µL), diethylene glycol (100 µL), or 

oleic acid (100 µL) was added and sparging was continued for another 5 min.  Magnetite 

nanoparticles25 (1 mg suspended in 100 µL of methanol) were added to the above solution and 

sparging continued for another 10 min. The sample was then sonicated in a jacketed, water 

cooled (20°C) reaction vessel under an argon atmosphere for 10 min at 50% amplitude using an 

ultrasonic processor (600W, ACE Glass, Vineland, NJ).  The solution turned pink/purple during 

sonication. The resulting solution was then transferred into a test-tube and kept in front of a 

magnet for at least one day until the whole solution became clear and colorless as the gold-

magnetite nanocomposite material was pulled against the wall of the test tube by the magnet.  

The transparent solution was carefully removed from the test tube while the particles were kept 

against the test tube wall with the magnet.  The material was washed with water and re-separated 

twice before the nanocomposite particles were dispersed in 2 ml of ethanol and stored in capped 

tubes.  

Portions of the ethanol suspensions were put onto copper transmission electron microscope 

(TEM) grids, and the solvent was allowed to evaporate prior to TEM analysis with a JEOL 

Model 2010 TEM, including energy dispersive spectroscopy (EDS) to determine particle 

composition.  Additional portions of the materials were digested using aqua regia and were 

subsequently analyzed by inductively coupled plasma (ICP) atomic emission spectroscopy in 

order to determine elemental composition.  For these determinations, multiple batches of 
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nanocomposite materials were prepared and pooled.  A small aliquot of the pooled material was 

sampled and analyzed by ICP.  Therefore, the ICP data were representative of the bulk 

nanocomposite material. Absorbance of the nanoparticles was measured with a Cary 5E 

absorbance spectrometer (Varian, Inc., Palo Alto, CA) using ethanol suspensions.  Magnetic 

characterization was performed with a Quantum Design MPMS-5S superconducting quantum 

interference device (SQUID) magnetometer. 
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3.5 Results and Discussions 

3.5.1 Magnetic Separation of Au-magnetite Nanocomposites 

Sonication of magnetite nanoparticles in the absence of HAuCl4 did not cause any 

observable changes in the TEM images of the magnetite particles.  In the presence of HAuCl4, 

sonication resulted in the appearance of a red or purple coloration of the particles, as depicted in 

Figure 3.2.  Exposing these materials to a magnetic field resulted in removal of all colored 

material from the liquid. This result indicates that the gold particles must be physically or 

chemically attached to the magnetite.  This attachment is at least strong enough to cause the 

suspended gold particles to migrate with the magnetite in a magnetic field. 

 

 

Figure 3.2. Gold magnetite nanocomposite materials suspended in ethanol prior to (a) and 
after (b) magnetic separation. The reddish-brown/purple color is from gold nanoparticles. 
Note that all the color is removed after separation, indicating that the gold was attached to 
magnetite 

a ba b
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3.5.2 TEM Images  

TEM images of these particles revealed the presence of both gold and magnetite forming a 

nanocomposite material. Observation of the particles in Figure 3.3 suggests a high degree of 

agglomeration between magnetite particles.  This degree of agglomeration is likely due to the 

removal of the initially present capping ligand during the sonication process. Figure 3.4 depicts 

the TEM for gold-magnetite nanocomposite material formed with diethylene glycol as additive, 

and Figure 3.5 presents the TEM image when oleic acid was used. When diethylene glycol was 

used, more uniform gold particles were observed.  

In addition, the Fe/Au ratio decreased compared to the material prepared using methanol as an 

additive. With oleic acid added, substantially smaller gold particles were observed, and the 

Fe/Au ratio also decreased. Therefore, adjusting the identity and amounts of these additives may 

Figure 3.3. TEM image of gold-magnetite nanocomposite material 
formed by sonication of magnetite in aqueous HAuCl4 with added 
methanol. Dark particles are gold, grey particles are magnetite. 

20 nm 
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provide a mechanism for preparing gold-magnetite nanocomposite materials with a range of 

selected Fe/Au compositions and particle sizes.   

Figure 3.4. TEM image of gold-magnetite 
nanocomposite formed with diethylene glycol 
additive 

Figure 3.5. TEM image of gold-magnetite nanocomposite 
formed with oleic acid additive 

50 nm 
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We did some ICP measurements to verify the respective observations from the TEM images. The 

ICP results are presented below.  

 
 
Table 3.1. The ratios of Au and Fe in the samples with MeOH, DEG and Oleic acid. Data 

obtained from ICP analysis of digested samples. 
 

Sample prepared with Au weight % Fe weight % 
Methanol 26 74 

Diethylene Glycol 57 43 
Oleic Acid 50.4 49.6 

 
 

Mass balance calculations for the ICP results were performed to validate the ICP results.  

The measured mass of iron (calculated from ICP measurement) was converted to mass of 

magnetite (assuming all Fe was Fe3O4) and this mass was added to the measured mass of gold.  

For each of the nanocomposites, the resulting sum was within 5% of the weighed mass of the 

sample prior to digestion.  
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Figure 3.6. EDS spectrum of composite particles depicted in Figure 3.3. Cu and C peaks are 
from TEM grid 

 

3.5.3 EDS Data 

EDS analysis of the particles indicated the presence of both iron and gold, for all the sets of 

experiments. The data presented in this EDS spectrum were collected from multiple particles, 

and is therefore representative of the composite material. Additional EDS spectra collected on 

single particles verified that the dark particles in the TEM image (Figure 3.3) are in fact gold and 

the grey particles contain iron as the only metal. 
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Figure 3.7. EDS Spectra for the Au-magnetite nanocomposites in DEG 
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Figure 3.8.  Magnetization vs. temperature for magnetite 
nanoparticles (a) and gold-magnetite nanocomposite material 
(MeOH) (b).  In each panel, the top curve is for the field cooled 
sample and the bottom curve is for the zero field cooled sample. 

 

3.5.4 Magnetic Measurements 

The gold-magnetite nanocomposite material was also characterized to determine its magnetic 

properties using a SQUID magnetometer.  Substantial changes in the magnetic properties of 
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these materials were observed compared to the untreated magnetite precursor material.  Figure 

3.8 compares the magnetization vs. temperature behavior of the untreated magnetite and the 

gold-magnetite nanocomposite material.   

While the general shape of these curves is similar, the gold-magnetite nanocomposite material 

exhibited a substantially higher magnetization of about 23 emu/g compared to 14 emu/g for the 

untreated magnetite.  The nanocomposites with DEG and oleic acid showed higher 

magnetization value of ~33 emu/g and 27 emu/g respectively as depicted in Figure 3.9 and 3.10. 

In all cases, the magnetization was normalized to total mass of magnetite in the sample, so the 

decrease in magnetization per gram observed for the particles with gold is due to the added mass 

of the non-magnetic gold.   

 

Figure 3.9.  Magnetization vs. temperature for gold 
magnetite nanocomposite material with DEG in 100 Oe 
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In addition to the differences in magnetization, the coercivity of the sample changed upon 

formation of the nanocomposite material.  The untreated magnetite had an observed coercivity of 

75 Oe, while the gold-magnetite nanocomposite material exhibited a substantially increased 

coercivity of 200 Oe.  These data are depicted in Figure 3.11. Also apparent in this figure, is the 

significantly larger saturation magnetization (Ms) for the nanocomposite material (Ms ~ 125 

emu/g) compared to that of the untreated magnetite (Ms ~ 90 emu/g). The gold-magnetite 

nanocomposite with DEG as the surfactant had an observed coercivity of 284 Oe, while the gold-

magnetite nanocomposite material with Oleic Acid exhibited a coercivity of 155 Oe.  These data 

are depicted in Figure 3.12 and 3.13 respectively. Also apparent from the figures, is the 

significantly larger saturation magnetization (Ms) for the nanocomposite materials (Ms ~ 186 

emu/g) and (Ms ~ 140 emu/g) compared to the untreated magnetite (Ms ~ 90 emu/g).  

Magnetization vs Temperature

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Temperature (K)

M
ag

n
et

iz
at

io
n

 (
em

u
/g

)

Figure 3.10.  Magnetization vs. temperature for gold 
magnetite nanocomposite material with Oleic Acid in 100 Oe 
Field. 
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Figure 3.11. Hysteresis loops for untreated magnetite (a) and gold-
magnetite nanocomposite material (b). 
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Figure 3.12. Hysteresis loop for gold-magnetite nanocomposite material in 
DEG at 5K. 
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Figure 3.13. Hysteresis loop for gold-magnetite nanocomposite 
material in Oleic Acid. 
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The changes in magnetic properties are most likely due to changes in the surface characteristics 

of the magnetite. During sonication, the capping ligands initially present can be removed. 

Removal of these capping ligands could cause a change in the surface charge or magnetic 

domains. Surface modification of the magnetite is also possible under the reactive conditions that 

occur during sonication. In addition, interactions between magnetite particles could be enhanced 

by their direct contact, which is not possible with capping ligands present. Finally, interaction of 

the magnetite surface with gold could contribute to changes in the surface states, yielding altered 

magnetic properties. A control experiment was performed in which magnetite was sonicated 

under identical conditions but with no HAuCl4 present. The magnetic properties for these 

particles showed decreased saturation magnetization (Ms ~ 5 emu/g) compared to untreated 

magnetite. The fact that magnetite sonicated in the absence of gold exhibited different magnetic 

properties compared to magnetite sonicated in the presence of gold indicates that the gold plays 

an important role in controlling the magnetic properties, either through direct gold-magnetite 

interactions or through alteration of the processes occurring during sonication. Yu, et al. reported 

that interactions between attached gold and magnetite particles altered the observed magnetic 

properties of the magnetite through interfacial communication.12 
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3.5.5 Absorbance Data 

Figure 3.14 shows the absorbance spectra of the three types of gold magnetite 

nanocomposites suspended in ethanol. The spectrum of pure gold nanoparticles (30 nm diameter) 

obtained from a commercial supplier is also included for comparison.  The absorbance maximum 

of the pure gold nanoparticles was observed at 523 nm, while the gold-magnetite 

nanocomposites showed maxima at longer wavelengths. Gold-magnetite nanocomposites 

prepared with methanol showed an absorbance peak at 569 nm, and nanocomposites prepared 

with DEG showed a maximum at 557 nm.  The Au-magnetite nanocomposites prepared with 

oleic acid did not yield a clear absorbance maximum due to excessive scattering by the particles 

(not shown).  The red shift in the gold surface plasmon observed for gold-magnetite 

nanocomposites is most likely due to interaction of the gold particles with the magnetite to which 

they are attached.  The surface plasmon resonance is highly dependent upon the local 

microenvironment of the particle,24 so attachment to magnetite is expected to change the surface 

plasmon. 

 

 

 

 

 

 Figure 3.14. The absorbance spectra of gold magnetite nanocomposites suspended 
in ethanol. 
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3.6 Experimental Procedure of UV Radiation Synthesis 

3.6.1. Time Based Experiment 

 An aliquot of tetrachloroauric acid solution was placed in a quartz test tube and to it was 

added 100 µl of preformed magnetite suspended in methanol (~1 mg of magnetite). It was 

shaken thoroughly so that the magnetite was uniformly dispersed in the aqueous solution. The 

color of the solution was brown. Then the test tube was inserted in a Rayonet (Southern New 

England Ultraviolet Company, Branford, CT) merry-go-round photochemical reactor which 

produced UV radiation in the 254 nm range.  Four different time periods of reaction were 

chosen. The time periods were 15 min, 30 min, 45 min and 60 min. The color of the solution 

turned from brown to light purple or dark purple according to the respective reaction time 

periods. The whole solution was transferred into a plastic centrifuge tube and placed in front of a 

magnet for a day. The purple particles were separated and the solution became colorless. These 

particles were then collected, washed with water twice and separated in front of the magnet each 

time. After being washed with water, the particles were washed with ethanol and resuspended in 

2 ml of ethanol. The synthesized nanoparticles were characterized by TEM, EDS, ICP and XRD.  

3.6.2 Concentration Based Experiment 

 Different concentrations (0.05mM, 0.01mM, 0.1mM and 0.2mM) of aqueous 

tetrachloroauric acid solution were prepared from an aqueous stock solution. These were put into 

different quartz test tubes. 100µl of preformed magnetite suspended in methanol (~1 mg) was 

added to each of the four different concentrated solutions. They were thoroughly shaken and put 
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into irradiation apparatus (254 nm) for a reaction time period of 1 hour. The color of the solution 

was brown before it was irradiated with UV. After an hour the color of the solutions turned light 

red to dark purple, depending on the concentration of gold in the original solution. A similar 

procedure from the time based experiment was followed to separate the particles from the 

solution. The whole solution was transferred into a plastic centrifuge tube and placed in front of 

a magnet for a day. The purple particles were separated and the solution was colorless. These 

particles were then collected, washed with water twice and separated in front of the magnet each 

time. After being washed with water, the particles were washed with ethanol and resuspended in 

2 ml of ethanol. The synthesized nanoparticles were characterized by TEM, EDS, ICP and XRD. 
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3.7 Results and Discussions 

3.7.1 TEM IMAGES   

The morphology of the magnetite nanoparticles was examined with a JEOL JEM 2010 

transmission electron microscope (TEM) at 200KV. TEM samples were prepared by a 

conventional technique consisting of depositing several drops of the gold magnetite particles 

suspended in ethanol solution onto carbon coated Cu grids followed by the slow evaporation of 

the solvent.  

Concentration Based Experiment 

 

 

 

 

 

 

 Fig 3.15. TEM image of gold-magnetite nanoparticles 
irradiated with UV light for 60 min in 0.05 mM HAuCl4. 
The dark particles are gold and the gray particles are 
magnetite 

50 nm 
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Fig 3.16. TEM image of gold-magnetite nanoparticles irradiated with 
UV light for 60 min in 0.1 mM HAuCl4.  

Fig 3.17. TEM image of gold-magnetite nanoparticles irradiated with 
UV light for 60 min in 0.2 mM HAuCl4. The dark particles are gold 
and the gray particles are magnetite 

50 nm 

50 nm 
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Time Based Experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig 3.18. TEM image of gold-magnetite nanoparticles irradiated with UV 
light for 30 min in 0.1 mM HAuCl4.  
 

Fig 3.19. TEM image of gold-magnetite nanoparticles irradiated with UV 
light for 45 min in 0.1 mM HAuCl4. The dark particles are gold and the 
gray particles are magnetite 
 

50 nm 
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In the concentration based experiment from the TEM pictures it is evident that as we 

increase the concentration of the tetrachloroauric acid solution, the amount of gold nanoparticles 

as well as their size tended to increase. The number of gold particles, ie. the number of dark dots 

(gold is seen as dark dots in TEM) increases as we go from Fig 3.15 to Fig 3.17. This result was 

also supported by the EDS spectra (section 3.7.2) as well as the ICP data. Since the 

nanocomposites were attracted towards a magnet even after washing it with ethanol and water, it 

can be concluded that the gold particles were attached to the magnetite nanoparticles.    

 In the time based experiment we also observed that as we increased the irradiation time 

from 15 min to 60 min the amount of the gold particles increased. This was also concluded from 

EDS (section 3.7.2) and the ICP data  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.20. TEM image of gold-magnetite nanoparticles irradiated with UV 
light for 60 min in 0.1 mM HAuCl4. The dark particles are gold and the 
gray particles are magnetite 
 

50 nm 
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3.7.2 EDS Spectra  

The EDS spectra for the gold magnetite nanoparticles also show the presence of both Au and Fe. 

This can be seen in Figures 3.21 and 3.22. The data presented in this EDS spectrum were 

collected from multiple particles, and is therefore representative of the composite material. 

Additional EDS spectra collected on single particles verified that the dark particles in the TEM 

images are in fact gold and the grey particles contain iron as the only metal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21. EDS spectrum of composite particles depicted in Figure 3.16. Cu peaks 
are from TEM grid 
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Fig. 3.22. EDS spectrum of composite particles depicted in Figure 3.20. Cu peaks are 
from TEM grid 
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3.8 Conclusion 

The experiments conducted to date have resulted in a novel method for preparation of 

gold-magnetite nanocomposite materials. These materials substantially maintain the optical 

properties of gold. At the same time, the gold can be separated or otherwise manipulated with a 

magnetic field. The new methodology also includes parameters that can be adjusted to vary the 

Au/Fe ratio and particle sizes of the gold structures within the nanocomposites. These new 

particles have potential use in biomedical applications, in sensor applications, and in electronic, 

optoelectronic, and magneto-optic devices. Furthermore, the fundamental interactions occurring 

at the gold-magnetite interface are poorly understood. These new nanocomposite materials 

provide an opportunity to study these interfaces and gain knowledge about interparticle 

interactions within nanoscale materials. 
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Chapter 4. Synthesis and Characterization of Gold-Titania-Magnetite Nanoparticles 

 

4.1 Abstract 

TiO2 nanoparticles with embedded magnetite were suspended in aqueous HAuCl4 and ultraviolet 

irradiated to photodeposit gold on the surface. The degree of gold coating and the wavelength of 

absorbance could be controlled by adjusting the concentration of HAuCl4. Absorbance maxima 

were between 540-590 nm. Particles exhibited superparamagnetic properties (blocking 

temperature ~170 K) whether or not they were coated with gold. These particles have potential 

applications as drug delivery agents, magnetic imaging contrast agents, and magnetically 

separable photocatalysts with unique surface properties. 
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4.2 Introduction 

Gold-coated magnetite nanoparticles have become increasingly important in research 

because their combination of magnetic and chemical properties makes them suitable for 

biomedical applications.1–5 Magnetic nanoparticles for cancer treatment or detection are moving 

to market through testing stages or are already in use.6,7 Several recent reports have indicated 

some success in producing gold-magnetite composite particles.1–3,8 Caruntu and coworkers were 

able to attach 3-nm gold nanoparticles onto larger magnetite particles by coating the magnetite 

with a positively charged capping ligand and mixing them with negatively charged gold 

particles.9 However, this approach was not able to achieve a complete shell of gold around the 

magnetite.  

 

Lyon et al. reported the reduction of gold onto the surface of hematite using 

hydroxylamine as the reducing agent, but they were unable to attach gold to magnetite without 

first oxidizing the outer surface of the magnetite to hematite.1 In other work, a microemulsion 

method was used to coat iron oxide nanoparticles with gold,10 but it is not clear whether the iron 

oxide was maghemite or magnetite. Furthermore, no evidence was presented to support the 

assumption that gold was coated on the surface of the magnetic particles. Another approach to 

forming magnetic nanocomposite materials containing gold involved coating polystyrene spheres 

with magnetite and silicon dioxide coated gold particles using a layering method.  

 

Wang et al. reported the formation of gold coated magnetite by initial synthesis of Fe3O4 

followed by reduction of Au(OOCCH3)3 in the presence of the magnetite seed particles.2 While 
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the data presented in this report indicate the formation of gold-magnetite composite materials, no 

strong evidence was presented to support the claim of core-shell structures. 

 

Although some success has been achieved, attaching gold to magnetite nanoparticles 

remains a challenging task. In an alternate approach, we have utilized titanium dioxide as a 

bridging agent to achieve particles with a magnetite core and a gold surface. Titanium dioxide 

was chosen as a bridging layer because magnetite and titanium dioxide show good cohesive 

properties.12 Furthermore, titanium dioxide is a good photocatalyst, allowing for photoreduction 

of gold onto its surface with ultraviolet (UV) irradiation.  

 

Previous reports have indicated that noble metals on the surface of semiconductor 

nanoparticles can improve photocatalytic properties of the semiconductor through charge 

separation of electron-hole pairs.13–15 Photocatalytic deposition of noble metals onto TiO2 

powders has been performed previously,16 and bimetallic nanoparticles of Ag and Au have also 

been prepared through a photochemical approach.17 In a two-step process, we have produced 

three component nanocomposite materials with a magnetite core, a TiO2 bridging layer, and gold 

surfaces. These novel particles have potential use for many biomedical applications such as 

magnetic resonance imaging (MRI) contrast agents and magnetic drug delivery.  

 

In addition, these particles have potential application as novel magnetic photocatalysts, 

with the magnetic core allowing easy separation of the heterogeneous catalyst after use12 and the 

noble metal surface serving to enhance the catalytic activity.13–15,18–21 For both biomedical and 
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photocatalytic applications, easy modification of the gold surfaces with chemical or 

biorecognition molecules can provide the particles with chemical or biological selectivity.1,2,9,10 
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4.3 Experimental Procedure 

Magnetite particles were prepared in the process described by Caruntu et al.3 To coat the 

magnetite particles with titanium dioxide a sol-gel technique was used.12 Titanium (IV) tetra-

butoxide (TBOT) was hydrolyzed in the presence of magnetite, and thus a layer of titanium 

dioxide was allowed to form on the surface of magnetite nanoparticles. The experimental 

procedure involved the dispersion of 100 µl magnetite particles (~1 mg) in 10 ml ethanol 

followed by sonication for 15 min. Next, 100 µl water and 1 ml TBOT solution (0.26 M in 

ethanol) were added rapidly.  

 

The final reaction mixture was aged in an ultrasonic bath at a constant temperature of 15 

°C for 5 h. The reaction was stopped by immersion in an ice-water bath and dilution with 

ethanol. The particles were separated by centrifugation and washed two times with ethanol, 

followed by two rinses with water. Then the particles were separated by a magnet. Once 

prepared, the particles were stored in ethanol. In this study, Fe3O4–TiO2 nanoparticles were not 

annealed after formation.  

 

Previous work has indicated that crystalline TiO2 can degrade the core magnetite 

material.12 Consequently, we chose to leave the titania in its amorphous state for this study. Once 

Fe3O4–TiO2 nanoparticles were obtained, gold was added in a photochemical step. An aliquot 

(100–300 µl) of Fe3O4–TiO2 particles (1.3 µg/µl in ethanol suspension) was added to 5 ml 

aqueous HAuCl4 (0.05–0.5 mM) in a 1.4-cm (inner diameter) quartz test tube; this solution 

appeared colorless. After mixing, the samples were subjected to UV irradiation with 254 nm 

lamps in a Rayonet (Southern New England Ultraviolet Company, Branford, CT) merry-go-
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round photochemical reactor for 15-45 min. After UV irradiation, the solution appeared purple in 

color, but there was no observable precipitate. The contents of the test tube were then placed next 

to a strong magnet to allow magnetic separation. 

 

Within a few hours, the particles were attracted to the magnet and separated from the 

clear, colorless supernatant. After removing the supernatant, the particles were washed with 

water and then resuspended in 1.5 ml ethanol. The resulting suspension was typically dark purple 

and was stored in the dark. Magnetic characterization was performed with a Quantum Design 

(San Diego, CA) MPMS-5S superconducting quantum interference device (SQUID) 

magnetometer. For these measurements, multiple batches (~20) of particles were prepared as 

described above, combined, and then dried in air over several days. 

 

The dried particles were then weighed and sent for measurement. To obtain transmission 

electron microscope (TEM) images, about 10–20 µl ethanol suspension was dried on a copper 

grid prior to analysis with a JEOL (Peabody, MA) Model 2010 TEM. For ultraviolet–visible 

(UV-vis) absorbance measurements, aliquots of ethanol suspensions were diluted 10-fold in 

ethanol and analyzed with a Cary 5E absorbance spectrometer (Varian, Inc., Palo Alto, CA). X-

ray diffraction (XRD) data were collected by drying multiple aliquots (40µl each) of an ethanol 

suspension on a small section of a 1 cm2 glass slide. Once deposited, the dried sample was 

analyzed with a Philips (Eindhoven, The Netherlands) X’pert-MPD x-ray powder diffraction 

system. 
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4.4 Results and Discussion 

Irradiation of the TiO2–Fe3O4 particles in aqueous tetrachloroauric acid resulted in the 

formation of a purple product indicating the presence of nanoscale gold particles. Because these 

colored particles were completely separated from the supernatant using magnetic means, it is 

clear that the gold was physically attached to the magnetic core particles. Previous studies on 

photodeposition of noble metals onto titania have indicated that the metal forms at the surface of 

the titania and remains attached at the site of formation.16 The mechanism of formation most 

likely involves formation of an isolated free electron at the surface of the titania, stepwise 

reduction of the metal to the zero valent state, and then repeated metal reduction steps at the 

metal nucleation site.16 Growth of the metal particle after nucleation occurs because the metal 

site accepts electrons from the titania and serves as a site for easy electron transfer.14–16 

 

4.4.1 TEM IMAGES 

Figure 4.1 presents a representative TEM image of the particles made with 5 ml 0.1 mM 

HAuCl4, 100 µl TiO2–Fe3O4 suspension (1.3 µg/µl in ethanol suspension), and 30 min UV 

irradiation. In this image, approximately 10 nm-diameter magnetite particles can be seen 

embedded in the titanium dioxide, and gold particles can be seen attached to the surface of the 

TiO2. A complete coating of gold around the TiO2–Fe3O4 was not formed under these conditions. 

However, particles prepared with 0.5 mM HAuCl4 (aq), 100 µl TiO2–Fe3O4 suspension (1.3 

µg/µL in ethanol suspension), and 45 min UV irradiation showed more complete coating with 

gold. A representative TEM image for these conditions is presented in Fig. 4.2. In this image, 

only gold is clearly visible except for a small amount of TiO2 in the upper right section of the 

image.  
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Fig 4.1. TEM image of Fe3O4–TiO2–Au nanocomposite formed by 
irradiating Fe3O4–TiO2 suspended in 0.1 mM HAuCl4 (aq with 2% 
EtOH); irradiated with 254 nm lamps for 30 min. 
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Fig 4.2. TEM image of Fe3O4–TiO2–Au nanocomposite formed by 
irradiating Fe3O4–TiO2 suspended in 0.5 mM HAuCl4 (aq with 2% 
EtOH); irradiated with 254 nm lamps for 45 min. 
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4.4.2 EDS SPECTRA 

Energy dispersive spectroscopy (EDS) verified the identity of the different components 

of this nanocomposite material; this spectrum is presented in Fig. 4.2. EDS spectra of these 

particles clearly indicated the presence of gold, titanium, and iron. Furthermore, these particles 

were collected with magnetic separation and therefore must contain magnetic material. 

 

 

 

 

 

 

 

Fig 4.3. EDS spectrum from particles in Fig. 4.1. Copper and carbon 
peaks are from the TEM grid. 
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4.4.3. ABSORBANCE DATA 

UV-vis absorbance measurements (Fig. 4.4) show that these particles have absorbance 

maxima between 540 and 590 nm, which is within the expected range for the gold surface 

plasmon resonance. Altering the concentration of HAuCl4 used in particle formation resulted in 

shifts in the peak wavelength of the surface plasmon resonance (SPR).  

 

The bar chart in Fig. 4.5 shows the average peak wavelength for triplicate samples as a 

function of HAuCl4 concentration used during synthesis. The change in surface plasmon 

resonance wavelength may be due to changes in gold particle size or shape, or could be due to 

interactions between the gold and TiO2.
8,11 Several studies have reported that electronic 

interactions between gold and semiconductors can shift the SPR wavelength. 1,2,8,11 Our results 

indicate that the SPR peak wavelength for these composite materials can be tuned to a desired 

Fig 4.4. Absorbance spectra of particles made with varying 
concentrations of HAuCl4 as indicated on the graph. Fe3O4–TiO2–Au 
formed by irradiating Fe3O4–TiO2 suspended in aqueous HAuCl4 with 
2% EtOH; irradiated with 254 nm lamps for 45 min. 
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wavelength by adjusting the conditions used during particle synthesis. Such control is an 

important tool needed to prepare nanomaterials with desired physical, optical, and chemical 

properties. 

 

 

 

 

 

 

 

 

Fig 4.5 Wavelength of maximum absorbance versus [HAuCl4] used in 
preparation of particles. Error bars represent standard deviation for triplicate 
measurements. 
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4.4.4 MAGNETIC MEASUREMENTS 

Magnetic measurements (SQUID) of the composite, presented in Fig. 6, showed that the 

Fe3O4–TiO2–Au nanocomposite material was superparamagnetic with a blocking temperature of 

Fig 4.6. Fe3O4–TiO2–Au nanocomposite magnetic properties: (a) hysteresis 
loop at 5 K and (b) ZFC/FC curves at an applied field strength of 7960 A/m (1 
A/m = 4π/103 Oe; 1 A.m2/kg = 1 emu/g). Magnetization (M) relative to total 
mass of composite material. 
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about 170 K. The coercivity at 5 K was approximately 11,940 A/m (150 Oe). These magnetic 

properties were similar to those of pure TiO2–Fe3O4 particles, but the blocking temperature was 

considerably lower than that for the untreated Fe3O4 particles (blocking temperature at or above 

room temperature). These results indicate that magnetite interactions with TiO2 caused changes 

in the magnetic properties, but the magnetite was effectively isolated from the gold, preventing 

surface communication between these materials. Such communication has been observed in 

other studies in which direct gold-magnetite contact exists.1,8,10,22 
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4.4.5 XRD DATA 

To verify that the magnetite was not oxidized during the nancomposite formation 

process, XRD data were collected for the nanocomposite material. Only peaks from gold and 

magnetite were observed in the XRD spectrum (see Fig. 4.7), indicating that the iron oxide is 

predominantly, if not completely, in the form of magnetite. Titanium dioxide peaks were not 

observed because this material was amorphous. 

 

 

 

 

Fig 4.7. XRD data for Fe3O4–TiO2–Au nanocomposite pictured in Fig. 4.1: (*) 
Fe3O4 and (+) Au. 
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4.5 Conclusion 

Nanocomposite particles made with lower concentrations of HAuCl4 were not fully 

coated with gold. These particles may be well suited for photocatalytic applications as the TiO2 

surface can still be exposed to UV radiation. The photocatalytic properties of these materials will 

likely be different from that of pure titania due to increased charge separation and enhanced 

electron transfer rates that result from the presence of gold surface sites.14,15 Because the 

particles have a magnetic core, they can be readily separated from solutions by use of magnetic 

fields. These partially gold-coated particles may also be useful in biomedical applications in 

which the magnetic core can serve as a magnetic contrast agent or as a means of focusing 

particles in diseased tissue. The gold surface will allow for biofunctionalization for drug delivery 

or immunorecognition applications. A partial coating of gold may be sufficient for such 

applications. 

 

The widespread use of titanium for medical implants and titanium dioxide in consumer 

products (paints, sunscreens) suggest that titanium dioxide will have little toxicity for these 

applications. However, in tissues that can be irradiated, these particles may serve as 

photoactivated materials that can destroy diseased cells. Digestive tract, urinary tract, uterine, 

and cervical tissues accessible to fiber optic probes may fall in this category. 

 

Nanocomposites made with higher concentrations of HAuCl4 are fully or almost fully 

coated with gold. These particles may be beneficial for applications in which exposed TiO2 is 

undesirable. The ability to tune both the degree of gold coverage as well as the optical properties 

of these materials allows design of magnetic nanomaterials that can be used in a wide range of 



 86 

applications. While these potential biomedical applications require extensive testing and trials, 

applications of other magnetic nanoparticles are well on their way to real world application. 6,7 
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Chapter 5: Photocatalytic Activity of Nanoparticles  

 

5.1 Abstract 

In this study, the photocatalytic activity of magnetite-titania-gold nanocomposite material has 

been investigated. Magnetite particles were first coated with titanium dioxide. Resulting particles 

were then irradiated with UV light in the presence of tetrachloroauric acid to deposit gold on the 

surface. Magnetite-titania-gold nanocomposites prepared in this manner were characterized by 

TEM, EDS, UV-Vis absorbance, SQUID magnetometry, XRD, and ICP. These nanocomposite 

materials have potential applications for drug delivery, magnetic imaging, and photocatalysis. In 

this work, the influence of gold deposition on photocatalytic activity was studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 91 

5.2 Introduction 

Titanium dioxide (TiO2) is well known as chemically stable and harmless material, and 

has been applied widely in various fields.1-5 For example, it is used for surface coating, 

photoelectrodes, high-k dielectrics, paints, cosmetics, and so on. In recent years, it has been 

received a great deal of attention especially as a photocatalytic material.5-7 TiO2 which shows 

specific photocatalytic properties, such as photo-induced decomposition of organic compounds 

and photo-induced hydrophilicity,5,8,9 is expected to apply in the environmental fields. Various 

utilizations such as antibacterial, antipollution and deodorization have been attained.6 Because of 

these unique photocatalytic properties, application of the TiO2 will spread increasingly from now 

on.  

Doping of various transition metal ions or rare earth ions in TiO2 have been intensively 

investigated for photocatalytic decomposition of organic compounds.10-13 Very recently, Asahi et 

al. reported that nitrogen (N) doping in TiO2 shifted its optical absorption and enhanced the 

photocatalytic activity such as photodegradation of methylene blue and gaseous acetaldehyde in 

the visible region.14 

Primarily, the role of photocatalysts is the same with that of common catalysts in that 

they promote the reaction by lowering the activation energy. Based on the content of several 

review articles,15-17 it seems essential to suppress the recombination process and to increases the 

lifetime of separated electron-hole pairs for the achievement of high photocatalytic activity, so 

that electron transfer can occur from the surface of TiO2 to adsorbed reactants. From the report 

of M. Hagfeldt et al.18, doping of transition metals or precious metals on the surface of TiO2 

could function as a trap in the process of recombination of photo-excited electron-hole pairs. On 
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the other hand, M. M. Rahman et al.19 reported that UV-VIS transmittance pattern of TiO2 could 

be an index of band gap energy. 

Chen and his coworkers have deposited platinum on TiO2 films and degraded o-cresol to 

see the improvement of photocatalytic activity of the new nanocomposites. The degradation of o-

cresol was found to increase in the Pt deposited TiO2 nanocomposites. From their results they 

have concluded that the deposition of platinum on TiO2 promoted the optical absorption in the 

visible region and made it possible to be excited by visible light.20 Same types of results were 

also observed during oxidation of resorcinol21.  

McEvoy et al.22 have been able to deposit silver particles on TiO2 nanoparticles and were 

able to oxidize organic compounds like salicylic acid and sucrose. For high loadings of sucrose 

Ag-TiO2 really improved the oxidation compared to its low loading. They have concluded that 

nanosize silver deposits on TiO2 particles acted as sites of electron accumulation where the 

reduction of adsorbed species such as oxygen occurred. The enhanced reduction of oxygen 

through better electron–hole separation in Ag/TiO2 particles compared to pure TiO2 particles 

increased the rate of sucrose mineralization. Similar results were observed during reduction of 

nitrates23 also. 

Bisphenol A is the building block for plastic bottles and gum resins. However, recent 

research has shown it to be an estrogen receptor agonist which can activate estrogen inside the 

body.24-26 Some hormone disrupting effects in studies on animals and human cancer cells have 

been shown to occur at very low levels. It has been claimed that these effects lead to health 

problems such as lower sperm count, obesity, or triggering early puberty. Recent studies have 

confirmed that bisphenol A exposure during development has carcinogenic effects and produces 

precursors of breast cancer. As an environmental contaminant this compound has been in debate 
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for quite a long time. It has already been proven to be toxic in nature and having carcinogenic 

effects for humans as well as the plant world. 

Being a toxic contaminant scientists have tried to degrade this compound using different 

methods. Therefore, we also wanted to degrade bisphenol A with our synthesized nanoparticles 

in order to develop new methods that can be easier and less costly. 
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5.3 Experimental Procedure 

5.3.1 Degradation Study of bisphenol A 

3 ml of 0.5mM bisphenol A was put into 1.4-cm (inner diameter) quartz test tubes. The 

solution was irradiated with different UV lamps (wavelength: 254 nm, 300 nm and 350 nm) in a 

Rayonet (Southern New England Ultraviolet Company, Branford, CT) merry-go-round 

photochemical reactor with 

• No particles 

• With TiO2@Fe3O4 particles 

• With Au@TiO2@Fe3O4 particles  

 

For each reaction set there was a control experiment conducted. Three test tubes were 

covered with aluminum foil. In these test tubes 3 ml of 0.5mM bisphenol A was added. To one 

of the test tube no particles were added, in the second one TiO2@Fe3O4 particles and in the third 

one Au@TiO2@Fe3O4 nanocomposites were added. This control experiment was done so that 

we know what effect bisphenol A has when introduced into a photochemical reactor with out the 

radiation. The control test tube for each experiment was kept for the longest reaction time period 

for that particular experiment. The irradiation time also was varied 15 min to 300 min depending 

on the experiment. Once the reaction completed for the desired time, the whole solution was 

placed in front of a magnet. Once the particles separated out, the solution was taken out and 

evaluated by an Agilent HPLC instrument. The column used for this analysis was a Econosphere 

C-18 reversed phase column with the mobile phase being water and acetonitrile (60:40) mixture 

throughout the analysis time period. The flow rate was kept constant at 1ml per minute and a 

100µl loop was used. The signal was captured by a diode array detector (DAD).   
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In another set of experiments, different amounts of Au@TiO2@Fe3O4 particles were put 

into the aqueous solution of bisphenol A to monitor the amounts of degradation for Bisphenol A. 

In this study we used 3 ml of 0.5mM Bisphenol A and irradiated it under UV light for 30 min in 

the presence of 100µl, 200µl, 300µl and 400µl aliquots of Au@TiO2@Fe3O4 nanoparticle 

suspensions (100µl suspension = 0.13mg nanoparticles). Similar separation technique was used 

and the solutions were examined by the Agilent HPLC keeping the previous analysis procedure. 

 

 

5.3.2 Reuse of the photocatalytic Au@TiO2@Fe3O4 particles 

In this experimental procedure we wanted to see whether the nanoparticles can be reused 

or not. We exposed 3ml of 0.5 mM Bisphenol A under UV radiation (254 nm) in the presence of 

100µl (1.3µg/µl) of Au@TiO2@Fe3O4 particles for 30 min. After exposure, the whole solution 

was placed in front of a magnet for 1 hour for complete separation. Once the particles separated 

and the solution was colorless, the solution was taken out carefully and examined by HPLC. 

Then to the test tube containing the separated particles we added fresh 0.5 mM Bisphenol A and 

irradiated it under UV light to see whether Bisphenol A degraded or not. After 30 min of 

exposure, the sample was kept beside a magnet to separate the particles again. This recycling 

procedure was carried four times and each time the solution was evaluated with HPLC to 

determine the amount of degradation of  Bisphenol A.    
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5.4 Results and Discussion 

Bisphenol A was irradiated at three different wavelengths 254 nm, 300 nm and 350 nm. 

Different amounts of degradation were observed in the three sets of experiments. In the 254 nm, 

300 nm wavelengths we observed the same trend of degradation of bisphenol A without the 

presence of particles, with TiO2@Fe3O4 particles and Au@ TiO2@Fe3O4 particles. In the 

presence of the Au@ TiO2@Fe3O4 particles the degradation was the most followed by the 

TiO2@Fe3O4 particles and the least was with no particles present in the reaction. For the dark 

control in all the sets of experiments there was very minimal degradation of the aqueous solution 

of bisphenol A. This was because we prevented the radiation process by covering the test tubes 

with aluminum foil. The small amount of degradation observed for the dark control occurred 

because of the increase in temperature in the exposure chamber for a time period of 45 min or 

Figure 5.1.  Degradation of 0.5 mM Bisphenol A solution for different amounts of time 
in presence of 254 nm lamps 
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120 min or 300 min depending on the experiment. With the 254 nm lamps, degradation of 

bisphenol A without particles was more than that at 300 nm. This was true for all the time 

periods the target compound was exposed to.  

 The degradation in presence of TiO2@Fe3O4 particles and Au@TiO2@Fe3O4 particles 

was similar for 254 nm and 300nm wavelength experiments. The presence of gold on the surface 

of the TiO2@Fe3O4 particles helped in degrade the bisphenol A compared to the TiO2@Fe3O4 

particles. For the 254 nm experiment, the rate of degradation was faster than the other sets. The 

only difference was the time periods. For the 254 nm lamps and 300 nm lamps the reaction times 

were 45 min and 120 min respectively. In both cases for the longest reaction time, bisphenol 

degraded more than 90% in the presence of Au@TiO2@Fe3O4 particles.  
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Figure 5.2.  Degradation of 0.5 mM Bisphenol A solution for different amounts of time in 
presence of 300 nm lamps 
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From the above data it can be concluded that in the presence of TiO2@Fe3O4 particles 

with gold attached to it, the degradation was most effective at 254 nm irradiation. The advantage 

of adding gold was less evident at the 300 and 350 nm wavelengths. This confirms the 

theoretical approach that doping with transition metals or precious metals on the surface of TiO2 

could function as a trap in the process of recombination of photo excited electron-hole pairs. So 

the photoexcited electron-hole pairs have more time to react with the pollutants and thus helps 

increase degradation of the compounds. 

 When we did the same type of reaction but only changed the wavelength of the 

irradiation light to 350 nm we did not find much degradation of bisphenol A in the presence of 

TiO2@Fe3O4 particles or Au@TiO2@Fe3O4 particles as seen in Fig 5.3. This can attributed to the 

fact that the titanium dioxide absorbs much more weakly at 350 than at the lower wavelengths 

used. Compared to the dark control for the different time periods, we observed only minimal 
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degradation of the bisphenol A in the absence or presence of the nanocomposites even though 

the reaction was allowed to happen for 240 min and 300 min respectively. Since the 

Au@TiO2@Fe3O4 particles or TiO2@Fe3O4 particles absorb weakly at this particular wavelength 

the amount of degradation is very hard to see but the same trends seem to be present at 350 nm if 

we would have irradiated the solution of bisphenol A for a much much longer time period.  

 

When we irradiated bisphenol A with different amounts of Fe3O4@TiO2@Au 

nanoparticles, from Figure 5.4 it can be inferred that the presence of more particles degraded the 

pollutant more. The increase in extent of degradation was small compared to the increase in the 

concentration of the particles. Consequently it can be concluded that lower  particles loadings 

can be effectively used for pollutants degradation. 
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In the case of reuse of the magnetic nanoparticles, we were able to confirm that they can 

be repeatedly used as photocatalysts. Even after the use for the fourth time, we observed no 

substantial loss in the ability to degrade bisphenol A. This was evident from figure 5.5. Moreover 

there was very minimal loss of the nanoparticles which can prove this method to be quite cost 

effective. 
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5.5 Conclusions 

We were able to produce photocatalyst nanoparticles which can be eventually used for 

degradation of pollutants in the environment. Easy modification of the gold surfaces with 

chemical or biorecognition molecules can provide chemical or biological selectivity for the 

particles. Catalytic activity of particles is maintained through several degradation cycles. 

Magnetic recovery and re-use is feasible which will make this process less costly and more 

effective. 
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Chapter 6: Synthesis of Indium Doped Magnetite Nanoparticles for Radiotracer Studies 

 

6.1 Abstract 

The overall goal of this project is to synthesize and characterize indium doped magnetite 

nanoparticles for application as radiotracers for in vivo fate studies.  The labeled particles will be 

useful for determination of pharmacological behavior in biological systems.  Indium (cold) 

doped magnetite particles with varying size and surface chemistry were synthesized using wet 

chemical techniques. The synthesized nanoparticles were characterized in terms of size and 

shape by TEM, elemental composition by ICP and EDS, crystal structure by XRD, and magnetic 

properties by SQUID measurements. It was found that the indium loading could be controlled 

even though the magnetic properties were similar. These particles when synthesized with 

radioisotope In111 could be used as radiotracers. 
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6.2 Introduction 

 Nanoparticles are being extensively studied for potential application in medicine,1-12  and 

this application has been termed nanomedicine.  However, the fate of nanoparticles in biological 

systems is still poorly understood.  Given the large future growth of the role of nanoparticles in 

biomedical applications, it is essential that the behavior of these materials be understood in 

biological systems. Nanoparticles are currently being developed for a wide variety of 

applications including drug delivery, medical imaging, sensing, catalysis, nanocircuitry, and 

information storage. Applications of these materials include imaging and disease detection,7, 13-16 

drug delivery17-21 and other novel disease treatment methods (eg. Photothermal therapy9-12). 

However, the environmental and biological impacts of these new materials are poorly 

understood. Although much data is available for inhalation of ultrafine particles,22-25 and some 

data is available for nanotoxicology,26,27 information is lacking for the fate and transport of 

nanoparticles, especially for novel materials.28,29   Biodistribution studies for magnetite 

nanoparticles have been carried out,30-33 but these studies have relied on magnetic resonance, 

histological, or X-ray imaging techniques to follow the nanoparticles.  These approaches are 

substantially limited by their poor detection limits.  For example, histological methods can only 

detect large, micron-scale aggregates of nanoparticles.  Furthermore, quantitative measurement 

of nanoparticle loading using magnetic resonance, histology, or X-ray imaging is difficult.   

 

 An understanding of the biological fate and transport of nanoparticles is critically needed 

in order to ensure safe and environmentally sound development of nanotechnology.34  For both 

environmental and biological fate, new approaches are needed that will allow both short term 

and long term studies.  Indium has been previously incorporated into spinel structures, including 
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ferrites.35,36 Researchers were able to incorporate various other metals as can be seen in previous 

reports.37-39  In related research, Lu et al.40 prepared Sn doped magnetite particles. Nanoparticles 

that are integrally labeled with a radiotracer would provide an excellent solution to this important 

problem due to several advantages: 1) the integral radiotracer is part of the nanoparticle crystal 

lattice and cannot be lost through simple surface modifications, 2) the radiotracer selected for 

this study has a sufficient lifetime to allow studies over several days, 3) gamma imaging of the 

particles will allow mapping of particle locations within experimental subjects (e.g. mice), 4) the 

excellent detectability of radiotracers will allow detection of labeled nanoparticles even in tissues 

with low loading, and 5) pharmacological fate and excretion can be measured by radiotracer 

detection in tissue, blood, urine, and feces. 
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6.3 Chemicals and Instruments Used 

The chemicals used for all sets of reaction mentioned below are: 

Ferrous Chloride Tetrahydrate (FeCl2.4H2O), Ferric Chloride Hexahydrate (FeCl3.6H2O), Indium 

Chloride Tetrahydrate (InCl3.4H2O), Diethylene Glycol (DEG), Sodium Hydroxide (NaOH), 

Ethanol, Ethyl Acetate and Oleic Acid was obtained from Aldrich 

To obtain transmission electron microscope (TEM) images, about 10–20 µl ethanol 

suspension containing the indium doped magnetite nanoparticles was dried on a copper grid prior 

to analysis with a JEOL (Peabody, MA) Model 2010 TEM. X-ray diffraction (XRD) data were 

collected by drying multiple aliquots (40µl each) of an ethanol suspension on a small section of a 

1 cm2 plastic slide. Once deposited, the dried sample was analyzed with a Philips (Eindhoven, 

The Netherlands) X’pert-MPD x-ray powder diffraction system. The elemental analysis was 

done by a Varian Simultaneous CCD ICP-OES. 
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6.4 Experimental Procedure 

 

1mmol of FeCl2.4H2O was dissolved in 20g of diethylene glycol (DEG) under argon 

atmosphere. It was allowed to dissolve overnight. 32g of sodium hydroxide (NaOH) was also 

dissolved under argon in another separate 20g of DEG for over 12 hours. In another 20g DEG, 

FeCl3.6H2O and InCl3.4H2O were dissolved together and the mixture was let to stay for 4 hours 

under argon. The color of the solution was yellow-orange. Once the above solution dissolved 

completely it was allowed to react with the solution of FeCl2.4H2O for 2 hours at room 

temperature. The color of the solution turned yellow-brown. Then the NaOH solution is 

introduced to the above mixture dropwise and allowed to react under argon for 3 hours at room 

temperature. Eventually the color of the whole solution turned black.  

 

Then the temperature of the solution was raised to 140oC over a period of 50 minutes and 

then to 210oC over 40 min. Then the temperature was kept constant at 210oC for 3 hours. Once 

the reaction was complete, 2mmol of oleic acid dissolved in DEG was put into the reaction 

vessel and allowed to mix well. Within a few minutes the black nanoparticles separated and 

settled at the bottom. The mixture was allowed to cool to room temperature and centrifuged. The 

particles were washed twice with 50:50 by volume of ethanol:ethyl acetate mixture. The black 

nanoparticles were washed in ethanol twice and separated magnetically. Then the particles were 

resuspended in 5 ml of ethanol. 
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Table 6.1. Different amounts of FeCl3.6H2O and InCl3.4H2O used for different reactions. 

 

Experiment mmol of FeCl2.4H2O mmol of FeCl3.6H2O mmol of InCl3.4H2O 

2% 1.0 1.96 0.04 

5 % 1.0 1.9 0.1 

10% 1.0 1.8 0.2 

15% 1.0 1.7 0.3 

50% 1.0 1.0 1.0 
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6.5 Results and Discussions 

6.5.1 TEM Images 

The nanoparticles synthesized following the above procedure were characterized for their shape 

and size by transmission electron microscopy. The particles observed by TEM had similar 

appearances for all the procedures. These images are presented in Figures 6.1-6.5. 

 

2% Indium magnetite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. TEM image of 2% indium doped magnetite 
nanoparticles after magnetic separation and washing. 
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5% Indium Magnetite 

 

 

 

 

 

 

 

 

 

 

 

10% Indium Magnetite 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. TEM image of 5% 
indium doped magnetite 
nanoparticles after magnetic 
separation and washing. 

30 nm 

20 nm 

Figure 6.3. TEM image of 10% 
indium doped magnetite 
nanoparticles after magnetic 
separation and washing. 
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15% Indium Magnetite 

 

 

 

 

 

 

 

 

 

 

 

50% Indium Magnetite 

 

 

 

 

 

 

 

 

 

 

20 nm   

Figure 6.4. TEM image of 15% 
indium doped magnetite 
nanoparticles after magnetic 
separation and washing. 

20 nm   

Figure 6.5. TEM image of 50% 
indium doped magnetite 
nanoparticles after magnetic 
separation and washing. 
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The TEM pictures show that the particles are agglomerated as no capping ligands were 

used in the final reaction step. But the particle shape and size was very much similar to one 

another. Even though the ICP and the EDS results confirmed that there was increase in indium 

loading from Figure 6.1 to Figure 6.5 but the shape of the particles remained the same. So by 

adjusting the amount of starting materials even though we could change the indium loading but 

we were able to produce particles of similar shapes. 
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6.5.2 EDS Data 
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Figure 6.6. EDS pattern for water dispersible indium doped magnetite nanoparticles 
(5 mol % [A] and 15 mol % [B]). 
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The EDS spectrum for all the nanoparticles showed the presence of respective peaks of 

indium and iron confirming the incorporation of indium within the magnetic nanoparticles. The 

intensity of the indium peak for the 15% loading of the indium was higher than that of the 5% 

loading which verifies the presence of more indium in the first set of particles compared to the 

second one. From the EDS data (all not shown) it was seen that as we increased the amount of 

indium loading in the starting material the peak intensity of indium for the synthesized materials 

increased indicating the fact that more amount of indium was incorporated within the magnetite 

nanoparticles. For the 2% indium magnetite particles we were not able to see the respective peak 

of indium as it was below the detection limit. But its presence was confirmed from the ICP data. 
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6.5.3 Indium Loading in Particles 

 

To 100 ml of the indium magnetite particles (~ 1 mg), 1 ml of aqua regia was added and 

the particles were allowed to dissolve for more than an hour. At first the solution was cloudy and 

then it became transparent yellow eventually after an hour. The volume of the solution was made 

upto 25 ml with nanopure water and then it was analyzed to find out the composition of the metal 

loading by inductively coupled plasma (ICP). The following observations were made. 

 

Table 6.2. Indium loading of the magnetic nanoparticles 

 

Indium loading in starting material (mass %) Observed indium loading in synthesized 

particles (mass %) 

2.7 2.4 

6.8 3.9 

13.7 8.2 

22.9 14.7 

 

With the increase in the InCl3.4H2O for the respective reactions the amount of indium loading 

increased which suggests that the indium loading in the particles could be controlled. This result 

was also concluded by the EDS data which has been shown previously.  
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6.5.4 XRD Data 

To characterize the morphology of the particles the X-ray diffraction data was obtained. The 

XRD data was analyzed with a Philips (Eindhoven, The Netherlands) X’pert-MPD x-ray powder 

diffraction system. 
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Figure 6.7. X-ray powder diffraction pattern for water dispersible indium doped 
(2 mol % [A] and 5 mol % [B]) magnetite nanoparticles (black line).  Theoretical 
peak positions are shown for magnetite (■) and indium iron oxide (▲).    
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Figure 6.8. X-ray powder diffraction pattern for water dispersible indium doped 
(10 mol % [A] and 15 mol % [B]) magnetite nanoparticles. 
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In all the percentages of indium loading except that for 50% loading, the crystalline 

structure of the nanoparticles corresponded well with the pure magnetite nanoparticles structure. 

Only for the 50% indium loading in the magnetite particles there was a visible change in the 

XRD spectra. We saw new peaks emerging at different two theta values than the magnetite 

particles. The cell value (a) has been calculated for the 2% to 15% indium doped magnetite 

particles and they are very close to the calculated value of pure magnetite. Moreover from the 

XRD data it can also be concluded that the particles are crystalline in nature and they showed 

only the respective peaks for magnetite and no separate peak for indium. 
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6.5.5 Magnetic Measurements 

6.5.5.1 Hysterisis Loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.9. SQUID measurements for 5% Indium doped magnetite 
particles. Magnetic moment vs Field at 5 K (FIGURE A) and 300 K 
(FIGURE B).   
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10% Indium magnetite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moment vs Field at 5K
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Figure 6.10. SQUID measurements for 10% Indium doped magnetite 
particles. Magnetic moment vs Field at 5 K (FIGURE A) and 300 K 
(FIGURE B). 
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15% Indium magnetite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moment vs Field at 5K
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Moment vs Field at 300K
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Figure 6.11. SQUID measurements for 15% Indium doped magnetite 
particles. Magnetic moment vs Field at 5 K (FIGURE A) and 300 K 
(FIGURE B). 
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The indium-magnetite nanocomposite material was characterized to determine its 

magnetic properties using a SQUID magnetometer.  There were no substantial changes observed 

in the magnetic properties of these materials compared to the magnetite nanoparticles. Figures 

6.9-6.11 shows the magnetization versus temperature plot or hysterisis plot of the indium-

magnetite nanocomposites at 5K and 300K. The general shape of the graphs remained almost 

similar. The particles showed superparamagnetic behavior. At 5K they showed a hysterisis loop 

and the coercivity was found to change with the different loading of indium in magnetite. But at 

300 K there was no coercivity observed in case of all the different sets of indium magnetite 

nanocomposite materials. The coercivity change of the different sets of particles are shown in the 

table below. 

 

Table 6.3. Coercivity change for 5%, 10% and 15% Indium magnetite particles 

 

 

 

 

 

 

 

 

 

 

 

Particles Coercivity (Oe) 

5% Indium magnetite 200 

10% Indium magnetite 140 

15% Indium magnetite 20 
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6.5.5.2 ZFC-FC Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12. Zero Field Cooled – Field Cooled graph for 5% Indium 
doped magnetite particles 
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Figure 6.13. Zero Field Cooled – Field Cooled graph for 10% Indium 
doped magnetite particles 
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It has been seen from previous researches that as the particle size decreases below 100 

nm there is significant change in the magnetic properties as compared to the bulk material. As 

the particle size reduces, the bulk magnetic domain is replaced by single domain structure which 

is characteristic of individual particles and this gives rise to a new event like 

superparamagnetism. The magnetic susceptibility of these particles is generally between that of 

ferromagnetic and paramagnetic materials. For these nanoparticles, the magnetization is oriented 

in the direction of easy axes which minimizes the energy of the particles at low temperatures. So 

in Figures 6.12 – 6.14 we see that for the zero field cooled (ZFC) curve at low temperatures the 

magnetization of the particles are very low. Since the easy axes are oriented randomly the 

magnetization tends to be near zero value. But as the temperature is increased from 5 K to 300K, 

at round 156K the thermal energy overcomes the anisotropy energy and the magnetization of the 

Figure 6.14. Zero Field Cooled – Field Cooled graph for 15% Indium 
doped magnetite particles 
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particles begin to fluctuate between the two easy axes. This particular temperature is known as 

blocking temperature (TB) or Curie temperature. After this point the particles tend to behave as a 

classical magnet. So in other words the maximum in the ZFC curve is the representation of 

blocking temperature.   

 

The gap between the filed cooled (FC) and the ZFC curves can be implied as a fact that 

the nanocomposites are agglomerated with each other and that they are not evenly dispersed. In 

the FC curve, as the temperature is decreased from 300K to 5k we find that the magnetization 

increases and then levels off. This shape is the contribution of the dipole dipole interaction of the 

nanocomposite material. The dissimilarity between the ZFC and the FC curve is a common 

indication that the particles behave superparamagnetically between these temperatures.  
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6.6 Conclusion  

From the above studies it can be concluded that indium was incorporated into the 

particles. The magnetic separation provides the proof that for all the loadings of the indium the 

nanoparticles still remain magnetic in nature. Also one can readily control the loading of indium 

in the particles by varying the amount of indium chloride during the starting of the reaction. 

Because of the moderately short half life of 111In, its commercial availability, its easily 

achievable radiation protocol, and its ability to be incorporated into magnetite, this isotope 

makes an excellent starting point for radiotracer studies with magnetic nanoparticles. Once 

preliminary expectations are proven, a multitude of future radiotracer studies with 111In and 

longer lived species will follow in both the biomedical field and the environmental field. 

   

Completion of this study will lead to additional studies for development of treatment 

technologies.  Radiolabeled nanoparticles that bind to disease cells can be used to selectively kill 

the disease cells via gamma irradiation.  Results of this study will be directly applicable to future 

studies on design of particles that can bind to diseased tissue and rapidly clear other tissues.  

Such particles will selectively expose the diseased tissue to lethal doses of gamma irradiation 

while not harming healthy tissue. 
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