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Abstract 

Systems of magnetic nanowires are considered strong candidates in many technological 

applications as microwave filters, sensors or devices for data storage. Because of their strong 

potential as candidates in such applications they became lately the object of many studies. 

However, due to the very complicated nature of the interwire interactions, their magnetic 

behavior is very difficult to be interpreted. The main parameter controlling the response of 

magnetic nanowires assemblies is the aspect ratio of the nanowires that is defined as the ratio 

of the length to the wire's diameter. In our study we choose to modify the aspect ratio by 

keeping a constant length of nanowires and modifying the wire’s diameter while keeping the 

same interwire distance. The samples were studied at room temperature, using vibrating 

sample magnetometer and X-band ferromagnetic resonance experiments. The results are 

explained taking into account the effects of the magnetostatic interactions and shape 

anisotropy. 

 

 

 

 

 

 

 

 

 

 

Key words:  magnetic nanowires, magnetic interactions, hysteresis loop, ferromagnetic 

resonance, magnetic moment 
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Introduction 

Nanostructured magnetic materials are the focus of many research efforts in the past few 

years, being very interesting not only from theoretical point of view, but also due to the wealth of 

their potential technological applications. Since 1991 the increase in storage density for 

commercially available hard disks has been 65% per year. Several companies reached the 

performance to have densities up to 130 Gbit/inch2.1 One approach to extend this limit is via 

perpendicular media, or using nanomagnets.2 The density of recording media depends on the size 

of magnetic particles, the distance and the interaction among them, and using nanowires arrays, 

the problem of miniaturization can be solved.3 Magnetic nanoparticles can also be used in 

biology to probe the micromechanics of cells and the torsion of DNA molecules. Such particles 

are also being explored in gene therapy. 4  

In contrast to spherical nanoparticles, nanowires exhibit degrees of freedom associated 

with inherent shape anisotropy. Ferromagnetic nanowires exhibit unique and tunable magnetic 

properties that are very different from those of bulk ferromagnetic materials, thin films and 

spherical particles. However, the characterization and understanding of the magnetic properties 

of nanowires arrays is still a challenging task, the complexity of the interactions among wires 

making difficult to interpret even the experimental results of classical characterization methods, 

like ferromagnetic resonance (FMR).1-6 This motivates the strong interest in understanding the 

interaction in structures of parallel nanowires.6-10 

The magnetic anisotropy of such arrays is determined mainly by two contributions: the 

shape anisotropy, with a magnetic easy axis parallel to the wire axis, and the magnetostatic 

coupling among wires, which can develop a magnetic easy axis perpendicular to the wire axis.7,8 

The magnetocrystalline anisotropy energy is usually much smaller than the shape anisotropy for 
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such systems in the case of magnetic material as nickel (Ni) and iron. For magnetic nanowires of 

cobalt the magnetocrystalline anisotropy can be significant. 

The main parameter that controls the frequency response of magnetic nanowires 

assemblies is the aspect ratio of the nanowires, i.e., the length to diameter ratio. The aspect ratio 

can be tuned, for example, by changing the length of nanowires and keeping the same diameter 

of wires. In the case of template method for nanowires preparation this can be easily done using 

different electrodeposition times.  

Preliminary studies were done in our group8,9 on Ni electrodeposited nanowire samples 

with a constant diameter and different length of wires. The angular dependence of the FMR 

resonance field was investigated for each sample, and the results were explained using a total 

demagnetizing factor, that takes into account the effect of interwire interaction.  

In the present work we chose to modify the aspect ratio of nanowires by keeping constant 

their length and modifying the nanowire’s diameter. This approach is more challenging as it 

requires designing templates of different diameters but with the same average distance between 

channels. Moreover, during the electrodeposition the constant length of nanowires for different 

samples of different diameters is controlled more difficult. Series of samples of different 

diameters, with the same length and average distances between the centers of wires, are ideal 

candidates for verifying the models recently proposed6 to describe the interactions in such 

systems. Two sets of Ni nanowires with diameters (d) of 40, 60, 80 nm, respectively, and a 

constant lengths (l) of 1000 nm and 500 nm were grown using standard electrodeposition 

technique in alumina templates. The interpore distance is D = 100 nm, measured center to center. 

By changing the nanowires diameter, the aspect ratio m changes, and in this way the magnetic 

properties of these arrays, as the coercivity, saturation field, saturation magnetization and the 
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value of the resonance field for the same orientation of the samples, change. Moreover, the 

angular dependence of the resonance field was observed to have the shape consistent with 

presence of magnetostatic interactions in the nanowire arrays8,9. The samples with the same 

interpore distances and different diameters of wires show an increase in the peak of the angular 

dependence of the resonance field with the decrease in the aspect ratio. This behavior can be 

explained by the fact that increasing the diameter of the wires, the distance between two 

neighboring wires decreases and the interaction among them becomes larger.  

The present work is organized as follows: 

Chapter 1. Overview of Magnetism. This chapter gives an overview of the background 

information required for a full understanding of the remainder of the thesis. The background 

information includes the overview of the magnetic free energy including magnetocrystalline 

anisotropy, shape anisotropy and ferromagnetic resonance. 

Chapter 2. Experiment. This chapter begins with a brief description of the method used to 

obtain the Anodized Aluminum Oxide (AAO) templates and a description of the method used to 

grow the nanowires into the AAO template by electrodeposition. The magnetostatic experiments 

using the Vibrating Sample Magnetometer are also presented in this chapter. The last part of the 

chapter is dedicated to the ferromagnetic resonance (FMR) experiments performed at room 

temperature using a X-band Bruker spectrometer. 

Chapter 3. Results and Discussions. In this chapter the results of the measurements 

performed with the VSM and FMR are presented and explained. 

Chapter 4. Modeling of Interactions in Ferromagnetic Nanowires. In this chapter a 

theoretical approach is used to explain the angular dependence of the resonance field for the 

nanowire samples. 
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Chapter 5.  Conclusions and Future Work. This chapter gives out the conclusions of all 

work done in this thesis followed by prospects regarding more complicated structures such as 

nanotubes and core-shell structures. 
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Chapter 1: Overview of Magnetism 

1.1 Magnetic Hysteresis Loop of Nanowires 

The behavior of nanostructured magnetic materials can be characterized using magnetization 

hysteresis loops. The hysteresis loop is the magnetic response of a magnetic sample subjected to 

an external field. In our experiments the external magnetic field is applied parallel to the 

nanowire axis or perpendicular to it. The hysteresis loop obtained in such a manner has features 

dependant on the material, the size, the shape of the sample, and the orientation of the applied 

magnetic field with respect to the sample. Moreover, for arrays of nanoparticles the hysteresis 

loop depends also on the interactions between the individual particles. A typical magnetization 

hysteresis loop for a nanowires array is presented in Figure 1.1. 

 

Figure 1.1 Magnetic hysteresis loop for a nanowire array with wire diameter of 80 nm and 
length of 1000 nm. 
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The hysteresis loop is described by several parameters:  

a) The saturation magnetization, Ms 

b) The remanent magnetization, Mr 

c) The coercivity, Hc   

d) The saturation field, Hs 

The applied magnetic field at which the magnetization M becomes zero is called the coercive 

field or coercivity Hc. The saturation field Hs is the field needed to reach the saturation 

magnetization. The remanent magnetization Mr is the magnetization at H = 0. For nanostructures, 

such as an array of nanowires, the coercivity Hc, the saturation magnetizationMs, and the 

remanent magnetization Mr are strongly dependent on the orientation of the applied magnetic 

field, and also on the size and shape of the sample. 

The saturation magnetization Ms is obtained when all magnetic moments in the material 

are aligned in the same direction. Saturation magnetization Ms is a property of ferromagnetic 

materials, therefore it does not depend of the nanowire geometry. For an arbitrary nanowires 

array all of these characteristic magnetic properties can be tuned by choosing appropriately the 

material of the nanowires and also the nanowires dimensions. The magnetic behavior of a 

magnetic system can be explained starting from the magnetic free energy Thus, static properties, 

as the magnetization hysteresis loop, and dynamic properties, as the ferromagnetic resonance, 

can be explained by minimizing the total free energy of the magnetic system and this process is 

explained in the following.   
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1.2 Magnetic Free Energy 

In this section we are interested in the energy of a magnetic system. We know that the 

problem of investigating the static equilibrium of a system is related to minimizing the total free 

energy of the system. In the Stoner–Wohlfarth model, by finding the total  energy minima, it is 

possible to predict the magnetization rotation and switching behavior of a particle under the 

influence of an applied field.11 Another example is that the existence of well-known domain 

structure in ferromagnetic materials can be explained by the result of minimization of the total 

free energy. Generally speaking, in observing the magnetic behavior of a magnetic system, it is 

important to understand what and how energy terms are playing a role in contribution of the total 

free energy of the whole system. 

 

1.2.1 Magnetocrystalline anisotropy  

The disposition of the magnetic moments in a magnetic crystal reflects the symmetry of 

the lattice. The symmetry of the crystal influences the interactions of the magnetic moments 

among themselves and with the lattice as well, and gives rise to anisotropic energy contributions. 

The sum of all these contributions is known as magnetocrystalline anisotropy.12 Due to the 

magnetocrystalline anisotropy, there are directions in the space lattice in which is easier to 

magnetize a given crystal, and these directions are called easy directions. For a simplified case of 

uniaxial magnetic anisotropy, we suppose the uniaxial anisotropy axis, or the easy axis, is 

parallel to the c-axis of the crystal. In this case, we can say that the anisotropy energy is invariant 

with respect to rotations around the anisotropy axis, depending only on the relative orientation of 

magnetization vector M with respect to the axis. As M rotates away from the c-axis, the 
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anisotropy energy initially increases with θ, the angle between the c-axis and the magnetization 

vector, then reaches a maximum value at θ = 900 and decreases to its original value at θ = 1800. 

So, the minimum anisotropy energy is obtained when the magnetization points either in the 

negative or positive direction along the c-axis. The energy density in this case can be expressed 

as: 

  WK = K0 + K1 sin2 θ + K2 sin4 θ + ...,     (1.1) 

the coefficients Kn, where n = 0, 1, 2…, are called anisotropy constants, having dimensions of 

energy per unit volume. The higher-order terms above K2 can be neglected because they are in 

general very small. The first term, K0 is a constant, so it can be disregarded as well. Therefore, 

for small deviations of the magnetization vector from the equilibrium position, the anisotropy 

density can be approximated using the second term of equation 1.1 as:  

  WK ≅ K1θ
2 ≅ 2K1 − 2K1 cosθ = 2K1 − M ⋅ HK        (1.2) 

In equation 1.2, HK = 2K1 / Ms , symbolizes the anisotropy field, and it gives a measure of the 

strength of the anisotropy effect and of the torque necessary to take the magnetization away from 

the easy axis. Ms is the magnitude of the magnetization vector M. An example of magnetic 

material with uniaxial magnetocrystalline anisotropy is cobalt. The values of the first two 

anisotropy constants for cobalt at room temperature are K1= 45x105 erg/cm3 and K2= 15x105 

erg/cm3.11 

In the case of cubic crystals, the anisotropy energy can be expressed in terms of the direction 

cosines (α1,α2,α3) of the magnetization vector with respect to the three cube edges: 

  WK = K1 α1
2α2

2 + α2
2α3

2 + α3
2α1

2( )+ K2α1
2α2

2α3
2       (1.3) 

Both Fe and Ni have a cubic magnetocrystalline anisotropy but Fe has the easy axis along <100> 

direction while Ni along <111>.11 
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1.2.2 Magnetostriction and stress anisotropy 

During the magnetization process the shape and the volume of a magnetic specimen 

change. This phenomenon is called magnetostriction and is due to the fact that the crystal lattice 

inside each domain is spontaneously deformed in the direction of domain magnetization, 

therefore generating the deformation of the entire specimen. For isotropic magnetostriction, the 

magnetoelastic energy density is given by: 

 Wσ =
3
2

λsσ sin2 θs ,     (1.4) 

where θs is the angle between the magnetization and the stress direction, λs is the appropriate 

magnetostriction constant, and σ is a uniaxial stress applied along a certain direction. For 

example, in the case of Ni the magnetostriction coefficient is -24.3 x 10-6 ergs/cm3.12 

1.2.3. Shape anisotropy 

The magnetization is independent of the orientation of the applied field for a spherical 

object, but for a non-spherical object it is easier to magnetize it along its long axis than along its 

short axis. Therefore, if we consider a magnetized rod-shaped object, with a north pole at one 

end and the south at the other, the field lines will emerge from the north pole to the south pole. 

Inside the material the field lines are oriented from the south pole to the north pole, and are 

opposed to the magnetization of the material, since the magnetic moment points from the south 

pole to the north pole. The result is that the magnetic field inside the material tends to 

demagnetize the material. This field is called demagnetizing field Hd and acts in the opposite 

direction from the magnetization M which gives rise to it. Between the demagnetizing field and 

the magnetization there is a proportionality relation: 

  Hd = −NdM          (1.5) 
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Where Nd is the demagnetizing factor and it depends on the shape of the object. The 

demagnetizing factor can only be calculated exactly for an ellipsoid where the magnetization is 

uniform throughout the sample.4 

The magnetostatic energy WD, depends on the specific direction of the magnetization vector and 

it can be written as: 

  WD =
1
2

Na Mx
2 + Nb My

2 + Nc Mz
2( ),     (1.6) where 

Na, Nb, Nc are the demagnetization factors pertaining to the three principal axes. Energy has the 

same mathematical form as the first-order uniaxial anisotropy, even though their physicals 

origins are different. So, in this case the magnetostatic self-energy is called shape anisotropy. 

In general, for an ellipsoidal object, with the ellipsoid semi-axes a, b, and c, the demagnetization 

factors along the ellipsoid’s semi-axes are: Na, Nb and Nc, respectively. The relation that connects 

them is: 

  π4=++ cba NNN       (1.7) 

In Figure 1.2 are presented three ellipsoids that can be used as theoretical representations of a 

nanowire: the prolate spheroid (ellipsoid of revolution), where c > a = b; the slender ellipsoid 

where c >> a > b, and the oblate spheroid where c = b > a. 

 

 a. Prolate spheroid  

The prolate ellipsoid (Figure 1.2.a) is for interest as an approximation for a single-

component nanowire with circular cross-section. The aspect ratio of a nanowire is defined as m = 

l/d, where l is the length of the nanowire and d is its diameter. The demagnetization factors are 

given by4: 
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Figure 1.2 a) The prolate spheroid (c > a = b); b) The slender ellipsoid (c >> a > b); 
 c) The oblate spheroid (c = b > a). 
 
 b. Slender ellipsoid  

This kind of ellipsoid (Figure 1.2.b) is a good approximation for nanowires that 

have a noncircular cross section. Its demagnetization factors are given by4: 

  Na = 4π b
a + b

−
1
2

ab
c 2 ln 4c

a + b
 
 
 

 
 
 +

ab 3a + b( )
4c 2 a + b( )

,    (1.10) 

  Nc = 4π a
a + b

−
1
2

ab
c 2 ln 4c

a + b
 
 
 

 
 
 +
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and: 
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+
= 14ln4 2 ba

c
c
abNc π .      (1.12) 

 

 c. Oblate spheroid  

This ellipsoid (Figure 1.2 c). is a good approximation for disc-shaped magnetic segments 

in multiple segment nanowires. As for the prolate spheroid its aspect ratio is m = c /a, and the 

demagnetization factors are given by the following equations 4: 
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Figure 1.3 The demagnetizing factor (N) as function of aspect ratio (m) for a prolate spheroid. 
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In Figure 1.3 is represented the dependence of the demagnetizing factor with the aspect ratio for 

a prolate spheroid. A nanowire with a large value of the aspect ratio can be considered an 

infinitely long cylinder and can be assimilated to a prolate ellipsoid. The infinitely long cylinder 

approximation can be used for values of m > 10.  

1.2.4 Zeeman Energy 

Zeeman energy is the energy of the interaction between the magnetization vector and the 

external applied field, and is given by: 

W H = −M ⋅ H         (1.15) 

1.2.5 Exchange Energy 

The notion of exchange interaction was first introduced by Heisenberg in 1928 to 

interpret the origin of the enormously large molecular fields acting in ferromagnetic materials.2 

This interaction is due to a quantum mechanical effect. The energy of exchange interaction is 

given by: 

WE = −2 JijSiSj
ij
∑ ,        (1.16) 

were Si and Sj are spins. The term Jij , which has no corresponding concept in classical physics, is 

called the exchange integral. Here Jij > 0 brings two spins parallel to each other, phenomenon 

described as ferromagnetism, whereas Jij < 0 brings two spins antiparallel to each other, 

phenomenon known as antiferromagnetism. 

1.2.6 Magnetostatic Interactions among Nanowires. 

In the previous paragraphs we analyzed the case of a single wire, assuming that the 

interaction between nanowires is negligible. The magnetic field Hx created by a dipole having a 

length l and a magnetic moment m, at a certain distance x in the direction perpendicular to the 

dipole is given by equation 1.17 4,13: 
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Hx =
m

x 2 +
l2

4
 

 
 

 

 
 

3 / 2        (1.17) 

Here l is the length of the dipole, m = MsV  is the magnetic moment and V is the volume of the 

dipole. This approximation gives a good estimation of the value of the magnetostatic interaction 

between two wires at a distance x. 

1.3 Magnetization Process 

1.3.1 Stoner-Wohlfarth (SW) Model 

With the basic concepts mentioned so far we are now able to describe some specific 

models to study the magnetization process of magnetic systems. It is well known that a magnetic 

material in general consists of many domains, or it has a multi-domain structure. This means that 

it is divided into uniformly magnetized regions or domains separated by domain walls in order to 

minimize its free energy.14 The magnetization behavior of an assembly of a single domain 

ferromagnetic particles has been one of the central issues in the study of magnetism. Many 

different approaches and models were taken. Among these models the Stoner-Wohlfarth model 

is one of the basics. Usually a particle is called a Stoner-Wohlfarth or Stoner particle if the 

magnetic moments of all atoms are aligned in the same direction, creating a so-called single 

magnetic domain. In this mode the magnetization rotates in the same angle everywhere through 

the particle, and it is therefore known as the coherent rotation mode. This model can describe 

pretty well the system of small magnetic particles, when the thermal fluctuations of magnetic 

particles and the interactions between them are negligible. However, when one has to deal with 

the system of single domain particles with their sizes lower than some critical value, the thermal 

effect needs to be taken into account since in this case the thermal energy of the system would be 

comparable to the magnetic anisotropy energy barrier of single domain particles. The anisotropy 
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energy of a uni-axial single domain particle is given by: E = KV sin2 θ , where K is the anisotropy 

constant, and θ  is the angle between the magnetization vector and the easy axis. So, the energy 

barrier, separating easy directions is: EB = KV  and is proportional to the volume V. Therefore, 

by decreasing the particle size, the anisotropy energy decreases, and for a domain size lower than 

a certain value, it may become comparable to or even lower than the thermal energy kT. This 

implies that the energy barrier for magnetization reversal may be overcome, and then, the 

magnetic moment of the particle can thermally fluctuate from one easy direction to another, even 

in the absence of the applied field, like a single spin in paramagnetic material. This type of 

behavior is called superparamagnetism.14 

In 1948, starting with the assumption that is possible to identify all magnetic particles which 

reverse their magnetization by coherent rotation, Stoner and Wohlfarth came up with a model to 

describe such a system.15 The basic idea of the Stoner-Wohlfarth model, is that a single 

magnetization vector is sufficient to describe the state of the whole system. This reduces the 

number of degrees of freedom to only one. This approach is somewhat idealized and should not 

be expected to give accurate prediction of the behavior of real systems. One can apply this model 

for a mono-domain particle in which the exchange interaction will be able to keep the elementary 

spins parallel to respect each other, so that the whole system can be considered uniform and 

having a big single magnetization vector. One notable exception of this model is that the 

temperature of the whole system is not taken into account or can be considered zero. This should 

be reasonable when the sizes of all particles are still large enough so that the thermal energy is 

negligibly small, compared to the anisotropy energy, E = KV . In this case the magnetic 

relaxation (or the superparamagnetism) can be disregard. Also the Stoner-Wohlfarth model does 

not take into account the interaction between particles. 
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1.3.2 Landau-Lifshitz-Gilbert (LLG) Equation 

The behavior of the magnetization of a single domain ferromagnetic particle has been the 

subject of several studies. The Stoner-Wohlfarth model describes the system of single domain 

particles, provided that the coherent rotation condition is satisfied, and magnetic relaxation is 

neglected. This model does not say anything about two aspects: how the system will approach 

equilibrium and how the magnetization will react to time varying applied field. 

Landau and Lifshitz proposed in their 1935 paper16 an equation of motion for magnetization in a 

homogeneously magnetized body. This equation is useful because describes both the equilibrium 

position, and the dynamics of the moment reaching that position. In 1955 Gilbert modified this 

equation to overcome the unphysical solution for large damping parameters.17,18 The LLG 

equation is a nonlinear differential equation so its analytical solutions can be found only in 

special cases. 

The magnetic moment of an electron is related to spin momentum by: 

Sm γ=         (1.18) 

withγ  the gyromagnetic ratio for an electron, given by: 

γ =
−ge
2mc

.        (1.19) 

Here, e is the electron charge, m is the electron mass, c is the speed of light and g is the Lande 

splitting factor. The equation (1.18) is valid in both classical and quantum mechanics. The torque 

exerted on a magnetic moment m by a magnetic field H is: 

HmT ×=         (1.20) 

The equation (1.18) and the equation (1.20) give an equation of motion for the magnetic moment 

of an electron spin: 
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Hmm
×= γ

dt
d         (1.21) 

The gyromagnetic equation (1.21), simply describes an instantaneous precessional motion of the 

magnetization vector. The applicability of this equation is not limited to the torque exerted by an 

external field. Any torque on a magnetic moment M can be written in the form (1.21), if we 

define an effective magnetic field: 

( )
m
mH

∂
∂W

−=         (1.22) 

where ( )mW  is the potential energy of the system with respect to the work done by rotating the 

moment against whatever forces are present. Theoretical and experimental studies of the 

ferromagnetic properties identified five different energy terms: 

Wtot = W H + WD + WE + WK + Wσ      (1.23) 

Where W H  is the external field energy, WD  is the demagnetization energy, WE  is the exchange 

energy, WK  is the anisotropy energy and Wσ  is the magnetoelastic energy, accounting for the 

changes in the magnetization field energy introduced by strains in the crystal lattice. The 

corresponding effective fields are: 

H tot = HH + HD + HE + HK + Hσ      (1.24) 

The first two terms are magnetic fields, the last three are effective fields that have quantum 

origins.17,18 

The equation (1.21) represents uniform undamped precession of the vector m about the axis of 

the field H. The observable behavior of the magnetization of a single domain ferromagnetic 

particle is that of alignment of m with H. This alignment is due to the collision between 

precessing electrons which takes place within particle. Therefore, it appears that the field does 
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not directly cause alignment; rather it causes precession of m about the axis of the field, which 

along with collision will produce alignment. 

Landau and Lifshitz introduced a second term in the equation (1.21), the tendency of which is to 

align m and H. In their 1935 paper16, they proposed an equation for the dynamic behavior of m, 

which included a term proportional to: 

( ) ( ) ( ) mmHMmHmHm ⋅⋅−⋅⋅=××     (1.25) 

The original form of Landau-Lifshitz equation is: 

( )















 ⋅⋅
−+×−= 2

SM
mHmHmHm

.
λγ     (1.26) 

The factor λ  is a constant, of the same dimensions as MS  that characterizes the dipole-dipole 

interaction between the elementary magnetic moments, and is limited by the condition that λ  << 

MS . The dynamics of magnetization described by Landau-Lifshitz equation can explain the 

ferromagnetic resonance (FMR) phenomenon that we used in our study to characterize the Ni 

nanowire arrays. 

1.4 Ferromagnetic Resonance 

Ferromagnetic resonance, also known as the resonant absorption of the external 

electromagnetic radiation, occurs in ferromagnetic materials and is a phenomenon of microwave 

spectroscopy19.  

The Bohr frequencies of the corresponding quanta absorbed or emitted in the Zeeman 

transitions are given by the formula: 

   hν ik = =ω ik = Wi −Wk = ∆Wik       (1.27) 

Where   h = 2π=, is the Planck constant, and ω ik = 2πν ik  the cyclic Bohr frequency. The value of 

the energy difference is defined as: 
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  ∆Wik = gµB∆mikH        (1.28) 

where g is the Lande factor, or the spectroscopic splitting factor, ∆mik  is the difference of the 

magnetic quantum numbers of the states i and k of a given multiplet, and the Bohr magneton is 

  
µB =

e=
2mc

≅10−20(emu), with m and e being the mass and respectively the charge of the electron, 

and c the speed of light. Therefore, the Bohr frequency range is: 

  
  
ω ik =

gµB

=
∆mikH0       (1.29) 

The values of ∆mik  are limited by the selection rules to ±1 for transitions occurring for quantum 

numbers i≠k.  

 For an applied external field H0 , the connection between the resonant frequency and the 

external field is19: 

  ωres = γH0        (1.30) 

Where: 

  
gµB

=
= g e

2mc
= γ        (1.31) 

It can be seen from the last two equations 1.30 and1.31, that for a definite field frequency; we 

can get the value of the resonant magnetic field as: 

  Hres =
ω0

γ
        (1.32) 

We can observe from the formula of the resonant magnetic field that this one does not depend on 

the Planck constant.  

1.4.1 General Formula for the Resonance Frequency 

The equation of motion for the magnetic moment of an electron spin (1.21) can be written 

if we assume that the spins responsible for the ferromagnetism precess at a frequencyω0 not in 
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the external field H0 , but in some internal effective field Heff, equivalent in its action to the 

external field: 

M
.

= γ M × Heff( )       (1.33) 

If the free energy is W, the resonance frequency of the oscillation is19: 

ωres = γHeff =
γ

M sinθ
∂2W
∂θ 2

∂ 2W
∂ϕ 2 −

∂ 2W
∂θ∂ϕ

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

1/ 2

   (1.34) 

Where θ,ϕ,ρ  are the orientations in spherical coordinates. 

 

1.4.2 The Influence of the Shape in the Resonance Frequency 

As we saw earlier the demagnetizing factors of the samples are influenced by their 

geometry. In such a way the resonant frequency is also influenced. We can write that for an 

applied external magnetic field H0, the energy is: 

W = − Ms ⋅ H0( )+
1
2

Nx Msx
2 + Ny Msy

2 + Nz Msz
2( )   (1.35) 

In the previous paragraph 1.2.3, when we referred to the demagnetizing factors we used some 

different notations for them. So, to be consistent some specifications are needed: 

Na = Nx

Nb = Ny

Nc = Nz

 

In the equation (1.35) the term Ms represents the saturation magnetization. As we established in 

the paragraph 1.2.3, the sum of the demagnetizing factors on the three axis is: 

Na + Nb + Nc = Nx + Ny + Nz = 4π . By selecting the x-axis of the Cartesian system of 

coordinates as the polar axis, and assuming the magnetizing field H0 to be applied parallel to the 

z axis we have: 
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W = −MsH0 sinθ sinϕ + 0.5Ms
2(Ny sin2 θ cos2 ϕ + Nz sin2 θ sin2 ϕ + Nx cos2 θ)(1.36) 

where ,  θ ϕ  are the polar and azimuthal angles, respectively which define the orientation of the 

magnetization vector. 

The resonance frequency can be written then as19: 

ωres = γ
Ny − Nx

Nz − Nx

Ms
2 Nz − Nx( )2

− H0
2[ ] 

 
 

 

 
 

1
2

≅ γMs Ny − Nx( ) Nz − Nx( )[ ]1/ 2
 (1.37) 

In the case of a prolate ellipsoid the equation (1.37) takes the form: 

ωres = γ H0 − Ms∆N[ ]       (1.38) 

with ∆N = Nz − Nx . 

1.4.3 The Influence of the Crystal Magnetic Anisotropy on the Resonance Frequency 

From equation 1.1 we have:WK = K0 + K1 sin2 θ + K2 sin4 θ + ... 

Taking as an example the case of an uni-axial single crystal with K1>0, and having the 

magnitude of the field limited by the condition: Ny − Nx( )Ms < H0 <
2K1

Ms

+ Ny − Nz( )Ms, then we 

get: 

ωres

γ
 

 
 

 

 
 

2

=
2K1

Ms

+ Ny − Nz( )Ms

 

 
 

 

 
 

2

− H0
2

 
 
 

  

 
 
 

  
2K1 + (Nx − Nz )Ms

2

2K1 + (Nx − Nz )Ms
2   (1.39) 

If: H0 ≥ (2K1 / Ms) + (Ny − Nz)Ms then: 

ωres

γ
 

 
 

 

 
 

2

= H0
2 −

2K1H0

Ms

− Ny − Nx( ) H0Ms − 2K1( )− Ms Ny − Nz( ) H0 − Ny − Nx( )Ms[ ] (1.40) 

For a prolate ellipsoid if: H0 ≤ 2K1 / Ms − 4π − 3Nx( )Ms, then: 

ωres

γ
 

 
 

 

 
 

2

= 2K1 / Ms − 4π − 3Nx( )Ms[ ]2
− H0

2                                     (1.41) 
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And if, H0 ≥ 2K1 / Ms − Ms 4π − 3Nx( ), then: 

ωres

γ
 

 
 

 

 
 

2

= H0 H0 − 2K1 / Ms + (4π − 3Nx )Ms[ ]    (1.42) 

1.4.4 The Influence of Domain Structure on the Resonance Frequency 

In the previous paragraphs, in accordance with the conditions occurring in most 

experiments on ferromagnetic resonance, it was assumed that the external magnetizing field for 

the sample, as a whole, could be looked upon as a single ferromagnetic region of arbitrary 

magnetization.  

In weak magnetizing fields there will be a multi-domain structure in the sample, 

corresponding to a smaller free energy than for the single domain structure. In this case, it is 

necessary to pay specific attention to the presence in the sample of transitional inter domain 

layers of finite thickness in which the direction of the vector of spontaneous magnetization 

changes continuously in accordance with a definite law. If an alternating magnetic field is 

applied perpendicular to the easy axis, the magnetizations running anti-parallel in the 

neighboring domains will precess in opposite direction about the axis of easy magnetization. If, 

at the same time, the alternating magnetic field is at right angles to boundaries, then the radio 

frequency components of the magnetization will be in phase only when they are at right angles to 

the boundaries, and in counter-phase when they are parallel to the boundaries.  

1.4.5 Line Width of Resonance Absorption 

The line width of resonance absorption is the distance H∆  on the field scale at ω = 

const., or the distance ω∆  at H0 = const., between the sides of resonance absorption curve at 

mid-height. The Landau –Lifshitz equation (1.26), can be written in the form: 

  
M

.
= −γ M×H( )−α γ

M
M× M×H( )[ ]     (1.43) 
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Where M
γ
λα =  is a dimensionless damping parameter. The frequency satisfies the equation: 

022 =−∆− resi ωωωω        (1.44) 

Here resω  has the form given by the relation (1.34) and:  

  ∆ω =
dω
dH

 
  

 
  ∆H =

αγ
M

∂2W
∂θ∂ϕ

+
∂2W
∂ϕ 2

1
sin2 θ

 

 
 

 

 
     (1.45) 

is the width of the resonant absorption line.  
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Chapter 2: Experiment 

 In this chapter are presented the samples preparation methods, the experiments performed 

to measure the major hysteresis loop (MHL) using a vibrating sample magnetometer and the 

ferromagnetic resonance experiments performed using a X-band spectrometer. 

 All the samples and templates used in this study were prepared in Prof. Wiley’s 

laboratory from Department of Chemistry by Dr. Xiequn Zhang and Ms. Jin-Hee Lim. First of 

all, various membranes were prepared by anodization procedure described below. The obtained 

membranes were used as templates in which the magnetic nanowire arrays were grown by 

chemical electrodeposition.  

2.1 Anodized Alumina Oxide (AAO) Template Preparation 

AAO templates were synthesized in two steps anodization procedure, as is presented in 

Figure 2.1.  

 

 

Figure 2.1 AAO templates preparation in two steps anodization. 

 A high purity aluminum foil (99.999%, Aldrich) was degreased in acetone for 20 min., 

then, it was annealed at 450 CD  under argon atmosphere for 5 h. The annealed Al sheet was 

Al foil 
 Annealing & Polishing  1st anodizing Etching

2nd anodizing  Channel type AAO Electrodeposition

Ni 

Au 
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electropolished in a 1:4 mixture of HClO4 and ethanol, at 25 V, and10 CD . After that, the sample 

was washed three times with distilled water and acetone. A mirror finished Al sheet was 

anodized at 40 V DC in 0.3 M H2C2O4 at 17 CD  for 12 h. The oxide layer was removed by wet 

chemical etching process in a mixture of 5 wt% H3PO4 and 1.8 wt% CrO3 at 70 CD  for 10 h. The 

Al remaining periodic concave patterns were anodized by using the same process, starting with 

the first step, to enable obtaining hexagonally ordered nanopore arrays of template (see 

Figure2.2). 

 

   

Figure 2.2 The hexagonally ordered nanopore arrays of the AAO template. 

 

The Al film and barrier layer were separated into 1:1 mixture of HClO4 and ethanol at 45 V 

and10 CD . The separated alumina template was washed three times with distilled water and 

acetone20,21. In order to obtain templates with the same interpore distance of 100 nm and 

different pore sizes, the templates were etched in 5 wt% H3PO4 solution at room temperature. 

The 40 nm sample was etched for 10 min., the 60 nm sample was etched for 30 min., and the 80 

nm sample was etched for 50 min22,23. Then, the samples were washed thoroughly with large 

amounts of distilled water and acetone. The membranes produced following the above procedure 

are of much better quality than those commercially available, this is the reason we used them in 
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our studies. The hexagonally ordered pores can be observed in the Scanning Electron 

Microscope (SEM) images displayed in Figure 2.3. 

 

. 
 
 

 

 
 
 
 
Figure 2.3 The top surfaces of AAO templates with pore diameters of 40, 60, 80 nm, 
respectively, and interpore distance of 100 nm 
 

 

 2.2 Nanowire Electrodeposition 

 

The Ni nanowires were electrodeposited into obtained AAO membranes, using an 

electrolyte composed of 120 g/l NiSO4, 40 g/l H3BO4. Electrodeposition was performed in a 

three-electrode cell with Ag/AgCl reference electrode and a platinum wire counter electrode. The 

nanowires length was controlled by the charge during deposition 2,24.  The obtained samples 

consist of almost cylindrical and parallel sets of ferromagnetic Ni nanowires embedded in the 

alumina membrane (Fig. 2.4).  

Two sets of Ni nanowires were prepared: one with the length of wires of 500 nm, and the 

other one with the length of 1000 nm. Each set was comprised by three kinds of samples with 

diameters of 40 nm, 60 nm and 80 nm, respectively. The interpore distance for each sample was 

100 nm. 

d=40 nm d=80 nm d=60 nm
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Figure 2.4 SEM image of Ni nanowire arrays of 60 nm diameter and 100 nm interpore distance. 
 

2.3 Vibrating Sample Magnetometer (VSM) Measurements 
 
 The vibrating sample magnetometer (VSM) operates on Faraday's Law of Induction and is 

used to measure the magnetic behavior of materials. The changing magnetic field will produce 

an electric field that can be measured, and can provide information about the changing magnetic 

field. The static magnetic behavior of the nanowire samples was studied using the Vibrating 

Sample Magnetometer presented in Figure 2.5. The magnetic field was oriented at: 00 and 900  

degrees with respect to the wire's axis. At 00 orientation, the field was parallel to the wires axis 

and at 900 , the field was perpendicular to the wires axis. 

The measurements were performed at room temperature and the magnetic field for this 

measurement was chosen to sweep between -6000 Oe and +6000 Oe, because we observed that 

the saturation field for Ni was at 5000 Oe. The intervals chosen for the magnetic field (Oe), for 

the VSM measurement are presented in Table 2.1.  

After doing the magnetostatic measurements it was observed for the sets of samples with 

length of 500 nm and 1000 nm that some properties of the samples such as the coercivity or the 
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saturation field change as the aspect ratio changes. The results of these measurements will be 

discussed in the next chapter.  

                                   

 

 

 

 

2.4 Ferromagnetic Resonance (FMR) Measurements 

The dynamic properties of the Ni nanowires samples were studied using the 

ferromagnetic resonance. For this study, we used a Ferromagnetic Resonance (FMR) and 

Electron Paramagnetic Resonance (EPR) Spectrometer System, Bruker EMX 102, presented in 

Figure 2.6(b). The FMR measurements were performed at room temperature using X-band (9.8 

GHz) FMR spectrometer at several orientations between -100 and 2000, with the bias magnetic 

field applied parallel to wire’s long axis for 00 orientation, and perpendicular to the wire’s long 

axis for 900 orientation. The field was swept between 0 kOe and 9 kOe.  

Figure 2.5 Vibrating Sample Magnetometer, 
Lakeshore 7300 Series. 

Table2.1 Magnetic field intervals 
(Oe) chosen for VSM measurements. 
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(a)                 (b) 

Figure 2.6(a) the FMR spectra for a sample of Ni nanowires with a diameter of wires of 120 nm, 
at 00 orientation and Figure 2.6(b) the FMR-EPR spectrometer system.  

 

In order to observe the dependence of the resonance field on the angle of orientation of the 

applied field, we choose to perform the measurements at several angles. For both sets of samples 

it was observed that at 900 the resonant field has a minimum or a maximum value depending on 

the value of the aspect ratio. The results of these measurements will be discussed in the next 

chapter. 
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 Chapter 3: Results and Discussions 

 This chapter presents the results of the major hysteresis loop measurements used to 

characterize the static properties of our samples. Then, the results of the ferromagnetic resonance 

measurements used to investigate the dynamic properties of the nanowire samples are presented. 

The measurements were performed in order to observe and analyze the interaction effects in 

magnetic nanowire. 

3.1 Magnetic Measurements 

Magnetic measurements were performed at room temperature using a VSM, for two 

series of Ni nanowires samples: one set with the length of wires of 500 nm, and the other set with 

length of 1000 nm. 

3.1.1 Samples with the Length of Wires of 500 nm  

The first set of samples analyzed had the length of wires of 500 nm. The first sample has 

wires with a diameter of 40 nm (sample d40l500), the second had a diameter of 60 nm (sample 

d60l500), and the third one had a diameter of 80 nm (sample d80l500). The magnetic field was 

applied parallel to the wire’s long axis for the angle θ=00 and perpendicular to the wire’s long 

axis for the angle θ=900. 

a. Sample d40l500 

The magnetization curve for the sample d40l500, presented in Figure 3.1, shows for a 00 

orientation of the applied magnetic field, a coercive field, Hc = 0.558 kOe, and for 900 orientation 

the coercive field was Hc =0.148 kOe. The saturation field (Hsat) for the 00 orientation was 1.42 

kOe, while for the 900 was 2.43 kOe. Because the value of Hc parallel is larger than the value of 

Hc perpendicular, and Hsat parallel value is smaller than Hsat perpendicular value, this sample 
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exhibits a preferential magnetic orientation along the wire’s long axis25. The aspect ratio 

calculated in this case was m = l/d = 12.5.  

For the parallel orientation, the measured remanent moment is mr = 0.448 memu and the 

measured saturation moment for this orientation is ms = 0.531 memu. The squareness ratio S is 

defined as: 

  
s

r

m
mS =         (3.1) 

For the sample d40l500 the calculated squareness ratio was S = 0.84. 

       

Figure 3.1 Hysteresis curve for the sample d40l500 measured at 00 and 900 orientation of the 
magnetic field.  
 
 

b. Sample d60l500 

The hysteresis curve for the sample d60l500, presented in Figure 3.2, exhibited at 900 

orientation of the applied field a coercive field Hc = 0.179 kOe, and at 00, Hc = 0.529 kOe. The 

saturation field Hsat had a value of 1.4 kOe for the parallel orientation, and 1.9 kOe for the 
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perpendicular orientation. Therefore, this sample had a preferential magnetic orientation along 

the wire’s principal axis. The saturation moment at 00 was ms =0.647 memu, and the remanent 

moment at the same orientation was mr = 0.514 memu. The calculated aspect ratio was m = 8.33 

and the squareness ratio was S = 0.79. 

 

 
Figure 3.2 Hysteresis curve for the sample d60l500 at 00 and 900.       

 c. Sample d80l500 

The magnetization curve for this sample (Figure 3.3) showed a coercive field for 900 Hc = 

0.072 kOe, and for 00  Hc = 0.520 kOe. The saturation field had almost the same values for both 

directions of the applied field, Hsat = 2.1 kOe. The saturation moment at 00, in this case was ms = 

0.864, memu while the remanent moment for this sample, at the same orientation, was mr = 

0.365 memu. The calculated aspect ratio was m = 6.25 and the squareness ratio S = 0.43.  
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Figure 3.3 Hysteresis curve for the sample d80l500 at 00 and 900 

 

  

Figure 3.4 The squareness ratio S as a function of the aspect ratio m for the set of samples with 
the length of 500 nm. 
 
 

Increasing the pore diameter from 40 nm to 80 nm, of this first set of samples while 

keeping the interpore distance constant we observed a decrease of the remanent moment mr from 
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0.448 memu to 0.365 memu (almost 81%), as it was expected. In the same time the coercive 

field decreased for 00 orientation from 0.558 kOe to 0.520 kOe. The squareness ratio S increased 

as the aspect ratio m increased, namely as the pore diameter decreased (Figure 3.4). 

 

3.1.2 Samples with the Length of Wires of 1000 nm 

The second set of samples analyzed was composed of three samples of Ni nanowires with 

the same length of wires of 1000 nm and diameters of: 40 nm (sample d40l1000), 60 nm (sample 

d60l1000), and 80 nm (sample d80l1000), respectively. All three samples had the interpore 

distance of 100 nm. This set was measured using a VSM at room temperature with the applied 

field parallel to the wire’s long axis for the angle θ=00 and perpendicular to the wire’s long axis 

for the angle θ=900. 

 

a. Sample d40l1000 

The sample d40l1000 had the largest calculated aspect ratio m = 25. From the 

magnetization curve (Figure 3.5) the coercive field measured at 00 was Hc= 0.53 kOe, while at 

900 it was Hc= 0.125 kOe. The saturation field at 00 was Hsat= 1.5 kOe, and at 900 it was Hsat= 

4.5 kOe. This showed a preferential orientation along the principal axis of wires. The saturation 

magnetic moment at 00 was ms= 1.55 memu and the remanent magnetic moment at the same 

orientation was mr= 1.51 memu. The squareness ratio for the sample d40l1000 was S = 0.97. 
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Figure 3.5 The hysteresis curve for the sample d40l1000 at 00 and 900 

 b. Sample d60l1000 

 

For this sample the calculated aspect ratio was m = 16.7. The hysteresis loop of this sample 

(Figure 3.6), showed at 00 orientation a coercive field Hc = 0.616 kOe and at 900 Hc =0.075 kOe. 

The saturation field for the parallel orientation was Hsat = 2 kOe, and for 

perpendicular orientation Hsat= 3 kOe. This sample had also a preferential orientation along the 

principal wire’s axis. At 00 the remanent magnetic moment was measured and found to be mr = 

1.3 memu and the saturation magnetic moment at the same orientation was ms = 0.94 memu. The 

squareness ratio was S = 0.72. 
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Figure 3.6 The hysteresis curve for the sample d60l1000 at 00 and 900 

 

 

 c. Sample d80l1000 

 For the sample d80l1000 the calculated aspect ratio was m = 12.5. From the 

magnetization curve of this sample (Figure 3.7) we observed that it had a coercive field Hc = 0.66 

kOe at 00 and Hc = 0.083 kOe at 900 orientation of the applied field. The saturation field for both 

orientations exhibited almost the same value Hsat = 2.88 kOe. The saturation magnetic moment at 

00 was ms = 1.81 memu and the remanent magnetic moment for the same orientation of the 

applied field was mr = 0.92 memu. In this case the squareness ratio had the value S = 0.5.  
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Figure 3.7 The hysteresis curve for the sample d80l1000 at 00 and 900 

 

 For the second set of samples, increasing the diameter from 40 nm to 80 nm, while keeping a 

constant interpore distance of 100 nm, induced a decrease of the remanent magnetic moment 

which was observed to range from 1.51 memu to 0.92 memu (almost 61%). In this case an 

increasing of the coercive field was noticed from 0.53 kOe to 0.66 kOe . 

As expected, the squareness ratio S of this second set of samples increased as the aspect ratio m 

increased (Figure 3.8). 
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Figure 3.8 The squareness ratio vs apect ratio for the samples with length of 1000 nm 

 

3.1.3 Conclusions of Magnetic Measurements 

 

 The two sets of samples exhibited different variations of the value of coercivity with the 

aspect ratio for the applied field parallel to the wires’ long axis. 

For the samples with the length of wires of 500 nm the coercivity decreased as the aspect ratio 

decreased. This can be explained taking into account that increasing the wires diameter while 

keeping the same interpore distance, the value of the demagnetization field increased, trying to 

change the preferential orientation perpendicular to the wire’s long axis (Figure 3.9) 
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Figure 3.9 The coercive field as function of the aspect ratio for the set of samples with 500 nm 
length of wires. 
 
 
For samples with the length of wires of 1000 nm the value of the coercivity increased as the 

aspect ratio decreased. For this set increasing the diameter of wires from 40 nm to 80 nm, while 

keeping the same interpore distance constant, the lateral surfaces of wires became more 

proximate and the interaction among them more important (Figure 3.10). For a system of long 

wires with the aspect ratio larger than 10, the interaction fields 

among wires can significantly change the behavior of the whole system. The samples d40l500 

and d80l100 have the same aspect ratio of 12.5, but their values of the coercivity for the field 

applied parallel are different. This value for the sample d80l100 is larger that the one of the 

sample d40l500. This can be explained that in the first case the interactions among wires are very 
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important and in the second case the demagnetization field inside the wires became very strong.  

 

Figure 3.10 The coercive field as function of the aspect ratio for the set of samples with 1000 
nm length of wires. 
 
 

3.2 Ferromagnetic Resonance Measurements 

  The ferromagnetic resonance measurements, for both sets of samples were performed at 

room temperature using a X-band spectrometer, with the bias magnetic field applied along 

different directions with respect to wires’ axis (parallel to the wires’s long axis for the angle θ 

=00 and perpendicular to the wires’s long axis for the angle θ =900). 

3.2.1 Samples with the Length of Wires of 500 nm 

 

 a. Sample d40l500 

 The FMR spectra of this sample are presented in Figure 3.11. At 900 orientation, the 

value of the resonant field was 3.6 kOe, while for the 00 orientation the value of the resonant 

field was 2.2 kOe. 
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Figure 3.11 The FMR spectra of sample d40l500 for the parallel and perpendicular orientation 
of the bias applied field. 
 
 b. Sample d60l500 

 In the Figure 3.12 are presented the FMR spectra of the sample d60l500 for the both 

orientations. The value of the resonance field for the perpendicular orientation was 3.4 kOe and 

for the parallel one was 2.4 kOe.  

 

Figure 3.12 The FMR spectra of sample d60l500 for the parallel and perpendicular orientation 
of the bias applied field. 
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 c. Sample d80l500 

 In the Figure 3.13 are presented the FMR spectra of the sample d80l500 for the both 

orientations. The value of the resonance field for the perpendicular orientation was 3.4 kOe and 

for the parallel one was 3.15 kOe. 

 

Figure 3.13 The FMR spectra of sample d80l500 for the parallel and perpendicular orientation 
of the bias applied field. 
 

Unlike the previous two samples, the sample d80l500 exhibited a larger value of the resonance 

field for the parallel orientation than the one corresponding to the perpendicular one. 

 In Figure 3.14 are presented the angular dependence of the resonance field for the 

samples with the length of wires of 500 nm. It was observed that this angular dependence of the 

resonance field depends on the aspect ratio, flattening with the decrease of it. 

A similar variation of the angular dependence of the resonance field was previously observed on 

two dimensional arrays of permalloy nano stripes prepared by electron beam nanolithography 26.  
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Figure 3.14 The angular dependence of the resonance field for the set of samples with the length 
of wires of 500 nm. 
 

 It was observed that not only the aspect ratio influences the value of the resonance field; 

we can see from the Figure 3.15 that the resonance field vs. aspect ratio is also a function of the 

orientation, decreasing with the increasing of the aspect ratio for the bias applied field parallel 

and increasing with the increasing of the aspect ratio for the perpendicular orientation of the bias 

applied field. 

  

Figure 3.15 The angular dependence of the resonance field for the set of samples with the length 
of wires of 500 nm at different orientations. 
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3.2.2 Samples with the Length of Wires of 1000 nm 

 

 a. Sample d40l1000 

 FMR spectra of this sample (Figure 3.16), showed a value of the resonance field of 1.2 

kOe for the parallel orientation and 4.4 kOe for the perpendicular orientation. 

 

 

Figure 3.16 The FMR spectra of sample d40l1000 for the parallel and perpendicular orientations 
of the bias applied field. 
 

 b. Sample d60l1000 

 FMR spectra of this sample, presented in Figure 3.17, show a value of the resonance field 

of 2.45 kOe for the parallel orientation, and 3.6 kOe for the perpendicular orientation. As it was 

observed for the previous set of samples the value of the resonance field decreased in this case 

for the parallel orientation of the applied field and increased for the perpendicular configuration, 

but the difference between this two values became smaller than the one corresponding to the 

sample d40l100. 
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Figure 3.17 The FMR spectra of sample d60l1000 for the parallel and perpendicular orientations 
of the bias applied field. 
 

 c. Sample d80l1000 

 

Figure 3.18 The FMR spectra of sample d80l1000 for the parallel and perpendicular orientations 
of the bias applied field. 
 

 FMR spectra of the sample d80l1000 (Figure 3.18), showed a value of the resonance field 

of 2.8 kOe for the parallel orientation and 3.4 kOe for the perpendicular orientation.  
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 Like in the case of the set of samples with the length of wires of 500 nm, for the set of 

samples with 1000 nm length of wires the angular dependence of the resonance field was 

observed to flatten as the aspect ratio decreased, result showed in Figure 3.19. 

 

Figure 3.19 The angular dependence of the resonance field for the set of samples with the length 
of wires of 1000 nm. 
 

 Like for the first set of samples, the value of the resonance field was dependent also on 

the orientation of the applied field (Figure 3.20). 

 

Figure 3.20 The angular dependence of the resonance field for the set of samples with the length 
of wires of 1000 nm at different orientations. 
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3.2.3 FMR Measurements Conclusions 

 For both sets of samples we observed a variation of the angular dependence of the 

resonance field, this one flattening as the aspect ratio decreased.  

For the sample with the lowest aspect ratio (d80l500), the dipolar interactions were significant, 

they being able to cancel and even overcome the shape anisotropy, creating an easy axis 

perpendicular to the wires’s long axis. 

The orientation of the bias applied field influenced as well the value of the resonance field, this 

one decreasing as the aspect ratio increased for parallel orientation and increased with the aspect 

ratio for the perpendicular configuration for both sets of samples. This shows that the effect of 

interactions depends also on the orientation and that the interactions are more important when the 

field is applied along the principal axis of wires. 
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Chapter 4: Modeling of Interactions in Ferromagnetic Nanowire Arrays 

 

 This chapter discusses a theoretical model we proposed to explain our experimental 

results. As we observed, the properties of a nanowires system are strongly dependent on the 

geometry of the wires and also on the interactions between them. The interwire interactions are 

very complex, being very much dependent on the magnetization state of each wire.  

 A theoretical approach similar to that presented in Reference 8 was used to explain the 

angular dependence of the resonance field for both sets of samples. This work was done in 

collaboration with Dr. Ion Dumitru, former member of our group and currently an Assistant 

Professor at Iasi University, Romania. The main assumptions and parameters used in modeling 

the ferromagnetic resonance in these systems are given bellow. 

4.1. Modeling of Interaction Effects  

 The nanowire assemblies were simulated using a 2D hexagonal lattice with 

approximately 7500 cylindrical wires (80x92) with an interwire distance D and the same 

diameter d and length l for all cylinders.  

 The saturation magnetization was taken as one for Ni, Ms = 485 emu/cm3. The effective 

magnetic anisotropy of Ni nanowires  was chosen to be uniaxial with K1 = 4.5x105 erg/cm3 and 

easy axis parallel to the wire’s long axis.11 The magnetization is assumed to be uniform so that 

each wire of the assembly can be considered as a point dipole in the center of each cylinder. 

 The interaction field among wires and the demagnetization field were calculated in the 

center of each cylinder, using surface magnetic charge distributions that depend on the direction 

of the wire’s magnetization. 

The interaction field (assuming that all wires had the same direction of M) is given by: 
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where HIx, HIy, HIz are the interaction fields on x, y and z directions, Nxx, Nyy, Nzz are the 

demagnetization factors outside cylinders and Mx, My, Mz are the magnetizations on x, y, and z 

directions.10 

 The demagnetization field in the center of a wire is given by: 
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where HDx, HDy, HDz are the demagnetization fields on x, y and z directions, Nx, Ny, Nz are the 

demagnetization factors inside cylinders and Mx, My, Mz are the magnetizations on x, y, and z 

directions. Nzz and Nz were calculated for each wire for a magnetization parallel to wire’s long 

axis and Nxx, Nx were calculated for each wire for a perpendicular magnetization.10 The 

demagnetization factors along x and y directions were considered equals (Nxx = Nyy and Nx = Nx).  

 The total field inside each wire is the sum of the interaction field HI, the demagnetization 

field HD, the external applied field H0, and the magnetocrystalline anisotropy field HK.  

 The component of the imaginary part on y direction of the susceptibility tensor for each wire 

was determined using the formula27: 

  

χ =
ω

ω 2 −ωres
2( )+ ω 2 ∆ω( )2 ×

−γ 2 1+ α 2( )∆ω ∂ 2W
∂ϕ 2

sin2 ϕ cos2 θ
sin2 θ

−
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∂ 2W
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(4.3) 

We know from (1.45) that: 
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In the formula (3.4) the terms ∂ 2W
∂θ 2 , ∂ 2W

∂ϕ 2  and ∂2W
∂θ∂ϕ

 are second derivatives of the free energy W 

:19 

  W = −µM ⋅ Heff +
K1

M ⋅ Heff

M ⋅ Heff( )2     (4.4) 

The total susceptibility is the sum of the susceptibilities of all wires. The external field was 

applied at different angles with respect to wire’s axis and the dependence of the total 

susceptibility as function of the applied field at all orientations was plotted. The maximum of 

each curve determines the resonant field.  

In Figure 4.1 are presented the simulated curves of the angular dependence of the 

resonance field for both sets of samples. We observe a very god agreement between the 

experimental and simulated data, the proposed model being able to describe very well the 

interactions in our magnetic nanowires with different strength of interactions. 

As the interactions between nnaowires increase the angular dependence of the resonance field 

curve flattens, fact very well explained by the model. 
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   a.              b. 
Figure 4.1 Experimental (symbols) and simulated (lines) angular dependence of the resonance field for 
the samples with l=500 nm (a.) and l=1000 nm (b.)  
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Chapter 5: Conclusions and Future Work 

 
 

 Two different sets of Ni nanowire samples having the length of wires of 500 nm and 

1000 nm, the same interpore distance of 100 nm, but different wire diameters of 40, 60 and 80 

nm respectively, were investigated using ferromagnetic resonance and vibrating sample 

magnetometer.  

 The value of the coercivity for the applied field along the wires principal axes increased 

with the decreasing of the aspect ratio for the set of samples having the length of 1000 nm. This 

was explained taking into account the magnetostatic interaction among wires. 

 For the other set of samples (l = 500 nm), the value of the coercivity for the field applied 

parallel with wire axis decreased as the aspect ratio decreased and this was explained taking into 

account the increasing value of the demagnetization field.  

 The angular dependence of the ferromagnetic resonance field depends on the aspect ratio, 

flattening with the decrease of it.  

 It was observed that not only the aspect ratio influences the value of the resonance field, 

the orientation of the bias applied field influencing also these values. 

 Two different types of dependence of resonance field vs. aspect ratio were 

experimentally observed for different orientation of the applied field: the resonance field 

decreases with the aspect ratio when the field is applied parallel with wires’ axis and increase 

when the field is perpendicular configuration. These show that the effect of the interactions 

depends on the orientation, the interactions being more important when the field is applied along 

wire’s axis. 



 53

 The simulated results showed the same angular dependence of the resonant field as we 

observed experimentally and were in good agreement with our experimental observation. We can 

conclude using our experimental and theoretical results that the value of the resonance field is 

strongly influenced by the aspect ratio value, interactions and also on the orientation of the 

applied field. 

Future Work 

Our next task is to investigate the behavior of more complex arrays composed of magnetic 

nanotubes and magnetic core-shell nanowires. In Figure 5.1 a) are presented empty magnetic 

nanotubes, and in Figure 5.1.b) are presented magnetic nanotubes filled with magnetic cores.  

   

 

 

 

 

 

 

   a                                                                        b 

Figure 5.1. Drawings of empty magnetic nanotubes (a) and magnetic nanotubes with magnetic 
core (b)  

 
The preliminary measurements for a sample with Co shell and Ni core for the critical Curie 

temperature is presented in Figure 5.2. The temperature variation of magnetization confirms the 

existence of Co and Ni in our samples. However, for a complete characterization of such 

complex structures more detailed measured are needed.  We plan to perform magnetic 
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measurements on single nanotube and single core-shell nanowires in collaboration with Dr. 

Wolfgang Wernsdorfer from Grenoble, France.  

                    

 
Figure 5.2 Magnetic moment vs. temperature for the sample Co nanotube with Ni core.  
 
 
In Figure 5.2 the blue line represents the magnetic moment vs. temperature for cobalt only, and 

the red line represents the magnetic moment vs. temperature for nickel only. 
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