
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-7-2008

Robust and Efficient Algorithms for Protein 3-D Structure Robust and Efficient Algorithms for Protein 3-D Structure

Alignment and Genome Sequence Comparison Alignment and Genome Sequence Comparison

Zhiyu Zhao
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Zhao, Zhiyu, "Robust and Efficient Algorithms for Protein 3-D Structure Alignment and Genome Sequence
Comparison" (2008). University of New Orleans Theses and Dissertations. 851.
https://scholarworks.uno.edu/td/851

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/851?utm_source=scholarworks.uno.edu%2Ftd%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Robust and Efficient Algorithms for Protein 3-D Structure Alignment and Genome
Sequence Comparison

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Science
Computer Science

by

Zhiyu Zhao

B.E. Huazhong University of Science and Technology, 1997
M.E. Huazhong University of Science and Technology, 2000

M.S. University of New Orleans, 2006

August, 2008

Copyright 2008, Zhiyu Zhao

ii

Acknowledgements

I would like to give my sincere thanks to all the people who gave me the opportunity
to complete this Ph.D. dissertation.

I appreciate the kind guidance and supervision of my dissertation advisers Dr. Bin
Fu and Dr. Christopher M. Summa. Dr. Fu’s intelligent ideas and strict attitude toward
academic research have impressed me deeply. Dr. Summa always brought me interesting
biologic problems and inspired me to discover the connections between biology and compu-
tation. I believe I will benefit from what I have learned from them in my whole life.

I express my deep gratitude to Dr. Mahdi Abdelguerfi who cared much about my
research, my life and my family during the whole period of my Ph.D. study, and to Dr.
Shengru Tu who always gave me valuable advices and kind help.

I would like to acknowledge all my co-researchers for their contributions to the research
and publications which form the foundation of this dissertation. They are Dr. Bin Fu, Dr.
Christopher M. Summa, Dr. Zhixiang Chen, Dr. Boting Yang, Dr. Binhai Zhu, Dr. Jinhui
Xu, Dr. Robert Schweller, Francisco J. Alanis, Zaixin Lu and Sergio Garcia.

I am grateful to all the professors in my dissertation committee for their precious
suggestions about my Ph.D. research and valuable comments on my dissertation. Besides
my advisers, I want to thank Dr. Stephen Winters-Hilt, Dr. Huimin Chen and Dr. Dongxiao
Zhu. I especially thank Dr. Seth H. Pincus who has initialized our research interest in protein
structure analysis.

In addition, I would like to thank Dr. Diego Liberati who led me into the research
field of Bioinformatics when I studied in the Politecnico di Milano University, Italy from 2004
to 2005, and Dr. Zhixiang Chen who greatly supported my research and life when I visited
the University of Texas-Pan American in 2007 and 2008. Thank Ms. Jeanne Boudreaux,
our department secretary, and Ms. Zella Huaracha, the doctoral program coordinator, for
their hard work.

Finally, I appreciate the understanding and encouragement of my husband Liqiang
Wang, my parents and my brother’s family. Without their care throughout these years it
would be impossible for me to complete this Ph.D. study.

iii

Table of Contents

List of Figures vii

List of Tables viii

Abstract ix

1 Introduction 1
1.1 Protein 3-D Structure . 1
1.2 Protein Structure Alignment . 4
1.3 An RMSD Flexible Alignment Algorithm . 7
1.4 Improving the Preliminary Algorithm . 7
1.5 Finding Similar Structures in the Protein Data Bank 8
1.6 Diameter of Protein Backbone and Sublinear Time Computations 8
1.7 Genomes, SNPs and Haplotypes . 9
1.8 Reconstructing Haplotypes from SNP Fragments 11
1.9 Non-breaking Similarity of Genomes with Gene Repetitions 12

2 A Preliminary Protein Structure Alignment Algorithm 14
2.1 Concepts for 3-D Sequences . 14
2.2 Local Alignment . 16
2.3 Global Alignment . 17
2.4 Experimental Results . 21

3 A Self Learning Protein Structure Alignment Algorithm 25
3.1 Introduction of Double-center “Stars” . 25
3.2 Development of Learning Ability . 27

3.2.1 Self-learning . 27
3.2.2 Learning from others . 27

3.3 A Formal Description of SLIPSA . 28
3.3.1 Getting local alignments . 28
3.3.2 Building up stars from local alignments 29
3.3.3 Finding a global alignment from the stars 29
3.3.4 The feedback procedure . 30

3.4 Experimental Environment and Results . 31
3.4.1 Our web alignment tool . 31
3.4.2 Experimental results . 31

iv

3.4.3 Discussion on the results . 34

4 Finding Proteins with Similar 3-D Structures in the Protein Data Bank 38
4.1 Overview of Our Methods . 39
4.2 Description of Algorithm . 39

4.2.1 Checking off-line information . 39
4.2.2 Secondary sequence alignment . 41
4.2.3 3-D alignment for secondary structures 42
4.2.4 Cα-atom level pair-wise protein structure alignment 44
4.2.5 Combining them together . 45

4.3 Experimental Results and Comparison with SSM 45
4.3.1 Speed and performance . 45
4.3.2 Model of comparison with other tools 46

5 Diameter of Protein Backbone and Sublinear Time Computations 49
5.1 Definitions . 50
5.2 Tight Separations among Sublinear Time Computations 52
5.3 Comparing Randomized and Deterministic Computations 55
5.4 Zero-error Randomized Algorithm and Its Complexity 57
5.5 A Consideration for Random Bits . 59
5.6 Self-avoiding Sequences . 60

6 Reconstructing Haplotypes from SNP Matrices 62
6.1 Introduction . 62
6.2 A Probabilistic Model . 63
6.3 Technical Lemmas . 65
6.4 When the Inconsistency Error Parameter Is Known 66
6.5 When Parameters Are Not Known . 68
6.6 Tuning the Dissimilarity Measure . 70
6.7 Experimental Results . 71

7 Non-Breaking Similarity of Genomes with Gene Repetitions 74
7.1 Introduction . 74
7.2 Preliminaries . 75
7.3 Inapproximability Results . 76
7.4 Polynomial Time Algorithms for Some Special Cases 78

8 Concluding Remarks and Future Work 84
8.1 Concluding Remarks . 84
8.2 List of Publications . 85
8.3 Future Work . 86

Bibliography 87

v

A Appendix 95
A.1 Some Tables in Chapter 3 . 95
A.2 A Table in Chapter 4 . 95
A.3 Some Details in Chapter 5 . 95
A.4 Some Tables in Chapter 6 . 111

Vita 114

vi

List of Figures

1.1 3-D structure of a protein molecule . 3
1.2 An example of pairwise protein structure alignment 6
1.3 A C/T polymorphism between two DNA strands 10
1.4 SNPs in the single strand DNA sequences of individuals 10
1.5 Two haplotypes of an individual . 11
1.6 A SNP matrix with incomplete and inconsistent errors 12

2.1 Local alignment L=(i, j, l) . 16
2.2 Construction of a graph . 18
2.3 An example star . 19

3.1 A double-center star . 26
3.2 The SLIPSA framework . 28
3.3 The web alignment work flow . 32
3.4 Comparing SLIPSA with DaliLite, CE and SSM 35

4.1 Comparison based on the maximum Q-score 47
4.2 Comparison based on the average Q-score 48

6.1 Performance of algorithm SHR-Three . 72

7.1 Illustration of a simple graph for the reduction 78

A.1 Every black box has kd grid points in the sequence S1 110
A.2 The points in one black box stretch out to greatly increase the diameter of

the sequence S2 . 110

vii

List of Tables

1.1 20 standard α - amino acids . 2

2.1 Test results of 20 protein pairs . 22
2.2 Test results of 10 protein pairs . 23

3.1 PDB chains of the 224 test cases . 33
3.2 Statistics on the experimental results . 36
3.3 Comparison based on weak similarity . 36

4.1 PDB IDs of the 88 test cases . 46

A.1 Comparing SLIPSA with CE . 96
A.2 Comparing SLIPSA with DaliLite . 98
A.3 Comparing SLIPSA with SSM . 100
A.4 Results of the 88 test cases . 102
A.5 Results for m = 100, n = 20, β = 20% and α2 = 20% 112
A.6 Results for m = 100, β = 20% and α2 = 20% 112
A.7 Results for m = 100, n = 20 and α2 = 20% 113
A.8 Results for m = 100, n = 20 and β = 20% . 113

viii

Abstract

Sequence analysis and structure analysis are two of the fundamental areas of bioinfor-
matics research. This dissertation discusses, specifically, protein structure related problems
including protein structure alignment and query, and genome sequence related problems in-
cluding haplotype reconstruction and genome rearrangement. It first presents an algorithm
for pairwise protein structure alignment that is tested with structures from the Protein Data
Bank (PDB). In many cases it outperforms two other well-known algorithms, DaliLite and
CE. The preliminary algorithm is a graph-theory based approach, which uses the concept
of “stars” to reduce the complexity of clique-finding algorithms. The algorithm is then
improved by introducing “double-center stars” in the graph and applying a self-learning
strategy. The updated algorithm is tested with a much larger set of protein structures and
shown to be an improvement in accuracy, especially in cases of weak similarity. A protein
structure query algorithm is designed to search for similar structures in the PDB, using the
improved alignment algorithm. It is compared with SSM and shows better performance with
lower maximum and average Q-score for missing proteins. An interesting problem dealing
with the calculation of the diameter of a 3-D sequence of points arose and its connection
to the sublinear time computation is discussed. The diameter calculation of a 3-D sequence
is approximated by a series of sublinear time deterministic, zero-error and bounded-error
randomized algorithms and we have obtained a series of separations about the power of
sublinear time computations. This dissertation also discusses two genome sequence related
problems. A probabilistic model is proposed for reconstructing haplotypes from SNP ma-
trices with incomplete and inconsistent errors. The experiments with simulated data show
both high accuracy and speed, conforming to the theoretically provable efficiency and accu-
racy of the algorithm. Finally, a genome rearrangement problem is studied. The concept of
non-breaking similarity is introduced. Approximating the exemplar non-breaking similarity
to factor n1−ε is proven to be NP-hard. Interestingly, for several practical cases, several
polynomial time algorithms are presented.

Keywords Sequence Analysis, Structure Analysis, Protein Structure Alignment, Protein
Structure Query, Haplotype Reconstruction and Genome Rearrangement.

ix

Chapter 1

Introduction

Molecular biology and computer science are areas where truly revolutionary events
and developments took place during the twentieth century. Such developments have made
possible the newer discipline of bioinformatics that is now attracting many researchers from
both the computational and the biological communities [35]. Technological advances in bio-
logical and biomedical research including high-throughput DNA sequencing and 3-D protein
structure determination have revolutionized the development of these traditional disciplines,
and the new technologies have produced an enormous amount of data with valuable infor-
mation for understanding the underlying biology. Biologists now depend more and more on
computers to store and analyze this data. On one hand, public repositories such as the Pro-
tein Data Bank (PDB) [1] and the GenBank [2] are valuable resources of protein structure
and genomic sequence data, respectively. On the other hand, their surprising growth rate
necessitates collaboration between biologists and computer scientists; biologists need efficient
computer software tools to help extract useful information from the data, for instance, to
make inferences about DNA sequences and to compare protein structure similarities.

Bioinformatics has grown into a large inter-disciplinary pursuit, and two of its fun-
damental areas studied in this dissertation are sequence analysis and structure analysis.
DNA/RNA sequence alignment, genome comparison and protein sequence alignment are
instances of sequence analysis, while protein structure alignment and protein folding are
typical research problems of structure analysis. DNA sequence determines protein sequence,
protein sequence determines protein structure, and protein structure determines protein
function [64]. Sequence analysis and structure analysis are closely related, but the latter is
more difficult, and the methods applied in these subfields are very different, because sequence
analysis deals with one-dimensional data, while structure analysis deals with the much more
complex three-dimensional data.

1.1 Protein 3-D Structure

A protein is a large organic biopolymer composed of a linear chain of amino acids.
An amino acid is a molecule that contains both amine and carboxyl functional groups. In
biochemistry, an amino acid typically refers to an α - amino acid in which the amino and
carboxylate groups are attached to the same carbon, which is called the α - carbon (Cα) [3].
There are 20 standard α - amino acids (see Table 1.1 for details). The various α - amino
acids differ in which side chains (R group) are attached to their α carbons. Figure 1.1a shows

1

the general structure of an α - amino acid. As both the amine and carboxylic acid groups of
amino acids can react to form amide bonds, one amino acid molecule can react with another
and become connected through an amide linkage. This condensation reaction yields a newly
formed peptide bond and a molecule of water, and the dehydrated amino acids are called
amino acid residues [3]. See Figure 1.1b for the condensation of amino acids. When amino
acids are linked one by one with the condensation reaction, they form a long polypeptide
chain and it is through this process that natural proteins are synthesized in vivo. A protein
molecule is made up of one or more such polypeptide chains.

Table 1.1: 20 standard α - amino acids

Amino Acid 3-Letter Abbreviation 1-Letter Abbreviation
Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartic acid Asp D

Cysteine Cys C
Glutamic acid Glu E

Glutamine Gln Q
Glycine Gly G

Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W

Tyrosine Tyr Y
Valine Val V

The sequence of a naturally occuring protein (i.e. the linear string representing the
identities of the individual amino acids) was shown by Anfinsen [11] to be sufficient to specify
its unique 3-dimensional structrue. This is due to the differing shapes and physico-chemical
properties of the individual amino acids in the sequence. It is this structure that ultimately
determines the function of the protein, by arranging a complex set of atoms in a particular 3-
D configuration to enable enzymatic catalysis, recognition of ligands or other protein binding
partners, structural functions within cells, etc. The overall 3-D shape of a protein is often
represented by a “backbone representation”, which is simply a trace (or spline) connecting
the centroids of the Cα atoms, with each Cα indicating the position of an amino acid residue.
Figure 1.1c displays the 3-D structure of the backbone of protein GB1 (PDB ID: 2PLP), in
which the Cα atoms are represented as balls connected by sticks.

Protein 3-D structures are strongly related to their biological functions [80]. In DNA

2

R

Cα CN

OH

O HH

(a) The general structure of an α - amino acid

R1

Cα CN

OH

O HH

R2

Cα CN

OH

O HH

Rn-1

Cα CN

OH

O HH

Rn

Cα CN

OH

O HH. . .

(b) The condensation of α - amino acids

−10
−8

−6
−4

−2
0

2

−20

−15

−10

−5

0

−10

−5

0

(c) A backbone representation of a protein chain with Cα atoms high-
lighted

Figure 1.1: 3-D structure of a protein molecule

3

the molecules comprising the alphabet are chemically similar, and the structure of DNA is
approximately uniform. In contrast, proteins show a great variety of 3-D conformations.
These are necessary to support their very diverse structural and functional roles [64]. The
functions of proteins depend on their adopting the native 3-D structure. For example, the
native structure of an enzyme may have a cavity on its surface that binds a small molecule
and juxtaposes it to catalytic residues [64]. Protein structures reveal more evolutionary in-
formation than protein sequences do, since the structure of a protein changes more slowly
in evolution than does its sequence [35]. Also, researchers frequently find that proteins with
low sequential similarity are structurally homogenous. Therefore it is particularly important
to discover the structural similarity / dissimilarity among different proteins. The research
of protein 3-D structure similarity is very helpful for many biological applications such as
predicting the functions of unknown proteins from known similar protein structures, identify-
ing protein families with common evolutionary origins, understanding the variations among
different classes of proteins, and so on.

Protein structures can be determined via experimental techniques such as X-ray crys-
tallography and NMR (Nuclear Magnetic Resonance). The number of proteins discovered
by biologists has increased dramatically over the last 30 years. There are three peaks in the
PDB growth history [66]. The first peak occurred between 1972 and 1976 corresponding to
the initial explosion of crystallography. The second peak is most likely due to the spread
of Digital Equipment Company’s VAX 780 virtual memory computers introduced in 1978.
The third peak occurred between 1991 and 1997 corresponding to the availability of intense
beams of X-rays from synchrotrons coupled with the use of crystals cooled in liquid nitro-
gen. Also, the development of a new field, structural genomics, contributes greatly to the
growth in novel structural data since 2000. According to the statistics of the RCSB Protein
Data Bank [1], as of March 2008, over 49,000 protein structures have been reported, and
in these structures there are over 100,000 protein chains. In [66] a weighted count method
was introduced to predict the growth rate of novel structures in the PDB as well as the
size of Structural Classification of Proteins (SCOP) [4, 75] categories. The rapid growth of
the Protein Data Bank (see Figure 2a of [66] for an illustration of the PDB growth rate
from 1970’s to the year 2005) necessitates the development of efficient protein structure
comparison algorithms and automatic software tools.

1.2 Protein Structure Alignment

Protein structure alignment attempts to compare the structural similarity between
proteins. A widely accepted method of protein 3-D structure comparison is to align the Cα
atoms in the protein backbones. With this method, the problem of protein 3-D structure
alignment can be solved by first determining the longest common sub-chains between different
protein backbone chains, followed by a proper geometrical transformation which translates
and rotates one protein backbone chain to align it as close as possible to the other one. An
alignment is characterized by (1) how many positions are matched, (2) where these positions
are, and (3) how well they are matched. (1) and (2) are available once an alignment is
determined. For (3), a transformation based alignment algorithm usually calculates (Cα)
RMSD, namely, the root mean square distance between aligned Cα atoms. Assume protein

4

backbone chains S = p1 · · · pm and S ′ = q1 · · · qn, where each pi (1 ≤ i ≤ m) or qj (1 ≤ j ≤ n)
is a Cα atom which is represented by a point in R3. Assume that Nmat pairs of Cα atoms
are aligned via a transformation F and the aligned positions are pi1 · · · piNmat in S and
qj1 · · · qjNmat in S ′, respectively. The (Cα) RMSD between S and transformed S ′ is defined
in Equation 1.1. In this dissertation, unless otherwise specified, an RMSD always refers
to a (Cα) RMSD. In the case of rigid body transformation, F is determined by a rotation
matrix R and a translation vector T , and F (p) = R · p+ T for any point p in R3.

RMSD =

√√√√ 1

Nmat

Nmat∑
k=1

(pik − F (qjk))
2 (1.1)

Figure 1.2 shows a pairwise structure alignment between chain E of protein 1ATP
and protein 1PHK, where Nmat is the number of aligned Cα pairs, RMSD is the root mean
square distance between the aligned pairs, and the rigid body transformation used to align
the two chains is the translation vector T and the rotation matrix R.

The alignment problem is non-trivial – in fact, the problem of finding the optimal
global alignment between protein structures has been shown to be NP-hard [44,63]. There-
fore, there have been a number of protein structure alignment algorithms presented in the
past years (e.g. [26,36,39,54,55,58,59,65,72,79,85,86,88,89,97–99,101,103]); among them:
DALI (distance matrix based method) [54], SSM (secondary structure matching) [59], CE
(the combinatorial extension method) [85] and FATCAT (protein structure alignment based
on flexible transformation) [98] are commonly used. The distance matrix method, also called
DALI, was proposed by Holm and Sander [54]. The distance matrix of each protein back-
bone contains all the distances between every two Cα atoms in its backbone chain. The
3-D structure comparison problem is converted into a problem of finding the best overlap of
these 2-D matrices. The combinatorial extension (CE) method was proposed by Shindyalov
and Bourne [85]. With the CE method, locally similar sub-chain pairs of fixed length are
combined and extended to form an optimal global alignment between a pair of protein back-
bone chains. The secondary structure matching (SSM) method proposed by Krissinel and
Henrick [59], first builds a graph based on the secondary structures of proteins and then
iteratively align the backbone Cα atoms. Singh and Brutlag [86] introduced a method that
represents the secondary structure elements as vectors and computes a local alignment of
them via dynamic programming. Chew et al [26] proposed an approach that represents
the backbone by a chain of unit-vectors and translates those vectors into a set of points
on the unit-sphere. Yona and Kedem [99] used a hybrid method that combines unit vector
spaces and root-mean square. A method called TOPFIT, introduced by Ilyin, Abyzov and
Leslin [55], is based on the identification of the common volume subgraph of Delaunay tri-
angulation. Some other methods include a method based on geometric hashing by Fischer,
Nussiinov and Wolfson [39], a method to minimize the soap-bubble surface area between
the backbones proposed by Falicov and Cohen [36], and the double-dynamic programming
method of Orengo and Taylor [88, 89]. A method in which the backbone is represented by
the angles of consecutive Cα atoms was presented by Ye, Janardan and Liu [97]. It generates
the code for each Cα atom along the backbone by the angles with other two neighbor Cα
atoms and the code is independent of the relative orientation of the two proteins. In [58]

5

 (a) (b)

Nmat = 256

RMSD = 1.55Å

Translation vector :

T = [‐6.8740 4.8834 18.6999]

Rotation matrix :

൥
૙. ૠ૞૟૙ ૙.
૙. ૟૙૟૚ െ૙.R =

૟૜ૢ૜ െ૙. ૚૝૙ૢ
૟૙૛૜ ૙. ૞૚ૢ૝

૙. ૛૝ૠ૛ െ૙. ૝ૠૡ૚ െ૙. ૡ૝૛ૡ
൩

(c)

Figure 1.2: An example of pairwise protein structure alignment

Two protein chains are shown in their backbone view with dotted positions of Cα atoms. A rigid body transformation is

applied to chain 2 (PDB ID: 1PHK) to align it with chain 1 (chain E of PDB ID: 1ATP). The transformation is determined by

a translation vector T and a rotation matrix R. Nmat is the number of aligned Cα pairs and RMSD is the root mean square

distance between the aligned pairs.

6

Kolodny, Linial and Levitt studied the protein structure alignment problem as a family of
optimization problems and developed an approximate polynomial time algorithm to solve
them. Most protein structure alignment algorithms use a rigid body transformation, such as
CE, DALI, SSM and algorithms discussed in this dissertation, while Ye and Godzik [98] pro-
posed the FATCAT algorithm which aligns proteins via a flexible transformation. Although
it has been studied for over 30 years, the protein structure alignment problem is far from
being well resolved. New approaches and improvements to existing approaches are often
proposed. Moreover, many questions are under active discussions. One of them is whether
a computationally optimal solution to the problem is biologically significant. Even so, little
consensus is given on how to score the significance of alignment results and how to evaluate
the performance of algorithms.

1.3 An RMSD Flexible Alignment Algorithm

It is practically meaningful to design an algorithm that superimposes protein back-
bone chains with given accuracy and at the same time aligns as many as possible Cα atoms.
In Chapter 2 of this dissertation an accuracy-adjustable pairwise backbone alignment algo-
rithm is discussed. Part of the chapter is based on the published paper [103]. The algorithm
first searches for a set of local alignments. Each local alignment consists of a series of consec-
utive Cα atom pairs in the backbones of two proteins. It then organizes the local alignments
into a graph and attempts to find a global alignment which is an optimal group of local
alignments sharing a common rigid body transformation. Based on the existing research,
it is relatively easy to match two proteins in the local region, but it is hard to find the
global alignment that combines multiple non-overlapped aligned local areas. The main tech-
nical contribution of this preliminary algorithm is the derivation of a global transformation
that unifies local alignments. The algorithm can output an alignment result according to
a user-defined maximum RMSD value which allows a certain amount of flexibility in the
stringency of the global alignment. Preliminary experiments are performed on 30 pairs of
protein chains. The performance of the algorithm is evaluated based on the global alignment
length i.e. Nmat, the number of aligned Cα atom pairs, and the global alignment accuracy
i.e. the RMSD distance between the aligned pairs. Experiments show that in many cases
this algorithm has a higher Nmat than two well known existing algorithms (DaliLite, the
pairwise version of DALI [54], and CE [85]) with an equal or lesser RMSD.

1.4 Improving the Preliminary Algorithm

The above protein structure alignment algorithm organizes local alignments into a
graph with each local alignment being a vertex. The connectivity between vertices is deter-
mined by the consistency relationship between local alignments. Two local alignments are
said to be consistent if they share a common rigid body transformation. Grouping mutually
consistent local alignments is equivalent to finding cliques in a graph, which is an NP-
complete problem. We present an alternative formulation of the alignment problem where
the consistency check can be solved efficiently. In the preliminary alignment algorithm, this
problem is simplified as looking for “stars” rather than cliques in a graph. A star is a set of

7

vertices including a center and all the other vertices that are connected to the center vertex.
Since any clique must be included in some star, for our particular problem this simplification
will not miss useful vertices, and it reduces the computational complexity to O(n2), where
n is the number of vertices in the graph. The “star” approach has one center for each of
its stars. This single-center star method is not flawless and shows some instability for align-
ing large proteins. To increase the stability of the single-center star method, in Chapter 3
a double-center star method is introduced to group the local alignments. Another crucial
new technical development of Chapter 3 is the learning strategy based on feedback.The re-
designed algorithm [104] is named SLIPSA, which stands for Self Learning and Improving
Protein Structure Alignment. SLIPSA is self learning in that it has a feedback loop which
sends the current alignment result back to its input in order to learn a better result in the
next stage. SLIPSA accepts any reasonable upper-bound RMSD value as one of the inputs,
and outputs an alignment result with a RMSD never greater than that value.

1.5 Finding Similar Structures in the Protein Data Bank

Protein structural similarity can be used to infer evolutionary relationships between
proteins or to classify protein structures into more generalized groups; therefore a good pro-
tein structure alignment algorithm is very helpful for protein biologists. However, a good
alignment algorithm itself is insufficient for the effective discovering of structural relation-
ships between tens of thousands of proteins. It is hard to imagine that one could manually
examine the structural similarity between 100,000 × 100,000 pairs of proteins chains; the
structural relationship between proteins has to be discovered automatically. The field of
protein structure query aims to find similar structures in the protein data bank according
to a given query structure. Because of the requirements of both a fast and stable filter and
a fast and accurate structure alignment tool, this area has posed an even greater research
challenge than protein structure alignment. In Chapter 4 an efficient protein structure query
algorithm and tool [71] is developed to find similar protein structures in the protein data
bank for any given structure. With the combination of a series of fast and stable filters and
a structure alignment algorithm particularly optimized for the query purpose, some exciting
results have been observed when compared with SSM, the one we believe is among the best
structure query web sites. An algorithm comparison model is also proposed to compare our
protein structure query tool with others.

1.6 Diameter of Protein Backbone and Sublinear Time Compu-
tations

Protein backbones can be considered sequences of 3-D points in the Euclidean space.
In our early research of protein structure alignment, we have attempted to derive a rough
alignment between protein backbone chains based on computation of their diameters and
matching some crucial points including the two points which determine the diameter of a
chain. The diameter of a sequence of 3-D points is the largest distance between two points
in the sequence. Clearly, the accurate diameter can be computed in quadratic time. This
time complexity can be reduced to sublinear when an approximate diameter is acceptable.

8

Chapter 5 presents a series of deterministic and randomized algorithms [42] to approximate
the diameter of a sequence of points in a metric space in sublinear time. Furthermore,
based on the approximate diameter problem, a class of theoretical results are presented to
separate the power of sublinear time computations. It is not uncommon to see that study in
a certain scientific research area sometimes leads to interesting discoveries in another area.
In our study of protein structure alignment, we have found such a case which brings us into
a computational theory related area.

The computation for the approximate diameter is performed under deterministic,
zero-error randomized, and bounded-error randomized models. We obtain a class of separa-
tions about the sublinear time computations using the various versions of the approximate
diameter problem based on the restriction about the format of input data. We derive tight
sublinear time separations for each of the three models such that computation with O(nr)
time is more powerful than that with O(nr−ε) time, where r and ε are arbitrary parame-
ters in (0, 1) and (0, r) respectively. We show that the bounded-error randomized sublinear
time algorithms in time O(nr) cannot be done by a zero-error randomized sublinear time
algorithm in o(n) time or queries, where r is an arbitrary parameter in (0, 1). We also show
that zero-error randomized sublinear time algorithms in time O(nr) cannot be simulated by
a deterministic sublinear time algorithm in o(n) time or queries, where r is an arbitrary
parameter in (0, 1). We identify the parameters to control the diameter length and the per-
mutation of the input points, and show how the sublinear time model and time complexity
for computing the approximate diameter depend on those parameters.

1.7 Genomes, SNPs and Haplotypes

The genome of an organism is a complete DNA sequence of one set of chromosomes.
DNA sequences can be derived from the biological raw material through the DNA sequencing
process. A DNA sequence or genetic sequence is a succession of letters representing the
primary structure of a real or hypothetical DNA molecule or strand, with the capacity to
carry information. The possible letters are A, C, G, and T, representing the four nucleotide
subunits of a DNA strand - adenine, cytosine, guanine, thymine. Therefore, a genome
can be considered a string over the alphabet of nucleotides {A,C,G, T}. Since the cost of
DNA sequencing continues to drop, many genomes, including the human genome, have been
sequenced by various genome projects. Genomes of different organisms vary greatly in their
sizes. For example, as the first sequenced RNA-genome, the bacteriophage MS2 has only
3569 DNA base pairs, whereas the amoeba dubia has 670 billion base pairs, which makes
it the largest genome known so far. The human genome has approximately 3 billion DNA
base pairs. A genome can also be represented as a sequence of genes, where each gene,
corresponding to a unit of inheritance, is a long stretch of DNA. Genes are usually labeled
with whole numbers, and when the polarity of genes are taken into account, the labels can
be signed. With this representation, a genome is a sequence of signed numbers.

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring when
a single nucleotide in the genome differs between members of a species or between paired
chromosomes in an individual. For example, two sequenced DNA fragments from different
individuals, AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this

9

DNA Strand 1
A A T A C T G C A A

T T A T G A C G T T

DNA Strand 2
A A T A T T G C A A

T T A T A A C G T T

Figure 1.3: A C/T polymorphism between two DNA strands

case we say that there are two alleles: C and T. Almost all common SNPs have only two
alleles. See Figure 1.3 for a C/T polymorphism between two double strand DNAs and
Figure 1.4 for SNPs in the single strand DNA sequences of a set of individuals. The letters
in gray indicates the positions of SNPs. The methods used to identify SNPs are the topic
of SNP genotyping. Genotyping provides a measurement of the genetic variation between
members of a species, and SNPs are the most common type of genetic variation. Variations
in the DNA sequences of humans can affect how humans develop diseases and respond to
pathogens, chemicals, drugs, vaccines, and other agents. SNPs can also provide a genetic
fingerprint for use in identity testing. Additionally, the study of SNPs is important in crop
and livestock breeding programs.

DNA sequence 1: GCGCCAGTGGACTGCGTAGACCTATTTTCCAGCTGCGCCTGATGAAGGCG …

DNA sequence 2: GCGCCAGCGGACTGCGTAGACCTATATTCCAGCTCCGCCTGATAAAGGCG …

DNA sequence 3: GCGCCAGCGGACTGCGTAGACCTATTTTCCAGCTCCGCCTGATAAAGGCG …

DNA sequence 4: GCGCCAGTGGACTGCGTAGACCTATTTTCCAGCTCCGCCTGATGAAGGCG …

DNA sequence 5: GCGCCAGTGGACTGCGTAGACCTATATTCCAGCTCCGCCTGATAAAGGCG …

…

Figure 1.4: SNPs in the single strand DNA sequences of individuals

It is accepted that the genomes between any two humans are over 99% identical [53,
90]. The remaining sites which exhibit substantial variation (in at least 5% of the population)
are SNPs. The values of a set of SNPs on a particular chromosome copy define a haplotype.
See Figure 1.5 for an illustration of two haplotypes of an individual. The gray letters in
the chromosomes indicate the positions of SNPs and form the two haplotypes. The gray
letters in the haplotypes indicate the variations between them. While a haplotype is a string
over the four nucleotide bases, typical SNP sites only vary between two values. Therefore,
we can logically represent a haplotype as a binary string over the alphabet {A,B}. For

10

example, the two haplotypes in Figure 1.5 can be represented as (AAAAA ...) and (BAAAB
...), respectively. The assignment of As and Bs can be arbitrary as long as it reflects the
variations between haplotypes. The haplotype of an individual chromosome can be thought
of as a “genetic fingerprint” specifying the bulk of the genetic variability among distinct
members of the same species. Determining haplotypes is thus a key step in the analysis of
genetic variation.

Chromosome 1: CAACACGAAGGAAAGACGGGACCCAGGCCGACGTCCTATTAAAAGATAAT …

Chromosome 2: CAACACCAAGGAAAGACGGGACCCAGGCCGACGTCCTATTAAAAGACAAT …

Haplotype 1: GACTT …

Haplotype 2: CACTC …

Figure 1.5: Two haplotypes of an individual

In this dissertation, two problems that we have attempted to solve are the recon-
struction of haplotypes from SNP fragments [23] and the comparison of genomes with gene
repetitions based on the non-breaking similarity [24].

1.8 Reconstructing Haplotypes from SNP Fragments

In recent years, the haplotyping problem has been extensively studied, see, e.g., [9,
13, 28, 29, 43, 49, 50, 61, 62, 62, 67, 69, 81, 93, 94, 96, 100, 102]. There are several versions of the
haplotyping problem. Of the most interest is the haplotyping of diploid organisms, such
as humans, which have two chromosomes, and thus two haplotypes. A common method to
obtain an individual’s two haplotypes is to first obtain a collection of sequencing data from
the individual’s chromosomes. This data consists of a collection of fragments, each partially
specifying the sequence of one of the two base chromosomes. This data typically contains
two types of errors. The data is incomplete in that each fragment will fail to assign a base to
some collection of positions, and inconsistent in that some positions may be sequenced with
an incorrect value. Further, in practice it is not known which chromosome is being sequenced
by which fragments. The general haplotype reconstruction problem is then to take this input
set of sequenced fragments and derive the two haplotypes which yielded the given fragments.
This problem, which we consider, is the singular haplotype reconstruction problem and, like
other versions of the problem, has also been extensively studied, see, e.g., [13, 28, 69, 93].
Figure 1.6 shows two haplotypes and a matrix of SNP fragments with incomplete errors
marked as hyphens and inconsistent errors as letters in gray. Each row in the matrix is a
copy of a haplotype with reading errors, and its original haplotype number is displayed at
the end of each row. Note that the two original haplotypes are unknown and our goal is to
reconstruct them from the SNP matrix.

While much work has been done on these problems, the incompleteness and incon-
sistency of data fragments makes most versions of these haplotyping problems NP-hard or

11

Haplotype 1: ABABABABBABBBABABBBABABBBABBBABBAAABBBAAAAABAABABA

Haplotype 2: BBBBABABAABBBBAABBBAABBABAABBABBAAABBBAAABABAABABA

Dissimilarity between haplotypes: 20%

SNP matrix: incomplete error rate 10%; inconsistent error rate: 4%

-BBBABABAABBBBBABBBAABBABAABBA-AAAABBBAAABABAABABA 2

ABA---BBBABAAABABBBABABBBA-BBABB-AAB-B-AA-A-AABABA 1

BBBBABABAABBBB-ABBAA-BBABABABAB-AAA-BBAAA-ABAB-ABA 2

-B-BABABBABBBABABB-ABABBB-BB-ABBAAABBBAAAAABAABABA 1

ABABA--BBABBBABABBB-BABBBABABAB-A-ABBBAAAAABAABABA 1

ABA-ABABBAB-BABABBBAB-B-BBBBBABBAAABBBAA-AABBABABA 1

BBBBABABAABBBBAABBBBABBBBAABBABBAAABBBAAABAAAAAABA 2

A-AB-BABBABBBA-ABBBBBABBB-BBBABBAAABBBAAAAA-AA-A-A 1

BBBBABABAABBBBAABBBA-BBABAABBAB-AA-ABBAAABA-AABAAA 2

BBBBA-ABAABBBBA-BBB-A-BABAABB-BB-AABB-AAABAAAABABA 2

Figure 1.6: A SNP matrix with incomplete and inconsistent errors

even hard to approximate (e.g., [13, 28, 69]). Many elegant and powerful methods such as
those in [68] cannot be used to deal with incompleteness and inconsistency at the same time.
Other methods have proposed heuristics [9,43], but do not provide provably good results. In
Chapter 6 a probabilistic approach is developed to overcome some of the difficulties caused
by the incompleteness and inconsistency occurred in the input fragments. The experimental
results yield provably good algorithms for our model. Further, we have tested both the
accuracy and the speed of the algorithm empirically. The experiments yield results that
conform to the theoretical performance efficiency. When compared to other algorithms with
similar problem size, incompleteness, and inconsistency conditions, this algorithm obtains
high accuracy and speed. The web demonstration program of haplotype reconstruction is
available at http://fpsa.cs.uno.edu/haprec/haprec.html.

1.9 Non-breaking Similarity of Genomes with Gene Repetitions

In bio-molecular sequences (DNA, RNA, or amino acid sequences), high sequential
similarity usually implies significant functional or structural similarity. In the genome com-

12

parison and rearrangement area, a standard problem is to compute the number of genetic
operations to convert a source genome to a target genome. This problem is important in
evolutionary molecular biology. To compare the difference between genomes, the breakpoint
distance is used as one of the most famous distance measures [95]. The implicit idea of
breakpoints can be traced back to as early as in 1936 by Sturtevant and Dobzhansky [87].
For two genomes X and Y without repetitions and based on the same alphabet, the break-
point distance b(X, Y) between them is defined as the number of pairs of genes that are
adjacent in one genome but not in another. For signed genomes, the notion of adjacency
requires that the gene polarity be conserved, so that if genome X contains two genes ordered
as ab, then these two genes are adjacent in Y only if they occur as ab or as −b − a. For
any X and Y , b(X, Y) = b(Y,X). For example, the breakpoint distance between sequences
X = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and Y = (1,−3,−2, 4, 8, 5,−7,−6, 9, 10) is 6, since the pairs
of genes that are adjacent in X but not in Y are (1,2), (3,4), (4,5), (5,6), (7,8) and (8, 9),
or the pairs that are adjacent in Y but not in X are (1,-3), (-2,-4), (4,8), (8,5), (5,-7) and
(-6,9).

In Chapter 7, a new similarity measure called non-breaking similarity is defined. In-
tuitively, this is the complement of the traditional breakpoint distance measure. Compared
with the problem of computing exemplar breakpoint distance, which is a minimization prob-
lem, for the exemplar non-breaking similarity (ENbS) problem we need to maximize the
number of non-breaking points. Unfortunately, we show that the Independent Set problem
in graph theory can be reduced to the problem of computing the ENbS, and this reduction
implies that ENbS is W[1]-complete (and ENbS does not have a factor-n polynomial-time
approximation). This reduction works even when one of the two genomes is exemplar. How-
ever, we also show that for several practically interesting cases, there are polynomial time
algorithms. This is done by parameterizing some quantities in the input genomes, followed
by some traditional algorithmic techniques.

Summary This dissertation attempts to address some bioinformatics problems in the ar-
eas of both protein structure analysis and genome sequence analysis. The primary effort is
put forth on protein structure related problems such as Chapter 2 [103] and Chapter 3 [104]:
developing efficient algorithms for pairwise protein structure alignment, and Chapter 4 [71]:
searching for similar structures in the Protein Data Bank. Besides these basic problems, in
Chapter 5 [42] an interesting diameter calculation problem emerging with the development
of the protein structure alignment algorithm is discussed. A set of sublinear time approx-
imate algorithms for the diameter of a 3-D sequence of points and a class of separations
about the power of sublinear time computations are presented. In addition, two genome se-
quence related problems are studied, including Chapter 6 [23]: algorithms for reconstructing
haplotypes from SNP fragments and Chapter 7 [24]: theoretical results and algorithms for
comparing genomes on the basis of non-breaking similarities. Finally, Chapter 8 concludes
the contributions of this dissertation and points out possible future work for the discussed
problems.

13

Chapter 2

A Preliminary Protein Structure Alignment Algorithm

There are different definitions for the protein structure alignment problem. In this
chapter1 we formally define a pairwise protein structure alignment problem that is studied
in this dissertation, and then propose a new algorithm for it.

Definition 2.1. Given two protein backbone 3-D point sequences S and S ′, the pairwise
protein structure alignment problem is to find SA ⊆ S and S ′A ⊆ S ′ and a rigid body
transformation F to maximize Nmat = |SA| = |S ′A| with RMSD ≤ RMSDmax, where
S = p1 · · · pm, S ′ = q1 · · · qn, SA = pi1 · · · piNmat , S

′
A = qj1 · · · qjNmat , and RMSDmax is a

user-defined upper-bond of RMSD. See Equation 1.1 for the definition of RMSD.

There are two phases in this algorithm. The first phase aligns all the possible local
regions between two protein backbones. Each local region of a protein consists of a series
of consecutive Cα atoms in a backbone chain of the protein. The second phase derives a
global rigid body transformation that combines some aligned local regions to achieve a global
alignment and to make it as large as possible. The main technical contribution of this work
is a new algorithm for the second phase, finding an optimal transformation for the global
alignment. Also, the alignment accuracy measured by RMSD is adjustable by the user.

2.1 Concepts for 3-D Sequences

To be distinguished from the generally used term protein sequence, here a 3-D se-
quence (or briefly, sequence) is used to describe an ordered chain of points in the 3-D Eu-
clidean space R3. For two points p, q in R3, dist(p, q) is the Euclidean distance between
them.

Definition 2.2. Assume ε ≥ 0. For two sequences S = p1 · · · pn and S ′ = q1 · · · qn of
points in R3, they are ε-match if there exists a rigid body transformation F such that
dist(pi, F (qi)) ≤ ε for i = 1, · · · , n.

For a sequence S = p1 · · · pn, Si,l = pi · · · pi+l−1 is a subsequence of S, where 1 ≤ i ≤ n
and i is the starting point of the subsequence; 1 ≤ l ≤ n − i + 1 and l is the length of the
subsequence.

1Published work [103] used with permission of the CSREA Press.

14

For two sequences S = p1 · · · pn and S ′ = q1 · · · qm, a triple L = (i, j, l), where i is
the starting point of Si,l, j is the starting point of S ′j,l, and l is the length of Si,l and S ′j,l,
is called a strict local ε-match between S and S ′, if there exists a rigid body transformation
FL via which Si,l and S ′j,l are ε-match. A strict local ε-match is also called a local ε-match
or briefly an ε-match.

Lemma 2.3. If L = (i, j, l) is a local ε-match between S and S ′, then for any 0 ≤ u, v ≤ l−1,
|dist(pi+u, pi+v)− dist(qj+u, qj+v)| ≤ 2ε.

Proof: Assume that F is a transformation via which L is an ε-match. In R3 we
have dist(pi+u, pi+v) ≤ dist(pi+u, F (qj+u)) + dist(F (qj+u), F (qj+v)) + dist(F (qj+v), pi+v), be-
cause the straight line distance between pi+u and pi+v is the shortest one among all the
routes from pi+u to pi+v. Since L is an ε-match, dist(pi+u, F (qj+u)), dist(F (qj+v), pi+v) ≤ ε
according to Definition 2.2. Therefore dist(pi+u, pi+v) ≤ ε + dist(F (qj+u), F (qj+v)) +
ε = 2ε + dist(qj+u, qj+v) because F is a rigid body transformation which makes
dist(F (qj+u), F (qj+v)) = dist(qj+u, qj+v). Therefore dist(pi+u, pi+v) − dist(qj+u, qj+v) ≤ 2ε.
Similarly, dist(qj+u, qj+v)− dist(pi+u, pi+v) ≤ 2ε. Hence |dist(pi+u, pi+v)− dist(qj+u, qj+v)| ≤
2ε when L = (i, j, l) is a local ε-match between S and S ′.

Corollary 2.4. For two subsequences Si,l and S ′j,l, if |dist(pi, pi+l−1)−dist(qj, qj+l−1)| > 2ε,
then L = (i, j, l) is not a local ε-match between S and S ′.

Proof: Assuming L is a local ε-match. Let u = 0 and v = l − 1, then according to
Lemma 2.3, there must be |dist(pi, pi+l−1)− dist(qj, qj+l−1)| ≤ 2ε. A contradiction.

Definition 2.5. For two subsequences Si,l and S ′j,l, if for any 0 ≤ u, v ≤ l − 1 and u 6= v,
|dist(pi+u, pi+v) − dist(qj+u, qj+v)| ≤ 2ε, then L′ = (i, j, l) is called a relaxed local ε-match
between S and S ′. For two sequences S = p1 · · · pn and S ′ = q1 · · · qm, if L1, L2, · · · , Lk are
local ε-matches between S and S ′ and each one of them starts from point i in S and point
j in S ′, then the one with the maximum local match length is called a longest local ε-match
between S and S ′. Similarly, we define a longest relaxed local ε-match between S and S ′.

Lemma 2.6. If Lmax = (i, j, lmax) is the longest local ε-match between S and S ′ which starts
from point i in S and point j in S ′, and L′max = (i, j, l′max) is the longest relaxed local ε-match
between S and S ′ which starts also from point i in S and point j in S ′, then l′max ≥ lmax i.e.
Lmax is included by L′max.

Proof: If L′ = (i, j, l′) is a relaxed local ε-match between S and S ′, by the definition of
L′max, there must be l′max ≥ l′. According to Definition 2.5 and Lemma 2.3, a local ε-match
between S and S ′ must also be a relaxed local ε-match between S and S ′, so Lmax = (i, j, lmax)
is a relaxed local ε-match between S and S ′. Hence we have l′max ≥ lmax.

Definition 2.7. For two sequences S = p1 · · · pn and S ′ = q1 · · · qm, if L1, L2, · · · , Lk are
non-overlapped local ε-matches between S and S ′, and there exists a common rigid body
transformation FG via which any Lg(1 ≤ g ≤ k) is ε-match, then AG = {L1, L2, · · · , Lk} is
called a global ε-match between S and S ′.

15

2.2 Local Alignment

Given a distance constant ε > 0 and two protein backbone chains represented by two
sequences S = p1 · · · pn and S ′ = q1 · · · qm of points in 3-D Euclidean space, a local alignment
algorithm should find out the longest local ε-matches for each pair of starting points in S
and S ′. A straightforward idea is to list all the pairs of subsequences of equal length in S
and S ′, then examine each pair of them and try to find out all the longest local ε-matches.
However, this straightforward method can be very time consuming, because it needs to find
out an optimal transformation for each pair of subsequences, to transform one to align it
with another one, and to calculate the distance between the aligned subsequences before it
can tell whether these two subsequences are ε-match or not.

Practically, we may not need to find out the longest local ε-matches in a strict manner.
In the local alignment phase we can search for all the longest relaxed local ε-matches which
by Lemma 2.6 include all the longest strict local ε-matches between S and S ′. The merit
of such a relaxation is that, in the local alignment phase, we do not need to find out any
transformation, nor to compare the distance from one subsequence to another transformed
one. Figure 2.1 illustrates a local alignment L = (i, j, l) which is a longest relaxed local
ε-match between chains S and S ′ with starting points pi and qj and length l.

15

20

25

30
−10 −8 −6 −4 −2 0 2

−14

−12

−10

−8

−6

−4

−2

0

A sub chain of S
A sub chain of S’

ij

j+l−1

i+l−1

j+u i+u

j+v
i+v

d(j+u,j+v)

d(i+u,i+v)

L=(i, j, l)

Figure 2.1: Local alignment L=(i, j, l)

16

There is an additional method to speed up the local alignment phase. Given any
point pi in S and any point qj in S ′, we want to find out the longest relaxed local ε-match
starting from pi and qj. We know that the length of a local alignment should be large enough
to make sense, so if we assume that any meaningful local match L = (i, j, l) should have its
length l ≥ lmin, where lmin is a predefined minimum length of local match, then according
to Lemma 2.3, we first check if |dist(pi, pi+lmin−1) − dist(qj, qj+lmin−1)| ≤ 2ε. Only when the
condition is true, the finding of the longest relaxed local match for positions i and j will start,
otherwise just skip it. In our experiments this filter prevents the unnecessary calculation of
those short local alignments that account for averagely 60% - 75% of all the possible local
alignments.
Get-Local-Alignments(S, S ′, ε, lmin)
Input: protein backbone chains S = p1 · · · pn, S ′ = q1 · · · qm, distance constant ε and min-
imum local alignment length lmin, where each p or q is a 3-D point corresponding to a Cα
atom in a protein backbone.
Output: AL = {L1, L2, · · · , Lw}, a set containing all the local alignments of length ≥ lmin

between S and S ′. Each local alignment satisfies the relaxed ε-match constraint.
begin

AL ← {};
for each point pi(1 ≤ i ≤ n− lmin + 1) in S and point qj(1 ≤ j ≤ m− lmin + 1) in S ′

if |dist(pi, pi+lmin−1)− dist(qj, qj+lmin−1)| ≤ 2ε
find out the longest relaxed local ε-match starting from pi and qj;
lmax ← the length of the above match;
if lmax ≥ lmin

AL ← AL ∪ {(i, j, lmax)};
end if

end if
end for
return AL;

end
Complexity of Get-Local-Alignments: Assuming the number of Cα atoms in

the two backbones are m and n. We also assume that the number of local alignments with
|dist(pi, pi+lmin−1) − dist(qj, qj+lmin−1)| ≤ 2ε is h and the length of the u-th local alignment
is lu for (u = 1, 2, · · · , h). The computational complexity of the local alignment phase is
O(
∑h
u=1 l

2
u + mn). Suppose m = O(n), the worst case complexity is O(n4) since h can be

O(n2) and each lu can be O(n).

2.3 Global Alignment

After local alignments are obtained, they are organized into groups. Ideally,
only mutually consistent local alignments should be added to the same group. Sup-
pose there are two local alignments L1 = (i1, j1, l1) and L2 = (i2, j2, l2), the point set
P = {pi1 , · · · , pi1+l1−1, pi2 , · · · , pi2+l2−1} is all the aligned points in the first chain, includ-
ing those in L1 and L2, and Q = {qj1 , · · · , qj1+l1−1, qj2 , · · · , qj2+l2−1} is all the aligned points
in the second chain, also including those in L1 and L2. We say that local alignments L1 and

17

L2 are consistent if, after applying a rigid body transformation to Q, the RMSD between
P and transformed Q is small enough. In other words, if we have a set of local alignments,
we conclude that all these local alignments are consistent if all the local alignments share a
common rigid body transformation which makes them consistent with each other. Therefore
a global alignment can be defined as such a set of consistent local alignments with a common
transformation and an acceptable RMSD.

−40 −30 −20 −10 0 10 20 30 40 50 60

−20

−10

0

10

20

30

Grouping Local Alignments

1atp:e
1phk:_
L1
L2
L3

L1=(178,163,21)
L2=(248,243,21)
L3=(128,192,21)

Sub chain 1 of L1 (bold)

Sub chain 2 of L1

Sub chain 1 of L2 (bold)

Sub chain 2 of L2

Sub chain 1 of L3 (bold)

Sub chain 2 of L3

Figure 2.2: Construction of a graph

The consistency relationship between local alignments can be represented as a graph.
Given AL = {L1, L2, · · · , Lw} where each Lu = (iu, ju, lu) (1 ≤ u ≤ w) is a local alignment.
A graph G = (V,E) is defined accordingly, where each local alignment is a vertex of the
graph, V = AL is the vertex set and E is the edge set. Edge euv, evu ∈ E if and only if Lu
and Lv are consistent. Figure 2.2 illustrates the construction of such a graph, where local
alignments L1 and L2 are consistent and L3 is consistent with neither L1 nor L2, therefore
edges e12, e21 ∈ E and e13, e31, e23, e32 /∈ E. With this representation, grouping mutually
consistent local alignments is equivalent to finding cliques in a graph. Straightforwardly,
a global alignment algorithm should find from graph G a clique with the largest global
alignment length among all the cliques. However, finding cliques in a graph is NP-complete.
To simplify the process, we find “stars” instead of cliques in graphG. A star is a set of vertices
including a center and all the other vertices that are connected to the center vertex. Since
any clique must be included in some star, for our particular problem this simplification will
not miss useful vertices. Figure 2.3 shows a graph, two cliques and an example star. There
are 6 stars in the graph since |V |=6. They are Star1 = Star2 = Star6 = {L1, L2, L5, L6},
Star3 = Star4 = {L3, L4, L5} and Star5 = {L1, L2, L3, L4, L5, L6}. A set of all the unique

18

stars is Stars = {Star1, Star3, Star5}. Note that each star is finally a set of local alignments
and each local alignment is a set of Cα pairs.

L1

L2

L3

L4

L5

L6

Star example: star 5Graph G=(V,E)

Clique 1 Clique 2

L1

L2

L3

L4

L6

L5

Figure 2.3: An example star

For each unique star, a corresponding global alignment candidate is calculated by
deleting badly aligned Cα pairs involved in that star. Then all the candidates are compared
and the optimal one is chosen. An example global alignment between protein chains 1ATP:E
and 1PHK is shown in Figure 1.2, where Nmat is the number of aligned Cα pairs, RMSD is
the root mean square distance between the aligned pairs, and the rigid body transformation
used to align the two chains is T (the translation vector) and R (the rotation matrix).
There are many algorithms for finding a rigid body transformation between two sets of 3-D
points [34]. In this dissertation a least square estimation method [92] is applied for our
protein alignment experiments.
Group-Local-Alignments(AL, RMSDmax)
Input: AL = {L1, L2, · · · , Lw} and RMSDmax.
Output: Stars (a set of all the different stars found in graph G).
begin

E ← {};
Stars← {};
for (every two local alignments Lu and Lv in AL)

if (there exists a common transformation F for Lu and Lv with
RMSD ≤ RMSDmax)
E ← E ∪ {euv, evu};

end if
end for
for (u← 1 to w)

Staru ← {};
for (v ← 1 to w)

if (euv ∈ E)
Staru ← Staru ∪ {Lv};

end if
end for

19

if (Staru 6∈ Stars)
Stars← Stars ∪ {Staru};

end if
end for
return Stars;

end
In order to obtain an optimal rigid body transformation, it has been proven that the

geometric centers of two point sets must be superimposed. This can be done by moving
both point sets to the origin of a common coordinate system [35]. Then a rotation is found
to minimize the RMSD between them. Specifically, the following procedure describes the
method that we used to calculate an optimal transformation.
Get-Optimal-Transformation(S1, S2)
Input: S1 and S2 are two 3-D point sets of size n. Each is represented by a n× 3 matrix.
Output: A rigid body transformation F represented by a translation vector T and a rotation
matrix R.
begin

c1 ← the centroid of S1; c2 ← the centroid of S2;
Move S1 so that point (0, 0, 0) is the centroid of the new S1;
Move S2 so that point (0, 0, 0) is the centroid of the new S2;
Apply a singular value decomposition to matrix S ′1S2. Suppose that matrices
U,D and V satisfy UDV = S ′1S2.
R← UV ′; T ← c1 − c2R

′;
return R and T ;

end
Complexity of Group-Local-Alignments: We assume that the number of local

alignments is w and the length of the u-th local alignment is lu(≥ lmin) for (u = 1, 2, · · · , w).
Assume that C(t) is the computational complexity for finding the rigid body transformation
between t pairs of 3-D points by applying the least-square estimation method [92]. The
complexity for the procedure Group-Local-Alignments is O(

∑w
u=1

∑w
v=1C(lu + lv)). Suppose

m = O(n), in the worst case the complexity is O(n4C(n)) because w can be O(n2) and each
lu or lv can be O(n).

After grouping consistent local alignments, we develop our global alignment algorithm
which compares all the groups of local alignments and outputs the one with the largest global
alignment length. To speed up the searching of a global alignment with a branch and bound
method, we first sort the stars by a descending order of the number of point pairs involved
in each star.
Get-Global-Alignment(Stars, ε, RMSDmax)
Input: Stars, ε, and RMSDmax.
Output: AG = {L1, L2, · · · , Lk} (the largest set of consistent local alignments which share a
common transformation FG with the global RMSD ≤ RMSDmax).
begin

sort Stars by a descending order of the number of 3-D point pairs involved in each
star;

lmax ← 0
for (every stari in Stars)

20

li ← the number of 3-D point pairs involved in stari;
if (li > lmax)

calculate a transformation FG for all the 3-D point pairs involved in stari;
while (RMSD > RMSDmax and point pair (p, q) has the maximum

dist(p, FG(q)))
remove point pair (p, q) from the point sets;
adjust the local alignment from which point pair (p, q) is removed;
li ← li − 1;
recalculate FG and RMSD;

end while
if (li > lmax)

AG ← the current set of local alignments in stari;
lmax ← li;

else
return AG;

end if
end if

end for
end

When point pair (p, q) is removed due to its large dist(p, FG(q)), the corresponding
local alignment that contains (p, q) will be broken into two parts if (p, q) is in the middle
of the local alignment. In this case the local alignment should be split into two smaller
ones. If the alignment is not broken, then (p, q) is either the head or the tail pair in the
local alignment. If (p, q) is the head pair, then the local alignment should have its head pair
moved to the next position, and the length of the local alignment is reduced by one. If (p, q)
is the tail pair, then the only thing that we need to do is to reduce the alignment length by
one. In any of these cases the local alignment set should be updated accordingly.

Complexity of Get-Global-Alignment: Assuming the number of Cα atoms in
the two backbones are m and n. Assuming C(t) is the computational complexity for finding
the rigid body transformation between t pairs of 3-D points by applying the least-square
estimation method [92]. As before, we assume that the number of local alignments is w and
the length of the u-th local alignment Lu is lu(≥ lmin) for (u = 1, 2, · · · , w). The graph has
w nodes and each node is the center of one star. Assume that the star with node u as center
has su local alignments Li1 , · · · , Lisu . Let tu be the number of pairs of points in Li1 , · · · , Lisu .
Thus, tu = li1 + · · ·+ lisu . For the star with node u as its center, it removes at most tu pairs of
points and applies the least-square estimation (for FG) at most tu times. The complexity of
Get-Global-Alignment is O(

∑w
u=1

∑tu
t=1C(t)). Suppose m = O(n), the worst case complexity

is O(n2C2(n)) because w can be O(n2) and each tu can be O(n).

2.4 Experimental Results

The algorithm was tested on two test sets. The first set consists of 20 protein backbone
chains versus chain E of the quaternary complex of cAMP dependent kinase (1ATP:E) with
336 Cα atoms. See [85] for the description of this test set. The second test set contains 10

21

Table 2.1: Test results of 20 protein pairs

Chain 1: 1ATP:E
No. Chain 2 Nmat/RMSD Nmat/RMSD Nmat/RMSD Nmat/RMSD

(Our Method) (DaliLite) (Our Method) (CE)
1 1APM:E 336/0.3 336/0.3 336/0.3 336/0.3
2 1CDK:A 336/0.4 336/0.4 336/0.4 336/0.4
3 1YDR:E 336/0.5 334/0.5 336/0.5 336/0.5
4 1CTP:E 323/1.7 323/1.7 318/1.5 302/1.5
5 1PHK: 256/1.6 255/1.6 254/1.4 254/1.4
6 1KOA: 264/2.8 261/2.8 262/2.7 257/2.7
7 1KOB:A 265/2.8 263/2.8 263/2.7 259/2.7
8 1AD5:A 242/2.6 243/2.6 241/2.5 236/2.5
9 1CKI:A 255/2.5 253/2.5 259/2.7 259/2.7
10 1CSN: 254/2.5 253/2.5 252/2.4 248/2.4
11 1ERK: 265/2.9 265/2.9 260/2.6 253/2.6
12 1FIN:A 259/2.4 253/2.4 254/2.2 252/2.2
13 1GOL: 268/3.0 266/3.0 261/2.6 253/2.6
14 1JST:A 262/2.9 261/2.9 254/2.4 252/2.4
15 1IRK: 253/3.6 254/3.6 254/3.7 257/3.7
16 1FGK:A 244/3.1 246/3.1 250/3.4 253/3.4
17 1FMK: 243/2.8 246/2.8 243/2.8 256/2.8
18 1WFC: 255/3.4 250/3.4 246/3.0 244/3.0
19 1KNY:A 125/4.9 99/4.9 115/4.2 111/4.2
20 1TIG: 64/3.4 56/3.4 67/3.9 54/4.0

pairs of protein backbone chains that were cited in [38] as difficult structures for alignment.
The two sets were tested using three different algorithms: DaliLite, CE, and our algorithm.
The first two algorithms have publicly available websites [5, 6]. Tables 2.1 and 2.2 compare
our results with DaliLite and CE for the first test set and the second test set, respectively.
In each test case we set the maximum RMSD of our algorithm to be less than or equal
to the compared algorithm. In the tables, Nmat is the number of matched atom pairs in
two backbone chains, and RMSD is the square root of the average square of the distance
between the matched atoms (after the rigid body transformation for the global alignment).
In Table 2.1 our algorithm has 12 cases with higher Nmat and 4 cases with lower Nmat than
DaliLite. It has 4 cases of the same Nmat as DaliLite. 2 of these 4 cases (No. 1 and 2) have
reached the maximum Nmat (i.e. all the 336 atoms are matched). So, it is impossible for any
algorithm to achieve a better value of Nmat. When compared with CE, our algorithm has
12 cases with higher Nmat and 3 cases with lower Nmat. It has 5 cases of the same Nmat, in
which 3 cases (No. 1, 2 and 3) have reached the maximum Nmat. In Table 2.2 our algorithm
has 6 cases with higher Nmat and 2 cases with lower Nmat than DaliLite. It has 1 case of
the same Nmat as DaliLite. In test case 24, we were not able to compare our algorithm
with DaliLite because a test protein was missing on the DaliLite website. In Table 2.2 our

22

algorithm has 5 cases with higher Nmat and 4 cases with lower Nmat than CE. It also has 1
case of the same Nmat as CE.

Table 2.2: Test results of 10 protein pairs

No. Chain 1 Chain 2 Nmat/RMSD Nmat/RMSD Nmat/RMSD Nmat/RMSD
(Our Method) (DaliLite) (Our Method) (CE)

21 1FXI:A 1UBQ: 58/2.6 60/2.6 67/3.6 64/3.8
22 1TEN: 3HHR:B 86/1.8 86/1.9 86/1.8 87/1.9
23 3HLA:B 2RHE: 80/3.0 75/3.0 83/3.4 84/3.4
24 2AZA:A 1PAZ: - - 84/2.9 84/2.9
25 1CEW:I 1MOL:A 81/2.1 81/2.3 81/2.1 81/2.3
26 1CID: 2RHE: 100/3.2 97/3.2 98/2.9 97/2.9
27 1CRL: 1EDE: 205/3.5 211/3.5 210/3.8 219/3.8
28 2SIM: 1NSB:A 292/3.3 292/3.3 286/3.0 275/3.0
29 1BGE:B 2GMF:A 102/3.3 94/3.3 109/3.9 107/3.9
30 1TIE: 4FGF: 115/3.1 114/3.1 114/2.9 116/2.9

The ε for each test case is adjustable. Moreover, the ε for the local alignment phase
and the ε for the global alignment phase can be different. To obtain the results shown in the
tables, the ε for local alignment is adjustable from 1.5 to 4.0, the ε for global alignment is
not less than the given RMSDmax, and lmin is set to 10.

According to the test results in the tables, our algorithm shows higher Nmat in most
of the cases when compared with DaliLite and CE. Furthermore, our algorithm is RMSD-
flexible, therefore it can be used to obtain protein structure alignments with any reasonable
RMSD. This makes it convenient for users to set up RMSD values that make sense to
them.

On the other hand, there are various reasons why our algorithm shows lower Nmat

in a few test cases. Here are some examples. In case 15, DaliLite has a local alignment
(51, 43, 11) i.e. 11 atom pairs (51 to 61 in chain 1 and 43 to 53 in chain 2) are aligned,
while our algorithm has (51, 43, 12). Our algorithm obtains more locally aligned atom pairs,
however this is not optimal when global alignment is considered. In case 16, DaliLite has a
local alignment (51, 35, 16), while our algorithm has (51, 34, 17). It matches its star center
better than (51, 35, 16), however the match is not optimal for global alignment. In case 17,
DaliLite has a local alignment (283, 423, 7) , while our algorithm obtains (283, 423, 3) only,
due to an ε that is good for global alignment but not for this particular local alignment.

There are similar reasons why our algorithm has lower Nmat than CE in some cases.
Also, it should be noticed that, although our MATLAB program read out the same number
of Cα atoms from the PDB files as DaliLite did, CE sometimes read out more. For instances,
in the cases that we got lower Nmat than CE, it read out 306, 310, and 452 Cα atoms from
chain 2 of cases 15, 16 and 17, respectively, while our program and DaliLite read out 303,
278 and 438, respectively; CE read out 90 atoms from chain 1 and 203 atoms from chain
2 of case 22, while our program and DaliLite read out 89 and 195; CE read out 172 atoms

23

from chain 1 and 146 atoms from chain 2 of case 30, while our program and DaliLite read
out 166 and 124.

Finally, as an example, we give out two lists of the positions of the aligned Cα atoms
for test case 20, 1ATP:E as chain 1 and 1TIG: as chain 2. For a pair of protein backbone
chains, a global alignment is described as a set of non-overlapped local alignments that
share a common rigid body transformation. Each local alignment is represented by a triple
L = (i, j, l) where i is a starting point in chain 1, j is a starting point in chain 2, and l is
the number of aligned Cα atoms.

The following is the two lists of positions for entry 20 of Table 2.1. Our result has
much higher Nmat than both DaliLite and CE. With these positions, the readers can even
verify our alignment result.

RMSD=3.4: (1,13,20), (82,33,3), (86,36,1), (87, 38, 2), (126,45,1), (130,46,18),
(148,66,3), (151, 70, 3), (158,73,4), (165,77,1), (166,79,3), (171,82,1), (174, 83, 2), (176,86,1),
(335,88,1).=3.9: (1,13,20), (82,33,8), (126,44, 2), (131, 46, 17), (148,66,3), (151,70,3),
(157,73,4), (165,77,5), (171,82,1), (174,83,2), (176,86,1), (335, 88, 1).

24

Chapter 3

A Self Learning Protein Structure Alignment

Algorithm

This chapter2 discusses an improved version of the preliminary algorithm presented
in Chapter 2. The new algorithm is named SLIPSA which stands for Self-Learning and
Improving Protein Structure Alignment. SLIPSA has proceeded far beyond its preliminary
version in terms of maturity, stability, efficiency and availability. The SLIPSA algorithm
first searches all the local alignments, after that consistent local alignments are grouped
into global alignment candidates called “double-center stars” and a currently optimal global
alignment is chosen from all the candidates. Then this output is sent back to its own input
in order to learn from itself. We call this a feedback. Such feedback is repeated to obtain
improved results, until finally an optimal alignment (i.e. a result with as many as possible
aligned Cα pairs and an acceptable RMSD). SLIPSA can also learn from other algorithms
when they are available.

3.1 Introduction of Double-center “Stars”

A “star” approach has been used in the earlier version of this algorithm [103], which
has one center for each of its stars and shows some instability for aligning large proteins. We
now introduce a double-center method to group the local alignments. This greatly improves
the reliability of the previous algorithm. Another crucial new technical development of this
chapter is a learning strategy based on feedback, which is described in Section 3.2. The
combination of two new methods greatly improves speed, reliability, and accuracy of the old
algorithm.

The single-center star method is not flawless. It works well when the two protein
chains match well or the chain diameters are small. However, we have found that it is less
stable when the chains do not match very well or the chain diameters are large. This is
caused by deleting badly matched Cα pairs from each star, a method applied to obtain a
global alignment candidate. When local alignments are grouped into an initial star, there
may exist point pairs which do not match well. An initial transformation is calculated and
the worst matched pair based on that transformation is first deleted, then the transformation
is recalculated to select the second worst pair. This process is repeated. In this way the

2Published work [104] used with permission of World Scientific Publishing Co. and Mary Ann Liebert
Inc.

25

well matched pairs survive and the RMSD becomes smaller and smaller, until an acceptable
RMSD is achieved. The effect of deleting bad point pairs relies on a good initial transforma-
tion, which in turn depends on the star center selection. With a single star center, the initial
transformation has great freedom to move and rotate in the point pair deletion process, thus
the deletion may go along a more unpredictable way. This is more obvious when the local
alignments are relatively short, which usually happens when the chains do not match very
well or the chain diameters are large. Based on this observation, we consider grouping local
alignments into double-center stars.

Double−center star 5

L1

L2

L6

L5 (Center 1)(Center 2)

Figure 3.1: A double-center star

A double-center star is, as suggested by its name, a “star” with two centers. Each
single-center star can be extended to a corresponding double-center star, while the latter is
much more stable. In a single-center star, each local alignment consistent with the center is
added to the star, while in a double-center star, a local alignment can be added only when
it is consistent with both centers. The first center of a double-center star is exactly the one
in a single-center star, and the second center is selected from that star. The selection of the
second center satisfies the following conditions: (1) It is consistent with the first center; (2)
It is long enough to make sense; (3) It is as far as possible from the first center. Figure 3.1
illustrates a double-center star corresponding to star 5 in Figure 2.3, supposing L2 is the
second center.

Each local alignment in a single-center star is consistent with the center, however,
this does not automatically guarantee that all the local alignments in the star are mutually
consistent. The consistency relationship is not necessarily transitive. In order to reduce the
probability of adding inconsistent local alignments to the star, a double-center star accepts
local alignments in a more prudent way. It rejects the local alignments originally surviving
in the single-center star on a weak basis, therefore local alignments in the double-center star
are more likely to be those very good ones. To some extent, the presence of the second center
has the effect of “extending” the local alignment in the first center. With such a long “local
alignment” as the center, the star will be more stable because points in it have much less
freedom to move or rotate. From another aspect, with this improvement the extent to which

26

the initial transformation will change along with the deletion of bad point pairs is reduced
significantly - the initial transformation will be closer to the final one, and thus the deletion
will cause less unpredictability. Furthermore, the filtering of unpromising local alignments
reduces their negative contribution to the overall transformation (as well as the number of
point pairs involved in the initial star), speeding up the deletion process and resulting in a
faster and better global alignment.

3.2 Development of Learning Ability

3.2.1 Self-learning

As we have mentioned, good star centers produce promising stars and have a greater
probability of generating good global alignments. However, thus far the selection of star
centers has been näıve: any local alignment with sufficient length can be the center of a star.
The double-center method helps remove some unpromising local alignments from a star when
the first center is determined, but it contributes nothing to the selection of the first center.
If the first center of a star can be selected intelligently rather than by arbitrarily picking
up a local alignment, then the star may yield a better global alignment. This intelligence
may be difficult to achieve without any a priori knowledge on the global structural similarity
between the two chains. However, when such knowledge is available, it is possible to improve
the alignment by way of a self-learning strategy.

Once a currently optimal global alignment is output, we are able to know approxi-
mately where the aligned positions are. We organize the consecutively aligned point pairs
into groups, and each group of consecutive point pairs is called a global alignment segment.
A global alignment segment looks exactly like a local alignment, while as a part of a good
global alignment, it should be a good “local alignment”. Here local alignment is quoted
because global alignment segments are not output of the local alignment phase, although
there is no substantial difference between the two definitions. To take advantage of these
good global alignment segments, we apply a feedback mechanism to teach our alignment
algorithm how to improve itself. The self-learning is implemented via iterative utilization
of its own output. When a global alignment is ready, consecutive alignment segments are
extracted, then each segment is used as a new star center and local alignments consistent
with the center are added to its group. This global alignment phase is repeated with a few
new stars obtained from the currently optimal global alignment, until the alignment output
converges (i.e. no changes are found between two iterations).

3.2.2 Learning from others

When a global alignment from another algorithm is available, the global alignment
segments in that result can work as initial star centers. These centers are likely to be better
than our own local alignments since they are from an optimal alignment result obtained
from another algorithm. With these centers, our global alignment searching starts from a
very good jumping-off point, therefore it is possible to output a result better than without
learning. Learning from other algorithms may be more effective in the cases where our base
algorithm performs worse than others. When it performs better than other algorithms even

27

Get local
alignments

Build
double-

center stars
Prune each star and find

the currently optimal
global alignment

Output

AG

F

RMSD
AL Universe

(Feedback loop)

lmin

S
S’

AGAG_Ext (optional)

RMSDmax

Input Output

Figure 3.2: The SLIPSA framework

without learning, this learning may be less necessary, however it is never harmful, because
if it results in a worse global alignment, its results can simply be disregarded. Therefore the
combination of self-learning and learning-from-others will never output an alignment worse
than that obtained from another algorithm. In the worst case it outputs nothing different.
For this reason, our algorithm can also be used to improve the result of any other algorithm.
We call this a refinement to that algorithm.

3.3 A Formal Description of SLIPSA

We give a formal description of SLIPSA. Combining the double-center star, the
self-learning and the learning-from-others methods which use feedback, we greatly improve
our earlier work [103] and have found interesting results when comparing SLIPSA with
some other algorithms. The SLIPSA framework is shown in Figure 3.2. This system takes
six parameters: protein chains S and S ′, RMSDmax (a user specified maximum RMSD),
distance constant ε, minimum local alignment length lmin, and an optional external global
alignment AG Ext. Parameters S and S ′ are determined by the user, RMSDmax is either
determined by the user or obtained from another external algorithm, ε and lmin are selected
empirically according to the user input, and AG Ext is either empty or also obtained from
the external algorithm. The system outputs an optimal global alignment result consisting
of AG (a set of global alignment segments), RMSD (a value not greater than RMSDmax)
and F (a rigid body transformation corresponding to the final global alignment). Following
sub-sections describe the details of the SLIPSA algorithm.

3.3.1 Getting local alignments

The calculation of local alignments has been reviewed in Section 2.2. The procedure
used to get local alignments can be from either [103] or other related papers (e.g. [98]). The
procedure body is omitted.
Get-Local-Alignments(S, S ′, ε, lmin)
Input: protein backbone chains S = p1 · · · pn, S ′ = q1 · · · qm, distance constant ε and min-
imum local alignment length lmin, where each p or q is a 3-D point corresponding to a Cα
atom in a protein backbone.

28

Output: AL = {L1, L2, · · · , Lw}, a set containing all the local alignments of length ≥ lmin

between S and S ′.

3.3.2 Building up stars from local alignments

The improved procedure outputs double-center stars. The input is star centers from
a set of global alignment segments, or from a local alignment set when the former is empty.
The non-center nodes in a star are still chosen from the local alignment set.
Build-Double-Center-Stars(AL, AG)
Input: AL = {L1, L2, · · · , Lw} and AG = {L1′ , L2′ , · · · , Lw′}, where AL is a set of local
alignments and AG is a set of global alignment segments.
Output: Universe = {Star1, Star2, · · · , Stark}, a set of all the unique double-center stars.
begin

Universe← {} (the empty set);
if (AG = {}) then A← AL; otherwise A← AG;
for (each local alignment Lu in A)

find Lu′ , the second center based on Lu, in A;
Staru ← {Lu, Lu′};
for (each local alignment Lv in AL)

if (Lv is consistent with both Lu and Lu′) then Staru ← Staru ∪ {Lv};
end for
if (Staru 6∈ Universe) then Universe← Universe ∪ {Staru};

end for
return Universe;

end

3.3.3 Finding a global alignment from the stars

In each iteration of our algorithm, a global alignment is output and used as an input of
the next iteration. We describe how to prune the set of aligned pairs in a star and obtain the
global alignment which has an RMSD not greater than that specified by the user. We refine
a similar idea that was used in our original algorithm [103], which does not use feedback.
Prune-One-Star(Star,RMSDmax)
Input: a Star and RMSDmax (a user specified maximum RMSD).
Output: (AS, RMSDS, FS, lS), where AS = {L1′′ , L2′′ , · · · , Lw′′} is a set of global alignment
segments which share a common transformation FS with RMSDS ≤ RMSDmax, and lS is
the number of aligned point pairs in AS.
begin

AS ← Star;
lS ← the number of point pairs involved in AS;
calculate transformation FS and RMSDS for all the point pairs involved in AS;
while (RMSDS > RMSDmax)

delete point pair (p, q) with the largest d(p, FS(q)) in AS;
lS ← lS − 1;
recalculate FS and RMSDS for all the point pairs involved in AS;

29

end while
return (AS, RMSDS, FS, lS);

end
In the following function Find-Global-Alignment(), we apply the Prune-One-Star()

procedure to each of the stars in the universe which is built from Build-Double-Center-
Stars(). The alignment that contains the largest number of aligned pairs will be returned.
Find-Global-Alignment(Universe,RMSDmax)
Input: Universe = {Star1, Star2, · · · , Stark} and RMSDmax (a user specified maximum
RMSD).
Output: (AG, RMSD,F), where AG = {L1′ , L2′ , · · · , Lw′} is a set of global alignment seg-
ments which share a common transformation F with RMSD ≤ RMSDmax.
begin

sort Universe by a descending order of the number of 3-D point pairs involved in
each star;
lmax ← 0;
for (each Staru in Universe)

(AS, RMSDS, FS, lS)← Prune-One-Star(staru, RMSDmax);
if (lS > lmax) then AG ← AS; RMSD ← RMSDS; F ← FS; lmax ← lS;

end for
return (AG, RMSD,F);

end

3.3.4 The feedback procedure

This is the main procedure of SLIPSA. It calls Get-Local-Alignments in the first
step, then Build-Double-Center-Stars and Find-Global-Alignment are called repeatedly. A
global alignment output by the current iteration serves as the input of the next iteration.
The procedure terminates when the global alignment ceases to change (i.e. converges).
SLIPSA(S, S ′, ε, lmin, RMSDmax, AG Ext)
Input: S, S ′, ε, lmin, RMSDmax and AG Ext, where AG Ext can be either empty or a set of
global alignment segments obtained from an external algorithm.
Output: (AG, RMSD,F).
begin

AL ← Get-Local-Alignments(S, S ′, ε, lmin);
AG ← AG Ext;
do

A′G ← AG;
Universe← Build-Double-Center-Stars(AL, A

′
G);

(AG, RMSD,F)← Find-Global-Alignment(Universe,RMSDmax);
while (AG 6= A′G);
return (AG, RMSD,F);

end
When no external alignment is available, procedure SLIPSA is called by way of

SLIPSA(S, S ′, ε, lmin, RMSDmax, {}). When it is available, SLIPSA can be called as
SLIPSA(S, S ′, ε, lmin, RMSDmax, AG Ext). We call this a refinement to external alignment

30

AG Ext. To independently test the performance of our algorithm, none of the experiments
reported in Section 3.4 uses any external alignment as our input.

3.4 Experimental Environment and Results

3.4.1 Our web alignment tool

We have developed a web alignment tool based on the SLIPSA algorithm. The
website is available for public access at http://fpsa.cs.uno.edu/ with a mirror site at
http://fpsa.cs.panam.edu/FPSA/. It is not only a SLIPSA alignment tool but also an
alignment comparison tool between SLIPSA and DaliLite, CE and SSM, some commonly
used protein structure alignment algorithms with public websites [5–7].

The data used for protein alignment are PDB files downloaded from the RCSB Protein
Data Bank. Now the files have been moved to the Worldwide Protein Data Bank (wwPDB)
[8]. As of March 2008, there were over 49,000 protein structures with over 100,000 chains
discovered.

Our website is built on an Intel dual-Xeon 3G Hz PC server with 3GB memory.
The web development tools we have used include Apache HTTP server with PHP support,
ActivePerl and MySQL database server. The SLIPSA algorithm is written in MATLAB.
See [92] and [34] for the rigid body transformation method that we have used in SLIPSA.

The work flow of our website is shown in Figure 3.3. Besides a maximum value for
RMSD, it accepts either PDB IDs or user uploaded PDB files as input. It is optional
to compare SLIPSA with DaliLite, CE or SSM. When a comparing option is chosen, our
tool automatically submits alignment request to and retrieves result from DaliLite, CE or
SSM website, and performs SLIPSA alignment according to the retrieved RMSD value.
The website outputs the following alignment results. Except the first result, all others are
optional depending on the user choices. Note that SLIPSA outputs AG (a set of global
alignment segments), RMSD and F (a rigid body transformation).
(1) (AG, RMSD,F)SLIPSA: the SLIPSA result with a user specified RMSDmax.
(2) (AG, RMSD)DaliLite: the DaliLite result retrieved automatically from its website.
(3) (AG, RMSD,F)DaliLite Comp: the SLIPSA result with an RMSD retrieved from DaliLite
website as input. This result is used to compare SLIPSA with DaliLite.
(4) (AG, RMSD)CE: the CE result retrieved automatically from its website.
(5) (AG, RMSD,F)CE Comp: the result used to compare SLIPSA with CE.
(6) (AG, RMSD)SSM : the SSM result retrieved automatically from its website.
(7) (AG, RMSD,F)SSM Comp: the result used to compare SLIPSA with SSM.

3.4.2 Experimental results

We have collected 224 alignment cases to test the performance of our algorithm. The
test cases were originally proposed by various papers for various testing purposes. Table 3.1
lists all the 224 cases. They include No. 1 - No. 20 (see Table III in [85]), No. 21 - No. 88
(see Table I in [38]), No. 89 (see Tables I and II in [85]), No. 90 - No. 92 (supplement to
Table III in [85]), No. 93 (see Figure 5 in [85]), No. 94 - No. 101 (see Table IV in [85]),
No. 102 - No. 111 (see Table V in [85]), No. 112 - No. 120 (supplement to Table V in

31

Se
t ε

 a
nd

 l m
in

;
(A

G
, R

M
SD

, F
) S

LI
PS

A
 ←

 S
LI

PS
A

(S
, S

’,
ε,

 l m
in

, R
M

SD
m

ax
, {

})
;

(A
G
, R

M
SD

) D
al

iL
ite

 ←
 D

al
iL

ite
(S

, S
’);

 (A
G
, R

M
SD

) C
E ←

 C
E(

S,
 S
’);

(A
G
, R

M
SD

, F
) D

al
iL

ite
_R

ef
 ←

 S
LI

PS
A

 (S
, S

’,
ε,

 l m
in

, R
M

SD
D

al
iL

ite
, A

G
_D

al
iL

ite
);

(A
G
, R

M
SD

, F
) D

al
iL

ite
_C

om
p ←

 S
LI

PS
A

(S
, S

’,
ε,

 l m
in

, R
M

SD
D

al
iL

ite
, {

})
;

(A
G
, R

M
SD

, F
) C

E_
C

om
p ←

 S
LI

PS
A

 (S
, S

’,
ε,

 l m
in

, R
M

SD
C

E,
{}

);

(A
G
, R

M
SD

, F
) C

E_
R

ef
 ←

 S
LI

PS
A

 (S
, S

’,
ε,

 l m
in

, R
M

SD
C

E,
A

G
_C

E)
;

(A
G
, R

M
SD

, F
) S

SM
_C

om
p ←

 S
LI

PS
A

 (S
, S

’,
ε,

 l m
in

, R
M

SD
SS

M
, {

})
;

(A
G
, R

M
SD

, F
) S

SM
_R

ef
 ←

 S
LI

PS
A

 (S
, S

’,
ε,

 l m
in

, R
M

SD
SS

M
, A

G
_S

SM
);

O
ut

pu
t:

(A
G
, R

M
SD

, F
) S

LI
PS

A
;

O
pt

io
na

l o
ut

pu
t:

(A
G
, R

M
SD

) D
al

iL
ite

;
(A

G
, R

M
SD

, F
) D

al
iL

ite
_C

om
p;

(A
G
, R

M
SD

, F
) D

al
iL

ite
_R

ef
;

(A
G
, R

M
SD

) C
E;

(A

G
, R

M
SD

, F
) C

E_
C

om
p;

(A
G
, R

M
SD

, F
) C

E_
R

ef
;

(A
G
, R

M
SD

) S
SM

;
(A

G
, R

M
SD

, F
) S

SM
_C

om
p;

(A
G
, R

M
SD

, F
) S

SM
R

ef
;

 (A
G
, R

M
SD

) S
SM

 ←
 S

SM
(S

, S
’);

In
pu

t:

S
an

d
S’

;
R

M
SD

m
ax

;
A

lig
nm

en
t

op
tio

ns
.

F
ig

u
re

3.
3:

T
h
e

w
eb

al
ig

n
m

en
t

w
or

k
fl
ow

32

Table 3.1: PDB chains of the 224 test cases

No. Chain 1 Chain 2 No. Chain 1 Chain 2 No. Chain 1 Chain 2 No. Chain 1 Chain 2
1 1ATP:E 1APM:E 57 2AK3:A 1GKY: 113 1HLE:B 2ACH:B 169 1MBC: 1PHN:A
2 1ATP:E 1CDK:A 58 1ATN:A 1ATR: 114 1BBT:4 1TMF:4 170 1MBC: 1CPC:A
3 1ATP:E 1YDR:E 59 1ARB: 5PTP: 115 1AIE: 2FUA: 171 1MBC: 1LIA:A
4 1ATP:E 1CTP:E 60 2PIA: 1FNB: 116 1CPT: 1FCT: 172 1MBC: 1CPC:B
5 1ATP:E 1PHK: 61 3RUB:L 6XIA: 117 1LBD: 1PSM: 173 1MBC: 1QGW:C
6 1ATP:E 1KOA: 62 2SAR:A 9RNT: 118 4ICB: 1CTD:A 174 1MBC: 1LIA:B
7 1ATP:E 1KOB:A 63 3CD4: 2RHE: 119 2SEC:I 1EGP:A 175 1MBC: 1COL:A
8 1ATP:E 1AD5:A 64 1AEP: 256B:A 120 1SCE:A 1PUC: 176 1MBC: 2CP4:
9 1ATP:E 1CKI:A 65 2MNR: 4ENL: 121 1BPI: 1BUN:B 177 1MBC: 1EUM:A
10 1ATP:E 1CSN: 66 1LTS:D 1BOV:A 122 1BPI: 5EBX: 178 1MBC: 1FPO:A
11 1ATP:E 1ERK: 67 2GBP: 2LIV: 123 1WAJ: 1NOY:A 179 1MBC: 1OXA:
12 1ATP:E 1FIN:A 68 1BBT:1 2PLV:1 124 1WAJ: 1XWL: 180 1MBC: 1LE2:
13 1ATP:E 1GOL: 69 2MTA:C 1YCC: 125 1ACX: 1COB:B 181 1MBC: 2FHA:
14 1ATP:E 1JST:A 70 1TAH:A 1TCA: 126 1ACX: 1TMF:A 182 1MBC: 1NFN:
15 1ATP:E 1IRK: 71 1RCB: 2GMF:A 127 1PTS:A 1MUP: 183 1MBC: 1GRJ:
16 1ATP:E 1FGK:A 72 1SAC:A 2AYH: 128 2GBL: 1UBQ: 184 3TRX: 4TRX:
17 1ATP:E 1FMK: 73 1DSB:A 2TRX:A 129 2GB1: 4FXC: 185 3TRX: 1MDI:A
18 1ATP:E 1WFC: 74 1STF:I 1MOL:A 130 1UBQ: 4FXC: 186 3TRX: 1AIU:
19 1ATP:E 1KNY:A 75 2AFN:A 1AOZ:A 131 1PLC: 2RHE: 187 3TRX: 1ERV:
20 1ATP:E 1TIG: 76 1FXI:A 1UBQ: 132 1PLC: 1ACX: 188 3TRX: 1F9M:B
21 1MDC: 1IFC: 77 1BGE:B 2GMF:A 133 1ACX: 1RBE: 189 3TRX: 1F9M:A
22 1NPX: 3GRS: 78 3HLA:B 2RHE: 134 1ABA: 1TRS: 190 3TRX: 1GH2:A
23 1ONC: 7RSA: 79 3CHY: 2FOX: 135 1ABA: 1DSB:A 191 3TRX: 1EP7:A
24 1OSA: 4CPV: 80 2AZA:A 1PAZ: 136 1ABA: 1PBF: 192 3TRX: 1EP7:B
25 1PFC: 3HLA:B 81 1CEW:I 1MOL:A 137 1MJC: 5TSS:A 193 3TRX: 1FAA:A
26 2CMD: 6LDH: 82 1CID: 2RHE: 138 1PGB: 5TSS:A 194 3TRX: 1TOF:
27 2PNA: 1SHA:A 83 1CRL: 1EDE: 139 2TMV:P 256B:A 195 3TRX: 2TIR:
28 1BBH:A 2CCY:A 84 2SIM: 1NSB:A 140 1TNF:A 1BMV:1 196 3TRX: 1THX:
29 1C2R:A 1YCC: 85 1TEN: 3HHR:B 141 1UBQ: 1FRD: 197 3TRX: 1FB6:B
30 1CHR:A 2MNR: 86 1TIE: 4FGF: 142 2RSL:C 3CHY: 198 3TRX: 1QUW:A
31 1DXT:B 1HBG: 87 2SNV: 5PTP: 143 3CHY: 1RCF: 199 3TRX: 1KTE:
32 2FBJ:L 8FAB:B 88 1GPL: 2TRX:A 144 1MBC: 5MBN: 200 3TRX: 1JHB:
33 1GKY: 3ADK: 89 1CPC:L 1COL:A 145 1MBC: 1MBN: 201 3TRX: 3GRX:
34 1HIP: 2HIP:A 90 1KNY:A 1TIG: 146 1MBC: 1MYH:A 202 3TRX: 1H75:A
35 2SAS: 2SCP:A 91 1MAE:H 2BBK:J 147 1MBC: 1HDS:B 203 3TRX: 1EGO:
36 1FCL:A 2FB4:H 92 2MHR: 2BRD: 148 1MBC: 2DHB:A 204 3TRX: 1ILO:A
37 2HPD:A 2CPP: 93 1HCL: 1JSU:A 149 1MBC: 1MBA: 205 3TRX: 1ABA:
38 1ABA: 1EGO: 94 2ASR: 1OCC:C 150 1MBC: 1DM1:A 206 3TRX: 1FO5:A
39 1EAF: 4CLA: 95 2ASR: 1MMO:D 151 1MBC: 1HLM: 207 3TRX: 1MEK:
40 2SGA: 5PTP: 96 2ASR: 2BRD: 152 1MBC: 2LHB: 208 3TRX: 1A8Y:
41 2HHM:A 1FBP:A 97 256B:A 1AEP: 153 1MBC: 2FAL: 209 3TRX: 1E2Y:A
42 1AAJ: 1PAZ: 98 256B:A 1CIY: 154 1MBC: 1HBG: 210 3TRX: 1E2Y:C
43 5FD1: 1IQZ:A 99 256B:A 1AGS:A 155 1MBC: 1ITH:A 211 3TRX: 1QMV:A
44 1ISU:A 2HIP:A 100 2ASR: 1LKI: 156 1MBC: 1FLP: 212 3TRX: 1BJX:
45 1GAL: 3COX: 101 2ASR: 1FPS: 157 1MBC: 1ECA: 213 3TRX: 1GP1:B
46 1CAU:B 1CAU:A 102 1LIS: 1CIY: 158 1MBC: 2HBG: 214 3TRX: 1QQ2:A
47 1HOM: 1LFB: 103 1CFP:A 4ICB: 159 1MBC: 1ASH: 215 3TRX: 1EZK:A
48 1TLK: 2RHE: 104 1RPA: 1HIW:A 160 1MBC: 1HBI:B 216 3TRX: 1EWX:A
49 2OMF: 2POR: 105 1HYP: 1MZM: 161 1MBC: 1GDI: 217 3TRX: 1QK8:A
50 1LGA:A 2CYP: 106 1CLC: 1HOE: 162 1MBC: 1HLB: 218 3TRX: 1FG4:A
51 1MIO:C 2MIN:B 107 1UTG: 1NOX: 163 1MBC: 1LH2: 219 3TRX: 1A8L:
52 4SBV:A 2TBV:A 108 1FAR: 1PTQ: 164 1MBC: 1H97:A 220 3TRX: 1FG4:B
53 8I1B: 4FGF: 109 1KUM: 1TUL: 165 1MBC: 1DLY:A 221 3TRX: 1FVK:A
54 1HRH:A 1RNH: 110 1PYI:A 1PYC: 166 1MBC: 1IDR:A 222 3TRX: 1F37:A
55 1MUP: 1RBP: 111 1VIH: 1PYT:A 167 1MBC: 1DLW:A 223 3TRX: 1F37:B
56 1CPC:L 1COL:A 112 1LYP: 1OLG:A 168 1MBC: 1ALL:A 224 3TRX: 1GHH:A

33

[85]), No. 121 - No. 124 (see Table VII in [85]), No. 125 - No. 143 (see Table 1 in [79]),
No. 144 - No. 183 (see Table 1 in [97]) and No. 184 - No. 224 (see Table 2 in [97]).

Based on this test set, we compare SLIPSA with DaliLite, CE and SSM in terms of
Nmat (the number of aligned positions) and RMSD. Common protein alignment scoring
methods such as Z-score, Q-score, P-score and geometric measures proposed in [57] all take
Nmat and RMSD into account. Due to the RMSD flexibility of SLIPSA, it is easy to
compare SLIPSA with DaliLite, CE and SSM on the basis of Nmat because in most cases
SLIPSA outputs an equal RMSD. The detailed results are listed in Tables A.1 through A.3
in the appendix section A.1. In the tables, n and r stand for Nmat and RMSD, respectively,
n+ is the Nmat increment (%), and r− is the RMSD decrement (%). The results are sorted
in a descending order of n+. In each test case SLIPSA outputs an RMSD not greater than
that of DaliLite, CE, or SSM. If Nmat of SLIPSA is larger than Nmat of DaLiLite, CE, or
SSM, we call it an Nmat increment. Similarly, if the RMSD of SLIPSA is smaller than the
RMSD of DaLiLite, CE or SSM, we call it a RMSD decrement. For the convenience of
illustration, the results are sorted in a descending order of the Nmat increment rate. The Nmat

increment rate is calculated by (Nmat SLIPSA−Nmat X) / Nmat X and the RMSD decrement
rate is calculated by (RMSDX − RMSDSLIPSA) / RMSDX , where X is DaliLite, CE or
SSM. Figure 3.4 illustrates such increments and decrements in percentage. It should be
mentioned that (1) no SSM comparison was performed in our earlier paper [103], (2) in a
few cases that we could not find results on the DaliLite, CE or SSM websites, we marked
the cases as “n/a” and did not compare SLIPSA with them, (3) from the time of completion
of this dissertation, it is possible to see result changes on any of the alignment websites and
we have observed minor changes on some of them, and (4) the SLIPSA experiments did not
use any external alignment as input, although our algorithm is able to refine the alignment
results retrieved from other web servers.

To verify our alignment results listed above, readers can access our website, input two
protein backbones by giving their PDB IDs and chain letters, specify an RMSDmax (default
value is 3.0) and provide an email address to receive the result page. For example, when a
user opens http://fpsa.cs.uno.edu/, types PDB ID “1ATP” and selects chain letter “E”
as backbone 1, types “1APM” and selects chain “E” as backbone 2, and inputs his email
address, he will receive an HTML result page showing that Nmat = 336, RMSD = 0.3 and
the aligned positions are points 1 - 336 in protein chain 1ATP:E and points 1 - 336 in chain
1APM:E. The corresponding sequence alignment will also be shown in the page.

3.4.3 Discussion on the results

Table 3.2 shows some statistical data based on the results in Figure 3.4. For each
case in which an alignment result was missing from either DaliLite, CE or SSM, we did not
compare it with SLIPSA. Also, since DaliLite, CE and SSM may have different RMSD
values for a given test case, they were not compared mutually. In our experiments, when
compared with DaliLite, CE and SSM respectively, SLIPSA outputs a larger Nmat in 66.67%,
61.82% and 86.70% of the cases; The maximum Nmat increment rate of SLIPSA is 65.33%,
64.58% and 109.09%; On average, SLIPSA increases 4.56%, 4.13%, and 7.37% of the Nmat;
In 26.67%, 29.09% and 81.19% of the cases SLIPSA outputs a smaller RMSD with the
maximum RMSD decrement rate being 13.21%, 11.11% and 16.56%. To sum up, in most

34

‐20.00%

‐10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

Pe
rc
en

ta
ge

Comparison with CE

Nmat Increment

RMSD Decrement

‐10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

Pe
rc
en

ta
ge

Comparison with DaliLite

Nmat Increment
RMSD Decrement

‐40.00%

‐20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

Pe
rc
en

ta
ge

Comparison with SSM

Nmat Increment
RMSD Decrement

Figure 3.4: Comparing SLIPSA with DaliLite, CE and SSM

35

cases we see SLIPSA results with a larger or same Nmat and a same or smaller RMSD. In
some cases that SLIPSA outputs a smaller Nmat, we also see a smaller RMSD.

Table 3.2: Statistics on the experimental results

DaliLite CE SSM
Number of valid cases 210 220 218
Cases with larger Nmat by SLIPSA 149(66.67%) 136(61.82%) 189(86.70%)
Cases with smaller Nmat by SLIPSA 14(6.67%) 26(11.82%) 8(3.67%)
Maximum Nmat increment by SLIPSA 49 56 51
Maximum Nmat decrement by SLIPSA 2 9 12
Maximum Nmat increment rate by SLIPSA 65.33% 64.58% 109.09%
Maximum Nmat decrement rate by SLIPSA 2.74% 6.45% 25.53%
Average Nmat increment by SLIPSA 4.15 3.63 7.24
Average Nmat increment rate by SLIPSA 4.56% 4.13% 7.37%
Cases with smaller RMSD by SLIPSA 56(26.67%) 64(29.09%) 177(81.19%)
Maximum RMSD decrement by SLIPSA 0.7 0.4 0.52
Maximum RMSD decrement rate by SLIPSA 13.21% 11.11% 16.56%
Average RMSD decrement by SLIPSA 0.04 0.04 0.05
Average RMSD decrement rate by SLIPSA 1.55% 1.42% 2.07%

We also attempt to compare SLIPSA with DaliLite, CE and SSM in the cases of weak
similarities. To simplify the comparison process, we tentatively define a weak similarity as a
large RMSD between aligned chains. This definition may be incomplete, however, we have
already observed some interesting results. For example, when compared with DaliLite and
CE, the average Nmat increment rates of SLIPSA are 4.56% and 4.13% respectively, while
in the cases with (Cα) RMSD ≥ 5.0, the numbers are 26.48% and 21.62%, much higher
than the overall average values. See Table 3.3 for details. In brief, SLIPSA obtains high
average Nmat increment rate in weak similarity cases, and the larger the RMSD, the higher
the average Nmat increment rate.

Table 3.3: Comparison based on weak similarity

DaliLite CE SSM
Valid Cases Avg. Nmat Inc. Valid Cases Avg. Nmat Inc. Valid Cases Avg. Nmat Inc.

RMSD ≥ 5.0 12 26.48% 14 21.62% 0 /
RMSD ≥ 4.0 20 23.48% 41 14.75% 9 17.50%
RMSD ≥ 3.0 77 10.09% 102 7.64% 51 12.15%

The running time of each algorithm was recorded. The average running time of
DaliLite, CE and SSM is 16.86s, 6.14s and 9.15s, respectively. When compared with them
(i.e. using the RMSD from the best fit from the comparison algorithms as the RMSD
upper-bound in SLIPSA), the average running time of SLIPSA is 105.97s, 69.89s and 81.43s,
respectively. In about 50% of the cases the SLIPSA average time is below the DaliLite aver-
age, and the corresponding numbers for CE and SSM are about 25% and 28%, respectively.
Possible ways to reduce the running time are discussed below.

(1) The web server was built on a slow machine. We have also tested the algorithm
on an IBM ThinkPad laptop computer with Core2 Duo 1.8GHz CPUs. This machine was
much slower than the mainstream web server machines, while the same results took only
1
2

to 2
3

of the time used on our current web server. It is possible to improve the speed
to great extent by using a machine with high computational performance. (2) We used
Matlab to implement the algorithm. Matlab facilitates the proof-of-concept development of
complicated scientific programs, however, according to our experience it is possible to speed
up algorithms at least several times if they are implemented in other languages such as

36

C, C++ and Java. In addition, parallel and distributed programming on high performance
computational resources can also help reduce the execution time. (3) The algorithm is slower
when the proteins are long and/or the RMSD is large. In such cases the number of local
alignments are large and the graph complexity is high. However, the algorithm can be tuned
to reduce the complexity. Possible methods include reducing the dimension of data, removing
unpromising local alignments as early as possible, limiting the number of times of feedback,
and so on.

37

Chapter 4

Finding Proteins with Similar 3-D Structures in the

Protein Data Bank

One application of protein structure alignment is the search for proteins with similar
3-D structures in a large protein structure databank (such as the PDB), given a protein
structure as the input. The input may be a protein structure, which is described in certain
format (e.g. the PDB format), or the 3-letter ID code of a structure in the protein databank.
Algorithms for searching protein in the database for similar structures have been developed
by multiple research groups [10,16,27,56,72,73,83,86]. In particular, the methods developed
in [10,16,56,72,73,83,86] belong to the hierarchical method.

It is easy to see that our algorithm for the pair-wise protein backbone alignment can
be applied to find similar proteins from the protein database. These algorithms are typically
not fast enough to perform a brute force comparison with all proteins in the databank.
One natural approach to deal with this complexity is to exclude proteins that have greatly
different structures from the input structure by using some simple method, and then apply
more complicated algorithms to check the similarity with small number of proteins left.

The hierarchical algorithm VAST [72] builds a bipartite graph. Each node in one side
of the graph is a pair of secondary structure elements (SSEs) from the input protein, and
each node in the other side of the graph is a pair of SSEs from the target protein. Connect
two nodes between two sides if they can be aligned well. Their SSE alignment algorithm
finds the maximal clique in the bipartite graph and extends it to Cα-atom level alignment
by Gibbs sampling.

In this chapter3, we develop a practical algorithm for the protein query problem.
Our main technical contribution is that we apply a new method to check the similarity for
the secondary structures between two proteins. Our method for grouping the secondary
structures is different from other protein secondary structure alignment algorithms like [72].
Our approach is based on finding the star which has a center of two pairs aligned secondary
structures between two proteins. Add other pairs of secondary structures to the star if there
exists a common rigid body transformation between the center and the new pair. Prune the
star until it has a satisfactory RMSD. Finding a maximal star, which can be computed in
linear time, is easier than a maximal clique. This star based method was first used in our
recent Cα-atom level alignment algorithm [103] and shows improvement over the existing
alignment algorithms.

3Published work [71] used with permission of the CSREA Press.

38

We have found an efficient way to combine the secondary structure level alignment
with the Cα-atom level alignment. The combination of two alignments are embedded into
our protein query system so that it can find similar proteins in the protein databank of more
than 100, 000 chains in a short time, and avoid missing similar structures.

The quality of protein query system is determined by how similar the list of output
proteins is to the input protein. In order to compare the performance with other web-
servers, we develop a model based on the symmetric difference between the two sets of
protein structures which are outputted by two different software tools when the input is
the same protein structure. It is compared with a similar tool of SSM and shows improved
performance. It has been implemented as a web-server at address: http://fpsa.cs.panam.
edu/.

4.1 Overview of Our Methods

Our algorithm has a series of filters. Given a protein 3-D structure as input, the
algorithm first excludes those proteins that are greatly different in the number of Cα atoms
in the protein backbone, the average distance from all the Cα atoms to the center of protein
backbone, or the statistics about the secondary structures. The second layer filter does
the second structure sequence alignment. The third layer filter aligns the secondary 3-
D structures. The fourth layer filter uses a simplified version of our pair-wise alignment
algorithm [103] to do the protein 3-D structure alignment.

4.2 Description of Algorithm

A straightforward method to find similar structures in the protein databank is to
apply a pairwise protein structure alignment software to check all of the protein structures
saved in the database. Since there are a large number of protein structures in the protein
databank, it would be very slow to check each structure carefully. In the early stage, our
algorithm has multiple phases to filter those structures that are weakly similar with the
input protein structure. When there are a small number of candidate structures left, a more
complicated pairwise algorithm is used in selecting the most similar protein structures.

4.2.1 Checking off-line information

We first reject those protein structures that have a greatly different number of Cα
atoms in the backbone, the structures that have large differences for the average distance
from the Cα-atoms to the center of Cα-backbone, and the structures that have large difference
in ratio of α-helix among all secondary structures entities (SSEs). The number of Cα atoms
in all the protein structures can be easily computed off-line. So, too, can the average distance
to the center and the ratio of α-helix. This stage is very fast since a significant amount of
off-line information describing structures in the large database have been preprocessed and
is ready when a query is made. Therefore the rejection/acceptance of a structure can be
decided very quickly.

39

Let S0 be the input protein structure. We often use the parameter Structure-list to
represent a list of protein structures which will be selected by checking similar properties
with input protein structure S0. For protein structure S, define C(S) to be the Cα-chain
of the backbone of S. Function Check-protein-size() checks if a target protein has a similar
number of Cα atoms to the input protein S0.
Check-protein-size(S0, S)
Input: S0 is the input protein structure, and S is another protein structure.
Output: true or false.
Begin

Let n0 be the number of Cα atoms in C(S0).
Let n be the number of Cα atoms in C(S).
If (|n0 − n| ≤ empirical value·max(n0, n)) Then Return true.
Else Return false.

End (of Check-protein-size)

For a list of points p1, · · · , pn in 3-D space, its center is computed by
∑n

i=1
pi

n
. We have

the function Check-average-distance-to-center() to check if the average distance from all the
Cα atoms to the center of Cα(S) is close to that of Cα(S0). If two structures are similar their
average distances to the center are also close.
Check-average-distance-to-center(S0, S)
Input: S0 is the input protein structure, and S is another protein structure.
Output: true or false.
Begin

Let c0 be the center of C(S0).
Let d0 be the average distance from the Cα atoms of C(S0) to c0.
Let c be the center of C(S).
Let d be the average distance from the Cα atoms of C(S) to c.
If (|d0 − d| ≤ empirical value·max(d0, d)) Then Return true.
Else Return false.

End (of Check-average-distance-to-center)
The function Check-secondary-structure-statistics() is used to check the statistics

information about the secondary structures such as the number of α-helixes and β sheets.
Check-secondary-structure-statistics(S0, S)
Input: S0 is the input protein structure, and S is another protein structure.
Output: true or false.
Begin

Let a0 be the number of α-helixes in C(S0).
Let b0 be the number of β-sheets in C(S0).
Let a be the number of α-helixes in C(S).
Let b be the number of β-sheets in C(S).
If (|a0 − a| ≤ empirical value·max(a0, a) and |b0 − b| ≤ empirical value·max(b0, b))
Then Return true.
Else Return false.

End (of Check-secondary-structure-statistics)

40

The function Select-via-offline-information() filters proteins using the offline informa-
tion. If the Structure-list is the list of proteins in the protein databank, there will be less
than 20% proteins left after calling this function.
Select-via-offline-information(S0, Structure-list)
Input: S0 is the input protein structure, and Structure-list is the list of structures to be
searched for similar proteins.
Output: a sublist of protein structures that each has a similar average distance to its center.
Begin

Let L = ∅.
For each protein structure S in L
Begin

If (Check-protein-size(S0, S) and
Check-average-distance-to-center(S0, S) and
Check-secondary-structure-statistics(S0, S))

Then put S into L (L = L ∪ {S}).
End (of For)
Return L.

End (of Select-via-offline-information)

4.2.2 Secondary sequence alignment

It has been observed that if two structures are similar, their secondary structure
sequences can be well aligned at the sequence level, where each secondary structure can be
represented by either α for an α helix or β for a β sheet. Using the α-β sequence alignment
can reduce a large number of unrelated structures and greatly speed up the searching in the
database.

The second structure sequences of all the protein structures in the databank are
extracted. For each protein, its secondary structure sequence has format s1s2 · · · sk such
that each si contains the following information:

• α-β type.

• Number of Cα atoms in the secondary structure. Define cα(si) to be the number of Cα
atoms in si.

• Two crucial points of the secondary structure.

Define the weight function such that w(a, b) = max(cα(a),cα(b))
cα(a)+cα(b)

if the α-β type of a and

b are different or one of them is a space, and w(a, b) = |cα(a)−cα(b)|
cα(a)+cα(b)

if the α-β type of a and b
are the same.

An alignment of two sequences a1 · · · an and b1 · · · bm of secondary structures will add
gaps, each marked by a ‘-’, into each. The first sequence becomes a′1 · · · a′k and the second
sequence becomes b′1 · · · b′k, and for each 1 ≤ i ≤ k, at least one of ai and bi must not be a gap.
The total cost for the alignment from a′1 · · · a′k and b′1 · · · b′k is measured by

∑k
i=1w(a′i, b

′
i).

The optimal alignment is to find the one with the least cost by the function w().

41

Define D(i, j) to be the cost of an optimal alignment between a1 · · · ai and b1 · · · bj.
We have the following recursion, which implies that D(n,m) can be computed in O(mn)
time by the method of dynamic programming.

D(i, j) = min


D(i− 1, j − 1) + w(ai, bj)
D(i− 1, j) + w(ai,−),
D(i, j − 1) + w(−, bj)

(4.1)

Secondary-structure-sequence-alignment(S, S ′)
Input: S is the first protein structure, and S ′ is the second protein structure.
Output: an alignment for the secondary structure sequences between S and S ′.
Begin

Let s1s2 · · · sk be the sequence of the first protein S.
Let s′1s

′
2 · · · s′k′ be the sequence of the second protein S ′.

Apply the dynamic programming with weight function w().
Output the alignment with the best score.

End (of Secondary-structure-sequence-alignment)

We use function Select-via-secondary-structure-sequence() to select those proteins
that have their secondary structure sequences aligned well with that of input protein struc-
ture S0.
Select-via-secondary-structure-sequence(S0, Structure-list)
Input: S0 is the input protein structure, Structure-list is the list of structures to be searched
for similar proteins.
Output: a sublist of protein structures that can be well aligned with S0 according to the
secondary structure sequence alignment.
Begin

Let L = ∅.
For each protein structure S in the Structure-list
Begin

A =Secondary-structure-sequence-alignment(S0, S).
If (alignment A is good enough) Then put S into L.

End (of For)
Return L.

End (of Select-via-secondary-structure-sequence)

4.2.3 3-D alignment for secondary structures

In this phase, we select those protein structures that have good geometric alignment
by secondary structures. This phase is also fast since each protein has about 30 secondary
structures in average. We just use two points to represent a secondary structure.
Build-Star((s1, s

′
1), (s2, s

′
2), S, S ′)

42

Input: S and S ′ are two protein structures, s1 and s2 are secondary structures in S, s′1 and
s′2 are secondary structures in S ′, and there exists an rigid body alignment for (s1, s

′
1) and

(s2, s
′
2).

Output: a star with center at (s1, s
′
1), (s2, s

′
2).

Begin
Let Center={(s1, s

′
1), (s2, s

′
2)}.

Let Star=Center.
For each pair of secondary structures (s, s′) between S and S ′.
Begin

If (there exists a rigid body transformation for Center and (s, s′))
Then Let Star=Star ∪{(s, s′)}.

End (of For)
Return Star.

End (of Build-Star)

The function Prune-star() deletes some pairs in a star until there exists an alignment
with RMSD less than a threshold r.
Prune-star(Star, r)
Input: Star is a star of secondary structures, and r is a threshold.
Output: a new star of secondary structures that has rigid body alignment with RMSD no
more than r.
Begin

While (RMSD(Star)> r)
Remove the pair (s, s′) of Star that has the largest distance dist(s, s′).

End (of Prune-star)

The function Secondary-structure-3-D-alignment() aligns the 3-D secondary struc-
tures between two protein structures S and S ′. The method is based on building and
pruning stars.
Secondary-structure-3-D-alignment(S, S ′)
Input: S is a protein structure; S ′ is a protein structure.
Output: a 3-D alignment between the secondary structures of S and S ′.
Begin

L =Secondary-structure-sequence-alignment(S, S’).
Best-star= ∅.
For each pair (s1, s2) of neighbor secondary structures in L
Begin

Star=Build-Star(s1, s2).
Star=Prune-star(Star, r)
If (size(best-star)< size(Star)) Then Best-star=Star.

End (of For)
Return best-star as an alignment.

End (of Secondary-structure-3-D-alignment)

43

The function Select-via-secondary-structure-3-D-alignment() selects those proteins
that can be well aligned with S0 by the Secondary-structure-3-D-alignment function.
Select-via-secondary-structure-3-D-alignment(S0, Structure-list)
Input: S0 is the input protein structure, and Structure-list is the list of structures to be
searched for similar proteins.
Output: a sublist of protein structures that can be well aligned with S0.
Begin

Let L = ∅.
For each protein structure S in the Structure-list
Begin

A =Secondary-structure-3-D-alignment(S0, S).
If (alignment A is good enough) Then put S into L.

End (of For)
Return L.

End (of Select-via-secondary-structure-3-D-alignment)

4.2.4 Cα-atom level pair-wise protein structure alignment

In the bottom layer of our implementation, we apply a protein pairwise alignment
algorithm which was first developed in our earlier work [103]. In this layer, the protein
structure alignment algorithm should balance the speed and accuracy.

Pair-wise-alignment(S, S ′)
Input: S is the first protein structure, and S ′ is the second protein structure.
Output: an alignment between the Cα atoms in S and S ′.
Begin

Let C be the Cα-atom chain of S.
Let C ′ be the Cα-atom chain of S ′.
Find the similar local regions between two Cα-chains.
Let each local alignment be a node of a graph.
Add an edge between two nodes if they share a common rigid body transformation.
For each star in the graph
Begin

Prune those Cα-pairs until the RMSD is small enough.
End (of For)
Output the alignment with the largest number of Cα pairs.

End (of Pair-wise-alignment)

The function Select-via-atom-level-alignment() selects those proteins that can be well
aligned with S0 in the Cα atoms level.
Select-via-atom-level-alignment(S0, Structure-list)
Input: S0 is the input protein structure, and Structure-list is the list of structures to be
searched for similar proteins.
Output: a sublist L of protein structures from Structure-list such that each protein structure
in L has good Cα-atom alignment with S0.

44

Begin
Let L = ∅.
For each protein structure S in the Structure-list
Begin

A =Pair-wise-alignment(S0, S).
If (alignment A is good enough) Then put S into L.

End (of For)
Return L.

End (of Select-via-atom-level-alignment)

4.2.5 Combining them together

Now we put all the layers together to form the entire algorithm. The first filter
is based on the offline information, the second filter is based on the secondary structure
sequence (α-β sequence) alignment, the third filter is based on the secondary structure 3-D
alignment, and the fourth filter is based on the Cα atoms alignment.
Search-proteins(S0, Structure-list)
Input: S0 is the input protein structure, and Structure-list is the list of structures to be
searched for similar proteins.
Output: a list of proteins structures that are similar to S0.
Begin

L1 =Select-via-offline-information(S0, Structure-list).
L2 =Select-via-secondary-structure-sequence(S0, L2).
L3 =Select-via-secondary-structure-3-D-alignment(S0, L3).
L4 =Select-via-atom-level-alignment(S0, L3).
Return L4 as the list of proteins similar to S0.

End (of Search-proteins)

4.3 Experimental Results and Comparison with SSM

Our algorithm has been fully implemented and tested. It is available for public access
at http://fpsa.cs.panam.edu/. It is running on a single machine, and will be supported
by a cluster of machines soon.

4.3.1 Speed and performance

We have observed that given a protein structure as input for our software, it can
output a list of protein structures that are similar to it among those available proteins in
the protein databank.

The total number of protein chains is about 100, 000. After the top filter which checks
the number of Cα atoms, the average distance to the center of Cα chain, and the ratio of
SSEs, there are about 20, 000 structures left.

The second level filter aligns the secondary structure sequences and can filter 80% to
90% structures from the output of the top layer. We often see that there are less than 2000
structures left after the second level filter.

45

The third level filter narrows down the number of structures to several hundreds in
average. It depends on how many proteins are really similar to the input protein. The atom
level alignment tool developed in [103] is efficient enough to align the input structures with
those protein structures in several minutes.

4.3.2 Model of comparison with other tools

Each web server outputs a list of proteins that are expected to have the maximal
similarity with the input protein. When comparing with another web-server, we output the
same number of results and check their symmetric difference. Assume that W1 represents
our software and W2 represents another web-server. Given a protein structure p, W1(p) is
the list of proteins similar to p by the server W1. W2(p) is the list of proteins similar to p
by the server W2.

Let W1(p) −W2(p) be the list of proteins that belong to W1(p) but not W2(p) and
W2(p)−W1(p) be the list of proteins that belong to W2(p) but not W1(p). The two lists are
of the same length since we let W1(p) and W2(p) be of the same length.

According to SSM [59], we use Q-score to measure the quality of alignment be-
tween two protein structures. The Q-score is defined by the formula: Q(p1, p2) =

N2
align

(1+(RMSD/R0)2)N1N2
, where Nalign is the number of pairs of aligned Cα atoms, N1 is the

number of Cα-atoms in the protein p1, N2 is the number of Cα-atoms in the protein p2, and
R0 is an empirical value (chosen at 3).

Table 4.1: PDB IDs of the 88 test cases

No. ID No. ID No. ID No. ID
1 1avhA 23 1acx 45 1etu 67 1hsbA
2 1cpcL 24 1cd8 46 1fx1 68 1ltsA
3 1cpcA 25 1cdtA 47 1paz 69 1ltsD
4 1brd 26 1cid 48 1pfkA 70 1ovb
5 1babB 27 1dfnA 49 1q21 71 1poc
6 1eco 28 1hilA 50 1s01 72 1ppn
7 1fcs 29 1hivA 51 1sbp 73 1rnd
8 1fha 30 1hleB 52 1sbt 74 1snc
9 1fiaB 31 1mamH 53 1timA 75 1tfg
10 1hbg 32 1reiA 54 1treA 76 1tgsI
11 1hddC 33 1ten 55 1ula 77 2achA
12 1le4 34 1tlk 56 1wayB 78 2bpa1
13 1mbc 35 2alp 57 2had 79 2act
14 1mbs 36 2aviA 58 2liv 80 2sns
15 1utg 37 2bpa2 59 3gbp 81 3il8
16 1troA 38 2snv 60 5cpa 82 3rubS
17 256bA 39 7apiB 61 5p21 83 3sgbI
18 2ccyA 40 8fabA 62 8abp 84 3sicI
19 2mhbA 41 8fabB 63 8atcA 85 4blmA
20 2mhbB 42 1aba 64 1ctf 86 4tms
21 4mba 43 1cseI 65 1dnkA 87 9rnt
22 4mbn 44 1dhr 66 1eaf 88 9rsaA

We select 88 proteins that are listed in [70] and belong to different categories such
as α, β, α/β, and α + β. See Table 4.1 for the names of those proteins. Table A.4 in
appendix section A.2 lists the number of similar proteins obtained by our algorithm and
SSM, respectively. Figures 4.1 and 4.2 give the comparison between SSM and our software

46

Figure 4.1: Comparison based on the maximum Q-score

based on the maximum and average Q-scores, respectively. The horizontal axis is the index
of 80 proteins and the vertical axes in two figures are the maximum Q-score and the average
Q-score, respectively. In our experiments, the eight proteins (1) 1avhA, (65) 1dnkA, (68)
1ltsA, (70) 1ovb , (48) 1pfkA, (71) 1poc , (78) 2bpa1, and (84) 3sicI have the same output
between our software and SSM. Therefore, they are excluded from the results in Figures 4.1
and 4.2.

Define MaxQ1(p) = max{Q(p, p′)|p′ ∈ W1(p) − W2(p)}. Define MaxQ2(p) =
max{Q(p, p′)|p′ ∈ W2(p) −W1(p)}. The curve in the first figure is the function MaxQ1(p)
(assume that a protein p and its index are the same). Each point (p, q) in the curve has the
relationship q = MaxQ1(p). On the other hand, a point (p′, q′) for a dot in the first figure
has the relationship q′ = MaxQ2(p′). Figure 4.1 compares the maximum Q-scores of the
proteins missed by the two software tools. We say that a protein is missed by our tool if it
occurs in the SSM result list but not in ours; similarly, a protein is missed by the SSM tool
if it occurs in our result list but not in the SSM’s. For example, assume that for protein
p, SSM returns m query results and our algorithm returns n results, then min(m,n) = r
results with the best Q-scores are selected from each result set. Let W1(p) be the set of
r best SSM results and W2(p) be the set of r best results of our algorithm. Assume that
W1(p) and W2(p) have t same results, then MaxQ1(p) is the maximum Q-score of r − t
results that are outputted by SSM but missed by our algorithm. Similarly, MaxQ2(p) is the
maximum Q-score of r− t results that are outputted by our algorithm but missed by SSM. If
MaxQ1(p) > MaxQ2(p), then for protein p, we believe that our algorithm performs better
than SSM. In Figure 4.1, SSM max Q-scores are sorted by an ascending order and shown as
a curve, and the dots are the corresponding max Q-scores of our algorithm. Since most of

47

Figure 4.2: Comparison based on the average Q-score

the dots are below the curve, it indicates that the SSM query tool has a more serious missing
problem than ours based on the maximum Q-score measure.

Define AveQ1(p) =

∑
p′∈W1(p)−W2(p)

Q(p,p′)

|W1(p)−W2(p)| , where |W1(p) − W2(p)| is the number of

items in the set W1(p) −W2(p). Define AveQ2(p) =

∑
p′∈W2(p)−W1(p)

Q(p,p′)

|W2(p)−W1(p)| . The curve in the

second figure is the function AveQ1(p) (assume that a protein p and its index are the same).
Each point (p, q) in the curve has the relationship q = AveQ1(p). On the other hand, a
point (p′, q′) for a dot in the second figure has the relationship q′ = AveQ2(p′). Figure 4.2
compares the average Q-scores of the proteins missed by the two software tools. Since most
of the dots are below the curve, it indicates that the SSM query tool has a more serious
missing problem than ours based on the average Q-score measure also.

Future work The algorithm currently runs on a single machine. We are building a cluster
of machines to support the protein query system. It will be ready soon. Our current Cα-atom
level alignment algorithm is not yet fast enough. We will try to use a load balance method
to speed up the server in a cluster of PCs.

48

Chapter 5

Diameter of Protein Backbone and Sublinear Time

Computations

Sublinear time computation is an active area of computer science in the recent years.
A sublinear time algorithm has a sequence of elements a1, a2, · · · , an as input and can only
access a part of the elements. Many sublinear time algorithms have been developed in the
recent years. We give an incomplete list of sublinear time algorithms such as approximating
matrix product [33], checking the polygon intersection [18], approximating the average degree
in graph [37, 48], estimating the cost of minimum spanning tree [19, 30, 31], finding the
geometric separators [41], computing the basis of abelian groups [21], property testing [47,78],
and facility location [12]. Initially, the main research of sublinear time algorithms has been in
the property testing with surveys in [40,45,46,60,82]. People tend to believe that there will be
more and more sublinear time algorithms to emerge in the future. Therefore, it is important
to study the power and limitation of sublinear time computations in both deterministic and
randomized computation models.

A sublinear time algorithm usually uses a randomized method to access the input
since it does not have enough time to see the entire input data. Most of the sublinear time
algorithms developed in the recent years are randomized. A recent interesting derandom-
ization approach by Zimand [105] showed that for some α > 0, randomized algorithms of
time complexity T (n) < nα can be simulated by deterministic algorithms of time poly(T (n))
except on at most an exp(−Ω(T (n) log T (m)) fraction of the instances.

In this chapter4 we study the number of queries about the input sequence. In order to
separate the power of sublinear time computations with different query complexity bounds,
we select the problem to compute an approximate diameter for a sequence of points in a
metric space. We realized this problem and its connection to sublinear time computation
from our early research on the protein backbone alignment. From this approximate diameter
problem, we show the existence of sublinear time algorithms at three different models, which
are deterministic, bounded-error randomized, and zero-error randomized. We study the
complexity of the sublinear time algorithms to approximate the diameter of a sequence of
points. The separations of sublinear time computations under various complexity bounds
and models in this chapter are based on various formulations of the diameter problem.

Three sublinear time computing models including deterministic, bounded-error ran-
domized, and zero-error randomized models are studied in this chapter. We obtain a class

4Published work [42] used with permission of Springer Science and Business Media.

49

of separations about the power of sublinear time computations using several versions of the
approximate diameter problem. We derive a dense sublinear time hierarchy for each of the
three models. For every 0 < r < 1 and 0 < ε < r, we show that the sublinear time determin-
istic computation with O(nr) queries to the input sequence is more powerful than sublinear
time deterministic computation with O(nr−ε) queries and also the sublinear time determin-
istic computation with O(nr) queries to the input sequence cannot be simulated by sublinear
time randomized computation with O(nr−ε) queries. We show that those separations by the
number of queries imply similar dense time separations among sublinear time computations.

It is an interesting problem to identify what computational problems have the sub-
linear time algorithms. Our results show that the existence of sublinear time algorithms and
their computational time depend on the restrictions on the format of input points in the
metric space. We will show how those restrictions affect the existence of a sublinear time
algorithm and its complexity.

We also show that the zero-error randomized sublinear time computation is more
powerful than the deterministic sublinear time algorithm with similar time complexity and
the bounded-error randomized sublinear time computation is more powerful than the zero-
error randomized sublinear time algorithm with similar time complexity. We show that
the bounded-error randomized sublinear time algorithms in time O(nr) cannot be simulated
by a zero-error randomized sublinear time algorithm in o(n) time or queries, where r is
an arbitrary parameter in (0, 1). We also show that zero-error randomized sublinear time
algorithms in time O(nr) cannot be simulated by a deterministic sublinear time algorithm
in o(n) time or queries, where r is an arbitrary parameter in (0, 1).

5.1 Definitions

A metric space S has a distance function dist(., .) that satisfies the following condi-
tions: 1) dist(p, p) = 0 for every point p ∈ S; 2) dist(p1, p2) = dist(p2, p1) for any two points
p1, p2 ∈ S; and 3) dist(p1, p3) ≤ dist(p1, p2) + dist(p2, p3) for any three points p1, p2, p3 ∈ S.

For an integer d ≥ 1, Rd is the d-dimensinal Euclidean space, which is clearly a metric
space.

Definition 5.1.

• Let A = a1, · · · , an be a sequence of n points in a metric space. We often use |A| = n
to represent the number of points in A.

• Let A = a1, · · · , an be a sequence of n points in a metric space. If for every pair of
two consecutive points ai and ai+1, dist(ai, ai+1) = t, then the sequence A is called a
t-sequence.

• Let A = a1, · · · , an be a sequence of n points in a d-dimensional space. For every pair
of two consecutive points ai and ai+1, if t1 ≤ dist(ai, ai+1) ≤ t2, then the sequence A
is called a (t1, t2)-sequence. Define minInterDist(A) = min1≤i≤n−1(dist(ai, ai+1)) and
maxInterDist(A) = max1≤i≤n−1(dist(ai, ai+1)).

• For a sequence of points A in a metric space, diameter(A) is the largest distance
between two points of A.

50

• A real number d is (1− ε)-approximate to the diameter of S of a sequence of points, if
(1− ε)diameter(S) ≤ d ≤ diameter(S).

• A path of a randomized computation C of r(n) random bits with the input sequence
S is determined by a binary sequence B of length r(n). Its output in the path B is
denoted by C(S,B).

• A deterministic (1 − ε)-approximate algorithm C with query complexity q(n) for the
diameter of sequence satisfies that 1) C(S) is a (1− ε) approximation to diameter(S);
and 2) C makes at most q(n) queries to the points in S, where input S is a sequence
of n points. Its query complexity is defined by a function q(n) that for every input
of length n points, the algorithm makes at most q(n) queries. Its time complexity is
defined by a function t(n) that for every input of length n points, the algorithm stops
in t(n) steps.

• A randomized (1− ε)-approximate algorithm C with r(n) random bits for the diameter
of sequence satisfies that 1) C(S,B) is a (1 − ε) approximation to diameter(S) with
probability at least 3

4
; and 2) each path of C makes at most q(n) queries to the points

in S, where input S is a sequence of n points and B is a random binary sequence
of length r(n). A randomized algorithm can be also called bounded-error randomized
algorithm.

• A zero-error randomized (1−ε)-approximate algorithm C with r(n) random bits for the
diameter of sequence satisfies that 1) C(S,B) is a (1−ε) approximation to diameter(S)
with probability at least 3

4
; 2) no path gives a result that is not a (1−ε) approximation

to diameter(S).

• A randomized (1 − ε)-approximate algorithm C (either bounded-error or zero-error)
with r(n) random bits and time complexity t(n) for the diameter of sequence satisfies
that C(S,B) stops in t(n) steps, where input S is an arbitrary sequence of n points
and B is a random binary sequence of length r(n).

• A randomized (1 − ε)-approximate algorithm C (either bounded-error or zero-error)
with r(n) random bits and query complexity q(n) for the diameter of sequence satisfies
that C(S,B) makes at most q(n) queries, where input S is an arbitrary sequence of n
points and B is a random binary sequence of length r(n).

A randomized approximate algorithm for the diameter problem is called strict if every
path with non-empty output has the value no more than the diameter of the input sequence.
All randomized approximate algorithms in this chapter are strict.

Sublinear time algorithms usually need some restriction about the input of data. For
example, binary search takes O(log n) time, but it requires that the sequence of numbers is
sorted. If a list of numbers is not sorted, any algorithm has to take Ω(n) time in the worst
case.

51

5.2 Tight Separations among Sublinear Time Computations

We separate sublinear time computable functions with time complexity nr from those
with time complexity nr−ε for any 0 < r < 1 and any small ε > 0. The separation is achieved
in both deterministic and randomized computation models.

Definition 5.2. Let r be a nonnegative integer and S = p1p2 · · · pn be a (t1, t2)-sequence.
The sequence S ′ = p′1p

′
2 · · · p′n is r-reliable rearrangement of S if S ′ is a permutation of

p1p2 · · · pn and for each pi, pi = p′i′ for some i′ with 1 ≤ i′ ≤ n and |i− i′| ≤ r.
Let M be a metric space and c, r,m, n be non-negative integers. Define ΦM(c, r,m, n)

to be the set of all sequences H = q1q2 · · · qn of n points in M such that H is an r-reliable rear-
rangement for a (t1, t2)-sequence S for some 0 < t1 ≤ t2 with t2

t1
≤ c and diameter(S) ≥ mt1.

In particular, ΦM(c, 0,m, n) is the set of all (t1, t2)-sequence S of length n in M with t2
t1
≤ c

and diameter(S) ≥ mt1. Sequence S is called a ΦM(c, r,m, n)-sequence if S ∈ ΦM(c, r,m, n).

We first present a deterministic sublinear time approximate algorithm to compute the
diameter of a t-sequence in a metric space. Its computational time is inversely proportional
to the length of the diameter. The algorithm is described in a more general format by the
following theorem and in the proof.

Theorem 5.3. Assume that c is a positive constant, and α, µ and ε are constants in (0, 1).
Assume that M is a metric space with a (1−µ)-factor approximate algorithm AppM of time
complexity C(k) for the diameter of k points in M for some nondecreasing function C(k) :

N → N . Then there exists a deterministic algorithm such that given a ΦM(c, ε(1−α)
2c

m,m, n)-
sequence B, it makes at most O(n

m
) non-adaptive queries to the points of B and outputs a

number x with (1−ε)(1−µ)·diameter(B) ≤ x ≤ diameter(B) in total time O(n
m

)+C(O(n
m

)).

Proof: Our algorithm selects an O(n
m

) points set Q from the input sequence B and uses

the diameter of Q to approximate the diameter of B. Select δ = εα
2c

and β = ε(1−α)
2c

m.
Assume that A = p1p2 · · · pn is a (t1, t2)-sequence such that B is a β-reliable rearrangement
of A with 0 < t1 ≤ t2, t2

t1
≤ c, and diameter(A) ≥ mt1. By the condition of the theorem, let

t1 = minInterDist(A) and t2 = maxInterDist(A) be two positive real numbers with t1 ≤ t2
and t2

t1
≤ c. Our algorithm is described as follows:
Algorithm
Input: B = p′1, p

′
2, · · · , p′n that is β-reliable-rearrangement of a (t1, t2)-sequence A =

p1, p2, · · · , pn.
Output: an approximation x to diameter(A).

let h = bδmc;
select qi = p′h·i for i = 1, · · · , k =

⌈
n
h

⌉
;

let Q be the sequence q1 · · · qk;
output x = AppM(Q);

End of Algorithm
Now we are going to prove that for the sequence Q constructed from B in the

algorithm, (1 − ε)diameter(A) = (1 − ε)diameter(B) ≤ diameter(Q) ≤ diameter(B) =
diameter(A). Assume that pi and pj are two points in A such that dist(pi, pj) = diameter(A).

52

Let i1 be the number 1 ≤ i1 ≤ k such that |i1h−i| = min1≤i2≤k |i2h−i| and j1 be the number
1 ≤ j1 ≤ k such that |j1h− j| = min1≤j2≤k |j2h− j|. It is easy to see that |i1h− i| ≤ h and
|j1h− j| ≤ h. Since two consecutive points in A have distance at most t2, we have

dist(pi, pi1h) ≤ h · t2 (5.1)

dist(pj, pj1h) ≤ h · t2 (5.2)

For each p′k, it has another ps such that ps = p′k and |s − k| ≤ β since B is a
β-reliable rearrangement of A. Therefore, we have

dist(pk, p
′
k) = dist(pk, ps) ≤ βt2. (5.3)

We have the following inequalities:

diameter(A) (5.4)

= diameter(pi, pj) (5.5)

≤ dist(pi, pi1h) + dist(pi1h, p
′
i1h

) + dist(p′i1h, p
′
j1h

) + dist(p′j1h, pj1h) + dist(pj1h, pj)(5.6)

≤ h · t2 + βt2 + dist(p′i1h, p
′
j1h

) + βt2 + h · t2 (5.7)

≤ h · t2 + βt2 + diameter(Q) + βt2 + h · t2 (5.8)

≤ 2(h+ β)t2 + diameter(Q) (5.9)

≤ 2(
εα

2c
+
ε(1− α)

2c
)c ·m · t1 + diameter(Q) (5.10)

≤ ε ·mt1 + diameter(Q) (5.11)

≤ ε · diameter(A) + diameter(Q). (5.12)

The transition from (5.5) to (5.6) is due to the triangle inequality in the metric
space. The transition from (5.6) to (5.7) is due to inequalities (5.1), (5.2), and (5.3). The
transition from (5.7) to (5.8) is because p′i1h and p′j1h are in Q. By (5.4)-(5.12), we have
(1 − ε)diameter(A) ≤ diameter(Q). On the other hand, all points in Q are from A. So,
diameter(Q) ≤ diameter(A). Therefore, (1 − ε)diameter(A) ≤ diameter(Q) ≤ diameter(A).
Since AppM gives factor (1−µ) approximation for the diameter of set Q, the output x satisfies
(1 − ε)(1 − µ) · diameter(A) ≤ x ≤ diameter(A). Since B is a permutation of A, we have
diameter(B) = diameter(A). Therefore, (1− ε)(1− µ) · diameter(B) ≤ x ≤ diameter(B).

The number of queries of the algorithm is |Q| = O(n
m

). The time for generating Q is

O(n
m

) and the time for computing AppM(Q) is C(O(n
m

)).

Corollary 5.4. Assume that α is a constant with 0 < α < 1, and ε is a small positive
constant. Let t be a positive real number. Then there exists a deterministic O(n

m
)-time

algorithm such that given an ε(1−α)m/2-reliable-rearrangement sequence B for a t-sequence
A of n points in a metric space with diameter at least m · t, it outputs a number x with
1−ε

2
diameter(B) ≤ x ≤ diameter(B).

Proof: It is known that there exists an O(k) time 1
2
-factor approximation algorithm to

compute the diameter of k points in a metric space. The algorithm selects an arbitrary point

53

and finds the point with the largest distance, which is at least half of the diameter. Apply
Theorem 5.3.

Corollary 5.5. Assume that α is a constant with 0 < α < 1, and ε is a small constant
greater than 0. Let t be a positive real number. Then there exists a deterministic O(n

m
)-

time algorithm such that given an ε(1 − α)m/2-reliable-rearrangement sequence B for a
t-sequence A of n points in R1 with diameter at least m · t, it outputs a number x with
(1− ε)diameter(B) ≤ x ≤ diameter(B).

Proof: In R1, finding the diameter takes O(k) time for an input of k points.

Theorem 5.6 gives a lower bound about the randomized sub-linear time algorithms
and matches the upper bound of Theorem 5.3.

Theorem 5.6. Assume that ε is a constant in (0, 1) and m = o(n). Then there is no
randomized algorithm such that given a ΦR1(1, 0,m, n)-sequence S, the algorithm makes at
most o(n

m
) adaptive queries and outputs (1− ε)-approximate diameter for S.

Proof: See appendix section A.3.

Corollary 5.5 and Theorem 5.6 imply the following corollaries, which give the dense
separation for the sublinear time computations. It is easy to see that they imply the dense
separation for the zero-error randomization computation since the power of zero-error ran-
domized computation is between deterministic and bounded-error randomization computa-
tion.

Corollary 5.7. Assume that ε is a constant in (0, 1). Then for every constant r in (0, 1) and
constant δ in (0, r), there is a function that can be (1− ε)-approximated by nr sublinear time
deterministic algorithm, but there is no nr−δ sublinear time (1− ε)-approximate randomized
algorithm.

Corollary 5.8. Assume that ε is a constant in (0, 1). For every constant r in (0, 1) and
constant δ in (0, r), there is a function that can be (1− ε)-approximated by nr sublinear time
deterministic algorithm, but there is no nr−δ sublinear time (1−ε)-approximate deterministic
algorithm.

Corollary 5.9. Assume that ε is a constant in (0, 1). Then for every constant r in (0, 1) and
constant δ in (0, r), there is a function that can be (1− ε)-approximated by nr sublinear time
randomized algorithm, but there is no nr−δ sublinear time (1 − ε)-approximate randomized
algorithm.

54

5.3 Comparing Randomized and Deterministic Computations

In this section, we show that randomized algorithms are more powerful than determin-
istic algorithms with the same computational time. We first present a randomized algorithm,
then show that similar computation cannot be done in the deterministic algorithm with the
similar complexity.

Theorem 5.10. Assume that c is a positive constant, and α, µ and ε are constants in
(0, 1). Assume that M is a metric space with a (1− µ)-factor approximate algorithm AppM
of complexity C(k) for the diameter of k points in M for some nondecreasing function
C(k) : N → N . Then there exists a randomized algorithm such that given a ΦM(c,∞,m, n)-
sequence B, it makes at most O(n

εm
) non-adaptive queries to the points of B and outputs a

number x with (1− ε)(1−µ) ·diameter(B) ≤ x ≤ diameter(B) in total time O(n
εm

) +C(n
εm

),
where m = o(n).

Proof: The algorithm selects a random O(n
εm

) points set Q from the input sequence B
and we show that diameter(Q) is close to the diameter of B with high probability. Select
the constant δ = ε

2c
. Select constant c1 such that

(1− 1
n
bδmc

)
c1n

bδmc <
0.001

2
. (5.13)

Our algorithm is described as follows:
Algorithm
Input: A sequence of n points B = p′1, p

′
2, · · · , p′n, which is a permutation of n points

in a (t1, t2)-sequence A = p1, p2, · · · , pn in a metric space with diameter(A) ≥ mt1.
Output: an approximation x to diameter(B).

let h = bδmc and k =
⌈
c1n
h

⌉
;

select qi from B randomly for i = 1, · · · , k;
let Q be the sequence q1 · · · qk;
output x = APPM(Q);

End of Algorithm
Now we are going to prove that for the sequence Q constructed from A in the algo-

rithm, (1 − ε)diameter(A) ≤ diameter(Q) ≤ diameter(A). Assume that pi and pj are two
points in A such that dist(pi, pj) = diameter(A).

Partition the points p1p2 · · · pn into subsequences P1P2 · · ·Pt such that each Pi is of
size at least h and at most h + 1 for i = 1, 2, · · · , t. Therefore, n

h+1
≤ t ≤ n

h
. Assume that

pi ∈ Pu and pj ∈ Pv for some u and v with 1 ≤ u, v ≤ t. Since the size of Pi is at most h+ 1,
the distance of two points in the same Pi is at most t2h.

We give the probability that Pu ∩Q = ∅ or Pv ∩Q = ∅. For a random point p from
B, the probability that p 6∈ Pu is (1− |Pu|

n
). The probability that Pu ∩Q = ∅ is (1− |Pu|

n
)k.

Therefore, the probability that Pu ∩ Q = ∅ or Pv ∩ Q = ∅ is (1 − |Pu|
n

)k + (1 − |Pv |
n

)k ≤
2(1− h

n
)k < 0.001 by the inequality (5.13).

55

Therefore, the probability is at least 0.99 that both Pu∩Q 6= ∅ and Pv ∩Q 6= ∅. Now
we assume that p′ ∈ Pu ∩Q and p′′ ∈ Pv ∩Q. Therefore,

diameter(Q) ≥ dist(p′, p′′) (5.14)

≥ dist(pi, pj)− dist(pi, p
′)− dist(pj, p

′′) (5.15)

≥ diameter(A)− t2h− t2h (5.16)

= diameter(A)− 2t2h (5.17)

≥ diameter(A)− 2ct1δ ·m (5.18)

≥ (1− ε)diameter(A). (5.19)

The transition from (5.14) to (5.15) follows from the triangle inequality in the metric space
M . We have proven that (1− ε)diameter(A) ≤ diameter(Q). On the other hand, all points
in Q are from A. So, diameter(Q) ≤ diameter(A). Therefore, (1 − ε)diameter(A) ≤
diameter(Q) ≤ diameter(A). Since APPM is an (1 − µ)-approximate algorithm, we have
(1 − ε)(1 − µ)diameter(A) ≤ x = APPM(Q) ≤ diameter(A). Since diameter(A) =
diameter(B), we have (1− ε)(1− µ)diameter(B) ≤ x ≤ diameter(B).

Corollary 5.11. Assume that c is a positive constant, α, µ and ε are constants in (0, 1).
Then there exists a randomized algorithm such that given a ΦR1(c,∞,m, n)-sequence B, it
makes at most O(n

εm
) non-adaptive queries to the points of B and outputs a number x with

(1− ε) · diameter(B) ≤ x ≤ diameter(B) in total time O(n
εm

).

Proof: There exists an O(k) time algorithm such that given a set of k points in R1,
it returns the diameter, which is the difference between the leftmost and rightmost points.
Apply Theorem 5.10.

Theroem 5.12 gives a lower bound for the deterministic algorithms for computing
the approximate diameter problem. Corollary 5.11 and Theroem 5.12 give the separation
between randomized and deterministic computations.

Theorem 5.12. Let ε be a constant in (0, 1) and m = o(n). Then there is no deterministic
algorithm that given a ΦR1(1, 8(dεme + 2),m, n) sequence B, it makes no more than (n −
m − 1)/2 adaptive queries to the input points and outputs a (1 − ε)-approximation to the
diameter of B.

Proof: See appendix section A.3.

Definition 5.13.

• For a function f(n) : N → N , a nondeterministic computation is a strong NQ(f(n)) if
it makes at most f(n) queries at each path, and has at least one path with non-empty
output.

• An NQ(f(n)) computation is a (1 − ε)-approximation for the diameter problem if its
every path with non-empty output gives (1− ε)-approximation for the diameter.

56

Theorem 5.14 and Corollary 5.11 imply a separation between bounded-error random-
ized computation and zero-error randomized computation.

Theorem 5.14. Assume that ε > 0 is a constant and m = o(n). Then there is no
NQ((n − m)/4) computation such that given a ΦR1(1,∞,m, n)-sequence S ′, it outputs a
(1− ε)-approximation to the diameter of B.

Proof: See appendix section A.3.

All randomized algorithms in this chapter for the diameter problem are strict as they
only output distance no more than the diameter of the input sequence. It is easy to verify
that the algorithms in Theorems 5.3, 5.10, 5.17, and 5.22 are all strict. With this condition,
we have the following theorem to amplify the probability of the randomized algorithms for
the diameter problem.

Theorem 5.15. Assume that k is an integer and ε ∈ (0, 1). Assume that A is a randomized
(1−ε)-approximate algorithm for computing the diameter of a sequence of points and runs in
time t(n) and makes q(n) queries. Then there exists another randomized (1−ε)-approximate
algorithm with kt(n) time and kq(n) queries such that it outputs the (1 − ε)-approximate
diameter with at most 1

4k
probability to fail.

Proof: The revised algorithm A′ is as follows: Randomly select k paths from A. Assume
that r1, · · · , rk are the output from the k paths. Return the largest elements among r1, · · · , rk.
Since A has at most 1

4
probability to fail, the failure probability is at most 1

4k
. Since each

path runs in O(t(n)) time and makes at most q(n) queries, A′ runs in kt(n) time and makes
kq(n) queries.

5.4 Zero-error Randomized Algorithm and Its Complexity

In this section, we show a zero-error randomized algorithm. We also derive a lower
bound for the deterministic algorithms. This shows that zero-error randomized algorithms
are more powerful than deterministic algorithms.

Definition 5.16. Let M be a metric space.

• Let S ′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S = p1p2, · · · , pn. A
point qi is called a still point if qi = pi.

• A function f(x)→ N can be c-approximated by a FZ[nr] computation algorithm if the
algorithm makes at most nr queries, gives output with probability at least 2

3
, and each

output y has cf(x) ≤ y ≤ f(x).

• Let S ′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S = p1p2, · · · , pn. A
point qi in S ′ is called v-stable if qi = pj with |i− j| ≤ v.

• Let S ′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S = p1p2, · · · , pn. S ′

is called (u, v, α)-stable if for every u consecutive points set Q from S ′, Q has at least
αu v-stable points.

57

• For a sequence S = q1q2 · · · qn of points inM , the sequence S∗ = (q′1, i1)(q′2, i2) · · · (q′n, in)
is called a marked sequence of S, where (q′1, i1)(q′2, i2) · · · (q′n, in) is a permutation of
(q1, 1)(q2, 2) · · · (qn, n). Define E(S∗) = S.

• Let ΛM(c,m1,m2, r,m, n) be the set of all marked sequences (q1, a1)(q2, a2) · · · (qn, an)
such that 1) S ′ = q1q2 · · · qn is a permutation of a (t1, t2)-sequence S = p1p2 · · · pn of n
points in M for some 0 < t1 < t2 with t2

t1
≤ c; 2) every m1 consecutive points in S ′ have

at least m2 points qi which are r-stable between S ′ and S; 3) the diameter of S is at
least m · t1. and 4)(q1, a1)(q2, a1) · · · (qn, an) is a permutation of (p1, 1)(p2, 2) · · · (pn, n)

• Let Γ be a class of marked sequences. A zero-error randomized (1 − ε)-approximate
algorithm C with r(n) random bits for the diameter of sequence in Γ if for every input
S ∈ Γ, we have 1) at least 3

4
paths of C has non-empty output; and 2) each non-empty

output in a path is a (1 − ε) approximation to diameter(S). Its time complexity and
query complexity are defined similarly as that in Definition 5.1.

Theorem 5.17 shows a zero-error randomized algorithm to approximate the diameter
of a marked sequence.

Theorem 5.17. Assume that M is a metric space with a (1− µ)-factor approximate algo-
rithm AppM of time complexity C(k) for the diameter of k points in M for some nonde-
creasing function C(k) : N → N . Then for every constant ε ∈ (0, 1), there exist positive
constants β1, β2, and α < β1, and zero-error randomized (1 − ε)-approximate algorithm
such that given a ΛM(c, β1m,αm, β2m,m, n)-sequence S ′ = (q1, a1) · · · (qn, an), the algorithm
makes at most O(n

m
log n

m
) non-adaptive queries to the items of S ′ and outputs a number x

with (1− ε)(1−µ) · diameter(E(S ′)) ≤ x ≤ diameter(E(S ′)) in total time O(n
m

) +C(O(n
m

)),
where m = o(n).

Proof: For a marked input sequence S ′ = (q1, a1) · · · (qn, an), let E(S ′) be a permutation
of a (t1, t2)-sequence S = p1p2 · · · pn with t2

t1
≤ c. A point qi is called r-stable if it is r-stable

between E(S ′) and S. The algorithm selects O(n
εm

) random points from E(S ′) and puts
those r-stable points into the set Q. We show that diameter(Q) is close to the diameter of S
with high probability. Select β1 and β2 such that ((β1 + 1)c+ β2) ≤ ε

2
. Let β0 be a constant

such that β0

α
> 1. Our algorithm is described as follows:

Algorithm
Input: A Λ(c, β1m,αm, β2m,m, n)-sequence S ′ = (q1, a1)(q2, a2) · · · (qn, an).
Output: an approximation x to diameter(q1q2 · · · qn).

let w = β0
n
m

log n
m

;
select w items (qi, ai) from S ′ randomly
for i = 1 to w

if |ai − i| ≤ β2m then put qi into set Q;
output x = APPM(Q);

End of Algorithm
Assume S ′ = (q1, a1)(q2, a2) · · · (qn, an). Select w = β0

n
m

log n
m

tuples (qi, ai) randomly
from S ′ and put qi into the set Q if |ai− i| ≤ β2m. Assume that dist(qi1 , qj1) is the diameter
of S. Partition E(S ′) into Q1Q2 · · ·Qk such that each Qi contains some consecutive points

58

in E(S ′) and β1m ≤ |Qi| ≤ β1m+ 1. We have k ≤ n
β1m

. Assume that qi1 ∈ Qi′ and qj1 ∈ Qj′ .
Since each Qi contains at least β1m points, each Qi contains at least αm β2m-stable points.
With probability at most

(1− (
αm

n
))w = (1− (

αm

n
))(αn

m
)
β0
α

log n
m ≤ (

1

2
)
β0
α

log n
m ≤ (

m

n
)
β0
α , (5.20)

no β2m-stable point is selected in Qi. With probability at most k(1 − (αm
n

))w ≤ k(n
m

)
β0
α =

o(1), Q does not contain any β2m-stable point qi marked with |ai− i| ≤ β2m in Qi for some
i with 1 ≤ i ≤ k.

With probability at least 1− o(1), some β2m-stable points qi marked with |ai − i| ≤
β2m from both Qi′ and Qj′ will be selected. Check if each interval has marked β2m-stable
points. With probability at least 1 − o(1), each Qi has β2m-stable point qi marked with
|ai−i| ≤ β2m selected. Assume that qi′′ is a β2m-stable point in Qi, qj′′ is a β2m-stable point
in Qj′ , and both qi′′ and qj′′ are in Q. The distance between qi1 and qi′′ is at most β1mt2 ≤
β1m · ct1 ≤ ε

2
mt1 ≤ ε

2
dist(qi1 , qj1). Similarly, we have dist(qj1 , qj′′) ≤ ε

2
m ≤ ε

2
dist(qi1 , qj1). By

the triangle inequality in a metric space, we have dist(qi′′ , qj′′) ≥ dist(qi1 , qj1)−dist(qi1 , qi′′)−
dist(qj1 , qj′′) ≥ dist(qi1 , qj1) − ε

2
dist(qi1 , qj1) − ε

2
dist(qi1 , qj1) = (1 − ε)dist(qi1 , qj1). When a

path selects at least one β2m-stable point from each Qi and puts it into Q, the path gives
(1− ε)-approximation for the diameter.

We have the following theorem to separate the sublinear time zero-error randomized
computations from sublinear time deterministic computations.

Theorem 5.18. Assume that c is a positive constant, ε is a constant in (0, 1), β is a con-
stant in (0, c), and m = o(n). Then there is no deterministic algorithm such that given a
ΛR1(1, cm, βm, 0,m, n)-sequence S ′ it makes o(n) adaptive queries to the input and outputs
a (1− ε) approximation to the diameter of E(S ′).

Proof: See appendix section A.3.

5.5 A Consideration for Random Bits

We need O(log n) random bits to generate a random position between 0 and n− 1 so
that we can randomly select one element in the input sequence in our randomized algorithms
(Theorems 5.10 and 5.17). The following theorem shows that the conversion has small
difference in probability by using the modular operation.

Theorem 5.19. Assume that m and n are two integers with m ≤ n. Then for a random
number r ∈ [0, n−1], r′ = r(mod m) is a number in [0,m−1] such that for any two integers
a, b ∈ [0,m− 1], |Pr[r′ = a]− Pr[r′ = b]| ≤ 1

n
.

Proof: For the integers in {0, 1, · · · , n − 1}, if they are converted to integers in

{0, 1, · · · ,m − 1}, every integer in {0, 1, · · · ,m − 1} is hit at most
⌈
n
m

⌉
and at least

⌊
n
m

⌋
times. We have

⌈
n
m

⌉
−
⌊
n
m

⌋
≤ 1. Thus, |Pr[r′ = a]− Pr[r′ = b]| ≤ d

n
me
n
− b

n
mc
n
≤ 1

n
.

59

If we use 2 log n bits to generate a random number in the range [0, n− 1], the proba-
bility difference between any two different numbers in [0, n− 1] is at most 1

n2 . This does not
affect the performance of our randomized algorithms in this chapter.

5.6 Self-avoiding Sequences

In this section, we develop a sublinear time algorithm to approximate a self-avoiding
sequence in any fixed dimensional Euclidean space Rd. We also prove a tight lower bound
about the query complexity of approximation algorithms.

Definition 5.20. A point p = (i1, · · · , id) in d-dimensional space is a grid point if i1, · · · , id
are all integers. A sequence of grid points p1p2 · · · pn in the d-dimensional space is self-
avoiding if pi 6= pj for i 6= j, and dist(pi, pi+1) = 1 for i = 1, 2, · · · , n− 1.

Self-avoiding sequences are common in nature. One example is the Cα atoms in the
backbone of a protein molecule. The distance of two Cα atoms is larger than a threshold
and the distance between two consecutive Cα atoms is almost fixed.

The volume of the d-dimensional ball of radius R is computed by the following formula
(See [91]):

Vd(R) =


2(d+1)/2π(d−1)/2

1·3···(d−2)·d Rd if d is odd

2d/2πd/2

2·4···(d−2)·dR
d otherwise

(5.21)

Let Vd(r) = vd · rd, where vd is constant for fixed dimensional number d. In particular,
v1 = 2, v2 = π and v3 = 4π

3
.

Lemma 5.21. Let d ≥ 1 be the dimension number. Then (i) every d-dimensional ball of

radius r intersects at most vd · (r+
√
dh

h
)d cubes of size hd; and (ii) every d-dimensional ball

of radius r contains at least vd · (r−
√
dh

h
)d cubes of size hd.

Proof: Every two points inside a cube of size h have distance at most
√
dh. (i) If an hd

cube C intersects a ball B of radius r at center o, then C is fully contained by the ball B′ of
radius r+

√
dh at the same center o. As the volume of cube C is hd, the number of hd cubes

fully contained by C ′ is no more than the volume size of the ball C ′ divided by hd. (ii) If an
hd cube C intersects a ball B′′ of radius r−

√
dh at center o, then C is contained in the ball

B of radius r at the same center o. The number of those cubes of size hd intersecting C ′′ is
at least the volume size of the ball C ′′ divided by hd.

We have Theorem 5.22 and Corollary 5.23 for the sublinear time algorithm to compute
the approximate diameter for any self-avoiding sequence in any fixed dimensional Euclidean
space.

Theorem 5.22. Assume that ε and δ are positvie constants, and d is a dimension number

with 1 ≤ d < (1− δ)v
−1
d
d n

1
d/2. Then

60

i. There exists an algorithm that given a self-avoiding grid sequence S of length n, it

queries at most O(v
1
d
d n

1− 1
d) points in Rd and outputs a (1 − ε)-approximation for the

diameter of S.

ii. If d is a fixed dimensional number, then there exists an O(n1− 1
d) time algorithm to

compute a (1− ε)-approximation for the diameter of a self-avoiding sequence S in Rd.

Proof: Assume that u is the diameter of the self-avoiding grid sequence S. Then all the
grid points in the sequence S are contained in a ball of radius u. By Lemma 5.21, u ≥
v
−1
d
d n

1
d −
√
d = Ω(v

−1
d
d n

1
d). By Theorem 5.3, we have proved the first part of Theorem 5.22.

As in the proof of Corollary A.1, there exists an O(k + (1
δ2d

)) = O(k) time (1 − δ)-
factor approximate algorithm AppRd to compute the diameter of k points set H in Rd. By
Theorem 5.3, we have proved the second part of Theorem 5.22.

Corollary 5.23. For any constant 1 > ε > 0, there exists an O(
√
n)-time deterministic

algorithm that given a self-avoiding grid sequence S of length n in R2, it computes a (1− ε)-
approximation for the diameter of S.

Corollary 5.24. For any constants ε, δ > 0 and fixed dimension number d > 0, there exists
an algorithm that given a self-avoiding grid sequence S of length n, it queries at most O(n1− 1

d)
points in Rd and outputs a (1− ε)-approximation for the diameter of S.

We have Theorem 5.25 for the time lower bound for approximating the diameter of a
self-avoiding sequence in Rd. The lower bound matches the upper bound in Theorem 5.22.

Theorem 5.25. Assume that d is a fixed dimension number. Then for any constant
c ∈ (0, 1), there is no deterministic algorithm that uses o(n1− 1

d) queries to compute a c-
approximate diameter for a self-avoiding grid sequence in Rd.

Proof: See appendix section A.3.

Future work By studying the approximate diameter problem for a sequence of points in
a metric space, we have obtained a class of separations of some sublinear time computations.
The sublinear time algorithms developed in this chapter may be used to other related prob-
lems, such as the furthest neighbor problem which is extensively applied in database and
streaming applications. We expect to see further complexity research about the power of
sublinear time computations.

61

Chapter 6

Reconstructing Haplotypes from SNP Matrices

6.1 Introduction

Abstractly, a genome can be considered a string over the alphabet of nucleotides
{A,G,C, T}. It is accepted that the genomes between any two humans are over 99% iden-
tical [53, 90]. The remaining sites which exhibit substantial variation (in at least 5% of the
population) are called Single Nucleotide Polymorphisms (SNPs). The values of a set of SNPs
on a particular chromosome copy define a haplotype. While a haplotype is a string over the
four nucleotide bases, typical SNP sites only vary between two values. Therefore, we can
logically represent a haplotype as a binary string over the alphabet {A,B}. The haplotype of
an individual chromosome can be thought of as a “genetic fingerprint” specifying the bulk of
the genetic variability among distinct members of the same species. Determining haplotypes
is thus a key step in the analysis of genetic variation.

More concretely, we assume we are given m strings of length n, each over the alphabet
{A,B,−} denoting the sequence of each fragment, where − denotes a hole in which no value
is measured at that position for that fragment. From this basic setup, a number of problems
have been considered for various optimization functions. In particular, one can consider
removing certain fragments from the input data such that the remaining set of fragments
can be divided into two separate sets, each set consisting of fragments that do not contain
any conflicts (a site in which two strings contain different, non-hole values). Such a removal
implicitly derives two haplotypes corresponding to the two groups. This problem is referred
to as the minimum fragment removal problem (MFR). A second problem involves removing
or discounting a subset of the SNP sites to create two consistent sets of fragments. This is
referred to as the minimum SNP removal problem (MSR). Finally, a third problem is to flip
or correct a number of sites for various fragments. This is referred to as the minimum error
correction problem (MEC).

In this chapter5 , we develop a probabilistic approach to overcome some of the diffi-
culties caused by the incompleteness and inconsistency occurred in the input fragments. In
our model, we assume the input data fragments are attained from two unknown haplotype
strings. Some number of the fragments are derived from the first haplotype, some from the
second haplotype. Each fragment is assumed to be generated according to two error param-
eters, α1 and α2, representing inconsistency errors and incompleteness errors respectively.

5Published work [23] used with permission of Imperial College Press and Mary Ann Liebert Inc.

62

These parameters represent the percentage chance that any given position will be sequenced
incorrectly from the base haplotype, or will be omitted as a hole, respectively. Further, we
assume a third parameter β denoting a minimum difference percentage between the two base
haplotype strings. In the simulated SNP matrix in Figure 1.6 there are 10 fragments and
each one has 50 SNP sites. The inconsistent error rate α1 is 4%, the incomplete error rate
α2 is 10%, and the dissimilarity rate β between two haplotypes is 20%.

With respect to these three parameters, we develop algorithms that output the base
haplotypes with probability as a function of α1, α2, and β. In particular, we design three
algorithms in our probabilistic model that can reconstruct the two unknown haplotypes
from the given matrix of haplotype fragments with provable high probability and in time
linear in the size of the input matrix. The first algorithm assumes prior knowledge of the
α1 parameter. The second algorithm does not require prior knowledge of any parameters
at a modest cost to run time. The third does not require prior knowledge of parameters
and attains similar analytical bounds as the second algorithm, yet exhibits a substantial
improvement in accuracy.

For all algorithms, we present experimental results that conform with the respective
theoretically efficient performance. The software of our algorithms is available for public
access and for real-time on-line demonstration.

This chapter is organized as follows: in Section 6.2 we formally define the problem
and the probabilistic model we use, in Section 6.3 we develop some technical lemmas, in
Section 6.4 we provide a haplotype reconstruction algorithm that utilizes prior knowledge of
an error parameter, in Section 6.5 we present an algorithm that requires no prior knowledge of
model parameters, in Section 6.6 we provide a third algorithm with provably good accuracy
that also performs particularly well in practice, and in Section 6.7 we detail experimental
results for our algorithms.

6.2 A Probabilistic Model

Assume that we have two haplotypes H1, H2, denoted as H1 = a1a2 · · · am and
H2 = b1b2 · · · bm. Let Γ = {S1, S2, . . . , Sn} be a set of n fragments obtained from the
DNA sequencing process with respect to the two haplotypes H1 and H2. In this case, each
Si = c1c2 · · · cm is either a fragment of H1 or H2. Because we lose the information concerning
the DNA strand to which a fragment belongs, we do not know whether Si is a fragment of
H1 or H2. Suppose that Si is a fragment of H1. Because of reading errors or corruptions
that may occur during the sequencing process, there is a small chance that either cj 6= - and
cj 6= aj, or cj = -, for 1 ≤ j ≤ m, where the symbol - denotes a hole or missing value. For the
former, the information of the fragment Si at the j-th SNP site is inconsistent, and we use α1

to denote the rate of this type of inconsistency error. For the latter, the information of Si at
the j-th SNP is incomplete, and we use α2 to denote the rate of this type of incompleteness
error. It is known (e.g., [13,69,93]) that α1 and α2 are in practice between 3% to 5%. Also,
it is realistically reasonable to believe that the dissimilarity, denoted by β, between the two
haplotypes H1 and H2 is big. Often, β is measured using the Hamming distance between
H1 and H2 divided by the length m of H1 and H2, and is assumed to be large, say, β ≥ 0.2.
It is also often assumed that roughly half of the fragments in Γ are from each of the two

63

haplotypes H1 and H2.
In the experimental studies of algorithmic solutions to the singular haplotype recon-

struction problem, we often need to generate synthetic data to evaluate the performance and
accuracy of a given algorithm. One common practice (e.g., [13, 69, 93]) is as follows: First,
choose two haplotypes H1 and H2 such that the dissimilarity between H1 and H2 is at least
β. Second, make ni copies of Hi, i = 1, 2. Third, for each copy H = a1a2 · · · am of Hi, for
each j = 1, 2, . . . ,m, with probability α1, flip aj to a′j so that they are inconsistent. Also,
independently, aj has probability α2 to be a hole -. A synthetic data set is then generated
by setting parameters m, n1, n2, β, α1 and α2. Usually, n1 is roughly the same as n2, and
β ≈ 0.2, α1 ∈ [0.01, 0.05], and α2 ∈ [0.1, 0.3].

Motivated by the above reality of the sequencing process and the common practice
in experimental algorithm studies, we will present a probabilistic model for the singular
haplotype reconstruction problem. First, we need to introduce some necessary notations
and definitions.

Let Σ1 = {A,B} and Σ2 = {A,B, -}. For a set C, |C| denotes the number of elements
in C. For a fragment (or a sequence) S = a1a2 · · · am ∈ Σm

2 , S[i] denotes the character ai,
and S[i, j] denotes the substring ai · · · aj for 1 ≤ i ≤ j ≤ m. |S| denotes the length m of S.
When no confusion arises, we alternatively use the terms fragment and sequence.

Let G = g1g2 · · · gm ∈ Σm
1 be a fixed sequence of m characters. For any sequence

S = a1 · · · am ∈ Σm
2 , S is called a Fα1,α2(m,G) sequence if for each ai, with probability at

most α1, ai is not equal to gi and ai 6= -; and with probability at most α2, ai = -.
For a sequence S, define holes(S) to be the number of holes in the sequence S. If A

is a subset of {1, · · · ,m} and S is a sequence of length m, holesA(S) is the number of i ∈ A
such that S[i] is a hole.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length m, for any
A ⊆ {1, · · · ,m}, define

diff(S1, S2) =
|{i ∈ {1, 2, · · · ,m}|ai 6= - and bi 6= - and ai 6= bi}|

m

diffA(S1, S2) =
|{i ∈ A|ai 6= - and bi 6= - and ai 6= bi}|

|A|
.

For a set of sequences Γ = {S1, S2, · · · , Sk} of length m, define vote(Γ) to be the
sequence H of the same length m such that H[i] is the most frequent character among
S1[i], S2[i], · · · , Sk[i] for i = 1, 2, · · · ,m.

We often use an n×m matrix M to represent a list of n fragments from Σm
2 and call

M an SNP fragment matrix. For 1 ≤ i ≤ n, let M [i] represent the i-th row of M , i.e., M [i]
is a fragment in Σm

2 .
We now define our probabilistic model:
The Probabilistic Singular Haplotype Reconstruction Problem: Let β, α1

and α2 be small positive constants. Let G1, G2 ∈ Σm
1 be two haplotypes with diff(G1, G2) ≥

β. For any given n×m matrix M of SNP fragments such that ni rows of M are Fα1,α2(m,Gi)
sequences, i = 1, 2, n1 + n2 = n, reconstruct the two haplotypes G1 and G2, which are
unknown to the users, from M as accurately as possible with high probability. We call β
(resp., α1, α2) dissimilarity rate (resp., inconsistency error rate, incompleteness error rate).

64

6.3 Technical Lemmas

For probabilistic analysis we need the following two Chernoff bounds (see [74]), which
can be derived from the work in [68].

Lemma 6.1. [68] Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi takes
1 with probability at most p. Let X =

∑n
i=1Xi. Then for any 1 ≥ ε > 0, Pr(X > pn +

εn) < e−
1
3
nε2. Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi takes 1 with

probability at least p. Let X =
∑n
i=1Xi. Then for any 1 ≥ ε > 0, Pr(X < pn− εn) < e−

1
2
nε2.

We shall prove several technical lemmas for algorithm analysis in the next three
sections.

Lemma 6.2. Let S be a Fα1,α2(m,G) sequence. Then, for any 0 < ε ≤ 1, with probability

at most 2e−
ε2m

3 , diff(G,S) > α1 + ε or holes(S) > (α2 + ε)m.

Proof: Let Xk, k = 1 · · · ,m, be random variables such that Xk = 1 if S[k] 6= G[k]
and S[k] 6= −, or 0 otherwise. By the definition of the Fα1,α2(m,G) sequences, Xk are

independent and Pr(Xk = 1) ≤ α1. So, by Lemma 6.1, with probability at most e−
ε2m

3 ,
X1 + · · · + Xm > (α1 + ε)m. Thus, we have diff(G,S) > α1 + ε with probability at most

e−
ε2m

3 . Similarly, with probability at most e−
ε2m

3 , holes(S) > (α2 + ε)m.

Lemma 6.3. Assume that A is a fixed subset of {1, 2, · · · ,m}. Let S be a Fα1,α2(m,G)

sequence. Then, for any 0 < ε ≤ 1, with probability at most 2e−
ε2|A|

3 , diffA(G,S) > α1 + ε or
holesA(S) > (α2 + ε)|A|.

Proof: Let S ′ be the subsequence consisting of all the characters S[i], i ∈ A, with the
same order as in S. Similarly, let G′ be the subsequence consisting of all the characters G[i],
i ∈ A, with the same order as in G. It is easy to see that diffA(S,G) = diff(S ′, G′). The
lemma follows from a similar proof for Lemma 7.8.

Lemma 6.4. Let Ni be a set of ni many Fα1,α2(m,Gi) sequences, i = 1, 2. Let β and ε
be two positive constants such that 2α1 + 2α2 + 2ε < 1, and diff(G1, G2) ≥ β. Then, with

probability at most 2(n1 + n2)e−
ε2βm

3 , diff(Si, Sj) ≤ β(1− 2α1 − 2α2 − 2ε) for some Si ∈ Ni

and some Sj ∈ Nj with i 6= j.

Proof: For each Gi, let Ai be the set of indexes {k ∈ {1, 2, · · · ,m}|Gi[k] 6= Gj[k]}, where
i 6= j. Since diff(Gi, Gj) ≥ β and |Gi| = |Gj| = m, we have |Ai| ≥ βm. For any Fα1,α2(m,Gi)

sequence S, by Lemma 6.3, with probability at most 2e−
ε2|Ai|

3 ≤ 2e−
ε2βm

3 , diffAi(S,Gi) > α1+ε

or holesAi(S) > (α2 + ε)|Ai|. Hence, with probability at most 2nie
− ε

2βm
3 , diffAi(S,Gi) >

α1 + ε or holesAi(S) > (α2 + ε)|Ai|, for some S ∈ Ni. Therefore, with probability at most

2(n1 +n2)e−
ε2βm

3 , we have diffAi(S,Gi) > α1 +ε or holesAi(S) > (α2 +ε)|Ai|, for some S ∈ Ni,

65

for some i = 1 or 2. In other words, with probability at least 1− 2(n1 + n2)e−
ε2βm

3 , we have
diffAi(S,Gi) ≤ α1 + ε and holesAi(S) ≤ (α2 + ε)|Ai|, for all S ∈ Ni and for i = 1 and 2.

For any Fα1,α2(m,Gi) sequence Si, i = 1, 2, if diffAi(Si, Gi) ≤ α1 +ε and holesAi(Si) ≤
(α2 +ε)|Ai|, then diff(S1, S2) ≥ diffAi(S1, S2) ≥ β(1−2α1−2α2−2ε). Thus, with probability

at least 1− 2(n1 +n2)e−
ε2βm

3 , we have diff(S1, S2) ≥ β(1− 2α1− 2α2− 2ε), for every S1 ∈ N1

and every S2 ∈ N2. In other words, with probability at most 2(n1 + n2)e−
ε2βm

3 , we have
diff(S1, S2) < β(1− 2α1 − 2α2 − 2ε), for some S1 ∈ N1 and some S2 ∈ N2.

Lemma 6.5. Let α1, α2 and ε be three small positive constants that satisfy 0 < 2α1+α2−ε <
1. Assume that N = {S1, · · · , Sn} is a set of Fα1,α2(m,G) sequences. Let H = vote(N).

Then, with probability at most 2m(e−
ε2n
2), G 6= H.

Proof: Given any 1 ≤ j ≤ m, for any 1 ≤ i ≤ n, let Xi be random variables such that
Xi = 1 if Si[j] 6= G[j] and Si[j] 6= −, or 0 otherwise. By the definition of the Fα1,α2(m,G)
sequences, Xi are independent and Pr(Xi = 1) ≤ α1. So, by Lemma 6.1, with probability

at most e−
ε2n
2 , X1 + · · ·+Xn < (α− ε)n. That is, with probability at most e−

ε2n
2 , there are

fewer than (α1 − ε)n characters Si[j] such that Si[j] 6= G[j] and Si[j] 6= -. Similarly, with

probability at most e−
ε2n
2 , there are fewer than (α2− ε)n characters Si[j] such that Si[j] = -.

Thus, with probability at most 2me−
ε2n
2 , there are fewer than (α1 + α2 − 2ε)n characters

Si[j] such that Si[j] 6= G[j] for some 1 ≤ j ≤ m. This implies that, with probability at least

1− 2me−
ε2n
2 , there are more than (1−α1−α2 + 2ε)n characters Si[j] such that Si[j] = G[j]

for any 1 ≤ j ≤ m. Since 0 < 2α1 + α2 − ε < 1 by the assumption of the theorem, we
have (α1 + ε)n < (1 − α1 − α2 + 2ε)n. This further implies that with probability at least

1− 2me−
ε2n
2 , vote(N)[j] = G[j] for any 1 ≤ j ≤ m, i.e., vote(N) = G.

6.4 When the Inconsistency Error Parameter Is Known

Theorem 6.6. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy
4(α1 + ε) < β and 0 < 2α1 + α2 − ε < 1. Let G1, G2 ∈ Σm

1 be the two unknown haplotypes
such that diff(G1, G2) ≥ β. Let M be any given n×m matrix of SNP fragments such that M
has ni fragments that are Fα1,α2(m,Gi) sequences, i = 1, 2, and n1 + n2 = n. There exists
an O(nm) time algorithm that can find two haplotypes H1 and H2 with probability at least

1 − 2ne−
ε2m

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that either H1 = G1 and H2 = G2, or H1 = G2

and H2 = G1.

Proof: The algorithm, denoted as SHR-One, is described as follows.
Algorithm SHR-One
Input: M , an n×m matrix of SNP fragments.

Parameters α1 and ε.
Output: Two haplotypes H1 and H2.

Set Γ1 = Γ2 = ∅.
Randomly select a fragment r = M [j] for some 1 ≤ j ≤ n.

66

For every fragment r′ from M do
If (diff(r, r′) ≤ 2(α1 + ε)) then put r′ into Γ1

Let Γ2 = M − Γ1.
Let H1 = vote(Γ1) and H2 = vote(Γ2).
return H1 and H2.

End of Algorithm

Claim 1. With probability at most ne−
ε2m

3 , we have either diff(f,G1) > α1 + ε for
some Fα1,α2(m,G1) sequence f in M , or diff(g,G2) > α1 + ε for some Fα1,α2(m,G2) sequence
g in M .

By Lemma 7.8, for any fragment f = M [k] such that f is a Fα1,α2(m,G1) sequence,

with probability at most e−
ε2m

3 we have diff(f,G1) > α1 + ε. Since there are n1 many

Fα1,α2(m,G1) sequences in M , with probability at most n1e
− ε

2m
3 , we have diff(f,G1) > α1 +ε

for some Fα1,α2(m,G1) sequence f in M . Similarly, with probability at most n2e
− ε

2m
3 , we

have diff(g,G2) > α1 + ε for some Fα1,α2(m,G2) sequence g in M . Combining the above
completes the proof for Claim 1.

Claim 2. Let Mi be the set of all the Fα1,α2(m,Gi) sequences in M , i = 1, 2. With

probability at least 1− ne− ε
2m
3 , Γ1 and Γ2 is a permutation of M1 and M2.

By the assumption of the theorem, the fragment r of M is either a Fα1,α2(m,G1)
sequence or a Fα1,α2(m,G2) sequence. We assume that the former is true. By Claim 1, with

probability at least 1− ne− ε
2m
3 , we have diff(f,G1) ≤ α1 + ε for all Fα1,α2(m,G1) sequences

f in M , and diff(g,G2) ≤ α1 + ε for all Fα1,α2(m,G2) sequences g in M . Hence, for any

fragment r′ in M , if r′ is a Fα1,α2(m,G1) sequence, then with probability at least 1−ne− ε
2m
3 ,

we have diff(r, r′) ≤ diff(r,G1)+diff(r′, G1) ≤ 2(α1+ε). This means that, with probability at

least 1−ne− ε
2m
3 , all Fα1,α2(m,G1) sequences in M will be included in Γ1. Now, consider the

case that r′ is a Fα1,α2(m,G2) sequence in M . Since diff(G1, G2) ≤ diff(G1, r) + diff(r,G2) ≤
diff(G1, r)+diff(r, r′)+diff(r′, G2), we have diff(r, r′) ≥ diff(G1, G2)−diff(G1, r)−diff(G2, r

′).
By the given condition of diff(G1, G2) ≥ β and 4(α1 + ε) < β, with probability at least

1 − ne− ε
2m
3 , we have diff(r, r′) ≥ β − diff(G1, r) − diff(G2, r

′) ≥ β − 2(α1 + ε) > 2(α1 + ε),

i.e., r′ will not be added to Γ1. Therefore, with probability at least 1 − ne− ε
2m
3 , Γ1 = M1

and Γ2 = M −Γ1 = M2. Similarly, if r is a Fα1,α2(m,G2) sequence, with probability at least

1− ne− ε
2m
3 , Γ1 = M2 and Γ2 = M − Γ1 = M1. This completes the proof of Claim 2.

Suppose that Γ1 and Γ2 is a permutation ofM1 andM2. Say, without loss of generality,

Γ1 = M1 and Γ2 = M2. By Lemma 6.5, with probability at most 2me−
ε2n1

2 + 2me−
ε2n2

2 ,

vote(Γ1) 6= G1 or vote(Γ2) 6= G2. Hence, by Claim 2, with probability at most 2ne−
ε2m

3 +

2me−
ε2n1

2 + 2me−
ε2n2

2 , vote(Γ1) 6= G1 or vote(Γ2) 6= G2.
Concerning the computational time of the algorithm, we need to compute the differ-

ence between the selected fragment r and each of the remaining n−1 fragments in the matrix
M . Finding the difference between r and r′ takes O(m) steps. So, the total computational
time is O(nm), which is linear in the size of the input matrix M .

67

6.5 When Parameters Are Not Known

In this section, we consider the case that the parameters α1, α2 and β are unknown.
However, we assume the existence of those parameters for the input matrix M of SNP
fragments. We will show that in this case we can still reconstruct the two unknown haplotypes
from M with high probability.

Theorem 6.7. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy
2α1+2α2+2ε < 1, 0 < 2α1+α2−ε < 1, and β(1−2α1−2α2−2ε) > 2(α1+ε). Let G1, G2 ∈ Σm

1

be the two unknown haplotypes such that diff(G1, G2) ≥ β. Let M be any given n×m matrix
of SNP fragments such that M has ni fragments that are Fα1,α2(m,Gi) sequences, i = 1, 2,
and n1 +n2 = n. Then, there exists an O(umn) time algorithm that can find two haplotypes

H1 and H2 with probability at least 1− (1− γ)u− 4ne−
ε2βm

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that
H1, H2 is a permutation of G1, G2, where γ = n1n2

n(n−1)
and u is an integer parameter.

Proof: The algorithm, denoted as SHR-Two, is described as follows.
Algorithm SHR-Two
Input: M , an n×m matrix M of SNP fragments.

u, a parameter to control the loop.
Output: two haplotypes H1 and H2.

Let dmin =∞ and M = ∅.
For (k = 1 to u) do { //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.
Randomly select two fragments r1 = M [i1], r2 = M [i2] from M
For every fragment r′ from M do {

If (diff(ri, r
′) = min{diff(r1, r

′), diff(r2, r
′)} for i = 1 or 2, then put r′

into Mi.
}
Let di = max{diff(ri, r

′)|r′ ∈Mi} for i = 1, 2.
Let d = max{d1, d2}.
If (d < dmin) then let M = {M1,M2} and dmin = d.

}
return H1 = vote(M1) and H2 = vote(M2).

End of Algorithm
Claim 3. With probability at most (1 − γ)u, r1, r2 is not a permutation of a

Fα,β(m,G1) sequence and a Fα,β(m,G2) sequence in all of the k-loop iterations.
For randomly selected fragments r1 and r2, with probability γ, r1, r2 is a permutation

of a Fα,β(m,G1) sequence and a Fα,β(m,G2) sequence in M . When the k-loop is repeated u
times, with probability at most (1−γ)u, r1, r2 is not a permutation of a Fα,β(m,G1) sequence
and a Fα,β(m,G2) sequence in all of the u loop iterations. Thus, Claim 3 is true.

Let Ni be the set of the ni fragments in M that are Fα1,α2(m,Gi) sequences, i = 1, 2.

Claim 4. With probability at most 4ne−
ε2βm

3 , diff(Gi, S) > α1 + ε or holes(S) >
(α2 + ε)m for some S from Ni for some i = 1 or 2; or diff(S1, S2) ≤ β(1 − 2α1 − 2α2 − 2ε)
for some S1 ∈ N1 and some S2 ∈ N2.

68

By Lemma 7.8, for every fragment S from Ni, with probability at most 2e−
ε2m

3 ,
diff(Gi, S) > α1 + ε or S has more than (α2 + ε)m holes. Thus, with probability at most

2ne−
ε2m

3 , diff(Gi, S) > α1 + ε or holes(S) > (α2 + ε)m for some S from Ni for some i = 1 or
2.

By Lemma 6.4, with probability at most 2ne−
ε2βm

3 , diff(S1, S2) ≤ β(1−2α1−2α2−2ε)
for some S1 ∈ N1 and some S2 ∈ N2.

The above analysis completes the proof for Claim 4.
Claim 5. Let H1 = vote(M1) and H2 = vote(M2) be the two haplotypes returned by

the algorithm. With probability at most (1− γ)u + 4ne−
ε2βm

3 , M1,M2 is not a permutation
of N1, N2.

We assume that (1) diff(S1, S2) > β(1 − 2α1 − 2α2 − 2ε) for every S1 from N1 and
every S2 from N2; and (2) diff(Gi, S) ≤ α1 + ε and holes(S) ≤ (α2 + ε)m for all S ∈ Ni

for i = 1, 2. We consider possible choices of the two random fragments r1 and r2 in the
following.

At any iteration of the k-loop, if r1 ∈ N1 and r2 ∈ N2, then by (2) we have
diff(r1, r

′) ≤ diff(r1, G1) + diff(r′, G1) ≤ 2(α1 + ε) for any r′ ∈ N1; and diff(r2, r
′) ≤

diff(r2, G2) + diff(r′, G2) ≤ 2(α1 + ε) for any r′ ∈ N2. By (1) and the given condition of
the theorem, we have, diff(r1, r

′) > β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε) for any r′ ∈ N2; and
diff(r2, r

′) > β(1 − 2α1 − 2α2 − 2ε) > 2(α1 + ε) for any r′ ∈ N1. This implies that at this
loop iteration we have M1 = N1,M2 = N2 and d ≤ 2(α1 + ε). Similarly, if at this iteration
r1 ∈ N2 and r2 ∈ N1, then M1 = N2,M2 = N1 and d ≤ 2(α1 + ε).

If r1, r2 ∈ N1 at some iteration of the k-loop, then for any r′ ∈ N2, either r′ ∈M1 or
r′ ∈ M2. In either case, by (1) of our assumption and the given condition of the theorem,
we have d ≥ β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε) at this iteration. Similarly, if r1, r2 ∈ N2 at
some iteration of the k-loop, then we also have d > 2(α1 + ε) at this iteration.

It follows from the above analysis that, under the assumption of (1) and (2), once
we have r1 ∈ N1 and r2 ∈ N2 or r1 ∈ N2 and r2 ∈ N1 at some iteration of the k-loop, then
M1, M2 is a permutation of N1, N2 at the end of this iteration. Furthermore, if M1 and M2

are replaced by M ′
1 and M ′

2 after this iteration, then M ′
1,M

′
2 must also be a permutation of

N1, N2. By Claims 3 and 4, with probability at most (1 − γ)u + 4ne−
ε2βm

3 , the assumption
of (1) and (2) is not true, or r1 ∈ N1 and r2 ∈ N2 (or r1 ∈ N2 and r2 ∈ N1) is not true at all

the iterations of the k-loop. Hence, with probability at most (1− γ)u + 4ne−
ε2βm

3 , the final
list of M1 and M2 returned by the algorithm is not a permutation of N1, N2, so the claim is
proved.

For M1 and M2 returned by the algorithm, we assume without loss of generality
Mi = Ni, i = 1, 2. By Lemma 6.5 and the given condition of the theorem, with probability

at most 2me−
ε2n1

2 + 2me−
ε2n2

2 , we have H1 = vote(M1) 6= G1 or H2 = vote(M2) 6= G2. Thus,

by Claim 6, with probability at most (1 − γ)u + 4ne−
ε2βm

3 + 4me−
ε2n
2 , we have H1 6= G1 or

H2 6= G2.
It is easy to see that the time complexity of the algorithm is O(umn), which is linear

in the size of M for a constant u.

69

6.6 Tuning the Dissimilarity Measure

In this section, we consider a different dissimilarity measure in algorithm SHR-TWO
to improve its ability of error tolerance. We use the sum of the differences between ri and
every fragment r′ ∈ Mi, i = 1, 2, to measure the dissimilarity of the fragments in Mi with
ri. The new algorithm SHR-Three is given in the following. We will present experimental
results in Section 6.7 to show that algorithm SHR-Three is reliable and robust in dealing
with possible outliers in the data sets.

Algorithm SHR-Three
Input: M , an n×m matrix of SNP fragments.

u, a parameter to control the loop.
Output: two haplotypes H1 and H2.

Let dmin =∞ and M = ∅.
For (k = 1 to u) do { //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.
Randomly select two fragments r1 = M [i1], r2 = M [i2] from M
For every fragment r′ from M do {

If (diff(ri, r
′) = min{diff(r1, r

′), diff(r2, r
′)} for i = 1 or 2, then put r′

into Mi.
}
Let di =

∑
r′∈Mi

diff(ri, r
′) for i = 1, 2.

Let d = max{d1, d2}.
If (d < dmin) then let M = {M1,M2} and dmin = d.

}
return H1 = vote(M1) and H2 = vote(M2).

End of Algorithm

Theorem 6.8. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy
2α1 + 2α2 + 2ε < 1, 0 < 2α1 + α2 − ε < 1, η > 2(α1+ε)

β(1−2α1−2α2−2ε)
with η = min(n1,n2)

2n
, and

β(1 − 2α1 − 2α2 − 2ε) > 2(α1 + ε). Let G1, G2 ∈ Σm
1 be the two unknown haplotypes such

that diff(G1, G2) ≥ β. Let M be any given n×m matrix of SNP fragments such that M has
ni fragments that are Fα1,α2(m,Gi) sequences, i = 1, 2, and n1 + n2 = n. Then, there exists
an O(umn) time algorithm that can find two haplotypes H1 and H2 with probability at least

1− (1− γ)u− 4ne−
ε2βm

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that H1, H2 is a permutation of G1, G2,
where γ = n1n2

n(n−1)
and u is an integer parameter.

Proof: Let Ni be the set of the ni many Fα1,α2(m,Gi) sequences in M , for i = 1, 2.
We first notice that both Claims 3 and 4 in the proof of Theorem 6.7 hold here

following the same analysis. However, we need to prove the following claim with different
analysis:

Claim 6. Let H1 = vote(M1) and H2 = vote(M2) be the two haplotypes returned by

the algorithm. With probability at most (1− γ)u + 4ne−
ε2βm

3 , M1,M2 is not a permutation
of N1, N2.

70

We assume that (1) diff(S1, S2) > β(1 − 2α1 − 2α2 − 2ε) for every S1 from N1 and
every S2 from N2; and (2) diff(Gi, S) ≤ α1 + ε and holes(S) ≤ (α2 + ε)m for each S from Ni

(i = 1, 2).
We shall consider the two cases:
Case 1. At some iteration of the k-loop, both r1 and r2 are selected from the same

Ni for i = 1 or 2. For each r′ ∈ Nj, j 6= i, by assumption (1) we have both diff(ri, r
′) >

β(1 − 2α1 − 2α2 − 2ε), i = 1, 2. Notice that r′ must be either in M1 or M2. So, at least
half of the fragments in Nj will be either in M1 or M2. Therefore, at this iteration, we have
d ≥ 1

2
njβ(1−2α1−2α2−2ε) ≥ ηnβ(1−2α1−2α2−2ε) = ηβ(1−2α1−2α2−2ε)n > 2(α1+ε)n.

Case 2. At some iteration of the k-loop, r1 and r2 are selected from different Ni for
i = 1 and 2. Without loss of generality, ri ∈ Ni, i = 1, 2. For each r′ ∈ N1, by assumption (2)
we have diff(r1, r

′) ≤ 2(α1 + ε); by assumption (1) and the given condition of the theorem
we have diff(r2, r

′) > β(1 − 2α1 − 2α2 − 2ε) > 2(α1 + ε). Similarly, for each r′ ∈ N2,
diff(r2, r

′) ≤ 2(α1 + ε), and diff(r1, r
′) > 2(α1 + ε). Therefore, at this iteration, we have

M1 = N1 and M2 = N2, and d ≤ 2(α1 + ε)n1 + 2(α1 + ε)n2 = 2(α1 + ε)n.
The two cases implies that under the assumption of (1) and (2), if at any iteration of

the k-loop, we have r1 ∈ N1 and r2 ∈ N2, or r1 ∈ N2 and r2 ∈ N1, then the final list of the
two sets M1,M2 is a permutation of N1, N2. Hence, Claim 6 follows from Claims 3 and 4 in
the proof of Theorem 6.7, which are true here as we mentioned earlier.

Now, we assume that the final list of the two sets M1,M2 is a permutation of

N1, N2. By Lemma 6.5, with probability at most 2m(e−
ε2n1

2) + 2m(e−
ε2n2

2), H1 = vote(M1),
H2 = vote(M2) is not a permutation of G1, G2. This, together with Claim 6, completes the
probabilistic claim of the theorem.

It is easy to see that the time complexity of the algorithm is O(umn), which is linear
in the size of M .

6.7 Experimental Results

We design a MATLAB program to test both the accuracy and the speed of algorithm
SHR-Three. Due to the difficulty of getting real data from the public domain, our experiment
is based on the literature [9,93] which is considered as common practice. A random matrix of
SNP fragments is created as follows: (1) Haplotype 1 is generated at random with length m
(m ∈ {50, 100, 150}). (2) Haplotype 2 is generated by copying all the bits from haplotype 1
and flipping each bit with probability β (β ∈ {0.1, 0.2, 0.3}). This simulates the dissimilarity
rate β between two haplotypes. (3) Each haplotype is copied n

2
times so that the matrix has

m columns and n(n ∈ {10, 20, 30}) rows. (4) Set each bit in the matrix to - with probability
α2 (α2 ∈ {0.1, 0.2, 0.3}). This simulates the incompleteness error rate α2 in the matrix. (5)
Flip each non-empty bit with probability α1(α1 ∈ {0.01, 0.02, ..., 0.1}). This is the simulation
of the inconsistency error rate of α1.

Figure 6.1 shows the performance of algorithm SHR-Three with different parameter
settings in accordance with those in [9]. See Tables A.5 to A.8 in the appendix section A.4
for result details. The typical parameters used in [9] are m = 100, n = 20, β = 0.2, α2 = 0.2
and 0.01 ≤ α1 ≤ 0.05. These are considered to be close to the real situations. In Figure
6.1, the results are the average time and the reconstruction rate of the 1000 executions of

71

95
96
97
98
99
100

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 R
at
e
(%

)

α1 (%)

Results for m = 100, β = 20%
and α2 = 20%

n = 10

n = 20

n = 30 0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 T
im

e
(s
)

α1 (%)

Results for m = 100, β = 20%
and α2 = 20%

n = 10

n = 20

n = 30

95
96
97
98
99
100

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 R
at
e
(%

)

α1 (%)

Results for m = 100, n = 20 and
α2 = 20%

β = 10%

β = 20%

β = 30% 0
2
4
6
8
10

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 T
im

e
(s
)

α1 (%)

Results for m = 100, n = 20 and
α2 = 20%

β = 10%

β = 20%

β = 30%

95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 R
at
e
(%

)

α1 (%)

Results for m = 100, n = 20 and
β = 20%

α2 = 10%

α2 = 20%

α2 = 30%
0
2
4
6
8
10

1 2 3 4 5 6 7 8 9 10

Re
co
ns
tr
uc
ti
on

 T
im

e
(s
)

α1 (%)

Results for m = 100, n = 20 and
β = 20%

α2 = 10%

α2 = 20%

α2 = 30%

Figure 6.1: Performance of algorithm SHR-Three

72

algorithm SHR-Three. A new random matrix is used for each execution. The reconstruction
rate is defined as the ratio of the total number of correctly reconstructed bits to the total
number of bits in two haplotypes. The computing environment is a PC machine with a
typical configuration of 1.6GHz AMD Turion 64X2 CPUs and 1GB memory.

The software of our algorithms is available for public access and for real-time on-line
demonstration at http://fpsa.cs.uno.edu/HapRec/HapRec.html. Thank Liqiang Wang
for implementing the programs in Java and setting up this web site.

Summary We have developed three linear time random algorithms for the singular hap-
lotype reconstruction problem with provable high probability in reconstruction rate. Our
experimental results conform with the theoretical efficiency and accuracy of the algorithms.

It should be pointed out that our work can be extended to reconstruct multiple
haplotypes from a set of fragments. Our approach also opens the door to develop probabilistic
methods for other variants of the haplotyping problem involving both inconsistency and
incompleteness errors.

73

Chapter 7

Non-Breaking Similarity of Genomes with Gene

Repetitions

7.1 Introduction

Until a few years ago, in genome rearrangement research, it is always assumed that
every gene appears in a genome exactly once. Under this assumption, the genome rear-
rangement problem is in essence the problem of comparing and sorting signed/unsigned
permutations [51, 77]. In the case of breakpoint distance, given two perfect genomes (ev-
ery gene appears exactly once, i.e., there is no gene repetition) it is easy to compute their
breakpoint distance in linear time.

However, perfect genomes are hard to obtain and so far they can only be obtained
in several small virus genomes. For example, perfect genomes do not occur on eukaryotic
genomes where paralogous genes are common [76, 84]. On the one hand, it is important
in practice to compute genomic distances, e.g., Hannenhalli and Pevzner’s method [51],
when no gene duplication arises; on the other hand, one might have to handle this gene
duplication problem as well. In 1999, Sankoff proposed a way to select, from the duplicated
copies of genes, the common ancestor gene such that the distance between the reduced
genomes (exemplar genomes) is minimized [84]. A general branch-and-bound algorithm was
also implemented in [84]. Recently, Nguyen, Tay and Zhang proposed to use a divide-and-
conquer method to compute the exemplar breakpoint distance empirically [76].

For the theoretical part of research, it was shown that computing the signed reversals
and breakpoint distances between exemplar genomes are both NP-complete [15]. Two years
ago, Blin and Rizzi further proved that computing the conserved interval distance between
exemplar genomes is NP-complete [14]; moreover, it is NP-complete to compute the min-
imum conserved interval matching (i.e., without deleting the duplicated copies of genes).
In [22,25] it was shown that the exemplar genomic distance problem does not admit any ap-
proximation (regardless of the approximation factor) unless P=NP, as long as G=H implies
that d(G,H)=0. This implies that for the exemplar breakpoint distance problem, there does
not exist any approximation.

In [17] three new kinds of genomic similarities were considered. These similarity
measures do not satisfy the condition that G=H implies that d(G,H)=0. Among them,
the common interval distance problem seems to be the most interesting one. When gene
duplications are allowed, Chauve et al. proved that the problem is NP-complete.

74

In this chapter6 , we define a new similarity measure called non-breaking similarity.
Intuitively, this is the complement of the traditional breakpoint distance measure. Compared
with the problem of computing exemplar breakpoint distance, which is a minimization prob-
lem, we want to maximize the number of non-breaking points for the exemplar non-breaking
similarity problem. Unfortunately, we show that Independent Set can be reduced to ENbS,
and this reduction implies that ENbS is W[1]-complete (and ENbS does not have a factor-nε

approximation). This reduction works even when one of the two genomes is given exemplar.
While the W[1]-completeness [32] and the recent lower bound results [20] implies

that if k is the optimal solution value, unless an unlikely collapse occurs in parameterized
complexity theory, ENbS is not solvable in time f(k)no(k), for any function f . We show
that for several practically interesting cases of the problem, there are polynomial time al-
gorithms. This is done by parameterize some quantities in the input genomes, followed by
some traditional algorithmic techniques.

7.2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of genomes,
each of which is a signed/unsigned sequence of genes. In general a genome could contain a
set of such sequences. The genomes we focus in this chapter are typically called singletons.
The order of the genes corresponds to the position of them on the linear chromosome and
the signs correspond to which of the two DNA strands the genes are located. While most
of the past research are under the assumption that each gene occurs in a genome once, this
assumption is problematic in reality for eukaryotic genomes or the likes where duplications
of genes exist [84]. Sankoff proposed a method to select an exemplar genome, by deleting
redundant copies of a gene, such that in an exemplar genome any gene appears exactly once.
The resulting exemplar genomes have the property that certain genomic distance between
them is minimized [84].

The following definitions are very much following those in [15, 25]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F . (Throughout this chapter,
we will consider unsigned genomes, though our results can be applied to signed genomes as
well.) In general, we allow the repetition of a gene family in any genome. Each occurrence
of a gene family is called a gene, though we will not try to distinguish a gene and a gene
family if the context is clear.

The number of a gene g appearing in a genome G is called the occurrence of g in G,
written as occ(g,G). A genome G is called r-repetitive, if all the genes from the same gene
family occur at most r times in G. For example, if G = abcbaa, occ(b,G) = 2 and G is a
3-repetitive genome.

For a genome G, alphabet(G) is the set of all the characters (genes) that appear at
least once in G. A genome G is an exemplar genome of G if alphabet(G) = alphabet(G), each
gene in alphabet(G) appears exactly once in G; i.e., G is derived from G by deleting all the
redundant genes (characters) in G. For example, let G = bcaadage there are two exemplar
genomes: bcadge and bcdage.

6Published work [24] used with permission of Springer Science and Business Media.

75

For two exemplar genomes G and H such that alphabet(G) = alphabet(H) and
|alphabet(G)| = |alphabet(H)| = n, a breakpoint in G is a two-gene substring gigi+1 such
that gigi+1 is not a substring in H. The number of breakpoints in G (symmetrically in
H) is called the breakpoint distance, denoted as bd(G,H). For two genomes G and H,
their exemplar breakpoint distance ebd(G,H) is the minimum bd(G,H), where G and H are
exemplar genomes derived from G and H.

For two exemplar genomes G and H such that alphabet(G) = alphabet(H)
|alphabet(G)| = |alphabet(H)| = n, a non-breaking point is a common two-gene substring
gigi+1 that it appears in both G and H. The number of non-breaking points between G
and H is also called the non-breaking similarity between G and H, denoted as nbs(G,H).
Clearly, we have nbs(G,H) = n− 1− bd(G,H). For two genomes G and H, their exemplar
non-breaking similarity enbs(G,H) is the maximum nbs(G,H), where G and H are exemplar
genomes derived from G and H. Again we have enbs(G,H) = n− 1− ebd(G,H).

The Exemplar Non-breaking Similarity (ENbS) Problem is formally defined as follows:
Instance: Genomes G and H, each is of length O(m) and each covers n identical gene
families (i.e., at least one gene from each of the n gene families appears in both G and H);
integer K.
Question: Are there two respective exemplar genomes of G and H, G and H, such that the
non-breaking similarity between them is at least K?
In the next two sections, we present several results for the optimization versions of these
problems, namely, to compute or approximate the maximum value K in the above formu-
lation. Given a maximization problem Π, let the optimal solution of Π be OPT . We say
that an approximation algorithm A provides a performance guarantee of α for Π if for ev-
ery instance I of Π, the solution value returned by A is at least OPT/α. (Usually we say
that A is a factor-α approximation for Π.) Typically we are interested in polynomial time
approximation algorithms.

7.3 Inapproximability Results

For the ENbS problem, let OENbS be the corresponding optimal solution value. Ap-
parently we have the following lemma.

Lemma 7.1. 0 ≤ OENbS ≤ n− 1.

Proof: Let the n gene families be denoted by 1, 2, ..., n. We only consider the cor-
responding exemplar genomes G,H. The lower bound of OENbS is achieved by setting
G = 123 · · · (n − 1)n and H can be set as follows: when n is even, H = (n − 1)(n −
3) · · · 531n(n− 2) · · · 642; when n is odd, H = (n− 1)(n− 3) · · · 642n135 · · · (n− 4)(n− 2).
It can be easily proved that between G,H there is no non-breaking point. The upper bound
of OENbS is obtained by setting G = H in which case any two adjacent genes form a non-
breaking point.

The above lemma also implies that different from the Exemplar Breakpoint Distance
(EBD) problem, which does not admit any approximation at all (as deciding whether the
optimal solution value is zero is NP-complete), the same cannot be said on ENbS. Given G

76

and H, it can be easily shown that deciding whether OENbS = 0 can be done in polynomial
time (hence it is easy to decide whether there exists some approximation for ENbS—for
instance, as OENbS ≤ n − 1, if we can decide that OENbS 6= 0 then it is easy to obtain a
factor-O(n) approximation for ENbS). However, the next theorem shows that even when one
of G and H is given exemplar ENbS still does not admit a factor-n1−ε approximation.

Theorem 7.2. If one of G and H is exemplar and the other is 2-repetitive, the Exemplar
Non-breaking Similarity Problem does not admit a factor n1−ε approximation unless P=NP.

Proof: We use a reduction from Independent Set to the Exemplar Non-breaking Similarity
Problem in which each of the n genes appears in G exactly once and in H at most twice.
Independent Set is a well known NP-complete problem which cannot be approximated within
a factor of n1−ε [52].

Given a graph T = (V,E), V = {v1, v2, · · · , vN}, E = {e1, e2, · · · , eM}, we construct G
and H as follows. (We assume that the vertices and edges are sorted by their corresponding
indices.) Let Ai be the sorted sequence of edges incident to vi. For each vi we add v′i as an
additional gene and for each ei we add xi, x

′
i as additional genes. We have two cases: N +M

is even and N +M is odd. We mainly focus on the case when N +M is even. In this case,
the reduction is as follows.

Define Yi = viAiv
′
i, if i ≤ N and YN+i = xix

′
i, if i ≤M .

G : v1v
′
1v2v

′
2 · · · vNv′Nx1e1x

′
1x2e2x

′
2 · · ·xMeMx′M .

H : YN+M−1YN+M−3 · · ·Y1YN+MYN+M−2 · · ·Y2.
(Construct H as YN+M−1YN+M−3 · · ·Y2YN+MY1Y3 · · ·YN+M−2 when N + M is odd.

The remaining arguments will be identical.)
We claim that T has an independent set of size k iff the exemplar non-breaking

similarity between G and H is k. Notice that G is already an exemplar genome, so G = G.
If T has an independent set of size k, then the claim is trivial. Firstly, construct the

exemplar genome H as follows. For all i, if vi is in the independent set, then delete Ai in
Yi = viAiv

′
i (also delete all redundant edges in As in H for which vs is not in the independent

set of T). There are k non-breaking points between G,H—notice that any vertex vi which
is in the independent set gives us a non-breaking point viv

′
i. The final exemplar genomes

obtained, G and H, obviously have k exemplar non-breaking points.
If the number of the exemplar non-breaking points between G and H is k, the first

thing to notice is that Yi = xix
′
i (N < i ≤ N+M) cannot give us any non-breaking point. So

the non-breaking points must come from Yi = viAiv
′
i (i ≤ N), with some Ai properly deleted

(i.e., such a Yi becomes viv
′
i in H). Moreover, there are exactly k such Ai’s deleted. We show

below that any two such completely deleted Ai, Aj correspond to two independent vertices
vi, vj in T . Assume that there is an edge eij between vi and vj, then as both Ai, Aj are
deleted, both of the two occurrences of the gene eij will be deleted from H. A contradiction.
Therefore, if the number of the exemplar non-breaking points between G and H is k, there
is an independent set of size k in T .

To conclude the proof of this theorem, notice that the reduction take polynomial time
(proportional to the size of T).

In the example shown in Figure 7.1, we have
G : v1v

′
1v2v

′
2v3v

′
3v4v

′
4v5v

′
5x1e1x

′
1x2e2x

′
2x3e3x

′
3x4e4x

′
4x5e5x

′
5 and

77

Figure 7.1: Illustration of a simple graph for the reduction

H : x4x
′
4x2x

′
2v5e4e5v

′
5v3e1v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4e3e5v

′
4v2e2e3e4v

′
2.

Corresponding to the optimal independent set {v3, v4}, we have
H : x4x

′
4x2x

′
2v5e5v

′
5v3v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4v

′
4v2e2e3e4v

′
2. The two non-breaking points

are [v3v
′
3], [v4v

′
4].

We comment that EBD and ENbS, even though complement to each other, are still
different problems. With respect to the above theorem, when G is exemplar and H is not,
there is a factor-O(log n) approximation for the EBD problem [25]. This is significantly
different from ENbS, as shown in the above theorem.

7.4 Polynomial Time Algorithms for Some Special Cases

The proof of Theorem 1 also implies that ENbS is W[1]-complete, as Independent
Set is W[1]-complete [32]. Following the recent lower bound results of Chen, et al., if k
is the optimal solution value for ENbS then unless an unlikely collapse occurs in parame-
terized complexity theory, ENbS is not solvable in time f(k)no(k), for any function f [20].
Nevertheless, we show below that for several practically interesting cases of the problem,
there are polynomial time algorithms. The idea is to set a parameter in the input genomes
(or sequences, as we will use interchangeably from now on) and design a polynomial time
algorithm when such a parameter is O(log n).

We first present a few extra definitions. For a genome G and a character g, span(g,G)
is the maximal distance between the two positions that are occupied by g in the genome G.
For example, if G = abcbaa, span(a,G) = 5 and span(b,G) = 2. For a genome G and c ≥ 0,
we define totalocc(c,G) =

∑
g is a character in G and span(g,G)≥c occ(g,G).

Assume that c and d are positive integers. A (c, d)-even partition for a genome G is
G = G1G2G3 with |G2| = c and |G1|+ b|G2|/2c = d.

For a genome G and integers c, d > 0, a (c, d)-split G1, G2, G3 for G is derived from
a (c′, d)-even partition G = G1G2G3 for G for some c ≤ c′ ≤ 2c and satisfies the following
conditions 1)-6):

(1) alphabet(G) = alphabet(G1G2G3).
(2) We can further partition G2 into G2 = G1

2G2
2G3

2 such that |G2
2 | ≤ c + 1, and there

is at least one gene g with all its occurrences in G being in G2
2 . We call such a gene g as a

whole gene in G2
2 .

(3) G2 is obtained from G2
2 by deleting some genes and every gene appears at most

once in G2. And, G2 contains one occurrence of every whole gene in G2
2 .

(4) G1 is obtained from G1G1
2 by deleting all genes in G1G1

2 which also appear in G2.
(5) G3 is obtained from G3

2G3 by deleting all genes in G3
2G3 which also appear in G2.

78

(6) G2 has no gene common with either G1 or G3.
Finally, for a genome G and integers c, d ≥ 0, a (c, d)-decomposition is G1x,G2G3,

where G1, G2, G3 is a (c, d)-split for G and x is the first character of G2. We have the following
lemma. In the following, whenever a different pair of genomes are given we assume that they
are drawn from the same n gene families.

Lemma 7.3. Assume that c, d are integers satisfying c ≥ 0 and |G| − 2c ≥ d ≥ 2c. and
G is a genome with span(g,G) ≤ c for every gene g in G. Then, (1) the number of (c, d)-
decompositions is at most 2c+1; (2) every exemplar genome of G is also an exemplar genome
of G1G2G3 for some (c, d)-split G1, G2, G3 of G.

Proof: (1). Since span(g,G) ≤ c for every gene g in G, it is easy to see that there is a
c′, c ≤ c′ ≤ 2c, such that we can find (c, d)-splits G1, G2 and G3 from a (c′, d)-even partition
G = G1G2G3 with G2 = G1

2G2
2G3

2 . Since |G2
2 | ≤ c + 1, there are at most 2c+1 possible ways to

obtain G2. Therefore, the total number of decompositions is at most 2c+1. (2) is easy to see.

Lemma 7.4. Let c be a positive constant and ε be an arbitrary small positive constant.
There exists an O(nc+2+ε)-time algorithm such that given an exemplar genome G, in which
each genes appears exactly once, and H, in which span(g,H) ≤ c for every g in H, it returns
enbs(G,H).

Proof: We use the divide-and-conquer method to compute enbs(G,H). The separator is
put at the middle of H with width c. The genes within the region of separator are handled
by a brute-force method.

Algorithm
A(G,H)

Input: G is a genome with no gene repetition,
and H is a genome such that span(g,H) ≤ c for each gene in H.

let s = 0 and d = |H|/2.
for every (c, d)-decomposition H1x,H2H3 of H)

begin
if the length of H1x and H2H3 is ≤ log n

then compute A(G,H1x) and A(G,H2H3) by brute-force;
else let s′ = A(G,H1x) + A(G,H2H3);

if (s < s′) then s = s′

end
return s;

End of Algorithm
The correctness of the algorithm is easy to verify. By Lemma 7.3 and the description

of the algorithm, the computational time is based on the following recursive equation: T (n) ≤
(2c+1(2T (n/2+c))+c0n, where c0 is a constant. We show by induction that T (n) ≤ c1n

c+2+ε,
where c1 is a positive constant. The basis is trivial when n is small since we can select constant
c1 large enough. Assume that T (n) ≤ c1n

c+2+ε is true all n < m.

79

T (m) ≤ 2c+1(2T (m/2 + c) + c0m ≤ 2(2c+1c1(m/2 + c)c+2+ε) + c0m < c1m
c+2+ε for all

large m.

We now have the following theorem.

Theorem 7.5. Let c be a positive constant. There exists an O(3bt/3cnc+2+ε)-time algorithm
such that given two genomes G and H with t = totalocc(1,G) + totalocc(c,H), it returns
enbs(G,H).

Proof:
Algorithm:

d = 0;
for each gene g1 in G with span(g1,G) ≥ 1
begin

for each position p1 of g1 in G
begin

remove all g1’s at all positions other than p1;
end
assume that G has been changed to G;
for each gene g2 in H with span(g2,H) > c
begin

for each position p2 of g2 in H
begin

remove all g2’s at all positions other than p2;
end
assume that H has been changed to H′;
compute d0 = enbs(G,H′) following Lemma 7.4;
if (d < d0) then d = d0;

end
end
return d;

End of Algorithm
Let gi, 1 ≤ i ≤ m, be the genes in G and H with span(g1,G) ≥ 1 in G or span(g2,H) >

c in H. We have t = k1 + · · · + km. Let ki be the number of occurences of gi. Notice that
ki ≥ 2. The number of cases to select the positions of those genes in G and the positions of
those genes in H is at most k1 · · · km, which is at most 4 ·3bt/3c by Lemma 6 in the Appendix.
In G, every gene appears exactly once. In H′, every gene has span bounded by c. Therefore,
their distance can be computed in O(nc+2+ε) steps by Lemma 7.4.

Lemma 7.6. Let k ≥ 3 be a fixed integer. Assume that k1, k2, · · · , km are m integers that
satisfies ki ≥ 2 for i = 1, 2, · · · ,m and k1 + k2 + · · ·+ km = k. Then k1k2 · · · km ≤ 4 · 3b k3 c.

80

Proof: We assume that for fixed k, m is the largest integer that makes the product
k1k2 · · · km maximal and k1 + k2 + · · ·+ km = k. We claim that ki ≤ 3 for all i = 1, 2, · · · ,m.
Otherwise, without loss of generality, we assume that km > 3. Clearly, 2 · (km − 2) ≥ km.
Replace km by k′m = 2 and km+1′ = km−2. We still have that k1+k2+· · ·+km−1+k′m+k′m+1 =
k and k1k2 ·km−1k

′
mk
′
m+1 ≥ k1k2 · · · km. This contradicts that m is maximal. Therefore, each

ki(i = 1, 2, · · · ,m) is either 2 or 3 while k1 + k2 + · · · + km−1 + km = k and k1k2 · · · km is
still maximal. It is impossible that there are at least three 2s among k1, k2, · · · , km. This is
because that 2 + 2 + 2 = 3 + 3 and 2 · 2 · 2 < 3 · 3. On the other hand, the number of 3s
among k1, k2, · · · , km is at most bk

3
c since k1 + k2 + · · ·+ km−1 + km = k.

Next, we define a new parameter measure similar to the Maximum Adjacency Dis-
ruption (MAD) number in [17].

Assume that G and H are two genomes/sequences. For a gene g, define
shift(g,G,H) = maxG[i]=g,H[j]=g |i − j|, where G[i] is the gene/character of G at position
i. A space-permitted genome G may have space symbols in it. For two space-permitted
genomes G1 and G2, a non-breaking point g1g2 satisfies that g1 and g2 appear at two posi-
tions of G without any other genes/characters except some spaces between them, and also
at two positions of H without any other genes except spaces between them.

For a genome G and integers c, d > 0, an exact (c, d)-split G1, G2, G3 for G is obtained
from a (c, d)-even partition G = G1G2G3 for G and satisfies the following conditions (1)-(5):

(1) alphabet(G) = alphabet(G1G2G3).
(2) G2 is obtained from G2 by replacing some characters with spaces and every non-

space character appears at most once in G2.
(3) G1 is obtained from G1 by changing all G characters that also appear in G2 into

spaces.
(4) G3 is obtained from G3 by changing all G3 characters that also appear in G2 into

spaces.
(5) G2 has no common non-space character with either G1 or G3.
We now show the following lemmas.

Lemma 7.7. Let c, k, d be positive integers. Assume that G is a space-permitted genome
with span(g,G) ≤ c for every character g in G, and G only has spaces at the first kc positions
and spaces at the last kc positions. If |G| > 2(k + 4)c and (k + 2)c < d < |G| − (k + 2)c,
then G has at least one exact (2c, d)-split and for every exact (2c, d)-split G1, G2, G3 for G,
G2 has at least one non-space character.

Proof: For (k + 2)c < d < |G| − (k + 2)c, it is easy to see that G has a subsequence S
of length 2c that starts from the d-th position in G and has no space character. For every
subsequence S of length 2c of G, if S has no space character, it has at least one character in
G that only appears in the region of S since span(g,G) ≤ c for every character g in G.

Lemma 7.8. Let c be a positive constant. There exists an O(n2c+1+ε) time algorithm
such that, given two space-permitted genomes/sequences G and H, it returns enbs(G,H),
if shift(g,G,H) ≤ c for each non-space character g, G and H only have spaces at the first
and last 4c positions, and |G| ≥ 16c and |H| ≥ 16c.

81

Proof: Since shift(g,G,H) ≤ c for every gene/character g in G orH, we have span(g,G) ≤
2c and span(g,H) ≤ 2c for every character g in G or H.

Algorithm
B(G,H)
Input: G,H are two space-permitted genomes.
assume that |G| ≤ |H|;
let s = 0 and d = b|G|/2c;
for every exact (2c, d)-split G1, G2, G3 of G
begin

for every exact (2c, d)-split H1, H2, H3 of H
begin

if the length of G and H is ≤ log n
then compute enbs(G,H) by brute-force;
else let s = B(G1G2, H1H2) +B(G2G3, H2H3)−B(G2, H2);

if (s < s′) then s = s′;
end

end
return s;

End of Algorithm
Following the divide-and-conquer method, it is easy to see that G1G2, H1H2, G2G3

and H2H3 have spaces in the first and last 2c positions. This is because span(g,G) ≤
2c, span(g,H) ≤ 2c for every character g. B(G2, H2) can be determined by a linear scan,
since both of them are exemplar. The computational time is determined by the recurrence
relation: T (n) = (22c + 2c)(2T (n

2
+ 2c) +O(n)), which has solution T (n) = O(n2c+1+ε) as we

show in the Lemma 7.4.

Finally, we have the following theorem.

Theorem 7.9. Let c be a positive constant. There exists an O(3bt/3cn2c+1+ε) time algorithm
such that given two genomes G and H with a total of t genes g satisfies shift(g,G,H) > c, it
returns enbs(G,H).

The idea to prove this theorem is as follows. We consider all possible ways to replace
every gene g, shift(g,G,H) > c, with space in G and H, while keeping one occurence of g in G
and H. For each pair of such resulting G ′ and H′, we consider to use the agorithm in Lemma
5 to compute enbs(G ′,H′). Notice that we may have spaces not only in the two ends but also
in the middle of G ′ or H′. However, we can modify the method of selecting exact (c, d)-splits
for the two genome. The new method is to start at the middle position of G ′ (or H′) to find
the nearest non-space gene either in the right part or the left of the middle position. Say,
such a gene is u in the right part of the middle position of H′. Then, we determine H2 by
including c positions to the right of u and also including c or more positions to the left to
make sure that the middle position is also included. The rest part in the left of H2 is H1,
and the rest in the right of H2 is H3. It is easy to see that the numnber of genes (not spaces)
in H2 is no more than 2c. Similarly, we can determine an even partition for G1. Notice also
that spaces do not contribute to constructing exact (c, d)-splits. Therefore, enbs(G ′,H′) can
be computed, following the spirit of the algorithm in Lemma 5.

82

Summary We have defined a new measure—non-breaking similarity of genomes and have
proved that the exemplar version of the problem does not admit an approximation of factor
n1−ε, and moreover, the problem is W[1]-complete. On the other hand, we have presented
polynomial time algorithms for several practically interesting cases.

83

Chapter 8

Concluding Remarks and Future Work

8.1 Concluding Remarks

In this dissertation some structure and sequence analysis related bioinformatics prob-
lems are discussed. Some algorithms are presented, experiments are performed and the
algorithms are evaluated on the basis of experimental results and/or theoretical analysis.

In Chapter 2 a graph based algorithm with two phases is proposed for the pairwise
protein structure alignment. The algorithm is RMSD flexible in that it allows the user
to define a reasonable maximum RMSD value for it. To test the performance of this
preliminary algorithm, two sets with 30 pairs of protein backbone chains are established and
tests are performed to compare our algorithm with two famous algorithms, DaliLite and CE.
The results show that in many cases our algorithm obtains a larger Nmat when the RMSD
is the same or smaller.

Chapter 3 improves the preliminary algorithm by introducing the concept of “double-
center stars” and the self-learning strategy. The updated algorithm is tested on a much
stricter basis. Various test sets from related papers are collected, 224 pairs of chains are
used, and the algorithm is compared with DaliLite, CE and SSM (another widely used
protein structure alignment tool). According to the results, the updated algorithm shows
better performance than the preliminary one. In most cases, when compared with DaliLite,
CE and SSM, the Nmat of our algorithm is larger when its RMSD is the same or smaller, and
interestingly, this trend is more obvious in the cases where the structural similarities between
the test chain pairs are weak. The algorithm has been implemented as a web alignment tool
and is available for public access at http://fpsa.cs.uno.edu/ with a mirror web site at
http://fpsa.cs.panam.edu/FPSA/.

Supported by the above protein structure alignment algorithm, in Chapter 4 an al-
gorithm for finding similar structures with a given structure in the Protein Data Bank is
developed. It first designs a series of filters to scan the whole database and exclude those
dissimilar structures step by step, and then with the help of an optimized structure align-
ment algorithm, it selects and ranks those structures that are most similar to the query
structure. The filters narrow down the search space from over 100,000 chains to 20,000,
2,000 and finally several hundred in average. Also, with our model of comparison with
other tools and 88 protein chains from different categories, the performance of our algorithm
is compared with SSM. The experiments indicate that our algorithm misses fewer similar
structures than SSM does, when the similarity is measured by both the maximum Q-score

84

and the average Q-score, where Q-score is a measurement proposed by SSM to evaluate the
similarity between protein chain pairs. Our web query tool is available for public access at
http://fpsa.cs.panam.edu/FPSQ/.

The development of the above algorithms brings an interesting problem about the
calculation of the diameter of a 3-D sequence of points, which is discussed in Chapter 5. A
series of deterministic, zero-error and bounded-error randomized algorithms are presented
to approximate the diameter in sub-linear time, and a class of tight separations about the
computational capability of each approximate algorithm is obtained. Interestingly enough,
these discoveries originated from our protein structure alignment research become a bridge
connecting our work and the field of computational complexity theory.

Although the primary effort of this dissertation is on protein structure alignment and
its extended problems, it also discusses some sequence analysis related topics. In Chapter 6
a probabilistic model and some algorithms are proposed for reconstructing haplotypes from
SNP matrices with both incomplete and inconsistent errors. Two copies of the haplotypes
are randomly selected and other copies are classified according to their distances to those two
class centers. The classification is repeated a number of times to ensure that each of the two
centers belongs to a different haplotype. The experiments with simulated data show both
high accuracy and high speed of our algorithms, which conform with the provable theoretical
efficiency and accuracy of the algorithms.

In Chapter 7 the problem of genome comparison is studied based on the non-breaking
similarity. The concept of non-breaking similarity is introduced as the complement of tra-
ditional breakpoint distance, and the problem of computing exemplar breakpoint distance,
a minimization problem, is converted to maximizing the number of non-breaking points
between genomes. Since the Independent Set problem can be linearly reduced to this prob-
lem, it is proved that the exemplar non-breaking similarity problem does not admit any
factor-n1−ε approximation unless P=NP, and the problem is also W[1]-complete. Further,
for several practically interesting cases of the Exemplar Non-breaking Similarity problem,
some polynomial time algorithms are presented.

8.2 List of Publications

The research effort put forth in this dissertation has resulted in the following publi-
cations:

1. “A Flexible algorithm for pairwise protein structure alignment”, Zhiyu Zhao and Bin
Fu, Proceedings International Conference on Bioinformatics and Computational Biol-
ogy 2007 (see also [103]).

2. “Feedback Algorithm and Web-Server for Protein Structure Alignment”, Zhiyu Zhao,
Bin Fu, Francisco J. Alanis and Christopher M. Summa, Journal of Computational
Biology, June 2008; a compact version is to be presented in the 7th Annual International
Conference on Computational Systems Bioinformatics (CSB’08)) (see also [104]).

3. “New Algorithm and Web Server for Finding Proteins with Similar 3D Structures”,
Zaixin Lu, Zhiyu Zhao, Sergio Garcia and Bin Fu, accepted by the 2008 International
Conference on Bioinformatics & Computational Biology (BIOCOMP’08) (see also [71]).

85

4. “Separating Sublinear Time Computations by Approximate Diameter”, Bin Fu and
Zhiyu Zhao, accepted by the second Annual International Conference on Combinatorial
Optimization and Applications (COCOA’08) (see also [42]).

5. “Linear Time Probabilistic Algorithms for the Singular Haplotype Reconstruction
Problem from SNP Fragments”, Zhixiang Chen, Bin Fu, Robert Schweller, Boting
Yang, Zhiyu Zhao and Binhai Zhu, Journal of Computational Biology, June 2008; a
preliminary version was presented in the Proceedings of The Sixth Asia Pacific Bioin-
formatics Conference (APBC’08) (see also [23]).

6. “Non-breaking Similarity of Genomes with Gene Repetitions”, Zhixiang Chen, Bin Fu,
Jinhui Xu, Boting Yang, Zhiyu Zhao and Binhai Zhu, Proceedings of 18th Annual
Symposium on Combinatorial Pattern Matching (CPM’07), LNCS 4580 (see also [24]).

8.3 Future Work

There is still a long way to go within the research scope covered in this dissertation,
since it deals with some fundamental problems in Bioinformatics. Regarding the structure
analysis area, considering other useful information such as sequence information, secondary
structures and side chain information may be possible ways to improve our current pro-
tein structure alignment approach. Also, the speed performance of our protein structure
alignment and query tools can be improved by applying those discussed methods. The im-
provements will increase the usability and reliability of our tools. In addition, the sublinear
time algorithms for approximating the diameter of a sequence of points in a metric space
may be used to solve other related problems, such as the furthest neighbor problem which is
extensively applied in database and streaming applications. Furthermore, it is well known
that the multiple protein structure alignment problem is NP-hard. We have found that our
approach for the pairwise protein structure alignment, in which a clique can be well approxi-
mated by a star, can bring efficient heuristic algorithms for the multiple structure alignment.
We will make efforts in attacking this difficult problem. Protein structure prediction, one of
the most challenging problems in Bioinformatics, is also a very interesting research topic that
I would like to pursue in my scientific career. Regarding the sequence analysis problems in
this dissertation, it should be pointed out that the work about haplotype reconstruction can
be extended to reconstructing multiple haplotypes from a set of fragments. Our approach
also opens a door to develop probabilistic methods for other variants of the haplotyping
problem involving both inconsistency and incompleteness errors. Also, the polynomial time
algorithms for several practically interesting cases discussed in the genome rearrangement
chapter inspire us to develop applicable algorithms for other similar problems. In practice,
the practical datasets usually have some special properties so those negative results might
not hold. Working along this line may be a good way to discover efficient and useful methods
for attacking some difficult bioinformatics problems.

86

Bibliography

[1] http://www.rcsb.org/pdb/home/home.do.

[2] http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide.

[3] http://en.wikipedia.org/.

[4] http://scop.mrc-lmb.cam.ac.uk/scop/.

[5] http://www.ebi.ac.uk/DaliLite/index.html.

[6] http://cl.sdsc.edu/ce/ce_align.html.

[7] http://www.ebi.ac.uk/msd-srv/ssm/cgi-bin/ssmserver.

[8] http://www.wwpdb.org/.

[9] M. S. Alessandro Panconesi. Fast hare: A fast heuristic for single individual snp hap-
lotype reconstruction. In Algorithms in Bioinformatics, 4th International Workshop,
WABI 2004, Lecture Notes in Computer Science 3240, pages 266–277, 2004.

[10] N. N. Alexandrov and D. Fischer. Analysis of topological and montopological structural
similarities in the pdb: new examples from old structures. Proteins, 25:354–365, 1996.

[11] C. B. Anfinsen. Principles that govern the folding of protein chains. Science, 181:223–
230, 1973.

[12] M. Badoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility location in sublinear time.
In Proceedings of 32nd Annual International Colloquium on Automata, Languages and
Programming, pages 866–877, 2005.

[13] V. Bafna, S. Istrail, G. Lancia, and R. Rizzi. Polynomial and apx-hard cases of the
individual haplotyping problem. Theoretical Computer Science, 335:109–125, 2005.

[14] G. Blin and R. Rizzi. Conserved interval distance computation between non-trivial
genomes. In Proc. 11th Intl. Ann. Comput. and Combinatorics (COCOON’05), LNCS
3595, pages 22–31, 2005.

[15] D. Bryant. The complexity of calculating exemplar distances, In D. Sankoff and J.
Nadeau, editors, Comparative Genomics: Empirical and Analytical Approaches to
Gene Order Dynamics, Map Alignment. Kluwer Acad. Pub., 2000.

87

[16] O. Camoglu, T. Kahveci, and A. K. Singh. Psi: Indexing protein structures for fast
similarity search. In Proceedings of Elventh International Conference on Intelligent
Systems for Molecular Biology, pages 81–83, 2003.

[17] C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Genomes containing duplicates are hard
to compare. In Proc. 2nd Intl. Workshop on Bioinformatics Research and Applications
(IWBRA’06), LNCS 3992, pages 783–790, 2006.

[18] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. SIAM Journal
on Computing, 35:627–646, 2005.

[19] B. Chazelle, R. Rubfinfeld, and L. Trevisan. Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on computing, 34:1370–1379, 2005.

[20] J. Chen, X. Huang, I. Kanj, and G. Xia. Linear fpt reductions and computational lower
bounds. In Proc. 36th ACM Symp. on Theory Comput. (STOC’04), pages 212–221,
2004.

[21] L. Chen and B. Fu. Linear and sublinear time algorithms for the basis of abelian
groups. Electronic Colloquium on Computational Complexity, TR07-052, 2007.

[22] Z. Chen, B. Fu, R. Fowler, and B. Zhu. Lower bounds on the application of the
exemplar conserved interval distance problem of genomes. In Proc. 12th Intl. Ann.
Comput. and Combinatorics (COCOON’06), LNCS 4112, pages 245–254, 2006.

[23] Z. Chen, B. Fu, R. Schweller, B. Yang, Z. Zhao, and B. Zhu. Linear time probabilis-
tic algorithms for the singular haplotype reconstruction problem from snp fragments.
Journal of Computational Biology, 15(5):535 – 546, June 2008. (A preliminary version
was presented in the Proceedings of The Sixth Asia Pacific Bioinformatics Conference
(APBC’08), pages 333–342).

[24] Z. Chen, B. Fu, J. Xu, B. Yang, Z. Zhao, and B. Zhu. Non-breaking similarity of
genomes with gene repetitions. In Proceedings of 18th Annual Symposium on Combi-
natorial Pattern Matching (CPM’07), LNCS 4580, pages 119–130, 2007.

[25] Z. Chen, B. Fu, and B. Zhu. The approximability of the exemplar breakpoint dis-
tance problem. In Proc. 2nd Intl. Conf. on Algorithmic Aspects in Information and
Management (AAIM’06), LNCS 4041, pages 291–302, 2006.

[26] L. P. Chew, K. Kedem, D. P. Huttenlocher, and J. Kleinberg. Fast detection of ge-
ometric substructure in proteins. Journal of Computational Biology, 6(3–4):313–325,
1999.

[27] P.-H. Chi, G. Scott, and C.-R. Shyu. A fast protein structure retrieval system using
image-based distance matrices and multidimensional index. In Proceedings of the 4th
IEEE Symposium on Bioinformatics and Bioengineering, pages 522–532, 2004.

88

[28] R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. On the complexity of several
haplotyping problems. In Algorithms in Bioinformatics, 5th International Workshop,
WABI 2005, Lecture Notes in Computer Science, volume 3692, pages 128–139, 2005.

[29] A. Clark. Inference of haplotypes from pcr-amplified samples of diploid populations.
Molecular Biology Evolution, 7:111–122, 1990.

[30] A. Czumaj, F. Ergun, L. Fortnow, I. N. A. Magen, R. Rubinfeld, and C. Sohler. Sublin-
ear approximation of euclidean minimum spanning tree. SIAM Journal on Computing,
35:91109, 2005.

[31] A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees
in sublinear-time. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 175–183, 2004.

[32] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[33] P. Drineas and R. Kannan. Fast monte-carlo algorithms for approximate matrix mul-
tiplication. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, page 452459, 2001.

[34] D. Eggert, A. Lorusso, and R. Fisher. A comparison of four algorithms for estimating
3-d rigid transformations. In British Machine Vision Conference, pages 237–246, 1995.

[35] I. Eidhammer, I. Jonassen, and W. R. Taylor. Protein Bioinformatics: An Algorithmic
Approach to Sequence and Structure Analysis. John Wiley and Sons, 2004.

[36] A. Falicov and F. E. Cohen. A surface of minimum area metric for the structureal
comparison of protein. Journal of Molecular Biology, 258:871–892, 1996.

[37] U. Feige. On sumes of independent random variables with unbounded variance and
estimating the average degree in a graph. SIAM Journal on Computing, 35:964–984,
2006.

[38] D. Fischer, A. Elofsson, D. Rice, and D. Eisenberg. Assessing the performance of fold
recognition methods by means of a comprehensive benchmark. In Proc. 1st Pacific
Symposium on Biocomputing, pages 300–318, 1996.

[39] D. Fischer, R. Nussinov, and H. Wolfson. 3d substructure matching in protein
molecules. In Proc. 3rd Intl Symp. Combinatorial Pattern Matching, LNCS 644, pages
136–150, 1992.

[40] E. Fischer. The art of uninformed decision: A primer to property testing. Bulletin of
the EATCS, 75:97–126, 2001.

[41] B. Fu and Z. Chen. Sublinear-time algorithms for width-bounded geometric separators
and their applications to protein side-chain packing problems. Accepted by the Journal
of Combinatorial Optimization, the preliminary version was presented in AAIM’06,
Lecture Notes in Computer Science 3328, pages 149-160.

89

[42] B. Fu and Z. Zhao. Separating sublinear time computations by approximate diameter.
In the second Annual International Conference on Combinatorial Optimization and
Applications (COCOA’08), 2008. (Accepted).

[43] L. M. Genovese, F. Geraci, and M. Pellegrini. A fast and accurate heuristic for the
single individual SNP haplotyping problem with many gaps, high reading error rate
and low coverage. Algorithms in Bioinformatics, 4645:49–60, 2007.

[44] A. Godzik. The structural alignment between two proteins: Is there a unique answer?
Protein Science, 5:1325–1338, 1996.

[45] O. Goldreich. Combinatorial proterty testing (a survey). In In P. Pardalos, S. Ra-
jasekaran, and J. Rolim editors, Proceesdings of the DIMACS workshop on radnomzi-
ation methods in algorithm design, volume 43 of DIMACS, series in Discrete Mathe-
matics and Theoretical Computer Science, pages 45–59, 1997.

[46] O. Goldreich. Property testing in massive graphs. In J. Abello, P. M. Pardalos, and
M. Resende, editor, Handbook of massive data sets, pages 123–147, 2002.

[47] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs.
Technical Report 00-20, Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/, 2000.

[48] O. Goldreich and D. Ron. Approximating average parameters of graphs.
Technical Report 05-73, Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/, 2005.

[49] D. Gusfield. A practical algorithm for optimal inference of haplotype from diploid
populations. pages 183–189, 2000.

[50] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In the Sixth Annual International Conference on Computational Biology,
pages 166–175, 2002.

[51] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999.

[52] J. Hastad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142,
1999.

[53] M. Hoehe, K. Kopke, B. Wendel, K. Rohde, C. Flachmeier, K. Kidd, W. Berrettini,
and G. Church. Sequence variability and candidate gene analysis in complex disease:
association of opioid receptor gene variation with substance dependence. Human
Molecular Genetics, 9(19):2895–2908, 2000.

[54] L. Holm and C. Sander. Protein structure comparison by alignment of distance ma-
trices. Journal of Molecular Biology, 233:123–138, 1993.

90

[55] V. A. Ilyin, A. Abyzov, and C. M.Leslin. Structural alignment of proteins by a novel
topofit method, as a superimposition of common volumes at a topomax point. Protein
Science, 13:1865–1874, 2004.

[56] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal common
subtopolgies in a set of protein structures. Journal of Computational Biology, 3-2:289–
306, 1996.

[57] R. Kolodny, P. Koehl, and M. Levitt. Comprehensive evaluation of protein structure
alignment methods: scoring by geometric measures. Journal of Molecular Biology,
346(4):1173–1188, 2005.

[58] R. Kolodny, N. Linial, and M. Levitt. Approximate protein structural alignment in
polynomial time. Proceedings of the National Academy of Sciences of the United States
of America, 101(33):12201–12206, 2004.

[59] E. Krissinel and K. Henrick. Secondary-structure matching (ssm), a new tool for fast
protein structure alignment in three dimensions. Acta Crystallographica, D60:2256–
2268, 2004.

[60] R. Kumar and R. Rubinfeld. Sublinear time algorithms. SIGACT News, 34:57–67,
2003.

[61] G. Lancia, M. C. Pinotti, and R. Rizzi. Haplotyping polulations by purs parsimongy:
complexity and algorithms. INFORMS Journal on computing, 16:348–359, 2004.

[62] G. Lancia and R. Rizzi. A polynomial solution to a special case of the parsimongy
haplotyping problem. Operations Research letters, 34:289–295, 2006.

[63] R. H. Lathrop. The protein threading problem with sequence amino acid interaction
preferences is np-complete. Protein Engineering, 7:1059–1068, 1994.

[64] A. M. Lesk. Introduction to Bioinformatics. Oxford University Press Inc., 2002.

[65] U. Lessel and D. Schomburg. Similarities between protein 3-d structures. Protein
Engineering, 7(10):1175–1187, 1994.

[66] M. Levitt. Growth of novel protein structural data. Proceedings of the National
Academy of Sciences of the United States of America, 104:3183–3188, 2007.

[67] L. Li, J. H. Kim, and M. S. Waterman. Haplotype reconstruction from SNP alignment.
Journal of Computational Biology, 11(2–3):507–518, 2004.

[68] M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal of
the ACM, 49(2):157–171, 2002.

[69] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic stragegies for the single
nucleotide polymorphism haplotype assembly problem. Briefings in bioinformatics,
3:23–31, 2002.

91

[70] W. Liu, F. Mao, L. Lai, and Y. Han. Protein fold recognition based on structural
classification. Acta Biophysica Sinica, 15:126–136, 1999.

[71] Z. Lu, Z. Zhao, S. Garcia, and B. Fu. New algorithm and web server for finding proteins
with similar 3d structures. In the 2008 International Conference on Bioinformatics &
Computational Biology (BIOCOMP’08), 2008. (Accepted).

[72] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of protein cores.
Proteins, 23:356–369, 1995.

[73] K. Mizguchi and N. Go. Comparison of spatial arrangements of secondary structural
elements in proteins. Protein Eng., 8:353–362, 1995.

[74] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
2000.

[75] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a structural classifi-
cation of proteins database for the investigation of sequences and structures. Journal
of Molecular Biology, 247:536–540, 1995.

[76] C. Nguyen, Y. Tay, and L. Zhang. Divide-and-conquer approach for the exemplar
breakpoint distance. Bioinformatics, 21(10):2171–2176, 2005.

[77] e. O. Gascuel. Mathematics of Evolution and Phylogeny. Oxford University Press,
2004.

[78] S. G. O. Goldreich and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45:653750, 1998.

[79] A. Ortiz, C. Strauss, and O. Olmea. Mammoth (matching molecular models ob-
tained from theory): an automated method for model comparison. Protein Science,
11(11):2606–2621, 2002.

[80] G. A. Petsko and D. Ringe. Protein Structure and Function. New Science Press, 2004.

[81] R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-parameter
tractability for the single individual snp haplotyping problem. In Algorithms in Bioin-
formatics: Second International Workshop, WABI 2002, Rome, Italy, September 17-
21, pages 29–43, 2002.

[82] D. Ron. Handbok of randomzied algorithm. Bulletin of the EATCS, II:597–649, 2001.

[83] S. D. Rufino and T. L. Blundell. Structure-based identification and clustering of protein
families and superfamilies. Journal of Comput. Aided. Mol. Dec., 233:123–138, 1994.

[84] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 16(11):909–917,
1999.

[85] I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental com-
binatorial extension (ce) of the optimal path. Protein Engineering, 11:739–747, 1998.

92

[86] A. P. Singh and D. L. Brutlag. Hierarchical protein superposition using both secondary
structure and atomic representation. In Proc. Intelligent Systems for Molecular Biol-
ogy, pages 284–293, 1997.

[87] A. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of wild races
of drosophila pseudoobscura, and their use in the study of the history of the species.
Proceedings of the National Academy of Sciences of the United States of America,
22:448–450, 1936.

[88] W. R. Taylor. Protein structure comparison using iterated double dynamic program-
ming. Protein Science, 9:654–665, 1999.

[89] W. R. Taylor and C. Orengo. Protein structure alignment. Journal of Molecular
Biology, 208(1):1–22, 1989.

[90] J. Terwilliger and K. Weiss. Linkage disquilibrium mapping of complex disease: fantasy
and reality? Current Opinion in Biotechnology, 9(6):578–594, 1998.

[91] W. F. Trench. Advanced Calculus. Harper & Row, New York, 1978.

[92] S. Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(4):376–380, 1991.

[93] R.-S. Wang, L.-Y. Wu, Z.-P. Li, and X.-S. Zhang. Hyplotype reconstruction from SNP
fragments by minimum error correction. BioInformatics, 21(10):2456–2462, 2005.

[94] R.-S. Wang, L.-Y. Wu, X.-S. Zhang, and L. Chen. A markov chain model for haplotype
assembly from SNP fragments. Genome Informatics, 17(2):162–171, 2006.

[95] G. Watterson, W. Ewens, T. Hall, and A. Morgan. The chromosome inversion problem.
J. Theoretical Biology, 99:1–7, 1982.

[96] M. Xie and J. Wang. An improved (and practical) parameterized algorithm for the
individual haplotyping problem MFR with mate-pairs. Algorithmica (online), 2007.

[97] J. Ye, R. Janardan, and S. Liu. Pairwise protein structure alignment based on an
orientation-independent backbone representation. Journal of Bioinformatics and Com-
putational Biology, 4(2):699–717, 2005.

[98] Y. Ye and A. Godzik. Database searching by flexible protein structure alignment.
Protein Science, 13(7):1841–1850, 2004.

[99] G. Yona and K. Kedem. The urms-rms hybrid algorithm for fast and sensitive local
protein structure alignment. Journal of Computational Biology, 12:12–32, 2005.

[100] X.-S. Zhang, R.-S. Wang, L.-Y. Wu, and W. Zhang. Minimum conflict individual
haplotyping from SNP fragments and related genotype. Evolutionary Bioinformatics
Online, 2:271–280, 2006.

93

[101] Y. Zhang and J. Skolnick. Tm-align: a protein structure alignment algorithm based
on the tm-score. Nucleic Acids Research, 33:2302–2309, 2005.

[102] Y. Zhao, L. Wu, J. Zhang, and X. Z. R. Wang. Haplotype assembly from aligned
weighted SNP fragments. Computational Biology and Chemistry, 29:281–287, 2005.

[103] Z. Zhao and B. Fu. A flexible algorithm for pairwise protein structure alignment. In
Proceedings International Conference on Bioinformatics and Computational Biology
2007, pages 16–22, 2007.

[104] Z. Zhao, B. Fu, F. J. Alanis, and C. M. Summa. Feedback algorithm and web-server
for protein structure alignment. Journal of Computational Biology, 15(5):505 – 524,
June 2008. (A compact version is to be presented in the 7th Annual International
Conference on Computational Systems Bioinformatics (CSB’08)).

[105] M. Zimand. On derandomizing probabilistic sublinear-time algorithms. In Proceedings
of the 22nd IEEE conference on computational complexity, pages 1–9, 2007.

94

Chapter A

Appendix

A.1 Some Tables in Chapter 3

See Tables A.1 through A.3 for result details of Figure 3.4.

A.2 A Table in Chapter 4

See Table A.4 for result details of 88 protein queries.

A.3 Some Details in Chapter 5

Corollary A.1. Assume that c is a positive constant, d is a fxied dimension number, α
is a constant in (0, 1), and ε is a small constant greater than 0. Let t be a positive real
number. Then there exists a deterministic O(n

m
+ (1

ε2d
))-time algorithm such that given an

ε(1 − α)m/2-reliable-rearrangement sequence B for a t-sequence A of n points in Rd with
diameter at least m · t, it outputs a number x with (1− ε)diameter(A) ≤ x ≤ diameter(A).

Proof: We just need to prove that for any constant δ ∈ (0, 1), there exists an O(k+(1
δ2d

))
time (1 − δ)-factor approximate algorithm AppRd to compute the diameter of k points set
H in Rd. Let d be a fixed dimensional number. Find a 1

2
-factor approximate diameter D of

H (see the proof of Corollary 5.4). The approximate diameter D can be found in time O(k)
as described in the proof of Corollary 5.4. There exists a (4D)d cube region G that contains
all points in H. Partition G into small cubes of size (δD

2
√
d
)d. For each cube C that contains

points in H, select one point from H ∩C and put it into set Q. The number of small cubes
of size (δD

2
√
d
)d in G is at most O((1

δ
)d) since d is fixed. We have |Q| = O((1

δ
)d). Compute the

diameter of Q by brute force method in time O(|Q|2).

Lemma A.2. For any even number n and two numbers p1 < p2 in R1, there exists a
dist(p2, p1)-sequence S = p1q1q2 · · · qn−2p2 in R1 such that p1 < qi for i = 1, · · · , n − 2

and diameter(S) ≥ n·dist(p1,p2)
2

. The sequence S is denoted as unfoldingR1(p1, p2, n).

95

Table A.1: Comparing SLIPSA with CE

CE SLIPSA CE SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

136 48/5.2 79/5.2 64.58/0.00 62 84/4.5 87/4.5 3.57/0.00
73 56/4.6 92/4.4 64.29/4.35 139 84/3.5 87/3.5 3.57/0.00
135 56/4.5 81/4.3 44.64/4.44 13 253/2.6 262/2.6 3.56/0.00
221 64/5.3 90/5.2 40.63/1.89 143 116/3.9 120/3.9 3.45/0.00
61 171/3.9 227/3.9 32.75/0.00 37 366/3.4 378/3.4 3.28/0.00
20 54/4 70/4 29.63/0.00 210 92/2 95/2 3.26/0.00
133 56/7.3 71/7.3 26.79/0.00 10 248/2.4 256/2.4 3.23/0.00
88 80/5.4 101/5.3 26.25/1.85 174 124/4.2 128/4.1 3.23/2.38
182 80/6 101/6 26.25/0.00 170 125/4 129/4 3.20/0.00
180 80/6 100/6 25.00/0.00 82 97/2.9 100/2.9 3.09/0.00
90 64/7 78/6.6 21.88/5.71 87 130/3.1 134/3.1 3.08/0.00
179 88/4.5 107/4.5 21.59/0.00 51 394/3.1 406/3.1 3.05/0.00
181 62/3.9 75/3.9 20.97/0.00 31 133/1.8 137/1.8 3.01/0.00
131 72/5 86/4.9 19.44/2.00 162 139/2.3 143/2.3 2.88/0.00
127 80/4.1 95/4 18.75/2.44 134 70/2.7 72/2.7 2.86/0.00
138 48/2.9 56/2.9 16.67/0.00 151 140/2.1 144/2.1 2.86/0.00
107 54/3 62/2.9 14.81/3.33 77 107/3.9 110/3.9 2.80/0.00
100 97/5.6 111/5.6 14.43/0.00 166 114/3.8 117/3.8 2.63/0.00
176 88/4.3 100/4.3 13.64/0.00 56 115/3.2 118/3.2 2.61/0.00
178 75/4.4 85/4.3 13.33/2.27 89 115/3.2 118/3.2 2.61/0.00
95 115/5.8 130/5.7 13.04/1.72 8 236/2.5 242/2.5 2.54/0.00
177 62/3.8 70/3.8 12.90/0.00 122 40/5.3 41/5.3 2.50/0.00
129 48/3.6 54/3.5 12.50/2.78 80 84/2.9 86/2.9 2.38/0.00
142 80/4.1 90/4.1 12.50/0.00 6 257/2.7 263/2.7 2.33/0.00
224 56/5.5 63/5.3 12.50/3.64 154 137/2.1 140/1.9 2.19/9.52
36 48/4.3 53/4.3 10.42/0.00 158 137/2.1 140/1.9 2.19/9.52
92 107/4.2 118/4.2 10.28/0.00 125 92/4 94/3.9 2.17/2.50
200 78/3.2 86/3.2 10.26/0.00 209 92/2 94/2 2.17/0.00
104 71/3.2 78/3.1 9.86/3.13 70 187/2.4 191/2.4 2.14/0.00
103 64/2.6 70/2.6 9.38/0.00 64 94/4.1 96/4 2.13/2.44
19 111/4.2 120/4.2 8.11/0.00 97 94/4.1 96/4 2.13/2.44
130 64/4 69/4 7.81/0.00 29 97/1.9 99/1.9 2.06/0.00
141 64/4.4 69/4.2 7.81/4.55 23 98/2.2 100/2.2 2.04/0.00
69 76/2 81/2 6.58/0.00 47 50/1.1 51/1.1 2.00/0.00
169 117/3.5 124/3.5 5.98/0.00 71 104/4.3 106/4.3 1.92/0.00
84 275/3 291/3 5.82/0.00 46 159/2 162/2 1.89/0.00
219 86/2.2 91/2.1 5.81/4.55 44 54/1.9 55/1.8 1.85/5.26
98 94/4.3 99/4.1 5.32/4.65 165 112/3 114/3 1.79/0.00
4 302/1.5 318/1.5 5.30/0.00 18 244/3 248/3 1.64/0.00
65 268/3.1 282/3.1 5.22/0.00 28 122/1.9 124/1.9 1.64/0.00
99 97/5.4 102/5.4 5.15/0.00 43 61/3 62/3 1.64/0.00
96 117/4.3 123/4.2 5.13/2.33 111 61/3.2 62/3.1 1.64/3.13
183 62/4.4 65/4.4 4.84/0.00 137 61/2.7 62/2.7 1.64/0.00
76 64/3.8 67/3.5 4.69/7.89 172 122/3.8 124/3.8 1.64/0.00
173 130/4.9 136/4.9 4.62/0.00 94 124/2.7 126/2.7 1.61/0.00
48 87/1.9 91/1.9 4.60/0.00 7 259/2.7 263/2.7 1.54/0.00
211 92/2.1 96/2.1 4.35/0.00 49 266/3 270/3 1.50/0.00
214 92/2.5 96/2.4 4.35/4.00 160 133/1.9 135/1.7 1.50/10.53
168 117/3.3 122/3.3 4.27/0.00 66 68/2.3 69/2.2 1.47/4.35
101 118/5 123/4.9 4.24/2.00 150 141/1.9 143/1.9 1.42/0.00
171 119/3.5 124/3.5 4.20/0.00 202 71/2.6 72/2.5 1.41/3.85
208 97/2.4 101/2.4 4.12/0.00 205 71/2.7 72/2.7 1.41/0.00
116 25/1.3 26/1.3 4.00/0.00 147 143/1.6 145/1.6 1.40/0.00
11 253/2.6 263/2.6 3.95/0.00 204 73/3.1 74/3 1.37/3.23
52 156/1.9 162/1.9 3.85/0.00 206 79/3.3 80/3.3 1.27/0.00
74 78/1.7 81/1.7 3.85/0.00 42 80/1.8 81/1.7 1.25/5.56

96

(table A.1 continued)

CE SLIPSA CE SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

132 80/3.3 81/3.3 1.25/0.00 121 55/1.5 55/1.5 0.00/0.00
12 252/2.2 255/2.2 1.19/0.00 144 152/0.3 152/0.3 0.00/0.00
123 336/1.6 340/1.6 1.19/0.00 145 152/0.5 152/0.5 0.00/0.00
39 177/2.8 179/2.8 1.13/0.00 146 153/0.6 153/0.6 0.00/0.00
26 280/2.2 283/2.2 1.07/0.00 148 141/1.6 141/1.5 0.00/6.25
207 101/2.3 102/2.3 0.99/0.00 152 137/1.6 137/1.5 0.00/6.25
79 108/3.6 109/3.3 0.93/8.33 155 138/1.6 138/1.6 0.00/0.00
83 219/3.8 221/3.8 0.91/0.00 156 137/1.7 137/1.6 0.00/5.88
167 111/3.1 112/3.1 0.90/0.00 157 136/1.7 136/1.6 0.00/5.88
140 115/4.1 116/4.1 0.87/0.00 161 144/2.2 144/2.2 0.00/0.00
14 252/2.4 254/2.4 0.79/0.00 164 141/2.2 141/2.2 0.00/0.00
22 383/2.8 386/2.8 0.78/0.00 175 117/3.2 117/3.2 0.00/0.00
159 138/2 139/2 0.72/0.00 184 105/0.4 105/0.4 0.00/0.00
149 141/1.8 142/1.8 0.71/0.00 185 105/0.7 105/0.7 0.00/0.00
153 141/1.8 142/1.8 0.71/0.00 186 105/1.3 105/1.3 0.00/0.00
163 146/2.6 147/2.6 0.68/0.00 187 105/1.3 105/1.3 0.00/0.00
40 154/3 155/3 0.65/0.00 190 105/1.5 105/1.5 0.00/0.00
33 157/3.1 158/3.1 0.64/0.00 191 105/1.5 105/1.5 0.00/0.00
45 415/3.2 417/3.2 0.48/0.00 193 104/1.6 104/1.6 0.00/0.00
60 214/2.4 215/2.4 0.47/0.00 194 104/1.6 104/1.6 0.00/0.00
15 257/3.7 258/3.7 0.39/0.00 198 101/2.1 101/1.9 0.00/9.52
9 259/2.7 260/2.7 0.39/0.00 199 89/3.4 89/3.3 0.00/2.94
50 261/2.4 262/2.4 0.38/0.00 212 96/2.4 96/2.4 0.00/0.00
58 296/3 297/3 0.34/0.00 213 100/3.5 100/3.3 0.00/5.71
1 336/0.3 336/0.3 0.00/0.00 217 96/3.2 96/3.1 0.00/3.13
2 336/0.4 336/0.4 0.00/0.00 223 73/2.6 73/2.5 0.00/3.85
3 336/0.5 336/0.5 0.00/0.00 16 253/3.4 252/3.4 -0.40/0.00
5 254/1.4 254/1.4 0.00/0.00 72 147/3.7 146/3.4 -0.68/8.11
21 128/1.9 128/1.9 0.00/0.00 93 266/2.3 264/2.3 -0.75/0.00
24 69/2.3 69/2.1 0.00/8.70 53 121/2.6 120/2.6 -0.83/0.00
25 96/3.3 96/3.3 0.00/0.00 54 117/1.9 116/1.9 -0.85/0.00
30 346/1.8 346/1.8 0.00/0.00 192 105/1.5 104/1.4 -0.95/6.67
34 68/2 68/1.9 0.00/5.00 188 104/1.5 103/1.4 -0.96/6.67
35 169/3.5 169/3.5 0.00/0.00 189 104/1.5 103/1.4 -0.96/6.67
57 157/3.5 157/3.5 0.00/0.00 195 103/1.8 102/1.6 -0.97/11.11
59 197/3.2 197/3.2 0.00/0.00 196 103/1.8 102/1.7 -0.97/5.56
63 91/1.8 91/1.8 0.00/0.00 197 102/1.6 101/1.5 -0.98/6.25
67 252/4.6 252/4.6 0.00/0.00 218 97/3 96/3 -1.03/0.00
75 249/2.5 249/2.5 0.00/0.00 220 96/3.2 95/3.1 -1.04/3.13
78 84/3.4 84/3.3 0.00/2.94 27 93/2.6 92/2.5 -1.08/3.85
81 81/2.3 81/2.1 0.00/8.70 38 77/3.1 76/2.9 -1.30/6.45
85 87/1.9 87/1.8 0.00/5.26 203 75/3 74/2.9 -1.33/3.33
86 116/2.9 116/2.9 0.00/0.00 222 73/2.6 72/2.6 -1.37/0.00
91 354/0.7 354/0.7 0.00/0.00 55 143/3 141/2.9 -1.40/3.33
102 93/4.5 93/4.5 0.00/0.00 109 64/3.5 63/3.5 -1.56/0.00
105 72/3.5 72/3.4 0.00/2.86 215 97/3 95/2.9 -2.06/3.33
106 65/3 65/3 0.00/0.00 216 97/3 95/2.9 -2.06/3.33
108 46/1.7 46/1.7 0.00/0.00 201 74/2.3 72/2.1 -2.70/8.70
110 38/1.3 38/1.3 0.00/0.00 41 237/3 230/3 -2.95/0.00
112 25/0.8 25/0.8 0.00/0.00 32 201/2.2 195/2.2 -2.99/0.00
113 30/0.9 30/0.9 0.00/0.00 17 256/2.8 247/2.8 -3.52/0.00
114 24/1 24/1 0.00/0.00 118 31/1.5 29/1.5 -6.45/0.00
115 24/0.6 24/0.6 0.00/0.00 68 n/a / /
117 32/1.6 32/1.6 0.00/0.00 124 n/a / /
119 33/0.6 33/0.6 0.00/0.00 126 n/a / /
120 92/1.1 92/1.1 0.00/0.00 128 n/a / /

97

Table A.2: Comparing SLIPSA with DaliLite

DaliLite SLIPSA DaliLite SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

102 75/10.3 124/10.3 65.33/0.00 64 74/1.8 77/1.8 4.05/0.00
36 37/5.3 55/4.6 48.65/13.21 221 77/2.7 80/2.7 3.90/0.00
88 61/3.8 88/3.8 44.26/0.00 79 103/3 107/3 3.88/0.00
133 47/6.7 67/6.7 42.55/0.00 143 104/3.2 108/3.2 3.85/0.00
179 79/4.6 108/4.6 36.71/0.00 125 81/2.8 84/2.8 3.70/0.00
180 71/4.9 93/4.9 30.99/0.00 112 27/2.3 28/2.3 3.70/0.00
19 99/4.9 129/4.9 30.30/0.00 73 82/2.8 85/2.6 3.66/7.14
95 101/5.9 131/5.9 29.70/0.00 175 113/3.2 117/3.2 3.54/0.00
124 180/5.2 227/5.2 26.11/0.00 86 114/3.1 118/3.1 3.51/0.00
176 83/4.4 103/4.4 24.10/0.00 40 147/2.7 152/2.7 3.40/0.00
100 89/6.6 109/6.5 22.47/1.52 111 59/3.1 61/3.1 3.39/0.00
118 27/2.5 33/2.4 22.22/4.00 217 89/2.8 92/2.7 3.37/3.57
20 56/3.4 67/3.4 19.64/0.00 57 149/3 154/3 3.36/0.00
71 82/3.3 98/3.3 19.51/0.00 172 120/3.8 124/3.8 3.33/0.00
181 83/6.7 98/6.6 18.07/1.49 174 121/3.9 125/3.9 3.31/0.00
177 84/7 99/7 17.86/0.00 45 401/3.1 414/3.1 3.24/0.00
109 53/3.2 62/3.2 16.98/0.00 130 62/2.9 64/2.8 3.23/3.45
183 66/6.3 76/6.2 15.15/1.59 141 63/3 65/2.8 3.17/6.67
104 81/5.2 93/5.2 14.81/0.00 107 65/3.7 67/3.7 3.08/0.00
131 67/3.3 76/3.3 13.43/0.00 106 66/3.4 68/3.3 3.03/2.94
61 206/4.1 233/4.1 13.11/0.00 202 69/2.4 71/2.4 2.90/0.00
142 71/3.2 80/3.2 12.68/0.00 222 71/2.8 73/2.7 2.82/3.57
98 64/2.2 72/2.2 12.50/0.00 119 36/3 37/2.8 2.78/6.67
96 116/5.3 130/5.3 12.07/0.00 69 80/2.1 82/2.1 2.50/0.00
132 69/2.8 77/2.8 11.59/0.00 168 121/3.5 124/3.5 2.48/0.00
77 94/3.3 104/3.3 10.64/0.00 84 291/3.3 298/3.3 2.41/0.00
224 50/3.8 55/3.8 10.00/0.00 18 250/3.4 256/3.4 2.40/0.00
182 71/3.7 77/3.7 8.45/0.00 83 211/3.5 216/3.5 2.37/0.00
135 72/3.9 78/3.9 8.33/0.00 127 85/2.9 87/2.9 2.35/0.00
105 65/3.1 70/3.1 7.69/0.00 200 86/3.4 88/3.4 2.33/0.00
62 71/3.2 76/3.2 7.04/0.00 87 131/3.1 134/3.1 2.29/0.00
56 114/3.6 122/3.5 7.02/2.78 48 89/2 91/1.9 2.25/5.00
89 114/3.6 122/3.5 7.02/2.78 63 94/2.6 96/2.3 2.13/11.54
78 75/3 80/3 6.67/0.00 70 188/2.5 192/2.5 2.13/0.00
101 106/4.3 113/4.3 6.60/0.00 59 189/2.9 193/2.9 2.12/0.00
129 47/2.8 50/2.8 6.38/0.00 49 261/2.7 266/2.7 1.92/0.00
199 83/3.2 88/3.2 6.02/0.00 93 262/2.6 267/2.6 1.91/0.00
72 133/3 141/3 6.02/0.00 167 106/2.7 108/2.7 1.89/0.00
103 67/2.8 71/2.8 5.97/0.00 166 106/2.7 108/2.7 1.89/0.00
43 57/2.6 60/2.6 5.26/0.00 138 55/2.9 56/2.9 1.82/0.00
67 260/6.7 273/6 5.00/10.45 123 340/2 346/2 1.76/0.00
178 80/4.1 84/4.1 5.00/0.00 65 285/3.4 290/3.4 1.75/0.00
173 121/4 127/4 4.96/0.00 54 114/2 116/2 1.75/0.00
139 82/3.3 86/3.3 4.88/0.00 58 292/3 297/3 1.71/0.00
92 105/3.1 110/3.1 4.76/0.00 170 117/3.2 119/3.2 1.71/0.00
218 87/2.5 91/2.5 4.60/0.00 75 248/2.6 252/2.6 1.61/0.00
25 88/2.8 92/2.8 4.55/0.00 10 253/2.5 257/2.5 1.58/0.00
220 88/2.7 92/2.7 4.55/0.00 9 253/2.5 257/2.5 1.58/0.00
216 90/2.8 94/2.7 4.44/3.57 22 395/3.5 401/3.5 1.52/0.00
204 68/2.7 71/2.7 4.41/0.00 31 135/2 137/1.8 1.48/10.00
134 70/3 73/2.8 4.29/6.67 158 138/2 140/1.9 1.45/5.00
205 70/2.9 73/2.8 4.29/3.45 37 374/3.5 379/3.5 1.34/0.00
82 97/3.2 101/3.2 4.12/0.00 33 154/3 156/3 1.30/0.00
208 97/2.4 101/2.4 4.12/0.00 206 78/3.2 79/3.2 1.28/0.00
223 73/3 76/3 4.11/0.00 51 412/3.6 417/3.6 1.21/0.00
97 74/1.8 77/1.8 4.05/0.00 35 168/3.6 170/3.6 1.19/0.00

98

(table A.2 continued)

DaliLite SLIPSA DaliLite SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

68 168/2.6 170/2.6 1.19/0.00 120 97/1.9 97/1.9 0.00/0.00
12 256/2.4 259/2.4 1.17/0.00 66 67/1.9 67/1.8 0.00/5.26
85 86/1.9 87/1.8 1.16/5.26 47 56/1.9 56/1.8 0.00/5.26
6 261/2.8 264/2.8 1.15/0.00 74 85/1.9 85/1.9 0.00/0.00
39 174/2.6 176/2.6 1.15/0.00 160 135/1.9 135/1.7 0.00/10.53
13 266/3 269/3 1.13/0.00 30 347/1.9 347/1.9 0.00/0.00
215 90/2.5 91/2.5 1.11/0.00 121 58/1.8 58/1.8 0.00/0.00
212 94/2.2 95/2.2 1.06/0.00 34 67/1.8 67/1.7 0.00/5.56
213 95/2.5 96/2.5 1.05/0.00 108 46/1.7 46/1.7 0.00/0.00
214 95/2.5 96/2.4 1.05/4.00 194 105/1.7 105/1.7 0.00/0.00
209 96/2.3 97/2.3 1.04/0.00 42 80/1.7 80/1.6 0.00/5.88
210 96/2.3 97/2.3 1.04/0.00 147 145/1.7 145/1.6 0.00/5.88
29 96/1.6 97/1.6 1.04/0.00 4 323/1.7 323/1.7 0.00/0.00
32 194/2.3 196/2.3 1.03/0.00 157 136/1.7 136/1.6 0.00/5.88
23 97/1.9 98/1.9 1.03/0.00 156 137/1.7 137/1.6 0.00/5.88
41 224/2.8 226/2.8 0.89/0.00 193 104/1.6 104/1.6 0.00/0.00
53 118/2.5 119/2.5 0.85/0.00 191 105/1.5 105/1.5 0.00/0.00
169 119/3.3 120/3.3 0.84/0.00 24 67/1.4 67/1.4 0.00/0.00
171 120/3.3 121/3.3 0.83/0.00 186 105/1.3 105/1.3 0.00/0.00
8 243/2.6 245/2.6 0.82/0.00 187 105/1.3 105/1.3 0.00/0.00
94 126/3 127/2.8 0.79/6.67 113 31/1.1 31/1.1 0.00/0.00
15 254/3.6 256/3.6 0.79/0.00 185 105/0.7 105/0.7 0.00/0.00
5 255/1.6 257/1.6 0.78/0.00 146 153/0.6 153/0.6 0.00/0.00
7 263/2.8 265/2.8 0.76/0.00 145 153/0.6 153/0.6 0.00/0.00
11 265/2.9 267/2.9 0.75/0.00 144 153/0.5 153/0.5 0.00/0.00
152 135/1.4 136/1.4 0.74/0.00 184 105/0.4 105/0.4 0.00/0.00
55 140/2.9 141/2.9 0.71/0.00 2 336/0.4 336/0.4 0.00/0.00
148 140/1.6 141/1.5 0.71/6.25 1 336/0.3 336/0.3 0.00/0.00
149 142/1.9 143/1.9 0.70/0.00 162 145/2.5 144/2.4 -0.69/4.00
26 286/2.5 288/2.5 0.70/0.00 155 139/1.7 138/1.6 -0.72/5.88
151 144/2.2 145/2.1 0.69/4.55 28 125/2 124/1.9 -0.80/5.00
52 162/2.1 163/2 0.62/4.76 192 105/1.5 104/1.4 -0.95/6.67
3 334/0.5 336/0.5 0.60/0.00 188 104/1.5 103/1.4 -0.96/6.67
16 246/3.1 247/3.1 0.41/0.00 189 104/1.5 103/1.4 -0.96/6.67
17 246/2.8 247/2.8 0.41/0.00 190 104/1.3 103/1.3 -0.96/0.00
14 261/2.9 262/2.9 0.38/0.00 196 103/1.8 102/1.7 -0.97/5.56
50 261/2.4 262/2.4 0.38/0.00 195 103/1.8 102/1.6 -0.97/11.11
203 72/2.8 72/2.7 0.00/3.57 198 102/2.1 101/1.9 -0.98/9.52
137 62/2.7 62/2.7 0.00/0.00 197 102/1.7 101/1.5 -0.98/11.76
165 111/2.7 111/2.7 0.00/0.00 136 62/3.4 61/3.4 -1.61/0.00
76 60/2.6 60/2.6 0.00/0.00 44 58/2.3 57/2.2 -1.72/4.35
27 92/2.6 92/2.5 0.00/3.85 201 73/2.2 71/2.1 -2.74/4.55
163 147/2.6 147/2.6 0.00/0.00 21 n/a / /
60 216/2.5 216/2.5 0.00/0.00 46 n/a / /
211 97/2.4 97/2.3 0.00/4.17 80 n/a / /
90 46/2.4 46/2.4 0.00/0.00 91 n/a / /
161 147/2.4 147/2.4 0.00/0.00 99 n/a / /
81 81/2.3 81/2.1 0.00/8.70 110 n/a / /
207 102/2.3 102/2.3 0.00/0.00 114 n/a / /
38 72/2.2 72/2.1 0.00/4.55 115 n/a / /
164 141/2.2 141/2.2 0.00/0.00 116 n/a / /
219 91/2.1 91/2.1 0.00/0.00 117 n/a / /
154 140/2.1 140/1.9 0.00/9.52 122 n/a / /
159 139/2 139/2 0.00/0.00 126 n/a / /
153 143/2 143/1.9 0.00/5.00 128 n/a / /
150 143/2 143/1.9 0.00/5.00 140 n/a / /

99

Table A.3: Comparing SLIPSA with SSM

SSM SLIPSA SSM SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

77 44/2.49 92/2.46 109.09/1.20 215 83/2.39 90/2.39 8.43/0.00
116 20/2.15 31/2.04 55.00/5.12 56 108/3.11 117/3.06 8.33/1.61
102 45/3.08 68/3.03 51.11/1.62 89 108/3.11 117/3.06 8.33/1.61
178 50/3.03 72/3.03 44.00/0.00 216 84/2.52 91/2.48 8.33/1.59
180 56/3.82 77/3.8 37.50/0.52 18 204/2.19 221/2.19 8.33/0.00
96 75/2.92 103/2.89 37.33/1.03 59 170/2.36 184/2.33 8.24/1.27
183 33/1.66 43/1.58 30.30/4.82 165 99/2.43 107/2.42 8.08/0.41
67 185/4.02 236/4.02 27.57/0.00 65 251/2.85 271/2.84 7.97/0.35
134 59/3.23 74/3.08 25.42/4.64 171 113/3.39 122/3.39 7.96/0.00
103 58/2.85 72/2.78 24.14/2.46 204 66/2.73 71/2.71 7.58/0.73
179 87/4.6 106/4.53 21.84/1.52 162 132/2.27 142/2.22 7.58/2.20
181 55/3.2 67/3.11 21.82/2.81 51 375/3.07 403/3.04 7.47/0.98
88 65/3.26 79/3.25 21.54/0.31 143 109/3.93 117/3.88 7.34/1.27
167 90/2.81 109/2.79 21.11/0.71 64 69/1.69 74/1.65 7.25/2.37
177 65/4.41 78/4.37 20.00/0.91 72 130/2.94 139/2.94 6.92/0.00
135 60/3.27 72/3.24 20.00/0.92 111 58/3.25 62/3.23 6.90/0.62
182 67/3.88 80/3.88 19.40/0.00 98 73/2.93 78/2.93 6.85/0.00
85 73/2.1 87/1.82 19.18/13.33 45 371/2.69 396/2.68 6.74/0.37
73 69/2.28 82/2.22 18.84/2.63 149 134/1.91 143/1.87 6.72/2.09
101 101/4.75 119/4.73 17.82/0.42 90 45/2.6 48/2.55 6.67/1.92
203 62/2.86 73/2.86 17.74/0.00 210 90/2.11 96/2.11 6.67/0.00
83 188/3.81 221/3.78 17.55/0.79 87 121/2.69 129/2.67 6.61/0.74
176 83/3.98 97/3.93 16.87/1.26 141 61/2.94 65/2.82 6.56/4.08
36 43/4 50/3.94 16.28/1.50 17 219/2.29 233/2.27 6.39/0.87
92 93/2.97 108/2.96 16.13/0.34 160 126/1.75 134/1.69 6.35/3.43
107 56/3.67 65/3.54 16.07/3.54 166 97/2.46 103/2.43 6.19/1.22
57 131/2.99 152/2.95 16.03/1.34 127 82/2.97 87/2.88 6.10/3.03
109 57/4.29 66/4.08 15.79/4.90 170 115/3.45 122/3.45 6.09/0.00
71 70/1.98 81/1.95 15.71/1.52 8 214/1.98 227/1.96 6.07/1.01
20 61/4.14 70/3.91 14.75/5.56 105 66/3.12 70/3.11 6.06/0.32
94 109/2.67 125/2.61 14.68/2.25 35 153/3.15 162/3.13 5.88/0.63
95 89/3.13 102/3.06 14.61/2.24 147 137/1.64 145/1.62 5.84/1.22
139 71/2.74 81/2.67 14.08/2.55 136 52/2.39 55/2.28 5.77/4.60
124 146/3.28 166/3.21 13.70/2.13 211 87/1.88 92/1.85 5.75/1.60
37 323/2.99 365/2.98 13.00/0.33 117 35/3.57 37/3.13 5.71/12.32
217 77/2.43 87/2.37 12.99/2.47 214 88/2.17 93/2.17 5.68/0.00
202 64/2.51 72/2.48 12.50/1.20 82 89/2.33 94/2.27 5.62/2.58
218 80/2.39 90/2.39 12.50/0.00 38 72/3.19 76/2.91 5.56/8.78
22 329/2.47 370/2.47 12.46/0.00 43 54/2.25 57/2.15 5.56/4.44
19 108/4.36 121/4.3 12.04/1.38 209 90/2.11 95/2.06 5.56/2.37
205 67/3.36 75/3.24 11.94/3.57 84 271/2.84 286/2.83 5.54/0.35
50 227/2.01 253/2.01 11.45/0.00 10 236/2.12 249/2.11 5.51/0.47
199 79/3.36 88/3.2 11.39/4.76 132 73/2.88 77/2.83 5.48/1.74
61 202/4.05 225/4.04 11.39/0.25 208 92/2.12 97/2.11 5.43/0.47
33 137/2.74 152/2.74 10.95/0.00 142 74/3.16 78/3.1 5.41/1.90
213 84/2.14 93/2.05 10.71/4.21 174 113/3.39 119/3.32 5.31/2.06
130 58/2.88 64/2.86 10.34/0.69 164 132/2.12 139/2.1 5.30/0.94
133 49/3.74 54/3.69 10.20/1.34 6 227/1.95 239/1.94 5.29/0.51
220 80/2.39 88/2.33 10.00/2.51 58 267/2.45 281/2.44 5.24/0.41
97 70/1.85 77/1.84 10.00/0.54 150 136/1.92 143/1.9 5.15/1.04
221 72/2.59 79/2.54 9.72/1.93 80 79/2.41 83/2.38 5.06/1.24
63 87/2.4 95/2.01 9.20/16.25 60 198/2.05 208/2.05 5.05/0.00
131 66/2.94 72/2.87 9.09/2.38 76 60/2.87 63/2.77 5.00/3.48
15 212/2.7 231/2.68 8.96/0.74 25 83/2.35 87/2.35 4.82/0.00
200 81/3.71 88/3.39 8.64/8.63 75 230/2.24 241/2.21 4.78/1.34
104 70/2.97 76/2.96 8.57/0.34 79 105/3.4 110/3.34 4.76/1.76

100

(table A.3 continued)

SSM SLIPSA SSM SLIPSA
No. n/r n/r n+/r− No. n/r n/r n+/r−

7 231/2 242/1.99 4.76/0.50 159 134/1.79 136/1.77 1.49/1.12
48 85/1.71 89/1.69 4.71/1.17 158 136/1.82 138/1.82 1.47/0.00
106 65/3.33 68/3.3 4.62/0.90 81 79/2.12 80/2.02 1.27/4.72
120 88/1.12 92/1.12 4.55/0.00 93 241/1.45 244/1.44 1.24/0.69
68 155/2.27 162/2.25 4.52/0.88 125 82/2.68 83/2.63 1.22/1.87
151 133/1.85 139/1.83 4.51/1.08 39 169/2.39 171/2.35 1.18/1.67
123 311/1.13 325/1.12 4.50/0.88 27 89/2.36 90/2.33 1.12/1.27
172 115/3.45 120/3.42 4.35/0.87 212 92/1.98 93/1.98 1.09/0.00
169 115/3.38 120/3.27 4.35/3.25 198 98/1.88 99/1.86 1.02/1.06
222 69/2.43 72/2.41 4.35/0.82 197 98/1.34 99/1.27 1.02/5.22
223 69/2.43 72/2.39 4.35/1.65 188 102/1.42 103/1.36 0.98/4.23
62 70/2.95 73/2.89 4.29/2.03 189 102/1.42 103/1.38 0.98/2.82
9 238/2.13 248/2.11 4.20/0.94 190 102/1.3 103/1.28 0.98/1.54
11 240/2.2 250/2.2 4.17/0.00 186 102/1.09 103/1.05 0.98/3.67
140 98/3.24 102/3.21 4.08/0.93 187 102/1.07 103/1.05 0.98/1.87
207 98/2.38 102/2.31 4.08/2.94 184 103/0.39 104/0.37 0.97/5.13
112 25/1.27 26/1.21 4.00/4.72 53 110/1.88 111/1.88 0.91/0.00
206 76/3.26 79/3.23 3.95/0.92 152 134/1.37 135/1.35 0.75/1.46
42 76/1.5 79/1.47 3.95/2.00 154 137/1.83 138/1.8 0.73/1.64
5 241/1.29 250/1.29 3.73/0.00 155 137/1.74 138/1.58 0.73/9.20
49 246/2.28 255/2.26 3.66/0.88 161 141/2.19 142/2.06 0.71/5.94
40 141/2.26 146/2.23 3.55/1.33 129 49/2.8 49/2.8 0.00/0.00
137 57/2.24 59/2.16 3.51/3.57 74 85/2.14 85/1.9 0.00/11.21
168 120/3.65 124/3.61 3.33/1.10 69 81/2.08 81/2.04 0.00/1.92
16 225/2.61 232/2.6 3.11/0.38 219 90/2.06 90/2.02 0.00/1.94
66 65/1.94 67/1.77 3.08/8.76 28 124/2.04 124/1.88 0.00/7.84
196 98/1.59 101/1.56 3.06/1.89 115 29/1.93 29/1.78 0.00/7.77
195 98/1.5 101/1.44 3.06/4.00 153 143/1.91 143/1.87 0.00/2.09
31 132/1.75 136/1.7 3.03/2.86 21 127/1.83 127/1.8 0.00/1.64
30 333/1.75 343/1.72 3.00/1.71 157 136/1.66 136/1.63 0.00/1.81
156 134/1.63 138/1.63 2.99/0.00 194 103/1.62 103/1.57 0.00/3.09
163 138/2.21 142/2.17 2.90/1.81 47 53/1.39 53/1.26 0.00/9.35
54 109/1.56 112/1.54 2.75/1.28 34 63/1.38 63/1.32 0.00/4.35
70 182/2.28 187/2.26 2.75/0.88 192 102/1.35 102/1.26 0.00/6.67
201 73/3.14 75/2.62 2.74/16.56 110 38/1.27 38/1.25 0.00/1.57
32 184/1.9 189/1.88 2.72/1.05 113 31/1.11 31/1.11 0.00/0.00
175 113/3.14 116/3.13 2.65/0.32 114 24/1 24/1 0.00/0.00
78 78/3.08 80/2.99 2.56/2.92 119 33/0.61 33/0.61 0.00/0.00
100 85/3.33 87/3.31 2.35/0.60 146 153/0.56 153/0.56 0.00/0.00
55 131/2.31 134/2.31 2.29/0.00 145 152/0.47 152/0.47 0.00/0.00
26 269/2.03 275/2.02 2.23/0.49 3 336/0.46 336/0.46 0.00/0.00
108 45/1.77 46/1.74 2.22/1.69 1 336/0.33 336/0.33 0.00/0.00
148 138/1.53 141/1.53 2.17/0.00 4 311/1.38 310/1.38 -0.32/0.00
29 93/1.4 95/1.38 2.15/1.43 14 236/1.94 235/1.93 -0.42/0.52
13 244/2.2 249/2.2 2.05/0.00 2 336/0.36 333/0.36 -0.89/0.00
144 149/0.31 152/0.3 2.01/3.23 121 56/1.5 55/1.45 -1.79/3.33
193 101/1.44 103/1.43 1.98/0.69 23 93/1.31 91/1.25 -2.15/4.58
52 153/1.56 156/1.53 1.96/1.92 122 31/2.85 30/2.73 -3.23/4.21
191 102/1.35 104/1.35 1.96/0.00 118 32/1.49 28/1.44 -12.50/3.36
185 103/0.73 105/0.73 1.94/0.00 224 47/3.16 35/2.97 -25.53/6.01
41 209/2.36 213/2.34 1.91/0.85 44 n/a / /
173 107/2.91 109/2.87 1.87/1.37 46 n/a / /
138 54/2.75 55/2.68 1.85/2.55 91 n/a / /
86 114/2.85 116/2.84 1.75/0.35 99 n/a / /
12 246/2.04 250/2.04 1.63/0.00 126 n/a / /
24 65/1.35 66/1.32 1.54/2.22 128 n/a / /

101

Table A.4: Results of the 88 test cases

Our SSM Our SSM
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 # Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1 29 63 79 79 15 61 79 79 45 1 1 238 445 1 1 97 498
2 49 108 117 153 40 50 51 74 46 28 70 122 613 28 71 86 408
3 52 118 124 258 34 36 36 36 47 23 23 24 25 23 23 24 24
4 1 5 83 89 1 3 58 59 48 21 21 22 22 21 21 22 22
5 446 1199 1404 1449 436 1134 1309 1315 49 42 288 468 661 70 263 414 552
6 4 386 1396 1475 4 297 1276 1290 50 92 137 153 155 93 137 140 147
7 265 1233 1409 1439 4 297 1276 1290 51 1 1 2 36 1 1 6 36
8 72 307 636 700 63 240 562 637 52 92 132 152 155 93 114 142 146
9 25 26 26 31 20 20 20 26 53 115 180 204 278 123 180 202 747
10 6 1056 1400 1428 6 711 1057 1068 54 61 180 204 439 25 180 180 522
11 34 56 87 225 34 61 110 239 55 50 84 162 476 50 83 98 243
12 11 13 13 56 10 12 13 36 56 279 1179 1220 1229 276 1169 1199 1229
13 265 1229 1408 1442 266 1147 1268 1278 57 18 18 92 160 18 18 26 50
14 1 1120 1401 1421 1 411 1020 1047 58 3 4 4 35 3 4 4 33
15 4 6 6 50 4 6 6 30 59 10 18 131 156 10 16 96 117
16 15 22 25 28 15 22 23 26 60 55 65 66 71 53 59 59 61
17 15 16 46 126 15 16 31 242 61 99 370 495 696 98 321 423 566
18 2 26 44 100 2 18 27 59 62 9 9 74 153 9 9 81 152
19 415 1246 1418 1478 403 1116 1354 1397 63 51 117 185 190 51 110 143 143
20 442 1204 1399 1454 431 1113 1344 1387 64 2 2 11 200 2 2 18 144
21 7 467 1402 1453 7 363 1376 1389 65 10 10 10 10 10 10 10 10
22 265 1231 1407 1454 265 590 628 629 66 14 51 51 85 9 43 43 52
23 3 21 25 973 3 21 24 105 67 252 326 350 377 259 335 348 380
24 5 275 614 856 5 208 515 586 68 11 20 20 26 10 20 20 20
25 16 35 103 125 13 29 88 101 69 260 260 366 375 102 102 108 155
26 1 1 1 23 1 1 1 17 70 3 3 3 3 3 3 3 3
27 23 31 39 78 25 30 88 122 71 1 1 1 1 1 1 1 1
28 199 560 918 1238 180 511 902 1361 72 116 162 186 191 98 140 152 152
29 617 628 630 632 597 608 608 609 73 188 262 294 295 188 247 278 279
30 9 20 21 43 1 2 2 4 74 92 96 99 99 91 96 98 98
31 1 419 669 1243 2 389 624 1070 75 3 15 19 19 3 4 5 6
32 154 370 646 1116 145 286 505 532 76 2 13 62 68 2 33 60 62
33 5 15 75 1158 4 12 77 525 77 15 47 138 138 10 34 127 128
34 3 27 547 1037 5 21 92 160 78 4 6 6 6 4 6 6 6
35 43 84 84 321 48 50 50 50 79 120 158 192 197 120 161 175 175
36 48 315 321 370 56 272 312 320 80 8 12 13 13 3 6 6 6
37 3 5 5 5 2 4 4 4 81 8 92 172 218 9 77 160 219
38 38 38 38 102 32 32 32 59 82 72 155 171 171 72 103 103 103
39 7 22 23 36 6 17 22 22 83 45 50 62 73 45 51 59 65
40 7 40 546 1439 6 35 471 857 84 4 4 4 4 4 4 4 4
41 2 24 695 1597 1 16 681 1243 85 77 152 169 273 79 153 159 159
42 4 5 15 97 4 5 12 144 86 43 169 202 202 42 156 200 200
43 9 38 41 42 9 36 36 36 87 102 104 108 157 102 105 107 115
44 8 8 223 421 8 8 66 298 88 186 251 294 295 186 251 288 289

Q1: number of similar proteins found with Q-score ≥ 0.8.
Q2: number of similar proteins found with Q-score ≥ 0.6.
Q3: number of similar proteins found with Q-score ≥ 0.4.
Q4: number of similar proteins found with Q-score ≥ 0.2.

Proof: Let n = 2h and t = dist(p1, p2). We construct a t-sequence of n points as
follows: Let 1)q1 = p1 + t, 2)qs = qs−1 + t for s = 2, · · · , h, and 3)qs = qs−1 − t for
s = h + 1, h + 2, · · · , 2h − 2. It is easy to see that S = p1q1q2 · · · q2h−2p2 is a t-sequence of
n = 2h points in R1 and diameter(S) = ht = nt

2
.

Proof: (of Theorem 5.6) Assume that C is a randomized (1 − ε) approximate algorithm
for computing the approximate diameter for all of the t-sequences of diameter at least m · t.
Let h = 2(

⌈
εm
1−ε

⌉
+ 2), g = 2h and n = m+ kg, where k is a parameter that is flexible. Since

m = o(n), we always assume that m < n
2
. We have k = n−m

g
= n−m

4(d εm1−εe+2)
≤ n

4(dεme) . On the

other hand, k ≥ (n−m)

4(d εm1−εe+2)
> (n−m)

4(εm
1−ε+3)

≥ (n−m)

4(
εm+3(1−ε)

1−ε)
≥ (1−ε)(n−m)

4(ε+3(1−ε))m ≥
(1−ε)(n−m)

4(3−2ε)m
≥ (1−ε)n

8(3−2ε)m
.

Let constant c0 = 0.09 · (1−ε)
8(3−2ε)

. Let t be a constant greater than 0.

Since each path queries o(n
m

) points, we assume that every path of C queries
at most c0n

m
points in every t-sequence A. Let A be the t-sequence of points

q1, q2, · · · , qm+1, p1, p2, · · · , pn−m, where qi = (i− 1)t for i = 1, 2, · · · ,m+ 1, pi = (m− 1)t for

102

odd number i = 1, 3, · · ·, and pi = mt for even number i = 2, 4, · · ·. Clearly, A is a t-sequence
in one dimensional axis of diameter m · t.

Partition the points p1p2 · · · pn−m sequentially into P1P2 · · ·Pk with |Pi| = g. In the
next phase, we will show that there exists some Pi such that no more than 10%G paths of
C query the points in Pi, where G is the number of total paths in C. Assume that for every
Pi, there are at least 10%G paths of C to query the points in Pi. Thus, the total number of
queries is at least k · 10%G > c0n

m
G among all paths. On the other hand, since every path of

C queries at most c0n
m

points, the total number of queries by all paths of C is at most c0n
m
G.

This is a contradiction. Therefore, we have a Pi that no more than 10% paths of C query
the points in Pi.

We can arrange the points in Pi so that it has greatly different diameters. Since Pi has
at least 2h points, we can make diameter(Pi) as large as ht and as small as t without changing
the positions of first and last points of Pi. Formally, assume that Pi has the sequence of
points pu, pu+1, · · · , pu+g−1.

Clearly, dist(pu, pu+g−1) = t and pu < pu+g−1 by the definition of A. We replace
pu+1, · · · , pu+g−2 by p′u+1, · · · , p′u+g−2, where unfoldingR1(p1, p2, g) = pup

′
u+1p

′
u+2 · · · , p′u+g−2pu+g−1.

If the sequenceA′ is derived fromA that Pi is replaced by P ′i = pup
′
u+1p

′
u+2 · · · , p′u+g−2pu+g−1.

C(A,B) and C(A′, B) will be the same at 90% paths B. On the other hand, the diameter
of A is m · t and the diameter of A′ is at least mt+ ht− t > 1

(1−ε)mt by Lemma A.2. Thus,

C is not an (1 − ε)-approximation to the diameter of a t-sequence of n points in R1 with
diameter at least mt. A contradiction.

Definition A.3. For a sequence of points S = p1p2 · · · pn, and integers i and j with 1 ≤ i ≤
j ≤ n, define S[i, j] = pipi+1 · · · pj and S[i] = pi.

Proof: (of Theorem 5.12) Assume that A is a deterministic algorithm that computes the
(1− ε)-approximate diameter for an g-reliable rearrangement sequence B of a t-sequence S

of diameter at least m · t, where h = 2(
⌈
εm
1−ε

⌉
+ 2) and g = 4h. We are going to construct a

counter example for this algorithm. Our target is to design two sequences of points S, S ′, and
S ′′. The sequence S ′ is a g-reliable rearrangement sequence B of a t-sequence S of diameter
at least m · t. When S ′ and S ′′ are the inputs to the algorithm, the same output will be
returned by the algorithm. On the other hand, we make the difference between diameter(S ′)
and diameter(S ′′) more than factor (1− ε). This brings a contradiction.

Let S be the t-sequence of points q1q2 · · · qm+1p1p2 · · · pn−m−1, where qi = (i− 1)t for
i = 1, 2, · · · ,m + 1, pi = (m − 1)t for odd i = 1, 3, · · · and pi = mt for even i = 2, 4, · · ·.
Clearly, S is a t-sequence in R1 of diameter m · t.

Let n = m+1+kg. Let u1 = m+2 and v1 = u1+g−1. Let ui = ui−1+g, vi = ui+g−1
for i = 2, · · · , k. Partition the sequence S into multiple subsequences QP1P2 · · ·Pk, where
Q = q1 · · · qm+1, Pi = S[ui, vi] for i = 1, · · · , k. Clearly, each Pi contains g consecutive points
from S.

Each Pi is partitioned into two equal half parts Pi,1 = S[ui,1, vi,1] and Pi,2 = S[ui,2, vi,2],
where ui,1 = ui, vi,1 = ui,1 + g

2
− 1, ui,2 = vi,1 + 1, vi,2 = ui,2 + g

2
− 1.

A query made by the algorithm is represented by an integer j, which means to request
the j-th point in the input sequence. For an input of a sequence of n points, each query

103

made by the algorithm is represented by an integer j with 1 ≤ j ≤ n. We will construct
another sequence S ′, which is a permutation of points in S. The sequence S ′ has the format
S ′ = QP ′1P

′
2 · · ·P ′k, where each P ′i is a permutation of points in Pi.

For two integers a and b with 1 ≤ a ≤ b ≤ n, define Qz(S
′, a, b) as the set of queries

j with j ∈ [a, b] among the first z queries made by the algorithm when the input is the
sequence of n points S ′.

Initially S ′ = QP ∗1 · · ·P ∗k , where each P ∗i is a sequence of special point ∗, which means
the position (with ∗) has not been assigned a point and will be replaced by a real point in
R1.

In order to construct P ′i , we design sequences Ti and Wi of length n. Let Ti be a
sequence of n points such that Ti[j] = ∗ for all i = 1, 2, · · · , n. Let Wi be a sequence of
n points such that Wi[j] = S[j] if j ∈ [ui,2, vi,2], and Wi[j] = ∗ otherwise. We construct
S ′ by simulating the queries made by the algorithm one by one. Each query made by the
algorithm A has a stage for it as follows.

Stage z
Let jz be the z-th query made by the algorithm. If S ′[jz] 6= ∗, reply to the query with

answer S ′[jz] and simulate the next query by entering Stage z + 1.
Assume that the algorithm makes the z-th query jz ∈ [ui, vi] for some i ∈ [1, k] (If

jz ∈ [1,m+ 1] the answer to the query will be S ′[jz] = qjz), and S ′[jz] = ∗.

• Case 1: |Qz(S
′, ui, vi)| < |Pi|

2
. Do the following cases

– Subcase 1: jz ∈ [ui,1, vi,1] and S ′[jz] = ∗. Assume that r is the first position with
Wi[r] 6= ∗, and r ∈ [ui,2, vi,2]. Let S ′[jz] = S[r], Ti[jz] = S[jz] and Wi[r] = ∗.
The purpose of the last a few assignments is to swap two points in the regions
[ui,1, vi,1] and [ui,2, vi,2] in the sequence S.

– Subcase 2: jz ∈ [ui,2, vi,2] and S ′[jz] = ∗. Assume that r is the first position with
Wi[r] 6= ∗ and r ∈ [ui,2, vi,2]. Let S ′[jz] = S[r] and Wi[r] = ∗. In this case, we
find the position jz that has been used for swapping from a point in the region
[ui,1, vi,1]. Therefore, find another point in the same region [ui,2, vi,2] to fill it.

Reply to the query with answer S ′[jz].

• Case 2: |Qz(S
′, ui, vi)| = |Pi|

2
. In this case, the region [ui, vi] has been queried more

than |Pi|
2

times. We do not do any swapping and just fill those undetermined positions
marked with ‘*’ by some points.

For each position r ∈ [ui, vi] with S ′[r] = ∗
If there exists s such that Ti[s] 6= ∗
Then let S ′[r] = S[s] and Ti[s] = ∗
Else find an s with Wi[s] 6= ∗, and let S ′[s] = S[s] and Wi[s] = ∗.

After this case, S ′[ui, vi] has no any *. Reply to the query with answer S ′[jz].

• Case 3: |Qz(S
′, ui, vi)| > |Pi|

2
. Before reaching Case 3, the construction has met Case

2 because |Qz(S
′, ui, vi)| ≤ |Qz−1(S ′, ui, vi)| + 1. Therefore, S ′[ui, vi] has no ∗. The

104

answer to the query will be S ′[jz] for the query jz made by the algorithm with input
S ′.

End of Stage z

When we have simulated all the queried, we fill those positions, which are not queried
by the algorithm, with the points in S, which are not used for replying the queries before.

Stage z0 + 1 (z0 is the total number of queries)
For each Pi and each position r ∈ [ui, vi] with S ′[r] = ∗,

If (there exists s such that Ti[s] 6= ∗)
Then let S ′[r] = S[s] and Ti[s] = ∗.
Else find an s with Wi[s] 6= ∗, and let S ′[s] = S[s] and Wi[s] = ∗

End of Stage z0 + 1

For every computation that makes at most (n − m − 1)/2 queries, there exists an
integer i such that the number of points queried in Pi is no more than g/2 = 2h times.

Assume Pi is queried no more than |Pi|
2

times by the algorithm. By the construction at Case
1, we have that no element of Pi,1 is queried by the algorithm.

The sequence S ′ is a g = 4h-reliable rearrangement of S since each P ′j is a permutation
of Pj and |Pj| = g. We have diameter(S) = diameter(S ′). In order to construct S ′′, We
adjust the points in Pi,1 so that it has greatly different diameters from diameter(S ′). We
can make diameter(Pi,1) as large as h · t or as small as t. This makes diameter(S) more than
(m

1−ε) · t and also as small as m · t without changing the positions of first and last points
of Pi. Formally, assume that Pi,1 has the sequence of points pu, pu+1, · · · , pu+2h−1, where
1 ≤ i ≤ k − 1.

Clearly, dist(pu, pu+g−1) = t and pu < pu+g−1 by the definition of sequence
S. We replace pu+1, · · · , pu+2h−2 by p′u+1, · · · , p′u+2h−2, where pup

′
u+1, · · · , p′u+2h−2pu+2h−1 is

unfolding(pu, pu+2h−1, 2h) defined in Lemma A.2.
The diameter of P ′i is at least ht by Lemma A.2. The points in S ′′ are the same as those

in S ′ except that Pi,1 is replaced by the subsequence P ′i,1 = pu, p
′
u+1, · · · , p′u+2h−2, pu+2h−1, the

diameter of P ′i is at least (m+ h− 1)t. Therefore, diameter(S ′′) ≥ (m+ h− 1)t > mt
1−ε .

The algorithm A has the same output x when its input is S ′ or S ′′. Since the diameter
of S ′ is m · t, we have x ≤ mt. The diameter of S ′′ is greater than mt

1−ε . Therefore, x is not a

(1− ε)-approximation for the diameter of S ′′. A contradiction.

Proof: (of Theorem 5.14) Assume that A is an NQ((n−m)/4) computation such that it
computes the (1− ε)-approximate diameter for a rearrangement sequence S ′ of a t-sequence
S of diameter at least m · t for some t > 0. We are going to construct a counter example for
this algorithm.

Let g = 4
⌊
m

1−ε

⌋
and n = m + kg. Let S be the t-sequence of points

q1, q2, · · · , qm, p1, p2, · · · , pkg, where qi = (i − 1)t for i = 1, 2, · · · ,m, pi = mt for odd
i = 1, 3, · · · and pi = (m − 1)t for even i = 2, 4, · · ·. Clearly, S is a t-sequence in R1

and has diameter m · t.
Assume that B is a path of A with input S such that path B gives an output x with

(1 − ε)diameter(S) ≤ x ≤ diameter(S). Each query is represented by an integer j, which

105

expects to receive the j-th point in the input sequence. Assume that j1, j2, · · · , jz are all the
queries in the path B when the input of A is S.

Consider the last g points p(k−1)g+1p(k−1)g+2 · · · pkg in the sequence S. Let
unfolding(p(k−1)g+1, pkg, g) = p(k−1)g+1u1u2 · · · , ug−2, pkg. Let S ′ be the sequence S by re-
placing p(k−1)g+2p(k−1)g+3 · · · pkg−1 by u1u2 · · · , ug−2.

Let S ′′ be a permutation of S ′ such that no point in p(k−1)g+1q1q2 · · · , qg−2, pkg will
be queried in the path B when A has S ′′ as input and S ′′[ji] = S[ji] for i = 1, 2, · · · , z.
Such a permutation S ′′ from S ′ exists when m is large enough since z ≤ n−m

4
,m = o(n) and

g = O(m). Therefore, the path B outputs the same result x when the input of A is S ′′. The
diameter of unfolding(p(k−1)g+1, pkg, g) ≥ g

2
by Lemma A.2. Therefore, diameter(S ′′) ≥ g

2
>

mt
(1−ε) . Thus, x ≥ (1− ε)diameter(S ′′) does not hold. A contradiction.

Proof: (of Theorem 5.18) Assume that β and c with 0 < β < c are two constants, and A is
a deterministic algorithm such that given a ΛR1(1, βm, cm, 0,m, n)-sequence S ′, it computes
a (1− ε)-approximate diameter for E(S ′). We are going to construct a counter example for
this algorithm. We will construct two ΛR1(1, cm, βm, 0,m, n) sequences S ′ and S ′′ such that
the algorithm has same output when S ′ and S ′′ are the inputs, but the diameters of E(S ′)
and E(S ′′) have difference more than factor 1

1−ε . This brings a contradiction.
Let integer m be enough such that

1 <
(c− β)m

4
, and (A.1)

cm

4
<

⌊
cm

3

⌋
− 1 (A.2)

Let t be an arbitrary real nubmer > 0 (e.g. t = 1). Let h = 2(
⌈

ε
1−ε

⌉
+ 2) and

g = 4hm. (A.3)

Let S be the t-sequence of points q1, q2, · · · , qm+1, p1, p2, · · · , pn−m, where qi = (i − 1)t for
i = 1, 2, · · · ,m + 1, pi = (m − 1)t for odd i = 1, 3, · · · and pi = mt for even i = 2, 4, · · ·.
Clearly, S is a t-sequence in R1 and has diameter m·t. S ′ will be constructed as a permutation
of the sequence of tuples (S[1], 1)(S[2], 2) · · · (S[n], n).

Let n = m + 1 + kg. We have k = Ω(n
m

) since m = o(n) and g = O(m). Partition

the points p1p2 · · · pn−m evenly into PQ, where |P | = |Q| = kg/2 (both P and Q contain kg
2

points). The sequence S has three regions Q0, P , and Q, where Q0 = q1q2 · · · qm+1.
Region P is partitioned into P1P2 · · ·Pk/2 with |Pi| = g for i = 1, · · · , k/2. The region

P has another partition into P ′1 · · ·P ′s such that
⌊
cm
3

⌋
− 1 ≤ |P ′i | ≤

⌊
cm
3

⌋
for i = 1, 2, · · · , s.

Let P ′i = S[ui, vi] for i = 1, 2, · · · , s and Q = S[u, v]. Let

r =
⌊
cm

3

⌋
− 1. (A.4)

Let w be the least integer such that

1

w
<

(c− β)

4c
. (A.5)

106

Let Q′ be a sequence of length n such that Q′[j] = (S[j], j) if j = 0(mod w) and j ∈ [u, v],
and Q′[j] = (∗, ∗) otherwise. An important target of the construction is to make S ′ such
that for some Pi, no point (p, k) with p ∈ Pi is queried by the algorithm with S ′ as input.
This can make S ′′, which is derived from S ′ by adjusting some tuples, have large diameter
when the points in Pi are unfolded according to Lemma A.2, contradicting our assumption
that the algorithm outputs a (1− ε) approximation to the diameter of E(S ′) as well as a
(1− ε) approximation to the diameter of E(S ′′). We use (∗, ∗) in Q′ to mark the tuple Q′[i]
not available to swap.

In the following construction, we will make sequence S ′ that consists of n tuples (p, a),
where p is a point in R1 and a ∈ {1, 2, · · · , n}. We use S ′[i] to represent the i-th tuple in
S ′. Initially we let S ′[i] = (S[i], i) for 1 ≤ i ≤ n. Then we let S ′[i] = (∗, i) for i ∈ [u, v]
and i = 0(modw). The positions i with S ′[i] = (∗, i) represent those elements that may be
moved to other regions and we put the star “*” mark here. We will change the tuples in S ′

in the construction below.
Each query is represented by an integer j, which requests to fetch the j-th tuple in

the input sequence. Assume that the z-th query is jz. Let Queryz(S
′, a, b) be the set of all

queries j ∈ [a, b] among the first z queries when the input is S ′. Let T be a sequence of n
tuples and T [i] = (∗, ∗) for i = 1, 2, · · · , n. Let

y =
(c− β)g

64h
. (A.6)

Stage z
Case 1: jz ∈ [ui, vi] and |Queryz(S ′, ui, vi)| ≤ y.

• Subcase 1.1: S ′[jz] = (p, jz) for some p. Let j be the first position in Q′ such that
Q′[j] 6= (∗, ∗). Let T [jz] = S ′[jz], S

′[jz] = Q′[j], and Q′[j] = (∗, ∗). Reply to the query
with answer S ′[jz], which is just updated.

• Subcase 1.2: S ′[jz] = (q, j) for some q and j 6= jz. By our construction, S ′[jz] has been
updated by the subcase 1.1 some time before. We will not change the content of S ′[jz].
Reply to the query with answer S ′[jz].

Case 2: jz ∈ [ui, vi] and |Queryz(S ′, ui, vi)| > y. The region [ui, vi] has been queried
more than y times. We do not do any swap between the elements in this region and the
elements in region Q. Reply to the query with answer S ′[jz].

Case 3: jz ∈ [u, v].

• Subcase 3.1: S ′[jz] = (∗, jz). Let j be the first position in Q′ such that Q′[j] 6= (∗, ∗).
Let S ′[jz] = Q′[j], and Q′[j] = (∗, ∗). Reply to the query with answer S ′[jz].

• Subcase 3.2: S ′[jz] 6= (∗, jz). Reply to the query with answer S ′[jz].

End of Stage z

Stage z0 + 1 is the final stage of construction. It assigns tuples to those locations of
S ′ where contain tuples with ‘*’.

107

Stage z0 + 1(z0 is the total number of queries)
For each S ′[j] = (∗, j),

if there is a position k with Q′[k] 6= (∗, ∗)
then let S ′[j] = Q′[k] and Q′[k] = (∗, ∗).
else find a position k with T [k] 6= (∗, ∗), then let S ′[j] = T [k] and T [k] = (∗, ∗).

End of Stage z0 + 1

The following fact is easy to verify from the construction. It means that each region
[ui, vi] has got at most y swaps.

Fact: For every [ui, vi] region for Pi, there are at most y indices j ∈ [ui, vi] such that
S ′[j] 6= (s, j) for any s.

As the algorithm makes o(n) queries, there exists an integer i such that no point (p, j)
with p ∈ Pi is replied to the algorithm among all queries. Otherwise, each Pi intersects a P ′j
that contains at least y elements replaced. Since the lengths of both P ′j and Pi are Ω(m),
each P ′j can intersect at most x = Θ(1) Pis and each Pi can intersect at most x′ = Θ(1) P ′js.

The total number of queries is at least y k
x

= Ω(n) since x = Θ(1), y = Ω(m), and k = Ω(n
m

).
It is a contradiction of the fact that the number of queries is o(n).

Assume that there exists [ui, vi] such that no point (p, j) with j ∈ [ui, vi] is replied
to the algorithm among all queries. Assume that S[ui, vi] has the sequence of points
(sui , ui), (sui+1, ui + 1), · · · , (svi , vi).

We replace

(sui , ui), (sui+1, ui + 1), · · · , (svi−1, vi − 1), (svi , vi)

by
(sui , ui), (s

′
ui+1, ui + 1), · · · , (s′vi−1, vi − 1), (svi , vi),

where
unfolding(sui , svi , g) = sui , s

′
ui+1 · · · , s′vi−1svi .

Let S ′′ be converted from S ′ such that let S ′′ = S ′, and then if S ′[j] = (p, t) for
some t ∈ (ui, vi), then let S ′′[j] = (s′t, t). We now verify that S ′′ is a ΛR1(1, cm, βm, 0,m, n)-
sequence.

In the Q region, we only move points after every w consecutive points. For every x
consecutive points in the region Q, there are at most x

w
points that are moved. Assume that

we have cm consecutive points such that x1 of them are in the P region, and x2 of them are
in the Q region. Each Pi contains at least r points. The number of moved points among
the x1 points is at most

⌈
x1

r

⌉
· y. The number of moved points among the x2 points in the Q

region is at most
⌈
x2

w

⌉
. By equations (A.2), (A.3), (A.4), (A.6), and (A.5), we have at most

⌈
x1

r

⌉
· y +

⌈
x2

w

⌉
≤

⌈
x1
cm
4

⌉
· c− β

64h
· g +

c− β
4c
· x2 + 1 (A.7)

≤ 2cm
cm
4

· c− β
64h

· 4h+
c− β

4c
· cm+ 1 (A.8)

≤ 3(c− β)m

4
+ 1. (A.9)

108

≤ (c− β)m (by inequality (A.1)). (A.10)

points among cm points moved. Therefore, at least βm of them remain still.
The algorithm A has the same result for the inputs S ′ and S ′′. The diameter of E(S ′)

is m · t and the diameter of E(S ′′) is at least (m + h) · t > 1
1−εm · t. Therefore, A is not a

(1− ε)-approximation algorithm.

Proof: (of Theorem 5.25) We will assume the existence of an approximate algorithm with
small number of queries. A contradiction will be derived by this assumption. We will use
the fact that when the number of queries is small, there are a large number of consecutive
points in the input sequence not queried by an algorithm. If those points are packed tightly,
the diameter is small. Those points can also be arranged so that the diameter is large.

Select positive constants δ, c0 and c1 such that

√
d < c

cd−1
1

4
(1− δ), and (A.11)

c0 <
1

cd−1
1

. (A.12)

Assume that algorithm A makes at most c0n
1− 1

d queries to the input points and
computes c-approximate diameter for a self-avoiding sequence in Rd. We consider an integer
m and an integer

k =
⌈
c1m

1
d−1

⌉
. (A.13)

We let k and n depend on m. Let integer m be large enough such that

c1m
1
d−1 ≥ 10. (A.14)

We define a self-avoiding sequence S1 which is shown in Figure A.1 and another self-
avoiding sequence S2 which is shown in Figure A.2 and has the same length as S1 (|S1| = n).
They are constructed as follows.

We consider two types of cubes. The type 1 cube is of size (k + 10)d grids (each
grid is of size 1d). The type 2 cube is of size md type 1 cubes. Consider a type 2 cube B
that contains md type 1 cubes. When the self-avoiding sequence S1 is inside the box B, the
diameter of S1 is at most the length of the diagonal of B, which is at most

√
dm(k + 10).

We put two colors in the grid points of a self-avoiding sequence. Each type 1 cube contains
exactly kd blue points. The rest points are red for connecting two consecutive cubes. The
number of grid points in the self-avoiding sequence is n = mdkd +O(mdk) as the number of
red grid points connecting the two consecutive type 1 cubes is O(mdk).

For the type 1 box that has no points queried, the points in it can be rearranged so
that the diameter is at least kd

2
(1− δ) and still keeps the self-avoiding grid point sequence in

Rd. See Figure A.1 and Figure A.2. In Figure A.1, each black box contains kd grid points
in the self-avoiding sequence. In Figure A.2, the kd grid points in one black box spread
from left to right and make the diameter at least kd

2
(1− δ). The self-avoiding sequence S2 is

constructed like that in Figure A.2 such that there is a black box that has no points queried

109

Figure A.1: Every black box has kd grid points in the sequence S1

Figure A.2: The points in one black box stretch out to greatly increase the diameter of the
sequence S2

110

by A(S2). Then both A(S1) and A(S2) will have the same output.

By the setting of m, k and n, we have n = mdkd(1 + o(1)) = cd1m
d2

d−1 (1 + o(1)). Since

n
d−1
d = cd−1

1 md(1 + o(1)), we have md = 1

cd−1
1

n
d−1
d (1− o(1)). Since n

1
d = c1m

d
d−1 (1 + o(1)) =

1

cd−1
1

(cd1m
d
d−1)(1 + o(1)) = kd

cd−1
1

(1 + o(1)), we have kd = cd−1
1 n

1
d (1− o(1)). Since the algorithm

A with input S1 makes only c0(n1− 1
d) queries, there are md = 1

cd−1
1

n
d−1
d (1− o(1)) > c0(n1− 1

d)

type 1 cubes. There exists at least one type 1 cube that has no points queried by the
algorithm. The self-avoiding sequence S2 has consecutive points that are in a black box of
S1 and are not queried by A(S2). Those points will make the diameter large, as shown in
Figure A.2. The result is that A(S1) and A(S2) produce the same output, yet there is a large
difference between the diameters of S1 and S2.
By (A.13), we have k ≥ c1m

1
d−1 . Therefore,

m ≤ (
k

c1

)d−1. (A.15)

By inequality (A.15), we have the inequalities

√
dm(k + 10) ≤

√
d(
k

c1

)d−1(k + 10) (A.16)

≤ c
cd−1

1

4
(1− δ) · (k

c1

)d−1(k + 10) (A.17)

< c · k
d−1(k + 10)

4
(1− δ) (A.18)

< c · k
d−1 · 2k

4
(1− δ) (A.19)

= c · k
d

2
(1− δ) (A.20)

The transition from (A.18) to (A.19) is due to (A.13) and (A.14), which imply k > 10.

By (A.16) through (A.20), we have
√
dm(k + 10) < c · kd

2
(1 − δ). Since algorithm A is

a c-approximation to the diameter of the self-avoiding sequence, A(S1) should output an
approximate diameter r with

√
dm(k + 10) ≥ r (recall that the diameter of S1 is at most√

dm(k+ 10)). This implies ck
d

2
(1− δ) > r. We have a contradiction by the definition of a c-

approximate algorithm in Definition 5.1. Therefore, there is no algorithm for c-approximation
to the diameter of the self-avoiding sequence.

A.4 Some Tables in Chapter 6

111

Table A.5: Results for m = 100, n = 20, β = 20% and α2 = 20%

α1 (%) Time (ms) Reconstruction Rate (%)
1 3.460 100.00
2 3.706 100.00
3 3.983 99.99
4 4.188 99.96
5 4.390 99.95
6 4.553 99.90
7 4.697 99.77
8 4.943 99.58
9 5.183 99.39
10 5.412 98.94

Table A.6: Results for m = 100, β = 20% and α2 = 20%

n = 10 n = 30
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 2.444 99.91 4.744 100.00
2 2.568 99.78 5.046 100.00
3 2.674 99.58 5.261 100.00
4 2.774 99.36 5.605 99.99
5 2.851 99.01 6.045 100.00
6 2.925 98.60 6.302 99.97
7 3.028 98.03 6.567 99.96
8 3.121 97.54 6.870 99.85
9 3.213 96.81 7.307 99.70
10 3.314 95.85 7.635 99.56

112

Table A.7: Results for m = 100, n = 20 and α2 = 20%

β = 10% β = 30%
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 3.425 100.00 3.564 100.00
2 3.687 100.00 3.736 100.00
3 3.904 99.90 3.925 99.99
4 4.175 99.83 4.154 99.96
5 4.422 99.52 4.337 99.95
6 4.606 99.25 4.528 99.91
7 4.826 98.68 4.704 99.83
8 4.998 98.14 4.920 99.73
9 5.190 97.69 5.096 99.61
10 5.355 96.90 5.295 99.39

Table A.8: Results for m = 100, n = 20 and β = 20%

α2 = 10% α2 = 30%
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 3.225 100.00 3.575 99.98
2 3.551 99.99 3.792 99.98
3 3.712 100.00 3.990 99.94
4 3.980 99.98 4.184 99.88
5 4.162 99.98 4.369 99.76
6 4.324 99.97 4.592 99.54
7 4.550 99.94 4.761 99.09
8 4.733 99.92 4.968 98.52
9 4.911 99.82 5.191 97.70
10 5.116 99.72 5.401 96.75

113

114

115

116

117

Vita

Zhiyu Zhao received her B.E. (1997) and M.E. (2000) degrees in Computer Engineering
from the Huazhong University of Science and Technology, China. In the year 2004, with
a governmental scholarship, she initialized her Bioinformatics research in DNA micro-
array data analysis at the Politecnico di Milano University, Italy. In the year 2005, she
started her Ph.D. study in the Department of Computer Science at the University of New
Orleans.
She received a M.S. degree in Computer Science in 2006. After the completion of her
Ph.D. study, she will be working in the College of Sciences at the University of New
Orleans as a Computational Scientist.

	Robust and Efficient Algorithms for Protein 3-D Structure Alignment and Genome Sequence Comparison
	Recommended Citation

	tmp.1315848245.pdf.d6tgl

