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Abstract 
 

 The single hydrophone localization problem is considered.  Single hydrophone 

localization is a special case of matched field localization where measurements from only one 

hydrophone are available.  The time series of the pressure at the hydrophone is compared with 

predicted times series calculated using an ocean acoustic propagation model for many different 

source locations.  The source location that gives the best match between the predicted time series 

and the measurement is assumed to be the correct source location.  Single hydrophone 

localization algorithms from the literature are reviewed and a new algorithm is introduced.  The 

new algorithm does not require knowledge of the source signal and does not assume the use of a 

particular ocean acoustic model, unlike some algorithms in the literature.   

 Source location estimates calculated from the new algorithm are compared with ground 

truth using simulated ocean acoustic measurements and experimental measurements.  Source 

location estimates calculated using other algorithms from the literature are shown for 

comparison.  The simulated measurements use three source signals with bandwidths of 10 Hz, 

100 Hz, and 200 Hz and the ocean is modeled as a Pekeris waveguide.  The new algorithm 

estimates the source location accurately for all three source signals when several of the 

localization algorithms from the literature give inaccurate estimates.  Gaussian white noise 

signals are added to the measured signals to test the impact of signal-to-noise ratio (SNR) on the 

algorithm.  Four signal-to-noise ratios of 60 dB, 40 dB, 20 dB, and 0 dB are used.  The new 

algorithm gives accurate source location estimates down to an SNR of 20 dB for two of the 

source signal bandwidths.  Source location estimates using other algorithms from the literature 

break down at either 20 dB or 0 dB. 



x 

 

 Source location estimates are calculated using two hydrophone measurements taken at 

different depths in an experiment conducted near the Bahamas.  The new algorithm accurately 

estimates the source location in both cases.  In one case, only two other localization algorithms 

from the literature locate the source accurately.  In the other case, only one other localization 

algorithm succeeds. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords:  single hydrophone localization, matched field localization, matched field processing. 
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Chapter 1.  Introduction 

 

1.1  Matched Field Processing  

 Matched field processing in underwater acoustics refers to methods of using spatial 

measurements of the underwater pressure to detect and locate an acoustic source, or to infer 

environmental parameters of an ocean waveguide.  The large collection of techniques developed 

over the last few decades can be traced to Hinich (1973) and Bucker (1976), who developed 

algorithms based on comparing spatial measurements of pressure on an array of hydrophones 

with the measurements predicted by an ocean acoustic propagation model.  The spatial pressure 

distribution of the acoustic field is determined by the location of the source and the 

environmental parameters such as the sound speed profile of the water and the sound speed in the 

ocean bottom.  If the environmental parameters are known for a given experiment, they can be 

entered into an acoustic propagation model and the pressure distribution can be predicted for 

various trial locations of the source.  The pressure patterns measured at the hydrophones are then 

matched to the patterns estimated by the acoustic model.  The basic idea is that the source is 

located, or localized, when the predicted acoustic field using the correct source location matches 

the measurements of the field at the receivers.   

 Similar techniques exist for estimating the ocean acoustic environmental parameters such 

as the sound speed.  In this case the source location is known but the environmental parameters 

are unknown.  The acoustic propagation model is run for different combinations of 

environmental parameters and the resulting pressure patterns are predicted at the hydrophones.  

Analogous to the localization problem discussed above, we can infer the correct environmental 
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parameters by looking for the best match between the predicted pressures and the measured 

pressures.  A large body of literature exists on matched field processing and two reviews, with 

extensive references, are given by Baggeroer et al. (1993) and Tolstoy (1993). 

1.2  Single Hydrophone Localization 

 In this dissertation we examine a special case of matched field processing where pressure 

measurements from only one hydrophone are available to locate a source.  The problem is 

different from the matched field processing problem described above because we have no 

information on the spatial distribution of the acoustic field in our measurements.  We assume we 

have one time series of the pressure measured at a single point in space where the hydrophone is 

located.  The location of the source producing the disturbance is unknown, and we assume the 

source produces a broadband signal at the hydrophone.  The assumption of a broadband source is 

necessary because a continuous wave source of a single frequency provides no useful 

information on the source location without accompanying spatial measurements.  In other words, 

a continuous wave source would produce a sine wave of constant amplitude at the receiver, 

giving us no insight into the propagation paths of the acoustic energy.   If we know the 

environmental parameters of the ocean waveguide, we can use ocean acoustic propagation 

models to predict the measurement at the hydrophone for different source locations.  We call 

these replica signals.  The location that gives the best match between the replica signal and the 

measured time series at the hydrophone is assumed to be the correct location of the source.  This 

is conceptually similar to matched field processing techniques using arrays of hydrophones.   

 Single hydrophone localization techniques are important not only for their intrinsic 

interest, but also for their computational and experimental simplicity.  Using a single hydrophone 

simplifies the equipment, reduces the cost, and lowers the burden on the computers processing 
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the measurements.  This gives researchers on tight budgets flexibility to put their resources into 

other parts of the experiment if they can do the job with one hydrophone. 

 In the following sections we define the terminology and notation used throughout the 

dissertation.  This is followed by a review of the literature on single hydrophone localization 

techniques discussing their assumptions and implementations.   

1.3  Preliminary Considerations 

1.3.1  Equations of Ocean Acoustics 

 The propagation of sound in the ocean is governed, to a good approximation, by the following 

linear inhomogeneous partial differential equation  (Jensen, et al. 1994): 

 , (1.1)  

where p is the pressure, c(z) is the sound speed at depth z, t is time, and s(X,t) is a function 

describing the source producing the disturbance at some location X.  Ocean acoustic modeling 

concerns itself with analytical and numerical techniques of solving equation (1.1) under different 

boundary conditions.  The solution to the equation will give the time dependent pressure at some 

point in the water (e.g., the location of a hydrophone).   

 The ocean is generally a time varying medium because environmental factors affecting 

the ocean are constantly changing.  For example, weather conditions, time of day, and the season 

all affect the sound speed profile in the ocean.  Equation (1.1) shows that the pressure measured 

at a point explicitly depends on the sound speed profile.  The reason is that the sound will refract 

in the ocean as it travels through layers with different sounds speeds.  This is analogous to how 

light will refract as it travels from one medium to another with a different index of refraction.  If 

the sound speed profile is temporally stable in a region where an acoustic experiment is 
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performed, the ocean can be regarded as a time invariant system.  The response of any linear 

time invariant (LTI) system to a given input can be expressed by a convolution relation 

(Bracewell 2000) 

  (1.2)  

where t is the time, s(t) is the source signal (i.e., the input), g(t) is called the Green's function or 

impulse response of the system, and p(t) is the pressure measured at the hydrophone (i.e., the 

output or response of the system).  We have suppressed the spatial dependence of the terms in 

the equation for clarity; p(t) is the pressure measured at a location Y, s(t) is the source signal 

located at X, and g(t) is a function of both X and Y.  Equation (1.2) is the solution of equation 

(1.1) expressed as an integral equation.  The Green's function g(t) is defined to be the solution of 

equation (1.1) when the source function s(X,t) is a delta function.  In other words it is the 

response of the ocean at Y to a point source located at X emitting a very short duration pulse.  

The Green's function depends on the location of the source and the receiver and will generally 

change with different source and receiver locations, with one exception.  The principle of 

reciprocity (Jensen, et al. 1994) states that if the source and receiver locations are interchanged, 

the Green's function will not change.  This is a key fact that makes localization in ocean 

acoustics possible.  In solving the localization problem, we can treat the location of our receiver 

as the source location in equation (1.1).  The source we are trying to locate in our experiment 

becomes the receiver in the model.  Matched field processing takes advantage of this by 

repeatedly solving equation (1.1) for different receiver locations and compares each solution to 

our hydrophone measurement.  The location that gives the closest match is the location of the 

source.    
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 Equation (1.2) provides us the means to model a hydrophone measurement at any 

location we choose in an ocean environment.  We use ocean acoustic models to solve equation 

(1.1) for an impulsive point source and obtain the Green's functions for different source and 

receiver locations.  The next section will describe two acoustic models we will use in this 

dissertation.          

1.3.2  Acoustic Propagation Models 

 There is a wide variety of acoustic propagation models available today to calculate the 

Green's functions in an ocean environment.  Many of them are based in the frequency domain 

where the source function is assumed to be radiating at a single frequency.  To form the time 

dependent Green's function from these models, the model must be run repeatedly at all 

frequencies forming a Green's function in the frequency domain.  This function is then inverse 

Fourier transformed to the time domain yielding the time dependent Green's function.  Other 

models solve equation (1.1) directly in the time domain giving the Green's function immediately.   

  The acoustic models we will use in this dissertation are  BELLHOP and SPARC.  The 

BELLHOP model is a Gaussian beam tracing model (Porter and Bucker 1987) that implements 

the ray tracing approximation of acoustics by associating a narrow Gaussian beam with each ray.  

The ray approximation models the sound as narrow beams of acoustic energy traveling through 

the ocean, similar to the geometric rays used in optics.  The advantage of Gaussian beams over 

standard ray tracing is that it eliminates unrealistic features such as perfect shadows and caustics 

in the acoustic field.  BELLHOP is a frequency domain model that assumes a point source 

radiating at a single frequency.  The radiating point source is approximated by propagating 

beams over a range of angles from the source location.  Those beams arriving at the receiver 

location are called arrivals and are characterized by their amplitude and time of arrival.  The 
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arrival time is a function of the sound speed and the amplitude is a function of both geometrical 

spreading and losses of energy from bottom bounces.  Two of the single hydrophone localization 

techniques in the literature that we will discuss explicitly incorporate the ray approximation into 

their algorithms and use BELLHOP for calculations. 

 In the time domain, the ray approximation gives the received signal as scaled and delayed 

replicas of the source signal (Jesus, Porter, et al. 2000; Jensen, et al. 1994).  The Green's function 

is written as 

  (1.3)  

where m is a ray arrival at the receiver, am is the amplitude of arrival m, and τm is the time at 

which arrival m reaches the receiver.  The ray model outputs are the arrival times of the rays and 

their amplitudes.  Once the Green's function is constructed using equation (1.3), it is convolved 

with the source function to model the signal at the hydrophone.   

 The other model we will use is SPARC (SACLANT Pulse Acoustic Research Code), a 

time domain acoustic propagation model (Porter 1990, 2008).  SPARC is ideally suited for 

calculating time dependent Green's functions because the model works in the time domain 

solving equation (1.1) directly.  A short duration pulse can be input at any location in the model 

and allowed to propagate through the ocean.  The time dependent Green's function at any desired 

location can be extracted to use in localization algorithms. Frequency domain acoustic models 

are more cumbersome to deal with because they need to be repeatedly run at the frequencies in 

the band of interest and then transformed to the time domain.   
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1.3.3  Discrete Time Signal Model 

 Digital signal processing on experimental data is done with discrete time signals of finite 

length.  The approximation of equation (1.2) for these signals is (Brigham 1988) 

  (1.4)  

where m and n are integer indices labeling the values of s and g at discrete times m and n.  

Equation (1.4) will serve as our fundamental model of the pressure measurement at a 

hydrophone throughout this dissertation.  A convenient shorthand for equations (1.2) and (1.4) is 

(Bracewell 2000) 

  (1.5)  

where the asterisk represents the convolution operation. 

Another way to express convolution is in matrix notation (Bracewell 2000) 

  (1.6)  

or  for short.  The source signal vector s is of length M, the Green's function vector g is of 

length N, and G is an M+N-1 by M matrix formed from the elements of g.  The convolution 

matrix is of full column rank (Tong, Xu and Kailath 1993). 

   



8 

 

1.3.4  Other Definitions and Notation 

 The cross correlation of signal s with signal g is defined as  

  (1.7)  

or in pentagram notation (Bracewell 2000) 

  (1.8)  

The cross correlation is useful for comparing two signals.  If the two signals are very similar at 

lag m as signal g is displaced over signal s, a peak will appear in the cross correlation.  This is a 

useful tool in matched field processing when comparing a replica signal with a measured signal. 

 We will use the following definition for calculating the Discrete Fourier Transform Fr of 

a discrete time function fk: 

  (1.9)  

Many software packages are equipped with Fast Fourier Transform (FFT) algorithms to calculate 

equation (1.9) very efficiently.    

 An analytic signal is the complex valued signal  associated with the real valued 

signal f(t) defined by the following Fourier transform pair (Bracewell 2000) 

  (1.10)  

where f is the frequency, H(f) is the unit step function, and F(f) is the Fourier transform of f(t).  

The negative frequency portion of the frequency spectrum of f(t) is suppressed by the step 

function and the result is inverse Fourier transformed to the time domain.  The magnitude of the 
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analytic signal  is called the envelope of f(t).  Intuitively the envelope is the function that 

touches the peaks of f(t) showing how the general shape of its amplitude varies with time.   

 The following two facts about matrix algebra will be used in this dissertation: 

1).  Given an  matrix A, the shortest least squares solution to the linear system Ax = b is  

  (1.11)  

where A
+
 is the pseudoinverse of the matrix A (Strang 1993).   

2).  If the rank of the matrix A is n (A is full column rank), then A
+
A=In where In is the  

identity matrix (Lutkepohl 1996).          

 The p-norm of a vector f is defined as 

  (1.12)  

One exception to this notation is for the square of the 2-norm, i.e., the sum of the squares of the 

elements of a vector.  We will omit the subscript in those cases because it is easier to read and it 

is consistent with notation used in the literature, 

 
 

(1.13)  

 

The -norm of the vector f is  

  (1.14)  
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1.4  Literature Review of Single Hydrophone Localization  

1.4.1  Li and Clay (1987) 

  In 1987 Li and Clay (Clay 1987, Li and Clay 1987) proposed a localizer using the cross 

correlation function.  They construct replica signals by convolving the Green's functions for 

different source locations with the source signal.  Then they cross-correlate the replica signals 

with the measured signal over a grid of trial source locations.  The cross-correlation peaks at the 

true source location because the replica signal closely matches the measured signal.  The 

equation describing this in our notation is 

  (1.15)  

where t is the time, X is a trial source location, h(X,t) is the replica signal for location X, and d(t) 

is the measured signal.  The function in the brackets is calculated for all trial source locations and 

the location X corresponding to the maximum value of the bracketed function is the estimate of 

the source location. 

1.4.2  Frazer and Pecholcs (1990) 

 The Frazer and Pecholcs technique (Frazer and Pecholcs 1990) is distinct from the others 

because it does not rely on a measurement or estimate of the source signal.  The information 

required is the measured signal at the hydrophone and the predicted Green's functions for each 

trial source location.  Frazer and Pecholcs (1990) proposed a family of localizers listed below.  

The notation is as follows:  h(X) is the replica signal for trial source location X, d is the measured 

signal, D is the FFT of the measured signal,  is the Green's function for source location X, 

and G(X) is the FFT of the Green's function for source location X.  A discussion of the localizers 

follows the list. 
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(1.16)  

 

  (1.17)  

 

 

  (1.18)  

 

 

  (1.19)  

 

 

 

  (1.20)  

 

 

  (1.21)  
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where  is the inverse FFT of D/G(X).   

 

 

 
 

(1.22)  

where . 

 The first thing we want to point out is that the  localizer is the same as the one 

developed by Li and Clay described in the previous section.  The  and localizers are 

variations of this with different normalization factors in the denominator.  The  norm works in 

the time domain on the inverse FFT of the Fourier deconvolution.  The  

localizers all work in the frequency domain on the Fourier deconvolution of D and G(X).  The 

idea is that the Fourier deconvolution D/G(X) will give an estimate of the source signal spectrum, 

assumed to be smooth compared to G(X).  G(X) typically has many nulls in it for underwater 

acoustic problems.  If the correct G(X) is put in, the resulting Fourier division will be relatively 

smooth.  When the incorrect G(X) is put in, the division will result in a spiky spectrum because 

of the nulls of G(X) in the denominator.  This drives the value of the norm of the division higher 

when G(X) is not correct.  If the norm of the division is put in the denominator of the localizer 

function, then the localizer will reach a peak value at the true source location.    

 To gain a better understanding of how the Frazer and Pecholcs localizers work, we will 

go through a numerical example comparing the values of the localizers when the trial source 

location is correct with when it is incorrect.   Figure 1.1 shows the source signal, Green's 

function, and measured signal we will use for this example.  The source signal is a linear 

frequency modulated (LFM) chirp with frequency sweep of 25 Hz to 225 Hz.  Its amplitude is  
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 Figure 1.1 (a) The source signal. (b) Green's function. (c) Measured signal. 
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modulated with a Hamming window and the duration of the signal is 0.5 seconds.  The sampling 

interval is 0.002 seconds, giving a cutoff frequency of 250 Hz.  The Green's function is 

representative of what would be found in a shallow underwater acoustic environment.  Notice 

that there are several arrivals representing reflections of the source signal energy from the ocean 

surface and the bottom.  The measured signal was calculated by convolving the source signal 

with the Green's function.  In this case the Green's function significantly distorts the source 

signal on its way to the receiver.  Figure 1.2 shows the energy spectra of the source signal, 

Green's function, and measured signal in the frequency domain.  The source signal spectrum is 

very smooth and centered at 125 Hz.  The Green's function spectrum is irregular in shape and 

features a number of nulls.  By the convolution theorem (Bracewell 2000), the spectrum of the 

measured signal is the product of the source spectrum and the Green's function spectrum.  The 

irregular shape and the nulls of the Green's function show in the frequency band where the 

source signal is most prominent.      

 The next task is to calculate the Frazer and Pecholcs localizer functions when the correct 

Green's function from Figure 1.1 is used, and for an incorrect Green's function corresponding to 

a different source location.  Figure 1.3 shows the result of D/G(X) for each case where D is the 

measured signal spectrum and G(X) is the Green's function.  When the correct Green's function is 

used, the smooth spectrum of the source signal is deconvolved out.  If the incorrect Green's  

function is used, a spectrum with a number of large peaks results.  These peaks are there because 

the nulls in the spectrum of the Green's function cause large values in the division operation 

where there are not corresponding nulls in the measured signal's spectrum.  This is the essential 

feature for understanding Frazer and Pecholc's frequency domain based localizers.  The Fourier 

division is sensitive to these nulls and only the correct Green's function with nulls in the same  
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Figure 1.2.  (a) The source signal spectrum. (b) Spectrum of Green's function, (c) Spectrum of 

measured signal.  
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Figure 1.3.  (a)  Magnitude of D/G(X) for the correct source location; (b)  magnitude of D/G(X) 

for the incorrect source location  
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Figure 1.4.  (a) The inverse FFT of D/G(X) for the correct source location; (b) the inverse FFT of 

D/G(X) for the incorrect source location shown in Figure 1.3(b). 
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family that rely on knowledge of the source signal for their calculation.  The  localizer is 

idential to the Clay localizer;  and  are similar but with different normalizations.  Figure 

1.5 shows the cross correlation with the incorrect Green's function; Figure 1.6 shows the cross 

correlation with the correct Green's function.  Qualitatively both waveforms look similar 

suggesting these localizers are less sensitive to the different Green's functions.  The peak value 

of the cross correlation and the 1-norms are similar too.  The similarity of the localizers suggests 

that a calculation of the localizers over all source locations could result in many false peaks.   

 The results in Table 1.1 summarize the values of the Frazer and Pecholc's localizer 

functions for our sample case.  All of the localizers in this example showed higher values at the 

correct location except the  localizer.  Both the χ and μ localizers are based on the cross 

correlation of the replica signal with the measured signal but have different normalization 

factors.  The failure of the μ localizer but not the χ localizers suggests that the normalizations 

used in these localizers are very important.  Notice the strong differences between the θ and φ 

localizers.  Those are sensitive to the smoothness of the source signal spectrum estimate from the 

Fourier division.  The assumption that the source signal spectrum be smooth compared to G(X) is 

important for these localizers. 

1.4.3  Lee (1998) 

 The next localizer we will look at is by Lee (1998) and is another one based on cross 

correlation.  The source signal is assumed to be known and the Green's function is measured 

directly by calculating the cross correlation of the measured signal and the source signal, as in 

equation (1.7).  The result of this calculation is equivalent to the received signal resulting from 

the transmission of the autocorrelation of the source signal through the ocean environment.  

Provided the autocorrelation of the source signal is a narrow pulse, the resulting cross correlation  
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Figure 1.5.  The cross correlation of the replica signal with the measured signal for the incorrect 

source location.  
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Figure 1.6.  The cross correlation of the replica signal with the measured signal for the correct 

source location. 
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Localizer Incorrect Source Location Correct Source Location 

 0.2267 0.2784 

 0.0011 0.0014 

 0.0091 0.0079 

 0.0404 0.4409 

 113.4 889.0 

 0.0051 0.0118 

 0.0003 0.0004 

 

Table 1.1.  Frazer & Pecholcs localizer values for the correct and incorrect source locations. 

 

should give a good approximation of the Green's function.  The Green's function estimate can 

then be directly compared to the Green's functions calculated from an acoustic propagation 

model using the cross correlation again.  The localizer will reach a peak value when the 

estimated Green's function most resembles the Green's function from the model corresponding to 

the correct source location.  This localizer is very similar to the Clay localizer except that the 

cross correlation is calculated between the Green's functions, rather than between a replica signal 

and the measured signal.  Here is the Lee localizer in our mathematical notation: 

  (1.23)  
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where  is the Green's function estimate from cross correlating the measurement with the source 

signal, and ) is the Green's function calculated from the acoustic propagation model for 

location X. 

1.4.4  Porter et al. (1998) 

 Porter et al. (1998) developed another localizer based on the cross correlation of the 

measured signal with a replica signal with one important difference from the previous localizers 

we've looked at:  they cross correlate the logarithm (log10) of the envelopes of the replica signal 

and measured signal rather than the signals themselves.  The principle behind this is that in many 

environments only the first few arrivals at the receiver dominate the measured signal energy.  

The later arrivals are attenuated more from multiple bottom interactions on their journey to the 

receiver.  The localizers by Porter et al. use the envelope of the signals to put less emphasis on 

the fine details of the signal.  They use the logarithm to emphasize the larger energy portions of 

the signal.  The hypothesis is that the localizer will be more robust.  The equation is as follows 

  (1.24)  

where rle is the logarithm of the envelope of the measured signal and  is the logarithm of 

the envelope of the replica signal for location X.  Again we calculate the replica signal over all 

trial source locations X and look for where the localizer peaks.   

1.4.5  Jesus et al. (2000) 

 The localizers developed by Jesus et al. (Jesus, Porter, et al. 1998, 2000) are the first 

we've discussed that explicitly assume that the acoustic propagation model used is a ray tracing 

model (they used BELLHOP).  This is often desirable because ray models run very quickly and 

the output is simple to interpret.  

 



23 

 

First we define some notation: 

X:  the source location. 

y:  measurement signal vector at the hydrophone. 

S[τ(X)]:  matrix of source signal replicas; each column contains one replica of the source signal   

 delayed by an amount defined by τ(X). 

τ(X):  vector defining arrival times from a ray based acoustic propagation model for source 

 location X. 

a(X):  amplitude vector defining amplitudes of arrivals from ray based acoustic propagation 

 model for source location X. 

ε:  random noise vector (representing measurement noise). 

The signal model is  

  (1.25)  

The received signal model is composed of scaled and delayed replicas of the source signal as 

predicted by acoustic ray theory.  The localizer calculates the product of the measurement signal 

vector y with the matrix S.  The resulting vector's elements are squared and summed for all trial 

source locations.  In other words, they calculate the inner product of the measurement vector 

with scaled and delayed replicas of the source signal.  The idea is that the localizer will peak 

when the τ(X) time delay vector has the correct arrival times in it corresponding to the true 

source location.  The localizer equation is written 

  (1.26)  

where X is the source location and 
H
 is the Hermitian transpose (complex valued signals are 

admissible).  Jesus et al. generalize their localizers to the case of N snapshots of the measured 

signal.  For example, the source could repeat itself several times giving multiple measurements 
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to use in the algorithm.  We will not be looking at this case, however, and will focus on the case 

where only a single measurement is available.   

1.4.6  Tiemann et al. (2006) 

 A recent paper by Tiemann et al. (2006) looked at marine mammal localization with a 

single hydrophone.  Ray theory was explicitly assumed for this technique by assuming source 

signal arrivals in the measurement can be clearly identified.  Localization is done by matching 

arrival times estimated from the measured signal to arrival times calculated from a ray tracing 

model.  The sperm whale clicks they measured were broadband and of very short duration.  The 

ray model of propagation is ideal for signals like this and arrivals at the receiver can be easily 

identified.  Their method was to match the arrivals at the receiver to the arrivals calculated by a 

ray propagation model (they used BELLHOP).  To do the matching, they created bins with a 

width of 15 milliseconds across the length of the measurement and the arrival time vector from 

the ray model.   They considered any arrivals in a particular bin that are present in both the 

measured signal and the calculated arrivals to be overlapping.  This process is continued across 

the entire measurement tabulating the overlaps.  If there are arrivals that do not overlap in a bin, 

they are considered nonoverlapping and those are tabulated.  A net overlap score is calculated by 

summing the overlaps and then subtracting the sum of the nonoverlapping arrivals.  The score is 

calculated for each trial source location.  The location with the highest net overlap score is the 

location of the source.   

 This technique is similar to other techniques where ray arrival times in the measurement 

are compared to those calculated by a model.  Instead of calculating a cross correlation as in 

many of the methods described above, or through matrix algebra, Tiemann et al. (2006) use a 

binning and counting technique to match up the arrivals.   
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1.4.7  Other Localization Techniques 

 There are other papers in the literature that use geometric ray tracing techniques to 

calculate the ray arrival times at a hydrophone for different source locations (Hassab 1976; Cato 

1998; Aubauer, Lammers and Whitlow 2000).  This would be a useful technique for broadband 

source signals in environments that can be approximated by a constant sound speed profile.  A 

paper by Unpingco et al. (1999) describes a synthetic aperture technique for tracking moving 

sources under certain assumptions.  Kuperman and D'Spain (2001) describe a technique for 

localizing in range only for broadband sources in deep water.  We will not examine these 

techniques further because of their more restrictive assumptions.      
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Chapter 2  A New Technique for Single Hydrophone Localization 

 

2.1  Description 

 Although we described several approaches to single hydrophone localization from the 

literature, the amount of work done on single sensor localization is small when compared to the 

voluminous literature on matched field processing with multiple receivers.  Most of the methods 

we described from the literature are variations on the basic idea of comparing replica signals 

generated using the source signal and an acoustic model, with the measurement at the receiver.  

A maximum or a minimum in the resulting metric is used to quantify the correlation and 

determine the true source location.  All of the above methods, except the algorithm by Frazer and 

Pecholcs (1990), rely on knowledge of the source signal that is transmitted, and this might be a 

limitation in some situations where this information may not be available or easily obtained.   

 We propose a new single hydrophone localization algorithm using the method of least 

squares.  Least squares is well established and can be implemented efficiently using matrix 

algebra packages.  This algorithm does not require knowledge of the source signal.  The Green's 

function estimate can be calculated from any acoustic propagation model.  There is no 

assumption built into the new algorithm requiring that a particular model be used (e.g., a ray 

model).  This frees up researchers to use any model that is appropriate for their experiment and it 

gives them options to balance their resources.  This can be important because some propagation 

models are computationally intense.    
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2.2  Algorithm 

 First we will establish some notation and then lay out the steps of the algorithm.  Recall 

equation (1.6) describing a discrete time LTI system for underwater acoustics 

  (2.1)  

where G is the convolution matrix of the Green's function for a source and receiver in the 

environment of the experiment, s is the discrete time source signal vector, and m is the 

measurement vector at the receiver.  Generally there will be some interfering noise that we will 

model as a random vector n added to the measurement vector 

  (2.2)  

We know the location of our receiver but do not know the location of the source.  Using the 

environmental information our propagation model requires, such as the sound speed profile of 

the water, we can calculate a set of trial Green's functions over a grid of possible source 

locations.  Each trial Green's function represents the propagation characteristics for a particular 

source and receiver geometry.  For example, in a two dimensional problem where the 

coordinates are range and depth, we can calculate the Green's functions over a rectangular grid of 

ranges and depths where the source might be located.  If the grid is sufficiently large to include 

the source, our algorithm should identify the range and depth of its location.  The source signal is 

assumed to be unknown.  The question is how can we find the location without knowing either 

the signal or the Green's function?  The answer is that we will simultaneously estimate the source 

signal and test each Green's function.  Here is the model of our system: 
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  (2.3)  

 is a trial Green's function from our search grid and  is our estimate of the source signal that 

we obtain by solving the equation: 

  (2.4)  

 is the pseudo-inverse of .  The pseudo-inverse creates the shortest least squares solution to 

the problem, as we pointed out in equation (1.11).  Now that we have our source signal estimate 

, we can use it to calculate a replica signal , assuming that  is the correct Green's function: 

  (2.5)  

To summarize the last few steps, we create a replica signal by temporarily assuming that our trial 

Green's function  is the correct one.  Then we estimate the source signal using the least squares 

solution to equation (2.3).  The resulting least squares estimate of the source signal is then 

convolved with the trial Green's function in equation (2.5) to give us a replica signal .  The 

final step is to compare our replica signal with the measured signal and calculate the squared 

difference between them: 

  (2.6)  

The process in equations (2.4) through (2.6) is repeated for every trial source location X.  The 

localizer function is denoted  

  (2.7)  

The localizer will achieve a minimum value when the Green's function corresponding to the 

correct source location X is input into the algorithm.  The next section will show why this is true.  
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2.3  Analysis of Algorithm 

 There are two possibilities when a trial Green's function  is input into the algorithm:  

either it is the correct Green's function describing the system or it is not.   

Case 1:   (the Green's function for the correct source location is used).  Substituting  

into equation (2.4) gives 

  

 

(2.8)  

Recall from equation (2.2) that  and substitute it into equation (2.8): 

  (2.9)  

Assuming that the signal to noise ratio is high enough to render the contribution of the second 

term to be negligible, we have 

  (2.10)  

Using the fact that  if and only if G is full column rank (Lutkepohl 1996), eq. (2.10) 

becomes  

  (2.11)  

Finally we have for the replica signal vector  

  (2.12)  

and the difference between the replica signal and the measured signal is 
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  (2.13)  

Case 2:    (a Green's function for an incorrect source location is used).  Substituting 

equation (2.2) into equation (2.4) gives 

  (2.14)  

where we assume again that the noise term n is negligible and neglect that term. 

The replica signal vector becomes, 

  (2.15)  

The matrix product  for a full column rank matrix (Lutkepohl 1996).  The product is 

equal to the identity matrix only when the system is full row rank (Lutkepohl 1996).  Calculating 

the difference between the measured signal and the replica signal gives 

  (2.16)  

We simplify equation (2.16) into a more convenient form: 

  (2.17)  

Therefore  in Case 2 showing that our localizer should achieve a minimum only when 

the Green's function for the correct source location is put into the algorithm.  The assumptions 

we made in equations (2.10) and (2.14) that the noise vector n is small is important and we will 

look at the impact of a larger n in Chapter 3.  

 Another notable case is when the Green's function has very few arrivals close together in 

time.  For example, there could be one direct arrival followed very closely by a reflected arrival.  
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When this happens the Green's function resembles a delta function and therefore the convolution 

matrix will resemble an identity matrix.  In other words, there is not much distortion of the 

source signal on its way to the receiver.  Inspection of equation (2.3) shows that the source signal 

estimate will be very close to the measured signal.  This will propagate through the algorithm 

and give a replica signal that is very close to the measured signal.  The localizer output will take 

on very small values in these cases and give unreliable location estimates.  Cases like this could 

pose a problem for any single hydrophone localization algorithm because they all generally rely 

on multiple interactions of the source signal energy with the surface and the bottom.  To function 

properly, these algorithms require unique Green's functions for different source and receiver 

geometries.  Researchers must be aware of this in their experimental planning and should try to 

put the hydrophone in an advantageous position.  It is also important to keep this case in mind 

when interpreting the localization data.       

2.4  Discussion 

 The algorithm we've described is based on solving the least squares problem, giving it the 

benefit of the fast algorithms that have been developed over the years.  The Levinson-Durbin 

recursion (Levinson 1947; Durbin 1960) is a very popular algorithm used to solve equation (2.3) 

in a computationally efficient and stable manner.  Another benefit is that the least squares 

formulation naturally accommodates the presence of some random noise in the measured signal.  

Least squares finds a solution to minimize  and therefore will minimize the effects of the 

noise vector n (Strang 1993).   

 Our algorithm makes no assumptions about the nature of the source signal.  Only four of 

the seven single hydrophone localization algorithms developed by Frazer and Pecholcs (1990) 
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require no knowledge of the source signal.  However Frazer and Pecholcs do make assumptions 

on the smoothness of the source signal spectrum and on its duration in the time domain for one 

of their localizers.  This potentially limits the application of their localizer if the source signal 

does not meet their assumptions.  Although Tiemann et al. (2006) and other localizers based on 

ray arrival times do not explicitly rely on knowledge of the source signal, they do make the 

assumption that the source signal is of a wide enough bandwidth that distinct arrivals are 

measured at the hydrophone. We propose our localizer as the only one among the ones we've 

reviewed in this dissertation that is both model independent and source signal independent.   

 As with any matched field processing algorithm, our algorithm shares the same potential 

sensitivity to inaccuracies in the acoustic modeling.  This could be caused by the inaccuracies in 

the model itself or by coarse environmental information fed into the model.  Researchers should 

also experiment with the search grid of trial source locations to determine the appropriate grid 

spacing.  There may be a balance of the fineness of the grid required for localization and the 

computational resources available to run the algorithm over the whole grid.   

2.5  Analysis Plan  

 In the next chapter we present results from simulation data to explore the capability and 

sensitivity of our new algorithm.  First we look at an initial case with simulated data to 

demonstrate the algorithm in a simple environment and compare it with the other localizers 

described in Chapter 1.  Sensitivities we explore parametrically include signal to noise ratio and 

source signal bandwidth.  With that understanding, we test the localization algorithm on some 

experimental ocean acoustic data to show it can be successfully used in a real ocean 

environment.    
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Chapter 3  Simulation Results 

3.1  Introduction 

 In this chapter we test the new method developed in Chapter 2 on some simulated data 

sets, look at some of its sensitivities, and compare its localization accuracy to the existing 

techniques described in Chapter 1.  To minimize any possible biases from the particular acoustic 

propagation model selected, we use a closed form analytical solution to the Pekeris waveguide 

problem (Pekeris 1948; Jensen, et al. 1994) to calculate the Green's functions.  We look at the 

sensitivity of our localization algorithm to source signal bandwidth and signal to noise ratio 

(SNR).   

 The source signal is a linear frequency modulated pulse described by the following 

equation:  

  (3.1)  

where t is the time, w(t) is the amplitude, f1 is the frequency at which the sweep begins and k is a 

constant that determines the rate of increase of the sweep.  The instantaneous frequency fi at time 

t is given by fi (t) = f1 + kt.  The frequency of the signal increases linearly as a function of time.  

The constants f1 and k can be chosen to get the desired frequency sweep over the period of the 

signal.  We choose a Hamming window (Harris 1978) for the amplitude function w(t), 

  (3.2)  

The Hamming window smoothes the sharp rise and fall of the amplitude of the LFM pulse 

compared to if no amplitude modulation were used (i.e. w(t) = constant).  It is a convenient 
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window to use because it is a built in function of Matlab, the software package we used to do 

most of the calculations in this dissertation. 

 The ocean environment we simulate is a Pekeris waveguide (Pekeris 1948; Jensen, et al. 

1994), a model of a single water layer over an infinitely deep fluid bottom layer.  Each layer is 

characterized by a sound speed and a density.  Although the Pekeris waveguide model may be 

too simple an approximation for some environments, we use it here to simplify the computations 

and to minimize biases that may creep into the sensitivity analysis from assumptions built into 

the particular acoustic propagation model used to calculate Green's functions.  The Pekeris 

waveguide model is well understood and has a relatively simple closed form solution.  This 

makes the Green's function calculations simple and fast over a grid of trial source locations.    

 The Green's function is synthesized from the following frequency dependent solution to 

the Pekeris waveguide problem (Pekeris 1948; Jensen, et al. 1994): 

  (3.3)  

where r is the range of the receiver, z is the depth of the receiver, zs is the source depth, D is the 

water depth, f is the source frequency, krn is the radial wave number of mode n, and kzn is the 

vertical wave number of mode n.  To obtain the time dependent Green's function, we calculate 

Equation (3.2) at every discrete frequency f over the bandwidth defined by the problem and take 

the inverse FFT of the result.  This process is repeated for every trial source location and the 

Green's functions are stored for input into the localization algorithm.  For our experiment, we 

used the following parameters to characterize the waveguide: 

Source depth zs:  99 meters. 
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Receiver depth z:  150 meters. 

Receiver range:  2100 meters. 

Water depth D:  300 meters. 

Sound speed in the water:  1500 meters/second. 

Sound speed in the bottom:  1650 meters/second. 

Density of the water:  1 kg/m
3
. 

Density of the bottom:  1.9 kg/m
3
. 

The sound speed and density of the bottom are representative of a sandy bottom and the water 

depth is shallow enough to allow for many interactions of the sound in the water column with the 

bottom.  The grid over which we calculated the trial Green's functions began at a range of 500 

meters from the receiver and went out to 3000 meters, at intervals of 10 meters.  The grid 

extended over the entire 300 meter water column at intervals in depth of 2 meters.    

 To simulate the signal measurement at the hydrophone, we convolved the Green's 

function for the true source location using equation (3.2) with the source signal from equation 

(3.1).  We input the result into the localization algorithms as the measured signal.  Figure 3.1 

shows the three source signals we used, each with different bandwidths.  Different bandwidths 

were achieved by adjusting the constants f1 and k in equation (3.1).  The first bandwidth was a 10 

Hz LFM sweep from 120 Hz to 130 Hz.  The second bandwidth was a 100 Hz sweep from 75 Hz 

to 175 Hz.  The third bandwidth was a 200 Hz sweep from 25 Hz to 225 Hz.  The durations of 

each of these source signals is 0.5 seconds.  The purpose of doing these simulations with three  
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Figure 3.1.  The source signals in the time domain and frequency domain.  (a)  Time domain 

view of 10 Hz LFM sweep over 0.5 seconds; (b) Frequency domain view of 10 Hz LFM sweep 

from 120 Hz to 130 Hz; (c) Time domain view of 100 Hz LFM sweep over 0.5 seconds; (d) 

Frequency domain view of 100 Hz LFM sweep from 75 Hz to 175 Hz; (e) Time domain view of 

200 Hz LFM sweep over 0.5 seconds; (f) Frequency domain view of 200 Hz LFM sweep from 

25 Hz to 225 Hz.  All of the signals are modulated by a Hamming window.    

0.1 0.2 0.3 0.4 0.5

-0.5

0

0.5

(a)
A

m
p
li
t
u
d
e

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

(b)

M
a
g
n
it
u
d
e

0.1 0.2 0.3 0.4 0.5

-0.5

0

0.5

(c)

A
m

p
li
t
u
d
e

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1
(d)

M
a
g
n
it
u
d
e

0.1 0.2 0.3 0.4 0.5

-0.5

0

0.5

Time (sec)

(e)

A
m

p
li
t
u
d
e

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(f)

M
a
g
n
it
u
d
e



37 

 

different bandwidths is to test the sensitivity of our new algorithm to the bandwidth of the source 

signal, and to compare this sensitivity with that of the other localizers we described in Chapter 1.  

Bandwidth is an essential consideration in the single hydrophone localization problem because 

we are trying to exploit variability of the Green's function with frequency to locate the source.  

The more frequencies we have available in our data, the greater the chance we can calculate 

unambiguous replica signals and locate the source.   

 Figure 3.1 shows the time domain and the frequency domain representations of the three 

LFM source signals we use.  Figure 3.2 shows the Green's function for the correct source and 

receiver pair calculated from equation (3.3) in the time domain and the frequency domain.  

Notice the presence of multiple spikes in the time domain representing reflections of the sound 

from the surface of the water and the bottom.  The frequency domain plot illustrates that the 

interaction of the sound with the surface and the bottom strongly attenuates some frequencies, 

but not others.  Figure 3.3 shows the convolution of each of the source signals with the Green's 

function in both the time and the frequency domain.  There is significant distortion of the source 

signal when it travels to the receiver because of the multiple interactions with the surface and the 

bottom.  It is the uniqueness of this distortion for each source and receiver pair that we want to 

exploit in the localization problem.      

3.2  Source Signal Bandwidth Parameterization 

3.2.1  10 Hz Source Signal Bandwidth 

 The first case we look at is the localization results for  the 10 Hz LFM sweep from 120 

Hz to 130 Hz.  Figure 3.4 shows the ambiguity plot for this case using our localization algorithm.  

The ambiguity plot is a plot of the reciprocal of  from equation (2.6) as a function of depth  
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Figure 3.2.  (a) Time domain view of the correct Green's function; (b) Frequency domain view of 

the correct Green's function. 

  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-1

-0.5

0

0.5

1

Time (sec)

A
m

p
li
t
u

d
e

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

M
a
g

n
it

u
d

e



39 

 

 
 

Figure 3.3.  The receiver signals calculated by convolving the source signals in Figure 3.1 with 

the Green's function in Figure 3.2.  (a) Time domain measured signal for the 10 Hz LFM sweep; 

(b) Frequency domain measured signal for 10 Hz LFM sweep; (c) Time domain measured signal 

for the 100 Hz LFM sweep; (d) Frequency domain measured signal for the 100 Hz LFM sweep; 

(e) Time domain measured signal for the 200 Hz LFM sweep; (f) Frequency domain measured 

signal for the 200 Hz LFM sweep.  
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Figure 3.4.  Ambiguity plot of our new single hydrophone localization algorithm over a grid of 

trial source locations for the 10 Hz case.  The colors correspond to the reciprocal of the value of 

the localizer function in each bin.  The peak of the localizer function occurs at a range of 2100 

meters and a depth of 100 meters.  The true location of the source is a range of 2100 meters and a 

depth of 99 meters. 
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of the source and range of the source from the receiver.  We plotted the reciprocal so that the 

peak value will represent the source location estimate, to be consistent with the other localizers 

we discussed in Chapter 1.  Our grid spacing was 10 meters in range and 2 meters in depth.  

There is a clear peak at a range of 2100 meters and a depth of 100 meters.  Recall that the true 

location of the source is at a range of 2100 meters and depth of 99 meters.  The localizer 

successfully located the source within 1 meter despite the source being slightly off of the grid of 

trial source locations, and having only a 10 Hz signal bandwidth.  Note that localization within 1 

meter is the best possible because of the discrete grid of locations over which the calculations are 

done.  Figure 3.5 gives a close up view of the localizer peak and shows that the peak quickly 

tapers off in both range and depth.  The peak drops off within about 20 meters in range and 4 

meters in depth.   

 We now consider the performance of the other single hydrophone localizers for 

comparison.  One issue to consider first is that the localizers by Jesus et al. (2000) and Tiemann 

et al. (2006) require their Green's functions be calculated using a ray model.  We used 

BELLHOP to do this by modeling the Pekeris waveguide using a constant sound speed profile in 

the water column and a constant sound speed in the bottom.  Figure 3.6 overlays the analytical 

Green's function for the Pekeris waveguide with the estimated ray arrivals from BELLHOP.  

There is good agreement between the two models in timing and sign for many of the arrivals.  

There are two arrivals in the 0.2 to 0.25 second range where BELLHOP's estimate is misaligned 

in time and opposite in sign to the analytical solution.  These disagreements are not surprising 

because the ray approximation of acoustics is most accurate with broadband, high frequency 

signals.  Although our signals are broadband, we are operating on the low end of the frequency  
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Figure 3.5.  Close up view of the localizer function in Figure 3.3 around the source location.  The 

range bin size is 10 meters and the depth bin size is 2 meters.  The localizer function tapers off in 

depth within about 4 meters of the source and tapers off in range within about 20 meters of the 

source. 
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Figure 3.6.  Overlay of the analytical solution to the Pekeris waveguide with the ray 

approximation calculated by the BELLHOP acoustic ray model for our trial case.  There is 

generally good agreement here with the exception of the arrivals in the 0.2 to 0.25 second range 

where there is an apparent misalignment in time and sign reversal given by BELLHOP.    
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scale where the ray approximation is the least accurate.  However, the literature on the ray based 

localizers discussed in Chapter 1 shows that the ray approximation can be used successfully at 

lower frequencies and we saw similar successes in some of our trials. 

 Figures 3.7 and 3.8 show the ambiguity plots for our new localizer and the localizers 

discussed  in Chapter 1 for comparison.  To identify each localizer, the last name of the first 

author of each localizer is displayed above each plot.  For the localizers developed by Frazer et 

al. (1990), we add the phonetic spelling of the Greek letter they used to label each localizer 

discussed in section 1.4.2.  For example, the localizer corresponding to equation (1.17) is labeled 

Frazer Chi1 in our plot.  The number corresponds to the subscript on the Greek letter in equation 

(1.17) to distinguish it from equation (1.16) which has the same Greek letter with a subscript of 

2.  Also notice that the localizer shown by equation (1.16) is the same as the one by Li and Clay 

(1987) given by equation (1.15).  We plotted this localizer once with the label of Clay/Frazer 

Chi2.  This nomenclature will be used hereafter to identify the different localizers shown in the 

ambiguity plots. 

 The only localizers that are successful in this case are the Clay/Frazer Chi2 localizer and 

our new localizer (Chapin).  The others gave estimates several hundred meters from the source 

location with many peaks in the ambiguity plots.  The Clay/Frazer localizer uses the source 

signal directly and therefore has an advantage over our localizer function.  In fact, the Porter, 

Lee, Jesus, Tiemann, Frazer Chi1, Frazer/Clay Chi2, and Frazer Mu localizers all require explicit 

knowledge of the source signal to do the calculations.   Only our localizer and the remaining 

Frazer localizers can be calculated without knowledge of the source signal.  The results suggest 

that a source signal with a relatively narrow bandwidth of 10 Hz could pose a problem for most  



45 

 

 
 

Figure 3.7.  Ambiguity plots of several of the localizers for the 10 Hz bandwidth source signal.  

The plots are labeled by the last name of the first author of the papers discussed in Chapter 1.  

For the localizers developed by Frazer et. al., the name is followed by a phonetic spelling of the 

Greek letter that labels their localizers discussed in section 1.4.2.  The new localizer we 

introduced in this dissertation is labeled with the author's last name and it appears in the upper 

left corner.  Each name is followed by the range and the depth of the source location estimate for 

that localizer.  Only the Chapin localizer successfully located the source among those shown in 

this figure. 

  

Chapin--Rng: 2100 m, Dpth: 100 m
D

e
p

t
h

 (
m

)

500 1000 1500 2000 2500 3000

50

100

150

200

250 2

4

6

8

Jesus--Rng: 2720 m, Dpth: 176 m

500 1000 1500 2000 2500 3000

50

100

150

200

250

2000

4000

6000

Porter--Rng: 2680 m, Dpth: 66 m

D
e
p

t
h

 (
m

)

500 1000 1500 2000 2500 3000

50

100

150

200

250 0.85

0.9

0.95

Tiemann--Rng: 2970 m, Dpth: 82 m

500 1000 1500 2000 2500 3000

50

100

150

200

250
-30

-25

-20

-15

-10

-5

Lee--Rng: 2520 m, Dpth: 52 m

D
e
p

t
h

 (
m

)

Range (m)

500 1000 1500 2000 2500 3000

50

100

150

200

250 0.05

0.1

0.15

0.2

0.25

Frazer Phi--Rng: 1910 m, Dpth: 190 m

Range (m)

500 1000 1500 2000 2500 3000

50

100

150

200

250

1

2

3

x 10
-4



46 

 

 
 

Figure 3.8.  Ambiguity plots of several of the localizers for the 10 Hz bandwidth source signal.  

The plots are labeled by the last name of the first author of the papers discussed in Chapter 1.  

For the localizers developed by Frazer et. al., the name is followed by a phonetic spelling of the 

Greek letter that labels their localizers discussed in section 1.4.2.  Each name is followed by the 

range and the depth of the source location estimate for that localizer.  Only the Clay/Frazer 

localizer succeeds in locating the source among those shown in this figure. 
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of the localizers.  Knowledge of the source signal only helped mitigate this with the Clay/Frazer 

localizer.  Our localizer was able to locate the source within 1 meter with no source signal 

knowledge.   

3.2.2  100 Hz Source Signal Bandwidth 

 We next consider a 0.5 second duration, 100 Hz bandwidth, LFM source signal sweeping 

from 75 Hz to 175 Hz.  Figures 3.9 and 3.10 show the results and more of the localizers were 

successful in this case.  Our localizer and the Porter, Frazer Chi1, Clay/Frazer Chi2, and Frazer 

Mu localizers were all successful at locating the source within 1 meter of its true location.  The 

Frazer/Clay localizer uses the source signal in its calculation giving it an advantage.  The 

additional 90 Hz of frequency content over the 10 Hz bandwidth case apparently benefited the 

Frazer Chi1 and Mu localizers because there was more detail in the replica signals to distinguish 

between different locations.  The other Frazer localizers based on frequency domain calculations 

failed to locate the source, as in the 10 Hz bandwidth case.  They do not use source signal 

information and are sensitive to small variations in the frequency content of the Green's 

functions from location to location.  This suggests that if the Green's function for a location close 

to the true source location differs only slightly from the true Green's function, the localizer could 

fail to give an unambiguous peak.  The ray-based localizers Tiemann and Jesus also failed to 

localize here and that was likely because a 100 Hz bandwidth is inadequate for the ray 

approximation to be valid and because the signals are low frequency.   

3.2.3  200 Hz Source Signal Bandwidth 

 Our final case concerning source signal bandwidth is a 0.5 second duration, 200 Hz LFM 

signal sweeping from 25 Hz to 225 Hz.  The results are shown in Figures 3.11 and 3.12.  The  
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Figure 3.9.  Ambiguity plots of several of the localizers for the 100 Hz bandwidth source signal.  

Our localizer and the Porter localizer are successful here. 
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Figure 3.10.  Ambiguity plots of several of the localizers for the 100 Hz bandwidth source signal.  

The Frazer Chi1, Mu, and Clay/Frazer Chi2 localizers are all successful.  They require 

knowledge of the source signal for their calculation. 
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Figure 3.11.  Ambiguity plots of several of the localizers for the 200 Hz bandwidth source signal.  

The Chapin, Porter, Lee and Jesus localizers succeed in this case, although the Jesus localizer is 

less accurate.  The Frazer Phi and Tiemann localizers continue to have difficulty. 
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Figure 3.12.  Ambiguity plots of several of the localizers for the 200 Hz bandwidth source signal.  

The Frazer Chi1, Mu, and Clay/Frazer Chi2 localizers are all successful.  The other Frazer 

localizers continue to have difficulty.  
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results improve upon the 100 Hz case with successful localization by the Chapin, Porter, Lee, 

Jesus, Frazer Chi1 & Mu, and Clay Frazer Chi 2 localizers.  The Lee and Jesus localizers have 

their first successes here after difficulty with the 10 Hz and 100 Hz bandwidth cases.   

 The Lee localizer calculates the cross-correlation of the estimated Green's function from 

the measurement with Green's functions from an acoustic model.  The Green's function generally 

consists of many short duration, high amplitude peaks representing reflections of the sound from 

the surface of the water and the bottom.  It takes a broad range of frequencies to produce short 

duration spikes in the time domain.  The Lee localizer needs 200 Hz of bandwidth in this case to 

get reasonable approximations to the Green's functions and to successfully locate the source.  A 

similar argument applies to the Jesus localizer which incorporates the ray approximation of 

acoustics explicitly into the signal model.  The Green's functions in the ray approximation 

consist of spikes separated by zeros.  These will also require a broad range of frequencies to 

approximate adequately for single hydrophone localization.  The Tiemann localizer, also based 

on the acoustic ray approximation, fails again.  The time domain measured signals in Figure 3.3 

show that there are not clear and distinguishable arrivals in the measurement to compare with the 

output of a ray acoustic model.  Clear and identifiable arrivals in the measurement signal are 

required for the Tiemann localizer to function properly. 

3.2.4  Summary of Source Signal Bandwidth Parameterization 

 Our parametric study of the impact of source signal bandwidth on single hydrophone 

localization shows that only our new localizer function and the Clay/Frazer Chi2 localizers are 

successful with 10 Hz of bandwidth.  The Clay/Frazer localizer has the additional advantage of 

knowledge of the source signal.  More of the localizers are successful with 100 Hz and 200 Hz of 

bandwidth to work with.  This is consistent with a common statement made in the literature that 
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one trades aperture for bandwidth in matched field processing.  In other words, we are trading off 

the lack of spatial measurements of the acoustic field for the availability of  broadband 

information in the measurement signal.  Our results suggest that if too much broadband 

information is lost because of source signal limitations, such as in the 10 Hz and 100 Hz cases, 

many of the localizer functions we discuss may fail.  Our new localizer function demonstrates a 

unique quality of robustness down to a 10 Hz bandwidth without requiring knowledge of the 

source signal, something none of the other localizers show. 

 3.3  Signal-to-Noise Ratio Parameterization  

 In this section we extend our parameterization from section 3.2 to the impact of noise on 

our localizer and compare that to the impacts on the others.  We look at four signal-to-noise 

ratios:  60 dB, 40 dB, 20 dB, and 0 dB.  The signal-to-noise ratio (SNR) is calculated using the 

following definition:   

  (3.4)  

where m(t) is the measured signal and n(t) is a vector of random noise drawn from a Gaussian 

probability distribution with zero mean and variance of one, k is a multiplier used to scale n(t) to 

get the desired SNR, and E{·} is the mathematical expectation operator.  The denominator is the 

standard deviation of the noise vector and the numerator is the maximum absolute amplitude of 

the measurement signal.  This is an appropriate definition for use with transient signals with 

widely varying amplitudes.  It is intuitive because the amplitudes of the noise vector can be 

easily compared with the peak amplitude of the measured signal by inspection.  For example, an 

SNR of 0 dB implies that the standard deviation of the noise vector is the same as the maximum 
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amplitude of the measured signal, on average.  An SNR of 40 dB implies that the maximum 

amplitude of the signal is 100 times that of the standard deviation of the noise.  Using this 

definition, we add a scaled random vector to our measured signals and repeat the analysis of 

section 3.2.   

 Plots of the measurement signals with the 60 dB, 40 dB, 20 dB, and 0 dB signal-to-noise 

ratios are shown in Figures 3.13, 3.14, 3.15, and 3.16 respectively.  The noise level is 10 times 

greater than the previous SNR as we progress from 60 dB to 0 dB.  The noise in the signal is 

particularly pronounced at the 20 dB and 0 dB levels; most of the original features in the signal 

are barely perceptible at 0 dB.  Our expectation is that the performance of the localizers will 

degrade significantly at 20 dB and 0 dB SNR.     

 The results of our SNR analysis are in Tables 3.1, 3.2, and 3.3 and the ambiguity plots are 

in the Appendix for brevity.  To summarize the results, we calculated the distance between the 

true source location and the estimated source location for each localizer, signal bandwidth, and 

SNR and placed those distances in the table.  The boxes are color coded with red or green to 

show, at a glance, which localizers performed well.  We use an arbitrary distance of 50 meters as 

the threshold between a successful localization of the source and an unsuccessful localization.  If 

the estimated source location is less than or equal to 50 meters from the true source location, we 

color the box green.  If it is greater than 50 meters, we color it red.   We regard the 50 meter 

threshold as a reasonable number based on a qualitative examination of the ambiguity plots and 

the distance errors in the table.  For example, in the 100 bandwidth case, the Frazer Theta and 

Frazer Beta localizers go from a distance error of 1392 meters down to 96 meters as we move 

from 40 dB to 20 dB SNR.  This suggests there is an element of chance involved in the apparent 

improved performance of those localizers as the noise levels increased.  Choosing a threshold of  
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Figure 3.13.  Plots of the 60 dB SNR measured signals in the time and frequency domains.  (a) 

Time domain measured signal using the 10 Hz bandwidth LFM sweep. (b) Frequency domain 

measured signal using the 10 Hz bandwidth LFM sweep. (c) Time domain measured signal using 

the 100 Hz bandwidth LFM sweep.  (d) Frequency domain measured signal using the 100 Hz 

bandwidth LFM sweep.  (e) Time domain measured signal using the 200 Hz bandwidth LFM 

sweep.  (f) Frequency domain measured signal using the 200 Hz bandwidth LFM sweep. 
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Figure 3.14.  Plots of the 40 dB SNR measured signals in the time and frequency domains.  (a) 

Time domain measured signal using the 10 Hz bandwidth LFM sweep. (b) Frequency domain 

measured signal using the 10 Hz bandwidth LFM sweep. (c) Time domain measured signal using 

the 100 Hz bandwidth LFM sweep.  (d) Frequency domain measured signal using the 100 Hz 

bandwidth LFM sweep.  (e) Time domain measured signal using the 200 Hz bandwidth LFM 

sweep.  (f) Frequency domain measured signal using the 200 Hz bandwidth LFM sweep. 
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Figure 3.15.  Plots of the 20 dB SNR measured signals in the time and frequency domains.  (a) 

Time domain measured signal using the 10 Hz bandwidth LFM sweep. (b) Frequency domain 

measured signal using the 10 Hz bandwidth LFM sweep. (c) Time domain measured signal using 

the 100 Hz bandwidth LFM sweep.  (d) Frequency domain measured signal using the 100 Hz 

bandwidth LFM sweep.  (e) Time domain measured signal using the 200 Hz bandwidth LFM 

sweep.  (f) Frequency domain measured signal using the 200 Hz bandwidth LFM sweep. 
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Figure 3.16.  Plots of the 0 dB SNR measured signals in the time and frequency domains.  (a) 

Time domain measured signal using the 10 Hz bandwidth LFM sweep. (b) Frequency domain 

measured signal using the 10 Hz bandwidth LFM sweep. (c) Time domain measured signal using 

the 100 Hz bandwidth LFM sweep.  (d) Frequency domain measured signal using the 100 Hz 

bandwidth LFM sweep.  (e) Time domain measured signal using the 200 Hz bandwidth LFM 

sweep.  (f) Frequency domain measured signal using the 200 Hz bandwidth LFM sweep. 
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Table 3.1.  Localization errors in meters for the 10 Hz bandwidth source signal at all SNRs. 

 

 

 

Table 3.2.  Localization errors in meters for the 100 Hz bandwidth source signal at all SNRs. 

 

 

 

BW=10 Hz

Inf. 60 40 20 0

Chapin 1 1 1 1 843

Porter 581 581 74 765 1592

Lee 423 423 423 423 423

Jesus 625 625 625 625 862

Tiemann 870 870 870 870 851

Frazer Phi 211 1602 1602 1602 1602

Frazer Theta 371 1402 1402 96 96

Frazer Beta 850 790 790 96 96

Frazer Nu 1602 1602 1602 1602 1602

Frazer Chi1 667 667 667 667 183

Clay/Frazer Chi2 1 1 1 1 1

Frazer Mu 913 913 913 913 396

SNR

BW=100 Hz

Inf. 60 40 20 0

Chapin 1 1 1 81 856

Porter 1 1 10 1561 677

Lee 624 624 624 624 492

Jesus 891 891 881 741 223

Tiemann 870 870 870 890 851

Frazer Phi 1582 1602 1602 1602 1602

Frazer Theta 1380 1392 1392 96 670

Frazer Beta 330 1392 1392 96 670

Frazer Nu 1602 1602 1602 1602 1602

Frazer Chi1 1 1 1 1 10

Clay/Frazer Chi2 1 1 1 1 10

Frazer Mu 1 1 1 1 491

SNR
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Table 3.3.  Localization errors in meters for the 200 Hz bandwidth source signal at all SNRs. 

 

100 meters would indicate successful localization in these cases.  In our judgment that is not 

reasonable so we choose a lower threshold to reduce the chance of false positives.  

 The results show that there is little difference between the 60 dB, 40 dB, and no noise 

cases for each source signal bandwidth.  The differences emerge at 20 dB SNR, with the 

exception of the 10 Hz bandwidth cases where little changes.  In the 100 Hz bandwidth case, our 

localizer and the Porter localizer fail to localize within 50 meters after success at lower noise 

levels.  The 200 Hz bandwidth case shows our localizer succeeds, but the Porter localizer fails.  

The Jesus localizer fails by a slim margin relative to our threshold.  At the 0 dB level, most of the 

localizers fail with the exception of the Clay/Frazer Chi2 localizers, and the Frazer Chi1 localizer 

in the 100 Hz bandwidth case.  Recall that these localizers had the benefit of knowledge of the 

BW=200 Hz

Inf. 60 40 20 0

Chapin 1 1 1 10 293

Porter 1 1 1 1344 560

Lee 1 1 1 1 90

Jesus 30 30 31 61 467

Tiemann 560 560 560 240 851

Frazer Phi 1393 1602 1602 1602 1602

Frazer Theta 1363 221 221 670 670

Frazer Beta 1483 221 221 670 670

Frazer Nu 1563 1602 1602 1602 1602

Frazer Chi1 1 1 1 1 878

Clay/Frazer Chi2 1 1 1 1 878

Frazer Mu 1 1 1 1 878

SNR
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source signal and that they are based on the cross correlation of the replica signal with the 

measured signal (see equations (1.16) and (1.17)).   

 The main lesson of this SNR analysis is that the performance of our localizer and the 

others degrades around the 20 dB level, although success is still possible.  At the 0 dB level, the 

results suggest that localization is impossible without knowledge of the source signal.  To 

identify the sensitivities of the localizer's performance to noise more precisely would require a 

Monte Carlo analysis using many noise realizations to collect statistics on the localization error.  

The sensitivities are not likely to be the same in every ocean environment.  The Green's functions 

are generally complex and variable when modeling different locations and environments.  A 

formal analysis to take these factors into account would be a massive computational effort and is 

outside the scope of this dissertation.  
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Chapter 4  Experimental Results 

 

4.1  Introduction 

 In this chapter we consider the performance of our localizer on experimental data.  The 

cases we looked at in Chapter 3 considered the sensitivity of the localizers under ideal conditions 

for which we could model the acoustic environment exactly.   Controlled conditions are the 

correct approach to understand the sensitivities of our algorithm.  However, scenarios in the real 

world contain many factors outside of our control and we must resort to approximations in our 

modeling.  An important test of any signal processing algorithm is its ability to provide useful 

information under experimental conditions for which our knowledge of the environment is 

imperfect.  We demonstrate that our algorithm can localize a source using experimental data and 

we continue our comparison with other single hydrophone localizers from the literature. 

 The experiment from which our data were taken is described in Field and Leclere (1993).  

The acoustic source was a 22 second LFM signal swept from 25 Hz to 150 Hz and was located 

96 meters below the surface.  The depth of the water was 915 meters and there were 15 element 

arrays of hydrophones located at various distances from the source.  We will consider the data 

taken from 2 hydrophones located at a range of 1500 meters from the source and at depths of 129 

meters and 250 meters.  The sound speed profile is shown in Figure 4.1 and the density profile in 

Figure 4.2.  The sound speed in the water is a downward refracting profile and a layer with high 

speed and density is evident about 200 meters into the ocean bottom.  Field and Laclere (1993) 

state that the sound speed profile in the water was measured during the experiment and the sound 

speeds and densities in the bottom were extracted from Deep Sea Drilling Profiles in the vicinity  
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Figure 4.1.  The sound speed profile of the water column and the bottom that we use in the 

acoustic propagation model to calculate the Green's functions.  The water depth is 915 meters 

and there is a downward refracting sound speed profile.  A layer of high sound speed and density 

is evident about 200 meters below the ocean bottom. 

 

  



64 

 

 
 

Figure 4.2.  The density profile of the water column and the bottom that we use in the acoustic 

propagation model to calculate the Green's functions.  The water is assumed a constant density of 

1 g/cc and the bottom density was extracted from Deep Sea Drilling Profiles done in the vicinity 

of the experiment.   

 

 

of the experiment.  These sound speeds and densities are used in the SPARC acoustic 

propagation model (see section 1.3.2) to generate the Green's functions over a grid of trial source 

locations. 

 Field and Laclere (1993) correlate the measured hydrophone data with the source signal 

to estimate the Green's function directly from the data.  This is possible because the 

autocorrelation of the source signal is narrow in time.  We use that correlated data as our 

measurement data and the autocorrelation of the source as our source signal for the localizers 
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that require it.  The following derivation from Field and Laclere (1993) shows that the correlated 

measurement data can be interpreted as the transmission of the autocorrelation of the source 

through the ocean to the receiver.  The data received at the hydrophone is modeled as  

  (4.1)  

where p(t) is the measured signal, s(t) is the source signal, g(t) is the Green's function, and n(t) is 

noise.  Calculating the cross correlation of p(t) with s(t) gives  

 

 

                                                  

 

(4.2)  

where a(t) is the autocorrelation of the source signal s(t), the  symbol represents cross 

correlation, and h(t) is the correlated measurement data.  Assuming that s(t) and n(t) are 

uncorrelated, the correlated measurement h(t) can be regarded as the convolution of the 

autocorrelation a(t) with the acoustic Green's function g(t).  In other words, a(t) becomes our 

source signal and h(t) becomes our measurement data.  This will be the signal model we will 

assume in this chapter to test our localization algorithm. 

4.2  Receiver at depth 129 meters 

 Our first case uses the correlated data from the hydrophone located at a range of 1500 

meters and a depth of 129 meters.  Figure 4.3 shows the autocorrelation and the FFT of the 

original source signal which we treat as the source signal in our model.  The signal energy is 

contained in a band from 25 Hz to 150 Hz.  The correlated measurement data are shown in 

Figure 4.4 and comparison with the source signal shows the effect of the ocean environment on 



66 

 

 

Figure 4.3.  Autocorrelation of the source signal.  (a) Correlated source signal in the time 

domain.  (b) Frequency domain representation of the correlated source signal.  The source is an 

LFM sweep from 25 Hz to 150 Hz and a 150 Hz tone.    
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Figure 4.4.  Correlated measurement data for the hydrophone located at a range of 1500 meters 

and a depth of 129 meters.  (a)  Time domain correlated measurement.  (b)  Correlated 

measurement in the frequency domain.   
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the source as it propagates to the receiver.  The time domain plot shows two larger amplitude 

arrivals that are close together, but opposite in sign, between 0.5 and 0.6 seconds.  The first 

arrival is the direct arrival from the source and the second is a result of a reflection from the 

surface of the water.  Later arrivals show up after 1 second and are the result of interactions with 

both the bottom and the surface.  The frequency domain plot shows the distortions introduced 

across all frequencies from the reflections of the energy.  The absence of energy outside the pass 

band of the signal allows us to limit the frequency band over which we need to calculate the 

Green's functions.  This is important in saving computational time.  Figure 4.5 shows the Green's 

function calculated from SPARC for the correct source location.  The time domain plot shows a 

strong resemblance to the correlated measurement data with two early arrivals and at least 4 later 

arrivals.  The frequency domain plot shows the significant distortion across the pass band of the 

source signal and strong attenuation around 100 Hz.  We cut the calculation off for frequencies 

above approximately 180 Hz because of the absence of source signal energy at these frequencies.   

 We begin by looking at the ambiguity plot for our localizer in Figure 4.6.  The grid 

spacing we use to calculate the Green's function is 25 meters in range and 5 meters in depth.  We 

only calculate down to a depth of 500 meters to conserve computational time.  The source 

location estimate with the Chapin algorithm is 1525 meters in range and 95 meters in depth.  

Therefore we locate the source within 1 meter in the depth direction and within 25 meters in 

range.  These are excellent results considering Field and Leclere (1993) state that the range is 

known within 25 meters of the nominal range of 1500 meters.  One interesting feature of the plot 

is the band of higher amplitudes of the localizer function stretching from the upper left corner 

across the top to the right side at about a 100 meter depth.  The direct and surface reflected 

arrivals follow this path and their spacing in both space and time is similar as the energy travels  
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Figure 4.5.  Green's function for 129 meter case calculated by SPARC.  (a) Time domain plot.  

There are two early arrivals representing one direct arrival and one surface reflected arrival.  At 

least 4 arrivals show up after nearly 0.5 seconds; those are reflections from the surface and the 

bottom.  (b)  Frequency domain plot showing distortion across the band and a null around 100 

Hz.  The calculation is cut off at approximately 180 Hz because there is no energy in the 

measured signal at these frequencies. 
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Figure 4.6.  Ambiguity plot of our localizer for the hydrophone at range 1500 meters and depth 

129 meters.  The grid spacing is 25 meters in range and 5 meters in depth.  The true source depth 

is 96 meters and we localize within 1 meter.  The range is localized within 25 meters.  The band 

of higher amplitudes across the top is caused by similarity of the Green's functions at these 

locations. 
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across the top of the waveguide.  Therefore the early portions of the Green's functions in this 

region are very similar.  Similarities in Green's functions for different locations introduce 

ambiguities in the localization.  The arrival times of the energy that suffers multiple reflections 

are much more variable and these variations help to reduce the ambiguities.  All localization 

algorithms rely on the uniqueness of the Green's functions at different locations to give 

unambiguous results.   

 For comparison we calculate the ambiguity plots for the other localizers and plot them in 

Figures 4.7 and 4.8.  The first thing to notice is that the Jesus and Tiemann localizers perform 

well here.  This is because the source signal is sufficiently broadband for the ray approximation 

to be reasonable.  The Tiemann localizer works well here, when it did not in Chapter 3, because 

the correlated data shows the arrivals very distinctly.  In the simulated cases of the previous 

chapter, the arrivals did not show up distinctly in the data and the Tiemann localizer performed 

poorly.  This suggests that correlated data may be a better choice to use with the Tiemann 

localizer when the arrivals are not distinct, and when the correlated source signal is narrower in 

time than the original source signal.  Another noteworthy feature of the ambiguity data is that the 

Porter, Lee, Clay/Frazer Chi2, Frazer Chi1, and Frazer Mu localizers perform poorly, after 

successes in the simulated data of Chapter 3.  The ambiguity plots feature the large band of 

higher amplitudes near the surface that we discussed above with our localizer.  The data indicate 

that the ambiguities in this region cause problems for these localizers suggesting they may not 

perform as well in environments like this one.  The Porter localizer performs very poorly and this 

may be because it is based on the envelope of the signal which emphasizes broad features at the 

expense of detail.  Using correlated data highlights both the large and small arrivals of the 

acoustic energy and these highlights are lost when using only the envelope of the data.  The 
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Figure 4.7.  Localization results of several of the localizers for the receiver at 129 meters in 

depth and 1500 meters in range.  Our localizer and the ray-based localizers of Jesus and Tiemann 

are successful in this case. 
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Figure 4.8.  Localization results of several of the localizers for the receiver at 129 meters in 

depth and 1500 meters in range.  None of these localizers is successful in this case. 
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remaining Frazer localizers continue to have difficulty and this is another reflection of their 

requirement of a very accurate representation of the Green's function. 

 The case we examine here shows another success for our localizer when others have 

difficulty.  The ray-based localizers of Jesus and Tiemann also perform well here because of the 

broadband source signal.  Many of the other localizers had difficulty in this case that did not 

show up in the simulations of Chapter 3.  The primary difference is that we use experimental 

data here with its inherent uncertainties.  Our localizer demonstrates the ability to locate the 

source signal with imperfect environmental information.  Next we examine a second case with a 

different hydrophone.  

4.3  Receiver at depth 250 meters 

 In this case we look at the hydrophone at a range of 1500 meters from the source and at a 

depth of 250 meters.  The correlated measurement data are shown in Figure 4.9 and have similar 

features to the 129 meter case.  There are two early arrivals followed by some later arrivals as in 

the previous case.  The early arrivals are direct and surface reflected arrivals, and the later 

arrivals are the result of reflections from the surface and the bottom.  The timing is a bit different 

since the hydrophone is lower in the ocean waveguide.  The frequency domain shows some 

attenuation around 50 Hz and 100 Hz.  The Green's function for the true source location 

calculated with the SPARC model is shown in Figure 4.10 and gives us some insight into the 

features of the measured signal.  The later arrivals reach this hydrophone a bit sooner than the 

129 meter case, approximately 0.1 seconds sooner.  This is because the hydrophone is lower in 

the waveguide and bottom reflections arrive sooner.  The frequency domain plot shows 

attenuation in the region of 50 Hz and 100 Hz, as the spectrum of the measured data show.   
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Figure 4.9.  Correlated measurement data for the hydrophone located at a range of 1500 meters 

and a depth of 250 meters.  (a)  Time domain correlated measurement.  (b)  Correlated 

measurement in the frequency domain.   
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Figure 4.10.  Green's function for 250 meter case calculated by SPARC.  (a) Time domain plot.  

There are two early arrivals representing one direct arrival and one surface reflected arrival.  At 

least 4 arrivals show up after nearly 0.4 seconds; those are reflections from the surface and the 

bottom.  (b)  Frequency domain plot showing distortion across the band and a null around 100 

Hz.  The calculation is cut off at approximately 180 Hz because there is no energy in the 

measured signal at these frequencies. 
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 The ambiguity plot for our localizer is shown in Figure 4.11 and it shares features of the 

129 meter case, particularly that band of higher amplitudes near the top of the plot.  The physical 

reason for this is the same; the direct and surface reflected arrivals follow this path and their 

spacing in space and time is similar as the energy travels across the top of the waveguide.  The 

result is that the early parts of the Green's functions for these locations are similar.  The later 

arrivals help to differentiate the Green's functions and allow us to locate the source within 4 

meters of its true location.  We use a coarser depth spacing of 10 meters in this case to see how 

that might affect the localization.  It does not appear to degrade the performance of our localizer, 

although the location estimate in depth is less precise with the coarser spacing. 

 Plots of the remaining localizers are shown in Figures 4.12 and 4.13.  As in the 129 meter 

case, the Jesus localizer performs well, but the Tiemann localizer does not.  It appears that the 

Tiemann localizer does have a peak near the true source location, but a different location has a 

higher peak and therefore gives an incorrect location estimate.  This suggests that the Tiemann 

localizer may be sensitive to environments where there are similar Green's functions.  Recall that 

the Tiemann localizer was successful in the 129 meter hydrophone case.  The observations on the 

remaining localizers remain similar to the previous case.  One noteworthy difference is the peak 

in the Frazer Phi localizer that occurs at a range of 1550 meters and a depth of 30 meters, 

approximately 83 meters from the true source location.  This could be qualified a success in light 

of some of the higher amplitudes in the other ambiguity plots that appear closer to the surface.       
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Figure 4.11.  Ambiguity plot of our localizer for the hydrophone at range 1500 meters and depth 

250 meters.  The grid spacing was 25 meters in range and 10 meters in depth.  The true source 

depth is 96 meters and we localize within 4 meters.  The range is localized within 25 meters.  

The band of higher amplitudes across the top is caused by similarity of the Green's functions at 

these locations. 
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Figure 4.12.  Localization results of several of the localizers for the receiver at 250 meters in 

depth and 1500 meters in range.  Our localizer and the ray-based localizer of Jesus are successful 

in this case.  The Frazer Phi localizer gives a peak within about 83 meters of the true source 

location. 
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Figure 4.13.  Localization results of several of the localizers for the receiver at 250 meters in 

depth and 1500 meters in range.  None of these localizers is successful in this case.  
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4.4  Summary 

 We have shown two cases where our new localizer successfully estimates the location of 

an acoustic source using measured ocean acoustic data.  The only information required is the 

measurement at one hydrophone and the ocean's environmental parameters to model the acoustic 

propagation.  Our algorithm does not require any knowledge of the source signal in its 

calculations.  In Chapter 3 we look at some simulated cases to understand how our localization 

algorithm is affected by the source signal bandwidth and noise.  The results show that our 

localizer is successful at bandwidths as low as 10 Hz and at signal-to-noise ratios of 20 dB or 

higher.  A number of the cases demonstrate our localizer is successful when many of the others 

from the literature are not, even when some include the source signal in their algorithms.  While 

we do not claim that the new localizer we introduce will outperform the others in every scenario, 

the results show that it has promise to be a useful tool for single hydrophone localization.    
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Appendix 
 

 This appendix contains all of the ambiguity plots generated in the signal-to-noise ratio 

(SNR) analysis of section 3.3.  They are not essential to the main presentation but are placed here 

for completeness and to preserve the continuity of the text.  The ambiguity plots are calculated 

for signal-to-noise ratios of 60 dB, 40 dB, 20 dB, and 0 db.  The calculations are done for the 

three source signal bandwidths discussed in Chapter 3, at each SNR.  The ambiguity plots for all 

localizers discussed in this dissertation are included.   
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Figure A.1.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=60 dB. 
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Figure A.2.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=60 dB. 
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Figure A.3.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=60 dB  
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Figure A.4.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=60 dB 
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Figure A.5.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=60 dB 
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Figure A.6.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=60 dB 
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Figure A.7.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=40 dB 
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Figure A.8.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=40 dB 
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Figure A.9.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=40 dB 
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Figure A.10.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=40 dB 
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Figure A.11.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=40 dB 
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Figure A.12.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=40 dB 
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Figure A.13.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=20 dB 
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Figure A.14.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=20 dB 
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Figure A.15.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=20 dB 
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Figure A.16.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=20 dB 
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Figure A.17.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=20 dB 
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Figure A.18.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=20 dB 
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Figure A.19.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=0 dB 
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Figure A.20.  Ambiguity plots for source signal bandwidth of 10 Hz and SNR=0 dB 
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Figure A.21.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=0 dB 
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Figure A.22.  Ambiguity plots for source signal bandwidth of 100 Hz and SNR=0 dB 
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Figure A.23.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=0 dB 
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Figure A.24.  Ambiguity plots for source signal bandwidth of 200 Hz and SNR=0 dB 
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