
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-7-2008

Classifier System Learning of Good Database Schema Classifier System Learning of Good Database Schema

Mitsuru Tanaka
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Tanaka, Mitsuru, "Classifier System Learning of Good Database Schema" (2008). University of New
Orleans Theses and Dissertations. 859.
https://scholarworks.uno.edu/td/859

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/859?utm_source=scholarworks.uno.edu%2Ftd%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Classifier System Learning of Good Database Schema

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Computer Science

By

Mitsuru Tanaka

B.E., Hiroshima Kokusai Gakuin University, Japan, 2001

August, 2008

© 2008, Mitsuru Tanaka

 ii

Dedication

This thesis is dedicated to my parents Mr. Chiaki Tanaka and Mrs. Hisako Tanaka,

and my brothers Yusaku and Shingo.

 iii

Acknowledgement

I would like to thank my thesis advisor Dr. Shengru Tu. Dr. Tu introduced me to a

research project, which required knowledge of database and artificial intelligence fields

and later motivated me to write a thesis on it. Artificial intelligence was a frontier field to

me. The fusion of the two fields presented many questions for me to explore in the

project. I thank Dr. Tu for answering to my questions and being supportive throughout

the completion of my thesis.

I would also like to thank Dr. Adlai DePano, and Dr. Golden Richard, III, for

becoming my thesis committee members.

I would also like to thank Dr. Lingyan Shu, who was the team leader in the

project, for helping me in the artificial intelligence studies.

I would also like to thank other faculty members and staffs for providing me with

a wonderful learning environment.

 iv

Table of Contents

List of Figures ... vii
List of Tables ... viii
Abstract .. ix
Chapter 1: Introduction ..1
 1.1 Applying the Classifier System to the Learning of Database Schema1
 1.2 Organization..7
Chapter 2: Background ..9
 2.1 Artificial Intelligence ..9
 2.2 Machine Learning ...11
 2.3 Previous Works on Classifier System...12
Chapter 3: An Intensive Study on Classifier System...15
 3.1 Genetics-Based Machine Learning ...15
 3.2 Genetic Algorithms...16
 3.2.1 Robustness of Genetic Algorithms ...16
 3.2.2 Natural Selection...19
 3.2.3 Reproduction...20
 3.2.4 Crossover ..22
 3.2.5 Mutation..24
 3.2.6 Similarity Templates (Schemata)..26
 3.2.7 Schema Theorem (Fundamental Theorem of Genetic Algorithms)26
 3.2.8 A Simple Genetic Algorithm for a Knapsack Problem29
 3.3 Components of Classifier System...34
 3.3.1 Rule and Message System ..35
 3.3.2 Classifiers..36
 3.3.3 Apportionment of Credit System: Bucket Brigade...37
 3.3.4 Genetic Algorithms in the Classifier System..37
Chapter 4: Implementation of a Classifier System in Java ..39
 4.1 Requirements ..39
 4.2 Input and Output ...40
 4.3 Data Structures..42
 4.3.1 Classifier ...43
 4.3.2 Environmental Message..43
 4.3.3 Population ...44
 4.4 Class Diagrams ...45
 4.4.1 Perform Class as the Rule and Message System ..46
 4.4.2 AOC Class as the Apportionment of Credit System46
 4.4.3 GA Class as the Genetic Algorithms...47
 4.4.4 Reinforc Class for the Reinforcement Learning ...48
 4.5 Knowledge Given to the Classifier System & Reward Functions..........................50
 4.6 Example Operations over the Classifiers..50
 4.6.1 Operations of matchclassifiers in Perform ...51
 4.6.2 Operations of auction and taxcollector in AOC ...52

 v

 4.6.3 Operations of GA ..54
 4.6.4 Operations of payreward in Reinforc ...55
Chapter 5: Result of an Experiment...57
 5.1 Completely Well-Designed Database Schema as the Input....................................57
 5.2 Badly Designed Database Schema as the Input..60
Chapter 6: Conclusion..63
References..64
Appendices...66
 Appendix A: Permissions ...66
Vita...68

 vi

List of Figures

Figure 1.1: Alternatives for CUSTOMER and TELEPHONE ..4
Figure 1.2: An E-R Diagram without CUSTOMER Entity Set...5
Figure 2.1: A Six-Bit Multiplexer Function ..14
Figure 3.1: A Mountain with a Single Peak...17
Figure 3.2: A Mountain with Multiple Peaks ..18
Figure 3.3: Noisy and Discontinuous Functions..19
Figure 3.4: Roulette Wheel for Reproduction..22
Figure 3.5: An Example Binary Representation of the Strings in a Knapsack Problem .31
Figure 3.6: A Learning Classifier System Interacting with its Environment35
Figure 4.1: The Input to the Classifier System ..41
Figure 4.2: System Tab with the Output..42
Figure 4.3: The Declarations of ClassType..43
Figure 4.4: The Declarations of PopType ..44
Figure 4.5: An Iteration of the Classifier System ..45
Figure 4.6: The Class Diagram of Perform ...46
Figure 4.7: The Class Diagram of AOC...47
Figure 4.8: The Class Diagram of GA ...48
Figure 4.9: The Class Diagram of Reinforc ...49
Figure 4.10: The Class Diagram of RewardCalculator ...50
Figure 4.11: The Method matchclassifiers ..51
Figure 4.12: Some Classifiers Matching to an Environmental Message52
Figure 4.13: The Method auction ..53
Figure 4.14: The Method taxcollector ...54
Figure 4.15: Relations and Mapping Cardinalities ..56
Figure 5.1: Well-Designed Input Schema..58
Figure 5.2: Mapping Cardinalities of the Well-Designed Input Schema.........................58
Figure 5.3: Initial Population Generated From the Well-Designed Input Schemas58
Figure 5.4: Top Five Classifiers of the Final Population in the Experiment with the
 Well-Designed Schemas ...59
Figure 5.5: Number of Classifiers with Strength Over 2 ...60
Figure 5.6: Number of Classifiers with Strength Over 10 ...60
Figure 5.7: Input in Which PROJ Is Modified...61
Figure 5.8: Initial Population Generated From the Badly Designed Input Schemas.......61
Figure 5.9: Top Five Classifiers of the Final Population in the Experiment with
 Badly Designed Schemas..62

 vii

List of Tables

Table 3.1: Example of Four Strings...21
Table 3.2: Four Strings with 0 Fitness Value ..24
Table 3.3: The Effect of Mutation ...25
Table 3.4: Weight and Profit of the Items for a Knapsack Problem..................................30
Table 3.5: String and Schema Processing by Genetic Algorithms
 for a Knapsack Problem...32
Table 4.1: Four Classifiers for a Database Schema EMPLOYEE.....................................54

 viii

Abstract

This thesis presents an implementation of a learning classifier system which

learns good database schema. The system is implemented in Java using the NetBeans

development environment, which provides a good control for the GUI components. The

system contains four components: a user interface, a rule and message system, an

apportionment of credit system, and genetic algorithms. The input of the system is a set

of simple database schemas and the objective for the classifier system is to keep the good

database schemas which are represented by classifiers. The learning classifier system is

given some basic knowledge about database concepts or rules. The result showed that the

system could decrease the bad schemas and keep the good ones.

Keywords and Phrases: classifier system, machine learning, genetic algorithms, and

relational database.

 ix

Chapter 1: Introduction

A classifier system is a machine learning system which uses genetic algorithms.

Genetic algorithms are based on the principle of Darwin’s survival of the fittest. They are

derived from a computational model of evolutionary genetics. They also have been

applied to search and optimization problems. Genetic algorithm based classifier systems

have been applied to a variety of learning tasks. In this thesis, the classifier system is

applied to learn good relational database schemas.1

1.1 Applying the Classifier System to the Learning of Good Database

Schema

 Database design involves complex tasks. Databases are widely used in banking,

airlines, universities, or credit card transactions. Such databases are designed to manage

large bodies of information. To map the information to relational database, there are

many steps involved in the design. Database design usually involves the following phases

[1]: characterizing the data needs of the prospective database users, conceptual-design,

creating a specification of functional requirements, logical design, and physical design. In

these phases, there are many concepts, theories, or rules, which help the database

designers to produce good database schemas. These five phases involve complex tasks

when the information is large.

1 The ideas, methods, and algorithms of applying classifier systems to learn database schemas were
provided by Dr. Lingyan Shu who can be reached at lingyan@conciseinfo.com.

 1

In the first phase to characterize the data needs of the prospective database users,

the database designer needs to interact extensively with domain experts and users to carry

out this task. The output of this phase is a specification of user requirements. If the client

is a bank, there may be a requirement that all the customers must be identified by their

customer identification values. In addition, there may be a requirement that a customer

must always be associated with a particular banker, who may act as a loan officer or

personal banker for that customer. Because of the first requirement, the database designer

must set up a constraint that the identification value given to the customer cannot be

assigned to other customers. The second requirement raises a question: what if the banker

associated with a customer quits? As the information gets complex, the requirements can

be large. These requirements or restrictions tend to complicate the designing of databases.

In the conceptual-design phase, the database designer translates the specification

of requirements to a conceptual schema of the database. The output is a schema that

provides a detailed overview of the enterprise. Usually, the entity-relationship model (E-

R model) [2] is used for this purpose. The output schema is described as an entity-

relationship diagram with the E-R model.

In the E-R model, a thing or object in the real world that is distinguishable from

all other objects is called an entity. For example, each person in an enterprise is an entity.

An entity is represented by a set of attributes, which are descriptive properties possessed

by each member of an entity set. For example, a person at a bank with an identification

number, a name, or a street may be the example attributes. An entity set is a set of entities

of the same type that share the same properties, or attributes. Therefore, the all customers

with the bank may be defined as a customer entity set. An association among several

 2

entities is defined as a relationship in the E-R model. For example, the relation between a

customer named Johnson and his associated banker named Smith can be described as a

relationship. A relationship set is a set of such relationships of the same type. The

relationships between customer and associated banker entity sets can be described as a

relationship set. Even though the E-R model captures such semantics among data and

depicts in an E-R diagram, there are some known issues.

Consider the entity set CUSTOMER with its attributes CUSTOMER_ID,

CUSTOMER_NAME, CUSTOMER_CITY, and CUSTOMER_STREET in (a) of Figure

1.1. It is possible to argue that (b) of Figure 1.1 can also be constructed from (a). In (b) of

Figure 1.1, TELEPHONE is considered to be an entity set with the attributes

TELEPHONE_NUMBER and LOCATION. Since TELEPHONE belongs to

CUSTOMER, there is a relationship CUST_TELEPHONE. This way, it is possible to

define a set of entities and the attributes among them in a number of different ways.

Database designers have to choose what is represented as entities and attributes. When

attributes are the choice in the decision, there will be a case that a relationship set is

constructed as in Figure 1.1. Depending on the choice, the schema will affect the later

phases.

 3

CUSTOMER_ID

CUSTOMER_NAME

CUSTOMER_STREET

CUSTOMER_CITY

CUST_
TELEPHONE

(a)

(b)

CUSTOMER_ID

CUSTOMER_NAME

CUSTOMER_STREET

CUSTOMER_CITY

TELEPHONE_NUMBER

TELEPHONE_NUMBER

LOCATION

CUSTOMER

CUSTOMER

TELEPHONE

Figure 1.1: Alternatives for CUSTOMER and TELEPHONE

In the specification of functional requirements, users describe the kinds of

operations (or transactions) that will be performed on the data. Example operations

include modifying or updating data, searching for and retrieving specific data, and

deleting data. Users usually have their own business requirements. The schema that

comes out of the second phase certainly affects this phase. Suppose that a bank has

entities as depicted in Figure 1.2. There are ACCOUNT and LOAN, but there is no

CUSTOMER that we saw from the previous example, and the design requires the

information about customers that are recorded in ACCOUNT. In the specification of

functional requirements, a bank may state some requirements as follows: whenever any

type of new customer comes, the banker can record their names and address information

 4

in the database. Suppose a customer comes to a bank, but the customer is not coming to

create an account or to make a loan. The banker has to keep the names and address of the

customer. Therefore, the banker needs to update the ACCOUNT, since it is the only

entity set containing the attributes CUSTOMER_NAME, CUSTOMER_CITY, and

CUSTOMER_STREET. The problem is that the customer does not have values for

ACCOUNT_NUMBER and BALANCE. Thus, the banker has to update with null values.

However, the primary key constraint does not allow the operation, and the update is

impossible. This way, the schema that came out of the second phase also needs to meet

the functional requirements. The users of database usually have many such requirements,

and the design must be done to meet these requirements.

ACCOUNT LOAN

CUSTOMER_CITY

CUSTOMER_STREET

LOAN_ID

AMOUNT

CUSTOMER_NAME

BALANCE

ACCOUNT_NUMBER

Figure 1.2: An E-R Diagram without CUSTOMER Entity Set

In the logical-design, the fourth phase, the designer maps the conceptual schema

onto the implementation data model of the database system that will be used. The

implementation data model is typically the relational data model [3]. With the relational

data model, the output is the set of relation schemas, which allows us to store information

without unnecessary redundancy, yet also allow us to retrieve information easily. This is

accomplished by designing schemas that are in an appropriate normal form, and the

 5

process is called normalization [3]. If the E-R diagrams are carefully designed, the

relation schemas should not need much further normalization [1]. Normalization can be

left to the designer’s intuition during E-R modeling, and can be done formally on the

relations generated from the E-R model. Poor E-R model produces poor relation schemas.

The poor relation schemas have repetition, update, insertion, and deletion anomalies [4].

These anomalies are solved formally in the normalization of relation schemas. There are

first, second, third, Boyce-Codd, fourth, and fifth normal forms. These normal forms are

based on dependency structures. The BCNF and lower normal forms are based on

functional dependencies, fourth normal form is based on multivalued dependencies, and

fifth normal form is based on projection-join dependencies.

One of the formal approaches is based on the notion of functional dependencies.

Functional dependency (FD) shows the dependency among attributes. For example,

LOAN_ID always determines the AMOUNT in Figure 1.2, if a unique value is assigned

to each loan at the bank. In this case, the following FD holds:

LOAN_ID AMOUNT. →

Here, the FD states that the value of AMOUNT is always determined by the value of the

LOAN_ID. During the normalization process, database designers have to deal with the

functional dependencies. In the Boyce-Codd normal form (BCNF), there is a need to

calculate all the FDs among all the attributes in a relation schema, denoted F+, by

inference rules. This is an expensive computation and falls into a NP-complete problem

[5]. These functional dependencies are also used to find keys for relation schemas.

Verifying if a given schema has a minimum cardinality key for the relation is also a NP-

 6

complete problem [5]. Database designers have to deal with the functional dependencies,

in which such complexities exist.

 In the last physical-design phase, database designers specify the physical features

for the database schemas that came out of the logical-design phase. Those features are for

example, file organization or internal storage structures. These physical structures are

carried out and changed in a relatively easy way. On the other hand, logical design is

usually harder and changes to logical design will affect a number of factors, such as

queries or updates. Therefore, the important phases are the four phases before the

physical design.

 While nearly all the traditional industries have had their effective database models

established, some unconventional information systems in which multivalued

dependencies are significant still raise challenging database schema design problems. The

goal of our classifier system is to learn the database design tasks. The classifier system

tries to classify candidate database schemas to good and bad database schemas, given

some simple database knowledge. An anticipated result is to produce reasonable database

schema for the emerging information systems in which higher level of normalization is

needed.

1.2 Organization

 In Chapter 2, background is provided. In Chapter 3, the classifier system is

discussed with details. Genetic algorithms and the components of classifier system are

stated. Chapter 4 shows the implementation of the system written in Java. How the

database schemas are put into the architecture of classifier system is stated. Chapter 5

 7

shows the result of an experiment with a simple database schema. Chapter 6 shows the

conclusion.

 8

Chapter 2: Background

 In this chapter, I have reviewed the related fields and existing literatures. First,

artificial intelligence is reviewed. The definition and the branches of artificial intelligence

are provided. In the following section, machine learning is presented. The definition of

learning and the example are provided. Finally, two successful applications of classifier

system are introduced.

2.1 Artificial Intelligence

Artificial intelligence is a term coined by John McCarthy in 1958 [6]. It is defined

as the science and engineering of making intelligent machines, especially intelligent

computer programs [7]. McCarthy defines the intelligence as the computational part of

the ability to achieve goals in the world. Varying kinds and degrees of intelligence occur

in people, many animals and some machines. The intelligence involves mechanisms. If

doing a task requires only mechanisms that are well understood today, computer

programs can give very impressive performances on these tasks. Such programs can be

considered somewhat intelligent.

Many branches of artificial intelligence exist, such as search, pattern recognition,

or learning from experience. In search, there is usually a requirement to examine a large

number of possibilities. For example, in a chess game, there would be an exponential

number of next possible movements. How to search or discover the best among such

candidates is the main goal of search. Pattern recognition filters raw data and identifies

the category to which the data belongs to. A program makes observations of the

 9

characteristics in objects and compares what it sees with a pattern. In the recent movie

WALL-E, WALL-E was comparing a spork with two patterns of spoon and fork. The

robot’s action would require a pattern recognition program. In learning from experience,

a machine will try to learn just as humans learn from experience. A checker program may

improve its performance by successfully choosing the best move or relatively bad move

by evaluating each movement it made.

Many example applications of artificial intelligence exist today, such as speech

recognition, understanding natural languages, or heuristic classification. Recently, people

often speak with a machine over the phone. When one calls a company such as a

telephone company, a machine might answer requesting identification information. One’s

date of birth might be stated. Then, the person may hear “Sorry, I could not hear that.

Please repeat the date of birth.” Most likely, the telephone operator is an application of

speech recognition, which could not recognize the speech. The application that

understands a natural language may understand an event. For example, by scanning a

headline from a news company, the machine can understand what has happened. An

application of heuristic classification may advise whether to accept or reject a proposed

credit card purchase. Given the information about the owner of the credit card’s credit

history, or the item he is trying to buy, the application makes the decision. There may

also be an application that detects credit card fraud.

The scope of this thesis focuses on the branch of learning from experience. The

ability to learn is one of the central features of intelligence. A chess machine named Deep

Blue defeated a human world chess champion in 1997. With its powerful computational

capability and given knowledge, the machine overwhelmed the intelligence of the human

 10

world chess champion for the first time in history [8]. The success story of Deep Blue

further strengthened the possibility that a machine may learn just as a human learns. The

story brought up implications that artificial intelligence may be applied to various areas,

such as molecular dynamics, financial risk assessment, and decision support [9]. The

future may witness machines that learn from experience and behave just as humans do in

these areas. The branch of learning from experience has a close link to the field called

machine learning.

2.2 Machine Learning

 Machine learning is a field of study concerning with a question of how to

construct computer programs that automatically improve with experience [10]. Since

computers were invented, researchers wondered whether computers might be made to

learn. The definition of learning is given as follows:

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E [10].

For example, a computer program that learns to play checkers might improve its

performance as measured by its ability to win at the class of tasks involving playing

checkers games, through experience obtained by playing games. For this example, the

task T is playing checkers. The performance measure P is the percent of games won

against opponents. The experience E is playing games against itself.

Many algorithms have been invented for learning tasks, and a theoretical

understanding of learning has emerged. As a result, many types of machine learning

 11

appeared. One type is called Genetics-Based Machine Learning (GBML). One of the

most common GBML architecture is called classifier system, which was introduced by

John Holland in 1978 [11]. Classifier system is a machine learning system which uses

genetic algorithms and reinforcement learning. Genetic algorithms provide a learning

method motivated by an analogy to biological evolution and are successfully applied to a

variety of learning tasks and other search or optimization problems. Reinforcement

learning uses reward to the actions that the system performs. Good actions are given

positive reward values and bad actions are given negative reward values. Classifier

system employs this genetic algorithms and reinforcement learning. Since the classifier

system is introduced, there have been a lot of applications.

2.3 Previous Works on Classifier System

 David Goldberg applied the classifier system to a natural gas pipeline control task

in 1978 [12]. Natural gas was provided by a complex system composed of hundreds or

thousands of miles of large-diameter pipe consuming thousands of hours of compression

horsepower day in and day out. The consumption rate fluctuates depending on the time of

year and time of day. If the compressor is always running at its full power, the electricity

expenses will be high. Therefore, the control of flow rate must be done efficiently. Also,

the pipelines are subject to random leak events. The tasks assigned to the classifier

system were to send a flow rate as necessary, and alarm when leak is suspected.

As an input, environmental state was transmitted to the classifier system, such as

inlet and outlet pressure, inflow and outflow, upstream pressure rate, time of day, time of

year, and temperature. The classifier system was rewarded by a human trainer if it learns

 12

to both operate the pipeline and alarm correctly. As the system takes actions, it learned

good pipeline operations. After 400 days of experience with the environment, the

classifier system learned good actions and bad actions successfully.

 Stewart Wilson applied the classifier system to learning of a Boolean function

[13]. The classifier system learned a six-line multiplexer. The multiplexer function is

depicted schematically in Figure 2.1. Six signal lines come into the multiplexer. The

signals on the first two lines (the address or A-lines) are decoded as an unsigned binary

integer. This address value is then used to indicate which of the four remaining signals

(on the data or D-lines) is to be passed through to the multiplexer output. In Figure 2.1,

the address signal 11 decodes to 3, and the signal on data line 3 (signal = 1) is passed

through to the output (output = 1). Initially, the multiplexer function is not known by the

classifier system. Every time the input comes to the address line, the system tries to

output the correct output. When the output is correct, the system receives an appropriate

reward. As the system iterates, the classifier system learned the multiplexer and decoded

the Boolean function.

 13

Figure 2.1: A Six-bit Multiplexer Function2

 These two were some of the most successful applications of classifier system [11].

GBML such as classifier systems are applied to various fields, such as medicine, business,

or computer science. Classifier systems are used in arbitrary environment as seen in the

Goldberg’s application of classifier system to natural gas control. Such a dynamically

changing environment involves a certain level of complexity. Classifier system interacts

with such an environment with a large number of requirements, and learns to increase its

performance by processing many representation of knowledge with its mechanisms. Such

classifier system is often applied to fields where a lot of complex tasks are involved.

ADDRESS
A0

A1

DATA
D0

D1

D2

MULTIPLEXER

D3

1

1

0

0

0

1

1

2 Figure 2.1 is a reproduced version of a figure from the book “Genetic Algorithms in Search, Optimization
& Machine Learning.” The granted permission is attached at the Appendix of this thesis.

 14

Chapter 3: An Intensive Study on Classifier System

 My thesis project was on applying the classifier system to database design. The

focus on my project was on the learning process of the classifier system. A precursor of

my project was an intensive study on the classifier system. In this chapter, the details of

classifier system are presented.

Classifier system, or learning classifier system, is the most common architecture

of genetics-based machine learning systems (GBML). Classifier system and learning

classifier system are often used interchangeably. Throughout this thesis, classifier system

is used for the term of the architecture. Classifier system learns syntactically simple string

rules called classifiers to guide its performance in an arbitrary environment [11].

Classifier system has three components: the rule and message system, the apportionment

of credit system, and the genetic algorithms.

3.1 Genetics-Based Machine Learning

 The theoretical foundation of GBML was established by John Holland [14].

Holland studied natural adaptive system and its environment. He investigated whether it

is possible to formulate some key hypotheses and problems from relevant parts of

biology. He outlined how artificial systems can generate procedures enabling them to

adjust efficiently to their environments rigorously as natural biological systems. GBML

borrows the idea of genetics, the genetic properties of features of an organism. Such

GBML uses the genetic search called genetic algorithms, as their primary discovery

heuristic.

 15

3.2 Genetic Algorithms

Genetic algorithms are search algorithms based on the mechanics of natural

selection and natural genetics [11]. They combine survival of the fittest among string

structures with a structured yet randomized information exchange to form a search

algorithm with some of the innovative flair of human search. Genetic algorithms have

two goals. One is to abstract and rigorously explain the adaptive processes of natural

systems. The other is to design artificial intelligence software that retains the important

mechanics of natural systems. If higher levels of adaptation can be achieved, existing

systems can perform their functions longer and better. Features for self-repair, self-

guidance, and reproduction are the rule in biological systems. The secrets of adaptation

on natural systems can be studied from natural biological systems. Genetic algorithms

have a power to adaptively interact with an environment. Genetic algorithms also have

robustness.

 3.2.1 Robustness of Genetic Algorithms

Genetic algorithms came out with a central theme, robustness. The search is

robust if the balance between efficiency and efficacy necessary for survival in many

different environments [11]. Traditionally, there were three main types of search

methods: calculus-based, enumerative, and random. Genetic algorithms are more robust

search method, compared to the three traditional search methods.

Calculus-based methods are subdivided into two classes: indirect and direct. The

indirect methods seek local extrema by solving the usually nonlinear set of equations

resulting from setting the gradient of the objective function equal to zero. On the other

hand, direct methods seek local optima by hopping on the function and moving in a

 16

direction related to the local gradient. For example, the objective may be to find the peak

of a mountain as depicted in Figure 3.1. Indirect methods start finding the peak by setting

the initial points with slope of zero in all directions. Direct methods climb the function in

the steepest direction. Both of them successfully find the peak of the mountain. However,

when the mountain has multiple peaks as depicted in Figure 3.2, these methods do not

always find the highest peak, since their search relies on the local best in a neighborhood

of the current point. The calculus-based methods rely on the derivatives of local and it is

hard to find the maximum value always, and thus they are not robust.

f (x)

xInitial point

The peak

Figure 3.1: A Mountain with a Single Peak

 17

Figure 3.2: A Mountain with Multiple Peaks

f (x)

x
Initial point

Lowest Peak

Highest Peak

Enumerative search method is straightforward. Given a finite search space, it

enumerates all the function values at every point, one at a time. The simplicity is very

attractive and the approach is very human-like. When the number of possible solutions is

small, then this method can be used. However, many practical spaces are too large to

search one at a time. In terms of efficiency, the method is not meeting the robustness.

Random search started attracting researchers as the shortcomings of calculus-

based and enumerative methods were recognized. In random search, the possible

solutions are randomly picked. The search ends when the function value reaches the

specified value by a user. Unfortunately, random search method is expected to do no

better than enumerative method, and thus lacking in efficiency [11].

These three traditional search methods are not robust search methods. The real

world problem spaces are discontinuous, noisy, and vast multimodal. There are many of

such functions as depicted in Figure 3.3. With calculus-based search, the result may not

be the maxima or the derivative may not be found. Enumerative and random search is not

 18

efficient. Genetic algorithms differ from these methods in the following search

procedures:

1. The algorithms work with a coding of the parameter set, not the parameter

themselves.

2. The algorithms search from a population of points, not a single point.

3. The algorithms use payoff of objective function information, not derivatives or

other auxiliary knowledge.

4. The algorithms use probabilistic transition rules, not deterministic rules.

Genetic algorithms are theoretically and empirically proven to provide robust search in

complex spaces [11]. The organization of the algorithms borrows the idea of natural

selection described by Charles Darwin, and the operators of the algorithms have a close

link to the theory.

f (x)

x

f (x)

x

Figure 3.3: Noisy and Discontinuous Functions

 3.2.2 Natural Selection

 Darwin wondered about the origin of species and the evolution of organic living

things. He wondered how species differ from each other more than do the species of the

 19

same genus. He thought that all these results follow inevitably from the struggle for life.

Darwin introduced the term, natural selection [15], in 1859 and theorized about the

evolution. Natural selection is a principle that states as follows: “Owing to this struggle

for life, any variation, however slight and from whatever cause proceeding, if it be in any

degree profitable to an individual of any species, in its infinitely complex relations to

other organic beings and to external nature, will tend to the preservation of that individual,

and will generally be inherited by its offspring. The offspring, also, will thus have a better

chance of surviving, for, of the many individuals of any species which are periodically

born, but a small number can survive.” Living things reproduce. Organic living things are

subject to a strict natural environment. Living things that have adapted to the

environment have a higher chance to survive. Living things mutate themselves to survive

the environment, and the mutation is inherited by the reproduced successors. Genetic

algorithms have operators which are artificial versions of natural selection: reproduction,

crossover, and mutation.

 3.2.3 Reproduction

 Reproduction in genetic algorithms is a process in which individual strings are

copied according to their objective function values, f. Biologists call this function the

fitness function. The value indicates how much the individual is fitting to the

environment for survival. We can think the function f as the profitability or goodness that

we want to maximize. As stated in Section 3.1, genetic algorithms work with a coding of

the parameter set and search from a population of points. The parameter set is coded as a

finite-length string over some finite alphabet.

 20

Let’s consider an example population having four strings of five-digit binary

numbers as depicted in Table 3.1. The objective function value is as follows:

2()f x x= , where 0 3 . 1x≤ ≤

For example, in row 4 of the population, the value of f is with the objective

function equation. Other strings also have the fitness values according to the objective

function. In reproduction, genetic algorithms pick some strings to generate offspring for

the next generation according to their fitness function values. Then the reproduction

process replaces the strings having worst fitness values with the newly created strings

from the picked ones. Thus, the members who have higher fitness values tend to survive;

those members are reproduced and inherited by the offspring.

219 361=

No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9

Total 1170 100.0

Table 3.1: Example of Four Strings3

The percentage of the population total fitness is also shown in Table 3.1. In

genetic algorithms, a weighted roulette wheel by the percentage is used. Figure 3.4 shows

such a roulette wheel. The roulette wheel is a tool used to decide who to select to

generate new strings of offspring. To pick the offspring for the next generation, the

roulette wheel is turned. In this weighted wheel, the string No.1 has 14.4 percent of

3 Table 3.1 is a reproduced version of a figure from the book “Genetic Algorithms in Search, Optimization
& Machine Learning.” The granted permission is attached at the Appendix of this thesis.

 21

probability to be picked for the next generation. The string No.2 has 49.2 percent of

probability, and thus has the highest probability to be picked for the next generation. In

this way, more highly fit strings have a higher number of offspring in the succeeding

generation. During the reproduction, picked strings are mated at random, and then a

crossover may proceed on each pair.

Figure 3.4: Roulette Wheel for Reproduction4

1

2

4

3

14.4%

49.2%

5.5%

30.9%

 3.2.4 Crossover

 The crossover operation is done as follows: an integer position k along the string

is selected uniformly at random between one and the string length less one [1, l – 1]. Two

new strings are created by swapping all characters between the positions k + 1 and the

length l inclusively. For example, consider the following mated strings A1 and A2 with a

value 4 for the k:

4 Figure 3.4 is a reproduced version of a figure from the book “Genetic Algorithms in Search, Optimization
& Machine Learning.” The granted permission is attached at the Appendix of this thesis.

 22

 A1 = 0 1 1 0 | 1

 A2 = 1 1 0 0 | 0

The character | is a separator and put at the position dividing the string. Here, the

swapping happens at the 5th character for each string. The resulted strings are as follows:

 A’1 = 0 1 1 0 0

 A’2 = 1 1 0 0 1

In these offspring, the characters before the position 4 are not swapped. The last element

of the string is modified by the swapping. The 0 of the A2 replaced the 1 of A1. The 1 of

A1 replaced the 0 of A2. Crossover happens in this way on each pair of the mated strings.

Each string has notions of what is important to be fitted in the environment. The

pairs picked during the reproduction are believed to have high-quality such notions. For

the binary example, the strings with high-quality notions are the ones who have 1 at the

first element. According to the objective function, to be fitted, the strings have to

maximize the fitness values by having 1s at lower positions, since the exponent increases

as the position goes to the left in the strings of binary representation. Such strings are

considered to be fitted to this example environment. The crossover operation performs

the exchange of high-quality notions between relatively fitted strings. Just as humans

borrow ideas that worked well in the past, crossover operation trades such information

between strings. When we notice a new idea, our performance sometimes gets better.

Crossover is an operation of such an information exchange. The strings with low fitness

values may get a chance to have new notions by exchanging information with other

relatively fitted strings during the crossover operation. Following the reproduction and

crossover operations, there is another operator called mutation.

 23

 3.2.5 Mutation

 Mutation is the occasional random alteration of the value of a string position.

Suppose there is the following string A:

 A = 0 0 1 0 1

Mutation randomly picks the position. Let’s suppose the first element of the string is

mutated. The alteration is between 0 and 1 in the binary example. Since the A has 0 at the

first element, the value is altered to 1 as follows:

 A’ = 1 0 1 0 1

Mutation prevents from losing some potentially useful genetic material, such as

the notion that lower positions with value 1 increases the fitness value. Consider an

example of Table 3.2. There are four strings again, but each string has 0s for all the

elements, and thus all have the fitness value 0. In this case, reproduction and crossover do

not have any effect. Mutation takes place so that some strings will have new useful notion.

No. String Fitness % of Total
1 00000 0 0
2 00000 0 0
3 00000 0 0
4 00000 0 0

Total 0 0

Table 3.2: Four Strings with 0 Fitness Value

 Suppose that No.1 and No.2 are picked and mated during the reproduction and

crossover. They do not affect in any way. Thus, we have two newly generated offspring

that have 0s in all the positions. Replacing these offspring with some of the members has

 24

no effect. Suppose a mutation happens on the offspring, at the first element of the strings,

then we get the following:

 A1’ = 1 0 0 0 0

 A2’ = 1 0 0 0 0

Then, let’s replace these with strings No.3 and No.4. The table change as in Table 3.3

with the new offspring. The mutation operation provides a means to inject a new notion

to the strings. Therefore, the operator is useful when no strings have good notions to

increase the performance in the environment.

These are the operators that genetic algorithms perform. These three operators are

computationally powerful and applied to many search problems. Within the strings that

they process, there are always similarities. Strings that have relatively high fitness values

share their particular similarities; strings that have relatively low fitness values also share

their particular similarities. Genetic algorithms see these similarities in the strings and

those similarities help genetic algorithm to search. The similarity is called similarity

templates or schemata.

No. String Fitness % of Total
1 00000 0 0
2 00000 0 0
3 10000 256 50.0
4 10000 256 50.0

Total 512 100.0

Table 3.3: The Effect of Mutation

 25

 3.2.6 Similarity Templates (Schemata)

 Genetic algorithms are advised by the similarity templates, or schemata. A

schema [16] is a similarity template describing a subset of strings with similarities at

certain string positions. Let’s consider strings over the ternary alphabet {0, 1, *}. The

character * is a “don’t care” symbol. A schema matches a particular string if at every

location in a schema a 1 matches a 1 in the string, a 0 matches a 0, or a * matches either.

For example, if there are five strings {10000, 00000, 11100, 00001, 01110}, a schema

*0000 matches two strings {10000, 00000}. *11** will match {11100, 01110}.

Sometimes, genetic algorithms are more interested in these similarity templates, rather

than the strings themselves. This is because these similarities describe the traits of highly

fitted or badly fitted strings. These schemata of short-defining-length are propagated

generation to generation by giving exponentially increasing samples to the observed best.

This is formally stated in what is called schema theorem.

 3.2.7 Schema Theorem (Fundamental Theorem of Genetic Algorithms)

 Schema theorem states that short, low-order, above-average schemata receive

exponentially increasing trials in subsequent generations [11]. A schema has two

properties: schema order and defining length. The order, denoted by o(H), is the number

of fixed positions. The defining length of a schema H, denoted by δ(H), is the distance

between the first and last specific string position. For example, for a schema 011**1*, the

order is 4 and the defining length is 5. For a schema 0******, the order is 1 and the

defining length is 0. Schemata and their properties are interesting notational devices for

rigorously discussing and classifying string similarities. They provide the means to

analyze the net effect of genetic operators.

 26

 In the reproduction, the schema theorem states that, a particular schema grows as

the ratio of the average fitness of the schema to the average fitness of the population.

Suppose that at a time t, there are m examples of a particular schema H contained in the

population A(t). Then m is written as follows:

(,)m m H t= .

A string Ai gets selected with the following probability pi:

/i i jp f f= ∑ .

For each representative of H, there will be in p∗ copies in the population A of size n.

Therefore, at time t +1, there is the following number of examples of a schema H:

 1 2(, 1) (...) /km H t n f f f f+ = ⋅ + + + j∑ , where 1…k are the representatives of H.

The equation can also be written as follows:

 1 2(,) (...) / (,)(, 1) k

j

n m H t f f f m H tm H t
f

⋅ ⋅ + + +
+ =

∑
.

Thus:

(, 1) (,) (,) / jm H t n m H t f H t f+ = ⋅ ⋅ ∑ , where (,)f H t is the average fitness of

the strings representing schema H at time t. The average fitness of the entire population is

written as follows:

/jf f n=∑ .

Therefore, the m at the time t + 1 can be written as follows:

 ()(, 1) (,) f Hm H t m H t
f

+ = .

This equation states that schemata with fitness values above the population average will

receive an increasing number of samples in the next generation, while schemata with

 27

fitness values below the population average will receive a decreasing number of samples.

During the reproduction, we have this equation as a property.

 Crossover disrupts schema sometimes when the separating point is in the defining

length of a schema. Thus we have to deal with the probability that a particular schema

survives during the crossover. Crossover survival probability is defined as follows:

 ()1
1s

Hp
l
δ

≥ −
−

.

This is because a schema tends to be disrupted whenever a site within the defining length

is selected from the length l – 1 possible position. If crossover is itself performed by

random choice, for example, with probability pc at a particular mating, the survival

probability is in the expression:

 ()1
1s c

Hp p
l
δ

≥ − ⋅
−

.

Therefore, with reproduction and crossover, considering they are independent, the

following equation is given:

 () ()(, 1) (,) 1
1c

f H Hm H t m H t p
lf
δ⎡ ⎤+ ≥ − ⋅⎢ ⎥−⎣ ⎦

.

With reproduction and crossover, schema H grows or decay depending on whether the

schema is above or below the population average and whether the schema has relatively

short or long defining length.

 The mutation operator is the random alteration of a single position with a

probability pm, thus a single position survives at the probability 1 – pm. In order for a

schema H to survive, all of the order of schema have to survive. Therefore, the

probability of surviving mutation is given as follows:

 28

 . ()(1)o H
mp−

For small values of pm (pm << 1), the schema survival probability is approximated by the

following expression:

1 () mo H p− .

 The three operators of genetic algorithms are quantitatively defined as above. The

concluded equations are given as follows:

 () ()(, 1) (,) 1 ()
1c m

f H Hm H t m H t p o H p
lf
δ⎡ ⎤+ ≥ − ⋅ −⎢ ⎥−⎣ ⎦

.

A particular schema H receives an expected number of copies in the next generation

under reproduction, crossover, and mutation as given in this equation. Also, short, low-

order, above-average schemata receive exponentially increasing trials in subsequent

generations. This conclusion is defined as schema theorem5, or fundamental theorem of

genetic algorithms. The following section shows an example of genetic algorithm

operations for a knapsack problem, where some schemata are processed as concluded in

the schema theorem.

 3.2.8 A Simple Genetic Algorithm for a Knapsack Problem

 Knapsack problem is one of NP-hard problems [17]. Genetic algorithms are often

applied to this kind of complex problems to search the space. Knapsack problem is

defined as follows:

We are given an instance of the knapsack problem with item set N, consisting of n

items j with profit pj and weight wj, and the capacity value c. Then the objective is

5 The schema theorem stated here is from the book “Genetic Algorithms in Search, Optimization &
Machine Learning”. The granted permission is attached at the Appendix of this thesis.

 29

to select a subset of N such that the total profit of the selected items is maximized

and the total weight does not exceed c.

The problem is formulated as follows:

 maximize
1

n

j j
j

p x
=
∑

 subject to ,
1

n

j j
j

w x c
=

≤∑

 {0,1}, 1,...,jx j n∈ = .

In this section, the genetic algorithms deal with the following particular instance:

There are a water bottle, a pan, a ring, a camcorder, and a laptop. These are single

items, and thus the genetic algorithm can not choose to put more than one item of

the same item in the knapsack. The profit and weight of each item is given in

Table 3.4. The capacity limit is 50. The genetic algorithm has to not only

maximize the total profit, but also choose items carefully so that total weight of

the items does not exceed the capacity limit.

 Water Bottle Pan Ring Camcorder Laptop
Weight 5 30 1 10 20
Profit 1 2 40 10 20

Table 3.4: Weight and Profit of the Items for a Knapsack Problem

The genetic algorithm has to deal with 128 combinations, in addition to the capacity limit.

The combinations can be represented in binary. The example is in Figure 3.5. Here, the

three items (Water Bottle, Pan, and Camcorder) are chosen to be put into the knapsack.

 30

The string is 11010 and the total weight and the total profit value are calculated as

follows:

 (Total Weight) 11010 1 5 1 30 0 1 1 10 0 20 45= ∗ + ∗ + ∗ + ∗ + ∗ =

 (Total Profit) 11010 1 1 1 2 0 40 1 10 0 20 13= ∗ + ∗ + ∗ + ∗ + ∗ =

In this solution, the total weight is within the capacity, but the profit could have been

better. The example genetic algorithm works with this binary representation of the

solution space.

Figure 3.5: An Example Binary Representation of the Strings in a Knapsack Problem

 Table 3.5 shows the processing of strings and schemata together by the genetic

algorithm for two generations. There are four strings which are randomly generated in the

initial population. They are the first generation of the population. The total weight and

profit for each string are calculated by the functions in the table. The total weight of the

string No.1 is exceeding the capacity limit of 50. Such strings are given a value 0 for the

profit.

1 1 0 01

Water
Bottle

Pan Ring Camcorder Laptop

 31

String Processing
String
No.

Initial
Population
(Randomly
Generated)

Total weight
w

1

n

j j
j

w x
=
∑

Total Profit
f

1

n

j j
j

p x
=
∑

Probability
that

ith String is
Selected

if
f∑

Expected
count
(from

Roulette
Wheel)

if
f

Actual count
(from

Roulette
Wheel)

1 0 1 1 0 1 51 0 0 0 0
2 1 1 0 0 0 35 3 0.03 0.14 1
3 0 0 1 1 0 11 50 0.60 2.38 2
4 1 0 0 1 1 35 31 0.37 1.48 1
Sum 84 1.00 4.00 4.0
Average 21 0.25 1.00 1.0
Max 50 0.60 2.38 2.0

Schema Processing
 Before Reproduction
 String Representatives Schema Average Fitness

()f H
H1 1 1 0 * 0 2 3
H2 * 0 1 * * 3 50

Table 3.5: String and Schema Processing by Genetic Algorithms for a Knapsack Problem

String Processing
Mating Pool After

Reproduction
Mate

(Randomly
Selected)

Crossover Site
(Randomly
Selected)

New Population Total Profit
f

(Cross Site At the
Symbol “|”)

1

n

j j
j

p x
=
∑

0 0 1 | 1 0 2 3 0 0 1 0 0 40
1 1 0 | 0 0 1 3 1 1 0 1 0 13
0 0 1 1 | 0 4 4 0 0 1 1 1 70
1 0 | 0 1 1 3 2 1 0 1 1 0 51

Sum 174
Average 43.5
Max 70

Schema Processing
After Reproduction After All Operators

Expected Actual Count String
Representatives

Expected
Count of

Strings of a
particular
Schema

Actual
Count

String
Represen-

tatives
Count of Strings of

a
particular Schema

0.14 1 2 0.09 1 2
2.38 2 1,3 2.98 3 1,3,4

Table 3.5 (Continued)

 32

The result of the roulette wheel matters in the reproduction. Out of four turns, the

string No.3 is picked twice and chosen to be the offspring. The offspring replaces the

worst string No.1, and resulting strings are as in the column of the mating pool. Those are

the result of reproduction. The crossover takes place on these. The mate and separating

point are determined by random choice. The result of the crossover produces the new

population. As seen in the table, the sum of the profit is increased.

What would be the bad or high-quality notion? The bad strings would be the ones

that have pan, since the pan is relatively heavy and not profitable. Clearly, the ring gives

high profit. Therefore, the strings having 1 at the third position would be good ones.

Example schemata having such notions are given as H1 and H2 in the table. H1 is a

schema having the bad notion, and the H2 is the schema having the good notion. The H2

particularly increases according to the schema theorem. In the initial population, No.3 is

the string representing the schema. Therefore the value of 2()f H is 50. According to the

schema theorem, we can expect to have () /m f H f⋅ copies of the schema during the

reproduction. Therefore, the m for H2 at time t +1 can be calculated as follows:

2(, 1) 1 50 / 21 2.38m H t + = ⋅ = .

In Table 3.5, two strings No.1 and No.3 of the schema in the population after

reproduction can be seen. The average of the fitness values of the strings in the mating

pool is 33.5. Therefore, we can calculate the m as follows:

 . 2(, 1) 2 50 / 33.5 2.98m H t + = ⋅ =

After the crossover operation, the number of strings representing the H2 is 3 (No.1, No.3,

and No.4). Whereas the H2 increases its number of strings, H1 does not. The expected

number of strings representing H1 is likely to decrease as new population is generated.

 33

 This section showed the example of genetic algorithms with a particular instance

of knapsack problem. The genetic algorithms usually work with a large number of strings

representing the solution space. Some strings representing high-quality notions are

expected to increase. By repeating the generation of offspring, the genetic algorithms

give the solutions in the form of strings, which get better and better increasing the fitness

values of each. Genetic algorithms are computationally powerful and provide means to

search. Such genetic algorithms are used as a component in classifier system, where the

strings are called classifiers.

3.3 Components of Classifier System

 A Classifier system is a machine learning system that learns syntactically simple

string rules, called classifiers [11]. The classifiers guide the performance of classifier

system in an arbitrary environment. A classifier system consists of three main

components:

1. Rule and message system

2. Apportionment of credit system

3. Genetic algorithm

A classifier system is depicted in Figure 3.6. The information of environment comes to

the system through detectors. The information is decoded as message by the detectors.

Classifiers react to the environmental message. Classifiers are the thought of the system

about the environment. Based on the classifiers, the system takes actions to environment

through the effectors. When the action of the system is good, the environment gives

payoff to the system. Payoff is the incentive for the system to learn. This helps the system

 34

to understand what is good or bad by receiving such a reward. This method is called

reinforcement learning [18]. Through these components, classifiers, and reinforcement,

the system learns the environment. The objective for the system is to learn the

environment and improve the actions. The information flows from the detectors to

effectors. The rule and message system helps the flow in the classifier system.

Environment

10#: 111
00#: 000

101
000
111

Detectors

Action Information

Reward

Apportionment of Credit System &
Genetic Algorithm

Learning Classifier System

0

1

1

Message Effectors

1

1

1

Classifiers

Figure 3.6: A Learning Classifier System Interacting with its Environment6

 3.3.1 Rule and Message System

The rule and message system of a classifier system is a special kind of production

system [19]. The production system has the following form:

if <condition> then <action>.

6 Figure 3.6 is a reproduced version of a figure from the book “Genetic Algorithms in Search, Optimization
& Machine Learning.” The granted permission is attached at the Appendix of this thesis.

 35

When t tion is fired in a typical production system. The

he l indicates the length. For example, a message of a length 3 would be a 110. The

f

ssifiers

e syntactically simple string rules. The classifier has the following

ntax:

essage>.

e where a wild card character (#) is

hen t an environmental message, the classifier reacts. For

he condition is satisfied, the ac

rule and message system employs this form, which is powerful and convenient. The

message and classifiers are structurally friendly with this form. If limited to a binary

alphabet, the message has the following syntax:

 <message> ::= {0, 1}l.

T

message is used as the environmental message causing the system to react, and a part o

classifiers.

 3.3.2 Cla

 Classifiers ar

sy

 <classifier> ::= <condition> : <m

The condition is a simple pattern recognition devic

added to the underlying alphabet:

 <condition> ::= {0, 1, #}l.

W he condition is matched by

example, the four-position condition #01# matches an environmental message 0010, but

it does not match an environmental message 0000. When the classifier’s condition is

matched, the classifier becomes a candidate to send its message for the next step. When

multiple conditions are matched to the environmental message, one classifier is picked

from them. The choice is done by the apportionment of credit system, called bucket

brigade.

 36

 3.3.3 Apportionment of Credit System: Bucket Brigade

 Classifiers are ranked by its strength. The strength is determined by the reward

point that classifiers acquired from the environment. When multiple classifiers are the

candidates to post the message for the next step, the rank by their strength has an effect to

the pick. The bucket brigade has two components: an auction and a clearinghouse. When

the multiple classifiers are matching, then auction takes place for them. A fish market

may be a good analogy for the auction. Buyers from restaurants are the classifiers while

the fish is the environmental message. The strength may be the money that the buyers

have. The buyers may be interested in particular fish. The salespeople or fishermen sell

the fish one by one during auctions. They name a fish, and some of the buyers react to it.

Some buyers may raise their hand and tell the seller the bidding price. Thus, they have to

compete. At the end, the highest bidder wins and the fish is taken by the winner.

Classifiers also compete with other classifiers who matched to the environmental

message. The clearinghouse manages the payment keeping a record of those who bid and

those who must pay.

 3.3.4 Genetic Algorithms in the Classifier System

 Genetic algorithms take a role to inject new, possibly better classifiers into the

classifier system. Every time an environmental message comes to the system, there is

single winner classifier from the population and it takes an action to the environment.

Winner classifiers receive reward value from an environment when their actions are

correct. The classifier system learns if the performance increases as it experiences the

environment. Genetic algorithms replace some of the classifiers to increase the

performance of classifier system entirely to learn the environment. The genetic

 37

algorithms reproduce stronger classifiers, and exchange information between classifiers,

and sometimes inject new notions.

 38

Chapter 4: Implementation of a Classifier System in Java

 I implemented a classifier system in Java programming language. The system

consists of about 30 Java classes. NetBeans is chosen as the IDE, since it provides a good

control for GUI components in the development processes. Some class diagrams

presented in this chapter are generated by NetBeans. In this chapter, some design and

implementation features of the classifier system are presented: requirements, input and

output, data structures, class diagrams, knowledge given to the system and reward

functions, and some source codes with actual operations over the classifiers. How

database schemas can be represented as classifiers, and how those classifiers are

processed in the framework of classifier system are shown.

4.1 Requirements

 The first requirement is to implement the classifier system, which can represent

database schemas as its classifiers, and process those in the architecture. The classifier

system has powerful mechanisms to process classifier strings with robust genetic

algorithms as the search method. Classifiers of database schemas react to environmental

messages. Then, the matching schemas compete in an auction. The winner schema is

evaluated and receives a reward value by the reinforcement mechanism. Enabling the

processes of the classifiers in those mechanisms is the first requirement that the system

should be able to do.

Following the implementation, the learning is the main requirement for the

classifier system. Classifiers represent database schemas of which some may be good and

 39

some may be bad. The classifier system is given some basic knowledge about database

design so that it will think what is good and what is bad. For the learning, the task T is to

pick the better one among many candidates. The performance P is determined by whether

the choice gets better as it experiences the environment E, which is doing database design

by itself. When the system stops, the system prints the strongest classifiers of each

database schema for the entity set. Every time the system experiences the database design,

it ranks the classifiers by the strength. The classifier system increases the strength of

good classifiers and decreases the strength of bad classifiers according to the knowledge.

4.2 Input and Output

 Figure 4.1 shows an example input. The classifier system takes a conceptual

schema, which is a set of entity sets with the primary-key and possible non-primary key

attributes. The classifier system will randomly generate hundreds or thousands of

combinations of the attributes for each entity set. Those are represented as classifiers and

are the candidates for the final schemas. In addition, the system takes mapping

cardinalities between the entity sets. This mapping cardinality shows relationship sets and

the cardinality, such as one-to-one or many-to-many. The relationship sets are limited to

binary relationships.

 40

Figure 4.1: The Input to the Classifier System

 Figure 4.2 shows the system tab with a pane showing the current input, a result

pane, and a plot pane to analyze the learning. The result pane is to print the strongest

classifiers for each entity set when the system completes. The strongest classifiers are the

database schemas chosen as the best by the system when it stops. The plot is to count the

number of classifiers with certain strength values at a certain iteration time point. With

the plots, the increase and decrease of the strength can be seen. These are the output of

the classifier system.

 41

Figure 4.2: System Tab with the Output

4.3 Data Structures

 In this section, some important data structures such as classifiers, environmental

message, and population are introduced with the syntaxes. Classifiers are the main data

structure, which are involved in almost all the operations in the classifier system.

Environmental message triggers the operations of classifier system. Population maintains

the classifiers and the statistical information.

 42

 4.3.1 Classifier

Classifiers represent database schemas. The classifier system randomly generates

a large number of such classifiers for every entity set, and all of those are the candidates

and have a chance to be printed at the result pane when the system stops. The classifier is

named as ClassType in the program as in Figure 4.3. Each classifier is programmatically

structured this way. The classifier has its condition and message part (action) as in the

syntax of classifier. The strength is the value indicating how well the classifier is doing in

the environment. The bid is the value that classifiers bids during the auction. The value of

matchflag indicates if the instance of the classifier is matching to the environmental

message.

Figure 4.3: The Declarations of ClassType

 4.3.2 Environmental Message

 Environmental message is the same as the condition part of the classifier. Thus

the environmental message has the following syntax:

 <environmental message> ::= <condition>.

The environment gives the value of the condition of a classifier, and some classifiers with

the same condition will be matched. Therefore, some candidate classifiers with the same

 43

condition react to the environmental message and compete. Population is another data

structure maintaining classifiers and the record for who is matching or not matching.

 4.3.3 Population

Population is represented as a PopType class in the program as in Figure 4.4. The

class maintains all the classifiers in a class named ClassArray. The nclassifier is the size

of classifiers. The variables from pgeneral to ebid2 are used in the process of the auction

and genetic algorithms. The initialstrength is the strength values given to all the

classifiers when they are initially generated. The rest of the variables are to maintain the

statistical information, such as the max strength value among classifiers.

Figure 4.4: The Declarations of PopType

 44

4.4 Class Diagrams

In this section, class diagrams for some important components are provided: rule

and message system, apportionment of credit system, genetic algorithms, and

reinforcement system. Every time the classifier system receives an environmental

message, the classifier performs the same set of operations from these components and

repeats the same thing again and again. The iteration can be described as a flow as seen in

Figure 4.5. The classifier system iterates until the iteration number gets to the limit.

When the classifier system stops, it outputs the classifiers for the user to analyze.

Environmental message comes

Operations of rule and message System
(Classifiers matching to the environmental

message are known for the auction)

Operations of apportionment of credit
(Auction to pick a winner classifier and

clearinghouse)

Takes an action to the environment
(The winner classifiers gets evaluated by the

environment and receives a reward by
reinforcement operation)

Operations of genetic algorithms over some
classifiers

Stops iterating if iteration number reaches to
the specified number, or waits for another

environmental message

Figure 4.5: An Iteration of the Classifier System

 45

 4.4.1 Perform Class as the Rule and Message System

 The rule and message system is often called performance system. Therefore the

class is named Perform. The class diagram of Perform is given in Figure 4.6. The

Perform has an operation matchclassifiers to find out who are matching to the

environmental message. The parameter variable emess is the environmental message. For

the matching classifiers, the value of the Boolean variable matchflag of ClassType is

changed to true by this method. Among the matching classifiers, an auction takes place

by the apportionment of credit system.

Figure 4.6: The Class Diagram of Perform

 4.4.2 AOC Class as the Apportionment of Credit System

The apportionment of credit system is named AOC and Figure 4.7 shows its class

diagram. The auction is done by the method auction. The returned integer value is the

index of the winner classifier in population. The method clearinghouse method manages

 46

the payment (by strength), and collects taxes. There are two kinds of taxes. One is

bidding tax and the other is life tax. Therefore, bidder pays taxes even if it does not win.

Life tax is an existence tax. Just being in the population generates a small fee. Some

classifiers that bid but does not win at all simply lose the strength and become weak.

Some classifiers that do not even bid lose the strength by the life tax.

Figure 4.7: The Class Diagram of AOC

 4.4.3 GA Class as the Genetic Algorithms

The genetic algorithms are implemented in the GA class as is in Figure 4.8. The

select method is for the reproduction. The other two operators of genetic algorithms are

implemented by the methods, crossover and mutation. The select method is simply the

roulette wheel. The index of the picked classifier from the roulette wheel is returned by

the method select. The crossover takes two parents picked by the select and generates the

two children (offspring). The mutation is performed over the array of attributes given as

the argument and returns the resulted attributes of the entity set.

 47

Figure 4.8: The Class Diagram of GA

 4.4.4 Reinforc Class for the Reinforcement Learning

 Figure 4.9 shows a class Reinforc, which implements the reinforcement learning.

In every iteration, there is a winner classifier which receives a numerical reward value

(strength). The winner can be thought to be the answer (action) from the classifier system

to the environment. Therefore, the classifier system picks a classifier that the system

thinks is the best. The auction process has the mechanism to perform the competition and

to produce the winner, which is considered to be the best. Then the environment gives a

reward to the winner classifier. The Reinforc implements such a mechanism. The method

payreward gives a reward according to how good the winner classifier of a database

schema is with the given knowledge of database design.

 48

Figure 4.9: The Class Diagram of Reinforc

The payreward method uses a RewardCalculator class. The class diagram of

RewardCalculator is given in Figure 4.10. The class has a set of functions that evaluate

the winner classifier. Each function has a single rule or concept of database design and

evaluates the winner. The reward value is the total value calculated by these functions

and added to the strength of the winner classifier. When a new rule is enforced to

classifiers, a new function is added to this class. Therefore, these functions navigate the

learning, and the classifiers that are fitted to these rules or concepts get stronger. The

following section shows one of the rules used in the classifier system.

 49

Figure 4.10: The Class Diagram of RewardCalculator

4.5 Knowledge given to the Classifier System & Reward Functions

Some database knowledge is given to the Reinforc. The classifiers represent

schemas and there has to be a way to evaluate the winners. The evaluation depends on the

knowledge. Whenever a new concept has to be added to the classifier system, another

reward function is added to the RewardCalculator of Reinforc. Seven functions as in

Figure 4.10 were used for experiment. Each has the rule to increase or decrease the

strength of classifiers. For example, one of the rules is to decrease the reward value if the

winner classifier contains a partial dependency. The classifier system is given some

limited knowledge in the form of these functions, and the knowledge navigates classifiers

to be fitted in the environment.

4.6 Example Operations over the Classifiers

 In this section, some example processing of the classifiers by the four classes

above are presented with some source codes. The most important operations are matching,

auction, tax collection, genetic algorithms, and reinforcement. All of these operations

 50

affect to the strength of classifiers and the learning result. This section shows how the

classifiers are actually processed by those.

 4.6.1 Operations of matchclassifiers in Perform

The source code of the method matchclassifiers is in Figure 4.11. The matchlist

given at the parameter is used to maintain the list of index for matching classifiers. The

method simply uses a loop to search the population and if the condition part of the

classifier is matching to the environment message emess, then the value of matchflag is

changed. Then, the index of the classifier is added to the matchlist.

Figure 4.11: The Method matchclassifiers

Figure 4.12 shows an example record that the classifier system maintains for

single iteration. This contains the information of some classifiers in the population. The

No. column indicates the index number of the classifier. Each of these classifiers is the

candidate of database schemas for each entity set. The M column indicates if the

classifier is matching to the current environmental message or not. If X is put in the

column, then it indicates the classifier is matched. For the iteration, the classifiers with

the index number from 8 to 10 are all matched. The index numbers of those are added to

 51

the matchlist. An auction is held among the classifiers whose index numbers are in the

matchlist.

Figure 4.12: Some Classifiers Matching to an Environmental Message

 4.6.2 Operations of auction and taxcollector in AOC

 Here, the source code of the auction method is provided in Figure 4.13. The

auction method is given a matchlist as an argument that we saw in the method

matchclassifiers. The auction sees each of the matching classifiers and finds the winner

among them. The winner is the one who bid the most. The bidding value (B) is relative to

the strength and calculated as follows:

i bid iB C S= .

The Cbid is the bid coefficient, S is the strength and i is the classifier index. Therefore, the

stronger classifiers can bid more than weaker ones. Actual comparison is done by the

effective bid value. The effective bid (EB) value is calculated as follows:

 (i i bidEB B N)σ= + .

 52

The N is a function of the specified bidding noise standard deviation bidσ . The values of

cbid and ebid in Figure 4.13 are the constant coefficients. The index of classifier whose

effective bid is the highest is going to be returned by the function.

Figure 4.13: The Method auction

 The source code of the method taxcollector method is provided in Figure 4.14.

The taxcollector method collects bidding tax and life tax. The bidding tax is for

classifiers who bid and the life tax is charged for every classifier for the iteration. The

method sees the currently matching classifiers by seeing the value of the matchflag. Then

matched classifiers are charged for the bidding tax. At the end of the method, life tax is

subtracted from every classifier in the population.

 53

Figure 4.14: The Method taxcollector

 4.6.3 Operations of GA

 The three operators of genetic algorithms are performed by the methods select,

crossover, and mutation. Since the source codes are too long to list here, the example of

the genetic algorithms over two classifiers is presented instead. Suppose there are 4

classifiers for EMPLOYEE as in Table 4.1. In the classifier system, usually there are

hundreds or thousands of such classifiers for every entity set in the input. In Table 4.1,

the No.1 and No.2 are seemingly good and No.3 and No.4 are weak.

No. Condition Message (Action) Strength
1 Condition1 Message1 20
2 Condition2 Message2 20
3 Condition3 Message3 2
4 Condition4 Message4 0

Table 4.1: Four Classifiers for a Database Schema EMPLOYEE

The select method is likely to pick No.1 and No.2 to reproduce the offspring as a

result of the roulette wheel. The strength indicates the measure of how good the database

 54

schema candidates have been doing so far. The crossover is performed over the offspring

classifiers, and the mutation happens rarely after the crossover operation. The crossover

and mutation is performed on the message part of the offspring. These three methods of

genetic algorithms sometimes change the content of classifiers and increase the

performance of the classifier system.

 4.6.4 Operations of payreward in Reinforc

 A winner classifier is evaluated according to the reward functions of the

RewardCalculator and receives a reward value from the payreward method. The input

will affect the result of the payreward method. For example, the input conceptual schema

may be given as follows:

 EMP = {ENO, ENAME, TITLE}

 ASG = {ENO, PNO, DUR, RESP}

 PROJ = {PNO, PNAME, BUDGET}

 PAY = {TITLE, SALARY}.

Here, EMP is for employee, ASG is for assignment, PROJ is for project, ENO is for

employee number, PNO is for project number, and RESP is for responsibility. EMP is

related to ASG and PAY. ASG is related to PROJ. All of them have one-to-one

relationships. Figure 4.15 shows the relations and mapping cardinalities.

 55

EMP PROJASG

PAY
1

1

1 1 1 1

Figure 4.15: Relations and Mapping Cardinalities

`With this input information, the example winner database schema classifier is as

follows:

 ASG = {ENO, PNO, TITLE, SALARY}.

 The input has some dependency information, given the primary keys. The system is

given the mapping cardinality information between entity sets. Based on these input,

together with the knowledge of reward functions, the system evaluate a winner database

schema classifier. In the example winner, there is a partial dependency. Therefore, the

classifier may be given a negative value. The mapping cardinality information may affect

to the result, depending on the content of the classifier. The Reinforc are given seven

functions and each is used to evaluate and give a numerical value to the winner as a

reward.

 56

Chapter 5: Result of an Experiment

 This chapter shows an experiment with four database schemas as an input. The

purpose is to see if the classifier system can learn good classifiers and bad classifiers of

the database schema following the knowledge given to the reinforcement learning

mechanism, rather than outputting completely well-designed or normalized database

schema. The example database schema is the one used in Chapter 4 at Section 4.6.4. The

schema is actually normalized to fifth normal form. Therefore, the input is a good

example. The modified version of the database schema is also given to see the result

when an input is badly designed. The system generates 2000 database schemas as

classifiers and iterates 40000 times. Genetic algorithms are performed every 2000

iterations. Every time genetic algorithms take place, ten mates are selected from the

population and the crossover is performed. The system was run ten times for each of the

normalized and modified version of the database schemas.

5.1 Completely Well-Designed Database Schema as the Input

 Figure 5.1 and 5.2 shows the input schema and the mapping cardinalities. Figure

5.3 shows 1 percent of the initial population members among 2000 classifiers generated

by the system. All the classifiers of the initial population are evaluated by the reward

functions before the first iteration starts. Thus the ranking starts just after they are created.

As seen in Figure 5.3, some are strong and some are weak initially. These 2000 classifiers

will be in auctions, sometimes changed by genetic algorithms, and ranked by

reinforcement learning mechanism.

 57

Figure 5.1: Well-Designed Input Schema

Figure 5.2: Mapping Cardinalities of the Well-Designed Input Schema

Figure 5.3: Initial Population Generated From the Well-Designed Input Schemas

 The classifiers experience the environment until the system iterates 40000 times.

Figure 5.4 shows the top five of the final population sorted by strength. The classifiers

 58

from No.1 to No.4 were the strongest ones. For the run, the strongest classifiers were

exactly the same as the well-designed database schemas, and the classifier system

successfully increased the strength of good classifiers. All of the other classifiers had

strength below 0.39.

Figure 5.4: Top Five Classifiers of the Final Population in the Experiment with the Well-

Designed Schemas

Figure 5.5 and 5.6 are the plots for the number of classifiers having strength over

2 and over 10, respectively. As seen in Figure 5.5, there were initially over 600 classifiers

having strength over 2. However, the number changes as the system iterates. Some

particular classifiers increase the strength and some others decrease the strength. In the

plot of Figure 5.6, there are sudden increases of classifiers with the strength over 10, for

every 2000 iteration interval. This is because of the genetic algorithms operation. Finally,

the number of classifiers with strength 10 converges to the number of entity sets. Out of

10 runs of the system, the similar plots were always obtained. The strongest classifiers

were the same or almost the same as the well-designed input database schemas.

 59

Figure 5.5: Number of Classifiers with Strength Over 2

Figure 5.6: Number of Classifiers with Strength Over 10

5.2 Badly Designed Database Schema as the Input

 This time, one of the input schemas is not normalized. The mapping cardinality is

the same as before. The input schemas change as Figure 5.7. Here, the non-primary key

attributes of PROJ is changed. The modified PROJ schema violates third normal form,

 60

since there is a partial dependency, TITLE → SALARY. The TITLE is a primary key of

PAY, and PROJ is not related to PAY. The classifier system is given some knowledge

that may detect this. Figure 5.8 shows some of the classifiers in the initial population. In

the initial population of 2000 classifiers, there were many candidate classifiers of PROJ

schema with the partial dependency.

Figure 5.7: Input in Which PROJ Is Modified

Figure 5.8: Initial Population Generated From the Badly Designed Input Schemas

 61

Figure 5.9 shows the top five classifiers sorted by strength in the final population.

The first four includes each entity set and the PROJ did not have TITLE and SALARY

attributes. The bad classifiers for PROJ decreased the strength and the strongest one

increased the strength as the system iterates, and thus the classifier system successfully

eliminated the bad schema. Out of ten runs, the system always excluded the partial

dependency.

Figure 5.9: Top Five Classifiers of the Final Population in the Experiment with Badly

Designed Schemas

 62

Chapter 6: Conclusion

 This thesis presented the implementation of the classifier system which learns

good and bad database schemas. The result of experiment showed that the system has an

ability to choose the good database schema, by learning. The system iterated 40000 times

and good classifier increased and bad classifier decreased the strength. At the end of the

iterations, there were exclusively strong classifiers for each entity set. The candidate

classifiers for each entity set converged to the one which is good according to the

knowledge.

 63

References

[1] Siberschatz, A., Korth, F. H., Sudarshan, S., “Database System Concepts”,

McGraw-Hill, 5th edition, 2006.

[2] Chen, P. P., “The Entity-Relationship Model-Toward a Unified View of Data”,

ACM Transactions on Database Systems (TODS), Volume 1, Issue 1, pp. 9 – 36,

1976.

[3] Codd, F. E., “A Relational Model of Data for Large Shared Data Banks”,

Communications of the ACM, Volume 26, Issue 1, pp. 64 – 69, January 1983.

[4] Özsu. M. T., Valduriez, P., “Principles of Distributed Database Systems”, Prentice-

Hall, 2nd Edition, 1999.

[5] Gary, R. M., Johnson, S. D., “Computers and Intractability A Guide to the Theory

of NP-Completeness”, W. H. Freeman and Company, 1979.

[6] Buchanan, G. B., “A (Very) Brief History of Artificial Intelligence”, AI Magazine,

Volume 26, Issue 4, pp. 53 – 60, Winter 2005.

[7] McCarthy, J., “What is Artificial Intelligence?”,

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.

[8] Campbell, S. M., “Knowledge Discovery in Deep Blue”, Communications of the

ACM, Volume 42, Issue 11, pp. 65 – 67, November 1999.

[9] Seirawan, S., Simon, A. H., Munakata, T., “The Implications of Kasparov vs. Deep

Blue”, Communications of the ACM, volume 40, Issue 8, pp. 21-25, August 1997.

[10] Mitchell, T. M., “Machine Learning”, WCB McGraw-Hill, 1997.

 64

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

[11] Goldberg, E. D., “Genetic Algorithms in Search, Optimization & Machine

Learning”, Addison-Wesley, 1989.

[12] Goldberg, E. D., “Dynamic System Control Using Rule Learning and Genetic

Algorithms”, Proceedings of the 1st International Conference on Genetic

Algorithms, pp.8 – 15, 1985.

[13] Wilson, S. W., “Classifier System Learning of a Boolean Function”, Research

Memo RIS No. 27r, The Rowland Institute for Science, Cambridge, MA.

[14] Holland, J. H., “Outline for a Logical Theory of Adaptive Systems”, Journal of the

ACM (JACM), Volume 9, Issue 3, pp. 297 – 314, 1962.

[15] Darwin, C. R. 1859. On the origin of species by means of natural selection, or the

preservation of favoured races in the struggle for life. London: John Murray. 1st

edition, 1st issue.

[16] Holland, J. H., “Adaptation in Natural and Artificial Systems”, The MIT Press, 1992.

[17] Kellerer, H., Pferschy, U., Pisinger, D., “Knapsack Problems”, Springer, 2004.

[18] Smith, R. E., Goldberg, E. D., “Reinforcement Learning With Classifier Systems:

Adaptive Default Hierarchy Formation”, Applied Artificial Intelligence, Volume 6,

Issue 1, pp. 79 – 102, 1992.

[19] Davis, R., King, J., “An Overview of Production Systems”, In E. W. Elcock &

D. Michie (Eds.), Machine Intelligence 8, pp.300-332, Wiley, 1976.

 65

Appendices

Appendix A: Permissions

Div 542: Code 9780201157673
Req No. 31866: Cust No.13708

Mitsuru Tanaka
3900 Hessmer
Metairie, LA 70002

is hereby granted permission to use the material indicated in the following
acknowledgement. This acknowledgement must be carried on the copyright or
acknowledgements page of your thesis and as a footnote of the pages that contains our
material:

David E. Goldberg, GENETIC ALGORITHMS IN SEARCH, OPTIMIZATION, AND
MACHINE LEARNING, (include the page number from our book that the material has
been taken from) © 1989 Pearson Education Inc. Reproduced by permission of
Pearson Education, Inc.

This material may only be used in the following manner:

To reprint and include tables/figures, detailed below, in your thesis
"Classifier System Learning of Good Database Schema". This thesis will be presented to
the University of New Orleans in one print and one electronic copy. The thesis will be
available at
http://louisdl.louislibraries.org/index.php?name=university%20of%20New%20Orl
eans%20Electronic%20Theses%20and%20Dissertations.
If you should wish to have your thesis professionally published for the commercial
market you must re-apply for permissions.
"Genetic Algorithms" page one, "Robustness" page one, "Search Procedures" page 7,
"Classifier Systems" page 221, "Schema theorem" page 30-33, "figures 6.1 from page
223 and 6.3 from page 227, tables 1.1 from page 11, and 1.2 from page 16, "A Simple
Genetic Algorithm" form page10, "A Simple
Classifier Systems by Hand" page 227.

This permission is non-exclusive and applies solely to the following language(s) and
territory:

Language(s): English
Territory: Thesis

 66

IMPORTANT NOTICE:
Pearson Education, Inc. reserves the right to take any appropriate action if you have used
our intellectual property in violation of any of the requirements set forth in this
permissions letter. Such action may include, but is not limited to, the right to demand
that you cease and desist in your use of Pearson Education's material and remove it from
the marketplace.

This permission does not allow the reproduction of any material copyrighted in or
credited to the name of any person or entity other than the publisher named above. The
publisher named above disclaims all liability in connection with your use of such material
without proper consent.

Tim Nicholls, Manager Rights and Permissions
Pearson Education
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

 67

Vita

 Mitsuru Tanaka was born in Matsumoto city of Nagano Prefecture in Japan. He

received the degree of Bachelor of Engineering from Hiroshima Kokusai Gakuin

University in March, 2001. In January, 2005, He entered the Graduate School at the

University of New Orleans. Currently, he is working as a research assistant and

completing the degree of Master of Science in Computer Science at the University of

New Orleans.

 68

	Classifier System Learning of Good Database Schema
	Recommended Citation

	Title Page
	Dedication
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	1.1 Applying the Classifier System to the Learning of Good Database Schema
	1.2 Organization

	Chapter 2: Background
	2.1 Artificial Intelligence
	2.2 Machine Learning
	2.3 Previous Works on Classifier System

	Chapter 3: An Intensive Study on Classifier System
	3.1 Genetics-Based Machine Learning
	3.2 Genetic Algorithms
	3.2.1 Robustness of Genetic Algorithms
	3.2.2 Natural Selection
	3.2.3 Reproduction
	3.2.4 Crossover
	3.2.5 Mutation
	3.2.6 Similarity Templates (Schemata)
	3.2.7 Schema Theorem (Fundamental Theorem of Genetic Algorithms)
	3.2.8 A Simple Genetic Algorithm for a Knapsack Problem

	3.3 Components of Classifier System
	3.3.1 Rule and Message System
	3.3.2 Classifiers
	3.3.3 Apportionment of Credit System: Bucket Brigade
	3.3.4 Genetic Algorithms in the Classifier System

	Chapter 4: Implementation of a Classifier System in Java
	4.1 Requirements
	4.2 Input and Output
	4.3 Data Structures
	4.3.1 Classifier
	4.3.2 Environmental Message
	4.3.3 Population

	4.4 Class Diagrams
	4.4.1 Perform Class as the Rule and Message System
	4.4.2 AOC Class as the Apportionment of Credit System
	4.4.3 GA Class as the Genetic Algorithms
	4.4.4 Reinforc Class for the Reinforcement Learning

	4.5 Knowledge given to the Classifier System & Reward Functions
	4.6 Example Operations over the Classifiers
	4.6.1 Operations of matchclassifiers in Perform
	4.6.2 Operations of auction and taxcollector in AOC
	4.6.3 Operations of GA
	4.6.4 Operations of payreward in Reinforc

	Chapter 5: Result of an Experiment
	5.1 Completely Well-Designed Database Schema as the Input
	5.2 Badly Designed Database Schema as the Input

	Chapter 6: Conclusion
	References
	Appendices
	Appendix A: Permissions

	Vita

