Fall 2015

NAME 4097

Thomas G. Dobie

University of New Orleans

Follow this and additional works at: http://scholarworks.uno.edu/syllabi

Recommended Citation
http://scholarworks.uno.edu/syllabi/857

This Syllabus is brought to you for free and open access by ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Syllabi by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.
Human Factors Course Information – Fall 2015
HFE 1 for NAME Class 4097

Instructor
Instructor: Professor Thomas G. Dobie, Adjunct Professor NAME, and
Director and Human Engineering Head, National Biodynamics Laboratory,
College of Engineering,
University of New Orleans.

E-mail: tdobie@uno.edu
Office: 931 Engineering Building
Phone: 280 7182
Office hours: Monday and Wednesday at 1pm - 3pm, or send me an e-mail.

Classes and attendance
CLASS 4097 Human Factors Engineering 1 - Location: EN 315.

Class hours: 1100 hours am to 1215 hours pm on Tuesday and Thursday, weekly.

Your attendance at every class session is important. Please initial the attendance sheet
at the beginning of each class. If you are unable to attend class (illness, conflicts with
other classes, etc) inform me by e-mail, before the absence, or as soon as possible to
avoid negative effects on your final grade (see Grading).

Learning Objectives
The overall objective of this course, HFE 1, is to provide a thorough knowledge and
understanding of generic human factors engineering essential to the engineer, to ensure
optimal efficiency in the design and operation of a system or plant. Second it also
provides a basic knowledge of relevant anatomy, physiology, perception and cognition to
explain the relationship to optimal workspace and system operation. In general, the
course also provides knowledge of the research methods of evaluating human
responses to a crewmember’s stress and workload. By stressing and demonstrating the
importance of generic human factors, this also leads to the applications that are
appropriate to these operations in a motion environment; the objectives that are
contained in HFE 2 in the spring semester.

References
The primary references for the course are my notes.

There are several comprehensive text books. Some of them you should consider for
your professional reference library. The main textbook is:

Wickens, C. D., Lee, J. D., Liu, L., Gordon Becker, S. E. "An Introduction to

Homework
Homework assignments will be given out in class about every two weeks. Due dates will
be specified on the problem sheet (usually 1 week after they have been issued).
• Be on time with your homework. Late submission of homework will only be accepted if I get an explanation before the due date.

• It is up to you if you want to use a text processor for homework preparation. Neatly handwritten homework is fine. Please, do not use both sides of the paper and avoid using a pencil.

• Poorly structured and/or illegible homework will be returned for rework.

• Turn in your homework with the problem sheet on top. Put your name and Student ID Number on the problem sheet!

Laboratory
This course may have a lab portion; depending upon the availability of research equipment.

Exams
There will be a mid-term exam (75 minutes) and a final exam according to the University schedule. All exams will be open notes.

Homework will be related to specific lecture topics that will be specified on the Homework Sheet.

The Mid-Term Exam will include the subject matter included in all the hand-outs up to that point unless any specific hand-outs are excluded by the Instructor.

The Final Exam will be comprehensive and include all of the hand-outs given out on the course, unless any specific hand-outs have been excluded by the Instructor.

Although the mid-term and final exams are both “open book”, please bear in mind that the amount and difficulty of problems will not allow a great deal of searching and re-reading of handouts during the exams. Get organized before the exams and be familiar with your notes.

Grading
The final course grade will be based on the total number of points scored during the term. The contributions are weighted as follows:

homework 35%
mid-term exam 25%
final exam 40%

Percentage of points P is then given by:

\[P = 0.35 \cdot \frac{\text{your homework points}}{\text{total homework points}} + 0.25 \cdot \frac{\text{your midterm exam points}}{\text{total midterm exam points}} + 0.40 \cdot \frac{\text{your final exam points}}{\text{total final exam points}} \]

I will round up every figure to one significant decimal place (e.g. 90.712 will become 90.8). In case your final grade is close to a respective boundary (see table below) I will
down-grade it, if the attendance has been low (more than one unexcused absence). The percentage of the scored points will define the final grades:

<table>
<thead>
<tr>
<th>Percentage P [%] Grade</th>
<th>Final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.0 – 100</td>
<td>A+</td>
</tr>
<tr>
<td>94.0 – 96.9</td>
<td>A</td>
</tr>
<tr>
<td>91.0 – 93.9</td>
<td>A-</td>
</tr>
<tr>
<td>87.0 – 90.9</td>
<td>B+</td>
</tr>
<tr>
<td>83.0 – 86.9</td>
<td>B</td>
</tr>
<tr>
<td>79.0 – 82.9</td>
<td>B-</td>
</tr>
<tr>
<td>75.0 – 78.9</td>
<td>C+</td>
</tr>
<tr>
<td>71.0 – 74.9</td>
<td>C</td>
</tr>
<tr>
<td>67.0 – 70.9</td>
<td>C-</td>
</tr>
<tr>
<td>62.0 – 66.9</td>
<td>D+</td>
</tr>
<tr>
<td>57.0 – 61.9</td>
<td>D</td>
</tr>
<tr>
<td>52.0 – 56.9</td>
<td>D-</td>
</tr>
<tr>
<td>Below 51.9</td>
<td>F</td>
</tr>
</tbody>
</table>

Anything below 67% (C−) is a failing grade!

Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity, and being an accessory to acts of academic dishonesty. Refer to the UNO Judicial Code for further information.

The new policy on Academic Dishonesty is available online at: http://www.studentaffairs.uno.edu/studentpolicies/policymanual/academicdishonesty.cfm

Students with disabilities who qualify for services will receive the academic modifications for which they are legally entitled. It is the responsibility of the student to register with the Office of Disability Services (UC 260) each semester and follow their procedures for obtaining assistance.

Cell phones – as always – are switched off during class.
Human Factors Engineering
Provisional Fall Lecture Syllabus 2015
HFE 1

L. 1: Introduction to Human Factors Engineering (HFE) and Human Systems Integration (HSI).
L. 2: Person-Machine System.
L. 3: Muscular Work, I.
L. 4: Muscular Work, II and Improving Work Efficiency.
L. 5: Work Physiology I.
L. 6: Work Physiology II.
L. 7: Human Vibration.
L. 8: Engineering Anthropometry and Workspace Design.
L. 9: Biomechanics of Work 1.
L. 10: Biomechanics of Work 11.
L. 11: Design of the Central Nervous System.
L. 12: Cognition – Memory.
L. 13: Introduction to Perception
L. 17: Perceptual Systems – Auditory 11; Tactile and Vestibular.
L. 18: Motion Sickness I.
L. 19: Motion Sickness II.
L. 20: Motion Sickness III1 Cognitive-Behavioral Desensitization Training
L. 21: Motion Sickness IV Demonstration of this CBDT training
L. 22: Qualitative and Quantitative Methods in Operations Research.
L. 24: Control Systems.
L. 26: Stress and Workload.
L. 27: Safety and Accident Prevention.
L. 28: Human Error Data.