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Abstract 
This work is an investigation into reconstructing fragmented ASCII files based on content analysis 

motivated by a desire to demonstrate machine learning’s applicability to Digital Forensics. Using a 

categorized corpus of Usenet, Bulletin Board Systems, and other assorted documents a series of 

experiments are conducted using machine learning techniques to train classifiers which are able to 

identify fragments belonging to the same original file. The primary machine learning method used is the 

Support Vector Machine with a variety of feature extractions to train from. Additional work is done in 

training committees of SVMs to boost the classification power over the individual SVMs, as well as the 

development of a method to tune SVM kernel parameters using a genetic algorithm. Attention is given 

to the applicability of Information Retrieval techniques to file fragments, as well as an analysis of textual 

artifacts which are not present in standard dictionaries. 

 

 

 

Keywords: Machine Learning, File Carving, Fragmented Files, Support Vector Machines, SVM, Digital 
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Chapter 1 

Introduction 
Digital forensics is a subfield of computer science dealing primarily with the acquisition, preservation, 

and analysis of data from computer or computer related systems, media, and other similar sources. Part 

of digital forensic practice deals with acquiring data from systems damaged or compromised in some 

way from intentional spoliation, damage to either the physical data storage medium or logical damage 

to the medium’s underlying file structure (disk formatting, damage to the file table, etc), or an 

inaccessible storage mechanism (either through being unknown, encrypted, or otherwise obfuscated 

from the investigator.) In circumstances where the information cannot be directly accessed through 

normal operations or interfaces digital forensic investigators must use alternative channels and tools to 

locate the data and make it accessible again. 

The most common situation in the current landscape of digital forensics an investigator is likely to 

encounter is a reformatted hard drive or deleted files. Most laymen do not understand the internal 

mechanics of the operating system / file system at work when a file is deleted, and because of this 

deleted data is often still resident on the storage medium. This deleted data can be made accessible 

again using a forensic technique called file carving.  

File Carving & Fragmentation 

Many file types have invariant sections which are collectively referred to in digital forensic research as 

file “headers” and “footers” depending on their position at the start or end of a file respectively. By 

knowing these invariant bytes and their position within a given file it is possible to search through the 

raw data on a storage medium and identify where files of a known type start or end. Authors of modern 

file systems have worked diligently to minimize file fragmentation so often the files searched for are 

contiguous, having no fragmentation between the beginning header and ending footer; such contiguous 

files become easy to recover by extracting or “carving” out the contiguous data between the header and 

footer thus delivering the original file.  

While fragmentation is minimized in modern file systems when the drives are not filled to capacity, a 

recent study shows some fragmentation still occurs in 6% of files present on the system. This 

fragmentation is most likely to occur in cases where data is appended to an existing file and is expected 

to occur disproportionately in user generated files such as documents, email stores, or databases as well 

as system generated files such as system logs (1).  

Fragmentation is a difficult problem to deal with on a generalized level because traditional approaches 

of file carving are intended to deal with file recovery where the complete or near complete recovery of 

the file is necessary for the data to be useful; for example Jpeg images where missing portions disrupt 

the decompression and rendering process are not useful unless the majority of the data is present. In 

cases where binary or media based files are the primary target of the investigation this type of 

reconstruction requires (in the case of bi-fragmentation) the location of two pieces, and an attempt to 

pair header pieces with footer pieces until a successful rendering is accomplished. This, at best, is highly 
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complex and often requires a priori knowledge of the specific file type’s internal structure for 

reconstruction or validation. Prior work in this regard is discussed in the Related Work section dealing 

with object validation.  

Text Based Targets 

Data comes in two basic forms: binary, and text. When an investigation is not primarily driven by image 

or similar binary media based targets then the target is usually one of information or communication. As 

previously mentioned, a disproportionate amount of fragmentation occurs where data is appended 

rather than overwritten as is the case with documents, email stores, databases, system log files and 

other similar information containing files; in fact user generated content (which generates binary only 

data) is more likely to overwrite the file with a new one than append to the file (as is the case with many 

graphic or multimedia applications). These file types all convey textual information and communication 

either generated by the user and thus about the user directly (including instant message conversations, 

emails, spreadsheets, documents, etc), or generated by the system often about the activities the user is 

engaged in thusly about the user indirectly (login / logout times, accessed resources on the network or 

internet, etc.)  

Textual data differs from its binary counterparts in that it requires no rendering or preprocessing and 

chunks of it, even if from only a portion of the overall file, are useful to an investigator. Because of this 

property textual information is paradoxically both more resilient for recovery, and more resistant to 

recovery where its resiliency stems from the usefulness of the fragments independent of the overall 

file’s recovery, and its resistance from the common lack of header or footer information for a file carving 

application to lock on to. While chunks of textual data are useful, it is nearly impossible to determine if a 

given chunk of textual data is a single fragment from one original document, or if the chunk is composed 

of multiple fragments contiguously stored on the medium. This indeterminate problem stems from the 

aforementioned lack of file headers and footers causing both cases (one chunk from an original 

document, or multiple fragments from different documents in a single contiguous chunk) to be 

indistinguishable from the other on a structural level due to this absence. 

Growing Data Size  

Another problem compounding efforts in file carving techniques is the growing size of storage medium 

and decreasing price per gigabyte. In the course of one decade (1996-2006) hard drive size increased by 

over 23,437% (3.2 GB to 750GB) but rotational speed only increased by a little over 33% (5400RPM to 

7200RPM) in commodity drives. Already in late 2007 / early 2008 we are seeing terabyte size drives, and 

multi-terabyte devices at the consumer level. This continuing increase in consumer drive size effectively 

makes current fragmented reconstructions infeasible for large data stores due to the exponential 

number of comparisons required in the recovery. Specifically, finding all other fragments which match a 

specific one even using an impossible classifier with perfect accuracy requires (N2)-1 comparisons if the 

files are, on average, bi-fragmented and (N3)-1 comparisons for tri-fragmentation, and so forth.  

Forensic investigators are innately limited in the length of time they can function continuously without 

hampering their performance. Because the individual cannot work longer without degrading their work 

quality as they fatigue in conjunction with the resources required to train additional investigators the 
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human component of the forensic investigation is the primary bottleneck. File carving techniques which 

must be carefully reviewed and/or generate significant false positive percentages are unduly taxing on 

the digital forensic investigator. Forensic tools must be designed to minimize the demand on an 

investigator’s time. 

Purpose 

I have made several assumptions about the nature of textual communication keeping in mind three 

axioms: (a) user or system generated data with a textual component is more likely to be appended than 

other sources of data, (b) appended data is disproportionately fragmented even in modern file systems 

which strive for minimal fragmentation, and (c) textual data is resistant to current generation file carving 

techniques, but resilient to total removal as even chunks of textual data independent of the complete 

file are usable.   

First, textual communication, whether human generated or automatically generated by the system, is 

generated with a communicative purpose. On a generic level it is written to communicate something: a 

system log may show activities, and email to your family may convey information on current events in 

your life, or a work document may show status updates on current projects. In general the 

communication is going to be concise. A document is going to tend to cover fewer (or even one) rather 

than many topics and documents communicating multiple topics will do so because of some relation 

between the topics.  

Secondly, natural languages with which textual documents are written convey information through 

grammatical constructs of nouns, verbs, and other assorted words. These words together convey more 

information than an individual word would. Words and the meanings they convey form, when brought 

together in a document, an underlying meaning thread (“Meaning Thread”). We as humans fluent in the 

language the document is written in pickup on these underlying Meaning Threads as a subject. 

Depending on what a document conveys it is likely to have multiple meaning threads in it. For example, 

a paper dealing with file carving will have an underlying meaning thread of digital forensics, file systems, 

files, and so forth as it deals with all of those subjects.  

Thirdly, by analyzing the words and associated meanings of various documents both in comparison to 

parts of themselves and against other documents both related and unrelated it should be possible to 

differentiate between related documents and portions of the same document based on the combination 

of meaning threads as conveyed by word/meaning content.  

My work applies machine learning techniques and uses existing tools from other research areas in a 

cross-disciplinary manner to create a process using automated unsupervised machine learning to 

identify textual fragments belonging to the same original document. I will do this by analyzing the word 

and meaning content of a pre-existing set of classified text documents and applying techniques from 

Natural Language Processing (“NLP”) and other Information Retrieval techniques to train several 

Support Vector Machines (“SVM”) to classify fragments which have the same original document source 

based on the similarities between fragments from the same document and differences between 

fragments from different documents whether similar or not in subject.  
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In the course of this research and tool development I take special care in ensuring the implementation is 

both scalable and distributable with minimal attention or feedback required from the forensic 

investigator. These two factors are essential for future forensic tool development to account for 

problems in growing data set size and the limited attention a forensic investigator can devote to a tool; 

in particular it is my opinion future tools will have to be completely automated in the near future to be 

of any use in forensic investigations.  

Organization 

In this thesis I will present results from my research into reconstructing non-contiguous fragments from 

ASCII text files using novel techniques drawn in a cross-disciplinary approach between Artificial 

Intelligence, Information Retrieval, Digital Forensics, and other fields. In chapter 2 I will discuss 

background, related work, and the state of the art. In chapter 3 I will discuss the methods used as part 

of the overall system. In chapter 4 I will discuss the experimental data set, the experiment setup, and 

results. In chapter 5 I will conduct a more in-depth analysis of the results from my experiments in 

chapter 4. Finally, in chapter 6 I will present my conclusions and future directions of my research.  
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Chapter 2 

Background & Related Work 

File Carving 

Computer files often contain information at the beginning or end which deals with format, length, file 

ending, and so forth. In many cases certain byte positions within these header and footer regions is 

invariant between files. These invariant header portions are often the same magic numbers used by the 

Linux file command to deduce file type from the header portion, but do not have to be intentional magic 

numbers; any byte sequence which is invariant or near invariant will do so long as it is consistent.  

Current generation file carving tools use a two pass approach to carve files from raw data. In pass one 

they search byte by byte comparing what is found with a list of known header and footers while taking 

note of type and offset for each located header or footer. Using the information gleaned from pass one 

the file carving utility then examines headers and footers as they are positioned on disk to identify which 

match ups are likely to be contiguous files (such as a header for file type X followed by a footer for file 

type X a few blocks later.) Alternatively files can be partially recovered by reading data until an 

unanticipated header or footer is encountered which does not correspond to the initial header (such as 

reading an image header and then later encountering a non-image header or footer.) Depending on the 

file type, partial recovery can be useful if the entire file is not necessary to glean some information. 

The first file carving application was produced by the Defense Computer Forensics Lab in 1999 and was 

called CarvThis. Kris Kendall developed snarfit shortly afterward in 2001. Later both Kris Kendall and 

Jesse Kornblum worked together to produce Foremost. (1) 

Foremost itself started as a standard file carver based on header / footer identification. In 2005 Nick 

Minkus published his thesis which extended foremost with several new heuristiscs including support for 

Object Linking and Embedding (“OLE”) file types opening up file carving to a host of Microsoft Office 

(“MSOffice”) files. His work modified an API package developed by the Chicago Project 

(http://chicago.sourceforge.net/) to be usable by Foremost. The Chicago Project provided functionality 

specifically for dealing with excel files. Prior to his contribution Foremost was only able to handle 

Microsoft Word files. (2) 

Also in 2005 Dr. Golden Richard and Dr. Vassil Roussev published Scalpel as a new file carving tool which 

corrected inefficiencies in the Foremost to create a much faster file carving utility. (3) 

The research and technical advances in file carving have primarily manifested increases in efficiency with 

the introduction of Scalpel and newer revisions of Foremost. File fragmentation still remains a significant 

problem with minimal advances in comparison to the advances in efficiency. The only solution hitherto 

proposed for dealing with fragmented file reconstruction is to use object validation wherein blocks of 

data are identified as belonging to specific file types and different algorithms with in depth a priori 

knowledge of the file type take over reconstruction. (1) 
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Information Retrieval 

Information Retrieval (“IR”) is a cross disciplinary venture primarily concerned with searching for 

information pertinent to a query. The most obvious and visible IR applications are search engines such 

as Google and Yahoo. The primary aim of IR, arguably, is to allow an individual to rapidly winnow down a 

large repository of information down to documents specific to the individual’s search goals. The 

information used includes not only the internal document text, but also metadata such as dates, 

authors, and organizations. In figure 1 we see an example of this where a simple search for file carving 

research also lists key authors to narrow the total search population by. 

 
Figure 1 Scholar.google.com Example of Information Retrieval 

Document Clustering & Text Classification 

Document Clustering and Text Classification are subfields of IR where the primary goal is not to retrieve 

information by query, but to automatically put a new document into a category with other documents 

with related topics. An individual document may belong to multiple categories or topics which could be 

activated by a search query.  

Term Frequency – Inverse Document Frequency (4) 

Term Frequency – Inverse Document Frequency (“TFIDF”) is a statistically derived weight for how 

important a specific term is within a specific document modified by its pervasiveness within a document 

corpus. More simplistically the more often a term appears in a given document, the more important it is 

for classification; however, the more often a term appears in documents throughout the corpus the less 

important it is for classification. Therefore TFIDF is a balancing of a term’s importance to the document 

diminished by how commonplace it is within documents in general. 

Mathematically the two component parts, Term Frequency (“TF”) and Document Frequency (“DF”), are 

defined as: 
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Where: 

 TF(i,j) is the Term Frequency of term i in document j  

  is the number of occurrences for term i in document j 

  is the number of occurrences of all terms in document j 

  

  is the number of documents in the corpus 

  is the number of documents in the corpus containing term  

 TFIDF(i,j) is the Term Frequency – Inverse Document Frequency of term i in document j in the 

corpus 

Cosine Similarity& Tanimoto Coefficient (4) 

Cosine Similarity in a text mining / IR context refers to the similarity, expressed as an angle in the range 

*0,π+ with 0 denoting equivalence and π denoting complete dissimilarity. Recall the equation for 

expressing the dot product of two vectors in terms of the angle between them: 

 

The cosine similarity function uses the TFIDF values as vectors for each document, and computes the 

angle between the TFIDF vectors as a measure of similarity for the documents being compared. The end 

computation to determine this similarity is as follows: 

 

The function yielding the cosine similarity may be further extended to produce the Tanimoto coefficient 

which yields the Jaccard index when the input vectors are binary as follows: 

 

The Jaccard index itself is a measure of similarity within a sample set. 

Support Vector Machines (5) 

SVMs provide a system for supervised learning which is robust against over training and capable of 

handling non-separable cases. Learning with structural risk minimization is the central idea behind 

SVMs, and this is elegantly accomplished by obtaining the separating hyperplane between the binary 

labeled data sets (±1) that separates the labeled data sets with a maximum possible margin (6) (7). The 
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power of this approach is greatly extended by the added modeling freedom provided by a choice of 

kernel. This is related to preprocessing of data to obtain feature vectors, where, for kernels, the features 

are now mapped to a much higher dimensional space (technically, an infinite-dimensional space in the 

case of the popular Gaussian Kernel). 

The hyperplane itself is centered at w•x – b = 0 where w is the normal vector to the separating 

hyperplane, x is the vector of points satisfying the above equation, and b is the offset from the origin. 

Given this, w and b are chosen to maximize the distance or gap between parallel hyperplanes  w•x – b = 

-1 and  w•x – b = 1. The separable case for the SVM occurs where there is no crossover from the labeled 

groups over the hyperplane. Non-separable cases are handled through the use of slack values (6) (see 

Fig. 2) to allow for some cross over in order to still obtain the largest possible margin between the bulk 

of the labeled groups. One of the strengths of SVMs is that the approach to handling non-separable data 

is almost identical to that for separable data. (8) 

Upon introducing Kernels, the SVM equations are solved by eliminating w and b to arrive at the 

following Lagrangian formulation: max ∑(i=1...n) αi – ½∑(i,j=1...n) αiαjyiyj K(xi,xj), subject to αi ≥ 0 and ∑(i=1...n) αiyi 

= 0, where the decision function is computed as f(x) = sign(∑(i=1...n) αiyiK(xi,xj) + b), and where K(xi,xj) is the 

kernel generalization to the inner-product term, <xi,xj>, that is obtained in the standard, intuitively 

geometric, non-kernel based SVM formulation. (5) 
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Figure 2 Hyperplane With Seperable Case  

This figure shows two clusters of labeled data which can be completely separated by a hyperplane. 

 

Figure 3 Hyperplane With Non-Seperable Case 

This figure shows two clusters of labeled data which are not separable because there is no hyperplane 

which can be drawn between the two clusters due to the crossover. 
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Chapter 3 

Methods 
In conducting my study of fragmented text documents I explored numerous methods for representing 

the meaning content of a given document. For most machine learning applications natural language 

texts such as those I am dealing with must be translated into a numerical representation for comparison 

against other documents. In this thesis I refer to this process as feature extraction and the resulting 

mathematical representations as a feature singularly or collectively as a feature vector. 

Novelty & Divergence from IR 

Traditional methods of Information Retrieval or Document Clustering / Text Classification rely on 

existing broad predefined topics for classification. In its simplest form this process can be manual such 

as tags in blogs, journals, or Content Management Systems, or it can be more complex in systems which 

automatically classify documents into existing taxonomical systems. In all cases the topic structures are 

self-evidently broad and intended to encompass numerous document populations for easy searching. If 

we were to look at this process as book classification, IR / Document Clustering would be the 

classification of a new book into its correct location within the Dewey Decimal (9) system. The goal of 

my thesis work is to identify fragments of the same original document as they relate to each other and, 

viewed in a similar abstraction, this would be akin to taking chapters torn from random books and 

grouping them back together based on the book they originated in without the benefit of titles 

(headers/footers).  

Feature Extraction 

Numerous methods of feature extraction were evaluated in the course of this work. Because of the 

work’s nature approaches which in prior work were not effective for document clustering or text 

classification were evaluated anyway to evaluate whether the methods may have been inappropriate to 

document clustering due to being too specific to the document (a failure in document clustering, but a 

potential success in reconstructing document fragments.) In all cases the text is processed by treating 

non-alphanumeric characters as delineators and processing all text between the delineators as 

individual tokens.  

Word Frequency & Natural Language Processing 

By using a NLP database it is possible to analyze the individual tokens to discern two items of 

information. Firstly, tokens which do not exist in the NLP database (or in a dictionary) (“unknown 

tokens”) are likely to be either misspelled, names, or highly specific terms. Secondly, tokens which do 

exist in the NLP database can be collapsed such that words with identical meanings can be combined in 

occurrence rather than counting them separately. This second point allows meanings present in a 

document to be fully accounted for in their pervasiveness as a ratio over total meanings rather than 

diluting its importance by accounting for synonymous tokens individually. Specifically in a document 

discussing dogs, accounting for dog and canine separately dilutes its importance as a ratio of total terms, 
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further in cases where a one term is used more frequently at the start of a document and another in the 

later section reconstruction would be affected by not counting the terms similarly.  

Terms which do not occur in the NLP database (or a dictionary) including misspelled words, proper 

names, and highly specific terms will be each referred to as a Highly Specific Term (“HST”) in the 

remainder of this text. HSTs offer potential for identifying characteristics of the author in cases where 

words are misspelled consistently, of subject where proper names are used both for people (Alice, Bob, 

etc) or for programs/services in log files (Apache, IIS, etc), or finally of terms with very technical or 

specific connotations such as those invented for use in a document.  

For the Word Frequency & Natural Language Processing (“WF&NLP”) feature extraction the fragment 

being compared (“target”) and the files the target is compared to (“comparison”) are processed to 

compute the (a) Meaning Term Frequency for each NLP based meaning, (b) the standard deviation by 

occurrence the meaning falls into, and (c) the list of unknown tokens in the document. 

 

TFIDF Automatic Keyword Extraction 

TFIDF as a general concept has long been used in IR for determining the importance of a particular term 

within a document by taking the product of its occurrence as a ratio of terms in the document and the 

number of documents sampled in which the term occurs. TFIDF was formally defined previously in the 

background section. Here it is used to select specific terms within the document as keywords. By 

selecting n keywords with the highest TFIDF weight it is possible to select keywords for classification in 

an unsupervised manner.  
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Chapter 4 

Results 

Datasets 

The experimental datasets come from the textfiles.com archive (“datastore”)  which consists of over 

55,000 text documents archived from Usenet, Bulletin Board Systems, and other similar sources. The 

data is published in hand classified categories based on topic, with sub categories relating to more 

specific aspects. The datastore's total size is approximately 1.2GB of ASCII text files. 

Dataset 1 (“Random1”) consists of approximately 100 files selected randomly from the total datastore. 

Files were selected without regard to file size. 

Dataset 2 (“Random2”) consists of approximately 100 files selected randomly from the total datastore. 

File with a total size of less than 8k were discarded from consideration. 

Dataset 3 (“HamRadio”) consists of approximately 100 files selected randomly from the Ham Radio 

subset of the total datastore. This is a subject specific data set dealing with Ham Radio, and other 

related technologies and discussions. Files with a total size of less than 8k were discarded from 

consideration. 

Dataset 4 (“RPG”) consists of approximately 100 files selected randomly from the Role Playing Games 

subset of the total datastore. This is a subject specific data set dealing with Role Playing Games such as  

Dungeons and Dragons, and similar publications.  

Dataset Selection 

Random2 and HamRadio were created without files smaller than 8k to more realistically simulate ondisk 

fragmentaiton of NTFS file systems whose default block size is 4k thus representing at minimum 2 blocks 

of textual data. Random1 and RPG were created without regard to this limit to evaluate differences in 

performance on sets using smaller datasets.  

Random1 and Random2 are randomly selected datasets thus having little if any noise from fragmented 

documents with similar topics. These two datasets are the optimistic baseline for estimating maximum 

accuracy. RPG and HamRadio are subject specific datasets and serve as worst case, or pessimistic 

baseline for the hardest case of classification where all fragments share a topic. Further, many of the 

documents in RPG are game mechanics related documents which differ from standard documents such 

as emails, essays and so forth in that they communicate discrete sections of rules which may or not be 

content related.  

Feature Extraction 

There are, collectively, 5 separate feature extraction processes which generate feature vectors of 

varying lengths. In the course of the experiments the vectors were evaluated individually, and in various 

combinations to gage the overall contribution of the features to the training Sensitivity (“SN”) and 

Specificity (“SP”) where: 
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SN =  Or the percentage of true matches detected. 

SP =  Or the percentage of false positives. 

Figure 4 - Sensitivity ("SN") / Specificity ("SP") Definition 

Feature Vector 1 (“Cos/Tan FV”) is a magnitude 2 feature vector consisting of the Cosine Similarity, and 

Tanimoto coefficient. Cosine similarity is a measure of how similar two documents are with 0 denoting 

identical documents, and π denoting completely dissimilar documents. The Tanimoto coefficient is an 

extension of Cosine similarity which produces some additional data in the event of binary attributes. 

These two measures are well established in text mining and search engine optimization. (10) 

Feature Vector 2 (“Keyword FV”) is a magnitude N feature vector consisting of a keyword comparison 

between the Target and Comparison files. Each document has a ranked list of keywords automatically 

extracted by taking the tf-idf for each term appearing in the document and selecting the N highest 

ranking (relevance by tf-idf weight) terms in the Target. Keyword FV is then constructed as a binary (1,0) 

vector with a 1 indicating the appropriate keyword from the Target fragment is present in the 

Comparison fragment. N=10 was used for these experiments. 

Feature Vector 3 (“Unknown FV”) is a magnitude N feature vector consisting of comparisons between 

the unknown tokens in the Target fragment, and those in the Comparison fragment. The comparison is 

similar to the Keyword FV in that it selects the N most occurring unknown tokens from the Target 

fragment and produces a quotient between it and the token's number of occurrences in the 

Comparison. N=5 was used for these experiments. 

Feature Vector 4 (“Unknown Ratio FV”) is a magnitude 1 feature vector consisting of a ratio between the 

number of unknown tokens the two fragments have in common and the total number of unknown 

tokens in the Target fragment.  

Support Vector Machine Parameters & Performance Evaluation 

The primary mechanism altering effectiveness of the SVM is the selection of a kernel which performs 

well for the feature vectors being studied, as well as a set of parameters for the selected kernel which 

are stable for the feature vectors. The general aim for kernel and parameter selection is to maximize 

accuracy where accuracy = (SN + SP) / 2. Due to the nature of fragment reconstruction, the number of 

correct combinations is far outnumbered by incorrect combinations. For example, 100 files split into 200 

fragments have N*(N-1) comparisons which works out to 200 * (200-1) = 200 * 199 =  39,800 total 

comparisons of which there are 2N-1 correct combinations (Fragment A matched with Fragment B, and 

Fragment B matched with Fragment A) giving 2*200-1 or 399 correct combinations, and 39,800 – 400 = 

39,401 incorrect combinations. The aim of automated digital forensic tools is to lessen the workload of a 

human analyst, so an increase in SN at the expense of a decrease in SP becomes self defeating as the 

erroneous classifications drown out the correct reconstructions. In perspective, 30% SN with 99.9% SP 

would involve the identification of approximately 119 correct reconstructions and 39 incorrect 

reconstructions, leaving a total of 158 of the possible 39,800 comparisons for a human to manually 

review or 0.39% of the total brute force work. However, if SN was increased to 40% at the expense of a 
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0.5% decrease in SP there would be a total of approximately 160 correct reconstructions, and 236 

incorrect reconstructions increasing the manual review process to almost 1% of the total brute force 

work.  Following from this, anything under 99% SP quickly becomes untenable as the noise drowns out 

any correct reconstructions. 

Current practice in SVM usage is to perform kernel selection and parameter tuning through a repeated 

retraining process in an attempt to find a kernel which has a good general performance for the feature 

vector, and kernel parameters which provide stable performance. Stable performance, as referred to 

here, is defined as performance for which minor modifications of a kernel parameter have a 

performance change proportional to the change in the kernel parameter e.g. minor changes in a kernel 

parameter yield minor changes in performance. Conversely, unstable performance occurs where minor 

changes in a kernel parameter result in erratic or disproportionate changes in performance results. This 

process can be quite tedious, and requires the user to hand select parameters. Because the 

effectiveness of a kernel and its parameters can be easily and accurately evaluated against a given 

training and testing data set the overall problem screams for the application of a genetic algorithm to 

automatically tune the kernel parameters in finding the most effective settings for the training and 

classification process. To this end a prototype SVM auto-tuning genetic algorithm was applied in the 

training process: 

Step 1: Initial Population – A given kernel is selected for testing and an initial population of 

parameters is randomly generated. For these experiments a population size of 50 was chosen.  

Step 2: Evaluation & Selection – Given two datasets (training and testing) each member of the 

kernel population is used to train an SVM, and then classify the testing set. The genetic 

algorithm evaluation function uses the exact measures of SN and SP to determine success of the 

member, and the average performance of the population is computed. A cut off point is set 

midway between the average and best performance in the population with members falling 

below the cut off selected for extinction and those above or at it allowed to breed. 

Step 3: Breeding – The surviving members of the current generation are preserved in the next, 

and are randomly bred with each other to refill the population to its maximum level. Again, for 

these experiments maximum population is set at 50. When two members are bred, their 

parameters are blended by averaging between the parents.   

Step 4: Mutation – Mutate a portion of the population to have their parameters randomly 

mutated by + or – 1 for integer parameters, or a decimal in the [0,1) range for double 

parameters. For this application 10% of the population was selected for mutation at each 

generation. 

Repeat 2-4 until the population becomes homogeneous or performance gains cease or become 

negligible (bellow a threshold value.) The final generation contains the best performing 

parameters found for this kernel type, but while not necessarily optimal, they are well 

performing.  
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The method of breeding chosen (averaging the kernel parameters) causes breeding to perform an 

exaggerated form of hill climbing akin to a binary search. Specifically given two well performing points A 

and E will breed to average out to C, a mid point, in the next generation. Depending on the performance 

at the three points, in successive generations a survival of A and C will breed to produce B while 

alternatively E and C will produce D. This behavior diverges from a binary search though in that 

performance is not a linear increase coupled to kernel parameter, instead there are peaks and valleys in 

performance so points B and D could both be well performing values better than their ancestors A, C, 

and E. The random mutation aspect also serves to knock out unstable regions where a single value 

performs well for the specific data set, but doesn’t have a generally good performance over similar data 

sets in that along the way. For example if the specific B performs well, but B ±0.000001 performs badly, 

then B is not a good value to use; in such a case the “jittering” of the parameter through mutation will 

help knock the population out of such an oddity. If the jittered value performs well, but not quite as well 

as the original it will eventually find its way back through successive breeding. The end result of a good 

run with this method of auto tuning is a range of kernel parameters with a similar performance, where 

the parameters are numerically close.  

Kernel selection is not the sole determinant for SVM performance; the feature vectors themselves are 

equally important to the success of learning. Rerunning a genetic algorithm for near optimal 

performance is unnecessary to evaluate whether the addition of alternative features to the feature 

vector could increase performance. For a given set of kernel parameters with stable performance, the 

change in performance with the addition of new features can be used to determine if they should be 

included without requiring the kernel parameters to be tuned. Once additional features are evaluated as 

increasing the performance of a SVM the augmented feature vectors can be tuned with the genetic 

algorithm without expending the computational resources and time to tune for each considered feature 

addition. More simply, we only tune for near optimal performance on additional features which are 

shown to provide a benefit and discard those features which provide no appreciable benefit. For these 

experiments the radial kernel with gamma = 2 was selected as it has previously been observed as a 

generally well performing kernel to evaluate addition or subtraction of features in prior unrelated work. 

(5) Though gamma = 2 is a stable kernel parameter used for much of the early work, once the auto-

tuning SVM algorithm was introduced a significant performance increase was obtained as detailed in the 

results section.  

Preliminary Investigation 

A preliminary investigation was conducted into the problem under the assumption NLP information 

could be used to deduce an underlying set of topics from a document based on extracting and 

comparing the meanings from the fragments via comparison against an NLP database. (11) Specifically 

text intended for human or machine consumption takes several forms. Human readable documents 

contain articles dealing with a given topic, or subject which leads to the document as a whole having a 

thread of meaning throughout. A paper dealing with dogs, for example, will use vocabulary relating to 

dogs as well as the paper topic itself. A document dealing with a topic such as “pack habits of dogs” 

would also include vocabulary relating to pack behavior. Similarly log files will detail the same types of 
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information in quantity; i.e. an apache log will contain data relating to an apache process, and use some 

terminology specific to apache log files or web servers.   

Most human readable documents convey information in a discrete manner dealing with a single topic 

thread or subject. Longer documents will tend to have broader subjects to deal with while shorter ones 

will tend towards being concise.   

The pervasive meaning thread in a document is conveyed by words, but there are many words in a 

language to describe the same meaning. Half of a paper on dogs may use the word “dog” while the 

second half could favor “canine” if shifting focus, but the meaning throughout refers to the same 

subject. NLP provides a way to map dissimilar words to a common meaning through databases which 

map the relationships words have to each other.   

It was initially assumed fragments of the same document should have similar frequencies of common 

meanings since they 1) deal with the same subject, 2) are part of the same document, and 3) have a 

common writing flow. Therefore, it was further assumed analyzing the common meaning and their 

frequency in one fragment as compared to another should allow fragments to be clustered into the 

documents they came from.  

The NLP Ratio FV was originally derived from this approach, and in the course of preprocessing the 

documents' terms into NLP meanings the idea to target unknown tokens was adopted shortly after. The 

unknown tokens themselves were compared as a simple ratio of occurrences which became the 

Unknown Ratio FV. Prior to the adoption of the SVM as the preferred learning method, very small 

datasets were compared using the J4.8 decision tree algorithm. The input data consisted of the NLP 

Ratio FV, and the Unknown Ratio FV expressed for both possible comparisons (e.g. with FileA as the 

Target and FileB as the comparison, and vice versa.)  

Preliminary work was done on the concepts presented here. The original experiments used a smaller 

dataset from the same document corpus. In the experiments the original aim was to look at only NLP 

meaning matches grouped by standard deviation. The mapping of data to its meaning via an NLP 

database was what brought out an awareness of the large quantities of “unknown tokens” and their 

viability as an information source. The original data was analyzed against a J4.8 decision tree classifier 

(12).  The testing and training sets were generated from a subset of the UFO category of the total 

corpus. The decision tree itself showed high classification power for the unknown token ratio and 

resulted in a 39% SN with 99.76% SP. It deduced either of the two Unknown Ratio FV fields being less 

than approximately 0.30 resulted in a negative classification, and worked out a noisy decision tree based 

on the Unknown Ratio FV fields for comparisons where both Unknown Ratio FV fields were greater than 

approximately 0.30.  Due to the similarity of training set to testing set as well as the limited size of the 

training and testing sets (roughly 35 files) the overall results were positive but inconclusive for general 

applicability. They did, however, indicate a higher degree of classification power for unknown token 

data and provided initial observations for the experiments used in this thesis. This sets the baseline 

performance level which the remainder of this thesis seeks to increase. 
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Moving to a SVM 

Increasing the training size did not give any significant increase in performance from the decision tree 

classifier so the experiments were moved to SVM based learning. In the process more research was 

examined into document clustering techniques. The problem of fragment reconstruction has some 

similarities to Information Retrieval in that some topic common between the two fragments is sought in 

a similar way to document clustering where some topic common between two documents is sought. The 

complication in identifying two fragments from the same document is many fold: First, to somehow 

identify a difference between fragments of the same source, and fragments of different documents of 

the same category. Second, to make the resulting classifier general to any document. Third, to increase 

SN to a point where the process is useful to a forensic analyst but keeping SP high enough so that the 

useful information is not drowned out by the noise. 

The overarching theme here can be summarized as detecting the similarities between the fragments as 

well as the differences between the document and other similar documents. Detecting that fragments 

of a pie recipe are different from a tutorial on poker is significantly easier than detecting fragments of a 

peach pie recipe are from a fragment of another recipe for peach cobbler, and detecting the differences 

between two peach pie recipes may be nigh impossible.  

The  Cos/Tan FV consists of two measures, Cosine Similarity and Tanimoto Coefficient, commonly used 

in Information Retrieval for measuring document similarity with the Tanimoto Coefficient being a 

variation of the Cosine Similarity. This feature vector was lifted directly from common Information 

Retrieval techniques. Similarly, the  Keyword FV was derived from Term Frequency – Inverse Document 

Frequency (“tf-idf”), another common technique for IR, with the tf-idf used in such a way to extrapolate, 

unsupervised, a list of the N most important keywords in a document and compare them as previously 

described to another document.  

The datasets as previously described were processed to produce the feature vectors also previously 

defined. These feature vectors were then evaluated on their own, and in combination to determine 

effectiveness. Afterward, the promising combinations were put through an automatic tuning process 

using the aforementioned genetic algorithm to determine the parameters needed for near optimal 

performance. The results from this process are presented below. 

SVM Results 

Individual Feature Vector Results 

Radial HamRadio Random1 Random2 RPG 

FV1 SN SP SN SP SN SP SN SP 
HamRadio 32.07% 99.90% 32.07% 99.82% 20.11% 99.85% 0.00% 100.00% 
Random1 18.09% 99.98% 20.21% 99.99% 12.77% 100.00% 0.00% 100.00% 
Random2 33.33% 99.81% 36.87% 99.90% 29.29% 99.99% 0.00% 100.00% 
RPG 47.37% 98.19% 58.42% 98.47% 42.63% 99.34% 0.00% 100.00% 
Table 1 FV1 Results 
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Table 1 summarizes results from FV1 consisting of the Cosine Similarity and Tanimoto coefficient of two 

compared fragments. Initial results here are from the Radial kernel operating with Epsilon 0.02, Gamma 

= 2.67812144546692 and C = 1. This classifier is running at an average SN of 23.95% with a 99.70% SP 

translating into almost ¼ of the fragments being correctly grouped into the original document, and only 

a 0.30% false positive rate on all possible comparisons. Of specific note is the abysmal performance on 

the RPG set. Even with an inability for RPG to converge, however, it still has some strong classification 

power on the other data sets.  

Radial HamRadio Random1 Random2 RPG 

FV2 SN SP SN SP SN SP SN SP 
HamRadio 14.13% 99.98% 23.37% 99.29% 41.30% 98.61% 11.96% 99.82% 
Random1 5.32% 99.99% 30.85% 99.98% 26.60% 99.78% 7.98% 100.00% 
Random2 8.59% 99.99% 27.78% 99.85% 28.79% 99.98% 9.09% 99.96% 
RPG 3.68% 99.91% 22.11% 99.70% 34.21% 99.28% 22.63% 99.96% 

Table 2 FV2 Results 

Table 2 FV2 Results summarizes results from FV2 consisting of a keyword comparison between the 

Target and Comparison files.  Initial results here are from the Radial kernel operating with Epsilon 0.02, 

Gamma = 2 and C = 1. This classifier is running at an average SN of 19.90% with a 99.75% SP. 

Radial HamRadio Random1 Random2 RPG 

FV3 SN SP SN SP SN SP SN SP 
HamRadio 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
Random1 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
Random2 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
RPG 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 

Table 3 FV3 Results 

As seen from Table 3 FV3 Results, FV3 (the presence or absence of the top N occurring unknown tokens 

of the target fragment in the comparison fragment) performance was an across the board failure. Unlike 

the results about to be presented for FV4, FV3 had no additional classification power when combined 

with other feature vectors. Possible reasons for this occurrence will be explored in chapter 5 under 

deeper analysis in the unknown token subsection. As will be explored later the probable reason for this 

failure in what otherwise seems to be an information rich data source may be explained by a significant 

amount of noise which will require filtering before FV 3 becomes viable as a classification mechanism in 

future work. 

Radial HamRadio Random1 Random2 RPG 

FV4 SN SP SN SP SN SP SN SP 
HamRadio 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
Random1 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
Random2 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 
RPG 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 

Table 4 FV4 Results 
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Table 4 FV4 Results summarizes results from FV4 consisting of a ratio between the number of unknown 

tokens the two fragments have in common and the total number of unknown tokens in the Target 

fragment . Performance on FV4 is on first inspection a complete failure. However, as will be shown later, 

there is information content in FV4 but either not enough or the FV magnitude is too small to classify 

with an SVM. Later examples with combination feature vectors show a marked increase in SN power 

when FV4 is combined with one of the other FVs.  

FV1 and FV2 have very similar performance; performance for both is around 20% for SN, and at or above 

99.70% for SP. Each has slight variations in performance seemingly indicative of weaknesses or strengths 

with certain kinds of dataset comparisons such as random to subject specific, or vice versa. Moving 

forward, the next section examines performance gains or losses for combinations of the simple feature 

vectors. Henceforth analysis will concentrate on the three most effective feature vectors: FV1, FV2, and 

FV4.  

Combination Feature Vectors Results 

 

Radial HamRadio Random1 Random2 RPG 

FV1+2 SN SP SN SP SN SP SN SP 
HamRadio 39.67% 99.97% 14.67% 99.70% 26.63% 99.77% 1.63% 99.99% 
Random1 10.64% 100.00% 50.00% 99.96% 16.49% 99.97% 4.26% 100.00% 
Random2 19.70% 99.91% 33.84% 99.82% 61.62% 99.99% 10.61% 99.99% 
RPG 16.32% 99.33% 23.68% 99.35% 31.58% 99.47% 42.11% 99.99% 

Table 5 FV1+2 Results 

Table 5 FV1+2 Results summarizes the results from Combination Feature Vector (“CFV”) FV1+2 (a 

feature vector formed by combining FV1 and FV2.) FV1 and FV2 yielded an average SN of 23.95% and 

19.90% respectively, the combined vector FV1+2 raised the average SN to 25.21% for a performance 

gain of 1.26-5.31% with an increase to SP versus FV2 of 0.08% and a decrease to SP versus FV1 of 0.13%. 

Initial results here are from the Radial kernel operating with Epsilon 0.02, Gamma = 1.340775 and C = 1. 

 

Radial HamRadio Random1 Random2 RPG 

FV1+4 SN SP SN SP SN SP SN SP 
HamRadio 40.22% 99.90% 32.61% 99.85% 23.91% 99.82% 2.17% 99.97% 
Random1 20.74% 99.96% 23.94% 99.97% 12.77% 100.00% 2.66% 100.00% 
Random2 38.89% 99.66% 40.91% 99.73% 32.83% 99.98% 0.00% 100.00% 
RPG 65.26% 96.88% 71.05% 96.77% 53.68% 99.04% 6.32% 100.00% 
Table 6 FV1+4 Results 

Table 6 FV1+4 Results summarizes the results from FV1+4 a CFV combining FV1 and FV4. FV4 yielded an 

average SN of 0% making a comparison to FV1+4 irrelevant and a SN increase of 9.35% over the 

aforementioned FV1 average SN with a decrease in SP versus FV1 of 0.23%. As previously mentioned 

even though FV4 had no classification power on its own in the SVM, when combined with FV1 it either 
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has enough to push the gray area back or the addition of the FV4 components to the FV1+4 vector open 

up a clearer separating hyperplane within the dataset. Initial results here are from the Radial kernel 

operating with Epsilon 0.02, Gamma = 1.08855013343707 and C = 1. 

Radial HamRadio Random1 Random2 RPG 

FV2+4 SN SP SN SP SN SP SN SP 
HamRadio 17.39% 99.99% 24.46% 99.55% 23.37% 99.52% 14.13% 99.82% 
Random1 5.85% 100.00% 40.43% 99.96% 21.81% 99.96% 7.98% 100.00% 
Random2 11.11% 99.99% 37.88% 99.79% 42.42% 99.99% 9.09% 100.00% 
RPG 4.74% 99.89% 32.63% 99.46% 22.63% 99.75% 26.32% 99.98% 

Table 7 FV2+4 Results 

Table 7 FV2+4 Results summarizes the results from FV2+4 a CFV combining FV2 and FV4. Of this group of 

CFVs formed from two individual feature vectors, the FV2+4 group is the worst performing. It provides 

an SN increase of 1.49% SN over FV2 alone. Again here, while modest, the addition of the previously 

badly performing FV4 to the FV2 results in a performance increase. Initial results here are from the 

Radial kernel operating with Epsilon 0.02, Gamma = 0.19601 and C = 1.  

The next stage was to continue the path of combining the FVs to squeeze out additional performance.  

Radial HamRadio Random1 Random2 RPG 

FV1+2+4 SN SP SN SP SN SP SN SP 
HamRadio 42.93% 99.98% 11.41% 99.91% 15.22% 99.90% 2.17% 99.99% 
Random1 10.11% 100.00% 51.60% 99.99% 15.43% 99.99% 1.60% 100.00% 
Random2 15.66% 99.93% 28.28% 99.88% 64.65% 99.99% 5.05% 100.00% 
RPG 19.47% 98.81% 16.84% 99.56% 24.74% 99.48% 20.53% 100.00% 
Table 8 FV1+2+4 Results 

Table 8 FV1+2+4 Results summarizes the results from FV1+2+4 a CFV combining all three of the simple 

feature vectors under consideration. SN increase was slightly over the FV2+4 CFV, but underperforming 

against FV1+2 and FV1+4. Initial results here are from the Radial kernel operating with Epsilon 0.02, 

Gamma = 0.5167 and C = 1. 

Summary of Combination Feature Vectors 

It is clear from the previous results the combination of individual feature vectors does provide an 

increase in performance, but the performance increase is not as substantial as was hoped for. All results 

in the previous two sections were first evaluated on the previously explained default gamma value of 2 

then, as discussed, tuned using a genetic algorithm to determine a more optimal setting for the kernel 

function with the tuned results presented above. These will be considered optimal or as near optimal as 

practical for the remainder of this text. 

Committee of SVMs 

Given the increase in results from the combining the individual feature vectors into combinations of 

feature vectors it is easy to guess there is either some information too weak in the IFVs alone for the 

SVM to pick up on or which when combined with other information from other IFVs produces a better 
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separation point between the true and false comparisons. In this next set of experiments SVMs trained 

on each individual feature vector are used to generate a new training set based on their classification 

which will in turn train a “higher order” SVM functioning similarly to a committee style classifier such as 

is often used with neural networks and SVMs (13). 

This committee approach differs somewhat from classic committees which produce their decisions 

based on simple voting, or weighted voting methodologies. Here, instead, the classifications from the 

individual SVMs for the above IFV and CFV sets were extracted as features in a new feature vector and 

retrained into a Committee. It, in turn, was tuned by genetic algorithm and used as a classifier. For this 

experiment each individual feature vector and combination feature vector (FV1, FV2, FV1+2, FV1+4, 

FV2+4, FV1+2+4) is classified and the resulting classifications are used to form a new magnitude 6 

feature vector. The more optimal gamma values previously determined using the automatic tuning 

genetic algorithm are used for the respective feature vector it performed well for.  

Specifically given SVMs trained on data sets FV1, FV2, FV1+2, FV1+4, FV2+4, and FV1+2+4 the training 

set was reclassified to produce the functional values for each vector. (FV3, and FV4 were omitted as 

they had no classification power on their own, and FV3 was not used in combination with other FVs due 

to its lack of “bosting” power) Normally the functional value’s sign is used to determine classification 

(±1), but here the functional values for the comparison (Fragment A compared to Fragment B) for the 6 

trained SVMs is fed into another “committee” training set, with the committee SVM trained from it. The 

process is repeated on testing data with the test set first classified by the individual SVMs, then the 

functional values combined to create a vector for the committee SVM to classify.  

Radial HamRadio Random1 Random2 RPG 

Com. SN SP SN SP SN SP SN SP 
HamRadio 72.83% 99.89% 46.81% 99.33% 66.16% 98.95% 84.74% 93.14% 
Random1 78.26% 97.84% 64.89% 99.99% 73.74% 99.02% 89.47% 93.93% 
Random2 71.20% 97.53% 48.40% 98.73% 73.23% 99.99% 78.95% 97.00% 
RPG 44.02% 98.63% 31.38% 99.57% 40.91% 99.86% 56.84% 100.00% 

Table 9 SVM Committee Results 

Table 9 SVM Committee Results summarizes results from the committee approach. The data shows a 

significant gain for training maximum SN, as well as a significant gain for testing SN with a small decrease 

in SP performance for testing sets. This approach over all allows the trade off of small SP decreases for 

large SN increases. In many cases 1-2% of SP degradation is matched by a 40-50% SN gain. Clearly the 

SVM applied in a committee fashion is able to use weaker information from the member SVMs which 

did not quite push a specific test case over the threshold and use it to deduce a positive classification 

from a weaker signal in effect taking advantage of multiple separating hyperplanes. Initial results here 

are from the Radial kernel operating with Epsilon 0.02, Gamma = 0.2089679855192752 and C = 1.   

Non-ASCII Files 

ASCII files are common in a system for numerous purposes of interest including log files, instant 

message conversations, and web caches. This next section evaluates the effectiveness of the techniques 

developed for ASCII files when applied to non-ASCII files which include some ASCII data. The most 
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interesting target for forensic examiners is the .doc file or another equivalent. These word processing 

files have supplanted text files as the preferred format for reports, memos, and other information 

sources. 

A collection of 74 .doc files were gathered randomly from the Internet using Google. They were split in 

half based on byte count, and then the linux strings program was used to extract ASCII data from each 

fragment. The amount of ASCII data extractable from documents is only due to increase in the future 

with the shift of various popular document formats to XML rather than binary based files, and other 

non-word processing files such as PDF often also store ASCII data from an OCR process to allow 

document searches. (14) 

Radial  FV1 FV2 FV4 FV1+2 

SN SP SN SP SN SP SN SP 
HamRadio 5.64% 98.34% 6.45% 99.96% 0.00% 100.00% 1.61% 99.76% 
Random1 8.06% 97.80% 10.48% 98.64% 0.00% 100.00% 6.45% 99.41% 
Random2 4.84% 98.11% 26.61% 93.29% 0.00% 100.00% 4.84% 99.36% 
RPG 0.00% 100.00% 5.65% 99.93% 0.00% 100.00% 1.61% 99.96% 
Table 10 .DOC Results pt 1 

 

Radial FV1+4 FV2+4 FV1+2+4 Committee 

SN SP SN SP SN SP SN SP 
HamRadio 6.45% 98.64% 4.03% 100.00%     31.45% 85.76% 
Random1 6.45% 98.90% 5.65% 99.33% 1.61% 99.87% 31.45% 89.24% 
Random2 3.23% 98.90% 14.52% 99.26% 2.42% 99.81% 37.18% 80.82% 
RPG 0.00% 99.99% 8.87% 99.97% 0.00% 100.00% 31.45% 86.89% 

Table 11 .DOC Results pt 2 

Table 10 .DOC Results pt 1 and Table 11 .DOC Results pt 2 summarize the results from the classification 

process. For comparison the HamRadio and Random1 datasets were used as training sets to classify the 

.doc set for each of the eight feature vector sets (FV1, FV2, FV4, FV1+2, FV1+4, FV2+4, FV1+2+4, and 

Committee of SVMs.) Results across the board were in the 50-60% range, with most near 54% for SN, 

and most SP performance near 98-99%. Performance is on par with a pure ASCII file format making the 

approaches previously presented for ASCII files directly applicable to non-ASCII files which contain string 

data. 

Higher Fragmentation 

 

Previous work in the area of file carving has identified documents which are often appended as 

experiencing a higher than average fragmentation rate. Specifically fragmentation of log and temp files 

were cited as among those with the highest levels of fragmentation as well as those with database like 

characteristics (doc for example). (1) To be effective any technique for fragment reconstruction must be 

able to degrade gracefully in the face of increased fragmentation. Specifically this means the technique’s 
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performance, while necessarily degraded due to reduced information to draw on as fragment size 

decreases, must still be able to perform a proportionally effective classification. 

To test this, the previous HamRadio sample was divided into three parts rather than two as in the earlier 

results.  HamRadio was chosen in particular as well representative of standard prose, as well as being 

subject specific and thusly difficult to classify by pure subject specific words.  

3 Frag FV1 FV2 FV4 FV1+2 

Train/Test SN SP SN SP SN SP SN SP 
HamRadio 10.58% 99.81% 1.78% 99.96% 0.00% 100.00% 6.46% 99.89% 
Random1 11.69% 99.80% 41.65% 99.71% 0.00% 100.00% 12.03% 99.74% 
Random2 7.68% 99.84% 43.32% 99.60% 0.00% 100.00% 9.35% 99.85% 
RPG 0.00% 100.00% 2.12% 99.96% 0.00% 100.00% 1.89% 99.98% 

Table 12 Tertiary Fragmentation Results pt 1 

 

  FV1+4 FV2+4 FV1+2+4 Committee 

SN SP SN SP SN SP SN SP 
HamRadio 11.36% 99.87% 2.67% 99.95% 4.01% 99.93% 29.18% 99.35% 
Random1 10.25% 99.87% 11.47% 99.83% 9.58% 99.84% 66.37% 98.96% 
Random2 5.90% 99.91% 7.68% 99.88% 7.57% 99.90% 58.57% 99.02% 
RPG 0.56% 100.00% 1.45% 99.99% 0.89% 99.99% 14.14% 99.65% 
Table 13 Tertiary Fragmentation Results pt 2 

 

From Table 12 Tertiary Fragmentation Results pt 1 and Table 13 Tertiary Fragmentation Results pt 2 we 

can see a similar theme from the 2 fragment of .doc file classification in that FV2 and Committee 

classifiers are the strongest performing, with the straight ASCII data better performing than the .doc 

extracted ASCII data. Performance on the FV2 actually increases over relevant performance from ASCII 

files with 2 fragment fragmentation due to the increased classification value of high tf-idf keywords as 

the population of words (noise) decreases. Performance on the Committee classifier degrades gracefully 

for both Random populations as expected, but more steeply for HamRadio and RPG. Evidence points to 

random samplings being more optimal for training the classifier to capture more general classification 

power as shown above by the higher performance for SVMs trained using Random1 and Random2 sets. 

This is further supported by the relative lack luster performance for the HamRadio set against itself 

making it probable the subject specific sets, when used for training, contain too much noise from 

subject similarity to produce a good classifier.  

  



24 
 

Chapter 5 

Deeper Analysis 

Unknown Tokens 

For the following analysis the unknown tokens for the Random2 data set were used. In the 200 

fragments there were a total of over 18k unknown tokens. The early experimental work concentrated 

on determining a ratio between total unknown tokens in a fragment and the number it shared in 

common with a comparison fragment. These results, as previously demonstrated, were not as successful 

as was hoped for in expanding results through SVM classifiers. However, there still appears to be 

significant classification potential within the unknown token sets. 

File 1 File 2 Unknown Token 

promodem.txt.00 promodem.txt.01 enablectsrts 

pcgpe10.txt.00 pcgpe10.txt.00 feldman 

p123.txt.00 p123.txt.01 endor 

Bangsonic-1.7.00 Bangsonic-1.7.01 frankie 

area709doc.phk.00 area709doc.phk.01 grbank 

DLPH05_25.txt.00 DLPH05_25.txt.01 johnreed 

kfyi-593.hac.00 kfyi-593.hac.01 kommando 

rzr1292.nfo.01 solar.nfo.01 hoppermania 

aspbb4.lst.00 pcgpe10.txt.00 hillcrest 

Gmj46.d70.00 govtbbs.phk.01 kimberly 

jonsj2.txt.00 blooprs1.asc.00 magna 

fido1102.nws.01 rrr199402.txt.00 netware 

Table 14 Unknown Token Sample 

 

Table 14 Unknown Token Sample shows a selection of unknown tokens contained in exactly two 

fragments in the Random2 dataset. This example shows 7 tokens where the value existed only in both 

fragments of the same original document and 5 tokens where the value exists in fragments of different 

original documents. 

Promodem.txt contains the token enablectsrts in both fragments of the original document. It turns out 

the token is a function call EnableCTSRTS for the ProModem RS232 Interrupt Driven Serial 

Communication Library v1.5 by Adrian J. Michaud. From the document title, and a brief review of the 

introduction to it, it appears to be a manual for serial modems used with Bulletin Board Systems. The 

function in question turns CTS/RTS hardware handshaking on. Interestingly enough the unknown token 

enablectsrts when used as a search term in google, produces only two search results with one being the 

original document I procured from textfiles.com and the other being a duplicate of this document stored 

on scribd.com.  
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Figure 5 EnableCTSRTS 

pcgpe10.txt contains the word feldman in both fragments of the original document. The document in 

question is entitled THE PC GAMES PROGRAMMERS ENCYCLOPEDIA 1.0 (“PCGPE”) whose author, upon 

cursory inspection, appears to be Mark Feldman. His name appears in several segments of the file as an 

author annotation to source code snippets. Again using Google to identify any other relevance as a 

search term the unknown token might have, the second search result yields the original home of PCGPE 

along with information it was discontinued in September 2000 after 3 years without updates. 

 

Figure 6 Feldman Google Search 
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Figure 7 Feldman Original Website 

P123.txt contains the unknown token endor in both fragments of the original document. This match 

surprised me as I was expecting something related to Star Wars and Ewoks as Endor is more commonly 

associated with the Star Wars movie franchise. To my surprise the text is in fact a text on the early 

childhood of Jesus, and Endor is listed as one of the places Joseph worked. Google search, naturally, 

brings up Ewoks rather than Jesus. 

Bangsonic-1.7 contains the unknown token frankie in both fragments of the original document. This 

document is actually a Usenet posting from alt.rec.music.comp of an “E-mag” and the token in question 

is picked up in both fragments as one of the contributing authors' names “Frankie Machine.”  

Area709doc.phk contains the unknown token grbank in both fragments of the original document. This 

document is a listing of telephone exchanges in Newfoundland as of December 1991. The token in 

question is an index abbreviation used to denote which portions of the 709 area code its corresponding 

municipalities belong to. The tail end of the second fragment shows the token corresponds to “Grand 

Bank.” 

DLPH05_25.txt contains the unknown token johnreed in both fragments of the original document. It is 

interesting because it occurs more than once for what prior to inspection seems a typographic error. 

Upon inspection the document appears to be an archive of BBS postings in which John Reed was taking 

part. The system displayed user names presumably based on email addresses and in the case of John 

Reed displayed him as JOHNREED thus dispelling the assumption as to its nature. 

Kfyi-593.hac contains the unknown token kommando in both fragments of the original document. Upon 

inspection the original file is actually a tar archive containing a 4 part transcript of a radio show with one 

of the speakers named Kim Kommando. Trusty Google again demonstrated Kim is still around, and 

hosting in radio.  
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Figure 8 Kommando Google Search 

The previous seven examples demonstrated unknown tokens with a high degree of classification value 

within the data set. Within the limited dataset examined, Random2, each would have had enough 

classification power to correctly classify the two fragments in and of itself, but this is unlikely to be the 

case in larger scale datasets. Still, the results so far are optimistic for the power of unknown tokens 

despite the lack luster performance in the SVM experiments. Next I analyze five instances where the 

unknown token is present in two fragments from different original documents. 

Both rzr1292.nfo fragment 2, and solar.nfo fragment 2 contain the unknown token hoppermania. The 

original location of the two fragments reveals they were randomly selected from the same subsection of 

the archive piracy/RAZOR. The fragments appear to be identification sections of information files which 

would accompany pirated software distributions (“warez”). The token Hoppermania appears to be the 

alias for a member of the group who administrated one of the warez group RAZOR 1911 (“razor”)'s 

BBSes. As an interesting side note the razor group membership dynamics can be observed by comparing 

hoppermania's listing as an “outpost” (likely a denotation of rank or acceptance within the group) in the 

time of rzr1292.nfo's posting for the game Legends of Valour in December 1992, and solar.nfo's posting 

for the game Solar Winds: Episodes 1&2 in March 1993 where hoppermania's BBS was upgraded to an 

“affiliate.” 

Both aspbb4.lst fragment 1 and pcgpe10.txt fragment 1 contain the unknown token hillcrest. Aspbb.lst 

is from an Association of Shareware Professionals BBS listing (“A.C.S. BBS”), and pcgpe10.txt is as 

previously discussed. In this case Hillcrest is a street name in the former, and a city in the later, both 

used as part of an address though the addresses themselves are unrelated.  

Both gmj46.d70 fragment 1 and govtbbs.phk fragment 2 contain the unknown token kimberly. 

Gmj46.d70 appears to be another E-mag from Usenet or some such, and Kimberly is listed as a name in 

the staff list. Govtbbs.phk is a listing of government controlled bulletin boards as of November 1993. 
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Both jonsj2.txt fragment 1 and blooprs1.asc fragment 1 contain the unknown token magna. As a side 

note Magna is not truely an unknown token unless one concentrates only on English language 

information, it is actually the latin adjective magnus, magna, magnum meaning great, or large. Jonsj2.txt 

is from the archive subsection on erotica stories in which one of the characters is described as 

graduating magna cum laude whereas the second document blooprs1.asc is a text from the humor 

subsection mentioning the Magna Carta.  

Finally, both fido1102.nws fragment 2 and rrr1994002.txt fragment 1 contain the unknown token 

netware. Netware in this example belongs the the unknown token category of highly specific terms. The 

former fragment contains a short passage on AT&T selling Unix to Novell in which Novell's production of 

Netware is identified, and the later contains another passage on the release of Dr. Dos 7 containing a 

version of Netware.  

The twelve examples demonstrated here show a small glimpse into the possible reasons an unknown 

token may exist within a document as well as the classification power they may have from the highly 

relevant ones such as EnableCTSRTS to the near irrelevant Magna. The examples were pulled only from 

those tokens matched in only two fragments. Next I will examine the statistical distribution of unknown 

tokens by the number of fragments they occur in. 

 

Figure 9 Fragment Frequency 

As can be seen above the significant bulk of unknown tokens exist in a single fragment (roughly 13.6k of 

18.4k or 74%). Contrary to my initial hypothesis, the bulk of misspelled words exist in the 74% of 

unknown tokens which exist in only one fragment. This thus eliminates any classification power a 

misspelling may have if it is not misspelled consistently and pervasively within the document. This bulk 

also supports the idea unknown tokens do have significant classification potential in the face of lack 

luster results from the SVM experiments in that the bulk of possible comparisons between fragments 

will be specific to only one and will drown out classification potential of the intersecting unknown 

tokens through sheer number. The future work section details additional steps to be taken in 
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investigating this phenomenon, but significant work on filtering will be required before unknown tokens 

can be applied with precision.  

 

Figure 10 Fragment Occurrence 

Figure 10 Fragment Occurrence is a chart detailing distribution by Occurrence. The Y axis denotes the 

number times an individual fragment has a token occurring a number of times specified by the X axis. As 

expected from Figure {Distribution Chart} the single occurrence of a token within a fragment is the 

majority case, and while there is no direct overlaps the curve decrease is relatively similar to Figure 

{Distribution Chart}. By comparing Figure {Distribution Chart} and Figure {Occurrence Distribution Chart} 

the populations of tokens with 2-5 occurrences which occur in 2-7 fragments seem to be the most 

interesting for further study. These numbers are, of course, subject to change with larger data sets 

under consideration. 

RPG Dataset 

Ham False Positives 

When dealing with false positives the inherent question is: why do some files classify as positive. In 

some cases it is a simple inescapable aspect of inseparable cases (see Figure 3 Hyperplane With Non-

Seperable Case) where the positive and negative data points overlap in some way. In other cases it is 

because the data files are extremely similar as in the following examples from the Ham false positives. 
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First is fragment 1 from cbbook.txt and fragment 1 from copcode.txt. When manually inspected it is 

obvious these two files not only deal with the same topic, Ham Radio, but with a very specific subject 

matter: radio codes. The specific subject is so specific in this case, the files contain almost identical 

sections of information: 

10-0      Exercise great caution.  
10-1      Reception is poor.  
10-2      Reception is good.  
10-3      Stop transmitting.  
10-4      Message received.  
10-5      Relay message.  
10-6      Change channel.  
10-7      Out of service/unavailable for assignment.  
10-7A     Out of service at home.  
10-7B     Out of service - personal.  
10-7od    Out of service - off duty  
10-8      In service/available for assignment.  
10-9      Repeat last transmission.  
10-10     Off duty.  
10-10A    Off duty at home.  
10-11     Identify this frequency.  
10-12     Visitors are present (be discrete).  
10-13     Advise weather and road conditions.  
10-14     Citizen holding suspect.  
10-15     Prisoner in custody.  
10-16     Pick up prisoner.  
10-17     Request for gasoline.  
10-18     Equipment exchange.  
10-19     Return/returning to the station.  
10-20     Location? 

Figure 11 Excerpt from copcode.txt 

 
10-1    Receiving poorly.  
10-2    Receiving well.  
10-3    Stop transmitting.  
10-4    OK, message received.  
10-5    Relay message.  
10-6    Busy, stand by.  
10-7    Out of service, leaving air, not working.  
10-8    In service, subject to call, working well.  
10-9    Repeat message.  
10-10   Transmission completed, standing by.  
10-11   Talking too fast.  
10-12   Visitors present.  
10-13   Advise weather/road conditions.  
10-16   Make pickup at __________.  
10-17   Urgent business.  
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10-18   Anything for us?  
10-19   Nothing for you, return to base.  
10-20   Location; My location is __________. 

Figure 12 Excerpt from cbbook.txt 

What is easy to see here is the unknown tokens, which have been shown as the more powerful 

classifier, as well as the various similarity functions are going to pick up not only the matching 10-0 etc 

codes, but similar word usages within the document as a whole because essentially the two fragments, 

while not coming from the same document, are effectively the same.  

In a similar vein other fragments such as fragment 2 of epfreq.txt have false matches to many fragments 

(around 10) for similar reasons. In this case epfreq.txt contains lists of radio frequencies with which 

government or other agency it is assigned to, and so do the fragments it matches too. Despite the name 

differences, these lists could be different versions of the same file.  

The presence of these fragments with almost identical sections mitigates, to some extent, the false 

positive rates exhibited by the classifiers. It also leaves hope for future improvements by more carefully 

filtered training data (e.g. labeling files with near identical sections can erroneously skew the training.) 
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Chapter 6  

Conclusion 
Fragment reconstruction is still in its infancy in Digital Forensics, and ASCII files in particular have been 

ignored in current research due to their lack of header and footer information for file carving 

applications to lock on to. Unlike binary files such as images, executables, and the like, textual data is 

usable in an incomplete form so even partial reconstruction is usable to a forensic examiner. Further, 

unlike Digital Forensics, areas of research dealing with document classification are very mature and 

though these fields do not concern themselves with fragmented files, as they have no reason to, their 

techniques can be easily ported to apply in digital forensics. Further, the application of machine 

learning, another field more mature than digital forensics, also contributes to the process of automating 

ever growing datasets and mitigating the overwhelming size of the information. Again, while many of 

the techniques in machine learning have not been applied to digital forensics for lack of a reason for 

researchers in that field to do so, the techniques are nevertheless effective and easily usable. 

The research presented here demonstrates reconstruction of ASCII text fragments is possible (for binary 

fragmentation), and degrades gracefully (for tertiary fragmentation). Further it demonstrates the ability 

to use existing tools to extract ASCII data from non-ASCII files (.doc files shown with results) with 

similarly effective results. Surprisingly it was not the traditional Information Retrieval / Text Mining / 

Document Clustering techniques involving Cosine similarity which showed the best classification 

potential, but rather the identification of unknown keywords consisting of either highly specific 

terminology, proper nouns, or misspelled / similar artifacts, and the extraction of a subset of those with 

the highest tf-idf weight.  

Additionally, while related work has been done on committee based SVM classifiers (13) the approach 

used in this research to retrain a new SVM classifier based on the results from member classifiers 

proved more effective for this application than classic committee approaches (voting or weighted voting 

based.) The committee SVM classifier outperformed even the FV2 classifier which proved quite effective 

in its own right. While there were some SP performance issues with the extracted .doc files, these will 

be addressed in future work.  

A limited application of NLP databases to the classification problem in an attempt to collapse natural 

language words into meanings to reduce the noise inherent in the classification process of textual data 

proved to be ineffective at least in the limited application attempted here. The NLP database was far 

more effective when reduced to a dictionary function to discern whether a specific word was part of the 

unknown set. The unknown set proved to be far more effective as previously discussed as a classification 

tool. 

ASCII documents are pervasive in the modern personal computer in the form of system log files, web 

caches, configuration files, and IM conversation logs. As previously mentioned textual data can also be 

extracted from non-ASCII files which contain segments of ASCII such as word documents which was 

demonstrated with results previously. Beyond that, files such as the Portable Document Format (PDF) 
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often contain OCR textual data to allow the document to be searched which could be mined in a similar 

way to doc files.  

In fact, if all files were categorized as those we read, view, or execute, those we read would be the most 

interesting for analysis. Excluding criminal cases of child pornography which is becoming the classic 

example for forensic applications, there is a much larger and more difficult application of digital 

forensics in both criminal and civil litigation where evidence comes from files which may have been 

deleted, hidden, or buried among piles of others. In particular, large scale corporate environments 

which digital forensics has yet to address adequately where it addresses it at all are almost entirely 

document based often with decentralized storage. In fact with the recent changes to the federal rules of 

civil procedure increasing the relevance of electronic documents in the discovery process (15) the need 

for Digital Forensics to address textual content based techniques is due to grow as need does. In 

particular we will be looking at two types of important situations: (a) in criminal investigations where an 

individual or a group of individuals’ documents must be located in the context of a larger file storage 

system in a corporate environment, or (b) in a civil investigation where relevant documents may need to 

be ferreted out from an untenably large repository or where purged files will need to be recovered or 

located from alternate sources.  

With the increase in individual storage capacity (16) dwarfed by the prospect of many times that 

capacity present in a corporate environment we must accept is will never be feasible for all available 

data to be analyzed. Our only hope is to prioritize the data we should examine using automated tools to 

reduce the human time requirement. In some instances data should be processed in such a way that an 

untrained observer can make a human classification call. In the case of research presented here paring 

down the exponential number of comparisons between fragments to a post-classification review of the 

two fragments for each classification is akin to reducing the solving of a jigsaw puzzle into a much 

smaller set of “Does piece A connect to piece B” decisions with the significant number of presented 

choices being yes. 

Finally, in conclusion, the research presented here demonstrates it is possible to reconstruct ASCII file 

fragments in a meaningful way based on content by using machine learning techniques. The process is 

effective at different fragment sizes, different levels of fragmentation, and even in cases of fragments 

concerning the same topic. It further demonstrates a new application of genetic algorithms for tuning 

SVM kernel parameters using a hybrid concept for breeding offspring similar to both hill climbing and 

binary search, as well as the applicability of another form of committee based SVM classification which 

proves effective for this application.  

Future Work 
Further performance advances in the techniques presented here will rely on producing a more robust 

set of SVMs drawn from much larger training sets. By producing SVMs based on specific characteristics 

of the data being compared such as relative size (is one larger than the other, and by how much), actual 

size (10k, 100k, 1m?), and character ratios (alphanumeric, punctuation, and remaining ASCII.) The hope 

is to establish a standard set of SVMs more effectively trained to deal with data bearing specific 
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characteristics. Datasets of homogenous topic (such as the HamRadio set) vs randomized data (such as 

Random1 and Random2) will also be examined in more detail. 

Efficiency is also important and will be addressed in the context of producing the feature vectors, and 

the process as a whole will be expanded to be done in a distributed / parallel manner. The prototype 

tool will be further developed into a more useful, robust tool which is easy to use. 

The application of the same techniques used in fragment reconstruction will also be evaluated against 

documents which are near duplicates for de-duplication, which is the identification and grouping of 

documents which are the same but slightly different such as different revisions of the same document. 

This has current application to the review of large document populations in a corporate environment 

where many drafts of a single document or many copies of similar form style documents may be 

present. The possibilities of this approach can be seen from the analysis of the HamRadio false positive 

sets containing near duplicate sections within some false positive pairs. 

The techniques for identifying highly relevant unknown tokens will also be further evaluated to identify 

whether it can be used to cluster documents from multiple sources in a social network.  
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Appendix A: Creative Commons License 

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS 

CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS 

PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE 

WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW 

IS PROHIBITED.  

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND 

AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS 

YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE 

OF SUCH TERMS AND CONDITIONS.  

1. Definitions  

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, 

in which the Work in its entirety in unmodified form, along with a number of other 

contributions, constituting separate and independent works in themselves, are assembled 

into a collective whole. A work that constitutes a Collective Work will not be considered 

a Derivative Work (as defined below) for the purposes of this License.  

b. "Derivative Work" means a work based upon the Work or upon the Work and other 

pre-existing works, such as a translation, musical arrangement, dramatization, 

fictionalization, motion picture version, sound recording, art reproduction, abridgment, 

condensation, or any other form in which the Work may be recast, transformed, or 

adapted, except that a work that constitutes a Collective Work will not be considered a 

Derivative Work for the purpose of this License. For the avoidance of doubt, where the 

Work is a musical composition or sound recording, the synchronization of the Work in 

timed-relation with a moving image ("synching") will be considered a Derivative Work 

for the purpose of this License.  

c. "Licensor" means the individual or entity that offers the Work under the terms of this 

License.  

d. "Original Author" means the individual or entity who created the Work.  

e. "Work" means the copyrightable work of authorship offered under the terms of this 

License.  

f. "You" means an individual or entity exercising rights under this License who has not 

previously violated the terms of this License with respect to the Work, or who has 

received express permission from the Licensor to exercise rights under this License 

despite a previous violation.  

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights 

arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner 

under copyright law or other applicable laws.  

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants 

You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable 

copyright) license to exercise the rights in the Work as stated below:  
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a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and 

to reproduce the Work as incorporated in the Collective Works;  

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform 

publicly by means of a digital audio transmission the Work including as incorporated in 

Collective Works;  

The above rights may be exercised in all media and formats whether now known or hereafter 

devised. The above rights include the right to make such modifications as are technically 

necessary to exercise the rights in other media and formats, but otherwise you have no rights to 

make Derivative Works. All rights not expressly granted by Licensor are hereby reserved, 

including but not limited to the rights set forth in Sections 4(d) and 4(e). 

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited 

by the following restrictions:  

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the 

Work only under the terms of this License, and You must include a copy of, or the 

Uniform Resource Identifier for, this License with every copy or phonorecord of the 

Work You distribute, publicly display, publicly perform, or publicly digitally perform. 

You may not offer or impose any terms on the Work that alter or restrict the terms of this 

License or the recipients' exercise of the rights granted hereunder. You may not 

sublicense the Work. You must keep intact all notices that refer to this License and to the 

disclaimer of warranties. You may not distribute, publicly display, publicly perform, or 

publicly digitally perform the Work with any technological measures that control access 

or use of the Work in a manner inconsistent with the terms of this License Agreement. 

The above applies to the Work as incorporated in a Collective Work, but this does not 

require the Collective Work apart from the Work itself to be made subject to the terms of 

this License. If You create a Collective Work, upon notice from any Licensor You must, 

to the extent practicable, remove from the Collective Work any credit as required by 

clause 4(c), as requested. 

b. You may not exercise any of the rights granted to You in Section 3 above in any manner 

that is primarily intended for or directed toward commercial advantage or private 

monetary compensation. The exchange of the Work for other copyrighted works by 

means of digital file-sharing or otherwise shall not be considered to be intended for or 

directed toward commercial advantage or private monetary compensation, provided there 

is no payment of any monetary compensation in connection with the exchange of 

copyrighted works.  

c. If you distribute, publicly display, publicly perform, or publicly digitally perform the 

Work, You must keep intact all copyright notices for the Work and provide, reasonable to 

the medium or means You are utilizing: (i) the name of the Original Author (or 

pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor 

designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for 

attribution in Licensor's copyright notice, terms of service or by other reasonable means, 

the name of such party or parties; the title of the Work if supplied; and to the extent 

reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to 

be associated with the Work, unless such URI does not refer to the copyright notice or 
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licensing information for the Work. Such credit may be implemented in any reasonable 

manner; provided, however, that in the case of a Collective Work, at a minimum such 

credit will appear where any other comparable authorship credit appears and in a manner 

at least as prominent as such other comparable authorship credit.  

d. For the avoidance of doubt, where the Work is a musical composition: 

i. Performance Royalties Under Blanket Licenses. Licensor reserves the 

exclusive right to collect, whether individually or via a performance rights society 

(e.g. ASCAP, BMI, SESAC), royalties for the public performance or public 

digital performance (e.g. webcast) of the Work if that performance is primarily 

intended for or directed toward commercial advantage or private monetary 

compensation. 

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive 

right to collect, whether individually or via a music rights agency or designated 

agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the 

Work ("cover version") and distribute, subject to the compulsory license created 

by 17 USC Section 115 of the US Copyright Act (or the equivalent in other 

jurisdictions), if Your distribution of such cover version is primarily intended for 

or directed toward commercial advantage or private monetary compensation. 

e. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the 

Work is a sound recording, Licensor reserves the exclusive right to collect, whether 

individually or via a performance-rights society (e.g. SoundExchange), royalties for the 

public digital performance (e.g. webcast) of the Work, subject to the compulsory license 

created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other 

jurisdictions), if Your public digital performance is primarily intended for or directed 

toward commercial advantage or private monetary compensation. 

5. Representations, Warranties and Disclaimer 

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, 

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR 

WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, 

STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES 

OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, 

NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, 

ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT 

DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF 

IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU. 

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, 

IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR 

ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY 

DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF 

LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

7. Termination  
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a. This License and the rights granted hereunder will terminate automatically upon any 

breach by You of the terms of this License. Individuals or entities who have received 

Collective Works from You under this License, however, will not have their licenses 

terminated provided such individuals or entities remain in full compliance with those 

licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.  

b. Subject to the above terms and conditions, the license granted here is perpetual (for the 

duration of the applicable copyright in the Work). Notwithstanding the above, Licensor 

reserves the right to release the Work under different license terms or to stop distributing 

the Work at any time; provided, however that any such election will not serve to 

withdraw this License (or any other license that has been, or is required to be, granted 

under the terms of this License), and this License will continue in full force and effect 

unless terminated as stated above.  

8. Miscellaneous  

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, 

the Licensor offers to the recipient a license to the Work on the same terms and 

conditions as the license granted to You under this License.  

b. If any provision of this License is invalid or unenforceable under applicable law, it shall 

not affect the validity or enforceability of the remainder of the terms of this License, and 

without further action by the parties to this agreement, such provision shall be reformed 

to the minimum extent necessary to make such provision valid and enforceable.  

c. No term or provision of this License shall be deemed waived and no breach consented to 

unless such waiver or consent shall be in writing and signed by the party to be charged 

with such waiver or consent.  

d. This License constitutes the entire agreement between the parties with respect to the 

Work licensed here. There are no understandings, agreements or representations with 

respect to the Work not specified here. Licensor shall not be bound by any additional 

provisions that may appear in any communication from You. This License may not be 

modified without the mutual written agreement of the Licensor and You.  
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