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ABSTRACT 

 

Rhythm is at the heart of all music. It is the variation of the duration of sound over time. 

A rhythm has two components: one is the striking of an instrument – called the “onset” – and the 

other is silence. Historically, musical forms and works were preferred and became popular by 

their rhythmic properties. Therefore, to study rhythm is to study the underpinnings of all of 

music. 

 

In this thesis, we explore basic rhythmic preferences in traditional music and, using this 

as a point of reference, methods are implemented to generate similar types of rhythms. Finally, a 

software platform to facilitate such an analysis is developed – it is the first of its kind available to 

our best knowledge as this research field has only recently emerged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Keywords:  The Evenness Method, Interval vector method, Euclidean method, Comparison 
measure, Erdos-deep method.

 vi



CHAPTER 1 
 

INTRODUCTION 

 

Rhythm is an important element of music.5 It is the mixture of notes (onsets) and silences 

(rests). Composers of music can vary the timing of notes to make their composition more 

interesting and, hopefully, produce good music. With the invention of computers, generation of 

rhythms has become easier and more effective. The question arises: What type of rhythms should 

one generate? What are the properties that a rhythm should have in order to be effective? By 

studying various rhythms from the past and the reasons for their being preferred over others, 

many properties can be derived which then become tools in generating new rhythms. 

The rhythms played in different parts of the world have their own specific properties. For 

example, it may be mandatory to play a note at a particular beat and only such rhythms are 

preferred in that particular region. Some popular rhythms in the past have all their notes well-

spaced, i.e, all the notes are evenly distributed among rests. Some others may have a prescribed 

set of frequencies with which all the inter-onset durations are present. Our attempt here is to 

generate rhythms which exhibit such properties. 
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1.1Representation of Rhythms1, 5, 9

In this thesis, we use three methods of representing rhythms. The first method is the 

binary representation. This consists of a vector of ones and zeros, where the ones represent notes 

and the zeros represent silence. For example, ‘1 0 1 0 0 0 1 0 0 1 0 0 1’ represents a rhythm with 

five notes and eight silences. The number of time units in a rhythmic cycle is the number of 

notes plus the number of silences, which would be thirteen in the above example.  

The second method is a geometric representation and makes use of a polygon inscribed in 

a circle. The polygon is used to efficiently represent the relative lengths of notes and silences on 

a circular lattice consisting of the circle’s boundary divided into equal time units. Notes of the 

rhythm are represented by vertices placed at the appropriate lattice point which are then 

connected to form a polygon.   

The third method is the histogram approach, which effectively visualizes the frequencies 

of all the interval lengths.5 The interval length is the number of silences plus one between two 

consecutive notes in a rhythm.  A histogram then represents the number of times each interval 

length is present in the given rhythm. The figure below illustrates each of these three methods of 

rhythm representation: 
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Fig 1.1: Representation of Rhythms 

 

1.2 Basic Concepts 

Rhythm is a musical element that will remain for as long as music is made on this earth. 

Many rhythms were produced in the past but only certain ones have persisted and become 

popular in certain regions.  By studying some of these popular rhythms, distinctive properties can 

be explored to help recognize and produce similar types of rhythms. 
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1.2.1 Evenness1,4

A rhythm that is even (or well-spaced) creates a sense of harmony in the minds of people 

and is usually generally liked. Many rhythms in the past have exhibited such properties of 

evenness to one degree or another. In fact, mathematical measures of evenness have been 

proposed that identify, if not explain, cultural preferences of rhythms in traditional music.1 

Douthet and Entringer have proposed a measure which simply adds all the interval arc-lengths 

(geodesics along the circle) determined by all pairs of intervals in a scale.1 They proposed 

another measure which uses interval chord lengths as opposed to geodesics along the circle. 

However, it is possible to define a measure of rhythmic evenness that is not only more efficient 

to compute than these measures, but which is sensitive enough to discriminate well between 

rhythms. This is known as the Regression-evenness measure.10

 

For example, a rhythm called Bossa-Nova which first appeared in Brazil in the late 

1950’s, was a popular rhythm amongst the middle and upper class districts. It embodied free life 

style in Brazil and consists of five onsets (k=5) distributed uniformly among sixteen time units 

(n=16). Its binary sequence representation is: 

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 
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This rhythm can also be represented by a polygon inscribed in a circle:   

 

 

       a. Bossa Nova rhythm                                          b.Optimal rhythm 

Fig 1.2.1: Polygonal representation 

By observing Figure 1.2.1, one can see that the five notes of the Bossa Nova rhythm are 

almost distributed evenly – it is achieved by moving the optimal rhythm notes to the nearest 

lattice points in the time domain of sixteen units. If we added all the interval lengths of the Bossa 

Nova rhythm, the evenness value turns out to be 48.  
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1.2.1 Regression-evenness measure9

In Figure 1.2.1(b), one can observe that, if we inscribed a regular pentagon inside the 

circle, it is not possible to distribute five onsets evenly among the sixteen time units. The second, 

third, fourth and fifth notes are not at lattice points on the circle. The sum of these deviations 

may be taken to be a measure of the un-evenness in a rhythm. The regression value of the rhythm 

is 1.19.   It is obtained by first dividing the number of time units with the number of onsets which 

is 3.2. This determines where the onsets should be placed to form a regular k-gon inscribed in a 

circle. Since the circular lattice is equally divided by the number of time units and since the 

onsets are placed only on the available positions, summing all the deviations of the onsets from 

their optimal positions gives the above regression evenness value. 

 

1.2.1Maximum evenness1, 4

The above evenness measures bring up the question of which configurations of points 

(rhythms) achieve maximum evenness. Let us assume that we are given a circular lattice with n 

points (evenly spaced), and we would like to create a rhythm consisting of k onsets by choosing k 

of these n lattice points.  

 

Therefore in order to achieve maximum evenness, a regular k-gon is constructed with one 

vertex coincident with one lattice point, and then move the remaining onset points to their 

nearest lattice points. In this way, rhythms with maximum evenness are generated. 
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1.3 Interval Vector 1, 4

One may also examine the “spectrum” of the frequencies with which all the durations are 

present in a rhythm.1 The spectrum of frequencies is called the interval vector.  For example, take 

the rhythm represented by the binary sequence: 

1 0 0 1 0 0 1 

The frequency of the interval length one is 1 (occurring between the last onset and the 

first onset of the next rhythmic cycle) while the frequency of interval length two is 2 (occurring 

between the first and second onsets, and again between the second and last onsets). Therefore, 

the interval vector of the above rhythm is 

 [1, 2].10 Let us take the rhythm known as Gahu which is popular amongst the people of 

southeastern Ghana. It was used for popular entertainment to celebrate life. The binary sequence 

of this rhythm is:  

1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 

By observing the spectrum of frequencies, one can determine the interval vector which 

would be: 

[0, 1, 2, 2, 1, 2, 1, 1] 
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The interval vector can also be represented graphically by a histogram bar chart (see Fig. 1.3 
below).   
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Fig 1.3: Gahu – Histogram representation 
 

In the chart, one can observe that the frequencies are almost uniform, that is, each bar is 

either of height 1 or 2.  Furthermore, the chart consists of a single connected component of 

occupied histogram cells, i.e., all the consecutive interval lengths are covered. This observation 

suggests that the rhythms with a prescribed histogram shape as in Gahu may be preferable.1 This 

geometric property could provide a heuristic for the discovery and automatic generation of other 

“good” rhythms. Therefore it would be desirable to be able to efficiently generate rhythms that 

either contain completely prescribed histogram shapes, or have geometric constraints on their 

shapes, or to find good approximations when such rhythms do not exist. 
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1.4 Erdos Deep property1, 2, 4

Another property that the preferred rhythms of the past have exhibited is the Erdos 

property.2 In 1989, Paul Erdos asked whether one could find n points on the plane (no three on a 

line and no four on a circle) so that for every i, i = 1, …, n – 1 there is a distance determined by 

these points that occurs exactly i times. The cyclic rhythms with the Erdos property are referred 

to as deep rhythms. For example, consider again the rhythm Bossa-Nova  

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 

which consists of five notes. If we focus just on the interval lengths that appear at least 

once between two notes, then we see that the frequencies of occurrence are unique. The interval 

vector for the rhythm is 

[0, 0, 4, 1, 0, 3, 2] 

which satisfies the Erdos-property.1  

 

The analysis of cyclic rhythms suggests yet another variant of the question asked by 

Erdos. First, we note that if a rhythm R[k, n] is such that k ≤ n/2, then a solution to Erdos 

problem always exists: simply place points at positions 0, 1, 2,…, k. However, from a 

musicological point of view, it is not desirable to allow empty semicircles in the circumscribed 

polygon representation of the rhythm.  
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These constraints suggest the following problem:  Is it possible to have k points on a 

circular lattice of n points such that for every i, i = k(s), k(s+1),…, k(f), where s and f are pre-

specified, there is a geodesic distance that occurs exactly i times, with the further restriction that 

there is no empty semicircle? It would seem desirable to be able to efficiently generate rhythms 

that satisfy the Erdos deep property with the additional constraints.  

 

1.5 Euclidean Algorithm3

The well-known Euclidean algorithm computes the greatest common divisor of two given 

integers. The repeated subtraction until the remainder is one or zero in the Euclidean method 

actually generates repeated patterns which is a preferred property in rhythms.3 Bjorklund faced a 

similar problem of generating repeated patterns but in a different context where for a given 

number of time intervals n, and a given number of signals k < n, the task at hand is to distribute 

the pulses as evenly as possible among those intervals.  

This problem is similar to rhythm generation: given n time units, k ones (notes) and 

distributing these k ones evenly among n – k zeroes.For example, if n = 8, and the number of 

ones k = 3, then the number of zeros n – k = 5.  We outline the steps involved in the rhythm-

generating algorithm: 
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Step 1. [1][1][1][0][0][0][0][0] 

Step 2. 1 1 1 0 0 

 0 0 0  

Step 3. 1 1 1      

 0 0 0     

 0 0  

The rhythm thus generated is 1 0 0 1 0 0 1 0.  A more detailed description of the 

procedure is as follows: 

 Step 1:First, place all the k ones and then place the n – k zeros.  

 Step 2: Next, repeatedly take each zero and place it below ones equally. This continues 

until the arrangement consists of only one odd sequence. In this way we are actually distributing 

the ones uniformly among zeros. This is one way of generating rhythms where the onsets are 

uniformly distributed.  Many rhythms from the past can be generated by using this method. 
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1.6 NoteWorthy Composer18

NoteWorthy Composer is a simple music composition software tool. It allows one to 

create, record, edit, print and play back one’s own musical scores in pure music notation. One 

can also save the notation as a MIDI performance for use in other MIDI applications. Its print 

feature makes it possible to produce sheet music right from one’s desktop. We find that this tool 

is sufficient for us to hear and notate the rhythms that we generate for different combinations of 

n and k.  
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Chapter 2 
 

GENERATING EVEN RHYTHMS 

 

Evenness is an important property in music.  Music that is even has a soothing nature and 

is always preferred by listeners.  A rhythm is said to be perfectly even when the onsets are 

distributed uniformly among silent nodes in the given time domain.  We present here two 

techniques of generating rhythms that exhibit high evenness. 

 

2.1 The Evenness Method

The first technique seeks to generate perfectly even rhythms.  The procedure simply 

divides the number of time unit’s n with the number of onsets k.  The intermediate value y will 

be used to determine where the onsets should be placed to form a regular k-gon inscribed in a 

circle (which would be the polygon representation of a perfectly even rhythm). 

 

Evenness rhythm 

n 

k 

 

 

Fig 2.1: Evenness method 
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Procedure Evenness( n, k )  

Input: n = number of equal time units 

k = number of onsets 

Output: Pcircle is the final rhythm generated. The onsets in this rhythm are uniformly distributed 

in the given time domain n. The rhythm is depicted as a binary number and also in k-gon format. 

Auxiliary: a,y,z,temp = temporary variables 

Pseudo code: 

Step 1: Initializing the variables 

 y = n/k 

 z = 0.0 

temp = 0.0 

Step 2: 

WHILE z is less than n  

z = z + y       

The variable ‘a’ is set to the nearest integer   less than or equal to z (a = (int)z) 

temp = z - a 

 IF temp is greater than 0.5 THEN                      

The variable ‘a’ is set to the nearest integer greater than z (a = (int)z+1) 

Set the ‘a’th note in the rhythm Pcircle to 1  

 ENDIF; ENDWHILE 
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In the algorithm, we “construct” a regular k-gon with one vertex coincident with one 

lattice point (say at 0) and then move the remaining onset points to their nearest lattice points. 

Since the circle is divided into equal time units, the decimal is rounded off to the nearest integer 

and then the onset is placed at its nearest lattice point. In this way, the 1’s are uniformly divided 

among 0’s in the given time domain. 

 

 2.2 Euclidean method

This procedure is based on computing the greatest common divisor of two integers. This 

procedure generates large family of rhythms which were popular in traditional world music. 

These rhythms have a property that their onset patterns are distributed as evenly as possible.  

 

 

 

Fig 2.2: Euclidean method 

Euclidean rhythm 

n 

k 
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Procedure Euclidean( n, k ) 

Input:  n = number of time units 

            k = number of ones 

Output:  finalRhythm is the final rhythm generated. In this rhythm the onsets are uniformly 

distributed in the given time domain n. The rhythm is depicted as a binary number and also in k-

gon format.  

Auxiliary:  rp_rhythm = repeating sequence in the rhythm 

 rm_rhythm = remainder column sequence 

finalnum_rp = number of times the repeating sequence occurs in the rhythm 

finalnum_rm = number of times the remainder column sequence occurs in the rhythm 

size_rp = length of the repeating sequence 

size_rm = length of the remainder column 

dist1, dist2 = two possible distances between 2 onsets 

i,j = temporary variables              

Pseudo code: 

Step 1:  Initializing the variables 

Initialization () 

finalnum_rp = k  

finalnum_rm = n-k (number of silences) 

rp_rhythm = 1 

rm_rhythm = 0 

size_rp = 1 

size_rm = 1 EXIT 
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Step 2:  Implementing Euclid algorithm 

EUCLID (num_rp, num_rm) 

Termination condition:  

IF num_rm is 1 or num_rm is 0 THEN 

finalnum_rp = num_rp  

finalnum_rm = num_rm 

ENDIF  

ELSE 

IF num_rp is less than or equal to num_rm THEN 

num_rm = num_rm - num_rp 

num_rp remains the same   

Add the remainder column sequence to the repeating sequence 

Add size_rm to size_rp (size_rp = size_rp + size_rm) 

The remainder column sequence remains the same 

size_rm remains the same 

ENDIF 

IF num_rp is greater than num_rm THEN 

num_rp = num_rp - num_rm 

num_rm remains the same  

Add the remainder column sequence to the repeating sequence 

Add size_rm to size_rp (size_rp = size_rp + size_rm) 

The remainder column is equal to the previous repeating sequence 

size_rm is now equal to the previous size_rp 
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ENDIF 

EUCLID (num_rp,num_rm)  

EXIT (EUCLID) 

Step 3: Printing the final rhythm 

PrintRhythm ()   

Add the repeating sequence , finalnum_rp times to finalRhythm 

Add the remainder column sequence , finalnum_rm (0/1) times to finalRhythm 

Output finalRhythm 

EXIT 

 

The basic principle of Euclid’s algorithm is to replace the larger of the two integers by 

their difference until both are equal. Bjorklund’s algorithm is based on Euclid’s principle except 

that the two integers are now replaced by the number of 1’s and 0’s.  It uses the same repeated 

form of substraction just as Euclid did with his integers. This procedure actually distributes the 

onsets fairly uniformly in a given time domain.  

 

 

 

 

 

 

 18



2.3 Comparison Measure

The Regression Evenness Metric (REM) for a given rhythm measures how far the rhythm 

onsets are displaced from a perfectly even rhythm (with the same time frame and number of 

onsets) and is obtained by calculating the sum of all the onsets’ deviations indicates the un-

evenness in a rhythm. The rhythm which yields a minimum regression value is called a 

maximally-even rhythm. 

 

Procedure REM( n, k,circle [n] ) 

Input: n = number of time units 

           k = number of ones 

circle [n] = rhythm in a binary format 

Output:   sumofdev - A value representing how far the given rhythm is deviating from the 

optimal rhythm. 

Auxiliary: dist = inter onset distance in the optimal rhythm deviation is the deviation of an onset 

from its optimal position 

temp, i, j, k = temporary variables 
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Pseudo code: 

dist = n/k (optimal inter onset distance) 

k = 0 

FOR j = 0 to n DO  

IF there is an onset at position j in the rhythm circle THEN     

temp = k * dist 

IF temp is greater than j THEN 

deviation = temp - j 

ENDIF 

ELSE 

deviation = j – temp 

ENDIF 

Add deviation to sumofdev 

Increment k 

ENDFOR  

OUTPUT sumofdev 

 

First divide the number of time units with the number of onsets. This determines where 

the onsets should be placed to form a regular k-gon inscribed in a circle. Finally sumofdev sums 

all the deviations of the onsets from their optimal positions on the circular lattice. The total 

deviation value indicates the unevenness in a rhythm.  
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Chapter 3 
 

GENERATING FREQUENCY-BASED RHYTHMS 

 

The rhythms of the past have exhibited a certain pattern in their frequencies of distances. 

Recall that the spectrum of frequencies is called the interval vector. A histogram is the best way 

to visualize the interval vector. After observing some of the traditional rhythms that have show 

enduring popularity, we find that the geometric shape histogram had an impact for their 

preference over others.  

 

3.1 Interval vector method

Take for example, the rhythm called Gahu whose binary representation is: 

1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 

and whose frequency histogram is given by: 
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Fig 3.1: Gahu frequency histogram representation 
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Procedure  Interval Vector( nm, km ) 

Input:  nm = number of time units 

            km = number of ones 

Output: circlefinal  is the final rhythm generated and arrayfinal  is the interval vector of the       

rhythm. A histogram visualizing the interval vector and a k-gon are also depicted.  

gapfinal = the number of gaps in the histogram of the final optimal rhythm 

zerofreq = the number of zerofrequency distances in the histogram of the final optimal rhythm 

maxfinal = the maximum frequency in the histogram of the final optimal rhythm 

difffinal =  the difference between the maximum and the minimum frequency in the histogram of 

the final optimal rhythm 

maxgapfinal = the maximum gap of all the gaps between consecutive onsets on the circle for the 

final optimal rhythm 

Auxiliary =  i, j, c1, c2, c3, c4, k2, d1, d2, finalcount, count, tmparr[1000], s,arraytemp[1000], 

gapresf, again, val, gap, numconv, maxfreq, sum, circlegap, midpnt, diff1, diff2, zerotemp, 

maxgaptemp = temporary variables 

numgaps = number of gaps in the histogram obtained when an onset is placed in an optimal 

position 

conversions = number of zerofrequency distances that get covered when an onset is placed in its 

optimal position. 

flatsum = the sum of frequencies of those distances which get incremented on placing the onset 

in its optimal position. 

gaponcircle = the gap on the circle (between onsets) in which the optimal position on the onset 

lies  

 23



midpoint1 = midpoint of the gap on the circle in which the position of the onset lies 

maxcovdist = maximum distance covered on placing an onset in a particular onset 

minfreq = minimum frequency in the histogram 

freqdiff = difference between maximum and minimum frequency in the histogram 

 maxgap = maximum gap on the circle of all the gaps between consecutive onsets 

 maxcover = it is the maximum inter onset distance which is covered on placing an onset in a 

particular position 

 value = optimal position of the onset 

mindist = shortest distance between two onsets on the circular lattice 

Pseudo code: FOR finalcount = 1 to nm/2   DO 

 

//initialization 

Place an onset at 0th position of the rhythm ‘circle’   (circle[0] = 1)                              

Place an onset at a distance of finaldist to the left of 0th position of  the rhythm  

  (circle[nm - finalcount]=1)                     

Increment the frequency of occurrence of the inter onset distance 

‘finaldist’(freqarray[finalcount]++)                   

 

//loop run for each onset placed 

FOR i = 0 to km – 2 DO 

Initialize numgaps, maxfreq, flatsum, gaponcircle to a high value 

Initialize conversions to 0 
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//checking for the optimal position by placing the onset at various non covered instants of time 

FOR j = 0 to nm DO 

IF circle[j]==0 THEN  

Intialize count, gap, numconv, sum to 0 

Initialize value to j 

Initialize gapres to ‘n’ 

Set arraytemp equal to freqarray 

 

//Find the distances between the position of the onset and the other already placed onsets  

 FOR k2=0 to nm DO 

 IF circle[k2]==1 THEN 

d1 = mod(value – k2) 

d2 = nm - d1 

mindist = minimum (d1,d2) 

Increment count 

 

//store the distances between the newly placed onset and    other already placed onsets in a 

tmparr array. 

tmparr[count] = mindist       
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//increment numconv if a zero frequency distance is incremented on placing the onset. 

IF arraytemp[mindist] == 0 THEN 

Increment numconv 

ENDIF 

Increment arraytemp[mindist] 

sum = sum + arraytemp[mindist] 

ENDIF;ENDFOR 

 

//Find the maximum inter onset distance which is covered on placing the onset in the jth position 

maxcover=0 

FOR c1 = 1 to count  DO 

IF tmparr[c1] >  maxcover THEN 

maxcover = value     

ENDIF                   

ENDFOR 

 

//Find the number of gaps formed in the histogram on placing the onset in the jth position.     

gapres='n' 

FOR c1 = 1 to nm/2 DO 

IF arraytemp[c1] == 0  and gapres == 'n’ THEN 

Increment gap 

gapres='y' 

ENDIF 
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ELSE IF arraytemp[c1] == 1 THEN 

gapres='n' 

ENDIF 

ENDFOR 

IF arraytemp[nm/2] ==  0 THEN 

 Decrement gap; ENDIF 

 

//Find the maximum frequency in the histogram on placing the onset in the jth position.  

maxm=0 

FOR c2=1 to maxcover DO 

IF arraytemp[c2] > maxm THEN 

maxm=arraytemp[c2] 

ENDIF; ENDFOR 

   

//Find the gap on the circle in which the new position of the onset lies.      

FOR c2=0 to nm DO 

IF circle[c2] = 1 or c2 = n THEN 

IF c2 > ‘value’ THEN circlegap = c2-c4;break 

ENDIF 

c4 = c2 

ENDIF; ENDFOR 

midpoint1=(c2+c4)/2 

ENDIF;ENDFOR 

 27



Choose a position for placing the onset in such a way that 

gap  is minimum 

numconv  is the maximum. 

maxm is the least 

sum is the minimum 

circlegap is minimum 

The position should be nearest  to the midpoint of the gap between onsets in which the position 

lies 

 

// After placing the onset in the best possible position based on the above criteria , update the 

frequency of each possible inter onset distance in this rhythm 

 FOR c2=0 to nm DO    

IF there is an onset in the c2th position in ‘circle’ rhythm THEN 

d1 = mod(value – c2) 

d2 = nm – d1 

Increment the minimum(d1,d2) 

ENDIF 

ENDFOR 

ENDFOR  
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// After placing all the onsets in the best possible positions on the circular lattice, find the number 

of zero frequency distances in the histogram of the rhythm. 

 zerotemp=0; 

 FOR c3=1 to (nm/2) DO 

 IF freqarray[c3] is equal to 0 

 Increment zerotemp 

 ENDIF; ENDFOR 

 

// Find the range i.e. difference between the maxium and the minimum frequency in the 

histogram. 

 Minfreq = minimum( all elements of freqarray)   

 Freqdiff = maxfreq - minfreq 
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// Find the maximum gap of all the gaps between consecutive onsets in the circle for the rhythm 

generated    

maxgap=0 

maxgaptemp=0 

gapresf='n' 

 FOR c3=0 to n DO 

IF circle[c3] == 1 or c3 == n THEN 

IF maxgaptemp >= maxgap THEN 

maxgap = maxgaptemp 

maxgaptemp=0 

ENDIF 

ENDIF 

ELSE IF circle[c3] is equal to 0 

Increment  maxgaptemp 

ENDIF 

ENDFOR 
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At this stage , all the onsets are placed and a rhythm is formed 

Of all the rhythms so obtained in this loop with various initial distances, the final optimal 

rhythm is obtained based on the following criteria 

Numgaps is minimum  (set numgaps to gapfinal) 

Zerofreq is minimum   (set zerotemp to zerofreq) 

Maxfreq is minimum   (set maxfreq to maxfinal) 

Freqdiff is least  (set freqdiff to difffinal) 

Maxgap is minimum   (set  maxgap to maxgapfinal) 

ENDFOR 
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Procedure explanation: 

1. Place an onset at point 0 and another onset at a distance of one to it. 

2. Next place the remaining onsets at one of the not covered points, such that it satisfies the 

following criteria. 

On placing the onset, the number of gaps in the histogram should be minimum. This will make 

ensure that we finally get a single connected component (number of gaps=0) or with minimum 

gaps. 

On placing the onset maximum number of distances should be covered.  Since more zero 

frequency distances are covered, the maximum frequency will be minimum. 

On placing the onset, the maximum frequency should not increase .If it increases at all points, 

minimum is selected. 

In order to maintain relatively flat histograms the average of all the distances whose frequencies 

are increased on placing the onset should be minimum. 

In order to reduce silent ness, choose a position for the onset such that it is placed in the largest 

gap on the circle, thus reducing the silent ness. 

Another criterion is that the position of the onset is near to the midpoint on the largest gap in 

which it is placed. This will make sure that the silent ness is reduced to a maximum. 

 

In this method at every stage an onset is placed, its position is chosen such that it satisfies the 

above conditions in the given order. Now the optimal rhythm may not cover distance one. 

Therefore this process is repeated by setting up various possible initial distances. The rhythms 

obtained are compared based on the following conditions in the given order and the best is 

chosen. 
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The number of gaps in the histogram generated should be minimum. A histogram with a single 

connected component is more preferred. 

The number of zero frequency distances should be maximum .This will make sure that all 

possible distances are covered. 

The rhythm whose maximum frequency is less  is preferred. 

The rhythm with a uniform and relatively flat histogram is more preferred .In order to maintain 

a flat histogram, the difference between the maximum and minimum frequency of the inter onset 

distances should be minimum. 

The rhythm with minimum silent ness is preferred. 
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3.2 Erdos-deep method  

 

                                                       

Erdos-deep 
n Property

Fig 3.2: Erdos-deep method 

 

Erdos-deep property1:   We characterize which sets of k points chosen from n points 

spaced evenly around a circle have the property that, for each i = 1, 2,...,k−1, there is a nonzero 

distance along the circle that occurs as thedistance between exactly i pairs from the set of k 

points. Rhythms with this property are called Erdos-deep.  

 

 

 

 

 

 

 

 

 

rhythm 

K 

No empty 
circle
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Procedure  ErdosDeep_Pattern( nm, km ) 

Input :nm - number of time intervals 

km – number of onsets  

Output :  patternPossible : Is true if an Erdos deep rhythm with no empty semicircles is   possible 

with the given values of nm and km , else it is set to false. 

Auxillary: 

pattern  -  Rhythm with ‘nm’ time intervals 

IsErdos -  Boolean variable which is true if the rhythm is Erdos Deep 

noEmptySemiCircle -  Boolean variable which is true if the rhythm does not have a empty semi-

circle 

i,j,temp,pt,a[] – temporary variables 

freqOfDistance – Gives the frequencies(number of times) of 

inter-onset distances  (from 1 to km-1) in the rhythm ‘pattern’ 

distance – inter onset distance 

gapConsecOnsets – Gap between consecutive onsets on the circular lattice 
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Pseudo code: 

For a given combination of nm and km, initialize a ‘pattern’ for the rhythm. 

 Initialize frequencies of all inter onset distances to 0.  

For i = 0 to nm DO 

IF pattern[i] = 1 THEN 

distance = 0 

FOR j = i + 1 to nm DO 

IF  pattern[j] = 0  THEN 

Increment distance 

ENDIF 

ELSE IF pattern[j] = 1 THEN 

Increment distance 

IF distance > (nm – distance) THEN 

Increment freqOfDistance[distance] 

ENDIF 

ELSE IF distance >= (nm – distance) THEN 

Increment freqOfDistance[nm - distance] 

ENDIF 

ENDIF 

ENDFOR 

ENDIF 

ENDFOR  
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//Check if pattern is Erdos Deep (Is_ErdosDeep) 

FOR i = 1 to km -1 DO 

 

// Check if there is a geodesic distance j with frequency i ,  in the rhythm ‘pattern’ ( 

ExistsDistance) 

FOR j = 1 to nm/2 DO 

IF freqOfDistance[j] = i THEN 

The rhythm ‘pattern’ is Erdos Deep  

ENDIF 

ENDFOR 

ENDFOR 

 

// Check if the pattern is a empty semi circle (NoEmpty_SemiCircle) 

gapCosecOnsets = 0 

FOR j = 0 to nm DO 

IF pattern[j] = 1 THEN 

 // j is the position of the first onset in pattern  

break 

ENDIF 

ENDFOR 
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FOR i = j + 1 to nm + j DO 

IF i is greater than or equal to nm THEN 

pt = i - nm 

ENDIF 

ELSEIF 

pt = i 

ENDIF 

IF pattern[pt] = 0 THEN 

Increment gapConsecOnsets 

ENDIF 

ELSE IF pattern[pt] = 1 THEN 

Increment gapConsecOnsets 

IF nm % 2 = 0 THEN 

temp = nm/2 

ENDIF 

ELSEIF   

temp = (nm + 1) / 2 

IF gapConsecOnsets >= temp THEN 

There is an empty semi circle in the rhythm 

ENDIF;ENDIF 

ENDIF;ENDFOR 
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There is no empty semi circle in the rhythm 

If the rhythm ‘pattern’ is Erdos Deep and there is no empty semi circle , then patternPossible  is 

set to true 

Else the above process is repeated for another permutation of the rhythm ‘pattern’.  

 

//Code for permutation of the rhythm to get another rhythm 

FOR i = nm – 2 to  0 DO 

 IF a[i + 1] > a[i] THEN 

FOR  j = nm – 1 , a[j] is less than a[i] DO 

Swap a[i] and a[j] 

FOR j = 1 to (nm-i)/2 DO 

Swap a[i+j] and a[nm-j] 

ENDFOR 

FOR j = 0 to nm DO 

pattern[j] = a[j] 

ENDFOR 

ENDFOR 

ENDIF 

ENDFOR 
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Given the number of time units (n) and number of onsets (k), n c k combinations of 

rhythms are generated. Then each rhythm is verified whether it satisfies Erdos-deep property and 

no empty-circle constraints. If any one rhythm satisfies the above constraints, it proves that for a 

given input, their exists a rhythm which satisfies Erdos-deep property with no empty circle. The 

rhythm generated is depicted as a histogram.  

 

The function Is_ErdosDeep ( ) verifies whether the rhythm satisfies Erdos-deep property. 

If it satisfies then the function NoEmpty_SemiCircle( ) checks whether the rhythm has an no 

empty semi-circle. If both the functions return true, then the rhythm is said to satisfy Erdos-deep 

property with no empty circle.  
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Chapter 4 
 

SAMPLES OF GENERATED RHYTHMS 
 

The software that was developed was supplied with an interface using Java applets.  The 

generated rhythm was then represented in traditional musical notation using an application 

program called Noteworthy Composer. 

 

The initial screen of the interface has five buttons which are named ALL, EVENNESS, 

INTERVAL VECTOR, ERDOS RHYTHMS and EUCLIDEAN RHYTHMS.  We illustrate 

this below: 

 

   Initial screen: 
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EVENNESS − Hitting this button, launches a new screen that displays rhythms generated using 

the ‘evenness’ procedure.  This new screen has three buttons itself:  RUN, CLEAR, and 

PREVIOUS.  It also has two dropdown menus for selecting the value of n (number of time 

units) and k, the number of onsets.  We illustrate this below: 

Evenness screen: 

 

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a 

rhythm using the ‘evenness’ procedure.  The output is depicted in binary format and also in a k-

gon format.  For comparison purposes, an optimal rhythm is also depicted in a k-gon format for 

the same combination of time units and onsets. 

CLEAR This button clears the screen. 

PREVIOUS This button takes you to the previous screen. 
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INTERVAL VECTOR – Hitting this button launches a new screen that displays rhythms 

generated using the ‘interval vector’ procedure.  This new screen has three buttons like the 

previous technique:  RUN, CLEAR, and PREVIOUS.  Likewise, it has the two dropdown 

menus for selecting n, the number of time units, and k, the number of onsets.  We illustrate this 

below 

Interval Vector screen: 

 

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a 

rhythm using the ‘interval vector’ procedure.  The rhythm is depicted in binary format, and also 

in k-gon format.  Additionally, the output’s histogram is displayed.  A sample output is given 

below: 

CLEARThis button clears the screen. 

PREVIOUS This button takes you to the previous screen. 
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ERDOS RHYTHM – Hitting this button launches a new screen that displays rhythms generated 

using the ‘Erdos pattern’ procedure.  As with the preceding techniques, this new screen has three 

buttons itself:  RUN, CLEAR, and PREVIOUS.  The two dropdown menus for selecting n, the 

number of time units, and k, the number of onsets, are present as well. 

Erdos Rhythm screen: 

 

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a 

rhythm using the ‘erdos_pattern’ procedure. As in the preceding methods, the rhythm is depicted 

in binary format, in k-gon format, and with a histogram. 

CLEAR This button clears the screen. 

PREVIOUS This button takes you to the previous screen. 
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EUCLIDEAN RHYTHMS – Hitting this button opens up a new screen which displays rhythms 

generated using the ‘Euclidean’ procedure.  The screen has the now-familiar three buttons – 

RUN, CLEAR, and PREVIOUS.  It also has two dropdown menus to select n, the number of 

time units and k, number of onsets.   

Euclidean Rhythm screen: 

 

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a 

rhythm using the ‘euclidean’ procedure. As in the preceding methods, the rhythm is depicted in 

binary format, in k-gon format, and with a histogram. 

CLEAR This button clears the screen. 

PREVIOUS This button takes you to the previous screen. 
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ALL – Hitting this button, opens up a new screen which displays rhythms using all the four 

procedures (Evenness, Interval vector, Erdos_pattern, Euclidean). The rhythms are depicted as a 

binary number, k-gon and as a histogram. 

 

 

RUNBy selecting n and k from the dropdown menus, hitting this button generates rhythms using 

all four procedures (Evenness, Interval vector, Erdos_pattern, Euclidean).  The rhythms are 

depicted in binary format, in k-gon format, and with a histogram.  

CLEAR This button clears the screen. 

PREVIOUS This button takes you to the previous screen. 
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The screens below illustrate rhythms generated for different combinations of n (number of time 

units) and k (number of onsets).  [Note:  These rhythms are available in MP3 format and can be 

played from the accompanying CD.] 

1.  n = 12, k =5 

              

These rhythms are illustrated here in regular music notation: 

a. Evenness 

 
b. Interval vector 

 
c. Erdos rhythms 

 

d. Euclidean rhythms 
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2.  n = 12 , k =7 

 

a. Evenness 

 
b. Interval vector 

 
c. Erdos rhythms 

 
d. Euclidean rhythms 
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3.  n = 16 , k = 5 

 

 

a. Evenness 

 
b. Interval vector 

 
c. Erdos rhythms 

 
d. Euclidean rhythms 
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4.  n = 16, k = 7 

 

 
a. Evenness 

 
b. Interval vector 

 
c. Erdos rhythms 

 
d. Euclidean rhythms 

 

 

 

 

 50



5. n =11, k=5 

 
a. Evenness 

 
b. Interval vector 

 
c. Erdos rhythms 

. Euclidean rhythms 

 

4.1Sample Rhythms

 
d

 

Some sample rhythms with varying number of units (n) and onsets (k) are generated 

using Noteworthy Com . 

 
 

poser tool. They are posted on http://www.cs.uno.edu/~adlai/rhythms
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Chapter 5 
 

CONCLUSION AND FUTURE WORK 
 

ur attempt here was to develop a tool that e of the methods 

and pro

t 

venness is a property where onsets are distributed uniformly in a given time domain.  

The fir k 

hich 

 method known as Regression Evenness which measures the un-evenness in a rhythm 

was als

e 

O generates rhythms using som

blems posed by Godfried Toussaint.  The tool may be useful for a musical composer who 

can take some of the rhythms we have generated, analyze and insert them in music.  In studying 

various rhythms from the past, evenness and the interval vector were two properties that were 

considered to analyze rhythms.  Then, various methods were used to generate new rhythms tha

contain these properties to one degree or another.  

 

E

st procedure simply placed the onsets to form a regular k-gon inscribed in a circle where 

is the number of onsets.  This was achieved by placing one onset coincident with one lattice 

point and then moving the remaining onset points to their nearest lattice points in an evenly 

distributed way.  The second procedure used the Bjorklund sequence generation algorithm w

has the same structure as the well-known Euclidean algorithm.  This procedure is based on 

computing the greatest common divisor which actually distributes the onsets uniformly.  

 

A

o implemented.  The Regression Evenness Metric (REM) for a given rhythm measures 

how far the rhythm onsets are displaced from a perfectly even rhythm (with the same time fram

and number of onsets) and is obtained by calculating the sum of all the onsets’ deviations.  The 

rhythm which yields a minimum REM value is called a maximally-even rhythm. 
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The interval vector is the spectrum of frequencies in a rhythm and is best represented by a 

histogr

 

 

hythms were generated with various combinations of values of n and k.  These were 

then re

f 

, of 

As for future work, we can improve our system by developing an interface between our 

produc

 

is 

 

am.  The first procedure based on the interval vector efficiently generates rhythms that 

contain geometric constraints on their shapes in a given priority.  The second procedure tried to

achieve the Erdos-deep property by placing k onsets in a given time domain n such that, for each

i = 1, 2,..., k−1, there is a non-zero distance that occurs exactly between i pairs from the set of k 

points. 

 

R

ndered in normal musical notation using a notation tool called NoteWorthy.  The same 

software tool was then used to generate MIDI versions of the generated rhythms for purposes o

actually listening to the generated rhythms.  We even inserted some rhythms into existing 

musical works to listen and assess the aesthetic value of the generated rhythms.  Eventually

course, the listener will have to decide on whether a generated rhythm is “good” or bad.  After 

all, beauty is in the eye of the beholder.  Or in our case, in the ear of the listener.   

 

t and a sound producing tool such as NoteWorthy.  The binary output of our system 

should be readily convertible into a MIDI format that can then become an input to any other

MIDI-supported musical instrument.  We can also envision our work to be incorporated into 

systems that are required to produce rhythmic patterns, such as keyboards and sequencers.  Th

will, of course, require knowledge of algorithms, some of which might be proprietary, in order to

achieve this. 
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APPENDICES 

 
Appendix A: The Evenness  Method 

   
r lattice form a “regular polygon”, then such a rhythm is 

an opti

nsets (say k) are placed in the nearest positions to the actual positions (in 
ase of a regular k-gon) such that it coincides with the instants of time into which the circular 

hich is an approximation of the optimal regular polygon. 

 

public void calcFlow ()  
{    

m the user and draw the circle  
true; 

een 
nsets when the onsets form a regular polygon 

                

mp; 

ions 

[i]=0; 
   //starting with a high note-1 at time 0 

        //arc length between consecutive onsets in 

 
the onsets are placed in the nearest positions to the optimal 

    //actual position of onset 

                                                   
In a rhythm, if the onsets on the circula

mal rhythm. 
 
In this method the o

c
lattice is divided into. 
 
This gives a polygon w

 
The rhythm generated is very close to the optimal rhythm.    

 

//take the first input fro
alg = 
float y;             //geodesic distance (arc length) betw
consecutive o
float z;             //specifies the position of the onset on 
the circular lattice in case of a regular polygon 
     
//temporary variables 
int i;
int j; 
int a; 
float te
    
//initialisat
z=0; 
for(i=1;i<nm;i++) 
circle
circle[0]=1;       
y=nm/km;      
a regular polygon - (k-gon) 
 
//code for placing the onsets
//
on the circular lattice.  
while(z<nm) 
{ 
z=z + y;     
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a=(int)z; 

)    //Since the beats are recorded after every unit 
 time the optimal position is rounded  

This gives a polygon which is an approximation of the regular 

cular lattice. 

ode to print the beats(1-high beat ,0-low beat) at different 
me 

ircle[i]);     

ode for printing the frequencies of distances 
ut<<endl<<endl; 

2)"<<endl<<endl; 

nd all the inter-onset distances   
;i<nm;i++) 

) 

                                  { 
ances possible between 2 onsets on the 

                          

temp=z-a; 
if(temp>0.5
interval of
a=((int)z)+1;   // off to its nearest position such that it 
coincides with the instants of time when  
 
//the beats are recorded. 
//
polygon. 
circle[a] = 1;//an onset is placed at that approximated position 
on the cir
} 
             
//c
instants of ti
System.out.print("Rhythm generated - "); 
for(i=0;i<nm;i++) 
{ 
 System.out.print(c
} 
 
//C
co
cout<<"Frequency of occurrences of 
distances(1......n/
for(i=0;i<1000;i++) 
freqarray[i]=0; 
int dist1; 
int dist2; 
      
//code to fi
for(i=0
{ 
if(circle[i]==1) 
{ 
for(j=i+1;j<nm;j++
{ 
if(circle[j]==1) 
   
//there are 2 dist
circular lattice 
dist1=j-i; 
dist2=nm-dist1; 
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//The shortest distance between 2 onsets is considered as the 

ed.                                  

+; 

ray[dist2]++; 

        

distance between the onsets and its  
// frequency of occurence is increment
if(dist1<dist2) 
freqarray[dist1]+
else 
freqar
} 
} 
} 
} 
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Appendix B:Euclidean Method                                                      

his method uses the euclid algorithm(it is an algorithm to find the greatest common divisor) 

Find the difference between the two numbers and replace the largest number with the difference 

Repeat this process till the difference is 1 or 0.The final number is the greatest common divisor. 

public void calcFlow () {   

g = true; 
           //number of onsets 

gh beat, 0-low beat  

nt[1000]; 
mber of time intervals 

part of the rhythm 

            
wether there is a single zero in the final 

orary variables 

 

 

ar; 

=0;cnt<1000;cnt++) 

eat[cnt]=0; 

m; 
; 

es; 
 

zeros; 

 
T

and is also known as the bjorklund algorithm. 
 

 

 
 

 
al
int ones;    
int zeros;              //number of zeros 
//the repeating part(sequence of beats 1-hi
of the rhythm. 
intrepeat[]=newi
int n;                 //nu
int r;                 //the number of beats 
//The number of times a part of the repeating 
occurs 
int rem;
//lastzero specifies 
remainder column            
char lastzero='n';  
     
//temp
int j; 
int m1; 
int m2; 
int temp;
int c3; 
int c5; 
int tempv
int l1,l2; 
int ty,r1; 
for(int  cnt
{ 
rep
} 
n=n
ones=km
zeros=n-on
if(zeros>=ones)
{ 
m1=
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m2=ones; 
} 
else 

ones; 

initially r represents the number of zeros that can be added 

rem is the number of remainder columns 

the first note in the repeating rhythm is 1     

r+1;        

e 

r; 

(j=1;j<=ty;j++) 

implementing euclidean algorithm. The difference m1-m2 gives 

m1+m2; 

2-m1; 
     

tzero='y'; 

1; 

 

zeros>=ones) 

{ 
m1=
m2=zeros; 
} 
 
//
to the repeating rhythm 
r=zeros/ones;    
 
//
rem=zeros%ones;        
 
//
repeat[0]=1;      
if(rem!=0) 
{ 
ty=
} 
els
{ 
ty=
} 
for
{ 
 
//
the number of remainder columns  
m1=m1-m2;          
repeat[j]=0;        
} 
m1=
if(m1>=m2) 
temp=m1-m2; 
else 
temp=m
if(rem==1)   
{ 
las
j--; 
r=rem-
temp=1;} 
if(rem!=1)
{ 
if(
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{           
temp=m2-m1; 
m2=temp; 
} 
else 

p=m1-m2; 

rem==0) 

temp!=1&&temp!=0){ 
       

)              

; 
eat[cnt2];                                                

m1<=m2) 

p=m2-m1; 

e 

p=m1-m2; 

if the number of remainder columns is 1 or 0 then break 
ak;} 

j;            
2<=r;cnt2++) 

; 
eat[cnt2]; 

=temp; 
                         

{ 
tem
m1=temp; 
} 
} 
if(
temp=0; 
j--; 
while(
if(temp/rem!=0)           
{                           
for(int cnt2=0;cnt2<=r;cnt2++
{ 
j++
l1=rep
repeat[j]=l1; 
} 
if(
{ 
tem
m2=temp; 
} 
els
{ 
tem
m1=temp; 
}   
 
//
if(temp==1||temp==0)                                    bre
else                                
{ 
r1=
for(int cnt2=0;cnt
{ 
j++
l2=rep
repeat[j]=l2; 
} 
rem
r=r1;      
if(m1<=m2) 
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{ 
temp=m2-m1; 

e 

p=m1-m2;             

temp==1||temp==0) 

Code to assign the rhythm to the circlefinal array 

3++) 

qarray[c3]=0; 
 

 cnt5; 

e number of remainder columns is 0 then the final rhythm 

ng part of the rhythm occuring a certain number of 

) 

(int cnt3=0;cnt3<m1;cnt3++) 

nt4<=j;cnt4++) 

clefinal[c3]=repeat[cnt4]; 

if the number of remainder columns is 1 then the finaal rhythm 

ing part of the rhythm occuring a certain number of 

ed by the sequence of beats in the remainder columns. 

m2=temp; 
} 
els
{ 
tem
m1=temp; 
} 
if(
break; 
} 
} 
 
//
//initialisation 
for(c3=0;c3<1000;c
{ 
fre
circlefinal[c3]=0;
} 
int
int cnt6; 
c3=0; 
      
//if th
is the  
//repeati
times.   
if(temp==0
{ 
for
{              
for(int cnt4=0;c
{ 
cir
c3++; 
} 
}} 
 
//
is the 
//repeat
times  
//follow
else if(temp==1) 
{ 
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if(m1>m2) 

2; 
t3=0;cnt3<cnt5;cnt3++) 

(int cnt4=0;cnt4<=j;cnt4++) 

clefinal[c3]=repeat[cnt4]; 

code to add the sequence of beats in the remainder column. 

nt7=0;cnt7<=cnt6;cnt7++) 

lastzero=='n') 

clefinal[c3]=repeat[cnt7]; 

eif(lastzero=='y')                    
 single zero  

clefinal[c3]=0; 

         

0;c5<n;c5++) 

pvar=circlefinal[c5]; 

code for printing the frequencies of distances 

n;c5++) 

circlefinal[c5]==1) 

(int c6=c5+1;c6<n;c6++) 

circlefinal[c6]==1) 

cnt5=m1; 
else 
cnt5=m
for(int cn
{ 
for
{ 
cir
c3++; 
} 
} 
 
//
cnt6=r; 
for(int c
{ 
if(
{ 
cir
c3++; 
} 
els
//lastzero=y if the remainder column has a
{ 
cir
c3++; 
} 
}} 
c5=0; 
for(c5=
{ 
tem
} 
 
//
int dist1; 
int dist2; 
for(c5=0;c5<
{ 
if(
{ 
for
{ 
if(
{ 
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//there are 2 distances possible between 2 onsets on the 

                           

The shortest distance between 2 onsets is considered as the 

remented. 

+; 

ray[dist2]++; 

 

circular lattice 
dist1=c6-c5; 
dist2=n-dist1;
 
//
distance between the onsets and   
//its frequency of occurence is inc
if(dist1<dist2) 
freqarray[dist1]+
else 
freqar
} 
} 
} 
} 
} 
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Appendix C: Comparison Measure                                                      

nclude <iostream> 

rray storing the values (1-high note or 0-low note) at 

               
rcle is divided 

                     
secutive onsets when 

        
ition on the cirular 

iation;                              

                  

circular lattice number="; 

l<<"the number of onsets="; 

nter the rhythm"<<endl; 

 to find the net deviation of the rhythm from the optimal. 

j is the position of the onset in the given rhythm 

imal position of the onset on the circular 

ion of the onset in the given rhythm 

     

 
#i
using namespace std; 
int main() 
{ 
//a
different instants of time 
int circle[1000];           
//number of time intervals into which the ci
float n;                                   
//number of onsets   
float ones;           
//geodesic distance (arc length) between con
the onsets form a regular polygon 
float dist;                        
//deviation of the onset fro its optimal pos
lattice 
float dev
//sum of the deviations of all the onsets 
float sumofdev=0;                          
//temporary variables   
float k;                 
float temp; 
cout<<endl<<"
cin>>n; 
cout<<end
cin>>ones;    
dist=n/ones; 
cout<<endl<<"e
for(int i=0;i<n;i++) 
cin>>circle[i]; 
     
//Code
//This net deviation is called the regression evenness of the 
rhythm. 
k=0; 
 
//
for(int j=0;j<n;j++)                    { 
if(circle[j]==1){ 
//Corresponding opt
lattice in case of a regular polygon 
temp=k*dist;if(temp>j) 
//deviation of the posit
from its optimal position  
deviation=temp-j;           
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else 
deviation=j-temp; 

eviation; 

t<<endl<<"total deviation="<<sumofdev; 

 

 

sumofdev=sumofdev+d
k++; 
} 
} 
cou
return 0; 
} 
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Appendix D: Interval vector method
 
public void calcFlow () { 

j; 
ist; 

nes; 
 int[1000]; 

'n'; 

ew int[1000]; 

 

 

 

='y'; 

]=new int[1000]; 

m; 
e; 

 

 //copy every constant corr to that onset 

     
int i,
int startd
int gap; 
int alrpro
int circle[]=new
int array[]=new int[1000]; 
int maxcover; 
int maxfreq=0; 
int zerotemp; 
int k1,k2; 
int value; 
char gapres=
int count=0; 
int tmparr[]=n
int filled='n'; 
int d1,d2; 
int mindist;
int c1; 
int c2=0;
int c3; 
int c4=0;
int val=0; 
char allgaps
int numgaps=0; 
int numconv; 
int arraytemp[
int conversions; 
int sum; 
int flatsu
int gaponcircl
int circlegap=0; 
//int beforeval; 
float midpoint1; 
//float midpoint2;
float midpnt=0; 
float diff1; 
float diff2;  
int maxcovdist=0; 
int finalcount; 
gapfinal=1000; 
zerofreq=1000; 
maxfinal=1000; 
difffinal=1000; 
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maxgapfinal=1000; 

nalcount++) 

in='n'; 

ialisation 

;i<1000;i++) 

ay[i]=0; 

cle[0]=1; 
lcount]=1; 

gaps='y'; 
 

; 

) 

circle[j]==0) 

ue=j; 
; 

n'; 

0; 
1000;k2++) 

 

circle[k2]==1) 

value>k2)                                                  

                             

for(finalcount=1; 
finalcount<=nm/2;fi
{ 
aga
     
//init
alrprones=1; 
startdist=1; 
k1=1; 
for(i=0
{ 
arr
circle[i]=0; 
} 
cir
circle[nm-fina
array[finalcount]++; 
for(i=1;i<=km-2;i++) 
{ 
all
conversions=0;
maxfreq=1000; 
flatsum=10000; 
gaponcircle=1000
numgaps=1000; 
conversions=0; 
for(j=0;j<nm;j++
{ 
if(
{ 
val
filled='n'
count=0; 
gap=0; 
gapres='
sum=0; 
numconv=
for(k2=0;k2<
arraytemp[k2]=array[k2];
for(k2=0;k2<nm;k2++) 
{ 
if(
{ 
if(
d1=value-k2; 
else          

 68



d1=k2-value;                                                  

 
                                         

  

                

                                 

cover=0; 
count;c1++) 

                                

res='n'; 
(nm/2);c1++) 

res=='n') 
                       

    

e if(arraytemp[c1]==1) 
                                   

arraytemp[nm/2]==0) 

=0; 
maxcover;c2++){                                            

(c2=0;c2<=nm;c2++) 
                     

                                               
            

d2=nm-d1; 
if(d1<d2) 
mindist=d1;
else         
mindist=d2;                                            
count++;                                       
tmparr[count]=mindist;                          
if(arraytemp[mindist]==0) 
numconv++;                 
arraytemp[mindist]++;                                        
sum=sum+arraytemp[mindist]; 
} 
} 
max
for(c1=1;c1<=
{if(tmparr[c1]>maxcover)  
maxcover=tmparr[c1]; 
} 
gap
for(c1=1;c1<=
{if(arraytemp[c1]==0 && gap
{                                     
gap++;                                                        
gapres='y'; 
} 
els
{                          
gapres='n'; 
} 
} 
if(
gap--; 
int maxm
for(c2=1;c2<=
if(arraytemp[c2]>maxm)                                           
maxm=arraytemp[c2]; 
} 
for
{                      
if(circle[c2]==1||c2==nm) 
{if(c2>value) 
{              
circlegap=c2-c4;                                               
break; 
}c4=c2; 
} 
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} 
if(gap<numgaps) 

=value;                                                   

mconv; 

                              

; 

e if(gap==numgaps) 
) 

=value; 
numconv; 

rclegap; 

; 

e if(numconv==conversions) 

third concept 

=value;                                                              

                                           
         

e if(maxm==maxfreq) 

=value;                                                         

       

e if(sum==flatsum) 

{ 
val
numgaps=gap; 
conversions=nu
maxfreq=maxm; 
flatsum=sum;   
gaponcircle=circlegap; 
midpnt=midpoint1; 
maxcovdist=maxcover
} 
els
{if(numconv>conversions
{ 
val
conversions=
maxfreq=maxm; 
flatsum=sum; 
gaponcircle=ci
midpnt=midpoint1; 
maxcovdist=maxcover
} 
els
{ 
 
//
if(maxm<maxfreq) 
{ 
val
maxfreq=maxm; 
flatsum=sum;   
gaponcircle=circlegap;                                     
midpnt=midpoint1;                                            
maxcovdist=maxcover; 
} 
els
{if(sum<flatsum) 
{ 
val
flatsum=sum;                                                        
gaponcircle=circlegap;                                              
midpnt=midpoint1;                                                     
maxcovdist=maxcover; 
} 
els
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{                                                         
if(circlegap>gaponcircle) 
{                                                                    
val=value; 
gaponcircle=circlegap;                                                     
midpnt=midpoint1;                                                          
maxcovdist=maxcover; 
}else if(circlegap==gaponcircle) 
{                                                                    
if(midpoint1>value)                                                       
diff1=midpoint1-value;                                                     
else diff1=value-midpoint1;                                                
if(midpnt>val)                                                             
diff2=midpnt-val;                                                   
else diff2=val-midpnt;                                                     
if(diff1<diff2) 
{                                                                          
val=value;                                                                 
midpnt=midpoint1                                                           
maxcovdist=maxcover;                                                       
}else if(diff1==diff2)                                                     
{//do nothing                                                              
}}}}}}                            
count=0; }} 
for(c2=0;c2<nm;c2++) 
{ 
if(circle[c2]==1) 
{ 
if(val>c2) 
d1=val-c2; 
else 
d1=c2-val; 
d2=nm-d1; 
if(d1<d2) 
mindist=d1; 
else 
mindist=d2;           
 
//Compromise if all poss dist are covered then check for all 
uncovered points 
array[mindist]++; 
} 
} 
circle[val]=1; 
startdist=maxcovdist+1; 
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//if no: of gaps is same then more no: of zeros convert to ones 
}//for each onset placed 
zerotemp=0; 
for(c3=1;c3<=(nm/2);c3++) 
{ 
if(array[c3]==0) 
zerotemp++; 
} 
minfreq=1000; 
for(c3=1;c3<=nm/2;c3++) 
{ 
if(array[c3]<minfreq && array[c3]!=0) 
minfreq=array[c3]; 
} 
freqdiff=maxfreq-minfreq; 
maxgap=0; 
maxgaptemp=0; 
gapresf='n'; 
for(c3=0;c3<=nm;c3++) 
{ 
if(circle[c3]==1||c3==nm) 
{ 
if(maxgaptemp>=maxgap) 
maxgap=maxgaptemp; 
maxgaptemp=0; 
} 
else if(circle[c3]==0) 
maxgaptemp++; 
} 
//conditions 
if(numgaps<gapfinal) 
{ 
gapfinal=numgaps; 
again='y'; 
}                                
  
//initialisation 
else if(numgaps==gapfinal) 
{ 
if(zerotemp<zerofreq) 
{ 
again='y'; 
zerofreq=zerotemp; 
} 
else if(zerofreq==zerotemp) 
{ 
if(maxfreq<maxfinal) 
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{ 
again='y'; 
maxfinal=maxfreq; 
} 
else if(maxfreq==maxfinal) 
{ 
if(freqdiff<difffinal)                 
{                                                             
again='y';                                                              
difffinal=freqdiff; 
} 
else if(freqdiff==difffinal) 
{                                                                
if(maxgap<maxgapfinal) //find maxgap                                       
{                                                                          
again='y';                                                             
maxgapfinal=maxgap;}                                                       
else if(maxgap==maxgapfinal)                                               
{//do nothing                                                              
}}}}} 
if(again=='y') 
{ 
for(c3=0;c3<nm;c3++) 
{ 
if(circle[c3]==0) 
circlefinal[c3]=0;   
else 
circlefinal[c3]=1; 
arrayfinal[c3]=0; 
} 
for(c3=1;c3<=(nm/2);c3++) 
arrayfinal[c3]=array[c3]; 
         
//other properties 
gapfinal=numgaps; 
zerofreq=zerotemp; 
maxfinal=maxfreq; 
difffinal=freqdiff; 
maxgapfinal=maxgap; 
} 
} 
alg = true; 
System.out.print("rhyyythm   "); 
for(int i1=0;i1<nm;i1++) 
System.out.print(""+circlefinal[i1]); 
} 
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Appendix E: Erdos-deep method 
 
public void calcFlow () { 
int circle[]=new int[1000]; 
int m=1; 
int i,j,k1; 
int temp; 
char nextpart='n'; 
char gotit='n'; 
int primeval=(3*nm)/4; 
int finalnumofsem=10000; 
while(gotit=='n') 
{ 
for(i=0;i<nm;i++) 
{ 
circle[i]=0; 
arrayfinal[i]=0; 
} 
if(nextpart=='n') 
{ 
for(i=primeval;i>=2;i--) 
{ 
if(gcd(i,nm)==1) 
{ 
m=i; 
break; 
} 
} 
} 
if(i<2) 
{ 
primeval=((3*nm)/4)+1; 
nextpart='y'; 
} 
if(nextpart=='y') 
{ 
for(i=primeval;i<nm;i++) 
{ 
if(gcd(i,nm)==1) 
{ 
m=i; 
break;}}} 
if(i==nm) 
{ 
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//all the relative prime numbers are checked 
gotit='y'; 
break; 
} 
else 
{ 
if(nextpart=='n') 
primeval=m-1; 
else 
primeval=m+1; 
for(i=0;i<km;i++) 
{ 
temp=(m*i)%nm; 
circle[temp]=1; 
} 
 
//checking for semicircles 
int numofsemi=0; 
int prev=0; 
int current; 
int curr; 
for(curr=1;curr<=nm;curr++) 
{ 
if(curr==nm) 
current=0; 
else 
current=curr; 
if(circle[current]==1) 
{ 
if(prev<current) 
temp=current-prev; 
else 
temp=nm-(prev-current); 
if(temp>(nm/2)+1) 
{ 
numofsemi=numofsemi+(temp-(nm/2)-1); 
     } 
prev=current; 
} 
} 
if(numofsemi<finalnumofsem){ 
finalnumofsem=numofsemi; 
for(i=0;i<nm;i++) 
{ 
if (circle[i]==1) 
circlefinal[i]=1; 
else  
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circlefinal[i]=0; 
} 
} 
if(finalnumofsem==0) 
{ 
gotit='y'; 
break; 
} 
} 
} 
for(j=0;j<nm;j++) 
{ 
if(circlefinal[j]==1) 
{ 
for(k1=j+1;k1<nm;k1++) 
{ 
if(circlefinal[k1]==1) 
{ 
if((nm-(k1-j))>(k1-j)) 
temp=k1-j; 
else 
temp=nm-(k1-j); 
arrayfinal[temp]++; 
}}}} 
alg = true; 
} 
int gcd(int a,int b) 
{ 
if(a==b) 
{ 
return a; 
} 
else 
{ 
if(a>b) 
return gcd(a-b,b); 
     else 
return gcd(a,b-a); 
}} 
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