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ABSTRACT 
 

In the onset of many chronic illnesses including Parkinson’s, Alzheimer’s, and 

cardiovascular diseases, there is evidence to support the delicate balance between pro-

oxidant and antioxidant species is shifted in favor of the former. Under these 

conditions, many reactive oxygen species (ROS) including hydroxyl radicals, are 

generated. Hydroxyl radicals formed in close proximity to DNA, nucleotides, proteins, 

and lipids rapidly oxidize these biological molecules in a nonspecific way. However, their 

toxicity is limited by their short lifetimes. 

 Currently, the mechanism by which hydroxyl radicals are involved in the onset of 

many illnesses, particularly with regard to lipid peroxidation, has yielded some 

controversy in the literature. Conventional studies which generate hydroxyl radicals with 

Fenton chemistry through bolus additions of iron and hydrogen peroxide do not mimic 

conditions found physiologically because there is a steady-state concentration of 

hydrogen peroxide concentration found in normal cellular systems. Also, former reports 

that used fluorescent fatty acids or free probes intercalated within liposomal 

membranes did not have the probes covalently attached to the phospholipids making 

up the liposomes. Thus, the actual placement of the probes over the analysis time may 

vary with experimental conditions.  

The objective of this research project was to prepare, characterize, and employ 

liposomes as models for cell membranes during free radical oxidation.  



 x

Also, compared to the popularly-used technique of electron spin resonance, 

(ESR), our aim was to use a fluorescence-based approach which yielded the advantages 

of high sensitivity, fast analysis time, and less expensive equipment requirements.  

 Degradation of fluorescently-tagged liposomes with probes covalently bound to 

the phospholipids was correlated with the ability of hydroxyl radicals and other possible 

reactive oxygen species to penetrate into the liposomes to deeper into the lipophilic 

layer. However, alone this experimental setup may not fully define the mechanistic role 

of hydroxyl radicals in lipid oxidation. Thus, a complementary approach embracing the 

use of MALDI-TOF mass spectrometry, lipophilic scavenger studies, and the effects of 

cholesterol and temperature allow a deeper understanding of the radically-driven 

oxidation of lipids. It was determined that hydroxyl radicals were generated and reacted 

with three fluorescent probes. 

 

 

 

 

 

 

 

 

 

Keywords: liposomes, free radical reactions, Fenton chemistry 
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Chapter 1. INTRODUCTION 

Section 1.1. Reactive Oxygen Species 

A free radical is defined as any species that has one or more unpaired electrons. 

This definition includes the hydrogen atom, some transition elements and oxygen, 

which itself is a biradical.1 If molecular oxygen is reduced by a single electron it 

generates superoxide. The formation of superoxide is very favorable owing to the 

biradical formation of molecular oxygen.  Once molecular oxygen abstracts an electron 

during the aerobic events constantly occurring in the human body, it can go on to help 

generate hydrogen peroxide through the Haber-Weiss reaction.2 If superoxide picks up 

another electron, it generates the peroxide ion which is not a radical. This peroxide ion 

quickly gets protonated to generate hydrogen peroxide. In the course of these serial 

reactions, hydrogen peroxide can undergo dismutation generating superoxide and 

water or it can react with available iron(II) to generate the toxic hydroxyl radical 

through Fenton chemistry.3 

Hydroxyl radicals are characterized as being a type of reactive oxygen species 

(ROS). Other reactive oxygen species include singlet oxygen and peroxynitrite. The 

resulting hydroxyl radical has been reported to initiate lipid peroxidation through 

reactions beginning with abstraction of an allylic hydrogen from a polyunsaturated fatty 

acid generating a lipid radical. Subsequent addition of oxygen to the carbon-centered 

radical can generate a peroxyl radical which can generate further lipid peroxidation 

through additional reactions.4 
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Section 1.2 Fenton Chemistry  

 
The discovery of Fenton chemistry, involving the generation of hydroxyl radicals 

through the oxidation of iron (II) by hydrogen peroxide and a host of other related 

reactions have been credited to Henry J. Fenton 5, 6with further definition of this 

chemistry being investigated by Haber and Weiss.2 The Fenton reaction,  

 Fe+2   + H2O2                                        Fe+3 + OH• + OH-           Equation 1.1 

given by Equation 1.1 has been used to describe the generation of hydroxyl radicals, 

but the Fenton process is actually a set of reactions that occur together. Some of the 

additional reactions that occur include:7 

Fe+3 + H2O2                            Fe+2 +H+ + HO2•          Equation 1.2 

Fe+3 + HO2•                           Fe+2 +H+ + O2                      Equation 1.3 

Fe+2  + HO2•                           Fe3+ + HO2-                   Equation 1.4 

Fe+2 + OH•                           Fe+3 + OH-                                Equation 1.5 

H2O2 + OH•                            H2O + HO2•                   Equation 1.6 

Equations 1.2 and 1.3 show how iron is catalytically regenerated. Equations 1.5 and 1.6 

show what happens at high concentrations of iron (II) and H2O2 where both effectively 

scavenge the hydroxyl radical. Hydroxyl radical scavengers can also affect the rates of 

the above reactions by changing the concentration of reactants. Some of these 

reactions occur with the formation of a second radical and thus may continue to 

propagate free radical reactions until two radicals react with each other to form non-

radical products. 7 
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Section 1.3. Fenton Chemistry in Biological Systems 

Reactive oxygen species can be formed at various places in the human body, but 

the mitochondria are the primary source of superoxide and hydrogen peroxide in cells. 

Superoxide in the mitochondria will generally undergo superoxide dismutation due to 

action of the enzyme superoxide dismutase. The two main factors controlling oxygen 

radical production is oxygen tension and concentration of partially reduced 

mitochondrial components. Oxidative stress occurs when electrons “leak” outside of the 

mitochondrial membrane.4, 8  Physiologically much of the iron required to catalyze 

Fenton-generated hydroxyl radicals are bound to storage proteins such as transferrin, 

ferritin or hemoglobin and do not exist “freely” 8.  However, “free” iron also referred to 

as non-transferrin bound iron (NTBI) may exist. Chelation of this “free” iron by citrate 

or albumin usually stabilizes the iron, and the concentration is usually 1-10µM. 9 10, 11 

 Recent reports have shown that under oxidative stress “bound” iron can be 

released from these storage proteins and even at low concentrations, less than 10µM 

iron can act as the catalyst needed to generate hydroxyl radicals in the presence of a 

steady-state concentration of hydrogen peroxide, which itself has been shown to 

penetrate cell membranes freely due to its uncharged state and can participate in cell 

apoptosis at 0.3µM.10 

 

 

 



 4

Section 1.4. Techniques to measure hydroxyl radicals and other reactive 

oxygen species 

 Hydroxyl radicals have been measured in lipid phases using a variety of 

techniques. Measuring hydroxyl radicals directly has proved to be challenging because 

of their short lifetimes. Electron paramagnetic resonance has been touted as one of the 

most direct methods to measure hydroxyl radicals. 12 Hydroxyl radical formation has 

previously been measured with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) 

while observing the ability of iron chelates to penetrate into bulk lipid phases.  Although 

they were certain that hydroxyl radicals were formed in oleic acid, in lipid esters the 

formation of hydroxyl radical adducts was uncertain. It was also shown that due to the 

short lifetimes of hydroxyl radicals that they were most likely to exist within lipid phases 

if they were formed there instead of the exterior environment. Hay and co-workers 

designed new spin traps that would be anchored at specific depths within the 

membrane of large unilamellar vesicles.13 The spin traps were highly lipophilic and were 

used to position the nitrone trap deep within the lipid bilayer. However, the spin traps 

were not covalently attached to the phospholipids so some “wagging and bobbing” of 

the spin traps were detected. 

 Braughler and co-workers14 studied whether ferrous iron was oxidized in the 

presence of various medium compositions and in the presence of lipid. Their results 

revealed that ferrous iron oxidation was significant in the presence of phosphate or 

ethylenediaminetetraacetic acid (EDTA).  The products of ferrous iron and ferric iron, 

was reported to be recoverable in the presence of the reducing agent ascorbic acid. 
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However, it was shown that in the presence of liposomes, membranes, micelles and 

fatty acids, the recoverable efficiency of ferrous iron was reduced to less than 50%.  It 

is interesting to note the result that commercial lipids are unavoidably contaminated 

with lipid hydroperoxides on the order of 0.02 to 0.1%. Moreover, the authors 

suggested that oxidation of ferrous iron by lipid hydroperoxide and also hydrogen 

peroxide is more complex than simple ferric iron which can not be easily reduced.14 

Section 1.5 Lipids, Micelles, and Liposomes 

 Lipids are separated into three general classes, free fatty acids, triacylglycerols 

and phospholipids.  The free fatty acids are long chain aliphatic carboxylic acids which 

can be saturated or unsaturated. The common types of saturated fatty acids contain an 

even number of carbon atoms ranging from 12 to 22 15. Phospholipids are the primary 

components of cell membranes. They are composed of a dialkyl-, diacyl-, or acylalkyl-

glycerol esterified to phosphate which in turn is bonded to a variety of polar groups, 

such as choline16.Their structures include variations in the nature of the polar head 

group and acyl chains. Myristic, palmitic and stearic acids are three common saturated 

free fatty acids that are denoted 14:0, 16:0, and 18:0 because they contain 14, 16 and 

18 carbon atoms with no double bonds.16 Some common unsaturated free fatty acid 

which contain double bonds are oleic acid denoted (18:1) because it has 18 carbon 

atoms and one double bond, linoleic acid (18:2), linolenic acid (18:3), arachidonic acid 

(20:4), eicosapentaienoic acid (20:5) and docosahexaenoic acid (22:6).  
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Figure 1.1 Example of fatty acid, triacylglycerol, and phospholipids, respectively 

 a.) palmitic acid (fatty acid) 

CH3-(CH2)14-COOH 

b.) triacylglycerol 
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c.) phospholipid, dimyristoylphosphatidylcholine  
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O-O

N+

O

OH  
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The unsaturated free fatty acids commonly occur in the cis formation separated by a 

single methylene group. However, some trans unsaturated fatty acids do occur to a 

small extent such as elaidic acid which has the same denotation as oleic acid except 

that it occurs in the trans rather than cis formation.  Some of the unsaturated free fatty 

acids, such as linoleic and linolenic acids, are noted as being essential nutrients because 

they are not synthesized in the body. Moreover, docosahexaenoic acid from fish and 

algae has been included in infant formula to improve visual and brain functions 17. 

Triacylglycerols are composed of fatty acids esterified to glycerol. They are the 

main constituent of vegetable oils and food lipids and are important storage lipids. In 

contrast, phospholipids are fatty acids esterified to glycerol which contain phosphoric 

acid and organic bases. Phospholipids constitute the major component of cell 

membranes and liposomes15. 

Micelles are composed of an aggregate of surfactant molecules where the 

surfactant is composed of a single polar headgroup and a single fatty acid chain. 

Micelles were used as a substrate to study the oxidation of methyl linoleate in  

tetradecyltrimethylammonium bromide (TTAB) and  sodium dodecyl sulfate (SDS) 

solutions. Results were measured using UV spectroscopy and electrospray mass 

spectroscopy. 18 

Interestingly enough, Fe(II) was able to catalyze oxidation of methyl linoleate in 

the acidic TTAB media but not the basic SDS media. Moreover, Fe(II)/H2O2 was able to 

catalyze oxidation of methyl linoleate in TTAB but not in SDS micelles.  
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In addition, Fe(II)/ascorbic acid was able to catalyze methyl linoleate in SDS but 

not in TTAB micellar solutions. In summary, the Fe(II)/Fe(III) couple was necessary to 

oxidize the methyl linoleate at the acidic pH of the TTAB micellar solutions. Also, 

ascorbic acid can behave as an antioxidant and pro-oxidant and the formation of an 

iron/ascorbate complex was suggested.18 

In a related study19, the oxidation of methyl linolenate based on its physical state 

in octadecane oil-in-water emulsions was investigated. Also, the effect of pH, iron 

concentration, emulsifier type and cooling rate on the oxidation of methyl linolenate 

was determined. The results revealed that oxidation rates were higher with solid 

octadecane compared to the liquid emulsions, In addition, higher iron concentrations 

and lower pH were more favorable for oxidation rates of octadecane. The authors 

attributed the behavior to the migration of methyl linolenate to the surface of the oil in 

water crystalline octadecane where it could interact with the iron in the aqueous media 

to a greater extent.19 

Section 1.6. Liposomes as models for cell membranes 

Liposomes were first introduced by A.D. Bangham and co-workers in 1965 and 

have been used frequently in experimental studies to garner a deeper understanding 

into the mechanisms governing lipid peroxidation 20  

The suitability of using liposomes as models for cell membranes is proven by 

their composition of one or more phospholipids which is found to constitute the bulk of 

cell membranes and their heterogeneous nature, with both hydrophobic and hydrophilic 

components. 21-25  



 9

Liposome systems are convenient to use because the effect of pH and 

temperature can easily be monitored 26 In addition, incorporating hydrophobic and 

hydrophilic probes within the hydrophobic bilayer or encapsulated aqueous interior is 

straight-forward. The advantages of a liposomal model also include a simplified 

construct without the complexity of authentic cell membranes which also contain 

proteins, DNA, and other important biomolecules which could make interpretation of 

experimental findings complicated by their interferences. Obviously the simplified model 

is limited in that it may not represent a typical cellular membrane in all respects and the 

liposomes should always be prepared fresh to avoid autoxidation of the lipids.  

However, liposomal systems can be used to give introductory insight towards and 

explanation of the complex mechanisms that govern lipid oxidation and may also be 

used to create benchmarks for experimentation involving complex cellular systems27. 

Many synthetic methods are currently available to generate liposomes.28, 29 In a 

method first introduced by Bangham,20 liposomes are formed spontaneously when the 

acyl chains of a lipid film, created by evaporation of the solvent by a gentle stream of 

nitrogen or rotoevaporation, interact through hydrophobic interactions forming a bilayer 

which encapsulates an aqueous interior.  

One set of polar headgroups are simultaneously directed toward the aqueous 

interior while the other set is directed toward the outer aqueous medium.  One 

advantage of this method is the absence of any alcohols which could affect the 

permeability of the generated liposomes 30, 31.  
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 Initially, multilammelar vesicles (MLVs) are formed which are characterized by 

multiple concentric bilayers with each bilayer encapsulating aqueous interiors at 

increasing diameters, though liposomes have also been shown to adopt tubular shapes 

as well. The spacing between each bilayer is established by a balance of the Van der 

Waals, electrostatic and hydration forces between adjacent bilayers.20 However in most 

applications employing lipsomes these MLVs are subjected to an extrusion process to 

generate unilamellar liposomes which have a single bilayer 29. During the extrusion 

process, the MLVs are taken up by a gas-tight syringe (in many cases having a volume 

of 1mL) and this suspension is passed back and forth through a filter housing 

containing a polycarbonate membrane which is size exclusive (in many cases having a 

diameter of equal or lesser value than 100nm) to a second gas-tight syringe of the 

same volume as the first syringe. Multiple odd passes are performed to ensure 

unilamellarity without contamination from larger vesicles on even passes 27. These 

unilamellar liposomes are labeled small (diameter of 0.02-0.05µm) or large (diameter of 

0.06µm or greater.  

Liposomes, also known as vesicles, have been previously used as models for cell 

membranes due to their similarity in composition and behavior to cells. Liposomes are 

generated spontaneously when phospholipids are added to an aqueous environment 

with agitation.   
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 Entropically driven forces cause the phospholipids to line up tail-to-tail generating 

a spherical hydrophobic bilayer structure which encapsulates water where one set of 

the hydrophilic polar head groups are directed to the center and the other polar head 

groups are directed to the outer aqueous medium. The hydrophobic bilayer of the 

liposome, in addition to phospholipids, may contain cholesterol, proteins or other 

additives to mimic conditions commonly found in cells. Both the lipid bilayer and the 

aqueous interior have been previously labeled with fluorescent probes in drug-delivery, 

and biosensor studies.27 
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Figure 1.2 Phospholipid, lipid bilayer, and unilamellar and multilamellar 

                   liposomes. 
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Section 1.7. Characterization of Liposomes 

Typical characterization methods used to evaluate lamellarity of liposomes include 

electron microscopy, 1H, 13C and 31P NMR, dyanamic light scattering, and digital 

fluorescence microscopy.  

Electron microscopy can be used to yield information on the size, size distribution, 

volume distribution and the lamellarity of the liposomes by bombarding the sample with 

electrons26, 29. In NMR studies information on the orientation of the fatty acids and the 

polar headgroups, packing density, and distribution of lipids in the inner and outer 

layers can be obtained.32, 33. In dynamic light scattering34, also known as photo-

correlation spectroscopy, a laser source is used to measure the scattering of a dilute 

suspension of liposomes in which the particles are assumed to be moving but are 

independent entities which do not interact with each other. Upon taking a series of 

measurements, a histogram can be generated showing the size distribution of the 

liposomes. A unimodal histogram suggest unilamellar liposomes are present, with the 

average hydrodynamic radius (RH) calculated over a series of measurements signifying 

the average radius of the particles and the polydispersity term (polyd) giving a measure 

of the standard deviation in the size distribution. In digital fluorescence microscopy, 

whether or not the liposomes are aggregated is assessed.Images can be taken of the 

fluorescent liposome at their excitation and emission wavelengths.  

Section 1.8. Liposomes: Phase Transition Temperature 

The phase behavior of liposomes is regulated by the same properties of the 

phospholipids constituting them35.  
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Specifically, a phase transition temperature (Tm) exists separating a more-ordered solid-

gel phase below Tm from a more fluid liquid-crystalline temperature above Tm.  

In the solid-gel phase, the head groups are closely packed with very little spacing 

between the acyl chains which are positioned in a tilted position. In contrast, the liquid-

crystalline phase is characterized by more spacing between the polar head groups and 

acyl chains.   

At the phase transition temperature, a combination of the solid-gel and liquid-crystalline 

phases exist with large mass defects within the bilayer. It was previously reported by 

Kraske and co-workers36 that an uncharged molecule, glucose, was able to penetrate 

dimyristoylphosphatidylcholine liposomes to the greatest extent at the phase transition 

temperature rather than at the maximum temperature examined. 
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Figure 1.3 The Phase Transition of Phosphatidylcholine 
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Section 1.9. Lipid Oxidation 

 Lipid Oxidation is a topic that spans many fields including biology, free radical 

chemistry, nutrition, and biochemistry. It has been studied for over sixty years and yet 

many problems still remain unresolved. In vivo mechanisms of lipid peroxidation, the 

effects of antioxidants including phytochemicals, and the mechanisms of 

polyunsaturated lipid nutrition still remain a mystery. Lipid oxidation refers to the 

oxidation of unsaturated fatty acids and their derivatives. These oxidation reactions 

generally occur when the lipids are exposed to air and there is an imbalance between 

pro-oxidant species such as hydroxyl radicals, superoxide, hypochlorous acid, hydrogen 

peroxide, and singlet oxygen compared to antioxidant species such as vitamins A, D, E, 

and K.  

 In biological systems, only hydroxyl radicals,37-39 and high oxidation states of iron 

such as the ferryl iron, 40 peroxynitrite,3  and nitrogen dioxide41  have been shown to 

initiate lipid oxidation. Superoxide and hydrogen peroxide have not been shown to 

initiate lipid oxidation unless through the Haber-Weiss mechanism which includes 

formation of hydroxyl radical. 

Section 1.10. Free Radical Reactions 

The free radical reactions that lipids engage in are largely due to the pi electrons of 

unsaturated lipids.15 This reactivity is due to the pi electrons being of lower energy 

compared to sigma electrons. The chain reaction mechanism of free radical reactions 

occurs in three steps: initiation, propagation, and termination.   
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The lower energy of pi electrons makes them accessible for hydrogen abstraction, 

addition and elimination reactions, fragmentation reactions, rearrangement reactions, 

disproportionation reactions, and oxidation-reduction reactions, all of which can be the 

initiating start of free radical reactions. Propagation reactions occur when free radicals 

react to form new free radicals. The free radical reactions are ended when two radicals 

combine to form non-radical products.15  

Taking a look at these reactions more closely, initiators (I) such as singlet oxygen, 

superoxide, and hydroxyl radicals can abstract a hydrogen from unsaturated lipids (LH) 

generating a lipid free radical (L•).  

                                   LH +I                            IH + L•            Equation 1.7 

The propagation reaction where oxygen (O2) reacts with the lipid free radical is very 

fast which generates a lipid peroxyl radical (LOO•).  

                                L•  + O2   LOO•             Equation 1.8 

 

Then this peroxyl radical can react to form hydroperoxides (LOOH) and another lipid 

radical (L•). 

                             LOO• + LH                        LOOH + L•                Equation 1.9 

The termination reaction occurs when two free radicals react to form non-radical 

products such as two lipid peroxyl radicals reacting together. 

                   LOO•  + LOO•                     non-radical products   Equation 1.10 

A termination reaction can also occur when a radical reacts with an antioxidant which 

donates an electron or hydrogen atom. 
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             LOO•  + A                                      LOOH + A•           Equation 1.11 

Antioxidants are defined as substances which can attenuate or prevent the oxidation of 

a substrate when it is present in small amounts relative to the amount of the substrate.  

There are numerous ways an antioxidant can affect lipid peroxidation including having a 

decrease in oxygen concentration, scavenging initial radicals, chelating metal catalysts, 

decomposing radical products and breaking the chain reactions that abstract hydrogens 

or electrons.10, 42 These former reactions are by no means all of the chain reactions 

because alkoxyl radicals, alkyl radicals and other radicals and products can be 

generated during this free radical process. 

The kinetics of the above reaction scheme are complicated in the presence of trace 

metals such as copper or iron because metals can catalyze the decomposition of 

unsaturated lipids by electron transfer, 

                     M(n+1)  + LH                           Mn++ L• + H+       Equation 1.12 

or by one-electron redox reactions, 

                       Mn + ROOH                     Mn+1 + RO• +OH-    Equation 1.13 

                       M n+1 + ROOH                     Mn +ROO• +H+   Equation 1.14 

Another complicating factor exists in heterogeneous systems where metals and lipid 

components exists in different phases. 
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SECTION 1.11. Antioxidants: Endogenous and Exogenous 

In the human body there are endogenous enzymes and water and lipid soluble 

antioxidants which maintain the delicate balance between pro-oxidant and antioxidant 

species. Peroxisomes are endogenous enzymes located in the mitochondria which 

convert oxygen radicals into non-deleterious species.  

Superoxide dismutase, which is in the intracellular and extracellular media, controls the 

amount of superoxide in the body converting it into hydrogen peroxide. In addition, 

catalase and glutathione decompose hydrogen peroxide and hydroperoxides, 

respectively. 43 

 Some non-enzymatic antioxidants also exist and are classified as being water-

soluble and lipid-soluble. Some water-soluble antioxidants include ascorbic acid, uric 

acid, or glutathione. Some lipid-soluble antioxidants include vitamin E and beta-

carotene. Both the water and lipid-soluble antioxidants’ main role is to scavenge free 

radicals43.  Vitamin E is composed of different tocopherols and tocotrienols which have 

been shown to behave as an antioxidant and scavenge two molecules of peroxyl 

radicals. However, there is also evidence to support the pro-oxidant activity of Vitamin 

E under certain reaction conditions. 44 Moreover, though Vitamin C is a poor antioxidant 

alone, in the presence of Vitamin E, a synergistic affect occurs where the tocopheroxyl 

radicals formed during radical scavenging is reduced. This allows for propagation of 

chain reactions to be reduced. 

 Exogenous antioxidants made available through a diet high in fruits and 

vegetables have been reported to reduce disease risk.45   
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Flavonoids, another type of exogenous antioxidants, usually react by free radical 

scavenging. However, flavonoids can also become pro-oxidants under certain 

experimental conditions by greatly accelerating the production of hydroxyl radicals from 

H2O2 in the presence of Fe+3-EDTA at physiological pH. 

 Fukuzawa et al.46 investigated the oxidation of alpha-tocopherol in micelles and 

liposomes by the hydroxyl, peroxyl, and superoxide free radicals. . In this study, 

samples underwent radiolysis of the aqueous solutions with gamma rays. Micelles and 

liposomes were both charged and uncharged. Hydroxyl radicals were effective oxidants 

of both the micelles and the liposomes.The perhydroxyl ion was also effective as an 

oxidant of as long as the pH was acidic. The alpha tocopherol, due to its low water 

solubility was found in the micelles and the liposomes. The alpha tocopherol in the 

positively charged micelles and liposomes were oxidized as a higher rate by superoxide 

than in uncharged or negative liposomes or micelles.  

 Alessi and co-workers47 investigated the similarities and differences between the 

kinetics of peroxidation of vitamin E-containing liposomes and human low-density 

lipoprotein. Interestingly enough, it was found that for tocopherol-mediated 

peroxidation (TMP) to occur, the liposomes must exists as isolated systems to protect 

the tocopherol radical. This premise was supported by the highly lipophilic character of 

the vitamin E, where it will prefer to stay inside the liposome it was generated in.  
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Section 1.12. Cholesterol and its oxidation 

 Cholesterol has been widely studied due to its oxidation products that have been 

implicated in adverse health effects. Cholesterol is an apolar lipid constituent of cell 

membranes. It is present in large amounts in the lipoproteins of blood and is the 

precursor for the generation of glucocorticoids, sexual hormones, and vitamin D48. The 

oxidation products of cholesterol are commonly called oxysterols or cholesterol oxides. 

The oxidation products can be generated enzymatically or non-enzymatically in 

biological systems. 

 The allylic 7-position carbon is susceptible to oxygen attack to produce its 

hydroperoxides. These oxides have been observed in low-density lipoprotein (LDL), 

oxidized in vitro, rat skin, marine animals and plant tissues. Cholesterol oxidation in 

solution or in aqueous media is initiated by hydrogen abstraction to produce a 

delocalized three carbon allylic radical followed by oxygen attack mainly at carbon 7 to 

produce the epimeric hydroperoxy products at 7-alpha and 7-beta, with the 7-beta-

hydroperoxide dominating.  

 It is interesting to note that oxygen attack at carbon position 4 is not favored 

due to steric hindrance by the trialkyl-substituted carbon-5 and the neighboring effect 

of the OH group on carbon-3.  

Cholesterol oxidation can also occur in the solid or crystalline phase generating the 25-

hydroperoxycholesterol product through a side chain oxidation scheme involving the 

tertiary carbon-25 position. 15This 25-hydroperoxycholesterol product can be thermally 

decomposed to generate 25-hydroxycholesterol.  
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Moreover, two dihydroperoxides, 3-beta-hydroxy-20R- and 20S-cholesterol, have been 

isolated in autooxidized bulk cholesterol as well. The monohydroxides of cholesterol 

also decompose into complex mixtures of hydroxyl, keto, epoxyene and ketodiene 

secondary products that have received considerable attention because of their biological 

significance.15 
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Figure 1.5 Structure of Cholesterol 
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Section 1.13. Methods to Determine Amount of Lipid Oxidation 

Section 1.13A. Peroxide Value 

 The peroxide value, or the amount of peroxides in a sample, can be determined 

empirically using an iodometric titration, colorimetrically or electrometrically. This 

method requires typically a gram or more of potassium iodide to perform the titration. 

Its results are affected by light, air, and iodine reaction with double bonds. In addition 

there is a ferric thiocyanate method to determine oxidation which only requires 0.1g 

sample sizes. This method typically yields higher values than the iodometric technique 

on the order of 1.5 to 2 times the relative peroxide value. The peroxide value technique 

is very sensitive to the sample history with the peroxide value reaching a maximum with 

degree of oxidation according to temperature, degree of polyunsaturation, exposure to 

light and metals.15 

Section 1.13B. Conjugated Dienes 

 The conjugated diene method of measuring lipid oxidation relies on the strong 

absorption of conjugated dienes at a maximum of 234nm. It offers the advantage of 

being a direct, sensitive method to follow lipid oxidation, and is suitable for monitoring 

early stages of lipid oxidation. However, it is of limited utility at high stages of lipid 

oxidation due to secondary products absorbing in the ultraviolet range, such as 

carbonyls and conjugated trienes.  
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In addition, high temperatures, metals and light can yield low values due to 

decomposition of the conjugated dienes. Moreover, interferences such as partially 

hydrogenated fats are a limitation of this method. 15 

 

Section 1.13C. Carbonyl Compounds 

The amount of total carbonyls in a sample can be determined by its reaction with 

2,4-dinitrophenylhydrazine (2,4-DNPH), which yields colored hydrazone  derivatives that 

are measured by an absorbance of  430-460nm, and expressed as nmol hexanal/kg 

sample.15   

Section 1.13D. 2-Thiobarbituric acid (TBA) value 

 The  2-thiobarbituric acid value test is an older, more widely used test than some 

of the other techniques. This test is a colorimetric assay to measure oxidation products 

in biological systems.  To perform this test, it is necessary to observe the pink product 

that absorbs in the range of 532-535 nm.  This signal is due to the product formed 

upon reaction of TBA with oxidation products of polyunsaturated lipids. One limitation 

of this method is that it is not specific, meaning a positive signal is produced by a large 

number of secondary oxidation products, these products are referred to as TBA-reactive 

substances or TBARS. The test is standardized by malondialdehyde. 15 

A variety of factors affect the production of the pink color in the TBA test including 

temperature and heating time, pH, metal ions, and antioxidants. The selectivity of the 

method has been enhanced by adding a high-performance liquid chromatography step.  
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Section 1.14A. Fluorescence and Fluorescence-Based Methods  

Fluorescence is a luminescent analytical technique which involves analytes 

absorbing a photon of light followed by emission of a photon of light at a longer 

wavelength.49 Molecules which undergo fluorescence are called fluorophores. 

Fluorescence usually occurs within aromatic and heterocyclic compounds.  

The three luminescent techniques include fluorescence, phosphorescence and 

chemiluminescence all of which are characterized by the excited state.  Fluorescence 

involves molecules absorbing energy from a ground state to an excited singlet state, 

partially relaxation, and then emission of a photon to return the molecules back to the 

ground electronic state. In phosphorescence, the molecule returns to the ground state 

following emission of a photon from the spin-forbidden triplet excited state, which 

involves a change in spin.  In chemiluminescence, a chemical reaction generates an 

electronic excited state which subsequently emits a photon to return to the ground 

state 49Fluorescence is short-lived with a lifetime existing at less than 10-5 seconds. In 

the case of phosphorescence the change of spin leads to longer lifetimes at several 

seconds or longer. An advantage of fluorescence is the high sensitivity with detection 

limits one to three orders of magnitude lower than absorption spectroscopy. Moreover, 

fluorescence has long linear concentration ranges compared to absorption 

spectroscopy. In addition, fluorescence also has greater selectivity than absorbance. 
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The Jablowski diagram outlines the possible pathways a molecule can take to return to 

the ground state following absorption of electromagnetic radiation. Absorption of light is 

signified by A from a ground singlet state to an excited singlet state signified by S1 or 

S2.. Each of the singlet excited states is composed of a number of vibrational energy 

levels. When a molecule returns to a lower excited state of the same spin such as S1 

from S2, without emitting a photon the process is called internal conversion, signified by 

IC.  Fluorescence emission signified by F occurs when light is emitted as a molecule 

returns to the ground state from a singlet state of the same spin, So, the singlet ground 

state. The light is emitted at a longer wavelength due to energy loss during the excited 

state lifetime. This process is known as the Stokes shift.  

Phosphoresence signified by P involves a molecule returning to a singlet ground 

state, So from a spin forbidden excited triplet electronic state signified by T1. Since 

fluorescence is spin favored over phosphorescence, it takes place over a shorter time 

interval (1E-5 to 1E-8 seconds) compared to (1E-4 seconds to hours). Vibrational 

relaxation is another radiationless phenomenon which occurs when excited molecules 

transfer energy to other molecules through collisions over a short time scale (<1E-12 

seconds).  
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Figure 1.6 Jablowski Diagram 
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Section1.14B. Fluorescence Spectra 

A fluorescence emission spectrum is taken when the excitation wavelength is held 

constant (often at the absorbance maximum), and the emission wavelength is scanned. 

The excitation spectrum is taken when the emission wavelength is held constant (often 

at its maximum), and the excitation wavelengths is scanned. The Stokes shift is the 

peak-to-peak distance of the maxima of the excitation and emission spectra. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 30

 

 

 

 

 Figure 1.6 Absorbance, Fluorescence emission and the Stokes shift 
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There is an inherent benefit of fluorescence over absorbance because the fluorescence 

method is based on a dark background, whereas in absorbance, the background is the 

highest observed light intensity.  In a typical fluorescence spectrometer, the detector is 

positioned at a 90 degree angle relative to the light source. This configuration 

minimizes transmitted and reflected light reaching the detector. The signal to noise 

enhancement is significant and the detection limit is lowered by a factor of 10000 

compared to the 180 degree setup. The excitation and emission monochromators are 

wavelength filters which allowed specific wavelengths to be selected before and after 

fluorescence events50. In addition, the sensitivity of the fluorescence instrument is 

high because the process of fluorescence is cyclical, with the same fluorophore being 

excited and detected.  In fact, a single fluorophore can yield thousands of detectable 

photons. The cycling does not help the absorbance technique because the detector is in 

line with the light source. 

The excitation and emission spectra are sensitive to the type of solvent, 

microenvironment and chemical structure of the fluorophore.49  
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Figure 1.7. General schematic of a fluorimeter with 90º setup. 
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Section 1.15. Effect of Chelator on Fenton Chemistry 

 One of the most commonly used chelators with Fenton chemistry is 

ethylenediaminetetraacetate or (EDTA). Like many other chelators, the reactivity of 

EDTA is strongly dependent upon the chelator-to-metal ion ratio. Thus, it can inhibit or 

enhance the lipid oxidation of detergents and liposomes.  The chelation of iron can alter 

its redox potential, solubility, and reactivity in reactions leading to the initiation of lipid 

peroxidation51. It was determined that chelation of iron (II) by EDTA led to a rapid 

autoxidation of iron (II). The rate of autoxidation increased up to equimolar 

concentrations of EDTA-to-iron (II).However, when iron (II) was chelated by 

(Adenosine diphosphate) ADP it did not result in a rapid oxidation of iron (II).  

 

Section 1.16. MALDI-TOF Mass Spectrometry of Phospholipids 

 GC/MS methods have been used to study phospholipids but often require time-

consuming, labor-intensive derivitization methods which do not maintain the structural 

integrity of the phospholipids. With the introduction of soft ionization methods, 

phospholipids can now be studied without prior chemical alteration of the analyte. 

Phospholipids have been previously studied using matrix-assisted laser desorption 

ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization 

(ESI MS). The advantages afforded by using MALDI-TOF MS compared to electrospray 

ionization MS are fast sample preparation and analysis time, ease of use, simpler 

spectral interpretation, and insensitivity to impurities. MALDI-TOF MS also offers high 

sensitivity and mass accuracy.  
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A note of interest is that the ion yield from MALDI-TOF studies are not highly 

dependent on the degree of saturation of the phospholipids as opposed to ESI. Also, 

compounds with a lower molecular weight are more sensitively detected with MALDI. 

With ESI the interpretation of the low mass region is not complicated by matrix peaks 

and it is easily coupled to chromatographic columns. However, quantitative studies with 

MALDI-MS are sensitive to the homogeneity of the matrix-analyte co-crystallization. 

Thus, statistical studies are essential to determine the reproducibility of the 

method.48Moreover, when using MALDI-TOF MS, it was found that the signals were 

highly dependent on the nature of the matrix, and whether or not water was a part of 

the matrix. Some of the best matrices to use include alpha-cyano-4-hydroxycinnamic 

acid, esculetin, and 2,5-dihydroxybenzoic acid.  

It was determined that the negative ion mode yielded mainly (M-H)- ions and were 

more simpler to interpret compared to the positive ion mode which led to the formation 

of the protonated, sodiated, and potassiated adducts.16 

 Post-source decay MS by Al-Saad in the positive ion mode 52of phospholipids 

showed that the nature of the cation coordinated at the negatively charged oxygen 

position of the choline headgroup had a dramatic effect on the subsequent products 

formed. The sodiated ion produced many fragment ions while the protonated ion 

contained only one fragment corresponding to the headgroup at m/z 184.  
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This difference in fragmentation is thought to stem from the binding of the proton only 

to the negatively charged oxygen while the sodium was found to associate with several 

regions of the phosphatidylcholine molecule. In addition, phosphatidylcholines were not 

detected in the negative ion mode. 

 MALDI-TOF MS has been previously used to study lipid oxidation. Oborina and 

Yappert53 compared the oxidation of stearoyl-arachidonyl phosphatidylcholine in 

sphingomyelin (SM) versus dipalmitoylphosphatidylcholine (DPPC).  The results revealed 

that oxidation was faster with the DPPC compared to the SM. The data was explained 

by the fact that SM had the slower oxidation by the hydrophobic tails of SM being more 

disordered and the SM vesicles had a tight network of H-bonds that bridge neighboring 

SM molecules and poses a stronger interfacial barrier to the passage of oxidants. 

 Shadyro and co-workers54 coupled radiation, thin layer chromatography and 

MALDI-TOF MS to study the fragmentation of cardioplin in model membranes. 

Cardioplin is found in the inner mitochondrial membrane and is a proton trap which is a 

mitochondrial enzyme involved in oxidative phosphorylation.  

When cardioplin levels decrease it can lead to programmed cell death. A mechanism 

was determined in this study from gamma-radiation on a model membrane. Two 

fragmentation products were isolated from this free radical mechanism, phosphatidic 

acid and phospatidylhydroxyacetone. This work was followed up by the iron-mediated 

free radical formation of signaling lipids in a liposome system. 55 
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The free radical mechanism involved hydroxyl radical attack on the polar headgroup of 

two starting substrates, cardioplin and galactocerebroside to generate phosphatidic acid 

and ceramide. 

 Using 31P-NMR and MALDI-TOF MS a study was done to compare the analysis of 

high-density and low-density lipoprotein. The motivation behind the study was to 

further the understanding of atherosclerosis. It was determined that 

lysophosphatidylcholine could be monitored by both techniques but only 31P-NMR could 

be used to detect chlorohydrines. The limitations of 31P-NMR was that it had low 

sensitivity and provided only a small amount of information on fatty acid composition. 56 

 MALDI-TOF MS was also used to study phosphorylated lipids in biological fluids 

using immobilized metal affinity chromatography with a solid ionic crystal matrix.57 This 

study employed a novel ionic crystal matrix composed of p-nitroaniline with butyric acid. 

Moreover, a new extraction, isolated and cleanup procedure was developed using 

ZipTip which had an immobilized metal ion affinity stationary phase. 

 
Section 1.17. Initial Rates 
 

 When complicated kinetic profiles are observed in reactive oxygen species 

studies, calculating the initial rates is often a straight-forward way to analyze the 

data. The initial rate is calculated by taking a measurement over the beginning of 

the data where the data can be analyzed with linear regression since all data is 

relatively linear over a small enough time scale58. 
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Fluorescent Probes as Reporters for Hydroxyl Radical Penetration into 

Liposomal Membranes and Lipid Oxidation 

Abstract 

The ability of hydroxyl radicals to penetrate into liposomal model membranes 

(dimyristoylphosphatidylcholine, DMPC) has been demonstrated. Liposomes were 

prepared then characterized with digital fluorescence microscopy and dynamic light 

scattering following extrusion to determine liposomal lamellarity, size, and shape. 

Hydroxyl radicals were generated in the surrounding aqueous media using modified-

Fenton reagent (hydrogen peroxide and Fe2+) with the water-soluble iron-chelator, 

ethylenediaminetetraacetic acid (EDTA).  High and low doses of radical were used, and 

the low dose was achieved with physiologically relevant iron and peroxide 

concentrations.  Fluorescent probes covalently bound to the membrane phospholipid 

were used, including two lipophilic pyrenyl probes within the membrane bilayer and one 

polar NBD probe at the water-membrane interface.  Radical reactions with the probes 

were monitored by following loss of fluorescence and by observing oxidation products 

via matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-

TOF MS).  Differences in the probe position within the membrane were correlated with 

the reactivity of the probe in order to assess radical access to the site of the probe.  For 

all probes, reaction rates increased with increasing temperature.  Within the membrane 

bilayer, reaction rates were greater for the probe closest to the membrane-water 

interface.  Cholesterol protected these probes from oxidation.   
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Kinetic models, scavenger studies, and product identification studies indicated that 

hydroxyl radical reacted directly with the in-membrane probes without the mediation of 

a secondary radical. 

 

Introduction 

Hydroxyl radicals are a class of reactive oxygen species (ROS) which have been 

implicated in the onset of many illnesses including Parkinson’s1 and Alzheimer’s2 

diseases, cancer3 and atherosclerosis.4  Their toxicity is manifested physiologically 

through attack on biomolecules5, 6 in close proximity to the site of their formation. A 

recent review by Pignatello7 and co-workers outline the typical reaction scheme of 

hydroxyl radicals with organic compounds. The first step of hydroxyl radical attack on 

organic molecules typically involves either hydrogen atom abstraction or addition to 

double bonds.  After initial attack by one of these mechanisms, additional reactions 

occur, often involving molecular oxygen.  However, the role of hydroxyl radicals in lipid 

oxidation of cells and liposomes has yielded some controversy.8 Previous reports have 

suggested that the high reactivity and short lifetime of hydroxyl radicals generated in 

the exterior aqueous phase of liposomes or cells exclude these radicals from being the 

direct initiators of lipid peroxidation9 and that hydroxyl radicals instead create secondary 

radicals, including peroxyl radicals, which subsequently oxidize cells.10, 11 In contrast, 

other authors have proposed that Fenton-generated hydroxyl radicals can occur in lipid 

phases, and that hydroxyl radicals can, in fact, directly initiate oxidation of lipids.12-15   
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These potential pathways for hydroxyl radical oxidation of lipids are of interest since the 

impact of hydroxyl radicals formed in various cellular regions depends on the 

mechanisms by which these radicals react with cellular material. 

The ability of hydroxyl radicals to penetrate into lecithin liposomal membranes 

intercalated with pyrene has been previously studied.16 It has been shown that hydroxyl 

radicals created in the surrounding aqueous media with pulse radiolysis can in fact 

penetrate into the liposomal membranes and react with the pyrene and lecithin in the 

hydrophobic membranes in a competitive manner. In addition, it was shown that 

hydroxyl radicals react near the phospholipid headgroup. However, these experiments 

employed pyrene as a free probe within the liposomal membrane, and therefore the 

pyrene could diffuse readily within the lipid layer. Consequently, the specific site of 

pyrene-hydroxyl radical reaction within the membrane was not known. In addition, 

varying the concentration of pyrene within the membrane in the millimolar range could 

have lead to the formation of pyrenyl dimmers within the membrane.17 

Lipid peroxidation has been formerly investigated using fluorescent pyrenyl 

probes in the presence of liposomes and lipoproteins.18, 19 A pyrenyl fatty acid and 

pyrenyl sphingosine were both shown to degrade by observing loss of  fluorescence 

when incubated with iron (II) sulfate and ascorbic acid or copper (II) sulfate only. In 

addition, the thiobarbituric acid approach was used to measure lipid oxidation. Though 

this approach is commonly used, it can be complicated by the presence of other species 

in the matrix giving rise to a false positive response for lipid oxidation. Thus, this 

method is limited by its poor selectivity.19   
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In addition, one of these investigations also added 0.1 mol% hydroperoxides (relative 

to the phospholipids) to the experimental system. The presence of these 

hydroperoxides complicated the interpretation of hydroxyl radical impact in these 

systems. 

Phospholipids covalently labeled with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) 

have been widely used to study biochemical and biophysical lipid phenomena including 

membrane organization and dynamic properties.20  Moreover, the NBD probe has been 

shown to be highly polar. Thus, this probe was used in our study for probing the 

reactivity of hydroxyl radicals at the aqueous interface of the phospholipid.21 

The fluidity of the membrane may also affect the ability of hydroxyl radicals to 

penetrate into the liposomal membrane. Kraske previously reported that DMPC 

liposomes have maximum permeability to small molecules at the phase transition 

temperature (Tm)22 compared to above and below this temperature. Thus, the effect of 

temperature on this system was also investigated in the current study. 

In this study, we utilized small, unilammellar liposomes as models for cell 

membranes due to their similar composition and structure compared to cellular 

membranes.23  The work reported here differs from previous research in that we used 

fluorophores that were covalently bound to the phospholipids. This approach allowed 

for monitoring the probe reaction with hydroxyl radical as a function of probe position 

within the membrane. In addition, our system used a Fenton approach to generate 

hydroxyl radicals in the aqueous environment exterior to the liposomes with chelated 

iron-II, since most iron present in the human body is present in a chelated form.24  
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Aqueous hydrogen peroxide was continuously added at low flow rates to liposome 

suspensions in order to generate a steady-state concentration of hydroxyl radicals, as 

similarly performed previously.25 26, 27  

 In comparison to the popularly-used ESR technique,28, 29 the fluorescence 

approach used in our study has the advantages of high sensitivity, fast analysis time, 

ease of use, and less expensive equipment requirements.  A multi-faceted approach 

embracing the enhanced specificity of MALDI-TOF-MS30, 31 and scavenger studies32 

coupled to the high sensitivity of the fluorescence studies was used to provide a deeper 

understanding of the in-membrane oxidation by hydroxyl radicals. A better 

understanding of hydroxyl radical attack on membranes can help elucidate the 

mechanistic role this radical plays in the development of some diseases. 

Experimental Methods  

Materials 

 Three separate fluorescent probes, each purchased from Invitrogen, were used 

in this study: N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (NBD-PE), 1-hexadecanoyl-2-(1-pyrenehexanoyl)-sn-glycero-3-

phosphocholine (C6-PYR-PC), and 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-

phosphocholine (C10-PYR-PC). Each of these probes has a fluorescent label covalently 

attached to the phospholipid molecule. For NBD-PE, the probe is attached to the 

headgroup, while C6-PYR-PC and C10-PYR-PC have the fluorophore attached to the tail 

group. These probes are depicted in Figure 1.  
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Ferrous sulfate heptahydrate and phosphate-buffered saline (PBS, 0.9% NaCl) were 

obtained from Sigma. Hydrogen peroxide (30% aqueous) was purchased from Fisher 

and its concentration was measured iodometrically.33 Cholesterol was purchased from 

Aldrich. Chloroform and EDTA were purchased from EM Science.  All aqueous solutions 

were prepared using Nanopure UV (Barnstead/Thermolyne, Dubuque, IA) deionized 

water with a distilled water feed to the water purifier. All reagents were used as 

received without further purification.  

Preparation of Liposomes 

Our pyrenyl-labeled liposomes characterized the penetration depth of hydroxyl 

radicals into the hydrophobic membrane. The NBD-labeled probe 34 was chosen to 

characterize its reaction with hydroxyl radical at the aqueous interface due to its high 

hydrophilicity. NBD-PE or pyrenyl-labeled DMPC liposomes were prepared using a 

modified version of the procedure reported by McNamara and Rosenzweig.35  A 40 µL 

aliquot of a 50 mM lipid cocktail composed of a 1:1 molar ratio of DMPC:cholesterol was 

placed under a stream of nitrogen overnight. To incorporate the fluorescent label, one 

of the fluorescent probes was included in the mixture prior to drying at 1 mol% relative 

to the unlabelled lipid content. Next, the film was hydrated while vigorously vortexing 

with 1 mL of 1 mM PBS. The final lipid concentration was 2 mM. The liposomes were 

extruded 9 times using an Avanti Mini-extruder with a 100 nm polycarbonate filter in 

order to remove any multilammelar liposomes present. Liposomes were used within one 

week, with storage at 4ºC. 
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Dynamic Light Scattering 

 All dynamic light scattering experiments were carried out with a Protein Solution 

Dynamic Light scattering instrument and analyzed using Dynamics Software.  Settings 

on the instrument were for aqueous buffer conditions.  For each sample, 40 

measurements were taken at a total lipid concentration of 0.2 mM. 

Digital Fluorescence Microscopy 

 All digital fluorescence images of pyrenyl and NBD-labeled liposomes were 

obtained using an Olympus IX71 inverted fluorescence microscope as described 

previously.35 A 5 µL sample of labeled liposomes with a total lipid concentration of 3.3 

µM was pipetted onto a glass coverslip and then covered with a second coverslip. The 

filter cube for imaging the C6-PYR-PC liposomes consisted of an excitation bandpass 

filter at 330-385 nm with dichroic mirror at 400 nm and emission wavelength at 429 

nm.  The filter cube for imaging the NBD liposomes consisted of excitation at 460 nm 

with a 50 nm bandpass, dichroic mirror set at 500 nm, with emission wavelength at 515 

nm. The liposome images were collected using a 10X objective with a neutral density 

filter (0.55 o.d.).  A CCD camera (Olympus DP70) was employed for digital imaging of 

the liposomes. The liposome sample was vortexed before imaging with five, 5 second 

pulses to disperse the sample. An exposure time of 0.3 s was used to acquire the 

images. ImagePro software was used for image collection. Adobe Photoshop v7.0 was 

used for manipulation of the presented images. 
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Fluorescence Studies 

 The fluorescence experiments were carried out on a Perkin Elmer LS 55 

Luminescence Spectrometer equipped with a magnetic stirrer set on low. The quartz 

cuvette path length was 10 mm (Starna Cells, Atascadero, CA).  Degradation of the 

fluorescent probes was followed by monitoring fluorescence emission at fixed excitation 

and emission wavelengths as a function of time. For pyrene, the excitation and 

emission wavelengths were set at 345 and 377 nm, respectively.  For NBD, the 

excitation and emission wavelengths were set at 463 and 536 nm, respectively.  For 

these time-based emission studies, two separate reaction protocols were used. 

 For degradation studies using high iron and peroxide loadings, a 3 mL aqueous 

solution of 0.2 mM Fe+2 and 0.2 mM EDTA was added to the cuvette. After 300 seconds 

of stirring, 1.5 M H2O2 (aq) was added continuously at 0.8 mL/hr with a syringe pump 

(kd Scientific Model 100). The total volume of H2O2 delivered during a 16 minute 

experiment was 0.23 mL. This volume was sufficiently small to not cause substantial 

changes in solution concentrations due to increased volume. Addition of peroxide was 

continued for 300 s, then a bolus addition of 300 µL of liposomes was added to the 

cuvette so that a final lipid concentration of 0.2 mM was achieved in the cuvette. All 

figures for these experiments are presented so that time zero corresponds to the time 

of addition of liposomes. 
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 Additional experiments were conducted with iron and peroxide concentrations 

near physiological conditions. For these studies, 3 mL of a buffered solution of 

liposomes (3.3 µM lipid) was added to the cuvette.  

To the cuvette were then added Fe+2 and EDTA to achieve a concentration of 0.3 µM 

for each. The solution was stirred for 600 s, then a 3 µM solution of H2O2 (aq) was 

continuously added at 0.8 mL/hr until the final volume of 0.23 mL was delivered. For 

these experiments, all figures are labeled time zero when H2O2 addition began. 

 For all experiments, the temperature of the cuvette and its contents were 

controlled by a thermostated cuvette holder. Temperatures used in this study include 

15, 23, and 35ºC. 

Biphenyl Scavenger Studies 

 Pyrenyl-labeled liposomes with varying concentrations of biphenyl were prepared 

in order to assess the effect of biphenyl as a scavenger in the lipid layer. A 40 µL 

aliquot of a 50 mM lipid cocktail consisting of a molar ratio of 1:1 DMPC/cholesterol with 

0-3 mol% biphenyl per mol of the lipid was added to a test tube and the pyrenyl probe 

(either C6-PYR-PC or C10-PYR-PC) was added at 1 mol% of the total lipid content. The 

solution was allowed to evaporate under a stream of nitrogen. The liposomes were 

reconstituted in 1 mL of 1 mM PBS buffer and extruded as described above in order to 

remove multilamellar vesicles. 
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MALDI-TOF MS Studies 

 Matrix assisted laser desorption-time of flight mass spectrometry (MALDI-TOF 

MS) was used to identify lipid and cholesterol oxidation products that were formed after 

treatment with hydroxyl radical. Aqueous lipid extracts were prepared by using a 

modified scheme from Schiller et al..36 Stock solutions of 1:1 DMPC /cholesterol were 

prepared in chloroform. 

A 300 µL aliquot of each solution was placed in a round bottom flask and rotovaped for 

2 hours at room temperature and protected from light.  Next, the flask was placed 

under a gentle stream of nitrogen overnight to remove any remaining chloroform. Lipid 

films were then reconstituted in 6 mL of 1 mM PBS buffer to give a lipid concentration 

of 1 mM while vortexing to spontaneously generate multilammelar liposomes.  

Liposomes in this study were shown to aggregate following extrusion at this high lipid 

concentration as evidenced by dynamic light scattering results (data not shown). The 

high lipid loading was utilized in order to improve the ability to detect analytes in the 

mass spectral analysis. A 1 mL aliquot of the liposome solution was placed in a quartz 

container and Fe+2 and EDTA were added to yield a concentration of 5 mM for each. 

After stirring for 300 s, 1.5 M hydrogen peroxide was added continuously at a rate of 

0.8 mL/hr. The total volume of H2O2 delivered was 0.23 mL. The sample was 

thermostatted at 15, 23, or 35C using a circulating water bath. Following Fenton 

degradation, lipids were extracted with a twofold excess of CHCl3:MeOH (2:1) as 

previously reported by Bligh and Dyer.37 Samples were then centrifuged for 20 min and 

the aqueous layer was separated. 
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 Aqueous lipid extracts were then mixed with 0.5 M 2,5-dihydroxybenzoic acid (DHB) in 

MeOH with 0.5% trifluoroacetic acid (TFA) at a ratio of 1:1 and spotted on a gold-

coated MALDI plate as previously reported by Zschornig and co-workers.38  The spots 

were allowed to air dry before MALDI analysis. Mass spectra were obtained using an 

Applied Biosystems 4700 Proteomics Analyzer 171 MALDI-TOF mass spectrometer fitted 

with a N2 laser (337nm). Spectra were internally calibrated using DMPC and DHB 

standards.  

Spectra were analyzed using Data Explorer software v4.8.  A blank consisting of DMPC 

and cholesterol only without Fenton reagent, an control with H2O2  added to liposomes 

but with no Fe+2-EDTA added, and the Fenton degraded lipid extracts were each 

analyzed separately. 

Quantitation of Hydroxyl Radical  

 Hydroxyl radical concentrations were determined in the absence of liposomes.  

Phenol degradation in aqueous PBS was followed using high performance liquid 

chromatography (HPLC).  The initial concentration of phenol was 500µM in 1mM PBS 

buffer.  An aliquot of aqueous Fe+2-EDTA was added to the sample to yield a final 

concentration of 10 mM. Hydrogen peroxide was added at a rate of 1 mL/hr using a 

syringe pump with an initial concentration of 2.0 M. The total volume of peroxide added 

was 0.2 mL. The amount of phenol degradation was determined from the peak area at 

the appropriate retention time in the chromatogram. The experiment was run at three 

temperatures 15, 23, and 35C. Pseudo first order rate constants were calculated from 

linear regressions of ln[phenol] versus time.  
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An Alltech C18 column (250 x 4.6mm, 5µm particle size) was used with a 40/60 

acetonitrile/water mobile phase adjusted to pH 3 with dilute acid.  The HPLC flow rate 

was 0.5 mL/min, and UV absorbance was measured at 254 nm.  

Results and Discussion 

Dynamic Light Scattering and Digital Fluorescence Microscopy 

The extruded liposomes were diluted to a lipid concentration of 0.2 mM with 1 

mM PBS buffer and analyzed using dynamic light scattering to determine the 

hydrodynamic radius as well as the lamellarity. For all liposomes, a monomodal 

distribution of particle sizes was observed, indicating that only unilammelar liposomes 

were present.  If multilamellar liposomes had been present as well, a bimodal 

distribution would have been observed.  Liposomes prepared without fluorescent labels 

showed a hydrodynamic radius of 62 ± 4 nm (uncertainty is confidence interval at 95% 

confidence, N = 40). For the fluorescently labeled liposomes, the measured 

hydrodynamic radii were 67 ± 5 nm, 69 ± 6 nm, and 73 ± 6 nm for NBD-PE, C6-PYR-

PC, and C10-PYR-PC, liposomes, respectively. Based on a t-test at 95% confidence, 

only the C10-PYR-PC labeled liposomes were statistically larger than the unlabeled 

liposomes. 

Fluorescence microscope images of the extruded liposomes showed no evidence 

of aggregation for liposomes prepared at a 0.2 mM total lipid concentration (see Figure 

2). These data are consistent with the results from dynamic light scattering. 
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Figure 2.2.Digital Fluorescence Microscopy Image of C6-PYR-PC 

Liposomes 
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Fluorescence Studies 

Figure 3a shows the loss in fluorescence upon degradation of NBD-PE liposomes 

with Fenton reagent at three different temperatures. In these experiments, labeled 

liposomes were added at t = 0 to preformed Fenton reagent as discussed in the 

experimental section. The data reveals an enhancement in the rate of degradation of 

the NBD-PE probe as the temperature increased.  Initial rates were approximated from 

the slope of fluorescence vs time plots during the time period of 30-230 s (Table 1).  

Very good linearity was observed in all traces during this time period (R2 > 0.995, N = 

100).  The first 30 seconds was not used in order to allow the system to stabilize after 

addition of the liposomes.  For these experiments, the data is truncated around 800 s 

due to interference from increasing background chemiluminescence.39  This background 

emission was observed in the absence of fluorescent probes (see Figure 4) when high 

concentrations of iron and peroxide were used, and the background emission was more 

severe at higher temperature. The decrease in the slope of the 35ºC trace at longer 

times in Fig. 3a is at least partly due to interference from this background signal. 

Nevertheless, the data in Fig. 3a clearly indicate a substantial increase in NBD oxidation 

by hydroxyl radical with increasing temperature.  Comparing the slopes of these data 

from 30-230 s, a 42% increase in NBD reaction rate was observed upon increasing from 

15 to 23ºC.  This change was statistically significant based on a t-test at 95% 

confidence. Although the slope for the 35ºC experiment is less certain, the observed 

rate increased by 113% compared to the 15ºC experiment (statistically significant 

based on a t-test at 98% confidence).   
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Table 2.1.  Approximate initial rates of fluorescence loss for fluorescent membrane 

probes degraded with high dose of hydroxyl radical generated with 0.2 mM Fe+2-EDTA 

and 1.5 M H2O2 (aq) added at 0.8 mL/hr.  The unit is arbitrary fluorescence units per 

second.  Reported error is one standard deviation for replicate experiments (N = 3). 

 15 °C 23 °C 35 °C 

NBD (1.60 ± 0.09) × 10-4 (2.3 ± 0.2) × 10-4 (3.4 ± 0.4) × 10-4 

C6-PYR (10.7 ± 0.5) × 10-4 (16.5 ± 0.7) × 10-4 (23.0 ± 0.3) × 10-4 

C10-PYR (6.1 ± 0.4) × 10-4 (10.5 ± 0.9) × 10-4 (21 ± 1) × 10-4 
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Possible explanations for these results include: 1) the concentration of hydroxyl 

radical increased with temperature, 2) the rate constant for reaction of NBD with 

hydroxyl radical increased with temperature, or 3) accessibility of the radical to the 

surface of the membrane increased with temperature. In order to test the first 

explanation, we studied the reaction of hydroxyl radical with phenol in aqueous solution 

at varying temperatures. These experiments were conducted with no lipids present 

since the aim was only to assess the temperature dependence of the reactions. As can 

be seen from the data presented in Table 2, observed pseudo first order kinetics for 

phenol degradation only changed slightly over the temperature range studied. On 

increasing from 15 to 25ºC, an increase in the pseudo first order rate constant of about 

9% was observed. Based on a t-test, this difference was statistically significant at the 

99.5% confidence level. The values at 25 and 35ºC were not statistically different even 

when tested at the 90% confidence level. These data indicate that in the absence of a 

membrane interface, a slight increase (~10%) in hydroxyl radical mediated degradation 

rate is expected upon increasing the temperature from 15 to 35ºC. Consequently, it is 

unlikely that the hydroxyl radical concentration changed by more than 10% upon 

increasing the temperature from 15 to 35ºC. For the NBD labeled liposomes, the 

increase in reactivity with temperature exceeded that expected based on the phenol 

studies.  

 

 

 



 54

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2.  Observed pseudo first order rate constants for aqueous phenol degradation 

with Fenton reagent under steady state hydroxyl radical concentration.  Reported error 

is one standard deviation for replicate experiments (N = 3). 

T (°C) k’ (s-1) 

15 0.594 ± 0.004 

25 0.65 ± 0.01 

35 0.635 ± 0.004 
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Figure 2.3a.1% NBD-PE liposomes with 0.2mM Fe+2-EDTA and H2O2 
addition at 0.8mL/hr with initial concentration at 1.5M. Curves were 
normalized to 1 where liposomes were added. Each curve represents 
triplicate runs at each temperature. 
O-15ºC ∆-23ºC □-35ºC 
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Figure 2.3b. 1% C6-PYR-PC Liposomes with 0.2mM Fe+2-EDTA and 
H2O2 addition 0.8mL/hr with an initial concentration of 1.5M. Curves 
were normalized to 1, where liposomes were added. Each curve 
represents triplicate runs at each temperature.  
O= 15ºC, ∆= 23ºC, □=35ºC 
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Figure 2.3c. 1% C10-PYR-PC liposomes with 0.2mM Fe+2-EDTA and 
H2O2 addition at 0.8mL/hr with initial concentration at 1.5M. Curves 
were normalized to 1 where liposomes were added. Each curve 
represents triplicate runs at each temperature.  
 O= 15ºC, ∆= 23ºC, □=35ºC 
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Therefore, the changes in observed reaction rate at the membrane interface are 

likely due to changes in surface accessibility of the radical, possibly due to a change in 

the orientation of the NBD probe caused by changes in membrane structure. 

Figures 3b and 3c show the loss in fluorescence during degradation of C6 and 

C10-PYR-PC probes with 0.2 mM Fe-EDTA present while adding 1.5 M H2O2 at 0.8 

mL/hr. Addition of peroxide to the iron-EDTA solution began prior to liposome addition, 

which occurred at t = 0. These experiments were conducted at three temperatures: 15, 

23, and 35ºC. The intitial rates of fluorescence loss were determined as described 

above for the NBD probe.  These data, determined from the slope during the period 50-

250 s, are presented in Table 1.  At all three temperatures, the C6 probe, located closer 

to the water interface, degraded more rapidly than the deeper C10 probe. These data 

indicate that the hydroxyl radical was able to penetrate to both positions within the 

membrane, but the radical was less likely to reach regions of the membrane that were 

farther from the aqueous media in which the radical was generated. For both the C6 

and C10 systems, probe degradation was fastest at 35ºC and slowest at 15ºC. Near the 

phase transition temperature of the membrane (23ºC), an intermediate degradation 

rate was observed.  These results suggest that membrane disorder at the phase 

transition temperature is not a major factor in controlling radical permeation into and 

reaction within the membrane. Furthermore, for the in-membrane probes, the increase 

in degradation rate with increasing temperature was much greater than for that 

observed using a liposome free system (see discussion above for phenol degradation). 

 



 59

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Chemiluminescence Background Signal from Unlabelled 
liposomes at 37ºC 

 

 

 

 

 

 

 

 

 

0.5

1

1.5

2

2.5

3

3.5

600 800 1000 1200 1400 1600 1800

time, s

N
or

m
al

iz
ed

 E
m

is
si

on
 

blank

Fe+2-EDTA + H2O2



 60

The C6-PYR-PC system showed a 1.5 fold increase in degradation rate upon 

increasing the temperature from 15 to 23 °C.  Increasing the temperature to 35 °C 

resulted in a 2.1 fold increase in reaction rate compared to 15 °C.  The C10-PYR-PC 

system showed increases of 1.7 and 3.4 fold upon increasing from 15 to 23 or 35 °C, 

respectively. 

Comparing the pyrene probes, the C6-PYR-PC probe contained a fluorophore that 

was tethered to a six carbon chain, resulting in positioning of the probe within the 

interior of the lipid bilayer.  In comparison, the C10-PYR-PC probe had pyrene tethered 

to a 10 carbon chain, resulting in a deeper average position of the pyrene within the 

lipid bilayer.  The C6-PYR-PC probe showed greater reactivity than the C10-PYR-PC 

probe.  This greater reactivity is expected since it lies closer to the aqueous interface 

and is more accessible to radicals generated in the aqueous phase.  Direct comparison 

with the NBD probe is not possible since NBD and pyrene have different rate constants 

for reaction with hydroxyl radical. 

 As discussed above, the shape of the fluorescence vs. time plots did not follow 

simple kinetic models. In order to verify that fluorescent products were not formed 

upon reaction of the pyrene probes, we completed additional investigations of the 

emission spectra.  We examined the fluorescence emission spectra of the pyrene probes 

before and after degradation with hydroxyl radical.  These data are presented in Figure 

3 in which each spectrum is normalized to its maximum value.  Comparing the spectra 

before and after degradation, only slight differences in the spectral shape were 

noticeable, and no new emission peaks were observed.   
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Figure 2.5. Absorbance spectra of 0.2mM Fe+2-EDTA and 1.5M 

H2O2. 
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The small differences between the two spectra are likely due to inner filter effects 

caused by iron and peroxide absorbance. The before degradation spectrum had no iron 

or peroxide, while the post degradation spectrum contained both.  Since the iron and 

peroxide absorbances decrease substantially with increasing wavelength (see Figure 5), 

the fluorescence at short wavelengths was partially absorbed by these species before 

exiting the cuvette, causing a shift in the relative intensity of observed fluorescence at 

short and long wavelengths. 

The III/I vibronic band ratio of pyrene emission is an excellent tool for 

measuring the hydrophobicity of the pyrene microenvironment.40-42  Band III has a 

maximum at 396 nm and band I has a maximum at 381 nm. Clearly visible in Figure 5 

is a small change in the III/I vibronic band ratio between the before and after 

degradation spectra. This change is predominantly due to the inner filter effect 

described above, and therefore little if any change was caused by the degradation. 

Since little or no change in the III/I ratio was observed, the microenvironment of the 

pyrene did not change before and after degradation. Pyrene probe molecules that were 

degraded showed the same microenvironment as that observed prior to degradation, 

suggesting that the membrane integrity is sufficient to maintain this environment. The 

III/I ratio observed for pyrene in the membrane used in this study was around 1.04.  

Based on this observation, the pyrene microenvironment is comparable in 

hydrophobicity to bulk acetone which has a reported III/I ratio of 1.0240.  The 

fluorescence data presented in Figure 3 also indicate that no pyrene excimers were 

present in the system either before or after degradation.  
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Figure 2.6. III/I ratio of C6-PYR-PC before and after Fenton 

degradation. 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

355 405 455 505 555

Wavelength, nm

N
or

m
al

iz
ed

 F

BEFORE EXPOSURE

AFTER EXPOSURE



 64

Excimers form when pyrene molecules aggregate to form dimer pairs.43-45  Such 

pairing usually occurs when pyrene is at high concentration in a hydrophobic medium.  

The lack of excimer emission around 480 nm shows that the pyrene probes did not 

aggregate substantially in the liposomal membranes, either before or after degradation, 

indicating that the pyrene probes in the membrane were sufficiently isolated from each 

other to prevent excimer formation.  Both the III/I vibronic band ratios and the lack of 

excimer emission provide evidence that the pyrene probes were dispersed uniformly 

within the lipid region of the liposomes and that intact pyrene probes experienced little 

if any change in microenvironment during the degradation experiments. 

 As can be seen for degradation of the membrane-bound pyrenyl probes 

presented in Figures 3b and 3c, it is clear that the kinetic regime is complex over the 

reaction time studied. In order to simplify the kinetic regime, and to operate under 

conditions closer to that of physiological systems, we completed additional studies with 

low iron and low peroxide loading. For these studies, pyrene labeled liposomes were 

first equilibrated with 0.3 µM Fe-EDTA for 300 s with stirring.  At that point, 3 µM H2O2 

(aq) was added at a rate of 0.8 mL/hr for an additional 300 s before fluorescence data 

acquisition began. These equilibration steps allowed the Fenton system to come to 

steady state prior to monitoring pyrene degradation. Under these conditions near linear 

decreases in fluorescence were observed (see Figures 7a, 7b, 8a, and 8b). Linear 

regressions were used to calculate the rate of probe degradation. Each experiment was 

completed in triplicate, and the average rate was calculated from the triplicate 

measurements. The results are shown in Table 3. 
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Figure 2.7a. 1% C6-PYR-PC Liposomes with no cholesterol and 0.3µM 
Fe+2-EDTA and H2O2 addition at 0.8mL/hr with initial concentration at 
3µM. Curves were normalized to 1 where Fenton degradation began. 
Each curve represents triplicate runs at each temperature. O= 15ºC, ∆= 
23ºC, □=35ºC 
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Figure 2.7b. 1% C6-PYR-PC liposomes with cholesterol and 0.3µM 
Fe+2-EDTA and H2O2 addition at 0.8mL/hr with initial concentration at 
3µM. Curves were normalized to 1 where Fenton degradation began. 
Each curve represents triplicate runs at each temperature. O= 15ºC, ∆= 
23ºC, □=35ºC 
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Figure 2.8a. 1% C10-PYR-PC Liposomes with no Cholesterol and 
0.3µM Fe+2-EDTA and H2O2 addition at 0.8mL/hr with initial 
concentration at 3µM. Curves were normalized to 1, where Fenton 
degradation began. Each curve represents triplicate runs at each 
temperature. O= 15ºC, ∆= 23ºC, □=35ºC 
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Figure 2.8b. 1% C10-PYR-PC Liposomes with Cholesterol and 0.3µM 
Fe+2-EDTA and 2.4nM/hr H2O2 addition. Curves were normalized to 1 
where Fenton degradation began. Each curve represents triplicate runs at 
each temperature. O= 15ºC, ∆= 23ºC, □=35ºC 
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Table 2.3. Observed rates of fluorescence loss for fluorescent membrane probes 

degraded with low dose of hydroxyl radical generated with 0.3 µM Fe+2-EDTA and 3 µM 

H2O2 (aq) added at 0.8 mL/hr.  The unit is arbitrary fluorescence units per second.  

Reported error is one standard deviation for replicate experiments (N = 3). 

 15°C 23°C 35°C 

C6 probe with 
Cholesterol (1.1 ± 0.2) × 10-4 (1.52 ± 0.04) × 10-4 (1.56 ± 0.05) × 10-4

C6 probe without 
Cholesterol (1.8 ± 0.3) × 10-4 (2.4 ± 0.1) × 10-4 (2.1 ± 0.2) × 10-4 

C10 probe with 
Cholesterol (1.1 ± 0.1) × 10-4 (1.29 ± 0.01) × 10-4 (1.18 ± 0.10) × 10-4

C10 probe without 
Cholesterol (1.7 ± 0.2) × 10-4 (2.0 ± 0.1) × 10-4 (1.50 ± 0.09) × 10-4
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For the C6-PYR-PC probe in membranes prepared with 1:1 DMPC:cholesterol, increasing 

the temperature from 15 to 23 °C resulted in a 38% increase in probe degradation rate.  

Further increasing the temperature to 35 °C resulted in no further increase in 

degradation rate.  For the C10-PYR-PC probe in membranes prepared with 1:1 

DMPC:cholesterol, increasing the temperature from 15 to 23 °C resulted in a 17% 

increase in probe degradation rate.  Further temperature increase to 35 °C resulted in a 

slightly lower reaction rate than for 23 °C.  Unlike the higher iron/peroxide experiments 

described above, the C6 and the C10 probes showed the same rate of reaction at 15 

°C, but the C6 probe had a substantially faster rate of reaction at the two higher 

temperatures studied. 

 Liposomes with no cholesterol were also prepared in order to assess the effects 

of cholesterol.  Reaction of the probes with hydroxyl radical was substantially higher in 

the absence of cholesterol.  Overall, when present, cholesterol assumes the role of a 

hydroxyl radical scavenger at all the temperatures studied with both probes.  This 

conclusion is based on the observation of lower probe degradation rates in the presence 

of cholesterol.  This change in reaction rate is likely due to the absence of the 

scavenging effect exerted by cholesterol.  In the presence of cholesterol, radical species 

entering the membrane can react with cholesterol, reducing the available concentration 

of hydroxyl radical.  Because cholesterol exerted a protective effect for both in-

membrane probes, it is clear that cholesterol radicals did not play an important role in 

the rate of probe degradation under the conditions used here.   
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Such radicals may be important over longer time scales, but in these studies, no 

evidence of cholesterol radical reaction with the probes was found (see mass spectral 

results discussed below).  The behavior of the C6 and C10 probes as a function of 

temperature was similar with and without cholesterol. 

 It is important to note that these experiments were conducted with low oxidant 

levels.  In contrast to many other studies, depletion of natural scavengers, in this case 

cholesterol did not occur under the low dosing conditions used in these experiments.  

The low dose experiments more closely mimic the conditions likely to be found in real 

cellular systems25. 

 To gather more evidence regarding the involvement of hydroxyl radicals in the 

degradation of the membrane bound C6-PYR-PC probe, a lipophilic hydroxyl radical 

scavenger (biphenyl) was incorporated into DMPC/cholesterol liposomes. As shown in 

Figure 6a, addition of biphenyl inhibited the observed degradation rate of C6-PYR-PC 

liposomes. Increasing the biphenyl content increased this inhibitory effect. These results 

indicate that a radical species was in fact present in the lipid region of the membrane.  

Taken together with other evidence presented in this paper, this result supports the 

theory that hydroxyl radical was able to penetrate into the lipid layer of the membrane.  

For the deeper C10-PYR-PC probe, addition of biphenyl did not result in a significant 

change in probe degradation rate as shown in Figure 6b. The lack of scavenging effect 

for the C10 probe is unexpected, and may indicate that the biphenyl probe aggregates 

near the C6 pyrene probe but not near the C10 pyrene probe.  Such positioning of 

molecules within different regions of the membrane has been previously reported.19  
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Figure 2.9a.  Effect of varying biphenyl concentration with C6-PYR-PC 
liposomes at 35ºC with bolus addition of 0.2mM Fe+2-EDTA with H2O2 
addition at 0.8mL/hr with initial concentration at 1.5M. Curves were 
normalized to 1 where liposomes were added. Each curve represents 
triplicate runs at each temperature.   
O=0% Biphenyl, ∆= 0.5% Biphenyl, □=1.5% Biphenyl, ◊=3% Biphenyl 
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Figure 2.9b.  Effect of varying biphenyl concentration with C10-PYR-
PC liposomes at 35ºC with bolus addition of 0.2mM Fe+2-EDTA with 
addition of H2O2 at 0.8mL/hr with initial concentration at 1.5M. Curves 
were normalized to 1 where liposomes were added. Each curve 
represents triplicate runs at each temperature. 
 O=0% Biphenyl, ∆= 0.5% Biphenyl, □=1.5% Biphenyl, ◊=3% Biphenyl 
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Despite the unexplained scavenging behavior for the C10 probe, the C6 data still 

support the model that hydroxyl radical penetrated inside the membrane. 

MALDI-TOF MS 

 To further investigate the mechanistic involvement of hydroxyl radicals in lipid 

oxidation of the liposomes composed of a 1:1 molar ratio of DMPC to cholesterol, 

MALDI-TOF MS was employed.46 Both oxidized and unoxidized liposomes were analyzed 

by MALDI-TOF MS in order to identify lipid oxidation products. Liposomes that were not 

treated with Fenton reagent showed only peaks corresponding to intact cholesterol. 

(Figure 10).  In the presence of the Fenton reagent, the only cholesterol oxidation 

product observed was the protonated ketone of cholesterol at m/z 401 (Figure 11), 

indicating that cholesterol was oxidized in the presence of hydroxyl radical.  However, 

reaction of the pyrene probe was slower in the presence of cholesterol indicating that 

cholesterol acted as a scavenger rather than an important intermediate in probe 

degradation in these experiments. 

 In mass spectra for DMPC that was not exposed to oxidants, strong signals were 

observed for the protonated, sodiated and potassiated adducts of DMPC as expected at 

m/z 678, 700, and 716, respectively (Figure 12).  
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However, both under high and low iron/peroxide loadings, no peaks associated with 

oxidized DMPC were found (Figure 13). The lack of lipid oxidation products is not 

surprising since a fully saturated phospholipid was used.  Compared to unsaturated 

hydrocarbons, fully saturated hydrocarbons are slower to react with hydroxyl radical.7 
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Figure 2.10. Blank cholesterol with no Fenton Reagent: m/z 369 is 

cholesterol water loss product and m/z is protonated cholesterol 
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Figure 2.11. Cholesterol with Fenton reagent and protonated 

ketone 
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Figure 2.12. Blank DMPC with no Fenton Reagent; protonated 

DMPC at m/z 678 
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Figure 2.13. DMPC with Fenton reagent 
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Effects of Cholesterol 

Oxidation of the pyrene fluorescent label became slower in the presence of 

cholesterol.  This result indicates that cholesterol scavenged hydroxyl radical and served 

as an antioxidant.  If cholesterol radicals were an important intermediate in these 

studies, increasing the cholesterol content would have resulted in enhancement of the 

probe degradation rate rather than the observed protection of the probe.  

Consequently, it is highly unlikely that cholesterol radical intermediates made a major 

contribution to the probe degradation under the conditions used in these studies. 

 The observed kinetics for in membrane probe oxidation are not consistent with a 

secondary radical mechanism.  In numerous studies involving lipid peroxidation, an 

initial lag phase is observed followed by a propagation phase involving lipid peroxyl 

intermediates.47  The lag phase involves slow probe oxidation due to protective 

scavenging by membrane components, while the rate of oxidation increases 

dramatically during the propagation phase47 when intermediate radical concentrations 

are substantial and natural scavengers are depleted.  In our systems, no lag phase was 

observed.  We can therefore conclude that either lipid peroxides or other relevant 

intermediates are not important in the systems we used or the lag time was not 

exceeded.  In either case, the predominant pathway for pyrene probe oxidation was 

direct attack of hydroxyl radical on the in-membrane probe.   
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This conclusion is supported by the lack of observed lipid peroxide products and by the 

observed protective mechanism of cholesterol, which did show evidence of hydroxyl 

radical attack.   

All of these data indicate that hydroxyl radical directly oxidized the fluorescent probes 

within the membranes used in these studies.  While these system are simple compared 

to real membranes, our data provide evidence that hydroxyl radical formed in aqueous 

environments can penetrate into lipid bilayers.  For real membranes over longer time 

frames than studied here, secondary radical reactions, as observed in some studies 10, 

47, are likely to play an important role in membrane oxidation reactions.  However, it is 

clear from this study that initial attack by hydroxyl radical inside the lipid layer of 

membranes is possible. 

Conclusions 

The data reported here demonstrate that hydroxyl radicals formed in the 

aqueous phase surrounding unilamellar DMPC liposomes can penetrate into the 

hydrophobic lipid bilayer. Four results strongly support the theory that the hydroxyl 

radicals reacted directly with the fluorescent probes: 1) the use of a fully saturated lipid 

resulted in minimal formation of lipid peroxides which were undetectable by MALDI-TOF 

MS; 2) minimal formation of cholesterol oxidation products were observed at low 

iron/peroxide dosing; 3) addition of cholesterol resulted in decreased probe oxidation 

rates, indicating that cholesterol radicals could not have been a major pathway for 

probe oxidation; and 4) the observed kinetics of probe oxidation were not consistent 

with a system that proceeds via secondary radical formation. 
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 The effect of temperature on the system was also studied by observing the rate 

of fluorescence degradation of three probes of varying lipophilicity while bracketing the 

phase transition temperature of DMPC.   

The results revealed an increase in the rate of degradation with increasing temperature 

in the presence of a 1:1 molar ration of DMPC to cholesterol.  However, under 

physiologically relevant conditions without cholesterol, the degradation of the pyrenyl 

probes mirrored the results of Kraske and co-workers 22 where the highest rate of 

degradation occurred at Tm = 23ºC. Interestingly enough, in the presence of cholesterol 

under physiologically relevant conditions, cholesterol behaved as an inhibitor of 

degradation of the pyrenyl probes at temperatures above, below and at Tm. These 

results are corroborated by the results of previous findings using azo-initiators where 

cholesterol reduced the rate of propagation and termination of the reaction and 

‘tightened’ the packing of phospholipids bilayers.47, 48 The results of this study provide a 

method for monitoring direct reaction of hydroxyl radical across a water-membrane 

interface.  Furthermore, the results illustrate the effects of both temperature and 

cholesterol on the extent of radical penetration into the hydrophobic membrane.  

Additional studies focusing on other membrane constituents and different reactive 

transients can be easily achieved using the methods described in this work, ultimately 

leading to an improved understanding of membrane oxidation. 
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Evaluation of Hydroxyl Radical Penetration into Unsaturated Lipid 
Membranes Using Fluorescently Labeled Membrane Probes 

 
 
Abstract 

Hydroxyl radicals formed using modified-Fenton chemistry were monitored as they 

penetrated into liposomal membranes.  The hydroxyl radicals were formed in the 

aqueous exterior media of fluorescently-labeled liposomes. The effect of cholesterol on 

the penetration depth of hydroxyl radicals was determined. Fluorescent probes of 

varying lipophilicity were used along with different unsaturated phospholipids 

constituting the liposomes. Modified-Fenton chemistry was observed at physiologically 

relevant conditions. The results support fluorescent probe reaction with hydroxyl 

radicals by degradation of probe fluorescence. Rates of reaction between the probes 

and the oxidant are reported. Fluorescently-tagged liposomes in the presence of alpha 

and gamma tocopherol were studied. At the concentrations studied, the alpha 

tocopherol exhibited pro-oxidant behavior and gamma tocopherol exhibited neither pro-

oxidant nor antioxidant behavior. 

 

Introduction 

 Hydroxyl radicals are a form of reactive oxygen species (ROS) which have been 

labeled as toxic because of their ability to react with and degrade biologically important 

molecules.1 Hydroxyl radicals are important physiologically because of their involvement 

in the onset of some diseases2, 3 and aging.  
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Because of their short lifetimes, it is very difficult to measure the concentration of 

hydroxyl radicals, especially in systems with more than one phase. Thus, a variety of 

techniques have been used previously to track their reactivity including EPR ,4-6 pulse 

radiolyis,7-10 11 and oxygen consumption.12  

 Pyrenyl-phospholipids have been used in previous studies to study membrane 

biophysics, lipid biochemistry, and cell biology.13 These compounds have advantageous 

properties including being hydrophobic, having a long excited lifetime, and forming 

excimers at high concentrations. Also, because the flourophore is covalently attached to 

a phospholipid molecule, the depth and orientation of the fluorophore in the bilayer is 

often better defined compared to free pyrene or other probes. However, a limitation to 

using pyrenyl-phospholipids is that the fluorophore is bulky compared to the 

underivatized lipid chain.  The width of the pyrene fluorophore is about twice that of an 

aliphatic chain, adding more rigidity compared to a saturated alky chain 13. However, 

assessing the extent of disruption caused by the pyrenyl-phospholipids is not 

straightforward. A larger headgroup like phosphatidylcholine compared to 

phosphatidylethanolamine can potentially mask the the effect of changes in acyl chain 

dimensions. Also, studies have shown that C10-PYR-PC is only slightly larger than the 

egg-yolk phosphatidylcholine or dipalmitoyl-phosphatidylcholine in the liquid-crystalline 

state.14 

 Cholesterol has been found to be indispensable in mammalian membranes 

having numerous roles to play including cell signaling, directing the permeability of cell 

membranes, and acting as an antioxidant.15, 16  
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Cholesterol can also segregate itself into lipid rafts having cholesterol-rich and 

cholesterol-poor domains.17 It has been reported that cholesterol, rather than 

polyunsaturated fatty acids, is the target for reaction with ROS.18 In addition, for lipid 

peroxidation of model membranes, cholesterol significantly inhibited the reactivity of 

hydroxyl radicals generated with ultrasonic radiation.19 Thus, the effect of cholesterol 

on the current system was studied. 

 Recent reports have shown that the most powerful lipid-soluble antioxidant is 

vitamin E (tocopherols).20 However, it has also been shown to be a pro-oxidant under 

micromolar conditions.21 The oxidation of alpha-tocopherol in micelles and liposomes by 

reactive oxygen species including the hydroxyl radical has been studied.22 It was 

determined that hydroxyl radicals were effective oxidants of alpha-tocopherol in both 

micelle and phospholipid media, and the efficacy of their attack was sensitive to the 

charge on the micelle or model membrane. Vitamin E represents 8 types of analogues 

including alpha, beta, gamma, and delta tocopherols and the tocotrienols. While alpha 

tocopherol has been widely studied, contributions of the other tocopherol analogues as 

antioxidants have been less studied. Consequently, the effect of alpha and gamma 

tocopherols were individually assessed. 

 A fluorescence technique has been previously used to study the penetration 

depth of hydroxyl radicals into saturated liposomes. (Fortier and Tarr unpublished 

results) It is the goal of this research study to expand on this data by using liposomes 

formed from unsaturated phospholipids, including variation in the placement of the 

double bond.  
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This study revealed information on the site-specific reactivity of the hydroxyl radical 

with the fluorescent probes embedded in the lipid bilayer of the liposomes. 

 

Materials 

Three fluorescent phospholipids probes were used in this study. Two probes, 1-

hexadecanoyl-2-(1-pyrenehexanoyl)-sn-glycero-3-phosphocholine (C6-PYR-PC), and 1-

hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine (C10-PYR-PC) were 

obtained from Invitrogen (Carlsbad, CA). In addition, another probe 1-hexadeconyl-2(-

1-pyrenedodecanoyl)-sn-glycero-3-phosphocholine (C12-PYR-PC) was obtained as a gift 

from Pentii Somerharju (Helsinki, Finland). Three unsaturated phospholipids were used 

as obtained from Avanti Polar Lipids, egg yolk phosphatidylcholine (EYPC), and two 

synthetic phospholipids 1,2-dipetroselinoyl-sn-glycero-3-phosphocholine (Cis6PC) and 

1,2-dioleoyl-sn-glycero-3-phosphocholine (Cis9PC), where the latter two phospholipids 

differ in the placement of the double bond within the tail groups. The structures of the 

phospholipids and fluorescent probes are depicted in Figures 3.1 and 3.2, respectively. 

Ferrous sulfate heptahydrate and phosphate-buffered saline (PBS, 0.9% NaCl) were 

obtained from Sigma (Milwaukee, WI). Hydrogen peroxide (30% aqueous) was 

purchased from Fisher (Waltham, MA) and its concentration was measured 

iodometrically.23 Cholesterol was purchased from Aldrich (St. Louis, Missouri). 

Chloroform and EDTA were purchased from EM Science (Gibbstown, NJ).   
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All aqueous solutions were prepared using Nanopure UV (Barnstead/Thermolyne, 

Dubuque, IA) deionized water with a distilled water feed to the water purifier. All 

reagents were used as received without further purification. 

 

 

Experimental Methods 

Preparation of Liposomes 

The pyrenyl-labeled liposomes were prepared using a modified approach by McNamara 

and Rosenzweig.24 Briefly, stock solutions of 20 mg/mL egg yolk phosphatidylcholine, 

25 mg/mL of Cis6PC or 25 mg/mL Cis9PC were made in chloroform. An 80 µL aliquot of 

one of these stock solutions was added to the fluorescent probes which were present at 

0.25 mol% of the total lipid content. The probes, C6-PYR-PC, C10-PYR-PC or C12-PYR-PC 

were added individually. The lipids were dried overnight under a gentle stream of 

nitrogen. The following day the fluorescently lipid films were hydrated with 1 mL of 1 

mM PBS buffer while vortexing to generate multilammelar liposomes. The final lipid 

concentration was 2 mM. 

The liposomes were extruded 13 times using an Avanti mini extruder fitted with a 100 

nm polycarbonate membrane filter to generate unilamellar liposomes. Extruded lipids 

were stored at 4 ºC and diluted further prior to use. 

Dynamic Light Scattering 

 All dynamic light scattering experiments were carried out with a Protein Solution 

dynamic light scattering instrument and analyzed using Dynamics Software.   
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Settings on the instrument were for aqueous buffer conditions.  For each liposome 

sample, 40 measurements were taken at a total lipid concentration of 0.2 mM. 

Fluorescence Studies 

 The fluorescence experiments were carried out using a Perkin Elmer LS 55 

Luminescence Spectrometer equipped with a magnetic stirrer set on low. The quartz  

cuvette path length was 10 mm (Starna Cells, Atascadero, CA).  Degradation of the 

fluorescent probes was followed by monitoring fluorescence emission at fixed excitation 

and emission wavelengths as a function of time. For the pyrenyl probes, the excitation 

and emission wavelengths were set at 345 and 377 nm, respectively.   
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Figure 3.1.Unsaturated Phospholipid Structures.  For EYPC, a single representative 
structure is presented, but this material is a mixture of several phospholipids. 
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Figure 3.2. Fluorescently labeled phospholipid probes 
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Fenton Experiments 

 Experiments were conducted with iron and peroxide concentrations near 

physiological conditions. For these studies, 3 mL of a 1 mM PBS buffered solution of 

liposomes (3.3 µM lipid) was added to the cuvette. To this cuvette were then added 

Fe+2 and EDTA to achieve a concentration of 0.3 µM for each.  

The solution was stirred for 600 s, then a 3 µM solution of H2O2 (aq) was continuously 

added at 0.8 mL/hr until a final volume of 0.23 mL was delivered. For these 

experiments, all figures are labeled time zero when H2O2 addition began. 

 For all experiments, the temperature of the cuvette and its contents were 

controlled by a thermostated cuvette holder. All experiments were carried out at 37ºC, 

a physiologically relevant temperature. The rates of probe degradation were determined 

using linear regression. Two controls were carried out. The first consisted of the 

liposome sample with no iron (II)-EDTA added to the hydrogen peroxide. In the second 

control, in place of hydrogen peroxide, pure water was added to the iron(II)-EDTA 

liposomal sample. 

Results and Discussion 

Egg yolk PC experiments 

 For the egg yolk PC experiments degradation of the C6-PYR-PC probe was 

inhibited in the presence of cholesterol as shown in Figure 3.1a.  In contrast, the C10- 

and C12-PYR-PC probes showed no difference in degradation in the presence and 

absence of cholesterol.  
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The difference in the behavior of the C6 probe compared to the C10 and C12 probes 

with respect to cholesterol is likely due to the different positions of the probes within 

the lipid bilayer.  Cholesterol is not uniformly distributed within the bilayer, and the 

different positions of the probes may result in different interactions with cholesterol.  

Furthermore, the different displacement of the large pyrene probe from the membrane 

interface may cause some changes in permeability of the membrane surface.   Due to 

the dynamic nature of these systems, it is difficult to draw definitive conclusions based 

on the available data.  Moreover, the C6-PYR-PC may have closer lipid packing tail to 

tail and higher curvature at the headgroup that may make these liposomes more 

susceptible to hydroxyl radicals and Fe-EDTA.25 

 Comparing the C6, C10, and C12 probes without cholesterol, the degradation 

rates decrease as the length of the probe increases (Table 1).  This result is in 

agreement with previous observations (ref), and is most likely caused by the greater 

distance of the probe from the membrane interface.  Since the radical is generated in 

the aqueous phase and the radical is very reactive, the concentration of the radical 

decreases as the distance from the water interface increases.  In the presence of 

cholesterol, this trend is altered since cholesterol acted as a scavenger for the C6 

probe, resulting in a lower rate of degradation of this probe.   
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Figure 3.3a. Egg Yolk Phosphatidylcholine liposomes with C6-PYR-PC with and without 

cholesterol 

◊ = without cholesterol   and  ∆ = with cholesterol 
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Figure 3.3b. Egg Yolk Phosphatidylcholine liposomes with C10-PYR-PC with and without 

cholesterol 

◊ = without cholesterol   and  ∆ = with cholesterol 
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Figure 3.3c. Egg Yolk Phosphatidylcholine liposomes with C12-PYR-PC with and without 

cholesterol 

◊ = without cholesterol   and  ∆ = with cholesterol 
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However, the degradation rate of the C12 probe is still lower than that of the C10 

probe, which on average is closer to the membrane interface. 

 For both the Cis6PC liposomes with no cholesterol, the C6-PYR-PC probe gave 

the fastest rates of degradation when exposed to aqueous hydroxyl radical.  Unlike the 

EPC liposomes, the C12 probe in the Cis6PC liposomes reacted faster then the C10 

probe.  For the Cis9PC liposomes, the behavior was also different than that seen for 

EPC liposomes.  Cis9PC liposomes without cholesterol showed equivalent degradation 

rates for C6 and C10 probes and showed the highest degradation rate for the C12 

probe. 

 Cis6PC liposomes prepared with 1:1 cholesterol showed the highest degradation 

rate for the C10 probe, while the C6 and C12 probes exhibited similar rates of 

degradation.  The Cis9PC liposomes with 1:1 cholesterol also exhibited the highest 

degradation rate for the C10 probe, but the C12 probe had a very low rate of probe 

degradation. 

 The effect of cholesterol on probe degradation for the Cis6PC and Cis9PC 

liposomes did not show any clear trends.  In some cases, addition of cholesterol 

resulted in increased degradation rates, while in other cases cholesterol addition 

resulted in decreased probe degradation rates.  These results are difficult to interpret, 

suggesting that the role of cholesterol is complex.  Cholesterol can act as a free radical 

scavenger and can change the permeability and rigidity of the membrane.  

Furthermore, cholesterol can aggregate into certain regions of the membrane.   
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If different probes are located closer or farther from such regions, the effect of 

cholesterol on probe oxidation could vary dramatically.  

Vitamin E experiments 

 The results of the vitamin E experiments are shown in Figures 3.4a, 3.4b, and 

3.4c and 3.5. Over the concentration range studied for the vitamin E, it was observed 

that the alpha-tocopherol behaved as a pro-oxidant rather than a radical scavenger as it 

has been reported earlier. 26 Other authors have previously reported on this pro-oxidant 

activity of alpha-tocopherol.27-29 This behavior may be due to the ability of alpha-

tocopherol to reduce the catalytic iron present. 30  For the gamma-tocopherol 

experiments there was no observable effect on the degradation rates. There have been 

conflicting results regarding the effect of gamma-tocopherol. Some reports suggest that 

the antioxidant activity of gamma-tocopherol is less than that of the alpha- and beta-

tocopherol. 30  

 Other reports suggest that gamma-tocopherol had a higher antioxidant activity 

than alpha-tocopherol.31 It has been shown that at micromolar concentrations, 

tocopherols can behave as pro-oxidants in a synergistic way with catalytic metal ions, 

lipid peroxides, and other oxidizing agents.29 In addition, based on the concentrations 

of vitamin E and polyunsaturated lipids in vivo that being, 1/102 ,lipid to antioxidant 

ratio, it is clear that alpha-tocopherol can act as an efficient scavenger of hydroxyl or 

alkoxyl radicals. In addition, vitamin E reacts very quickly with peroxyl radicals and may 

scavenge more than 90% of peroxyl radicals before peroxyl radicals can attack lipids.30 
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Figure 3.4a.  The effect of alpha-tocopherol on the degradation of C6-PYR-PC in Cis6PC 

liposomes without cholesterol. 

 o = 0µM alpha tocopherol, ∆ = 0.11% alpha-tocopherol, x = 0.20% alpha-tocopherol 
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Figure 3.4b.  The effect of alpha-tocopherol on the degradation of C10-PYR-PC in Cis6PC 

liposomes without cholesterol. 

 o = 0µM alpha tocopherol, ∆ = 0.11% alpha-tocopherol, x = 0.20% alpha-tocopherol 
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Figure 3.4c.  The effect of alpha-tocopherol on the degradation of C12-PYR-PC in Cis6PC 

liposomes without cholesterol. 

 o = 0µM alpha tocopherol, ∆ = 0.11% alpha-tocopherol, x= 0.20% alpha-tocopherol 
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Figure 3.5. Effect of gamma tocopherol on C6-PYR-PC cis6PC liposomes with no 

cholesterol 

 o = 0µM gamma-tocopherol, ∆ = 0.11% gamma-tocopherol, x = 0.20% gamma-

tocopherol 
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 Given this observation, it can be deduced that hydroxyl radicals are being generated 

because in this report, alpha-tocopherol appears to be a pro-oxidant. Rates of 

fluorescence loss as a function of exposure time were determined for each individual 

probe under varying conditions.  These data are presented in Table 1 as the change in 

fluorescence with respect to time (∆F/s).  

Size of the liposomes and effect of additives 

 The unsaturated phospholipids Cis6PC and Cis9PC were found to be 17.6 

angstroms while the probe lengths for C6-PYR-PC, C10-PYR-PC and C12-PYR-PC were 

determined to be 20.4, 23.9, and 24.9 angstroms, respectively using Spartan modeling 

software. This effect of the rigidity and increased size of the pyrenyl phospholipids may 

change the microenvironment surrounding the double bonds in the unsaturated 

phospholipids.  

 In the case of the fluorescent probes with and without cholesterol, the 

cholesterol may have been present in lipid rafts with high and low amounts of 

cholesterol segregated out.32 This may lead to pro-oxidant or antioxidant behavior 

observed with the fluorescent probes. Secondly, the results may be due to the 

positioning of the cholesterol.33 For a doubly unsaturated phospholipid the cholesterol 

effect may be governed by its placement of its hydroxyl near the center of the bilayer.33  

Consequently, it may be hard to expect the cholesterol to be pro-oxidant but its 

behavior determined by its placement and orientation. The orientation of the cholesterol 

is probably upright with the hydroxyl radical facing the water-lipid interface in these 

singly unsaturated lipids.33  
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Due to the deeply embedded position of the C12-PYR-PC had the lowest fluorescence 

degradation rates.  Also, the differences in reactivity of the C6- and C10-PYR-PC may 

have been due to the placement of vitamin E in the liposomes with regard to the 

fluorescent probes. Thus, degradation of C10-PYR-PC would be less favored by 

scavenging of the radical at lesser penetration depths.
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Table 1. Observed probe degradation rates for several probes and membranes with and without cholesterol, and with 

alpha- and gamma-tocopherol.  Rates represent decrease in arbitrary fluorescent units per sec. 

Probe Phospho
-lipid 

No additives With cholesterol 
(1:1) 

With 0.3% α-
tocopherol 

With 0.5% α-
tocopherol 

With 0.004%γ-
tocopherol 

With .01% γ-
tocopherol 

C6-PYR-PC EYPC (1.9111 ± 2.36) × 10-7 (1.646 ± 1.56) × 10-7     

C10-PYR-PC EYPC (1.800 ± 3.02) × 10-7 (1.747 ± 1.67) × 10-7     

C12-PYR-PC EYPC (1.064 ± 3.04) × 10-7 (1.076 ± 2.73) × 10-7     

C6-PYR-PC Cis6PC (1.5324 ± 3.01) × 10-7 (1.087 ± 1.56) × 10-7 (1.795 ± 0.513) × 10-7 (2.18224 ±.5.72) × 10-7 (1.7 ± 3.23) × 10-7 (1.536 ± 3.11) × 10-7 

C10-PYR-PC Cis6PC (1.30 ± 9.25) × 10-7 (1.508 ± 2.58) × 10-7 (1.25 ± 1.35) × 10-7 (1.74 ± 2.66) × 10-7   

C12-PYR-PC Cis6PC (1.37 ± 1.59) × 10-7 (0.982 ± 1.25) × 10-7 (1.28 ± 3.65) × 10-7 (1.57 ± 5.58) × 10-7   

C6-PYR-PC Cis9PC (1.000 ± 2.05) × 10-7 (1.147 ± 2.17) × 10-7     

C10-PYR-PC Cis9PC (0.009 ± 1.25) × 10-7 (1.206 ± 1.09) × 10-7     

C12-PYR-PC Cis9PC (1.357 ± 2.27) × 10-7 (0.0507 ± 0.728) × 10-7     
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Conclusions 

 It has been demonstrated that the reactivity of three fluorescent probes in 

liposomes can be affected by the degree and placement of unsaturation in liposomal 

phospholipids. Antioxidant behavior of alpha- and gamma-tocopherol were not observed 

in the current study. In addition, pro-oxidant behavior has been previously observed at 

% concentrations of alpha-tocopherol.29 The high variability of the effects of cholesterol 

on the current study may be due to the placement of cholesterol in the liposomal 

membrane and whether or not it is segregated into domains where it is cholesterol-rich 

and cholesterol-poor.34 This segregation may lead to high or low permeability of the 

hydroxyl radical depending on the rigidity of the membrane.  The reactivity of alpha-

tocopherol as a pro-oxidant may be due to the tocopherol radical being protected in the 

liposomal membrane due to its low water solubility where it can generate more 

propagative species that are longer-lived.  In addition, the effects of placement of the 

double bond on the unsaturated liposomes may affect the degree to which the hydroxyl 

radicals can penetrate the membrane. In addition, the higher degradation rate of C6-

PYR-PC may be due to the higher curvature of the liposomes at the headgroup 

compared to C10-PYR-PC and C12-PYR-PC.  
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Chapter 4. Conclusions and Future Directions 
The overall goal of this project was to determine the penetration depth of 

hydroxyls radical into liposomal membranes and to determine if hydroxyl radicals were 

in fact initiators of lipid oxidation. The experimental design was to fluorescently-tag 

liposomes at varying lipophilic depths in order to track their reaction with hydroxyl 

radicals. Hydroxyl radicals were shown to be initiators of lipid oxidation by varying the 

Fe(II) and hydrogen peroxide concentrations. In addition, the biphenyl hydroxyl radical 

scavenger studies revealed that one of the fluorescent probes were scavenged by the 

hydroxyl radicals.the hydroxyl radicals were scavenged by the biphenyl scavenger. 

These experiments were not the first experiments to determine the penetration 

depth of reactive oxygen species (ROS) into liposomal membranes1, 2. Also, 

fluorescence has been previously used to detect other ROS3, like superoxide. 4 

However, our experiments were novel since they employed the fluorescent probes 

covalently attached to the liposome and used a multi-faceted approach to study both 

the liposomes and the phospholipids constituting the liposomes. In addition, our 

experiments generated a constant steady-state concentration of hydroxyl radical by 

introducing the hydrogen peroxide using a syringe pump. This was a new way to follow 

hydroxyl radicals instead of putting bolus additions of catalytic chelated iron in the 

presence of hydrogen peroxide. There have been some accounts of Fenton chemistry in 

liposomes or micelles with the bolus additions of iron and hydrogen peroxide5, 6. 

However, this approach was not conducted under physiological conditions.  
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Under physiological conditions there is a steady state production of hydrogen peroxide 

and hydroxyl radicals. In addition under physiological conditons, the iron (II) and 

hydrogen peroxide concentration were in the micromolar range. 

There have also been some accounts of Fenton chemistry taking place using 

Eelectron Spin Rresonance (ESR)7, 8. In fact, there was a study to determine hydroxyl 

radicals penetration at predetermined depths using EPR (Electron Paramagnetic 

Resonance) and newly designed spin traps9. Although this method has been touted as 

being the most informative of radical transient species, this technique requires 

expensive equipment, extensive training to operate the instrument, and there is no 

guarantee that DMPO, a popular spin trap, only reacts exclusively with hydroxyl 

radicals10. In contrast, our fluorescence-based method was very sensitive, easy to use 

and had equipment costs much lower than EPR. 

Chapter 5. Future Directions  
 One possible future experiment would be to generate fluorescently-tagged 

lipobeads and follow their reaction of the hydroxyl radicals with the fluorescent probe. 

This experiment would be the opposite of complementary to those currently being 

carried out in our lab because the probe would be chemically attached to the a 

polymeric support at the inside of the lipid layer instead of the bering anchored as a 

phospholipid within the bilayer. If these experiments show a similar kinetic profile with 

those of the liposome experiments this would corroborate our assertion that the probe 

indeed reacts with the hydroxyl radicals generated in the surrounding aqueous media.  

This experiment is important since movement of the phospholipid based probe could 
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allow the fluorophore to move closer to the water-lipid interface.  A probe anchored on 

a lipid coated beed would not have the ability to move close to the water-lipid interface. 
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Figure 4.1 Lipobead and Unilammelar Liposome, A = anchor, FP = fluorescent probe (2-

aminoanthracence)                                         Unilammelar liposome 
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Previously, liposomes or polymeric beads have been used in drug delivery systems, 

drug targeting, protein separation, enzyme immobilization, blood cell substitution, and 

biosensors.11-18Polymeric bead systems have an advantage over liposome systems as 

being more mechanically stable and having a higher loading capacity than liposomes 

under various experimental conditions.19 However, the liposomal system was a better 

model for cellular membranes due to its composition and behavior. Consequently, the 

hybrid system called “lipobeads” or “lipid microspheres” allow for the benefits of both 

systems to be realized where the polymeric beads is encased by a lipid bilayer. 

 Lipid bilayers have been previously used to encapsulate various solid surfaces 

including glass20, plastic16, metal21, and modified polymers22 which have been used for 

various biological applications. Gao and Huang23 introduced the first encapsulated 

hydrogel liposome system. However this system was flawed because it lacked anchors 

to provide mechanical stability to the lipid bilayer.24 Consequently, Lee and co-

workers2424 introduced a system having a hydrogel polymeric core encapsulated by a 

lipid bilayer with fatty acid lipid anchors. In this case, the lipid bilayer was formed 

spontaneously when the hydrogel core came in contact with a liposome suspension due 

to the fatty acid anchors on the hydrogel. This hydrogel model would be fitting to use in 

our lab where the lipid bilayer would spontaneously self-assemble on our carboxy-

modified polystyrene beads.  

In our experiments, we would first chemically bind the fluorescent probe, 2-

aminoanthracene, to the carboxy-modified beads using an (1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide Hydrochloride)/ N-hydroxysuccinimide (EDC/NHS) as 
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a conjugation step. Subsequent Then chemically binding of  “anchors” to the bead as 

using an EDC/NHS conjugation step again which would lead to the self-assembly of a 

lipid bilayer upon exposure to phospholipids. This experiment can be easily modified to 

perform intracellular measurements of hydroxyl radicals because similar biosensors 

composed of lipobeads have been taken up in cells using phagocytosis.17  

 In addition, liposomes or lipobeads incorporating membrane proteins25 would 

also be an interesting take on the following experiments. The membrane proteins could 

be chemically bound to the liposomes using conjugation chemistry to give site-specific 

reaction with the hydroxyl radicals surrounding the system in the aqueous media. The 

membrane protein can be incorporated into the liposomal bilayer and its effect on the 

degradation of fluorescently-labelled phospholipids can be assessed by introducing the 

Fenton reagent into the system in the surrounding aqueous environment. In 

addition,this experiment would give information about the  behavioral properties of 

membrane protein in a liposomal bilayer environment. 
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