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Abstract 

Mass spectrometry coupled with liquid chromatography and gel electrophoresis enables separation and 

detection of components in a complex mixture. During the last two decades, its applications were 

dramatically extended and remarkable progress has been made in many fields, in particular, 

environmental and biological analyses. This dissertation focuses on identification and characterization of 

biologically active compounds and comparative analysis of protein expression changes. 

 

The first two projects (Chapters 2 and 3) focus on the application of LC/MS approach to profile the 

bioactivated intermediates of 4,4’-methylenedianiline (DAPM) from rat vascular smooth muscle cells 

(VSMCs) and bile. In our study, several DAPM metabolites were detected and characterized in detail by 

liquid chromatography-electrospray tandem mass spectrometry. The structural assignments of these 

metabolites from VSMCs and rat bile significantly improve our understanding of DAPM 

biotransformations and toxicity.  

 

The third project described in Chapter 4 focuses on using electrospray tandem mass spectrometry 

(ES-MS/MS) and theoretical calculation (GAUSSIAN 03 program) to investigate the unusual methyl 

radical loss and consecutive fragment ions that dominate the low-energy collision induced dissociation 

(CID) mass spectra of prodiginine compounds. Structures of the fragment ions are proposed and 

explanations are given to rationalize the observed competition between the formation of even-electron 

ions and radical ions. Our study shows that the lower apparent threshold associated with methyl radical 

loss points to a lower kinetic barrier.  

 

In Chapter 5, hypoxia-induced changes of zebrafish skeletal muscle were studied using two-dimensional 

difference in-gel electrophoresis (2D-DIGE) in vivo after 48 h in hypoxia vs. normoxia. The results 

showed that proteins involved in mitochondrial oxidative metabolism are down-regulated, whereas 

 ix



glycolytic enzymes are up-regulated to compensate for the loss of ATP synthesis in aerobic metabolism. 

The up-regulation of two spots identified as hemoglobin variants was also observed. These protein 

expression changes are consistent with a hypoxic response that enhances anaerobic metabolism or O2 

transport to tissues. 
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Chapter 1 

 

Introduction 

 



Introduction to Mass Spectrometry 

During the last decade, mass spectrometry has played an important role in life science particularly for 

protein characterization and identification. Advances in ionization of biological molecules and 

complementary fragmentation techniques such as collision induced dissociation (CID),1, 2 electron capture 

dissociation (ECD),3, 4 and electron transfer dissociation (ETD)5, 6 for peptides and proteins contribute to 

structural elucidation and sequence determination. Advances in ionization source configuration and 

electronic lenses in a new generation of mass spectrometry instruments led to significant improvements in 

detection.  

The principle of mass spectrometry is to ionize molecules, separate the gas-phase ions and detect them 

according to their mass to charge ratios (m/z). There are different types of ionization sources, mass 

analyzers and detectors. Magnetic deflection, quadrupole filter, ion trap, time of flight and ion cyclotron 

resonance are the most commonly used techniques for mass analysis. Various types of mass spectrometry 

coupled with liquid chromatography or electrophoresis are suitable for different purposes of analyses. 

Presently, two ionization methods, matrix assisted laser desorption7 (MALDI) and electrospray8 (ES)  

ionization, have led the main stream in ionization of biomolecules, providing sensitive and soft-ionization. 

After nonvolatile biomolecules are ionized via protonation/deprotonation, the ions are sent and mass 

resolved in different types of mass analyzers, for example a magnetic sector, quadrupole, time-of-flight 

(TOF), quadrupole ion trap, linear ion trap, fourier transform ion cyclotron resonance9 (FTICR) mass 

spectrometer.10 Finally the ions are detected by a dynode/electron multiplier for quadrupole, ion trap and 

magnetic sector instruments, and by a multi-channel plate for TOF instruments, or image current for 

FTICR and Orbitrap11 instruments. The performance of mass spectrometers is dependent upon ionization 

efficiency of the target compounds, ion transmission through ion optics, collision processes and 

sensitivity of detection. In the work that leads to this dissertation, several different types of mass 

spectrometers were utilized to obtain the data. 

Mass spectrometry has conventionally been used with gas chromatography (GC) to study the vaporized 
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organic components eluted from GC column. In the combined GC-MS technique, molecular weight, plus 

the identity could be obtained from the fragmentation pattern of the component, and the approach also 

served as a basis to construct a library of compounds for structural identification. GC separation of the 

sample is essential because tandem mass spectrometry isn’t widely applicable to GC-EI-MS, and without 

it, the fragments from co-eluting compounds will interfere with identifications. However, many polar 

compounds can’t be vaporized in GC, thus limiting the application of the technique. 

During the last two decades, a great deal of progress has been made towards the analysis of biological 

macromolecules when soft ionization techniques, especially ES and MALDI sources, were introduced as 

new interfaces for mass spectrometers. The nondestructive nature of soft ionization has proven 

advantages for the characterization of complex and polar substances that might be found in organic matter. 

To apply the technology more effectively, it is important to understand the ionization process and 

instrument configurations. 

 

Electrospray ionization (ESI) 

Several excellent reviews about the technology have been published.12, 13 In the electrospary process, high 

voltage is applied between the solution and counter electrode to transform the solution into an electrified 

mist, and form a shape of the spraying liquid named as the Taylor cone. Consequently, electrospray was 

referred to as a neublization process instead of an ionization process. The mist consists of tiny droplets 

containing solvent and analytes moving towards the counter electrode. Evaporation of solvent facilitates a 

decrease in the size of droplets and an increase in charge repulsion on the droplet surface. High charge 

density results in “columbic repulsion”, and further shrinks the droplets, and finally ejects the ions from 

the droplets. The removal of solvent from the droplets could be assisted by a combination of heating 

and/or gas flow. Desolvated ions are transferred into mass analyzer via ion optics. Although ES is already 

a mature technique for ionization, there are still debates about the mechanism of ion formation.12 
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Matrix assisted laser desorption ionization (MALDI) 

In the MALDI process, sample is co-crystallized with a low molecular weight, UV-absorbing matrix that 

enhances intact desorption and soft ionization of the analytes.14 A pulsed laser at a specific wavelength 

absorbed by matrix is used to induce both desorption and ionization of the analytes. Meanwhile, ions 

arising from the co-crystallized solid carry charges and even form dimers or multimers of the compounds 

and tolerate a relatively high concentration of salts or buffers brought from biological experiments.14 

Studies involving the energy transfer indirectly from a matrix to ionize the sample can be dated back to 

the middle of 1980 by a beam of neutral atoms and molecules in fast atom bombardment (FAB-MS)15 or 

by a flux of high energy photons in MALDI14. IR and UV laser sources have been used to ionize samples. 

In MALDI, there are two observations obtained from different studies.7, 16, 17 In order to insure highly 

efficient and well-controlled energy transfer to the sample, a resonance adsorption is required at the laser 

wavelength. Secondly, to avoid the thermal decomposition of thermally labile compounds, each laser shot 

should take place in a very short time interval. The recent development of atomospheric pressure MALDI 

(AP-MALDI) doesn’t require a vacuum source, thus significantly increasing the throughput of analysis.18  

 

Different Types of Mass Analyzers 

In order to separate the complicated and limited amount of samples from biological sources, liquid 

chromatography was coupled with electrospray mass spectrometer to obtain information about target 

compounds. Three types of mass analyzers (quadrupole, quadrupole 3D ion trap, hybrid quadrupole/linear 

ion trap) with ESI source have been mainly employed in metabolite profiling of the samples from rat 

biliary effluent and vacular smooth muscle cells exposed to a low dosage of methylenedianiline, as well 

as in the quadrupole ion trap protein identification using “bottom-up” strategy. The quadrupole ion trap 

uses a combination of radio frequency and constant potential to store the ions in a potential well.19 

Selected ions are either stored or ejected from the trap by changing the potentials depending on their 

different m/z values. To obtain structural information, the stored ions can be analyzed to determine the 

m/z value or further fragmented to form small fragments by ion-molecule collisions. Increasing the fill 
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time for the ion trap can enhance the sensitivity and resolution of mass peaks, however, space charge 

effects are observed when high concentrations of ions are loaded into the trap, inducing ion repulsions 

and limiting the mass accuracy and resolution.19 Auto gain control (AGC) was introduced to limit the 

number of ions present in the trap by estimating the ion concentration with a rapid and “dirty” scan, and 

then determining the fill time to maintain a certain amount of ions in the trap. The strategy not only 

improved the sensitivity but also avoided space charge effects.20, 21 Up to now, it has been widely 

employed in most commercial quadrupole ion trap mass spectrometry instruments. 

 

Quadrupole Ion Trap  

The quadrupole ion trap has two configurations: the two dimensional linear ion trap (2D LIT)22 and the 

three dimensional ion trap (3D QIT)19, also named as “Paul Trap”. The former generally consists of two 

hyperbolic cap electrodes facing towards each other and one hyperbolic ring electrode halfway between 

them. A combination of AC and DC voltage on the trap can create a saddle-shaped field to trap the ions in 

a complex motion. If ion excitation is desired, a sweep voltage is applied onto the two end cap electrodes 

to empty the trap except for the selected ions. Then, an on-resonance radio-frequency voltage oscillates 

between the two electrodes to increase the collisions between the ions and inert gas molecules to induce 

fragmentation.19  

 

Two-dimensional Linear Ion Trap (2D LIT) 

The linear form of the ion trap can be used as a mass selective filter by creating a trapping potential well 

along the axial electrodes.22 Advantages of the LIT includes a simple configuration, a fast scanning rate 

and a larger trapping capacity than the 3D QIT. Although the trapping capacity of LIT has been improved 

compared with that of QIT, the dynamic range of measurement is still the biggest limitation of ion trap 

based mass spectrometry.22  
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Schematic drawings of 3D quadrupole ion trap23 

 

Triple Quadrupole  

Another type of mass analyzer was built on three series of quadrupole mass analyzer, i.e. the triple 

quadrupole. A quadrupole consists of four parallel rods on which a combination of rf and DC voltage was 

applied. Scanning both rf and DC on the rods allows the quadrupole to act as a mass filter that allows only 

certain m/z ions to be transmitted through the rods, and simultaneously other m/z ions will collide with 

the rods. Based on this configuration, the triple quadrupole doesn’t trap the ions in a certain space, thus 

avoiding the space charge effects occurring on the ion trap. The dynamic range of measurement is much 

higher than both QIT and LIT. It has been widely used in quantitative analysis, however, because no time 

is spent trapping the ions, the duty cycle of measurement is comparatively lower than that of the ion trap. 

Thus, the sensitivity and mass accuracy of the triple quadrupole mass spectrometry are lower than those 

of QIT and LIT. Triple quadrupole mass spectrometry is a typical space-based tandem MS in which it 

selects the precursor ions in the Q1 and fragments them in the Q2 collision cell, and finally mass separate 

the fragments in the Q3 mass analyzer.  
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Schematic drawing of a single quadrupole mass filter 

The electron multiplier is the last step in signal production. Transmitted ions are converted by multiplier 

to a measurable current. Too low settings on multiplier will reduce the signal. In contrast, too high 

settings will saturate the signal and reduce the lifetime of the detector, as well as give a poor quantitative 

result.  

 

TOF and TOF/TOF  

In this dissertation, we used an ABI 4800 MALDI-TOF/TOF mass spectrometer to identify the proteins 

regulated by hypoxia. In the TOF analyzer, ions formed in the pulsed ionization source are accelerated 

with the same potential from a fixed starting line and at a fixed initial time and allowed to drift in a 

field-free tube, the ions separate according to their m/z values. The time (t) that is required for the ions to 

travel through the region is dependent of the m/z described in the equation below. 

 

L is the length of the drift tube or the travel distance to reach the detector. To increase the resolving power 

of the TOF mass analyzer, a reflectron TOF mass analyzer allows for energy focusing of the ions. In the 

equation above, “L” represents the length of the drift tube, “m” the mass of the ions, “z” the charge of the 

ions and “V” the potential applied to accelerate the ions into the drift tube. Lighter ions drift more quickly 

to the detector, heavier ions drift more slowly.  
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Schematic drawing of linear TOF mass spectrometry 

 

Separation Tools (on-line or off-line) coupled with Mass Spectrometry 

After over more than one century of development, separation science plays an active role in many fields: 

organic synthesis for measuring purity and performing structural characterization of products; molecular 

biology for sequencing the genome of human and other species; forensic science for analyzing the blood 

and hair for criminal activities. Benefiting from the invention of capillary electrophoresis, the Human 

Genome Project completed work much faster than was expected. The next challenging project demanding 

the contribution of separation scientists is the analysis of the proteome, i.e., the complement of the 

genome. Since the proteome is defined by a combination of the genome, the environment at the moment 

and even cell history, cells do not have a fixed proteome. Instead, proteins are expressed with broad 

dynamic range depending upon the particular characteristics of the cell. The combination of separation 

science and mass spectrometry offers a promising future and resolution to these difficulties in proteomics 

research. This dissertation focuses on the exploration of two most popular separation methods that were 

readily available for on-line or off-line coupling with different mass spectrometers employed in my 

studies. Additionally, the merits of LC/MS coupling are widely recognized for universality, high 

sensitivity and outstanding selectivity in metabolite characterization. We used several LC/MS instruments 

for determining the biotransformations of methylenedianiline in rat liver and vascular smooth muscle 

cells. 
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High Performance Liquid Chromatography (HPLC) 

The combination of gas chromatography and electron ionization mass spectrometry still remains 

unsurpassed for rapid separation and structural determination.24 However, not all the compounds can be 

vaporized and ionized in GC/MS. The application of LC/MS allows the analysis of non-volatile samples. 

However, this method has gone through some practical difficulties because of inefficient sample delivery 

into the mass spectrometry before electrospray was introduced as a interface between LC and MS.  

Among the forces driving the development of HPLC coupled with mass spectrometry, was the demand for 

miniaturization of column size to improve the sensitivity and reduce sample consumption.25, 26 Increased 

chromatographic resolving power and faster analysis by utilizing low volumes of stationary phase and 

development of new chemical modified stationary phase to reduce “column bleeding” that primarily 

produced the background noise were also primary concerns. Although most popular reports of LC-MS use 

the ES source interface, off-line MALDI-ToF/ToF coupled with HPLC has continued to be improved for 

proteomics work.27, 28 

 

Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE) 

Two-dimensional gel electrophoresis combines isoelectric focusing and mass separation steps to generate 

a global view of the proteome in cells or tissue at a particular moment.29-31 With the utilization of different 

visualization techniques such as radioactive labeling of protein, fluorescent dye labeling (CyDye), 

fluorescent dye staining (commercial available products like Sypro Ruby, Deep Purple and Flamingo) and 

non-fluorescence staining (silver or coomassie blue staining), one can visualize and quantify the protein 

spots.  

This technique enables identification of major proteins in tissue or sub-cellular fractions when it is 

coupled off-line with mass spectrometry.32 In addition, 2D-PAGE have been used to quantitatively 

determine the protein expression changes between two samples, such as a treated sample and the control. 

However, quantitation was hampered by several factors. Low sensitivity and narrow dynamic range limits 

the detection of the response of certain low abundance proteins that are critical in cellular functions. 

 9



Another technical issue is gel-to-gel variation. Practically speaking, there are no two gels that are 

superimposable, which is required to overlay and compare them especially when significant proteome 

expression changes occur or subtle proteome expression differences are under investigation.  

 

2D Difference in-Gel Electrophoresis (2D-DIGE)33  

2D-DIGE circumvents some these problems associated with traditional 2D-PAGE methodology. It utilizes 

pre-electrophoretic labeled protein samples with one of three spectrally resolvable fluorescent CyDye 

reagents (Cy2, 3 and 5), and Cy2 labeled protein as internal standard. These three CyDyes have similar 

structures but distinct spectral properties. The samples can be imaged separately, and overlaid and 

compared without warping since they come from the same gel.  

 

488       

Schematic diagram of 2D-DIGE procedure and excitation and emission spectra of Cy2 , Cy3 and Cy5 

(Adapted from GE health Science 2D-DIGE manual). 

532        

Cy2 482 520 

Cy3 532 580 

Cy5 633 670 

 10



The technique has a dynamic range that covers 5 orders of magnitude and nanogram level detection limits 

that allow one to differentiate subtle, low abundance protein expression changes. DIGE does not require 

modifications of the sample preparation protocol that is used in the conventional 2D-PAGE technique.  

 

Applications of Mass Spectrometry 

Identification and Characterization of Metabolites 

All organisms are exposed to foreign compounds, i.e., to xenobiotics. The absorption routes could be 

through the skin, lungs, or gastrointestinal tact. Elimination of these potential toxins usually relies on 

biotransformations into non-toxic and hydrophilic chemicals that are readily for excretion. Without 

biotransformation, lipophilic xenobiotics would only be eliminated very slowly out of the body. Studies of 

the biotransformations of certain xenobiotics can assist the understanding of their toxicity upon exposure.  

Biotransforming reactions are divided into two groups, named as phase I and phase II.34 Phase I includes 

hydrolysis, reduction and oxidation; during the process some functional groups can be introduced 

including –OH, -NH2, -SH or –COOH.34 Phase II reactions involve conjugations with the functional 

groups previously introduced during phase I reactions such as glucuronidation, sulfonation, acetylation, 

methylation, fatty acid, glutathione and amino acid conjugation.34 Most of phase II biotransformations 

increase the hydrophilicity, thus greatly promoting the excretion of xenobiotics. Some exceptions to this 

rule like fatty acid conjugation were found to significantly increase the lipophilicity that plagued the 

elimination of toxins like aniline. 35 

Glucuronidation is one of the major phase II biotransformations where glucuronic acid is attached to a 

hydroxyl or carboxylic group (defined as O-glucuronidation); as well as N-glucuronidation is also 

possible.34 The product of O-glucuronidation with phenols or alcohols is an ether glucuronide, while that 

formed with carboxylic acid is an ester glucuronide. Gluronides are polar and water soluble conjugates 

that are readily eliminated from the body in bile or urine. The substrates for N-glucuronidation include 

primary and secondary aromatic and aliphatic amines. To quickly identify the glucuronides of xenobiotics, 
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some characteristic neutral fragments (e.s. neutral loss of 176 Da, consecutive water losses from the 

precursor ions) may appear in tandem mass spectra. 

The substrates for acetylation are the xenobiotics containing an aromatic amine or a hydrazine group, 

which form aromatic amides and hydrazides, respectively.36 However, acetylation replaces the amine with 

a nonionizable group, which decreases the solubility of the metabolites. This process is catalyzed by 

N-acetyltransferase and also requires the cofactor acetyl-coenzyme A.36 Thus, the conjugates may be 

more toxic than their precursor, and conjugation does not improve the excretion of phase I metabolites. In 

the mass spectra of acetyl conjugates, protonated or deprotonated molecular ions showed 42 Da increase 

as compared to their non-conjugated metabolites. During the fragmentation, acetyl-ketene loss (42 Da) is 

observed in CID-MS/MS spectra. For example, biotransformations of glutathione adducts lead to cysteine 

conjugates that are followed by N-aceytlation,36 which typically show 42 Da loss in MS/MS spectra. 

Amino acid conjugations are also observed, which results in a further increase in the solubility of phase 

I metabolites. There are two possible pathways for the conjugation with either the xenobiotics containing 

a carboxylic acid functionality or phase I metabolites including the hydroxylamine group. Amide bond 

cleavage is dominant in the tandem mass spectra of the conjugates while other consecutive losses of water 

(18 Da) and/or CO (28 Da) are present in lower abundance. We reported that a metabolite resulting from 

glycine conjugation with DAPM hydroxylamine intermediate lost CO2 (44 Da) following the loss of NH3 

(17 Da). This characteristic loss of CO2 (44 Da) can be used to identify amino acid conjugation with an 

activated intermediate containing a hydroxylamine group.  

The tripeptide glutathione containing nucleophilic cysteinyl thol group is present in millimolar 

concentration in cells of most animals, which allows formation of glutathione adducts with the 

electrophilic reactive intermediates of xenobiotics. The process significantly increases the solubility of the 

phase I metabolites, and affords detoxification. The glutathione conjugates are usually followed by 

subsequent biotransformation, thus leading to either loss of glycine to form γ-glutamylcysteinyl 

conjugates37 or loss of glutamic acid to form glycinylcysteinyl conjugates38. 

Thus, identification and structural characterization of these metabolites are essentially critical to 
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understanding the potential toxicity of drug candidates and other contaminating toxins. Detailed structural 

characterization of metabolites, produced in vivo or in vitro, can be performed using a variety of 

spectroscopic techniques. The combination of chromatographic techniques with mass spectrometry is 

presently the most efficient and powerful tool to provide structural information of the metabolites in 

biological fluids. However, mass spectrometry can not differentiate some configurational or 

conformational isomers. Other spectroscopic tools like NMR or IR are still needed to determine these 

structures.  

 

Proteomics 

In the 1970s and 1980s, most biologists placed their attention on Genomics and Genetic Engineering.39, 40 

During the past two decades, however, there has been a renaissance in protein biochemistry because of 

accumulation of genome sequence data housed in accessible databases. It is obvious that the sequencing 

of the entire genome is less meaningful if the functions of the gene can’t be clarified; this pursuit is 

named “functional genomics”.37 Determination of the functions of gene products (genome complement, 

proteome) was thought to be an efficient way of finding prognistic markers (biomarkers) of diseases.41 

Proteins are the ultimate determinant in cellular function; however, it also embodies high order of 

complexity. There are several factors that determine the protein function, such as the primary amino acid 

sequence, post-translational modifications (PTMs), three dimensional structures, and the formation of 

protein complexes for certain cellular function. Accordingly, proteomics research aims to determine 

protein structure, modifications, localization, protein expression changes upon environmental stimulation 

or drug treatment, and protein-protein interactions.42, 43 

The challenges of proteomics research currently lies on several aspects: (1) limited sample quantities and 

lacking of a amplification tool comparable to PCR in genome studies, thus creating an urgent need for  

high sensitivity tools for protein identification and characterization; (2) broad dynamic range of protein 

abundance in cells, that requires analytical tools with comparable dynamic range for detection and 

quantification; (3) more complex information than that of the genome built upon four-base units (A, G, C 
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and T), thus demanding methods to provide quantitative and structurally informative output.  

With the development of soft ionization methods like ESI8 and MALDI,44, 45 mass spectrometry earned 

the reputation for its high sensitivity, broad dynamic range of measurements, rich information obtained 

from complementary fragmentation techniques like CID,45, 46 infrared multiphoton dissociation 

(IRMPD)47, electron capture dissociation (ECD)48 and electron transfer dissociation (ETD)5. MS for 

protein identification and quantitation relies on the digestion by sequence-specific proteases. Short 

sequence peptide is more suitable for MS analysis and they fragment more readily to provide sequence 

information. The application of nano-size HPLC columns and on-line coupling with mass spectrometry 

enables the proteomic analysis of complex protein mixtures. However, after the proteins are digested, 

some peptides are either lost during the sample preparation, or their response is suppressed by other easily 

ionizable peptides. In order to fully characterize the protein of specific interest, the concept of “top-down” 

proteomics was proposed48, 49. The application of electron capture dissociation allows fragmentation of the 

whole protein with low-energy electrons in FT-ICR mass spectrometry,50 thus revealing the labile 

modifications on the whole protein. Thus it has attracted much attention for labile PTM characterization. 

It also can be used to investigate protein-protein interactions because non-covalent bonds often remain 

intact after backbone dissociation.51 Low-energy electron capture dissociation provides extensive 

sequence coverage,52 while high energy electrons give w or z ions from polypeptides, thus allowing one to 

distinguish isoleucine and leucine.53 

Until recently, 2D-PAGE or 2D-DGIE had been widely used in the investigation of global protein levels 

and differences in protein composition between two related samples.41 This enables the display of 

hundreds or thousands of protein spots in a 2D-PAGE; however, hydrophobic, extremely basic or acidic 

proteins are difficult to analyze. MS provides a large amount of information on a small sample size in an 

automated manner. However, the ion abundance of peptides relies on the ionization efficiency that is 

related to ionic strength in sample, source temperature, neubulizing and drying gas flow rate and other 

factors. Thus, relative quantitation using hydorgen/deterium (H/D) isotope tag labeling has been 

developed to compare the protein expression levels. There are two approaches for peptide stable isotope 
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labeling to compare differential expression of proteins between the samples: chemically tagging the 

cysteine residue or N-terminal amino group of the proteins using ICAT54 or iTRAQ55 reagents; metabolic 

incorporation, in which protein tagging is achieved by culturing the cells in the medium containing stable 

isotope enriched amino acids like SILAC.56 Tissue culture cells are grown in a medium that is short of 

certain essential amino acids, and then the amino acid is supplied in two forms: one containing the natural 

abundance of isotopes and the other containing the stable labeling isotope. After several cell cycles, all the 

proteins are tagged with the provided amino acids. After selection of candidate tryptic peptides for 

quantitative measurements, further MS/MS experiment on these precursors can identify the protein using 

either de novo peptide sequencing57 or searching against the available database58.  

The activity of proteins is modulated through post-translational modification (PTM) such as 

phosphorylation and uniquitinylation or through proteolytic cleavage. These PTMs result in a change in 

the molecular mass of the amino acid residues, or constant neutral loss in tandem mass spectra.59 All these 

properties allow efficient characterization of PTMs in the proteins using the LC-MS/MS approach.  

Proteomics research will impose significant changes to scientific world, especially in the pharmaceutical 

industry. Because most drugs inhibit the function of specific proteins, several strategies were successfully 

developed that incorporate the drug candidate screens with proteomic readout. For example, 

activity-based profiling identifies and quantifies the active proteases in a complex proteome (cells or 

tissue) using a small chemical probe to covalently attach to the active site of proteases.60 Another 

approach is to elute the proteins from an immobilized drug, making them available for proteomic study.61, 

62 All the methodologies were developed in the last decade to successfully link many endogenous proteins 

with drug candidates, rather than the current single drug-single target model. 
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Abstract 

A capillary liquid chromatography-electrospray tandem mass spectrometry (LC-ES-MS/MS) method was 

developed for identification of metabolites of 4,4’-methylenedianiline (diaminodiphenyl methane, DAPM) 

derived from exposure of  vascular smooth muscle cells to this compound. The use of precolumn 

concentration and column switching techniques prior to reversed-phase liquid chromatography coupled 

on-line to ES-MS enabled the separation and detection of low-level DAPM and its metabolites in the 

exposed cell samples. The employed LC-ES-MS method, and further LC-ES-MS/MS analysis enabled 

structural assignments for two DAPM metabolites from vascular smooth muscle cells: N-acetyl 

methylenedianiline (N-acetyl DAPM) and N,N’-diacetyl methylenedianiline (N,N’-diacetyl-DAPM). 
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Introduction 

The aromatic amine 4,4’-methylenedianiline (DAPM, Figure 2.1) presents health hazards to animals and 

humans, especially those working in industries that manufacture polymers. In recent years, DAPM has 

been primarily used in the production of methylene diphenyl diisocyanate (MDI) and polymeric MDI, 

which are employed in rigid and semi-rigid polyurethane fabrication. DAPM is also used to construct 

numerous medical devices including catheters, dialysis tubing and surgical implants, and it can be 

released during gamma-ray or autoclave sterilization of these devices [1]. Other DAPM derivatives are 

used to make floor coverings, dye stuff intermediates, and a hardening agent for epoxy resins [2, 3].  

Both occupational and accidental exposures to DAPM are known to cause fever, rash, toxic hepatitis and 

jaundice with cholestasis and cholangitis [4, 5]. Hepatotoxic and carcinogenic effects in animals [6,7] and 

human subjects [4,8] have also been documented, but the involved metabolic pathways and the 

mechanism of toxicity are not clearly understood. Studies identifying DAPM metabolites in human urine 

have revealed that acetylation is likely an important pathway in DAPM detoxification [9,10]. In addition, 

prior reports examining the metabolism of DAPM in microsomal preparations revealed that it may 

undergo oxidation to electrophilic azo and azoxy compounds[11].  In contrast, Kautiainen et al.[12] 

demonstrated that the bulk of DAPM bound to hemoglobin in the blood existed in an imine form of 

DAPM, likely derived from extra-hepatic sources of peroxidase enzymes. Thus, investigation of hepatic 

metabolism of DAPM is probably insufficient for explaining its full array of toxicological effects. 

T.R. Dugas et al. [13,14], reported that chronic, low-dose exposure to DAPM caused vascular toxicity in 

rats that was more pronounced in females than in males.  The observed wall thickening of pulmonary 

arteries was confined to the medial layer containing vascular smooth muscle cells (VSMC).  In addition, 

the proliferative effects of DAPM could be reproduced in cultures of VSMC treated with DAPM [14].  

Treatment of VSMC with [14C]-DAPM resulted in the disappearance of DAPM and the appearance of 

several DAPM metabolites that were observed using HPLC with radioisotopic detection (unpublished 

findings). Because direct treatment of VSMC with DAPM induced cellular proliferation, we hypothesized  
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that VSMC may be capable of metabolizing DAPM to reactive intermediates that, in turn, bind to 

molecular targets to promote VSMC proliferation. Importantly, no prior studies have reported on the 

metabolism of DAPM by extra-hepatic cells, and few studies have investigated the metabolism of 

xenobiotics by vascular cells.  Although VSMC are known to express the cytochrome P450 enzymes 

CYP 1A1 and 1B1 [15] and are a rich source of the peroxidase enzyme prostaglandin H synthase, little 

else is known about the ability of VSMC to metabolize xenobiotics. However, because the 

biotransformation of DAPM by these cells is likely not as robust as that involving hepatocytes and 

microsomes, development of a sensitive method for separating and characterizing DAPM metabolites 

formed in VSMC was required and forms the basis for this paper. 

Gas chromatography (GC) and liquid chromatography (LC) have been used for the separation of 

metabolites of DAPM in urine and blood samples [16-21]. The low volatility of DAPM and its 

metabolites necessitated a derivatization step [16] prior to GC separation coupled with electron capture 

[17], thermionic specific [18], or mass spectrometric [19] detection. Derivatization is not required for LC 

analyses employing ultraviolet absorbance (UV) [20], electrochemical [16] or mass spectrometric 

detection [21].  

On-line HPLC-plasma spray mass spectrometry and off-line fast atom bombardment tandem mass 

spectrometry were used to study the metabolism of DAPM in rabbit hepatic microsomal incubation media, 

and three metabolites (4-nitroso-4’-aminodiphenylmethane, azodiphenylmethane and 

azoxydiphenylmethane) were identified [21]. Compared to these older techniques, capillary (300 µm ID) 

column LC-ES-MS can offer some performance advantages such as improved chromatographic 

separation and lower detection limits. However, monitoring of DAPM and its metabolites in extracts from 

vascular smooth muscle cells treated with low levels of DAPM can be rather challenging, and success in 

characterizing metabolites will require high efficiency separations coupled with high sensitivity mass 

spectrometric analyses. 
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2.3 Experimental 

Chemical and reagents 

4,4’-Methylenedianiline (CAS No. 101-77-9; >97% pure), formic acid and ammonium acetate (CAS No. 

631-68-3 >99% pure) were purchased from Sigma Chemical Co. (St Louis, MO). HPLC-grade 

acetonitrile was purchased from EM Sciences (Gibbstown, NJ). Water was purified using a Milli-Q™ 

water system (Millipore Co, Billerica, MA). 14C-DAPM was custom synthesized by American 

Radiolabeled Chemicals (St. Louis, MO). 

 

Sample Preparation and Handling 

Manipulation of both DAPM and 14C-DAPM was performed in a hood using gloves and other protective 

equipment. When working with radiolabeled compound, every precaution was taken to contain the 

radioactivity. Upon completion of an experiment, all surfaces and glassware were decontaminated using 

Rad-Con Surface Cleaner (Fluke Biomedical, Everett, WA). Vascular smooth muscle cells were isolated 

from the aortas of male Sprague Dawley rats using a method described previously [14] . VMSC were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Mediatech, Herndon, VA) containing 10% 

fetal bovine serum (FBS) and 1% antibiotic-antimycotic solution (Mediatech). For treatment with DAPM, 

the cells were plated into 6-well tissue culture-treated plates. Once the VSMC had reached ~70-80% 

confluence, the medium was aspirated, and the cells were treated for 24h with DMEM containing 10% 

FBS and 3.57 µM DAPM. After treatment, the cells were removed from the plate by scraping in the 

reaction medium, and the cell/medium mixture was homogenized using a Braun-Sonic U ultrasonicator 

(Allentown, PA). Cell protein was then removed from the samples using Microcon (Millipore, Bedford, 

MA) 10,000 M.W. cutoff centrifugal filters. 

 

LC/MS/MS 

LC analysis of DAPM and its metabolites was carried out on an “Ultimate” capillary/nano LC system (LC 
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Packings Inc., San Francisco, CA, USA), which includes a “Switchos” advanced microcolumn switching 

device. Separation was performed using a binary-gradient on a 300 µm I.D. × 15 cm, 3 µm, peptide map C18 

reversed-phase column (LC packings, Amsterdam, Netherlands) with a mobile phase of: A) 15 mM ammonium 

acetate buffer (pH 5.0) and B) acetonitrile, at a flow rate of 4 µl/min. The binary gradient went from 20% B 

hold for 8 min (including pre-column concentration 5 min), then 20 to 38% B in 10 min, then 38 to 90% B in 

20 min, and finally 90% B hold for 5 min. 20 µL of the sample was injected into the loop and loaded onto a 

micro-precolumn (300 µm I.D. × 5 mm, C18), with 1% aqueous acetonitrile loading mobile phase. Separation 

was enabled by the above-mentioned analytical column, with UV-detection at 254 nm, before the effluent was 

electrosprayed on-line into the mass spectrometer. 

On-line HPLC-MS detection was performed with a Micromass Quattro II triple quadrupole mass 

spectrometer (Micromass Ltd., Cheshire, UK), equipped with an electrospray (ES) source. The 

electrospray voltage used was 3.0 kV; cone voltage was set at 15 V, skimmer at 2 V, and the RF lens was 

maintained at 0.3 V. The mass spectrometer was operated in the positive ion mode under unit-resolution 

conditions. All parameters were initially tuned with a DAPM standard. Tandem mass spectrometric 

analysis was performed with argon collision gas at a pressure of 2.0 x 10-4 mTorr (gauge external to 

hexapole collision cell) and a collision energy of 30 eV. 

 

Results and Discussion 

The samples studied in this work are rat aortic smooth muscle cells that have been exposed to DAPM, and 

a DAPM control sample that has had no cell contact. In view of the original concentration of DAPM (3.57 

µM) used to initiate exposure of the cells, the concentrations of the metabolites and the remaining DAPM, 

of course, are expected to be lower than 3.57 µM. The challenge presented by this project is to obtain 

structural information concerning the bio-transformed metabolites that are present at extremely low 

levels.  
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LC/UV Chromatograms of the Sample and the Control Sample 

The LC Packings Ultimate capillary HPLC features pre-column concentration and a column switching 

technique [22-24], which can improve the detection limits. Large amounts of sample (up to 1 mL) can be 

concentrated on the first 5 mm length C18 pre-column with simultaneous matrix removal (principally 

de-salting), followed by elution of the concentrated sample onto the analytical reversed-phase C18 

column for separation (Figure 2.2). Compared to direct injection, pre-column concentration allows 

relatively large-volume sample injections, while maintaining narrow chromatographic peaks; sharper 

peaks lead to higher signal-to-noise ratios. For our experiments that employed a single injection of 20 µL, 

pre-column concentration enabled an improvement of the detection limits by a factor of ~ 20, relative to 

what is obtainable via direct injection with no pre-column concentration. The number of effective plates 

on the 15 cm length, 300 µm i.d. C-18 analytical capillary column is approximately 30,000. 

When VSMC were exposed to 14C-labeled DAPM and the sample was extracted for analysis, there were 

two major metabolite peaks appearing near that of the residual DAPM starting material. Comparison of 

the LC/UV chromatograms obtained for DAPM exposure (Figure 2.3a) and no cell contact (control, 

Figure 2.3b) shows that DAPM elutes from the column at 23.0 min, just after metabolite II at 22.0 min 

(Figure 2.3a). The employed solvent gradient allowed baseline separation (thus minimizing the problem 

of ionization suppression from coeluting species) and reasonably short (~25 min) retention times. 

A comparison of the areas of the DAPM peaks in Figures 2.3a and 2.3b (DAPM with and without 

vascular smooth muscle cell contact, respectively, all other experimental conditions identical) allows 

calculation of the fraction of DAPM converted to metabolites:  DAPM fraction metabolized = 1 - [(Peak 

Area of DAPM in the exposed cell sample) / (Peak Area of DAPM in the control)] = 1 - (24.7/35.3) = 1 - 

0.70 = 0.30. Thus, 30% of the DAPM in the exposed VSMC sample was metabolized in 24 hr. 
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Figure 2.2 Illustration of the column switching technique for pre-column sample concentration and 
separation. (A)Sample is loaded from the loop onto the trapping column while the analytical column is 
equilibrating. (B) Sample is desorbed from the trapping column in back flush mode and delivered through 
the analytical column for separation while the next sample is loaded onto the loop. The LC effluent 
passed through the UV detector and reached the mass spectrometer for detection. 
 

Analytical 
Column 

UV 

MS 

Waste 

Analytical 
Column

UV 

MS 

Waste 

A. Sample 
Loading Mode 

B. Sample 
Separation Mode 

Trapping 
Column Trapping 

Column

Loading mobile phase 35 µL/min 

Mobile phase 4 µL/min 

Pump 
Pump 

Pump 

 28



 

 

Metabolite II DAPM 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
Retention Time [min]  

Metabolite I 

A. 

 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
Retention Time [min]

DAPM 

 

B. 

 

Figure 2.3 LC/UV chromatogram of (A) sample derived from vascular smooth muscle cells that have 
been exposed to DAPM for 24 hr and (B) the control medium (no VSMC contact). 
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LC/MS Chromatograms of the Sample and the Control Sample 

A combination of two chromatographic detection systems resulted in the observation of many low 

abundance signals in the investigated samples. A UV detector provides a signal based on the response of 

chromophores within the compounds that absorb at the irradiation wavelength (254 nm). On-line coupling 

of LC with an ES mass spectrometer can allow the differentiation of each compound by m/z value; 

furthermore, structural information can be derived from tandem mass spectrometry (MS/MS) 

experiments.  

In the LC/MS chromatograms of both sample and control, a peak appears at about 24.9 min representing 

protonated DAPM at m/z 199 (Figure 2.4c, 2.5c). Appearing only in the chromatogram of vascular 

smooth muscle cells that have been exposed to DAPM is another peak at 24.1 min yielding a predominant 

ion at m/z 241 (Figure 2.4b). Due to the conditions in our experiments, generated ions are in the form of 

protonated molecules, [M+H]+, thus the molecular weight of the neutral molecule is 240 Da. This neutral 

molecule that we are naming “Metabolite II” must contain an even number of nitrogen atoms according to 

the nitrogen rule. The mass difference between DAPM and the heavier Metabolite II is 42 Da. The most 

probable modification to DAPM to account for this mass increase is to add C2H2O (in preference to C3H6 

or CH2N2); addition of C2H2O implies that one new unsaturation exists within the modification. The fact 

that Metabolite II elutes prior to DAPM on the reversed-phase column indicates that this heavier DAPM 

metabolite is more polar than the DAPM parent, and quells any speculation that a saturated -C3H7 

functional group could have somehow replaced a proton on DAPM.  

LC-ES-MS/MS employing collision induced dissociation (CID) was performed on DAPM and Metabolite 

II. Figure 2.6 shows the product ion spectrum (with interpretation) of the residual DAPM starting material. 

Figure 2.7 shows the product ion spectrum of protonated Metabolite II (m/z 241 precursor ion) revealing 

a product ion at m/z 106, representative of an intact 4-methylene aniline portion within the metabolite, 

and a second small peak at m/z 148. The assignment of m/z 106 was supported by the appearance of an 

identical peak in the CID spectrum of the DAPM standard (Figure 2.6) and in other synthesized DAPM 

metabolites (Nitroso, Azo, Azoxy, data not shown here). Metabolite II is assigned as the acetyl derivative 
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of DAPM shown in Figures 2.4b and 2.7. Additional evidence for this structure is that the peak areas of 

the later-eluting DAPM and the early-eluting Metabolite II are nearly the same in LC/UV, but the peak 

area of the latter is only about one fourth of that of DAPM in LC-MS where the mass spectrometer is the 

detector. A reduction in the ES ionization efficiency would be expected for the new amide linkage vs. the 

original primary amino group, i.e., amide formation reduces ionization of the metabolite by ES. Clearly 

the most probable site of acetylation is the amino group, thus forming N-acetyl-DAPM (Metabolite II).  

Comparison between the LC-MS chromatogram of the sample derived from exposure of VSMC to 

DAPM vs the control shows that a second metabolite appearing in the exposed cell sample (Figure 2.4) is 

absent in the control (Figure 2.5). This metabolite, that we are naming Metabolite I, elutes at 23.5 min, 

but because it was present in much lower abundance than Metabolite II, informative product ion spectra 

could not be obtained. Metabolite I is assigned as a compound containing two acetyl groups linked to 

DAPM, i.e., N,N’-diacetyl DAPM, and it was detected in protonated form at m/z 283. The fact that 

Metabolite I elutes prior to Metabolite II in the reversed-phase chromatogram indicates that the former is 

of increased polarity relative to the latter, which is consistent with the occurrence of a second acetylation. 

Thus, Metabolite I is proposed to have undergone two acetylation reactions, i.e., one at each amino group 

of DAPM (see Fig. 4a).  
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Figure 2.4 LC-ES-MS of vascular smooth muscle cells sample that has been exposed to DAPM, A) 
selected ion chromatogram of m/z 283; B) selected ion chromatogram of m/z 241; C) selected ion 
chromatogram of m/z 199; D) total ion chromatogram. 
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Figure 2.5 LC-ES-MS of the control sample with the same amount of DAPM (but no vascular cell 
contact). A) selected ion chromatogram of m/z 283; B) selected ion chromatogram of m/z 241; C) 
selected ion chromatogram of m/z 199; D) total ion chromatogram. 
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Figure 2.6 LC-ES-MS/MS product ion spectrum of protonated DAPM precursor at m/z 199. 
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Figure 2.7 LC-ES-MS/MS product ion spectrum of m/z 241 precursor, protonated Metabolite II. 
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Conclusion  

A simple and sensitive LC-MS method utilizing pre-column concentration has been 

developed to characterize low-level DAPM metabolites from vascular smooth muscle cells (detection 

limit, S/N = 3, of ~ 500 nM in LC/MS and 2.5 nM in LC/UV). Simultaneous de-salting and concentration 

utilizing column switching largely removes interferences present in the biological matrix, and thus, 

significantly improves the ionization efficiency of the target molecules. LC-ES-MS/MS employing CID 

of one metabolite (m/z 241 precursor) gave a product ion at m/z 106, representative of an intact 

4-methylene-aniline portion within the metabolite. This assignment was supported by the appearance of 

an identical peak in the CID spectrum of the DAPM standard. Based upon a combination of evidence 

including m/z shifts, UV and ES responses, relative retention times, and interpretation of the product ion 

mass spectrum, the m/z 241 metabolite was identified as protonated N-acetyl-DAPM. A second 

metabolite, present in much lower abundance, was identified as N,N’-diacetyl-DAPM based upon its 

relative LC retention, its MS spectrum, and its relative responses to UV and ES detection. The two 

identifications support the notion that DAPM is unstable in the plasma of vascular smooth muscle cell, 

and for detoxification, is readily transformed into metabolic products. Note that prior experimentation has 

demonstrated that the employed dose (3.57 µM DAPM exposure for 24h) is not cytotoxic to the cells, and 

the cellular response was increased proliferation and not cell death. Thus, the observed metabolism of 

DAPM is not an artifact due to the presence of dead and dying cells.  
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Abstract 

4,4’-methylenedianiline (DAPM) is the main building block for production of 

4,4’-methylenediphenyldiisocyanate that has been widely used in the manufacturing of polyurethane 

materials including medical devices. Although it was revealed that damage to biliary epithelial cells of the 

liver and common bile duct occurred upon acute exposure to DAPM, the exact mechanism of DAPM  

toxicity is not fully understood. Both phase I and II biotransformations of DAPM, some of which 

generate reactive intermediates, are characterized in detail by liquid chromatography electrospray tandem 

mass spectrometry. The two most prominent metabolites found in rat bile (M2 and M7) implicated 

glutathione, glucuronic acid and glycine conjugations (phase II) following hydroxylation, and 

N-oxidation (phase I). Their decomposition pathways, as evidenced by MSn experiments, have been 

elucidated in detail.  
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Introduction 

One class of xenobiotics that has attracted much attention for its potential toxicity is the aromatic amines. 

Reports on toxic exposure to aromatic amines date back to the early 1900s.1 The most common threat 

from those compounds results from accidental occupational and incidental environmental exposure.2 It 

has been postulated3 that reactive intermediates of the starting materials are primarily responsible for the 

toxicity, and that these activated forms bind with proteins critical to certain cellular functions. DAPM 

(also known as 4,4’-methylenedianiline or diaminodiphenylmethene), is an aromatic diamine (Figure 3.1a) 

of considerable industrial and commercial importance. It has been used as a chemical intermediate in 

several syntheses, including certain isocyanates and polyurethane polymers. It has also been employed as 

the cross-linking agent for epoxy resins, and as an antioxidant and curative agent in the preparation of azo 

dyes and rubber products.4, 5    

DAPM is an environmental contaminant which has potentially harmful effects on human and animal health. 

Early documentation of DAPM hepatoxicity was established in a study of residents of Epping (England) who 

had consumed DAPM-contaminated bread.6 Although it was revealed that biliary epithelial cells of the liver 

and common bile duct could be injured upon acute exposure to DAPM,7, 8 the exact mechanism of DAPM 

toxicity is not fully elucidated.  Other studies have shown that DAPM is an animal carcinogen, and 

histopathological abnormalities have been observed in the liver, kidney and lung of mice,9 although metabolic 

pathways for bioactivation of DAPM have not yet been fully described.  

With the introduction of various analytical techniques such as GC, HPLC and LC/MS, investigations of the 

biotransformations of DAPM have grown. Acetylated metabolites were reported to be found in urine, blood 

and vascular smooth muscle cells.10, 11 However, their presence cannot explain the toxicity of DAPM. Other 

reactive and toxic metabolites are expected in bile, the likely route of exposure of bile duct cells to the 

proximate toxicant. Hemoglobin adduction with DAPM after conversion of the latter to an imine form was 

reported by Kautiainen and colleagues.12 This biotransformation of DAPM into a reactive imine was 

speculated to be catalyzed by extrahepatic peroxidase enzyme. We recently reported the characterization of 

biliary metabolites of DAPM using various spectroscopic techniques13. DAPM was found to be converted by  
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Figure 3.1 (a) LC/MS total ion chromatogram (TIC) of biliary metabolites in a rat dosed with 
methylenedianiline (DAPM); LC/MS reconstructed ion chromatogram of: (b) M2 at m/z 532; and (c) M7 
at m/z 478 
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phase I and II biotransformation generating N-oxidation, hydroxylation, acetylation, glucuronic acid and 

glutathione conjugation products. The interesting biotransformations of these reactive and novel metabolites 

prompted us to decipher their fragmentation pathways observed in tandem mass spectrometry experiments 

under collision-induced dissociation (CID). Our assignments, and mechanistic interpretations of product ion 

spectra of these DAPM metabolites should prove useful in future characterizations of other aromatic amine 

metabolites.  

 

Experimental Details 

Animals 

Bile duct-cannulated Sprague-Dawley rats were dosed with vehicle (ethanol) or 25/50 mg/kg DAPM; bile 

was collected for 6 hours on ice and then stored immediately at -80 oC. To remove the protein, aliquots of 

bile (20-50 µL) were thawed and filtered using Microcon 10,000 MW centrifugal filters (Fisher Scientific, 

Houston, TX). Before the samples were injected into LC/MS, they were kept on ice.  

 

Liquid Chromatography/Mass Spectrometry 

The samples were separated on a reversed-phase HPLC column (Waters XTerra-MS C18, 1 × 150 mm, 3 

µm) by a gradient solvent system consisting of solvents A (10 mM ammonium acetate pH 3.5) and B 

(Acetonitrile). The percentage of mobile phase B was maintained at 15% for the first 2 min with the flow 

rate set at 50 µL/min, and then ramped linearly to 35% over the next 33 min. The proportion of B was 

increased to 90% over the next 15 min. Aliquots of filtered bile (20 µL) were injected onto the column 

and directly delivered into the electrospray LCQ Deca Xp Plus mass spectrometer (Thermo-Finnigan, San 

Jose, CA) that was operated in the positive ion mode. The metabolites were first detected in a LC-MS 

survey scan, and the most abundant ion found during each survey scan was then selected to be fragmented 

using the data-dependent acquisition mode. The six most abundant MS2 fragments were automatically 

selected to acquire ensuing MS3 spectra. To cut down on redundant data acquisition, dynamic exclusion 
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was enabled at the following settings: repeat counts = 2,   repeat duration = 0.3 min, exclusion duration 

= 0.4 min, and exclusion mass width = 3 Da. The temperature of the ion transfer capillary was maintained 

at 275 °C and the electrospray needle was operated at 3.2 kV. Tandem mass spectra were obtained with a 

mass window of 3 Da, relative collision energy set at 38%, and an activation time of 5-30 msec.   

 

Results and Discussion  

As described previously,13 biliary metabolites of DAPM have been observed using LC-radioisotope 

detection. Either off-line (fraction collection) or on-line LC/MS was carried out with mass spectrometric 

characterization of the metabolites. M1-M9 appeared at m/z 375, 532, 403, 475, 24, 417, 478, 574 and 

517 Da, respectively. Of the nine metabolites, M2 and M7 are the most intriguing and complicated 

metabolites. Both involve N-oxidation and hydroxylation of the parent DAPM compound, along with 

glutathione conjugation on M2, or glucuronic acid and glycine adduction on M7. Although structural 

characterizations were accomplished on both metabolites via various spectroscopic techniques,13 their 

detailed fragmentation mechanisms based upon MSn data are presented here for the first time.  

 

Metabolite M2 

During LC-MS analysis, M2 is observed as a protonated molecule [M+H]+ at m/z 532 with a retention 

time of 7 min (Figure 3.1b). The product ion spectrum of M2 is shown in Figure 3.2a. Major product ions 

of the protonated M2 precursor correspond to loss of the pyroglutamate moiety (-129) leading to the base 

peak at m/z 403, or loss of the glycine moiety (-75), thereby generating a fragment ion at m/z 457. Those 

neutral losses are characteristic of glutathione adducts during CID experiments. Two additional fragments 

at m/z 308 and 179 correspond to protonated glutathione (thiol form) and protonated cysteinyl-glycine, 

respectively. The appearance of these four characteristic fragment ions allowed the identification of M2 as 

a GSH adduct. In addition, fragment ions at m/z 385, 439 and 514 were formed via H2O loss from m/z 

403, 457 and 532, respectively. Glutathione conjugation is proposed to occur at the imine nitrogen atom  
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Figure 3.2 (a) MS/MS spectrum of protonated M2 at m/z 532 and (b) MS3 spectrum of m/z 300; (c) 

proposed fragmentation pathways of protonated M2 and m/z 300 
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based on the absence of an N-H proton and the presence of a full complement of aromatic ring protons 

(i.e., 8) in the 1H-NMR spectrum. Assignment of the hydroxylated form of the DAPM methylene bridging 

carbon resulting from phase I metabolism of the M2 precursor was deduced13 from 1H-NMR and TOCSY 

spectra, and the predicted chemical shift of the hydroxyl proton calculated using Chemoffice Ultra 2004 

software (Cambridgesoft Corporation, Cambridge, UK).  

Even though solid evidence of glutathione conjugation was readily derived from LC-MS/MS, little 

information about the xenobiotic moeity was directly obtainable from MS2 spectra because cleavages 

occurred primarily at or on the GSH moiety. To enhance the amount of structurally-informative 

fragmentation, the data dependent MS3 data acquisition method was employed on mass spectral peaks 

appearing in the low m/z range (m/z 200-400) which represent fragments with charge retention on the 

xenobiotic moiety. These informative fragments appeared at m/z 199, 225, 257, 283 and 300 in the 

MS/MS spectrum (Figure 3.2a), and they were subjected to further fragmentation. The MH+-232 fragment 

at m/z 300 (Figure 3.2c) was formed via  successive eliminations of pyroglutamic acid, glycine residues 

and CO from protonated M2.14 A further elimination of NH3 led to the fragment ion at m/z 283 (Figure 

3.2b). The fragment ions at 199, 225 and 257 were produced from the ion m/z 283 ion formed by the 

cleavage of m/z 300 (Figure 3.2b); proposed fragmentation pathways are shown in the Figure 3.2c. 

Additional fragments at m/z 132 and 197 were derived from MS3 decompositions of m/z 225 (Figure 

3.3a), and the corresponding cleavage mechanisms are shown in the Figure 3.3c. The formation of m/z 

197 is proposed to occur via rearrangement and elimination of CO (28 Da) with the driving force being 

production of a highly resonance-stabilized ion shown in Figure 3.3c. The MS/MS spectrum of m/z 199 

gave a fragment at m/z 106 (Figure 3.3b), representing the 4-nitrosophenyl moiety and thus presenting 

evidence of N-oxidation at one amino group of DAPM. The above interpretation leaves the other 

(non-nitroso) nitrogen as the only remaining site on M2 available for GSH adduction. 
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Figure 3.3 MS3 spectra of the precursor ions at: (a) m/z 225; and (b) m/z 199 derived from protonated 

M2 present in bile of a rat dosed with DAPM; (c) corresponding fragmentation pathways 
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Metabolite M7 

M7, eluting at an LC-MS retention time of 21 min (Figure 3.1c), appeared as the protonated molecule 

[M+H]+ at m/z 478. In the MS/MS spectrum (Figure 3.4a), the protonated M7 precursor underwent a 176 

Da (-anhydroglucuronic acid) loss characteristic of a glucuronide to generate the product ion at m/z 302. 

H2O losses to form the fragment ions at m/z 460 (-H2O) and 442 (-2H2O) (Figure 3.4a) were also visible. 

The MS3 spectrum of m/z 302 gave a product ion at m/z 285 corresponding to NH3 loss (Figure 3.5a). The 

above mentioned characteristic glucuronide loss (-176 Da) could also occur in conjunction with NH3 loss 

(-17 Da) from the m/z 478 precursor to give m/z 285 (Figure 3.4a), and the corresponding mechanisms 

are proposed in Figure 3.4b. The MS3 spectrum of m/z 285 (Figure 3.5b) yielded: m/z 106, 136, 148, 150, 

241 and 267. The fragmentation pathways leading to m/z 136 and 150 are shown in Figure 3.5e.   

The monoisotopic mass of M7 appears at an even m/z value, indicating that it contains an odd number of 

nitrogen atoms based on the “nitrogen rule”. The possibility of amino acid conjugation with one of the 

free amines of DAPM can account for both the mass increase, and the addition of a third nitrogen. There 

are two well-established metabolic pathways of amino acid conjugation with xenobiotics containing 

primary aromatic amine functional groups. One is through reaction of the amino acid carboxylic acid 

group with a free amine on the xenobiotic to form an amide bond, such is exemplified by glutamic acid 

conjugation with acetaminophen metabolites.15 Secondly, xenobiotics containing a hydroxylamine group 

may conjugate with the carboxylic acid group of amino acids such as proline or serine.16 This is 

accomplished when aminoacyl-tRNA synthetase activates the amino acid and then conjugates it with 

hydroxylamine to form an N-ester that can be degraded into an electrophilic nitrenium ion.17 The MS3 

loss of 44 Da from the precursor ion at m/z 285 gave the product ion at m/z 241(Figure 3.5b), that we 

have assigned as CO2 loss. Observation of this prominent CO2 loss indicates that an N-ester (-N-O-C(O)-) 

had been formed rather than an amide (-N-C(O)-) bond (Figure 3.6). In our search of the literature, we 

were unable to find previous examples of this type of glycine conjugation to aromatic hydroxyl amines 
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(with glycyl- t-RNA synthetase participation). MS4 of m/z 241 gave the product ions at m/z 106 and 148 

(Figure 3.5c), representing 4-nitrosobenzyl and its precursor (Figure 3.6). The appearance of m/z 106 

indicated N-oxidation at the other free amine group of DAPM. The fragment ion at m/z 148 suggested 

hydroxylation on the methylene bridging carbon of DAPM (Figure 3.6). Under CID, m/z 285 also 

underwent H2O loss to form a fragment ion at m/z 267 (Figure 3.5b), corroborating the postulation that 

hydroxylation had occurred on the methylene carbon. The MS4 spectrum of m/z 267 showed a fragment 

ion at m/z 132 (Figure 3.5d), and the corresponding pathway is shown in Figure 3.6. Because both amine 

groups of DAPM have been metabolized, the only reasonable site for glucuronic acid conjugation is with 

the hydroxyl oxygen on the bridging carbon. Thus the structure of M7 can be confidently identified. 

 
Conclusion 

The structural assignments of these metabolites from rat bile are mainly based on LC-tandem mass 

spectrometry data. MSn spectra up to MS4 were acquired for the thorough structural elucidation that forms 

the basis for this paper. Detailed interpretation of MSn spectra is essential to eliminating ambiguity in 

deducing metabolite structures. A combination of metabolic processes was involved in transforming 

DAPM into the M2 and M7 metabolites found in rat bile. These biotransformations include glutathione, 

glycine and glucuronic acid conjugation (phase II) of DAPM that had previously undergone 

hydroxylation and N-oxidation (phase I). They demonstrate that DAPM is susceptible to (phase I) 

conversion to electrophilic species that can be trapped by phase II metabolism. The existence of phase I 

reactive metabolites of DAPM supports the postulation that reactive intermediates are involved in the 

toxicity of DAPM, possibly implicating covalent protein adducts that were also found in rat bile.13 Further 

studies are in progress to characterize those DAPM modified proteins. 
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Figure 3.4 MS3 spectra of the precursor ions at: (a) m/z 225; and (b) m/z 199 derived from protonated 

M2 present in bile of a rat dosed with DAPM; (c) corresponding fragmentation pathways 
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Figure 3.5. MS3 spectra of: (a) m/z 302 and (b) m/z 285; MS4 spectra of: (c) m/z 241; and (d) m/z 267; (e) 
proposed fragmentation pathways of m/z 285 leading to the fragment ions at m/z 136 and 150 
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Figure 3.6 Proposed fragmentation pathways leading to the MS3 product ions at m/z 241 and 267, and the 

MS4 product ions at m/z 106, 132 and 148 
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Abstract 

Reports of anti-cancer and immunosuppressive properties have spurred recent interest in the bacterially 

produced prodiginines. We use electrospray tandem mass spectrometry (ES-MS/MS) to investigate 

prodigiosin, undecylprodiginine and streptorubin B (butyl-meta-cycloheptylprodiginine), and explore 

their fragmentation pathways to explain the unusual methyl radical loss and consecutive fragment ions 

that dominate low-energy collision induced dissociation (CID) mass spectra. Structures of the fragment 

ions are proposed and explanations are given for the competition between the formation of even-electron 

ions and radical ions. Theoretical calculations have been used to optimize the structures and calculate the 

energies of both reactants and products using the GAUSSIAN 03 program. Results indicate that 

protonation occurs on the nitrogen atom that initially held no hydrogen, thus allowing formation of a 

pseudo-seven-membered ring that constitutes the most stable ground state [M+H]+ structure. From this 

precursor, experimental data show that methyl radical loss has the lowest apparent threshold, but 

alternatively, even-electron fragment ions can be formed by loss of a methanol molecule. Computational 

modeling indicates that methyl radical loss is the more endothermic process in this competition, but the 

lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. Additionally, 

this characteristic and unusual loss of methyl radical (in combination with weaker methanol loss) from 

each prodiginine is useful for performing constant neutral loss scans to quickly and more efficiently 

identify all prodiginines in a complex biological mixture without any clean-up or purification. The 

feasibility of this approach has been proven through the identification of a new, low abundance 

prodigiosin analog arising from Hahella chejuensis. 
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Introduction 

Prodiginine analogs belong to a family of naturally occurring red-pigment antibiotics that are secondary 

metabolites biosynthesized by many strains of Gram-positive and Gram-negative bacteria.1 These 

compounds are characterized by a common pyrrolydipyrrolylmethene backbone and a methoxy function 

on the B-ring (Scheme 4.1). The chemical composition of prodigiosin, a representative member of the 

prodiginine family, was established half a century ago by chemical synthesis.2, 3 Other close analogs, 

bearing the same skeleton but different alkyl substituents, have been reported,  such as 

undecylprodiginine4, streptorubin B5, methylcyclodecylprodiginine6 and cycloprodigiosin7.  

By virtue of their brilliant red color, these compounds were used as ink for a short time period prior to the 

appearance of synthetic dyes8. The prodiginines are also antibiotics that have a broad range of activities 

against bacteria, pathogenic fungi and protozoa, but they have not been widely employed in clinical trials 

because of their toxicity.9, 10 Some studies have shown that their common skeletal features, e.g., the 

presence of the B-ring C6-methoxy group (Scheme 4.1), are related to the cytotoxicity of prodigiosin; the 

A-ring also plays an important role in nuclease activity and cytotoxic effects.11 The toxic effects were 

speculated to arise from intercalation with DNA, leading to oxidative DNA cleavages in the presence of 

O2 and Cu(II).12, 13 Although the exact cytotoxic mechanism was not completely clarified, some recent 

findings have shown that prodiginine-type compounds are potent immunosuppressants at lower, non-toxic 

levels, and slightly higher dosages can efficiently induce apoptosis of cancer cells with little toxic effects 

on normal cell lines in vivo and in vitro.14, 15   
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Scheme 4.1 Traditional structural representation of three investigated prodiginines: prodigiosin, 
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Recent findings concerning their anti-cancer11, 16 and immunosuppressive properties14, 17, 18 have led to the 

expansion of prodiginine studies. Intrigued by their pharmaceutical prospects, the total synthesis of 

prodiginine-type compounds has been reported.19 Moreover, synthetic analogue named GX15-070 has 

been used in phase I/II clinical trials for cancer treatment.20 However, other analogs anticipated to have 

even more anti-tumor activity, such as streptorubin B (butyl-meta-cycloheptylprodiginine, Scheme 1), 

were difficult to synthesize in the lab. Thus, a biosynthetic pathway might be a good alternative to 

achieving rapid and cost-effective production of prodiginine-type drugs. To improve the understanding of 

the biosynthesis of prodiginine antibiotics, studies have been completed to elucidate pathways in 

Streptomyces coelicolor leading to key intermediates including 

4-methoxy-2,2’-bipyrrole-5-carboxaldehyde (MBC)21 and 2-undecylpyrrole (UP)22.  

Prodiginines show a characteristic brilliant red color and they readily absorb visible region light which 

has been exploited for liquid chromatographic detection. Structural characterization has almost 

exclusively relied upon NMR spectroscopy that requires relatively large sample quantities, as well as 

labor-intensive purification steps. New developments in mass spectrometry over the last two decades have 

earned it the reputation for offering high sensitivity, a wealth of structural information with the use of 

complementary fragmentation techniques, and the ability to deal with complex mixtures. Up until now, 

however, mass spectrometry has mainly provided molecular weight confirmation in prodiginine 

identifications.  

Understanding the major fragmentation pathways for prodiginines can help in the structural elucidation of 

synthetic prodiginine analogs and novel prodiginines generated by biosynthetic processes. Generally, all 

the prodiginine analogs are readily detected in the positive ion mode owing to available basic nitrogen 

atoms, which enables one to gain important structural information without further purification, especially 

if there are low abundance prodiginine analogs in a complex mixture. Our study investigates all the major 

fragmentation mechanisms using multi-stage tandem mass spectrometry as well as theoretical 

calculations.  
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Experimental 

Chemicals and Sample Preparation 

Undecylprodiginine and streptorubin B were purified from Streptomyces coelicolor strains. 

Undecylprodiginine was isolated from mycelia of S. coelicolor W31 which is unable to make streptorubin 

B.23 Streptorubin B was isolated from S. coelicolor M511 which produces a mixture of 

undecylprodiginine and streptorubin B. Mycelia were extracted with acetonitrile/methanol (50:50), 

acidified with 2 N HCl (1%) and vortexed for 30 sec. One volume of chloroform and one volume of 1 N 

HCl were then added to each volume of prepared extracts; and the chloroform fractions, which contained 

prodiginine hydrochlorides, were recovered. The fraction originating from S. coelicolor W31 was washed 

with 1 N NaOH to afford undecylprodiginine as a free base which was purified by flash chromatography 

on basic alumina using 100% ethyl acetate as eluent. Undecylprodiginine appeared as a yellow pigment in 

ethyl acetate. The chloroform fraction originating from S. coelicolor M511 was evaporated to dryness and 

streptorubin B hydrochloride was purified by semi-preparative HPLC using an Agilent 1100 instrument 

equipped with a quaternary pump and variable wavelength detector set at 533 nm. Extracts that were 

resuspended in acetonitrile/methanol (50:50) were injected onto an Agilent C18 column (100 x 21 mm, 5 

µm) using the gradient elution profile: water (adjusted to pH 3 with HCl)/acetonitrile 30:70 to 20:80 in 20 

minutes at a flow rate of 5 µL/min; pure streptorubin B eluted after 8.2 min. 

In separate experiments, prodigiosin and its analog were extracted from Hahella chejuensis culture with a 

solvent of methanol containing 0.1 N HCl on a shaker for 2 hrs at 4 °C. The resultant mixture was 

centrifuged at 4000 × g for 30 min, and then the supernatant was collected.  

 

Mass spectrometry  

ES-CID-MSn experiments were performed on a linear trapping quadrupole (LTQ) instrument 

(ThermoFinnigan, San Jose, CA) equipped with a positive ion nanospray ionization source and New 

Objective (Woburn, MA) nanospray silica tips. Samples were diluted in 50% aqueous methanol 
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containing 0.1% formic acid, and infusion loaded into the LTQ at a flow rate of 1 µL/min. The instrument 

was operated at a spray voltage of 2 kV and a capillary temperature of 180 °C. Tandem mass spectra were 

acquired at a setting of 30% “normalized collision energy” of the precursor ions at m/z = 324.2, 392.3 and 

394.3 corresponding to the three protonated prodiginines with an isolation width of 2.5 Da. Each MS and 

MSn spectrum was acquired and averaged within 1 min.  

All neutral loss (NL) scans, and also all mass spectra appearing in Supplementary Data, were performed 

on an Applied Biosystems/MDS SCIEX (Foster City, CA) 3200 QTRAP hybrid quadrupole/linear ion trap 

mass spectrometer with direct infusion of each prodiginine sample in aqueous methanol (50/50) spiked 

with 0.1% formic acid at a flow rate of 4 µL/min. Positive ion mode ES-MS was used for the analysis, 

with the Turbo VTM source settings for prodiginines optimized as follows: ionspray voltage 5.5 kV, 

declustering potential 60 V, source temperature 120 °C, GS1 40 and curtain gas 10. Ultrahigh grade 

(99.999%) nitrogen was utilized as nebulizing gas and collision gas. To maximize resolution of ionizable 

species in the complex sample, MS spectra were acquired using Q3 in the linear ion trapping (LIT) mode.  

For the activation energy comparison using the 3200 QTRAP mass spectrometer, single collision 

conditions ensured well-controlled energy deposition on the target ions during the ion activation event 

with parent beam transmission ≥ 90%. The ion abundances of the fragments from competing pathways 

were monitored as the collision energy was ramped from 5 to 80 eV. Each data point shown in the 

breakdown curve represents an average of five consecutive runs, and error bars (showing +/- standard 

deviation) were calculated from the five experiments.  

 
Computational methods  

All computational calculations were performed using the Gaussian 03 (revision B.03) program.24 The 

density functional B3PW91/6-31G* procedure (which combines the Becke three-parameter hybrid25 and 

the Perdew-Wang correlation functionals26) was used to optimize geometries and these obtained 

structures were then used to find energy minima at 0 K (B3PW91/6-311+G(2d,2p)) with zero-point 
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correction. When calculating transition states, opt=QST2 and opt=QST3 features were used with the 

relevant optimized reactants and products. 

 

Results and Discussion 

In positive ion electrospray mass spectra, the ions observed are generally “molecular ions” representing 

intact forms of the analyte molecules; those created by proton attachment are denoted as [M+H]+. These 

ions are even-electron (EE+) species that are generally much more stable than odd-electron ions (OE+⋅) 

formed, for example, by electron ionization. Even-electron ions such as protonated molecules formed by 

ES rarely decompose under low-energy collisions by homolytic cleavage involving loss of a radical to 

form OE+⋅ + ˙n (radical neutral) because the barrier to this type of process is almost always higher than 

those of competing processes. Rather, heterolytic bond cleavages, often involving rearrangement(s) 

(especially proton transfer(s)) reign. Thus, radical losses from EE+ species are considered to be forbidden, 

which is a statement of the “even-electron rule”.27 Certain exceptions to this “rule” have been reported 

where odd-electron ions were formed through the fragmentation of even-electron ions formed during 

electron ionization or chemical ionization or electrospray ionization28-32. These exceptions to the 

“even-electron rule” were proposed to involve radical eliminations leading to odd-electron fragment ions 

of exceptional stability.33  

The goal of the current study is to obtain a comprehensive view of the common fragmentation pathways 

of prodiginines, while mainly focusing on the odd-electron fragments observed in ES-tandem mass 

spectra. Even though three investigated prodiginine analogs share a common skeleton (Scheme 1), 

differences in the behavior of the protonated molecules following ion activation were seen due to the 

varying alkyl chain substituents on the C-ring. 

 

Interpretation of the Detailed Fragmentation Pathways of Prodigiosin 

Although the collision induced dissociation (CID) mass spectra of some prodiginines have been 
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reported,34 to our knowledge there has been no detailed description of mass spectra, nor interpretation of 

their fragmentation mechanisms in the literature. In our CID mass spectra of three prodiginine analogs, 

similarities in the fragmentation patterns were readily discernable. In each case, a stable OE+⋅ fragment 

ion is initially formed through the loss of a 15 Da neutral, which we deduce can only be a methyl radical. 

Methyl radical loss was also observed during the fragmentation of ES-generated protonated flavanones.31 

Because this 15 Da loss is common to MS/MS spectra of all three prodiginines, we conclude that it must 

correspond to loss of the methyl moiety of the methoxy group on the B-ring (m/z 324  309, m/z 394  

379, m/z 392  377 in Figures 4.1, 4.2, and 4.3 respectively). Even though prodigiosin has another 

methyl substituent in the C-ring, neither of the other two prodiginines have a second methyl group, hence, 

C-ring methyl loss is eliminated as the source of 15 Da loss. The fully conjugated skeletons provide much 

resonance stabilization for both the charge and the unpaired electron; when the latter is associated with 

the C-ring it can initiate cleavages on the substituent alkyl chains. To aid in the interpretation of the 

fragmentation mechanisms, CID-MS3 experiments were performed on the OE+⋅ ions of particular interest 

(i.e., m/z 309, 379 and 377 in Figures 4.1, 4.2 and 4.3, respectively). From these latter ions, obtained MS3 

spectra could readily rationalize consecutive cleavages that appeared in the MS2 spectra. For example, it 

can be seen that alkyl chain cleavages yield the predominant fragment ions at m/z 238 and 252 observed 

in the CID spectra of all three prodiginine analogs.  

As a competing pathway, EE+ fragments are derived from the loss of methanol (m/z 324  292, m/z 394 

 362, m/z 392  360 in Figures 4.1, 4.2 and 4.3, respectively). The ion abundance of this EE+ product 

is substantially lower than those of the OE+⋅  fragments (m/z 309, 379 and 377, respectively) observed in 

the tandem mass spectra, but it is clear that the methoxy group is involved, carrying a proton in tow in 

each case of methanol loss. Other OE+⋅ fragments were also observed in the CID spectra of prodigiosin 

and its two analogs. Additional information to aid in elucidating the structure was gained using a third 

stage of tandem mass spectrometry. The OE+⋅ products (m/z 324 149 (Figure 4.1), m/z 392  295 

(Figure 4.3)) were further fragmented using on-resonance CID in the linear ion trap, giving major EE+  
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Figure 4.1 ES-CID-MSn spectra for prodigiosin and the proposed major fragmentation pathways: (A) 
MS/MS spectrum of [M+H]+ precursor at m/z 324; (B) MS3 spectrum of m/z 309 (324 309); (C) MS3 
spectrum of m/z 149 (324 149)   
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Figure 4.2 ES-CID-MSn spectra for undecylprodiginine and the proposed principal fragmentation 
pathways: (A) MS/MS spectrum of [M+H]+ precursor at m/z 394; (B) MS3 spectrum of m/z 377 
(394 379) 

 63



 
 392  

A  
 

 
 
 

 64

C 

B 
392 377  

 
 
 
 

392 295  
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 

 
 

 

NH

N
H

HN
O

NH

NH

N
O H

m/z 377.2

(CH2)n

NH

NH

NH
O

m/z 320.2

- C4H9

- CH3

NH

NH

N
O

CH3

H

NH

NH

N

m/z 392.4
m/z 360.2

- CH3OH

NH

NH

N
O

H
ba

NH

NH

NH
O H

H

- NH

NH

NH
O

m/z 295.2

H
H

NH

NH

NH
O

m/z 252.2

H
H

- C3H7

 
 
 
 

Figure 4.3 ES-CID-MSn spectra for streptorubin B and the proposed major fragmentation pathways: (A) 
MS/MS spectrum of [M+H]+ precursor at m/z 392; (B) MS3 spectrum of m/z 377 (392 377); (C) MS3 
spectrum of m/z 295 (392 295) 
 
 
 



fragments (m/z 134 and 252, respectively) after CnH2n+1 radical (n = 1 and 3) elimination.  The detailed 

mechanisms proposed for the fragmentations of the three investigated compounds are illustrated in 

Figures 4.1- 3.  

Additional evidence supporting these proposed mechanisms was obtained by repeating tandem mass 

spectrometry measurements, except that this time, a stable isotope labeled 

[13C-methoxy-undecylprodiginine + H]+ m/z 395 precursor was used (see supplemental data). All product 

ions appeared at exactly the same m/z values as those derived from the unlabeled [undecylprodiginine + 

H]+ m/z 394 precursor. This unambiguously implicates the methoxy function in both methyl radical and 

methanol losses, and establishes that all other product ions arise from consecutive decompositions 

following one of these initial losses. 

 

Computational Studies of the Fragmentation Pathways of Prodiginine  

To investigate the underlying basis for the fragmentation pattern of protonated prodiginines, theoretical 

calculations were employed to gain additional information concerning the competition between methyl 

radical and methanol losses. Density functional theory (DFT) calculations were performed to obtain the 

structures of the precursor ion and its decomposition products, transition states and their associated 

energies. Due to the large numbers of atoms in the molecules of interest, it is time consuming to 

computationally minimize the energies of the structures using DFT, especially when a long alkyl chain 

with many approximately isoenergetic conformers is present. To reduce this difficulty, in all calculations, 

we employed an ethyl analog of the undecylprodiginine system, i.e., C2H5 substitution on the C-ring 

instead of C11H23. Traditionally, the structures of prodiginines have been drawn with the three nitrogen 

atoms of the tripyrrole skeleton oriented on the same side of the molecule (Scheme 1). However, 

theoretical calculations find that the A- and C-rings in Figure 4.1 are rotated about 180º such that the 

molecules are still nearly planar, but nitrogen lone pairs are located as far apart as possible to minimize 

the electronic repulsion, and hence, the system achieves the highest stability. Figure 4.4(a) I shows the 

energy optimized geometry obtained at the B3PW91/6-31G* level of theory, 4(a) II shows the chemical 

 65



structure, while 4(a) III shows the electron density map. Electron density mapping provides insight into 

the electron distribution over the molecule and also allows prediction of the preferred site of proton 

attachment on the molecule. As can be seen in Figure 4.4a (III), the lone pair of electrons of the nitrogen 

atom in the B-ring exhibits the highest electron density, and thus, is clearly the preferred site of proton 

attachment. In view of the fully conjugated structure, the positive charge carried by the ionizing proton 

becomes highly delocalized over the entire ring system. In considering [M+H]+ ions observed in mass 

spectra, and placing the ionizing proton on the nitrogen that previously holds no proton, the energies of 

three stable conformers were calculated at the B3PW91/6-311+G(2d,2p) level of theory; the relative 

stabilization energies are listed below each corresponding structure (Figure 4.4b). Very importantly, a 

hydrogen bond may form between the C-ring proton attached to the nitrogen atom and the oxygen from 

the methoxy function to produce a pseudo-seven-membered ring (Scheme 2) which represents the most 

stable ground state conformation.  

With the proton held (chelated) between the C-ring nitrogen and the methoxy oxygen (O···H distance = 

1.397 Å), two facile decomposition pathways are possible. The first pathway is the expected loss of a 

methanol molecule that, afterwards, according to energy minimization studies, undergoes ring closure to 

form a new fused five-membered ring structure (Scheme 2). The second pathway is homolytic cleavage 

between the oxygen and carbon atoms of the methoxy group to produce loss of ˙CH3 which was 

experimentally observed to be surprisingly facile and favored.  

Geometry optimization and vibrational frequency analysis for the reactant and the two products were 

carried out at the B3PW91/6-31G* level. These structures were then used to perform single point energy 

calculations at the B3PW91/6-311+G(2d,2p) level with zero-point energy correction. The calculated 

relative energies of the two endothermic products are 121.6 (EE+ product) and 226.8 (OE+⋅ product) 

kJ/mol (Scheme 2) rendering methyl loss more endothermic by 105.2 kJ/mol. Thus, the preference for 

methyl radical loss over methanol loss cannot be explained by the energy difference between the reactant 

and the respective products. 
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Comparison of Aparent Tresholds and Ativation Eergies for the To Cmpeting Mechanisms 

To obtain more insight into the competing processes of methyl radical loss vs methanol loss from 

protonated prodiginine, a profiling of the fragment ion populations from each pathway as a function of 

increasing energy under single collision conditions was undertaken in the low-energy regime. Figure 4.5A 

presents the breakdown curve of the protonated prodigiosin precursor (m/z 324), plus the appearance of 

the fragments associated with methyl radical loss (m/z 309 and 252) and methanol loss (m/z 292). Most 

notably, methyl radical loss has the lowest apparent threshold (Elab ≈ 5 eV) and its consecutive 

fragmentation pathway (giving m/z 252, Figure 4.1) appears instantaneously thereafter. 

Methanol loss exhibits a higher apparent threshold (Elab ≈ 12.5 eV) compared to the former loss. 

Surprisingly, Figure 4.5A shows that, regardless of collision energy, the abundances of m/z 309 and 252 

are always more than 10 times higher than that of m/z 292. MS/MS spectra that were acquired at collision 

energies of 5 and 12.5 eV (Elab) are shown in Figure 4.5B.  

Methyl radical loss thus has a lower apparent threshold, but it is also a more endothermic pathway than 

methanol loss. This implies that OE+⋅ production is favored because methyl radical loss presents the 

lowest available kinetic barrier. Computational studies were used in an attempt to calculate activation 

energies, and a transition state structure for loss of methanol from protonated prodiginine with only one 

imaginary frequency was successfully obtained. The activation energy for loss of methanol from 

protonated prodiginine was calculated to pass through a transition state that was found to be 373.3 kJ/mol 

higher in energy than the ground state reactant. Unfortunately, our attempt to obtain a transition state for 

methyl radical loss from protonated prodiginine was unsuccessful, but nonetheless, the experimental data 

in Figure 4.5 proves that the energy barrier for this latter process is significantly lower than that of 

methanol loss. 
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Figure 4.4 (a) Structures of neutral prodiginine model system showing the preferred site for the proton 
attachment during electrospray ionization process. (I) the energetically optimized geometry at the 
B3PW91/6-31G* level; (II) chemical structure; (III) electron density map (sequence of electron density 
listed as followings: purple > blue > green > yellow > red) indicating highest electron density at the 
central nitrogen bearing no proton. (b) The optimized prodiginine conformations and the relative energies 
calculated by density function theory (DFT). 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Scheme 4.2 Two competing fragmentation pathways of the protonated prodiginine model system leading 
either to OE+˙ after homolytic cleavage to lose a methyl radical, or to EE+ after heterolytic bond 
dissociation to lose a methanol molecule. 
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New Strategy for Prodiginine Identification 

Because of the distinct and unusual nature of the fragments resulting from the competing losses of either 

methyl radical or methanol, we decided to make an attempt to analytically exploit this uniqueness, and 

use the combination of the two losses as a characteristic marker for prodiginine-type compounds. The 

instrument design of the QTRAP mass spectrometer enables neutral loss (or gain) scans of all ions 

generated in the ion source, thus enabling a quick screening of all the analytes present in a crude mixture 

that undergo a specific type of decomposition. Neutral loss scans of 15 Da (representing a methyl radical) 

and 32 Da (representing a methanol molecule) were performed using the crude sample extract from H.  

chejuensis in which prodigiosin was previously identified using preparative LC separation and NMR 

spectroscopy34. The 15 Da neutral loss scan detected not only prodigiosin, but also a new, low abundance 

prodigiosin analog from the crude mixture (no purification step). A subsequent 32 Da neutral loss scan 

confirmed the presence of this prodigiosin analog. These results are summarized schematically in Figure 

4.6. The ES mass spectrum (Figure 4.6A) reveals protonated prodigiosin as the base peak at m/z 324. 

Figures 4.6B and 4.6C show the neutral loss mass spectra corresponding to methyl radical and methanol 

losses, respectively, in which both prodigiosin (m/z 324) and its analog (m/z 352) appeared.  

The characterization of the analog at m/z 352 is based on its tandem mass spectra (Figures 4.6D and 4.6E). 

Like the other prodiginines, it shows fragments resulting from various alkyl chain cleavages. The 

pathways leading to the observed fragments are proposed at the bottom of Figure 4.6. In the 

fragmentation mechanism of prodigiosin (Figure 4.1), we proposed that the product ion at m/z 252 was 

generated from cleavage of the alkyl chain on the C-ring. The proposed pathway to form the same 

fragment at m/z 252 (in Figures 4.6D and 4.6E) indicates that the analog shares the same backbone as 

prodigiosin (including the methyl group on the C-ring) but differs in the nature of the second alkyl chain. 

The presence of a (second) methyl loss (in Figure 4.6E) leading to m/z 322 further supports the notion 

that, similar to prodigiosin, a second methyl group exists on the C-ring. Thus, the evidence suggests that 

the mass difference of 28 Da between the two compounds reflects the extension of the longer alkyl chain 

on the C-ring of prodigiosin by two -CH2- units. Additional evidence is provided by the fragment ion at  
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Figure 4.5  (A) Breakdown curves showing ion abundance vs. collision energy for MS/MS of 
prodigiosin. The plots show the evolution of precursor and fragment ions representing two competing 
pathways (m/z 324 = precursor; m/z 309 and 252 represent the formation of OE+⋅ by methyl radical loss 
and methyl radical loss plus consecutive butyl radical loss, respectively; m/z 292 represents the formation 
of EE+ after the loss of methanol) (B) The MS/MS spectra of the m/z 324 prodigiosin precursor with 
collision energies of 5, 10 and 12.5 eV performed under single collision conditions 
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m/z 177 derived from the precursor at m/z 337 (Figure 4.6E) that was generated from the same pathway 

as the fragment at m/z 149 in the tandem mass spectrum of prodigiosin (Figure 4.1). This mass difference 

of 28 Da between these two fragments confirms the extension of the alkyl chain substitution on the C-ring. 

However, one cannot determine by mass spectrometry alone whether the alkyl chain is branched or not. 

Thus, we identified the analog as containing a C7H15 saturated alkyl chain on the C-ring instead of C5H11 

in prodigiosin.34 Because prodigiosin and undecylprodiginine both contain n-alkyl chains, we assign the 

new analog as also being unbranched. 

The studies described herein have thus proven that our approach of using a combination of constant 

neutral loss scans (15 Da and 32 Da) is selective for the detection of unknown and low abundance 

prodiginine compounds; the strategy is built upon the ease of loss of methyl radicals from their common 

backbone structure. Without labor-intensive purification steps, the workload for identification and 

characterization of prodiginines can thus dramatically decrease using our approach. Owing to the 

excellent sensitivity of mass spectrometry, the sample quantity requirements could also decrease from 

milligrams (for NMR) to less than micrograms (for mass spectrometry) of a crude mixture.  
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Figure 4.6 (A) Positive ion ES-MS spectrum of the extract from H. chejuensis showing [M+H]+ of m/z 
324 from prodigiosin, and m/z 352 from the analog; (B) positive ion neutral loss (15 Da) spectrum, 
showing both prodigiosin and its analog at m/z 324 and 352, respectively; (C) positive ion neutral loss 
spectrum of 32 Da mass loss, showing both prodigiosin and its analog at m/z 324 and 352; (D) Positive 
ion ES-MS/MS spectrum of protonated prodigiosin analog at m/z 352; and (E) MS3 spectrum of m/z 337; 
the proposed fragmentation pathways of protonated prodigiosin analog at m/z 352  
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Conclusion  

The fragmentation behavior in positive mode electrospray mass spectrometry of three representative 

members of prodiginines which share the same pyrrolydipyrrolylmethene skeleton has been investigated. 

Two competing fragmentation pathways were the loss of either methyl radical or methanol and, in 

violation of the even electron rule, the CID spectra were dominated by the former pathway to yield OE+⋅ 

products which may undergo consecutive fragmentations. Upon structural optimization of reactant MH+ 

precursors using a Gaussian 03 computational program, results indicate that the nitrogen atom at the 

C-ring and the B-ring methoxy function could effectively chelate a proton to form a relatively stable 

H-bonded pseudo-seven-membered ring. From this precursor, methyl radical loss is the most facile 

decomposition pathway as evidenced by its dominance in low-energy tandem mass spectra. In a 

competitive pathway, the loss of a methanol molecule involving the same methoxy site on the precursor to 

produce an EE+ fragment was heavily disfavored. The apparent threshold of the former pathway has been 

shown to be much lower than the latter by profiling the ion population of the major fragments of 

protonated prodigiosin against collision energy under single collision conditions. Thus, the fragmentation 

of prodiginines was kinetically dominated by methyl loss over methanol loss as a first step. Moreover, the 

characteristic and unusual loss of methyl radical from each prodiginine, in favorable competition with 

methanol loss, is useful for rapid identification and structural elucidation of novel prodiginines by 

performing constant neutral loss scans (˙CH3, 15 Da and CH3OH, 32 Da) to identify all prodiginines 

present in a mixture. 

Using analytical methodology built on this strategy, we report a new and low abundance prodigiosin 

analog from H. chejuensis. Because methyl radical loss rarely occurs in the fragmentation of most 

ES-generated compounds (EE+ species), the selectivity of the method will permit high sensitivity 

identifications of prodiginines from crude extracts of different bacterial species. 
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Abstract 

Oxygen deficiency occurs under many pathological, physiological, and environmental conditions. To 

identify changes in protein expression patterns induced by hypoxic exposure, a quantitative proteomics 

technique (2D-DIGE: two-dimensional difference in-gel electrophoresis) was used to compare the 

zebrafish skeletal muscle protein profile in vivo after 48 h in hypoxia (PO2 = 1.9 kPa) or normoxia (PO2 = 

18.6 kPa). Proteins were separated over two pH ranges in the first dimension (pH 4-7 and pH 7-11), prior 

to separation in the second dimension, resolving over 1000 total protein spots. Of these, 34 spots in the 

pH range of 4-7 and 15 in the pH 7-11 range showed statistically significant differences between the 

hypoxic and the normoxic groups. Twenty-three spots in the pH 4-7 range and 8 in the pH 7-11 range 

were identified using MALDI-TOF/TOF mass spectrometry. Spots identified as glycolytic enzymes were 

higher during hypoxia than in normoxia, whereas enzymes associated with mitochondrial ATP synthesis 

were lower during hypoxia. Interestingly, hypoxic samples exhibited higher expression of proteins 

identified as zebrafish hemoglobin α variants. These protein expression changes are consistent with a 

hypoxic response that enhances anaerobic metabolism or O2 transport to tissues. 
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Introduction 

Hypoxia (reduced availability of oxygen) occurs under a variety of physiological, pathological, and 

environmental conditions. Mountain sickness is an outcome of people unaccustomed to high altitude who 

experience insufficient oxygen delivery to body tissues due to decreased oxygen partial pressure at high 

elevation.1, 2 In cancer, experimental and clinical studies show that hypoxia is the consequence of 

functional and structural disturbances in microcirculation, and tumor hypoxia has become a central issue 

in cancer treatment owing to its postulated linkage with tumor progression and resistance to therapies.3-5 

Aquatic hypoxia occurs naturally in many areas; however, the number and size of impacted areas and the 

duration of hypoxic episodes have all been increasing as a consequence of human activities.6 For example, 

the growing hypoxic zone of the northern Gulf of Mexico has reduced the size of the suitable habitat for 

pelagic species and caused death of bottom-dwelling species that cannot move out of the hypoxic area.7  

Many species cope with oxygen deficiency by regulating activities at the systemic, cellular and molecular 

levels to ameliorate the negative effects of hypoxia. Among mammals, numerous studies demonstrate that 

the transcription factor, hypoxia inducible factor-1 (HIF-1)8-10, plays a central role in regulating the 

molecular response to low oxygen. This transcription factor consists of a constitutively expressed β 

subunit and an oxygen-regulated α subunit. The latter contains an oxygen-dependent degradation domain 

recognized by the Von-Hippel-Lindau protein (pVHL). Under conditions of oxygen sufficiency, pVHL 

binds HIF-1 α and directs the protein to degradation by the ubiquitin-proteasome pathway. Under hypoxia, 

degradation is blocked, HIF-1 α accumulates and dimerized with HIF-β, and the dimer binds regulatory 

regions of target genes. In this fashion, HIF-1 regulates the expression of genes involved in enhancing 

oxygen delivery,11 glucose uptake, and glucose metabolism.12   

Fish are the oldest and most diverse group of vertebrate animals. Bony fish comprise nearly one-half of 

the known species of extant vertebrates and they are found in virtually every aquatic habitat.13 The 

phylogenetic and ecological diversity of fish offers distinct advantages in studies of environmental 

adaptation, such as the adaptive response to hypoxia.14 Zebrafish (Danio rerio) is a well-characterized 
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species used to study development15, 16, and to a lesser extent, adult physiology. Previously, cDNA 

microarray studies showed large-scale changes in mRNA levels in zebrafish embryos17 and adults18 

exposed to low oxygen. The response to hypoxia includes changes in the expression of genes involved in 

glycolysis, oxidative metabolism, and protein synthesis. At the proteome level, however, Bosworth et al.19 

showed more subtle effects, with a small number of low abundance proteins changing in skeletal muscle 

during hypoxic exposure of adult zebrafish. Those proteins were not identified due to their low amounts 

in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).  

The development of two-dimensional difference in gel electrophoresis (2D-DIGE) improves  

conventional 2D-PAGE by minimizing gel-to-gel variation and broadening the linear dynamic range for 

protein quantification.20 The use of size-matched, spectrally-distinct cyanine dyes (CyDyes) allows 

detection and quantification of differentially expressed proteins within a single gel. Current MALDI-TOF 

mass spectrometry technology provides low femtomole level detection limits and less than 10 ppm error 

in mass accuracy that are critical for protein identification. Thus, 2D-DIGE followed by MALDI 

TOF/TOF analysis allows reproducible protein expression profiling and identification in a high 

throughput manner. In the current study, 2D-DIGE and MALDI TOF/TOF were used to explore the 

proteomic response to hypoxia in the zebrafish skeletal muscle proteome.  

 

Experimental 

Chemicals and Reagents 

C18 ZipTips for desalting and purifying tryptic peptides were purchased from Millipore (Bedford, MA). 

The 4700 Calibration Standard kit used in calibrating MS or MS/MS spectra was purchased from Applied 

Biosystems Inc., Foster City, CA. CyDyes, Immobiline DryStrip 24 cm gels, carrier ampholytes of 

different pH ranges and other reagents for the first dimension of electrophoresis were purchased from GE 

Healthcare (Piscataway, NJ). Second dimensional electrophoresis employed Nextgen Sciences precast 

8-16% gradient gels (Ann Arbor, MI). The Zoom® IEF Fractionator and reagents were purchased from 
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Invitrogen (Carlsbad, CA). All other chemicals and reagents not listed here were either analytical or 

electrophoresis grade, and they were purchased from Sigma-Aldrich Chemical Co. (St Louis, MO).  

Animals 

Wild-type zebrafish of both sexes were purchased from a local pet store, randomly divided into two 

groups of 10 fish, and held in two 40 L aquaria. Prior to experimentation, zebrafish were acclimated for 

four weeks in well-aerated, dechlorinated tap water at room temperature (19 ± 0.3 °C). Fish were fed 

twice a day throughout the acclimation period. At the start of hypoxic exposure, the water in one 

aquarium was made hypoxic (PO2 = 1.9 kPa) over 2 h by gassing with a mixture of 0.9 L/min nitrogen and 

0.1 L/min air. Gassing was continued for 48 h, a length of exposure that adult zebrafish tolerate with 

minimal mortality.21 The control tank was maintained at nomoxia (PO2 = 18.6 kPa) by gassing with room 

air at approximately the same flow rate. Both aquaria were covered and fish were not fed throughout the 

exposure period. At 48 h, fish were rapidly netted and frozen in liquid nitrogen. Fish were kept at -80 °C 

until analyzed. 

 

Preparation of Protein Extracts 

White skeletal muscle was dissected while fish were maintained frozen, taking care to exclude red 

skeletal muscle and skin. Approximately 100 mg of tissue was pulverized under liquid nitrogen, and then 

homogenized using a glass-glass homogenizer in 1 mL sample buffer (SB; 7 M urea, 2M thiourea, 2% 

CHAPS, 1% ASB-14) with 40 mM DTT. The protein extracts were centrifuged at 30,000×g for 30 min at 

8 °C. The remaining insoluble pellet was discarded, and the soluble muscle protein extracts were stored at 

-80 °C. The protein concentration of the resulting supernatant was measured with a GE Healthcare 2D 

Quant kit (Piscataway, NJ). 

 

Two-dimensional Polyacrylamide Gel Electrophoresis 

Samples were desalted with a GE Healthcare 2D cleanup kit (Piscataway, NJ) and re-dissolved in SB (see 

above) plus 15 mM Tris buffer at pH 8.5. Samples of 50 µg of protein from each fish were reacted with 
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200 pmol of either Cy 3 or Cy 5 in a final volume of 10 µL on ice for 30 min in the dark. Labeling 

reactions were stopped by adding 1 µL of 10 mM lysine. To control for potential bias in labeling 

efficiency of CyDyes, half of the extracts from each experimental group were labeled with Cy 3 and the 

other half labeled with Cy 5 (Figure 5.1). A pooled protein sample was made by combining equal amounts 

of protein from all the individual replicates. This pooled sample was labeled with Cy 2 and used to 

normalize protein abundances across different gels, thereby allowing a correction for gel-to-gel variations. 

Labeled samples were kept at -80 °C until use. 

For DIGE analysis, each gel contained 50 µg of one hypoxic extract labeled with either Cy3 or Cy 5, plus 

50 µg of one normoxic extract labeled with the alternative CyDye (Cy5 or Cy3, respectively), and 50 µg 

of the Cy 2 labeled pooled protein sample. Mixed samples were cup-loaded on 24 cm rehydrated IPG 

strips, covering a pH range of either 4-7 or 7-11. For pH 4-7, non linear pH gradient IPG strips were 

rehydrated in sample buffer plus 20 mM DTT. For pH 7-11, IPG strips, were rehydrated in the SB 

containing 1.2% “destreak” reagent (GE Healthcare). Protein samples were then focused on the Ettan 

IPGphor IEF apparatus until 60,000 Vhr.  

After the IEF separation, IPG strips were equilibrated in 50 mM Tris-HCl, pH 8.8, 6M Urea, 30% 

glycerol, 2% SDS containing 1% DTT for 15 min to reduce disulfide bonds. Strips were then alkylated in 

the same buffer with 2.5% iodoacetamide in place of DTT for another 15 min. The equilibrated strips 

were loaded onto Nextgen Sciences 8-16% SDS-PAGE (25 cm × 20 cm) gradient gels in a GE Healthcare 

EttanTM DALTsix system (Piscataway, NJ) and run at the constant power of 15 W and the temperature of 

25 °C until the bromophenol blue tracking dye migrated to the bottom of the gel (4.5 - 6 h). 

 

Protein Visualization and 2D-DIGE Gel Image Analysis 

Images of gels were acquired with a GE Healthcare Typhoon 9400 Laser Scanner (Piscataway, NJ) using 

filters specific for each CyDye. Nonlinear Dynamics Progensis Samespots software was used for image 

alignment, spot detection, and spot quantification. Cy 2 images were used to match the gels. Spot  
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volumes for each spot in hypoxic and normoxic extracts were normalized to the Cy 2 volume for the same 

spot in the same gel. Analysis of variance was used to determine whether a significant difference existed 

between normalized spot volume of hypoxia and normoxia samples. Spots that differed significantly 

(ANOVA P < 0.05) were visually examined to determine whether they were of good quality and present 

in the entire image set.  

 

Preparative 2D-PAGE and in-gel Digestion 

To identify the spots of protein whose expression changed during hypoxia, two separate preparative gels 

were run at pH 4-7 and 7-11 intervals. In the pH 4-7 range, 600 µg of the pooled protein sample was 

subjected to 2D-PAGE and the resulting gel was stained with colloid coomassie blue. To enrich proteins 

in the pH 7-10 range, samples were first subjected to in-solution IEF using the Invitrogen Zoom® IEF 

Fractionator (Carlsbad, CA) run at 100 V for 20 min, 200 V for 80 min and 600 V for another 80 min. The 

fraction between pH 7 and 10 was retrieved from the electrophoresis chamber and precipitated using a 2D 

Cleanup kit. After protein assay, 200 µg protein was redissolved in 100 µL of the SB containing 15 mM 

DTT and used for 2D-PAGE as described above (pH 7-11NL IPG strip). These high pH preparative gels 

were stained with BioRad Flamingo fluorescent dye (Hercules, CA). Spots of interest from DIGE analysis 

were mapped onto images of the preparative gels and excised with a Biorad EXQuestTM spot cutter 

(Hercules, CA). Gel pieces were collected in 96-well plates and digested with trypsin using a Genomic 

Solutions ProGestTM (Ann Arbor, MI).  

 
 

Mass Spectrometry 

The tryptic digests were purified using C18 Ziptips (Millipore) and eluted in 4 µL of 50:50 

acetonitrile:H2O containing 0.1% TFA. Aliquots of 0.5 µL were dispensed on the sample support, 

followed by the addition of an equal volume of 10 mg/mL α-cyano-4-hydroxycinnamic acid in 50:50 

acetonitrile:H2O containing 0.1% TFA. MS and MS/MS spectra were acquired using Applied Biosystem 
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4800 MALDI-TOF/TOF mass spectrometer (Foster City, CA) in the positive reflectron mode. Two 

trypsin autolysis peaks at m/z 842 and 2211 were used as internal standards for MS calibration. Peptide 

mass fingerprints were acquired using 600 laser shots in a mass range between m/z 800 and 4000. The ten 

most intense peptide precursors were selected for MS/MS product ion acquisitions to confirm protein 

identifications, and the MS/MS spectra were acquired using 2500 laser shots. Data were transferred to 

GPS explorer software and searched against the zebrafish subset of the NCBInr database and the 

zebrafish subset of the IPI FASTA sequence database with parameters: enzyme = trypsin; fixed 

modification = carbamidomethyl; variable modification = oxidiation of methione; max missed cleavages 

= 1; precursor tolerance = 100 ppm; and MS/MS fragment tolerance = 0.5 Da. Where spots were 

identified as unknown proteins, homology to known proteins was determined using BLAST22. 

 

Results  
Optimization of 2D-PAGE separation 

2D-PAGE enables visualization and quantification of hundreds of proteins including post-translationally 

modified forms and related isoforms. However, great care must be taken to optimize 2D-PAGE separation 

conditions, which depend on sample type. For skeletal muscle, abundant proteins including actin, myosin, 

and tropomyosin, frequently compromise the separation and quantification of low abundance proteins on 

2D-PAGE. In preliminary experiments, different forms of protein loading (active or passive rehydration, 

cup loading), different types and concentrations of detergents (1-4% CHAPS, 0.4-1% ASB-14), and first 

dimension IEF running conditions (30-80 kVhrs) were tested to achieve the best separation of zebrafish 

skeletal muscle proteins. The final conditions are given in the experimental section.  

 

2D-DIGE Analysis  

Of ten fish in the normoxic or hypoxic groups, nine were randomly selected for 2D-DIGE analysis. After 

removing gels with either severe horizontal streaking or low CyDye labeling efficiency, eight independent 

gels in the pH 4-7 range and seven gels in the pH 7-11 range were used to compare the zebrafish skeletal 
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muscle proteome between hypoxia and normoxia. These gels showed that the general pattern of zebrafish 

skeletal muscle protein expression under hypoxia was very similar to that under normoxia (Figure 5.2). 

DIGE analysis revealed that, across the entire pH range assayed (4 to 11), only 49 of 1100 spots (~ 4.4%; 

around 700 spots in the pH 4-7 range and 400 spots in the pH 7-11 range) showed significantly different 

levels of expression. Thirty-four spots in the pH range of 4-7 and 15 spots in the pH range of 7-11 showed 

statistically significant differences in quantity between the hypoxic and the normoxic groups (ANOVA P 

< 0.05). In the pH 4 to 7 range, 26 spots were more abundant in the hypoxic group and 8 spots were less 

abundant in the hypoxic group; in the pH 7-11 range, 7 spots were more abundant under hypoxia while 8 

spots were less abundant.  

 

Protein Identification 

Protein spots found to be up-regulated or down-regulated during hypoxia were excised from preparative 

gels, digested, and subjected to MALDI-TOF/TOF mass spectrometry. Twenty three spots in the pH 4-7 

range and 8 spots in the pH 7-11 range were successfully identified (see Appendix). Successful 

identifications were defined as those peptides achieving MASCOT scores higher than 53 (P < 0.05). From 

MS/MS experiments where fragment ions were successfully matched, MASCOT scores included these 

peptide ion scores. Protein identifications were performed by searching the MS data against the zebrafish 

subset from either NCBInr or the IPI FASTA sequence database. Searches against the ray-finned fish 

subset of NCBInr database yielded similar results. 

Two spots in the pH range of 7-11 having molecular weights near 16kDa were determined as hemoglobin 

α variants (spot no. 0904 and 0909; Table 5.1). As shown in Figure 5.3, the expressions of both the spots 

are higher in the hypoxic fish than in the normoxic fish. One-way ANOVA showed that changes in protein 

expressions are highly statistically significant (P < 0.002; Table 5.1). Additionally, matches of peptide 

masses and fragment ions from MS/MS to variants of Hb α (Accession Nos. CAE48980 and CAE48986) 

were extremely significant (both P ~ 10-29). Figure 5.4 shows the amino acid sequences of the two  
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Figure 5.2 The Cy 2 images of representative 2D-DIGE gels between pH 4-7 (A) and 7-11(B) intervals. 
Proteins from the hypoxic or normoxic samples were labeled with either Cy 3 or Cy 5 dye. A pooled 
internal standard combining all extracts, labeled with Cy 2 dye, was included in all gels. Spots that 
differed between hypoxia and normoxia are indicated with spot number. These spots were selected for 
mass spectrometric analysis. 
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matched polypeptides with the peptides identified by MALDI-TOF/TOF shown in bold. Sequence 

coverage of both polypeptides was around 50%. Below these two polypeptides are other zebrafish globin 

protein sequences: hemoglogin α adult-1 (Hb α); hemoglobin β (Hb β), myoglobin (Mb), cytoglobin 

(Cygb), neuroglobin (Nb) and globin X (gbX). Spot 0909 (CAE48986) differs from adult zebrafish Hb α 

adult-1 by one amino acid, whereas spot 0904 (CAE48980) differs by only two amino acids (highlighted 

residues). In contrast, the sequences of all Hb α variants are quite dissimilar to amino acid sequences of 

other zebrafish globins and the peptides determined by MALDI-TOF/TOF are not found in other globin 

genes. The results clearly demonstrate that spots 0904 and 0909, both up-regulated by hypoxic exposure, 

are variants of Hb α. 

Table 5.2 shows protein spots whose molecular weight in 2D-PAGE was considerably less than predicted 

from their amino acid sequence. These spots likely represent fragments of the corresponding proteins. 

Nine spots were up-regulated while three spots were down-regulated in the pH 4-7 range; one spot was 

more abundant in the hypoxic group whereas one spot was less abundant in the hypoxic group in the pH 

7-11 range. Most of these spots found to be more abundant during hypoxia were identified as highly 

expressed proteins, myosin and creatine kinase. Four other spots, less abundant in the hypoxic group, 

were determined as actin, mitochondrial ATP synthase, glycogen phosphorylase and isocitrate 

dehydrogenase. Another up-regulated spot was identified as protein arginine N-methyltransferase.  

 



Table 5.1 Identification of differentially expressed spots corresponding to putative intact proteins  
 
Spot 
No. 

Expression 
Ratioa

ANOVA 
P 

Protein 
Mascot 
Scoreb

Accession 
Number 

Coverage 
(%) 

Matched 
Peptidesc

Mr (kDa) 
obs/pred 

pI 
obs/pred 

pH 4-7 
1406 2.6 2.30E-03        

       
       

       

        

nucleoside diphosphate kinase-Z2 386 NP_571002 59 9 (5) 16/17.2 5.0/6.75
1181 2.5 1.39E-03 triosephosphate isomerase B 200 AAK85202 53 10 (2) 28/27.1 6.2/6.45 
1183 2.4 1.69E-03 triosephosphate isomerase B 153 AAK85202 39 7 (2) 28/27.1 6.5/6.45 
0809 1.9 1.07E-03 Enolase 1, (alpha) 372 AAH59511 46 14 (6) 50/47.4 6.5/6.16 
0851 1.9 5.22E-03 pyruvate kinase, muscle, b [zgc:92037] 910 NP_001003488 58 31 (8) 53/58.8 5.9/6.88
1244 1.8 9.69E-03 fast skeletal myosin light chain 1a 363 NP_956294 73 17 (5) 28/21.0 5.5/4.63
0231 1.7 1.25E-02 fast muscle-specific myosin heavy chain 143 AAK73348 17 15 (3) 95/95.0 6.1/5.22
0923 -1.3 7.70E-03 Actin, alpha1, skeletal muscle  595 NP_571666 49 15 (7) 42/42.2 5.0/5.23 
1006 -1.6 6.09E-04 Pyruvate dehydrogenase (lipoamide)

beta 
211 AAH53233 43 13 (4) 39/39.7 5.1/5.78

0418 -1.8 7.47E-03 phosphorylase, glycogen; brain 152 NP_997974 10 9 (3) 95/97.7 6.7/6.11 
pH 7-11 

0713 3.7 2.36E-02 phosphoglycerate mutase 2 (muscle) 561 NP_957318 63 18 (6) 30/29.0 9.0/8.83 
0909 2.5 1.81E-03 novel protein similar to zebrafish 

hemoglobin alpha-adult 1 (hbaa1) 
194      

      

       

       

CAE48986 53 6 (2) 15/15.5 8.0/7.98

0904 2.3 2.24E-04 novel protein similar to zebrafish 
hemoglobin alpha-adult 1 (hbaa1) 

326 CAE48980 47 6 (4) 15/15.5 9.0/8.88

0586 2.3 2.09E-03 aldolase A fructose-bisphosphate,  
  

384 NP_998380 50 17 (4) 40/40.2 9.0/8.45 
0699 -1.4 7.70E-03 hydroxyacyl-Coenzyme A

dehydrogenase 
160 NP_001003515 35 9 (3) 32/33.4 9.5/8.66

0747 -2.5 4.00E-03 ATP synthase, H+ transporting, 
mitochondrial F0 complex, subunit b, 

isoform 1 

149 AAH83308 16 6 (2) 28/28.3 9.6/9.19

 
a. Positive expression ratios represent the ratio of the average normalized spot volume of the hypoxic to the normoxic samples (Vh/Vn). Negative 
values correspond to spots more abundant in normoxic samples and calculated as – Vn/Vh. 
b. Mascot scores over 53 are considered to be statistically significant (P < 0.05) 
c. The number of peptides matched by PMF followed by the number of peptides with significant ion score 
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Figure 5.3 2D-DIGE gel Images showing spots identified as zebrafish hemoglobin variants (spots 0904 (A) and 0909 (B)) with quantitative 
comparison between hypoxia and normoxia shown below. The error bars represent the one standard deviation for n = 7 fish. 
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CAE48980 -------------------------MSLSDKDKAVVKAIWAKISPKADEIGAEALARMLT Spot 0909 
CAE48986 -------------------------MSLSDTDKAVVKAIWAKISPKADEIGAEALARMLT Spot 0904 
NP_571332 -------------------------MSLSDTDKAVVKAIWAKISPKADEIGAEALARMLT Hemoglobin α 
NP_571095 

 
 
  

------------------------MVEWTDAERTAILGLWGKLN--IDEIGPQALSRCLI Hemoglobin β 
 NP_694484 ------------MEGDGGVQLTQSPDSLTEEDVCVIQDTWKPVYAERDNAGVAVLVRFFT Cytoglobin

 NP_956880 -----------------------------MADHDLVLKCWGAVEADYAANGGEVLNRLFK Myoglobin
NP_571928 ------------------------MEKLSEKDKGLIRDSWESLGKNKVPHGIVLFTRLFE Neuroglobin
NP_001012261 MGCAISGSGLTARAPEIRAGEEETPAGLTANHIRLIKESWRLIQEDIAKVGIIMFVRLFE Globin X 
 
CAE48980 VYPQTKTYFSHWSDLSP-----GSGPVKKHGKTIMGAVGEAISKIDDLVGG---LAALSE Spot 0909 
CAE48986 VYPQTKTYFSHWADLSP-----GSGPVKKHGKTIMGAVGEAISKIDDLVGG---LAALSE Spot 0904 
NP_571332 VYPQTKTYFSHWADLSP-----GSGPVKKHGKTIMGAVGEAVSKIDDLVGG---LAALSE Hemoglobin α 
NP_571095 

 
 
  

 
 
 
 
  

 
   
  
  
  
   
   

   

VYPWTQRYFATFGNLSSPAAIMGNPKVAAHGRTVMGGLERAIKNMDNVKNT---YAALSV Hemoglobin β 
 NP_694484 NFPSAKQYFEHFRELQDPAEMQQNAQLKKHGQRVLNALNTLVENLRDADKLNTIFNQMGK Cytoglobin

 NP_956880 EYPDTLKLFPKFSGISQ-GDLAGSPAVAAHGATVLKKLGELLKAKGDHAAL---LKPLAN Myoglobin
NP_571928 LDPALLTLFSYSTNCGDAPECLSSPEFLEHVTKVMLVIDAAVSHLDDLHTLEDFLLNLGR Neuroglobin
NP_001012261 THPECKDVFFLFRDVEDLERLRTSRELRAHGLRVMSFIEKSVARLDQLERLETLALELGK Globin X 
         
CAE48980 LHAFKLRVDPANFKILSHNVIVVIAMLF-PADFTPEVHVSVDKFFNNLALALSEKYR--- Spot 0909 
CAE48986 LHAFKLRVDPANFKILSHNVIVVIAMLF-PADFTPEVHVSVDKFFNNLALALSEKYR--- Spot 0904 
NP_571332 LHAFKLRVDPANFKILSHNVIVVIAMLF-PADFTPEVHVSVDKFFNNLALALSEKYR--- Hemoglobin α 
NP_571095 MHSEKLHVDPDNFRLLADCITVCAAMKFGQAGFNADVQEAWQKFLAVVVSALCRQYH--- Hemoglobin β 

 NP_694484 SHALRHKVDPVYFKILAGVILEVLVEAFPQCFSPAEVQSSWSKLMGILYWQMNRVYAEVG Cytoglobin
 NP_956880 THANIHKVALNNFRLITEVLVKVMAEKA---GLDAAGQGALRRVMDAVIGDIDGYYKEIG Myoglobin

NP_571928 KHQAVG-VNTQSFALVGESLLYMLQSSLGP-AYTTSLRQAWLTMYSIVVSAMTRGWAKNG Neuroglobin
NP_001012261

 

SHYRYN--APPKYYGYVGAEFICAVRPILKDRWTPELEEAWKTLFQYVTSIMREGFLEEE

 

Globin X 
         
CAE48980 ---------------------- Spot 0909
CAE48986 ---------------------- Spot 0904
NP_571332 ---------------------- Hemoglobin α 
NP_571095 ---------------------- Hemoglobin β 

 NP_694484 WENSKK---------------- Cytoglobin
NP_956880 FAG------------------- Myoglobin
NP_571928 EHKSN----------------- Neuroglobin
NP_001012261 RNKRSNTQTSSRERPDKRSTAI Globin X
        
Figure 5.4 CLUSTAL 2.0.8 multiple sequence alignment of the two identified hemoglobin variants (CAE48980 and CAE48986), with hemoglobin α adult-1 
(NP_571332), hemoglobin β (NP_571095), cytoglobin (NP_694484), myoglobin (NP_956880), neuroglobin (NP_571928) and globin X (NP_001012261). 
All sequences are from zebrafish (Danio reio). The peptides identified by mass spectrometry are shown in bold type. The highlighted residues (in yellow) 
indicate the amino acid differences among the three Hb α sequences. 
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Table 5.2 Identification of differentially expressed spots corresponding to putative protein fragments 
 
Spot 
No. 

Expression 
Ratioa

ANOVA 
P 

Protein 
Mascot 
Scoreb

Accession 
Number 

Coverage 
(%) 

Matched 
Peptidesc

Mr (kDa) 
obs/pred 

pI 
obs/pred 

pH 4-7 
1089 2.7 8.75E-03 creatine kinase, muscle 649 NP_571007 32 13 (8) 35/43.0 6.6/6.32 
1130 2.6 2.76E-03 creatine kinase, muscle 634 NP_571007 48 18 (8) 35/43.0 6.6/6.32 
1077 2.4 6.11E-03 creatine kinase, muscle 257 NP_571007 18 7 (2) 35/43.0 6.5/6.32 
0611 2.2 3.98E-03 myosin heavy chain 4 [Wu:fi38g05] 491 AAH44194 19 20 (8) 80/125.2 6.0/6.21 
0571 2 2.52E-03 myosin binding protein C, fast-type 

[Zgc:110761] 
180      

      

          
      

AAH91662 11 14 (4) 80/125.8 6.5/5.56

0367 2 4.00E-03 myosin heavy chain 4 [Wu:fi38g05] 58 AAH44194 6 8 (2) 96/125.2 6.0/6.21 
0553 1.8 5.25E-03 myosin heavy chain 4 [Wu:fi38g05] 53 AAH44194 9 11 (1) 80/125.2 6.6/6.21 
0349 1.6 5.10E-03 myosin, heavy polypeptide 2, fast muscle 

specific 
68 NP_694514 7 14 (2) 96/222.8 6.1/5.55

1221 1.5 1.35E-02 protein arginine N-methyltransferase 1 54 NP_956944 29 10 (0) 30/40.0 5.9/5.47 
0618 1.4 6.51E-03 fast muscle-specific myosin heavy chain 752 AAK73348 34 32 (8) 80/95.0 5.0/5.22 
1188 -1.5 2.60E-02 actin, alpha 1, skeletal muscle 438 NP_571666 26 7 (5) 30/42.3 4.8/5.23 
1322 -1.6 1.18E-3 mitochondrial ATP synthase 293 AAS49605 26 9 (4) 20/40.0 5.8/9.18
0775 -2 1.83E-02 phosphorylase, glycogen (muscle) b 

[MGC63642] 
76 NP_956766 13 5 (1) 70/36.9 6.5/6.27

pH 7-11 
0890 2.3 6.35E-03 creatine kinase, muscle 351 NP_571007 32 14 (4) 30/42.3 4.8/5.23 
0682 -1.7 1.32E-02 isocitrate dehydrogenase 2 (NADP+), 

mitochondrial 
372      NP_955858 27 12 (4) 20/40.0 5.8/9.18

 
a. Positive expression ratios represent the ratio of the average normalized spot volume of the hypoxic to the normoxic samples (Vh/Vn). Negative values 
correspond to spots more abundant in normoxic samples and calculated as – Vn/Vh. 
b. Mascot scores over 53 are considered to be statistically significant (P < 0.05) 
c. The number of peptides matched by PMF followed by the number of peptides with significant ion score 
 

 



Discussion 

While the overall pattern of protein expression was similar between hypoxia and normoxia, 2D-DIGE 

analysis revealed that approximately 4% of the detected protein spots had statistically significant 

differences in expression between the hypoxic and the normoxic zebrafish. Among the proteins that were 

found to be up-regulated during hypoxia (Table 5.1), several were glycolytic enzymes, including 

phosphoglycerate mutase 2 (3.7-fold), triosephophate isomerase B (2.4- and 2.5-fold), aldolase A 

fructose-biphosphate (2.3-fold), enolase-1 α (1.9-fold) and pyruvate kinase (1.9-fold). Conversely, 

down-regulated proteins included the enzymes of the citric acid cycle and proteins involved in aerobic 

ATP production, such as pyruvate dehydrogenase (lipoamide) β (1.6-fold), hydroxyacyl-coenzyme A 

dehydrogenase (1.4-fold), mitochondrial isocitrate dehydrogenase 2 (NADP+) (1.7-fold), mitochondrial 

ATP synthase α (1.6-fold ) and ATP synthase (H+ transporting, mitochrondrial F0 complex, subunit b, 

isoform 1) (2.5-fold) (Tables 5.1 and 5.2). The observation of up-regulated glycolytic enzymes and 

down-regulated mitochondrial enzymes is entirely consistent with measurements of metabolic enzyme 

activities23 and gene expression.17, 18 These patterns support the view of increased capacity for glycolysis 

coupled with decreased capacity for aerobic ATP production during hypoxic exposure of fish. 

Somewhat surprisingly, the results showed that a spot (spot no. 0418) identified as glycogen 

phosphorylase was down-regulated by a factor of 1.8-fold after 48 h hypoxic exposure (Table 5.1). 

Although database searching matched this spot against glycogen phosphorylase from brain, a hypothetical 

protein corresponding to muscle glycogen phosphorylase matched almost as well (NP_956766; Mascot 

score = 122). Glycogen phosphorylase catalyzes phosphorolytic cleavage of glycogen, releasing 

glucose-1-phosphate. Its activity is regulated by reversible phosphorylation/dephosphorylation to generate 

a more active a isoform or a less active b isoform. Intact zebrafish muscle glycogen phosphorylase has a 

predicted Mr of 97 kDa and a pI of 6.7 in the unphosphorylated form, which compares quite well with the 

pI and Mr of spot 0418 estimated by 2D-PAGE (6.7/95kDa; Figure 5.2A; Appendix Table A-1). Therefore, 

this spot could be the unphosphorylated less active b form of the glycogen phosphorylase, and its increase 
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suggests a reduced capacity for glycogen degradation during hypoxia. A spot corresponding to the 

phosphorylated more active a isoform, however, was not detected as being up-regulated. Therefore, the 

present 2D-PAGE data do not resolve whether glycogen phosphorylase phosphorylation status, and hence 

enzyme activity, is altered by hypoxic exposure. 

Data from cDNA microarray studies suggest that expression of genes encoding major contractile proteins 

are down-regulation during hypoxic exposure of zebrafish.17 Consistent with that observation, the current 

results indicate that protein spots corresponding to intact and fragmented actin were also down-regulated 

by a factor of 1.3 and 1.5 fold, respectively, in skeletal muscle tissue after hypoxic exposure. Suppression 

of high abundance cell structural proteins indicates that this may be an energy-saving strategy for hypoxic 

zebrafish.17 However, some fragments of myosin respond differently to hypoxia. As shown in Table 5.1, 

two spots determined as fast skeletal muscle myosin light chain 1a and fast muscle-specific myosin heavy 

chain were more abundant in the hypoxic group than in the normoxic group. Based upon their low 

intensity in 2D-PAGE, however these spots appear to be minor forms of these proteins whose regulation 

may differ from the major forms of these contractile proteins.  

I also observed an increase in the amounts of fragments of the highly abundant proteins creatine kinase 

and myosin (Table 5.2) in hypoxic zebrafish, compared to the normoxic group. The concentrations of 

these protein fragments are determined by a balance of synthesis and degradation. Changes in spot 

intensity corresponding to intact creatine kinase and myosin were not observed, suggesting that the 

expressions of these abundant proteins do not change during hypoxia. Rather, steps in the degradation of 

these proteins might be differentially sensitive to hypoxia. Specifically, if the initial steps of degradation 

occur, but the complete proteolysis to amino acids is slowed, then intermediate-sized protein fragments 

would be expected to accumulate during hypoxia. 

In this study, I also observed that a fragment of protein arginine N-methyltransferase was up-regulated by 

a factor of 1.5 (Table 5.2). Protein methylation is recognized as a major modification pathway in 

regulation of numerous cellular events including cell proliferation, signal transduction, and protein 

trafficking.24-26 I also observed that nucleoside diphosphate kinase (NDP kinase) showed higher 
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expression by 2.6-fold during hypoxia. NDP kinase catalyzes the exchange of phosphoryl groups between 

nucleoside triphosphates and the corresponding diphosphates. The up-reguation of NDP kinase is not well 

understood currently and its role in hypoxia warrants further study. 

In this analysis, one of most significant findings was that Hb α variants increased in skeletal muscle after 

2 days of severe hypoxic exposure (PO2 = 1.9 kPa). Typically, hemoglobin is found in erythrocytes where 

it is responsible for binding oxygen at the respiratory surface and delivering it to tissues for aerobic 

metabolism. During hypoxia, changes in hemoglobin concentration and oxygen affinity may help to 

maintain oxygen delivery to tissues.27 However, Roesner et al. recently showed that mRNA of both Hb α 

and β subunits were down-regulated after 48 h hypoxic exposure of adult zebrafish (PO2 = 4.1 kPa).27 Ton 

et al. also showed similar changes of Hb mRNA levels in zebrafish embryos using cDNA microarray 

technology.17 The discrepancy between my results and those of previous studies could be due to 

differences in strain, developmental stage, or tissue sampled, or other experimental conditions, such as 

severity and duration of hypoxic exposure. Another possibility is that for Hb α, transcript abundance and 

protein levels are poorly correlated, as documented for a number of proteins and cell types.28 Perhaps 

mRNA and protein levels are temporally uncoupled, in which an early increase in hemoglobin mRNA 

during hypoxia (prior to initial samples in previous studies) results in a sustained increase in protein 

levels, even after the transcript levels dropped below normoxic values.  

Regardless of reasons for the discrepancy between Hb mRNA and protein levels, the present results 

demonstrate strong up-regulation of Hb α protein variants in skeletal muscle from hypoxic zebrafish. At 

present, the mechanism underlying this observation is not known. One possibility is that an increase in the 

perfusion of muscle microcirculation during hypoxia introduced more blood (thus more Hb) into the 

samples, despite taking care to exclude blood, red muscle, and skin during dissection. A second possibility 

is that there were no changes in muscle perfusion, but that the small amounts of blood in the samples had 

higher hemoglobin content or a different hemoglobin composition during hypoxia. Changes in 

hemoglobin concentration and type are both argued to be adaptive responses to hypoxia in a variety of 
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animals, including fish.29-32 These scenarios are not mutually exclusive and both would yield altered 

hemoglobin composition in samples of skeletal muscle as a result of circulatory responses to hypoxia. A 

third explanation for elevated expression of Hb α variants is that these proteins are expressed in the 

skeletal muscle during hypoxia. That is, one or both of these novel Hb α subunits could be 

muscle-specific proteins that increase oxygen transport intracellularly. Although this role is generally 

ascribed to myoglobin, recent discovery of other intracellular globins (cytoglobin27, neuroglobin33 and 

globin X34) demonstrates considerable diversity with regard to structure, tissue specificity, and function 

among members of the globin gene family. Because the tissue localization of the two Hb α variants 

identified here has not been previously described, the possibility that these are muscle-specific forms of 

Hb α cannot be ruled out.    

 

Conclusion 
Zebrafish adjust to hypoxia via physiological and biochemical responses. Switching from aerobic to 

anaerobic energy metabolism under reduced oxygen tension in our study agrees with the cDNA 

microarray data of hypoxic zebrafish embryo. Interestingly, modulation of glycogen phosphorylase and 

hemoglobin variants during hypoxia is different from the results reported in microarray and RT-PCR 

studies. Contrary to the up-regulation of Hb that was observed in our studies, these latter techniques 

indicated that gene expression of Hb is down-regulated. The discrepancy of the results acquired from 

proteomic and genomic studies reveals the importance of considering all sources of information to 

improve the understanding of hypoxic responses.  
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Appendix 
 

Table A-1 pI, molecular weight, and the matched sequence to putative intact proteins 
Spot 
No. 

Protein 
Identification 

(Accession No.) 

Mr (kDa) 
obs/pred 

pI 
obs/pred Matched Sequence (peptide ion score) 

pH 4-7 

1406 

nucleoside 
diphosphate 
kinase-Z2 

(NP_571002) 

16/17.2 5.0/6.78 

K.FVQASEDLAK.Q 
K.QHYIDLK.D 
K.DQPFYAGLVK.Y (61) 
R.VMLGETDPFASKPGTIR.G 
R.VMLGETDPFASKPGTIR.G   
Oxidation (M) (70) 
R.GDFCIEVGR.N (43) 
R.NLIHGSDSEK.S 
K.SAATEVSLWFKPEELVSYR.S (120) 
R.SCAQEWIYE.-  (27) 

1181 

triosephosphate 
isomerase B 

(AAK65202) 

28/27.1 6.2/6.45 

K.FFVGGNWK.M 
K.LNPDTEVVCGAPTIYLDYAR.S (96) 
K.VAKGAFTGEISPAMIK.D 
K.GAFTGEISPAMIK.D  Oxidation (M) 
R.RHVFGESDELIGQK.V 
K.VAHALENGLGVIACIGEK.L 
K.FIADNVK.D 
K.VVLAYEPVWAIGTGK.T 
K.TNVSEAVANSVR.I 
K.DLDGFLVGGASLKPEFIDIINAK.A (22) 

1183 

triosephosphate 
isomerase B 

(AAK85202) 

28/27.1 6.5/6.45 

K.SIEELANTLNSAK.L 
K.LNPDTEVVCGAPTIYLDYAR.S (72) 
K.VAHALENGLGVIACIGEK.L 
K.FIADNVK.D 
K.TASPQQAQEVHDKLR.Q (31) 
K.TNVSEAVANSVR.I 
R.IIYGGSVTGGTCK.E 

0809 
Enolase 1, (alpha) 

(AAH595511) 
50/47.4 6.5/6.16 

R.AAVPSGASTGIYEALELR.D (123) 
K.AVEHINK.T 
K.FGANAILGVSLAVCK.A 
R.HIADLAGNPEVILPVPAFNVINGGSHAG
NK.L (35) 
K.LAMQEFMILPVGASNFK.E   
2 Oxidation (M) 
R.IGAEVYHNLK.N (60) 
K.DATNVGDEGGFAPNILENK.E 
K.IVIGMDVAASEFYK.G  Oxidation (M) 
K.YDLDFK.S (12) 
K.VNQIGSVTESLQACK.M 
K.MAQTNGWGVMVSHR.S   
2 Oxidation (M) (7) 
R.SGETEDTFIADLVVGLCTGQIK.T 
K.YNQLLR.I (34) 
R.FAGKNFR.K 

 

 99



Table A-1 Continued 
Spot 
No. 

Protein 
 (Acession No.) 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH 4-7 

0851 

pyruvate kinase, 
muscle, b 

[zgc:92037] 

(NP_001003488) 

53/58.8 5.9/6.88 

R.NTGIVCTLGPASR.S (88) 
R.EMILSGMNVAR.L  Oxidation (M) 
R.EMILSGMNVAR.L  2 Oxidation (M) 
R.LNFSHGTHEYHAETIK.S (107) 
R.EAIESFGAGTIDYRPVAIALDTK.G (120) 
K.GSGTEEVK.L 
K.LTLDDKFMDNCDENTLWLDYK.N  
Oxidation (M) 
K.FMDNCDENTLWLDYK.N   
Oxidation (M) 
K.VVQQGSHIYVDDGLISLK.V (130) 
K.EIGSDFLNCEIENGGMLGSK.K  
Oxidation (M) 
K.KGVNLPGANVDLPAVSEK.D 
K.GVNLPGANVDLPAVSEK.D 
K.DLQFGVEQGVDMVFASFIR.K 
K.DLQFGVEQGVDMVFASFIR.K  
Oxidation (M) (48) 
K.AADVHAVR.K 
K.AADVHAVRK.V 
K.LENHEGVR.K (44) 
R.KFDEILEASDGIMVAR.G 
R.KFDEILEASDGIMVAR.G   
Oxidation (M) (19) 
K.FDEILEASDGIMVAR.G  Oxidation (M) 
R.GDLGIEIPTEK.V 
R.IGKPIICATQMLESMIK.K   
2 Oxidation (M) 
R.AESSDVANAVLDGADCIMLSGETAK.G  
Oxidation (M) 
K.GEYPIESVLTQHLIAR.E (123) 
R.EAEAAMFHR.Q 
R.EAEAAMFHR.Q  Oxidation (M) 
R.QLFEELR.R 
R.QLFEELRR.T 
R.RTSHLTR.D 
R.DPTESVAIGAVEASFK.C 

1244 

fast skeletal myosin 
light chain 1a 

(NP_956294) 

28/21.0 5.5/4.63 

K.KAEPAPAPAPAPEPPK.A 
K.AEPAPAPAPAPEPPKADAVDLSGVK.L 
K.LDFTQDQMEDYR.E   
Oxidation (M) (27) 
K.LDFTQDQMEDYREAFLLFDR.V  
Oxidation (M) 
R.EAFLLFDR.V (62) 
R.VGDSKVAYNQIADIMR.A   
Oxidation (M) 
K.VAYNQIADIMR.A 
K.VAYNQIADIMR.A  Oxidation (M) (10) 
R.ALGQNPTNK.E 
K.ILGNPTADDMVNKR.V  Oxidation (M) 
K.RVDFEGFLPMLQVVINNPNK.A 
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Table A-1 Continued 
Spot 
No. 

Protein 
 (Accession No.) 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH 4-7 

1244 

fast skeletal myosin 
light chain 1a 

(NP_956294) 

28/21.0 5.5/4.63 

K.RVDFEGFLPMLQVVINNPNK.A  
Oxidation (M) 
R.VDFEGFLPMLQVVINNPNK.A  
Oxidation (M) 
K.ATYDDYVEGLR.V (83) 
R.VFDKEGNGTVMGAELR.I   
Oxidation (M) (38) 
K.EGNGTVMGAELR.I  Oxidation (M) 
R.IVLSTLGEK.M 

0231 

fast muscle-specific 
myosin heavy chain 

(AAK73348) 

95/95.0 6.1/5.22 

R.IEELEEEIEAER.A (67) 
R.DLEESTLQHEATAAALR.K (32) 
R.LQTENGEFGR.Q 
K.EALVSQLTR.G 
R.LQGEVEDLMIDVER.A  Oxidation (M) 
K.SIHVLEK.A 
K.DEEMEQIKR.N 
R.SRNDALR.I 
R.NVQAQLK.D 
K.DAQLHLDDAVR.G 
R.KVAEQELVDASER.V (4) 
K.NLEVTVK.D 
K.QLQKLESR.V 
R.GADAVKGVR.K 
R.LQDLVDK.L 

0923 

Actin, alpha1, 
skeletal muscle 

(NP_571666) 

42/42.2 5.0/5.23 

K.AGFAGDDAPR.A 
R.AVFPSIVGRPR.H (39) 
R.HQGVMVGMGQK.D  Oxidation (M) 
K.DSYVGDEAQSKR.G 
K.IWHHTFYNELR.V (66) 
R.VAPEEHPTLLTEAPLNPK.A (77) 
R.TTGIVLDAGDGVTHNVPVYEGYALPH
AIMR.L 
R.TTGIVLDAGDGVTHNVPVYEGYALPH
AIMR.L  Oxidation (M) 
R.GYSFVTTAER.E (50) 
K.LCYVALDFENEMATAASSSSLEK.S  
Oxidation (M) 
K.SYELPDGQVITIGNER.F (111) 
R.KDLYANNVLSGGTTMYPGIADR.M 
K.DLYANNVLSGGTTMYPGIADR.M 
K.DLYANNVLSGGTTMYPGIADR.M  
Oxidation (M) (43) 
K.QEYDEAGPSIVHR.K (108) 

1006 

Pyruvate 
dehydrogenase 

(lipoamide) beta 

(AAH53233) 

39/39.7 5.1/5.78 

K.SAVSAVLR.R 
R.DALNQAMDEELERDER.V  
Oxidation (M) 
R.VFLLGEEVAQYDGAYK.V 
K.VSRGLWK.K 
K.TYYMSAGLQAVPIVFR.G 
K.TYYMSAGLQAVPIVFR.G Oxidation (M) 
K.VLSPWNSEDAR.G (29) 
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Table A-1 Continued 
Spot 
No. 

Protein 
(Accession No.) 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH 4-7 

1006 

Pyruvate 
dehydrogenase 

(lipoamide) beta 

(AAH53233) 

39/39.7 5.1/5.78 

K.DFVIPIGK.A 
K.EGIECEVINLR.S (54) 
R.SIRPLDADTIETSITK.T 
K.TNHLVTVEGGWPQFGVGAEILAR.I (24) 
R.IMEGPAFNYLDAPAVR.V  
Oxidation (M) (17) 
K.DIIFSVK.K 

0418 

phosphorylase, 
glycogen; brain 

(NP_997974) 

95/97.7 6.7/6.11 

R.HLHFTLVK.D (23) 
R.DYYFALAHTVR.D(83) 
R.NLAENISR.V 
R.LKQEYFVVAATLQDIIR.R 
K.AWEITTK.T 
R.IHSDIVK.T 
K.IGEDFLTDLFQLR.K 
R.IHEYKR.Q 
K.VIFLENYR.V (28) 

pH 7-11 

0713 

phosphoglycerate 
mutase 2 (muscle) 

(NP_957318) 

30/29.0 9.0/8.83 

R.HGESSWNQENR.F (82) 
R.FCGWFDADLSEK.G 938) 
K.GLEEAKR.G 
K.DAGMKFDVCYTSVLK.R   
Oxidation (M) 
K.FDVCYTSVLK.R 
K.FDVCYTSVLKR.A 
K.TLWTIMEGTDQMWVPVVR.T 
K.TLWTIMEGTDQMWVPVVR.T  
Oxidation (M) 
R.HYGGLTGLNK.A (53) 
R.SFDIPPPPMDKDHPYHK.I   
Oxidation (M) 
K.EGELPICESLK.D 
K.EGELPICESLKDTIAR.A (101) 
K.DTIARALPFWNEVIVPEIK.A 
R.ALPFWNEVIVPEIK.A (36) 
K.NVIIAAHGNSLR.G (105) 
K.DLKPIKPMQFLGDEETVR.K   
Oxidation (M) 
K.DLKPIKPMQFLGDEETVRK.A  
Oxidation (M) 
R.KAMEAVAAQGK.V  Oxidation (M) 

0909 

novel protein similar 
to zebrafish 
hemoglobin 

alpha-adult 1 (hbaa1) 
(CAE48986) 

15/15.5 8.0/7.98 

K.ADEIGAEALAR.M 
K.TYFSHWSDLSPGSGPVK.K 
K.TYFSHWSDLSPGSGPVKK.H (70) 
K.IDDLVGGLAALSELHAFK.L (112) 
K.LRVDPANFK.I 
K.FFNNLALALSEK.Y 

0904 

novel protein similar 
to zebrafish 
hemoglobin 

alpha-adult 1 (hbaa1) 
(CAE48986) 

15/15.5 9.0/8.88 

K.ADEIGAEALAR.M (70) 
K.TYFSHWSDLSPGSGPVK.K 
K.TYFSHWSDLSPGSGPVKK.H (83) 
K.IDDLVGGLAALSELHAFK.L (99) 
K.LRVDPANFK.I 
K.FFNNLALALSEK.Y (19) 
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Table A-1 Continued 
Spot 
No. 

Protein 
Identification 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH 7-11 

0586 

aldolase A 
fructose-bisphosphate 

(NP_998380) 

40/40.2 9.0/8.45 

-.MPHAYPFLSPDQKK.E 
M.PHAYPFLSPDQK.K 
K.ELSDIAQR.I 
K.ELSDIAQRIVAPGK.G 
R.FQSINAENTEENRR.L (46) 
R.QLLFTADDR.I 
R.IKPCIGGVILFHETLYQK.T 
R.GMVVGIKVDK.G  Oxidation (M) 
K.VDKGVVPLAGTNGETTTQGLDGLYER.
C 
K.GVVPLAGTNGETTTQGLDGLYER.C 
(79) 
K.ITPTTPSNLAIIENANVLAR.Y (110) 
R.YASICQMHGIVPIVEPEILPDGDHDLKR.
C  Oxidation (M) 
K.YSPQEIAMATVTALR.R 
K.YSPQEIAMATVTALR.R  Oxidation (M) 
K.YSPQEIAMATVTALRR.T 
K.YSPQEIAMATVTALRR.T   
Oxidation (M) 
K.GDTGAAAGESLFVANHAY.-  (24) 

0699 

hydroxyacyl-Coenzy
me A dehydrogenase 

(NP_001003515) 

32/33.4 9.5/8.66 

K.SAKGIENSLK.R 
K.FAEKPEDGEAFVQK.V 
K.VAPEHTIFASNTSSLPIADIASCTAR.L 
(48) 
K.TPATSQQTFDALLEFSK.A 
K.DTPGFIVNR.L (38) 
R.LLVPYMLEAVR.L (23) 
R.LLVPYMLEAVR.L  Oxidation (M) 
K.DPDNPLFAPSPLLNK.L 
K.TGEGFYK.H 

0747 

ATP synthase, H+ 
transporting, 

mitochondrial F0 
complex, subunit b, 

isoform 1 
(AAH83308) 

28/28.3 9.6/9.19 

R.SMLFDAK.R  Oxidation (M) 
R.NNVAMLLEINYR.E 
K.RLDYQVELQNLHR.R (51) 
R.LDYQVELQNLHR.R (73) 
R.LDYQVELQNLHRR.M 
K.SITPQQEK.E 
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Table A-2 pI, molecular weight, and the matched sequence to putative protein fragments 
Spot 
No. 

Protein 
(Accession No) 

Mr (kDa) 
obs/pred 

pI 
obs/pred Matched Sequence (peptide ion score) 

pH4-7 

1089 

creatine kinase, 
muscle 

(NP_571007) 

35/43.0 6.6/6.32 

M.PFGNTHNNFK.L 
K.LNYSVDEEYPDLSK.H (70) 
K.DLFDPVISDR.H (43) 
K.TDLNFENLK.G (53) 
K.GGDDLDPNYVLSSR.V (112) 
K.GYALPPHNSR.G (50) 
K.LSVEALSSLDGEFK.G (108) 
K.GKYYPLK.S 
R.GIWHNENK.T 
K.TFLVWVNEEDHLR.V (102) 
K.RFCVGLQR.I 
R.FCVGLQR.I (38) 
K.FEEILTR.L 

1130 

creatine kinase, 
muscle 

(NP_571007) 

35/43.0 6.6/6.32 

M.PFGNTHNNFK.L 
K.LNYSVDEEYPDLSK.H (47) 
K.HNNHMAK.V  Oxidation (M) 
K.DLFDPVISDR.H (44) 
K.TDLNFENLK.G 
K.GGDDLDPNYVLSSR.V (89) 
K.GYALPPHNSR.G (53) 
K.LSVEALSSLDGEFK.G (113) 
K.GKYYPLK.S 
K.SMTDAEQEQLIADHFLFDKPVSPLLL
AAGMAR.D  2 Oxidation (M) 
R.GIWHNENK.T 
K.TFLVWVNEEDHLR.V (102) 
K.GGNMKEVFK.R 
K.GGNMKEVFK.R  Oxidation (M) 
R.FCVGLQR.I (37) 
R.IEEIFKK.H (27) 
K.FEEILTR.L 
K.LMVEMEK.K  Oxidation (M) 

1077 

creatine kinase, 
muscle 

(NP_571007) 

35/43.0 6.6/6.32 

K.HNNHMAK.V 
K.GGDDLDPNYVLSSR.V (109) 
R.SIKGYALPPHNSR.G 
K.GYALPPHNSR.G 
K.TFLVWVNEEDHLR.V (122) 
K.LMVEMEKK.L 
K.LEKGESIDSMIPAQK.-  Oxidation (M) 

0611 

myosin heavy chain 4 
[Wu:fi38g05] 

(AAH44194) 

80/125.2 6.0/6.21 

R.MEAPPHIFSVSDNAYQFMLTDR.E  
Oxidation (M) 
R.MEAPPHIFSVSDNAYQFMLTDR.E   
2 Oxidation (M) 
K.RVIQYFATVAVQGGDK.K 
R.VIQYFATVAVQGGDK.K (106) 
K.MQGSLEDQIIAANPLLEAYGNAK.T  
Oxidation (M)  (53) 
R.IHFGTTGK.L 
K.LASADIETYLLEK.S (65) 
R.VTFQLPDER.G (42) 
K.FTGAVLHHGNMK.F   
Oxidation (M) (41) 
K.VGNEFVTK.G 
K.GQTVPQVYNSVSALSK.S (68) 
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Table A-2 Continued 
Spot 
No. 

Protein 
(Accession No) 

Mr (kDa) 
obs/pred 

pI 
obs/pred Matched Sequence (peptide ion score) 

pH 4-7 

0611 

myosin heavy chain 4 
[Wu:fi38g05] 

(AAH91662) 

80/125.2 6.0/6.21 

K.MFLWMVIR.I 
K.MFLWMVIR.I  Oxidation (M) 
K.MFLWMVIR.I  2 Oxidation (M) 
K.LQQFFNHHMFVLEQEEYKK.E  
Oxidation (M) (1) 
K.LYDQHLGK.C (39) 
K.AEAHFSLVHYAGTVDYNVNGWLDK.
N 
K.NKDPLNESVVQLYQK.S 
R.AYLMRR.E  Oxidation (M) 
R.KLEGDLK.L 

0571 

myosin binding 
protein C, fast-type 

[Zgc:110761] 

(AAH91662) 

80/125.8 6.5/5.56 

K.WMDLGSK.A 
K.FSEAFLR.R (12) 
R.RLESAYSVNK.G 
K.YIMEADGNIR.T  Oxidation (M) 
K.EPPITITK.L 
K.LLDDYHVVVGER.V (62) 
K.LNFLEIK.I 
K.DLSCFIIEGAER.E 
K.FDGGAPLK.G 
K.GSSRWTK.L 
R.SPPALLGQPVTVR.E (49) 
K.FTAPLVDR.A (18) 
R.AVTIGYSTAISCAVR.A 
K.MIIGDDPK.F 

0367 

myosin heavy chain 4 
[Wu:fi38g05] 

(AAH44194) 

96/125.2 6.0/6.21 

R.VIQYFATVAVQGGDK.K (22) 
R.VTFQLPDER.G (27) 
K.ISYLLGSNSAELLKALCYPR.V 
K.LYDQHLGK.C 
R.AYLMRR.E 
R.AYLMRR.E  Oxidation (M) 
K.SKIQLEAK.L 
R.KLEGDLK.L 

0553 

myosin heavy chain 4 
[Wu:fi38g05] 

(AAH44194) 

80/125.2 6.6/6.21 

R.ENQSVLITGESGAGK.T 
R.VIQYFATVAVQGGDK.K 
R.IHFGTTGK.L 
R.VTFQLPDER.G (43) 
R.ILYGDFK.Q 
R.AYLMRR.E  Oxidation (M) 
K.HWPWMK.V 
K.CKEDLVK.A 
R.MDLERAK.R 
R.KLEGDLK.L 
K.LAQESIMDLENDKQQSEEK.K 

0349 

myosin, heavy 
polypeptide 2, fast 

muscle specific 

(NP_694514) 

96/222.8 6.1/5.55 

R.ENQSVLITGESGAGK.T 
R.VIQYFATVAVQGGDK.K (17) 
R.VTFQLPDER.G (42) 
K.GQTVPQVYNSVSALSKSIYER.M 
R.MFLWMVIR.I  2 Oxidation (M) 
R.AYLMRR.E  Oxidation (M) 
K.HWPWMK.V  Oxidation (M) 
K.LAQESIMDLENDKQQSEEK.I 
K.QRADLSR.E 
R.SRNDALR.I 
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Table A-2 Continued 
Spot 
No. 

Protein 
(Accession No) 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH 4-7 

0349 
myosin, heavy 

polypeptide 2, fast 
muscle specific 
(NP_694514) 

96/222.8 6.1/5.55 
R.NVQAQLK.D 
K.DAQLHLDDAVRGQEDMK.E   
K.NLEVTVK.D 
R.LQDLVDK.L 

1221 

protein arginine 
N-methyltransferase 1 

(NP_956944) 

30/40.0 5.9/5.47 

-.MEVSQGESSAKPAAEDMTSK.D 
R.NSMFHNK.H 
R.NSMFHNK.H  Oxidation (M) 
R.NSMFHNKHLFR.D 
K.KVIGIECSSISDYAVK.I 
R.QYKDYK.I 
K.IHWWENVYGFDMSCIK.E   
Oxidation (M) 
K.NNRDLDFTVDIDFK.G 
R.DLDFTVDIDFKGQLCEVSK.T 
K.TSEYRMR.-   

0618 

fast muscle-specific 
myosin heavy chain 

(AAK73348) 

80/95.0 5.0/5.22 

K.QRADLSR.E 
R.EQFEEEQEAK.A 
K.ANSEVAQWR.T (58) 
R.TKYETDAIQR.T 
R.LQEAEEQIEAVNSK.C 
R.LQGEVEDLMIDVER.A 
R.LQGEVEDLMIDVER.A   
Oxidation (M) (53) 
K.NSYEETLDQLETLK.R 
K.NSYEETLDQLETLKR.E (92) 
K.NLQQEISDLTEQLGETGK.S (104) 
K.AEIQTALEEAEGTLEHEESK.I 
R.VQLELNQVK.G 
R.VTEAMQSTLDSEVR.S   
Oxidation (M) 
K.KMEGDLNEMEIQLSHANR.Q   
2 Oxidation (M) 
K.MEGDLNEMEIQLSHANR.Q 
K.MEGDLNEMEIQLSHANR.Q   
2 Oxidation (M) 
R.NVQAQLK.D 
K.DAQLHLDDAVR.G (84) 
R.GQEDMKEQVAMVER.R   
2 Oxidation (M) 
R.NTLMQSEIEELR.A 
R.NTLMQSEIEELR.A  Oxidation (M) (4) 
R.AALEQTER.G 
R.KVAEQELVDASER.V 
K.VAEQELVDASER.V (86) 
R.VGLLHSQNTSLLNTK.K (95) 
K.EQDTSAHLER.M 
K.NLEVTVK.D 
R.VRELESEVEAEQR.R 
R.ELESEVEAEQR.R 
R.LQDLVDK.L 
R.KVQHELEEAEER.A 
K.VQHELEEAEER.A 
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Table A-2 Continued 
Spot 
No. 

Protein 
(Accession No) 

Mr (kDa) 
obs/pred 

pI 
obs/pred 

Matched Sequence (peptide ion score) 

pH4-7 

1188 

actin, alpha 1, 
skeletal muscle 

(NP_571666) 

30/42.3 4.8/5.23 

K.AGFAGDDAPR.A (53) 
R.AVFPSIVGRPR.H 
K.IWHHTFYNELR.V (68) 
R.VAPEEHPTLLTEAPLNPK.A (102) 
R.GYSFVTTAER.E (63) 
K.LCYVALDFENEMATAASSSSLEK.S  
Oxidation (M) 
K.SYELPDGQVITIGNER.F (115) 

1322 

mitochondrial ATP 
synthase 

(AAS49605) 

20/40.0 5.8/9.18 

R.NVQAEEMVEFSSGLK.G    
Oxidation (M) (52) 
K.GMSLNLEPDNVGVVVFGNDK.L  
Oxidation (M) (43) 
R.TGAIVDVPVGEELLGR.V (121) 
R.EPMQTGIK.A  Oxidation (M) 
K.AVDSLVPIGR.G (41) 
R.ELIIGDR.Q. 
K.TAIAIDTIINQK.R 
R.LTDADAMK.Y 
R.LTDADAMK.Y  Oxidation (M) 

0775 
phosphorylase, 

glycogen (muscle) b 
[MGC63642] 
(NP_956766) 

70/36.9 6.5/6.27 

M.SKPLTDQEK.R 
K.DRNVATK.R 
R.DYYFALAHTVR.D (57) 
R.YEFGIFNQK.I 
R.TISQYAR.E 

pH7-11 

1188 

actin, alpha 1, 
skeletal muscle 

(NP_571007) 

30/42.3 4.8/5.23 

K.AGFAGDDAPR.A (53) 
R.AVFPSIVGRPR.H 
K.IWHHTFYNELR.V (68) 
R.VAPEEHPTLLTEAPLNPK.A (102) 
R.GYSFVTTAER.E (63) 
K.LCYVALDFENEMATAASSSSLEK.S  
Oxidation (M) 
K.SYELPDGQVITIGNER.F (115) 

1322 

mitochondrial ATP 
synthase 

(NP_955858) 

20/40.0 5.8/9.18 

R.NVQAEEMVEFSSGLK.G    
Oxidation (M) (52) 
K.GMSLNLEPDNVGVVVFGNDK.L  
Oxidation (M) (43) 
R.TGAIVDVPVGEELLGR.V (121) 
R.EPMQTGIK.A  Oxidation (M) 
K.AVDSLVPIGR.G (41) 
R.ELIIGDR.Q. 
K.TAIAIDTIINQK.R 
R.LTDADAMK.Y 
R.LTDADAMK.Y  Oxidation (M) 
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