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Abstract 

 

 

A two-dimensional mathematical model is adopted to investigate the development of 

buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure 

filled with a compressible fluid where one of the vertical walls of the enclosure is kept at a 

higher temperature than the opposite one. Fluid thermodynamic and transport properties are 

assumed to be functions of temperature. The governing equations are discretized using second 

order accurate differencing for spatial and temporal derivatives and then linearized using 

Newton’s linearization method. The resulting set of algebraic equations is solved using the 

Coupled Modified Strongly Implicit Procedure for the unknowns of the problem.
 
The results of 

this study show that the variable property model predicts lower values for wall heat fluxes and 

Nu number than the constant property one for Rayleigh numbers between 10
4
 and 10

5
.  

 

 

 

Keywords: Natural convection, CMSIP, Buoyancy Driven flows with Variable Properties 
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Chapter 1 

Introduction 

 

 

Natural convection within enclosures has been widely studied by many authors. Some of 

the applications of natural convection within enclosures include heat removal from electronic 

components, cooling of nuclear reactors, climate control in rooms, and crystal growth in liquids. 

Numerical studies of buoyancy driven flows have been carried out using finite difference, finite 

volume, and finite element techniques. Experimental studies have also been carried out utilizing 

PIV (Particle Image Velocimetry), LDA (Laser Doppler Anemometry), smoke visualization, and 

interferometry.  A comprehensive literature survey is provided in Chapter 2. 

The main objective of this thesis is to study the steady state and transient natural 

convection phenomenon of a compressible fluid (an ideal gas with Pr=0.72) inside a square 

enclosure with differentially heated vertical walls and to determine the effect of variable 

thermodynamic and transport properties on circulation patterns, wall heat flux, and Nusselt 

number. A more detailed description of the physical problem is given in Chapter 3.  

A physics based mathematical model is developed to obtain numerical solutions for the 

above problem by assuming the thermodynamic and transport properties of the fluid to be 

functions of temperature. The mathematical model comprises of conservation of mass, 

momentum, and energy equations. Formulation of conservation equations in terms of the 

primitive variables of the problem (u, v, p, and T) together with the appropriate boundary 

conditions and assumptions are provided in Chapter.4.  All the dimensional variables are 
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transformed into non-dimensional form. These variables are then used to transform the 

conservation equations and boundary conditions into their corresponding non-dimensional forms. 

The discretization and linearization of the non-dimensional conservation equations are 

given in Chapter.5.  This chapter also includes the numerical solution and algorithm employed to 

predict the values of the primitive variables of the problem. A detailed description of the 

Coupled Modified Strongly Implicit Procedure (CMSIP) used in the solution algorithm, which is 

second order accurate in time differencing is also given in this chapter.  

The accuracy of the numerical code is verified by applying the developed code to predict 

the results of a benchmark case study. Grid independence and time convergence studies were 

carried to verify the solution algorithm is presented in Chapter 6. The study of the second order 

accurate in time model is also provided including the grid independence and time convergence 

studies and then compared to the first order accurate in time model in Chapter 6. A parametric 

study was carried out to determine the effect of various parameters such as Rayleigh number and 

wall temperature difference and the size of the enclosure on circulation patterns and heat transfer 

in Chapter 7.  

The accuracy of the results achieved by variable properties is compared to those results of 

constant properties in Chapter 8. The orientation of the enclosure is also studied in the Chapter 9. 

In Chapter 10, the results of various case studies to verify the accuracy of the solution algorithm 

for second order accurate in time model are presented. Transient development of circulations and 

stratification patterns are provided in Chapter 11.  The wall heat flux and Nusselt number 

calculations are presented in Chapter 12.  

The conclusions drawn from the results of the present study are presented in Chapter 13. 

Recommendations to improve the mathematical and solution procedure proposed in this study 
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are given in Chapter 14. A list of references used in the literature survey is provided in the “List 

of References” section of the thesis.  
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Chapter 2 

Literature Survey 

 

 

Natural convection within enclosures has been widely studied by many researchers. An 

excellent review of the developments in understanding and modeling of these studies natural 

convection in enclosures can be found in the review paper by Ostrach [1]. This article discussed 

the complexities of the natural convection phenomenon that arise due to the inherent interaction 

between the boundary layer near the walls and the outer core region. Suggestions for different 

variable scaling are also made. Use of experimental results to support numerical predictions was 

strongly advocated. Moreover, enclosures with different geometries such as horizontal cylinders, 

high and low aspect ratio rectangular enclosures, and annuli were also reviewed.  

Kimura and Bejan [4] have studied natural convection in a rectangular cavity with uniform 

heat flux imposed at the sides of the cavity. They specifically studied the heating of the cavity 

from the top and from the sides. Their results showed that the convection driven by the 

horizontal temperature gradients persists even when the vertical stabilizing gradient is larger than 

the horizontal gradient. Buoyancy induced flows subjected to partially heated flows studied by T. 

H. Chen and L. Y. Chen [5] and also by Nithyadevi [6].   Cormack et al. [7] have considered the 

effect of the upper surface conditions on the buoyancy driven flow in a shallow cavity.  

The natural convective heat transfer with varying boundary conditions studied by many authors 

such as Sathiyamoorthy et al. [8],  Calcagni [9], Ganzarolli [10],  Le Peutrec and  Lauriat [11], 

Mariani [12], Aydin[13], and Basak [14].  They have concluded that the surface boundary 

conditions have an important influence on the temperature and flow structure within a cavity. 

http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Peutrec%2C+Y.+Le&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CASMECP&aqs=true
http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Lauriat%2C+G.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CASMECP&aqs=true
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Nonlinear variations in liquid density with respect to temperature and its effect on buoyancy 

driven flow has been studied by Lin and Nansteel [15]. They have identified a dimensionless 

density distribution parameter which characterizes the distribution of the buoyancy force and 

how it determines the possible variations in flow structure. The effect of thermal stratification on 

natural convection in a vertical porous insulation layer has been studied by Rees and Lage [16].   

Previous research indicates that the circulation patterns and thermal stratification in 

buoyancy driven flows are dependent on two-dimensional parameters: Prandtl and Rayleigh. 

Many researchers have carried out their studies for air (Pr=0.7). The results for low Pr number 

fluids (liquid metals) are reported by Viskanta et al. [17]. Fluid with high Pr numbers was 

studied by Hiller et al. [18]. Moh [19] studied the simulations of two-dimensional, low Prandtl 

number natural convection in harmonically oscillated, differentially heated enclosures. Buoyancy 

driven flows can be laminar or turbulent depending on the value of the Rayleigh number.  The 

mathematical models proposed by Henkes et al. [20] can handle both types of flow regimes. 

Simulation of Laminar Buoyancy driven Flows in an Enclosure carried out by Evern Selamet et 

al. [21]. Numerical investigations have been conducted of flow transitions in Deep Cavities by 

Xia and Murthy [22]. Numerical investigation of turbulent natural convection in a square 

enclosure with localized heating from below and symmetrical cooling from the vertical side 

walls were carried out by Anil kumar Sharma et al. [23].  A numerical procedure to solve 

turbulent flow which makes use of k-ε model has been developed by Elkaim et al [24]. Laminar 

and turbulent natural convection in irregular shaped enclosures has been investigated by Coulter 

and Guceri [25]. An experimental and numerical investigation is presented concerning the 

natural convection of water near its density in a differentially heated rectangular enclosure at 

high Rayleigh numbers by Ho and Tu [26], in which an oscillatory convection regime may arise. 
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The unsteady, compressible effects were studied numerically by Akyuzlu et al. [27]. Their 

model included incompressible flow equations together with Boussinesq approximation and it 

was used to predict the transient circulation patterns and resulting thermal stratification of the 

propellant in a cryogenic storage tank for the constant heat flux boundary conditions.  Steady, 

compressible effects were studied in closed cavities by Mazumder [28].  However, most of the 

researchers of natural convection in cavities and enclosures assume the density to be function of 

temperature only in the buoyancy term in the momentum equation (Boussinesq approximation.) 

According to Gray [29] a temperature difference less than 28.6 deg C between the hot and cold 

walls of the enclosure ensures the validity of this approximation.  

There are many natural convection processes in various fields, and it is still a hot topic to 

investigate the fluid dynamics and heat transfer of natural convection. The analytical solutions 

are meaningful in both theoretical investigation and practical applications. Specially, they are 

very useful to computational fluid dynamics and heat transfer as benchmark solutions to check 

the numerical solutions and to develop numerical differencing schemes, and grid generation 

methods and so forth. An analytical study has been conducted for natural convection in a cavity 

of different aspect ratios with uniform volumetric heat generation by Joshi et al. [30]. Two 

explicit analytical solutions of 2-D steady laminar natural convection along a vertical porous 

plate and between two vertical plates were derived by Cai and Zhang [31]. The numerical study 

of natural convection in a differentially heated cavity with internal heat generation for different 

aspect ratios has been carried out by Fusegi et al. [32].  

Most of the researchers have carried out their studies in two-dimension as it is done in the 

present study. This approach is being justified when the depth aspect ratio of the enclosure is 

greater than 5 [33]. Also, a three-dimensional approach may be the right choice when 
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multicellular, transient flow characteristics are expected as in the case of high Grashof number 

flows where three-dimensional effects are important. Researchers like Viskanta [17], Hiller [18], 

Fusegi [33], and Wakitani [34] have addressed this problem by proposing three-dimensional 

mathematical models which required a new method of solution then the previously adopted ones. 

(See publications by de Vahl Davis [35] and Kublbeck [36]). The effect of wall thermal 

boundary conditions on the development of three-dimensional and unsteady natural convective 

flows was studied by Oosthizen et al. [37]. In 1997, multicellular solutions for air filled 

enclosure were developed by Wakitani [38].  A high aspect ratio (AR =16) enclosure was 

considered in his study. A numerical study is conducted to investigate the effect of subcooling on 

natural convection in a densified cryogenic propellant by Akyuzlu et al. [39].  

Validation of a proposed model can be done by comparing the predicted values of velocity 

and temperature fields to those obtained in experiments. Although limited, there are published 

experimental data in the literature. (See work done by Viskanta [17], Nicolette [40], Kirkpatrick 

[41], Hiller [18], and Linthorst [42]). The experimental analysis through 2D-PIV system was 

provided by Corvaro and Paroncini in 2009 [43]. The same authors developed interferometry 

techniques in 2007 [44].   Natural convection of air in a tall vertical cavity was studied using a 

smoke patterns and interferometry by Wright et al. [45].   An experimental study of high 

Rayleigh number natural convection in an enclosure was conducted by Giel and Schmidt [46]. 

The experimental benchmark data for turbulent natural convection to validate a proposed CFD 

code is presented in a publication by Ampofo et al. [47]. Akyuzlu, Nemani, and Chakravarthy 

[48] used the Particle Velocimetry (PIV) system to experimentally investigate the effect of 

different heat transfer boundary conditions on natural convection inside a rectangular storage 

tank. Water was used as the working fluid. Another method of validation of a newly proposed 
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mathematical model or solver is to predict the results of the benchmark case (heating of a square 

enclosure by isothermal walls.) In 1983, De Vahl Davis [2] numerically investigated the natural 

convection of air in a square enclosure. This study has widely been accepted as the benchmark 

case. The study used the non-dimensional stream function-vorticity formulation of the governing 

equations. The well known Boussinesq approximation was also incorporated.  

Natural convection flows were also studied numerically inside rectangular cavities with 

inclination.  Two dimensional natural convection flows in titled cavities for porous media and 

homogeneous fluids has been studied by Baez and Nicolas [49]. Natural convection in two 

dimensional enclosures with three flat and one wavy wall is numerically investigated by Dalal 

and Das [50]. In this study, one wall is having a sinusoidal temperature profile and other three 

walls including the wavy wall are maintained at constant cold temperature.  A numerical study of 

the effect of a hot wavy wall of laminar natural convection in an inclined square cavity, 

differentially heated, was carried out by Adjlout et al. [51]. Flow visualization observations are 

described for natural convection flows in rectangular inclined enclosures by Linthorst et al. [42].  

Variable property mathematical models were also developed to study natural convection in 

cavities and enclosures. The transient version of the classical differentially heated square cavity 

problem, considering fluid properties as functions of temperature has been studied by De Souza 

et al. [52]. Same problem with constant and variable fluid properties has been also studied by 

Leal et al. [53].  Variable property effects in laminar natural convection in a square enclosure 

were studied by Zhong et al. [54] and Emery et al. [55]. They indicate that the variable properties 

produced observable changes in the temperature and velocities, however, the overall heat transfer 

was found to be unaffected by it. The effects of combined temperature dependent 

thermodynamics and transport fluid properties on the heat transfer rate, heat function fields and 
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profiles in a fluid filled square enclosure was quantitatively studied by Waheed [56]. The 

variations in fluid properties were also considered in the numerical studies conducted by 

Markatos and Pericleous [57]. 

Present study is a continuation of an effort undertaken in the Cryogenics Laboratory at the 

University of New Orleans in collaboration with the Advanced Programs division of LMMO in 

New Orleans and NASA Stennis Space Center to study the transient heating of densified liquid 

propellants in a cryogenic storage tank. Previous studies conducted by one of the authors of this 

paper [58 and 59] has indicated the importance of predicting, accurately, the circulation patterns 

that develop inside the propellant due to natural convection. This process dominates the heating 

of the propellant and is driven by the heat leak at the walls of the storage tank which leads to 

unwanted thermal stratification in the tank. This fact led our research group in the Cryogenics lab 

to adopt a compressible flow model (without Boussinesq assumption) with constant properties to 

study natural convection in square enclosures [27]. i.e., a two-dimensional rectangular enclosure 

with insulated top and bottom and with vertical walls kept at a prescribed temperature difference.  

To solve the governing equations of the proposed mathematical model, an in-house 

numerical solver based on an implicit finite difference technique, a modified version of the SIP 

algorithm [60] called Coupled Modified Strongly Implicit Procedure (CMSIP) [61], was 

developed by our group. (See reference 35 for the details of this algorithm.) In the first set of 

numerical experiments using this solver, the fluid was assumed to be an ideal gas with Pr =1 

[27]. In the present study, the mathematical model has been improved by assuming the 

thermodynamic and transport properties of the fluid to be functions of temperature. The solution 

algorithm had to be modified accordingly. Furthermore, the present study uses a second order 

accurate time differencing for the CMSIP solution algorithm (see references [76] and [77]).     
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Chapter 3 

Description of the Physical Model 

 

 

 A two dimensional square enclosure is considered for this present study. The left wall of 

enclosure is maintained at a constant but higher temperature than the right wall. The top and 

bottom walls of the enclosure are assumed to be perfectly insulated. The enclosure is filled with 

air, which is considered to be a compressible ideal gas. Initially, the fluid inside the tank is 

assumed to be at an average temperature of the hot and cold walls. This temperature is called the 

reference temperature. The aspect ratio (ratio of height to width) is determined by the geometry 

of the enclosure. In this study, since the length of the enclosure is taken to be equal to the height, 

the aspect ratio is computed to be unity. No slip conditions are assumed on all the walls of the 

enclosure and the walls are presumed to be impermeable. Orientation of the enclosure is depends 

on direction of gravitational force. Refer to Figure 1 for more details of the physical model. 

The driving mechanism behind the natural convection phenomenon is buoyancy. In this 

case, the buoyancy is associated with gravity. Heat is transferred from the hot wall to the 

adjacent air particles resulting in a decrease in the density of the air near the hot wall. The less 

dense air begins to rise while the heavier (more dense) air starts falling downward near the cold 

wall consequently introducing a clockwise circulation. This type of buoyancy induced flow can 

be seen in heating or cooling of rooms and in cooling of transistors and transformers. 

 

 



11 

 

 

 

 

  
                                                            

  

 

 

 

 

 

 

 

 

 

Figure 1- Schematic of the Physical Domain (Dimensional) and the Boundary Conditions 

 

Depending on the Rayleigh number, the flow within the enclosure can be categorized as 

laminar, transitional, or turbulent. In this study, only laminar flows are considered. The Rayleigh 

numbers are kept below the transition limit (less than 1 x 10
7
). The Rayleigh number is 

dependent on the properties of the working fluid, temperature differential between the vertical 

walls, and the characteristic length of the enclosure.  

All the dimensional variables are transformed into a non-dimensional domain. The non-

dimensional physical model is shown in Figure 2.  
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Figure 2- Schematic of the Physical Domain (Non- dimensional) and the Boundary Conditions  
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Chapter 4 

Description of Mathematical Model 

 

 

The mathematical formulation of the conservation equations together with the initial and 

boundary conditions in first order and second order accurate in time models are given below. The 

dimensional governing equations were derived from the respective vector form (refer to 

Appendix I) and together with the initial and boundary conditions were then transformed into 

non-dimensional form. The non-dimensional forms of these equations as well as the assumptions 

made in the derivation of these equations are presented in this chapter. 

4.1. Assumptions of Mathematical Model 

The following assumptions were made for the present study.  

1. The physical domain is two-dimensional and the equations are in Cartesian co-

ordinates 

2. The working fluid forms a continuum 

3. The flow is unsteady, laminar, and viscous 

4. The working fluid (air) is compressible (the density of the fluid is a function of 

temperature and pressure) and can be treated as an ideal gas. 

5. The working fluid behaves like a Newtonian fluid with stokes assumptions 

6. Pressure work term is negligible in the energy equation 

7. Effects of viscous dissipation in the energy equation are insignificant 

8. The kinetic and potential energy terms in the energy equations are neglected 

9. Radiation heat transfer is ignored 
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10. There are no internal heat sources 

11. Heat conduction within the fluid follows Fourier’s law 

12. The  physical properties of the fluid are assumed to be constant 

13. Thermodynamic and transport properties are assumed to be function of temperature 

4.2. Dimensional Formulation 

 After making the necessary assumptions given in section 4.1, each individual 

conservation equation was then derived from the respective vector form of that equation. The 

dimensional form of governing differential equations in conservative form can be referred to 

Appendix IIA. Then the equation of state was substituted in the conservational equations. The 

dimensional formulations of the governing equations for the four primitive variables (u, v, p and 

T) of the present problem are given as follows 

Continuity equation  
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Momentum equation in the y-direction 
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Energy equation 
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 In both momentum equations,  assumed to be zero for square enclosure with variable 

thermodynamic and transport properties, and also orientation of the enclosure was studied at 

different angles of  . 

4.3. Sub Models for Variable Thermodynamic and Transport Properties 

Specific heat at constant pressure and viscosity are assumed to be functions of 

temperature in the present study of natural convection. That is, 

               )(TfC p   and  )(Tf  

The specific heat at constant pressure is function of temperature for an ideal gas,
0pC  , 

can be given as (refer to appendix III) 
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The viscosity function of temperature for an ideal gas can be given as (refer to appendix III)  
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4.4. Non-dimensional Formulation 

The non-dimensional conservation equations were transformed from the dimensional form 

of the equations given in the previous section 4.2 for present study of natural convection. The 

definitions of non-dimensional variables used in these governing differential equations are given 

below. In this study ρref was determined at T and .P Reference characteristic length, Lref, is 

then to be the initial height of the cavity, H; i.e. Lref   = H and also Tref = T  
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Using the above parameters, the dimensional forms of equations were transformed into their 

non-dimensional forms.  
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Momentum equation in x-direction 
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Momentum equation in y-direction  
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Energy equation 
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4.4.1. Boundary Conditions 

To complete the mathematical formulation, the following boundary conditions were used. 

a. No slip condition was imposed on all the walls of the cavity 

 

 

 

 

 

b. All the walls of the cavity were considered to be impermeable 

  

        

      

       

 

c. All the walls of the cavity were assumed to be perfectly insulated. The walls were 

considered to be adiabatic i.e., no heat flux 
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4.4.2. Initial Conditions 

 Initially, the fluid within the enclosure was assumed to be motionless and isothermal. The 

initial temperature was assumed to be the reference temperature. The initial pressure distribution 

was calculated such that the steady state momentum equations were satisfied everywhere in the 

computational domain. 
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Chapter 5 

Numerical Formulation and Solution Technique 

 

 

The governing differential equations for the comprehensive mathematical model are 

coupled therefore the Coupled Modified Strongly Implicit Procedure (CMSIP) was used to solve 

them in terms of the primitive variables.  

The descretization method used for the inner points of the computational domains, which 

are represented by a uniform orthogonal structured mesh, will be given in the next section. The 

discretization method used for boundary conditions are different and described in section 5.2 

separately. The Newton’s Linearization technique was developed to linearize the resulting non-

linear discretized governing differential equations in the section 5.3. The computational cell used 

for the discretization is shown below in figure 3.  

 

 

 

 

 

 

 

 

 

Figure 3- Computational Cell used for the Discretization of the Governing Differential Equations 
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5.1    Discretization of the Governing Differential Equations 

The governing differential equations are discretized using second order accurate central 

differencing for spatial derivatives and second order (based on Taylor Expansion) finite 

differencing for time derivatives.  

Second order accurate approximation for the time term in the inertial term becomes 
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 was derived from the Navier-Stokes equation at n

th
 time. 

A central differencing was used for the first derivative of convection term in the axial 

direction: 
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The diffusion term in the vertical direction was descritized using central differencing as 

given below: 

y
y

v
R

y

v
R

y

v
R

y

n

ji

n

ji

n

ji





















































/][

1

,
2

1

1

,
2

1

1

,

                    (5.4) 

The term evaluated at the i + ½ nodal point is evaluated by taking the average value at 

i+1 and i nodes.    
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The term evaluated at the i - ½ nodal point is evaluated by taking the average value at i-1 

and i nodes.    
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The first order derivative at plus half nodal point is evaluated as it shows below 
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and the same way the first order derivative for the minus half nodal point was evaluated   
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The second order mixed derivative was evaluated using central differencing as follows   

)2(/][

1

1,

1

1,

y
x

u
R

x

u
R

x

u
R

y

n

ji

n

ji



















































                 (5.9) 

and  

                            )2(/][ 1

1,1

1

1,1

1

1,

xuu
x

u n

ji

n

ji

n

ji












 











                                    (5.10) 

                              )2(/][ 1

1,1

1

1,1

1

1,

xuu
x

u n

ji

n

ji

n

ji












 











                                     (5.11) 

5.1.1 Finite Difference Approximation for Boundary Conditions 

  The first order derivative for the temperature gradient at the bottom and top boundaries 

was approximated by the four point forward and backward difference formulas, respectively. The 

elevation of the temperature gradient at the bottom wall is presented below as an example. 
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The approximation of the non-dimensional temperature at the all as given by the four point 

formula can be given by: 
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5.2    Linearization of the Governing Differential Equations 

 After discretization the non-linear equations are linearized for the unknown variables by 

Newton’s method using the following general formula  
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As an example the application of the above formula to various terms in the transform equation is 

presented below. 
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 where n stands for a discrete time step and k for the number of iteration.  In Equation (5.15), 
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ji Tandup are the unknown and the rest are known coefficients from the 

previous iteration.  

Another example of anon-linear term with four variables is 1
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the convective terms in the y-momentum equation. Application of the linearization formula as 

given by Equation 5.14 yields: 
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5.3    Solution Technique 

A modified version of the Coupled Strongly Implicit Procedure (CSIP) developed by 

Zedan and Schneider [60] was used to solve for the primitive variables of the non-dimensional 

conservation equations. This modified version was proposed by Chen and Pletcher [67] and is 

called the Coupled Modified Strongly Implicit Procedure (CMSIP). 

The descritized non-dimensional conservation equations after linearized are put into the 

following form for any nodal point (i, j) of the computational domain 
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 In the present study, where we have four primitive variables, the x in Equation 5.17 is 4 

element vectors and A is a 4 by 4 matrix. 

The computational molecule for 
9321 ..,,, AandAAA i in Equation 5.17 is shown 

in Figure 4.  

 

 

 

 

 

 

 

Figure 4- Two Dimensional Computational Molecules for the Elements of the A Matrix 
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Similar equations are generated for the rest of the inner nodal points of the computational 

domain. The resulting sets of algebraic equations (as many as the number of the unknowns) are 

then put into block matrix in the following form:  

 

  A x = b              (5.18)    

where [A] is the coefficient matrix , x  is the unknown vector to solve for and b is the known 

vector. Except for boundaries with no slip condition, all boundary conditions were treated 

implicitly by writing the governing differential equations on the boundary points and then 

discretized and linearized before incorporating them into the block matrix form. The unknown 

vector has as many elements as the number of inner nodes in the computational domain. The [A] 

matrix is a block matrix and is defined as shown below: 
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The vectors x and b are also of block form are presented below: 
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           The coefficient matrix [A] is decomposed into upper and lower diagonal matrices [U] and 

[L] to solve the equation 5.18 and to make this possible an auxiliary matrix [P] was added to 

both sides of the equation. 

                            kk xPbxPA  1

                                    (5.19) 

where transcript k is for iteration 

setting    

               
kkk xx   11         

 and         
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               kk xAbR     

 in equation (5.19) becomes 

  k1k RPA                                                            (5.20) 

Replacing the matrix [A+P] with the product of Lower-block triangular matrix [L] and Upper-

block triangular matrix [U] in equation 5.20 (see appendix V), it becomes  

    k1k RδUL 
                                                         (5.21) 

Defining the vector W by  

                   1k1k UW                                                               (5.22) 

then equation (5.22) can be written as 

  k1k RWL 
                                                           (5.23) 

The solution of equation 5.19 is as follows: 

  The vector W
k+1

 is calculated from equation (5.23) by forward substitution procedure and 

then vector 
k+1

 is computed from equation (5.22) by backward substitution. This procedure was 

repeated for the calculation of the new residual vector R followed by direct calculation of the W 

and  until the convergence of X is attained. 

 The convergence depends upon the following criterion:  
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                                         (5.24)  

where, 

 k is the iteration level, 
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im is the number of grid points in the x-direction 

jm is the number of grid points in the y direction 

n is the variable index 

 n is the component of the unknown vector   

 n,rms is the root mean square value of   

The value of   was set to 1 x 10
-7

. This value of   was chooses by numerical experimentation.  

A separate criterion for pressure was also considered. 

p

k

n

k

n pp 1                                                          (5.25) 

 Its convergence value was set to 1 x 10
-7

. 

Second order time accuracy approximation was stabilized by adding pressure smoothening 

function as shown below. 
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where   

w  is small constant assigned as 0.0005 

5.4.  Solution Algorithm 

The solution was developed to implement the solution procedure (presented in previous 

section) used to solve the governing equations of this study.  

The steps of this algorithm are given below. 

1. All the necessary variables were defined and the corresponding arrays were 

dimensioned  
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2. The input parameters such as non-dimensional computational, geometrical, and 

operational parameters were defined 

3. The initial conditions were imposed, the velocities were set to zero and the temperature 

was assumed to be uniform with a value of unity. For natural convection, a hydrostatic 

pressure distribution was assumed in the vertical direction while the pressure 

distribution in the horizontal direction was assumed invariant. 

4.  The appropriate boundary conditions were imposed on all the walls of the enclosure. 

The velocities were set to zero. The temperatures on the left and right vertical walls 

were set to the corresponding non-dimensional hot and cold values. 

5. The matrices for the corresponding inner nodes were generated 

6. The Coupled Modified Strongly Implicit Procedure was implemented as explained in 

the previous section and counter for linearization is activated.  

7. Values of the primitive variables were computed for the future time step. This was an 

iterative process. The iteration was stopped when the difference between the predicted 

values at iteration level k+1 and k was smaller than a given criteria. The separate 

criterion was also verified for pressure.  

8. Steps 5 through 7 were repeated for each time step until the final simulation time was 

reached. 

9. Steady state was verified for all the nodal points in the domain.  

The above solution algorithm was implemented into a computer code in Fortran by Akyuzlu 

and Antoniou [62]. This code was executed to generate the simulations of natural convection of 

an incompressible fluid inside an enclosure with differentially heated side walls. 

  



31 

 

Chapter 6 

The Validation of the Mathematical and Computer Codes 

 

 

In this study, various numerical studies have been carried out to establish the validity of 

the natural convection phenomenon. When numerical methods are used to solve differential 

equations, getting a numerical stable solution does not immediately imply that this is the correct 

one.  A time convergence study and grid independence study requires that there are not 

significant changes in the results when the computational time increment and grid size are 

varied. Furthermore, the computer code developed for the present study was tested for accuracy 

using benchmark studies. These case studies are presented in this chapter.  

6.1. First Order Accurate in Time Model 

 Time convergence and grid independent studies were presented for first order accurate in 

time model in the following section.  

6.1.1. Time Convergence Study 

 A time convergence study was carried out using three different non-dimensional time 

steps 1 x 10
-5

, 5 x 10
-6

 and 1 x 10
-6

 for the present study. Once the grid size is set, the time 

computational time convergence is determined by satisfying the diagonal dominance condition 

of the coefficient matrix. For the present code validation study, the biggest non-dimensional 

computational time step is 1 x 10
-5

. It was found that a time increment smaller than this did not 

result in any significant changes in qualitative and quantitative results. To illustrate this point, 

non-dimensional vertical velocity distribution along the horizontal centerline of the enclosure 

were compared for different time increments such as ∆   = 1 x 10
-5

, ∆   = 5 x 10
-6

 and ∆   = 1 x 
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10
-6

 for Ra = 10
5
 and 21 x 21 mesh points. The quantitative comparison is presented in Table 1 

and the comparison of predicted non-dimensional vertical velocity profiles is presented in Figure 

5.  

Table 1- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for ∆   = 1.0E-5, ∆  = 5.0E-6 and ∆   = 1.0E-6                                 

(Ra = 10
5
 and 21 x 21) 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(  = 1.0E-5) 

Non-dimensional 

Vertical 

Velocity,  

(  = 5.0E-6) 

Non-dimensional 

Vertical 

Velocity,  

(  = 1.0E-6) 

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2465031 -0.2405049 -0.2455756 

0.90 -0.2011154 -0.2007765 -0.2008536 

0.85 -0.1036450 -0.1085817 -0.1036823 

0.80 -0.0343976 -0.1489494 -0.0347446 

0.75 -0.0019368 -0.0411735 -0.0023072 

0.70 0.0096405 0.0066313 0.0093005 

0.65 0.0114227 0.0093207 0.0111182 

0.60 0.0103105 0.0085196 0.0100377 

0.55 0.0077418 0.0060819 0.0074892 

0.50 0.0049455 0.0033997 0.0047312 

0.45 0.0020850 0.0008425 0.0019073 

0.40 0.0001912 -0.0005219 0.0000633 

0.35 0.0011802 0.0012908 0.0010889 

0.30 0.0084302 0.0096339 0.0083634 

0.25 0.0281221 0.0306583 0.0280601 

0.20 0.0667380 0.0706031 0.0666712 

0.15 0.1275761 0.1322839 0.1275338 

0.10 0.1938100 0.1977258 0.1938031 

0.05 0.2009478 0.2019970 0.2009947 

0.00 0.0000000 0.0000000 0.0000000 
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Figure 5- Comparison of Steady State Non-dimensional Vertical Velocity Distribution along the 

Half of the Horizontal Centerline for ∆   = 1.0E-5, ∆  = 5.0E-6 and ∆   = 1.0E-6 at        

Ra = 10
5
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6.1.2. Grid Independence Study 

In order to validate the accuracy and convergence of the computer code, a grid 

independence study for the present study (Ra = 10
5
) was also conducted. The grid size chosen for 

the present study was 21 x 21. To verify that the converged solutions were independent of the 

grid chosen one more study was carried out with grid size of 41 x 41. Steady state results using 

uniform, orthogonal 21 x 21 and 41 x 41 meshes were obtained using the present computer code. 

The Comparison of the predicted non-dimensional vertical velocity profiles along the x-axis for 

grid independence study at Ra = 10
5 
is presented in Figure 6 and the quantitative comparison is 

presented in Table 2.  
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Table 2- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for 21 X 21 and 41 X 41 (Ra = 10
5
 and 21 x 21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(21 x 21) 

Non-dimensional 

Vertical 

Velocity,  

(41 x 41) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2440615 -0.2412806 -1.1525584 

0.90 -0.2006345 -0.2090486 4.0249492 

0.85 -0.1048553 -0.1148455 8.6988170 

0.80 -0.0364389 -0.0460759 20.915360 

0.75 -0.0036786 -0.0116106 68.316591 

0.70 0.0081803 0.0014213 -475.55753 

0.65 0.0103389 0.0043900 -135.50819 

0.60 0.0093217 0.0034348 -171.38688 

0.55 0.0069599 0.0011907 -484.48458 

0.50 0.0042331 -0.0013476 414.12458 

0.45 0.0016037 -0.0037290 143.00665 

0.40 -0.0001891 -0.0053963 96.496226 

0.35 0.0010085 -0.0050037 120.15436 

0.30 0.0082728 0.0007297 -1033.7072 

0.25 0.0281219 0.0187185 -50.235167 

0.20 0.0668939 0.0602751 -10.981119 

0.15 0.1284077 0.1349891 4.8755048 

0.10 0.1954522 0.2255438 13.341798 

0.05 0.2031731 0.2394256 15.141447 

0.00 0.0000000 0.0000000 0.0000000 
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Figure 6- Comparison of Steady State Non-dimensional Vertical Velocity Distribution along the 

Half of the Horizontal Centerline for Grid Sizes of 21 x 21 and  41 x 41 at          

Ra = 10
5
 

It is evident in these comparisons that the accuracy of the results increased with finer grid 

sizes, as expected.   
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6.1.3. Benchmarking of the Developed Code 

 After verifying the time convergence and grid dependence studies,  the computer code 

was developed for this study was tested for the accepted benchmark case provided by de Vaul 

Davis [2] (for incompressible flow with Boussinesq approximation).  A quantitative comparison 

of maximum velocities in the horizontal and vertical directions as predicted by this study and de 

Vaul Davis is presented below in Table 3 where     .  

 

Table 3- Comparison of the Results of the Constant 

Properties [27] and the Benchmark Case (de Vahl 

Davis, [2]) for Different Rayleigh Numbers 

 

Rayleigh 

Number 

Constant 

Properties 

max 

Benchmark 

Case 

max 

% 

Deviation 

in max 

10
4
 15.772 16.178 - 2.509 

10
5
 37.241 34.730 + 7.230 

 

 

 

 

 

A comparison of the results of this study (which is based on compressible flow with 

constant properties assumption) and that of de Vahl Davis’s study [2] indicates observable 

differences. The absolute value of maximum computed horizontal velocity underestimated 

corresponding benchmark value by 2.5 % for Ra = 10
4
. However, for Ra = 10

5
, same value 

overestimated by 7.2 %. Similarly, the maximum difference between the benchmark vertical 

value and the present value is 3.5 % for Ra = 10
4
, and almost negligible difference in the same 

value for Ra = 10
5
.   

Rayleigh 

Number 

Constant 

Properties 

max 

Benchmark 

Case 

max 

% 

Deviation 

in max 

10
4
 18.927 19.617 - 3.517 

10
5
 68.629 68.590 + 0.057 
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6.2. Second Order Accurate in Time Model 

A numerical study was carried out to determine the differences between the predicted 

unsteady velocity and temperature profiles, while the circulation patterns were developing after a 

step change in wall temperatures using the first order and second order accurate in time CMSIP 

algorithms. Time convergence and grid dependence studies were conducted to verify the 

accuracy of the second order accuracy in time model.  

6.2.1. Time Convergence Study 

A time convergence study was carried out for the present study which is second order 

accurate in time. As presented in section 6.1.1, once the grid size is set, the time computational 

time convergence is determined by satisfying the diagonal dominance condition of the 

coefficient matrix. For the present code validation study, a non-dimensional computational time 

increment of 1 x 10
-5

 was considered. It was found that a time increment smaller than this did not 

result in any significant changes in qualitative and quantitative results. To illustrate, non-

dimensional vertical velocity distribution along the horizontal centerline of the enclosure were 

compared for different time increments such as ∆   = 1 x 10
-5

 and ∆   = 5 x 10
-6

 for Ra = 10
5
 and 

21 x 21 mesh points. The quantitative comparison is presented in Table 4 and qualitative 

comparison is presented in Figure 7. 
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Table 4- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for ∆   = 1.0E-5 and ∆   = 5.0E-6 at Ra = 10
5
 in 

Second Order Time Accurate Approximation 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(  = 1.0E-5) 

Non-dimensional 

Vertical 

Velocity,  

(  = 5.0E-6) 

1.00 0.0000000 0.0000000 

0.95 -0.2440447 -0.2461275 

0.90 -0.2002889 -0.2023205 

0.85 -0.1043035 -0.1047269 

0.80 -0.0357540 -0.0352146 

0.75 -0.0031484 -0.0024742 

0.70 0.0086785 0.0092366 

0.65 0.0106349 0.0110582 

0.60 0.0095869 0.0099664 

0.55 0.0070514 0.0074107 

0.50 0.0043028 0.0046463 

0.45 0.0015101 0.0017887 

0.40 -0.0003056 -0.0001617 

0.35 0.0007269 0.0006464 

0.30 0.0079743 0.0075860 

0.25 0.0276678 0.0269726 

0.20 0.0664488 0.0656514 

0.15 0.1278468 0.1274489 

0.10 0.1949693 0.1957688 

0.05 0.2027110 0.2048181 

0.00 0.0000000 0.0000000 
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Figure 7- Steady State Non-dimensional Vertical Velocity Distribution along the Horizontal 

Centerline for ∆   = 1.0E-5, ∆  = 5.0E-6 and ∆   = 1.0E-6 at Ra = 10
5
 in Second 

Order Time Accurate Approximation 
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6.2.2. Grid Independence Study 

In order to validate the accuracy and convergence of the previous published results in the 

first order accurate in time, a grid independence study for the present study (Ra = 10
5
) was also 

conducted. Steady state results using uniform, orthogonal 21 x 21 and 41 x 41 meshes were 

obtained using the present computer code. The centerline non-dimensional vertical velocity 

profiles for are presented in Figure 8 and in Table 5, quantitative comparison is presented. It is 

evident in these comparisons that the accuracy of the results increased with finer grid sizes.  
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Table 5- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for 21 X 21 and 41 X 41 at Ra = 10
5
 in Second Order 

Time Accurate Approximation 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(21 x 21) 

Non-dimensional 

Vertical Velocity, 

 

(41 x 41) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2440447 -0.2408513 -1.3258803 

0.90 -0.2002889 -0.2085564 3.9641554 

0.85 -0.1043035 -0.1143165 8.7590155 

0.80 -0.0357540 -0.0455260 21.464604 

0.75 -0.0031484 -0.0110939 71.619711 

0.70 0.0086785 0.001856 -367.35998 

0.65 0.0106349 0.0047221 -125.21089 

0.60 0.0095869 0.0036587 -162.02546 

0.55 0.0070514 0.0013085 -438.88896 

0.50 0.0043028 -0.0013337 422.59862 

0.45 0.0015100 -0.0038197 139.53328 

0.40 -0.0003056 -0.0055958 94.538590 

0.35 0.0007269 -0.0053183 113.66860 

0.30 0.0079743 0.0002984 -2571.8144 

0.25 0.0276678 0.0181909 -52.097092 

0.20 0.0664488 0.0597164 -11.273841 

0.15 0.1278468 0.1345171 4.9587004 

0.10 0.1949693 0.2252853 13.456714 

0.05 0.2027110 0.2394137 15.330242 

0.00 0.0000000 0.0000000 0.0000000 
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Figure 8- Steady State Non-dimensional Vertical Velocity Distribution along the Horizontal 

Centerline for Grid Sizes of 21 x 21, 41 x 41 and 81 x 81 at Ra = 10
5
  in Second 

Order Time Accurate Approximation 
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6.2.3. Base Model Comparison with First Order Accurate in Time Model 

The present study employs a second order accurate in time CMSIP procedure [74, 75, and 76] 

to solve the unsteady governing equations of the problem. This new algorithm uses Taylor 

expansion based second order accurate differencing of temporal terms and a second order accurate 

central difference approximations for all the spatial terms in the governing equations. Previous 

CMSIP algorithm used by Akyuzlu [27] and also by Chen and Pletcher [67] are first order accurate 

in time.  The comparison of maximum values of horizontal and vertical velocities in first order and 

second order accurate in time models are presented in the Table 6.   

Table 6- Comparison of the Results of the First Order and 

the Second Order Time Accurate CMSIP Models using 

Constant Properties for Different Rayleigh Numbers 

Rayleigh 

Number 

Second Order 

max 

First Order 

max 

% 

Deviation 

in max 

10
4
 

(Location) 

0.154 

(  = 0.782) 

0.155 

(  = 0.780) 
- 0.649 

10
5
  

(Location) 

0.109 

(  = 0.840) 

0.110 

(  = 0.838) 
- 0.909 

 

Rayleigh 

Number 

Second Order 

max 

First Order 

max 

% 

Deviation 

in max 

10
4
 

(Location) 

0.900 

(  = 0.125)  

0.900 

(  = 0.125) 
+0.000 

10
5
  

(Location) 

0.220 

(  = 0.070) 

0.220 

(  = 0.070) 
+ 0.000 

 

The results of the second order accurate in time model has almost negligible difference with 

that of first order accurate in time model. The maximum computed values of horizontal velocity 

(non-dimensional), corresponding first order accurate in time model are deviated by 0.6 % for Ra = 

10
4
 and 0.9 % for Ra = 10

5
.  However, these differences in vertical velocities are negligible. 
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Chapter 7 

Parametric Study of Natural Convection using the First Order 

Accurate in Time Model 

 

 

A parametric study was conducted using the constant property model to investigate how 

the flow fields are affected by different Rayleigh numbers and wall temperature differences. In 

this chapter two case studies are presented.  

7.1. The Effects of Variations in Rayleigh Numbers  

In the first case of parametric study, the effects of variations in Rayleigh number was 

observed by changing the wall temperature difference at constant size of the enclosure. In this 

study, for different Rayleigh numbers (10
4
, 5 x 10

4
, 10

5
, and 5 x 10

5
) the non dimensional 

vertical velocity distribution along the horizontal centerline of the enclosure was compared and it 

is concluded that there was a notable difference in magnitudes of velocities for higher Rayleigh 

numbers. As Rayleigh number increases the location of the maximum velocity point moves 

towards the hot side of the enclosure with increase in magnitude. The results are presented 

quantitatively and qualitatively in Table 7 and Figure 9, respectively.    
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Table 7-Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for Ra= 10
4
, Ra= 5 x 10

4
, Ra = 10

5
, Ra= 5 x 10

5
 at 

H=0.0254m 

Non-

dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(Ra = 1.0E4) 

Non-dimensional 

Vertical 

Velocity,  

(Ra = 5.0E4) 

Non-dimensional 

Vertical 

Velocity,  

(Ra = 1.0E5) 

Non-dimensional 

Vertical 

Velocity,  

(Ra = 5.0E5) 

1.00 0.0000000 0.0000000 0.0000000 0.0000000 

0.95 -0.1453714 -0.2379227 -0.2465031 -0.2087094 

0.90 -0.2075329 -0.2362243 -0.2011154 -0.0919643 

0.85 -0.2082459 -0.1565491 -0.1036450 -0.0152543 

0.80 -0.1759759 -0.0801576 -0.0343975 0.0045337 

0.75 -0.1342380 -0.0316080 -0.0019367 0.0073687 

0.70 -0.0945000 -0.0380077 0.0096405 0.0087798 

0.65 -0.0614451 0.0038054 0.0114227 0.0097664 

0.60 -0.0348230 0.0069824 0.0103105 0.0107504 

0.55 -0.0129692 0.0067456 0.0077417 0.0109685 

0.50 -0.0129692 0.0058315 0.0049454 0.0102460 

0.45 0.0259200 0.0056771 0.0020850 0.0080060 

0.40 0.0471586 0.0081480 0.0001911 0.0037837 

0.35 0.0720149 0.0158039 0.0011802 -0.0022495 

0.30 0.1011022 0.0318961 0.0084302 -0.0085098 

0.25 0.1340680 0.0610267 0.0281221 -0.0087953 

0.20 0.1668373 0.1055469 0.0667380 0.0085259 

0.15 0.1915537 0.1621978 0.1275761 0.0582169 

0.10 0.1922468 0.2081509 0.1938100 0.1449731 

0.05 0.1453591 0.1878341 0.2009478 0.2161246 

0.00 0.0000000 0.0000000 0.0000000 0.0000000 
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Figure 9- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along the 

Horizontal Centerline of the Enclosure for Ra= 10
4
, Ra=5 x 10

4
, Ra= 10

5
, Ra= 

5x10
5 
at H=0.0254m 
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7.2. The Effects of Variations in Wall Temperature Differences  
 

In the second case of the parametric study, the effects of variations in wall temperature 

difference were observed by changing the size of the enclosure at constant Rayleigh number 10
5
. 

In this study, for different wall temperature difference (64.8 K, 356.6 K, and 648.4 K) the non 

dimensional vertical velocity distributions along the horizontal centerline of the enclosure were 

compared and it is concluded that there is notable difference in velocity magnitudes for higher 

temperature difference. As wall temperature difference increases the location of the maximum 

velocity moves towards the cold side of the enclosure with increase in magnitude. The results are 

presented quantitatively and qualitatively in Table 8 and Figure 10, respectively.    
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Table 8- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Enclosure for ∆T= 64.8K, ∆T= 356.6K, ∆T= 648.4K at Ra= 10
5 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(∆T= 64.8K) 

Non-dimensional 

Vertical 

Velocity,  

(∆T= 356.6K) 

Non-dimensional 

Vertical 

Velocity,  

(∆T= 648.4K) 

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2465031 -0.2084725 -0.2020537 

0.90 -0.2011154 -0.1727811 -0.1657409 

0.85 -0.1036450 -0.0984031 -0.1009974 

0.80 -0.0343975 -0.0445509 -0.0577585 

0.75 -0.0019367 -0.0179709 -0.0366760 

0.70 0.0096405 -0.0078904 -0.0281754 

0.65 0.0114227 -0.0064076 -0.0281754 

0.60 0.0103105 -0.0077848 -0.0229883 

0.55 0.0077417 -0.0099892 -0.0192403 

0.50 0.0049454 -0.0113427 -0.0120143 

0.45 0.0020850 -0.0107910 0.0017215 

0.40 0.0001911 -0.0066578 0.0244202 

0.35 0.0011802 0.0042894 0.0606051 

0.30 0.0084302 0.0266349 0.1129162 

0.25 0.0281221 0.0673053 0.1836736 

0.20 0.0667380 0.1305537 0.2656362 

0.15 0.1275760 0.2118118 0.3355243 

0.10 0.1938100 0.2762716 0.3393019 

0.05 0.2009478 0.2377315 0.2282922 

0.00 0.0000000 0.0000000 0.0000000 

 

  



50 

 

 

 

 

 

Figure 10- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along 

the Horizontal Centerline of the Enclosure for ∆T= 64.8K, ∆T= 356.6K and ∆T= 

648.4K at Ra= 10
5
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Chapter 8 

The Study of Effects of Variable Fluid Properties in Natural 

Convection inside a Square Enclosure 

 

 

 In this chapter, the results of the constant property model are compared to that of variable 

property model. Then the variable property model was proposed as a base model in the present 

study. Also, the effects of variations in Rayleigh number for variable property model inside a 

square enclosure are presented in this chapter.  

8.1. The Study of Base Model  

In this study, the results of the constant property and variable property models are 

compared for Ra = 10
5
 (  = 64.8 K). There is notable difference in the predicted values of 

velocity and temperature. These differences are presented quantitatively in Tables 9 through 11. 

The comparisons between these models are presented in terms of velocity and temperature 

distributions in Figure 11 through 13. From Figure 11, the predicted values of non-dimensional 

horizontal velocities along the vertical centerline of the enclosure are observed higher for 

variable property model at cold side of the enclosure and lower at hot side of the enclosure 

compared to constant property model. However, non-dimensional vertical velocity and 

temperature values along the horizontal centerline of the enclosure are predicted higher at hot 

side of the enclosure and lower at cold side of the enclosure for variable property model as 

shown in Figure 12 and 13. Horizontal and vertical velocity histograms are also compared in 

Figure 14 and 15, respectively. Horizontal velocities are predicted higher for variable property 

model and vertical velocities are predicted higher for constant property model.  
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The variable property model is proposed as the base model and is considered for Ra 10
5
 

with uniform, orthogonal mesh of 21 x 21, in which wall temperature difference is 64.8 K. The 

predicted primitive variables along the horizontal centerline and vertical centerline of the 

enclosure are presented in Table 12 and Table 13, respectively. The computational domain used 

in the present study is shown in Figure 16. The velocity (u and v) histograms at a point closer to 

the high temperature wall where  = 0.05 and   = 0.5 are presented in Figures 17 and 18. The 

temperature stratification is shown in Figure 19. Temperature gradients are higher bear the walls 

and are close to zero near the center. This fact is easily illustrated by the isotherms being almost 

horizontal in the center of the enclosure. The formation of the two vertices can be seen in Figure 

20. The flow is not unicellular; instead, it separates into boundary layer and core flow. The core 

flow is more stagnant relative to the boundary regions. This characteristic is also observed in the 

streamlines shown in Figure 21. The non-dimensional horizontal velocity distribution along the 

vertical centerline, vertical velocity distribution along the horizontal centerline and temperature 

distribution along the horizontal centerline are presented in Figure 22, 23 and 24, respectively.  
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Table 9- Comparison of Predicted Non-dimensional values of Horizontal Velocity along the 

Vertical Centerline of the Enclosure for Constant and Variable Fluid Properties at Ra = 10
5
      

(  = 64.8 K, H=0.0254m and 21 X 21) 

 

Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

(Constant) 

Non-dimensional 

Horizontal 

Velocity,  

(Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.0535207 0.0571390 6.3324524 

0.90 0.0810651 0.0876302 7.4917753 

0.85 0.1004595 0.1072624 6.3422970 

0.80 0.1009580 0.1071562 5.7842663 

0.75 0.0929973 0.0981868 5.2853213 

0.70 0.0789586 0.0821039 3.8308866 

0.65 0.0645284 0.0656531 1.7130632 

0.60 0.0495355 0.0484717 -2.1946804 

0.55 0.0381889 0.0351714 -8.5795203 

0.50 0.0241282 0.0201633 -19.663835 

0.45 0.0125497 0.0079409 -58.039436 

0.40 -0.0046300 -0.0088292 47.559387 

0.35 -0.0228675 -0.0268213 14.741480 

0.30 -0.0460588 -0.0497550 7.4286760 

0.25 -0.0767948 -0.0800412 4.0558706 

0.20 -0.1056613 -0.1087645 2.8531368 

0.15 -0.1387613 -0.1398505 0.7788316 

0.10 -0.1406555 -0.1405555 -0.0711462 

0.05 -0.0878570 -0.0882356 0.4290444 

0.00 0.0000000 0.0000000 0.0000000 
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Table 10- Comparison of Predicted Non-dimensional values of Vertical Velocity along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
5
 (  = 64.8 K, H=0.0254m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(Constant ) 

Non-dimensional 

Vertical 

Velocity,  

( Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2502395 -0.2475826 -1.0731368 

0.90 -0.1944804 -0.1971463 1.3522445 

0.85 -0.0930081 -0.1008293 7.7567929 

0.80 -0.0257422 0.0334961 176.85118 

0.75 0.0031427 -0.0018893 266.33759 

0.70 0.0122860 0.0094903 -29.458318 

0.65 0.0130391 0.0111882 -16.543233 

0.60 0.0117409 0.0099772 -17.677062 

0.55 0.0092661 0.0073344 -26.337007 

0.50 0.0065152 0.0045396 -43.518607 

0.45 0.0034166 0.0018026 -89.540905 

0.40 0.0008496 0.0001795 -373.20101 

0.35 0.0005829 0.0016220 64.059846 

0.30 0.0059338 0.0095263 37.710790 

0.25 0.0231456 0.0300361 22.940638 

0.20 0.0591808 0.0693695 14.687566 

0.15 0.1184252 0.1299771 8.8876425 

0.10 0.1861128 0.1934348 3.7852547 

0.05 0.1988817 0.1948903 -2.0480239 

0.00 0.0000000 0.0000000 0.0000000 
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Table 11- Comparison of Predicted Non-dimensional values of Temperature along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
5
 (  = 64.8 K, H=0.0254m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(Constant ) 

Non-dimensional 

Temperature,  

(Variable ) 

% Deviation 

in  

1.00 0.8907647 0.8907647 0.0000000 

0.95 0.9560220 0.9560723 0.0000005 

0.90 1.0042400 1.0029240 -0.0000131 

0.85 1.0271800 1.0256300 -0.0000113 

0.80 1.0341910 1.0331320 -0.0000102 

0.75 1.0347690 1.0340560 -0.0000068 

0.70 1.0339310 1.0332200 -0.0000068 

0.65 1.0333490 1.0324500 -0.0000087 

0.60 1.0331680 1.0320330 -0.0000110 

0.55 1.0332070 1.0318370 -0.0000132 

0.50 1.0331700 1.0315720 -0.0000155 

0.45 1.0327950 1.0309780 -0.0000176 

0.40 1.0318170 1.0298150 -0.0000194 

0.35 1.0300450 1.0279460 -0.0000204 

0.30 1.0275110 1.0255040 -0.0000196 

0.25 1.0247950 1.0232280 -0.0000153 

0.20 1.0236580 1.0230580 -0.0000059 

0.15 1.0276350 1.0285710 0.0000091 

0.10 1.0420280 1.0445690 0.0000243 

0.05 1.0709450 1.0736000 0.0000247 

0.00 1.1092350 1.1092350 0.0000000 
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Figure 11- Comparison of Steady State Non-dimensional Horizontal Velocity Distributions along 

the Vertical Centerline of the Enclosure for Constant and Variable Fluid 

Properties at   Ra= 10
5
 (  = 64.8 K, H = 0.0144m) 
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Figure 12- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along 

the Horizontal Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra= 10
5
 (  = 64.8 K, H = 0.0144m) 
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Figure 13- Comparison of Steady State Non-dimensional Temperature Distributions along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra= 10
5
 (  = 64.8 K, H = 0.0144m) 
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Figure 14- Comparison of Non-dimensional Horizontal Histograms of Constant and Variable 

Properties for Ra= 10
5
 at  =0.05 and   =0.5 
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Figure 15- Comparison of Vertical Velocity Histograms of Constant and Variable Properties for 

Ra= 10
5 
at  =0.05 and   =0.5 
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Table 12- Steady State Non-dimensional values of Primitive Variables along the Horizontal 

Centerline of the Enclosure for Ra = 10
5
 (∆  = 1.0E-5 and 21 X 21) 

 

 

 

  

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

 

Non-dimensional 

Pressure,  

 

Non-dimensional 

Temperature,  

 

1.00 0.0000000 1622.1422 0.8907647 

0.95 -0.2475826 1622.1422 0.9560722 

0.90 -0.1971463 1622.1422 1.0029243 

0.85 -0.1008293 1622.1422 1.0256303 

0.80 -0.0334962 1622.1422 1.0331324 

0.75 -0.0018894 1622.1422 1.0340564 

0.70 0.0094903 1622.1422 1.0332203 

0.65 0.0111883 1622.1422 1.0324496 

0.60 0.0099773 1622.1422 1.0320333 

0.55 0.0073344 1622.1422 1.0318368 

0.50 0.0045396 1622.1422 1.0315717 

0.45 0.0018026 1622.1422 1.0309784 

0.40 0.0001795 1622.1422 1.0298149 

0.35 0.0016221 1622.1422 1.0279456 

0.30 0.0095263 1622.1422 1.0255036 

0.25 0.0300361 1622.1422 1.0232275 

0.20 0.1299771 1622.1422 1.0230579 

0.15 0.1299770 1622.1422 1.0285707 

0.10 0.1934348 1622.1422 1.0445688 

0.05 0.1948903 1622.1422 1.0736002 

0.00 0.0000000 1622.1422 1.1092353 
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Table 13- Steady State Non-dimensional values of Primitive Variables along the Vertical 

Centerline of the Enclosure for Ra = 10
5
 (∆  = 1.0E-5 and21 X 21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

 

Non-dimensional 

Pressure,  

Non-dimensional 

Temperature,  

 

1.00 0.0000000 1622.1400 1.0854359 

0.95 0.0571390 1622.1401 1.0853203 

0.90 0.0876302 1622.1404 1.0843379 

0.85 0.1072624 1622.1406 1.0815360 

0.80 0.1071562 1622.1409 1.0778722 

0.75 0.0981868 1622.1410 1.0720498 

0.70 0.0821039 1622.1413 1.0663142 

0.65 0.0656531 1622.1415 1.0585184 

0.60 0.0484717 1622.1417 1.0510841 

0.55 0.0351714 1622.1420 1.0410634 

0.50 0.0201634 1622.1422 1.0315717 

0.45 0.0079409 1622.1424 1.0192259 

0.40 -0.0088292 1622.1426 1.0082883 

0.35 -0.0268214 1622.1429 0.9951756 

0.30 -0.0497550 1622.1431 0.9846475 

0.25 -0.0800413 1622.1434 0.9729092 

0.20 -0.1087645 1622.1436 0.9638571 

0.15 -0.1398505 1622.1439 0.9534625 

0.10 -0.1405555 1622.1440 0.9461181 

0.05 -0.0882356 1622.1444 0.9393139 

0.00 0.0000000 1622.1446 0.9363195 
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Figure 16- Computational Mesh of the Non-dimensional domain for the Natural Convection 

Case for Variable Properties 
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Figure 17- Non-dimensional Horizontal Velocity Histogram for Ra=10
5 

at  =0.05 and   =0.5 

for Variable Properties (21 x 21, ∆  = 1.0E-5) 
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Figure 18- Non-dimensional Vertical Velocity Histogram for Ra=10
5 
at  =0.05 and   =0.5 for 

Variable Properties (21 x 21, ∆  = 1.0E-5) 
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Figure 19- Steady State Non-dimensional Temperature Contours for Ra=10
5 
for Variable 

Properties (21 x 21, ∆  = 1.0E-5) 
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Figure 20- Steady State Non-dimensional Velocity Vectors for Ra=10
5 
(21 x 21, ∆  = 1.0E-5) for 

Variable Properties 
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Figure 21- Steady State Non-dimensional Velocity Streamlines for Ra=10
5 
for Variable 

Properties (21 x 21, ∆  = 1.0E-5) 
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Figure 22- Steady State Non-dimensional Horizontal Velocity Distribution along the Vertical 

Centerline of the Enclosure for Ra=10
5 

for Variable Properties                            

(21 x 21, ∆  = 1.0E-5) 
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Figure 23- Steady State Non-dimensional Vertical Velocity Distribution along the Horizontal 

Centerline of the Enclosure for Ra=10
5 

for Variable Properties                             

(21 x 21, ∆  = 1.0E-5) 
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Figure 24- Steady State Non-dimensional Temperature Distribution along the Horizontal 

Centerline of the Enclosure for Ra=10
5 

for Variable Properties                            

(21 x 21, ∆  = 1.0E-5) 
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8.2. The Effects of Variable Fluid Properties in Square Enclosures 

The comparison of the present model with variable thermodynamic and transport properties 

to that with constant properties shows noticeable differences when the temperature difference 

between the enclosure walls is high. These differences can be seen when one compares the 

velocity and temperature profiles in horizontal and vertical directions. The quantitative 

comparisons of the results of constant and variable properties are presented for Rayleigh 

numbers 10
5
, 5 x 10

4
 and 10

4
 with ΔT = 356.6 deg K in Table 14 through 22 respectively.  These 

results are compared graphically as shown in Figures 25 through 33, respectively.  The non-

dimensional velocity values of the variable property model are predicted lower than the constant 

property model and these differences are increasing as the Rayleigh number decreases. However, 

the non-dimensional temperature values are predicted higher for variable property model than the 

constant property model and these differences are also increasing as the Rayleigh number 

decreases.  

The comparison of the vertical velocity profiles for the different temperature differences (ΔT 

= 64.84 deg K and ΔT = 356.6 deg K) at Ra number 10
5
 are also presented in this chapter. As 

wall temperature difference increases the maximum velocity in vertical direction increases in 

magnitude and moves towards the cold side of the enclosure as shown in Figure 34.  For 

different Rayleigh numbers 10
4
,   5 x 10

4
 and 10

5
 at same wall temperature difference ΔT = 356.6 

deg K, the same comparison is presented in Figure 35. In this case, the maximum value of the 

vertical velocity higher as increases Rayleigh numbers and the location of this point moves 

towards the hot side of the enclosure.  
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Table 14- Comparison of Predicted Non-dimensional values of Horizontal Velocity along the 

Vertical Centerline of the Enclosure for Constant and Variable Fluid Properties at 

Ra = 10
5
 (  = 356.6 K, H=0.0144m and 21 X 21) 

 

 

  

Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

(Constant) 

Non-dimensional 

Horizontal 

Velocity,  

(Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.0936828 0.0838684 -11.702097 

0.90 0.1488197 0.1341210 -10.959283 

0.85 0.1716902 0.1341210 -28.011422 

0.80 0.1652194 0.1595315 -3.5653773 

0.75 0.1426628 0.1461648 2.3959256 

0.70 0.1111090 0.1217983 8.7762308 

0.65 0.0794429 0.0934810 15.017077 

0.60 0.0512550 0.0639186 19.811995 

0.55 0.0290225 0.0372387 22.063447 

0.50 0.0118728 0.0144168 17.646169 

0.45 -0.0025051 -0.0047551 47.316622 

0.40 -0.0157795 -0.0207039 23.784529 

0.35 -0.0313873 -0.0365194 14.053032 

0.30 -0.0475436 -0.0509674 6.7175475 

0.25 -0.0669880 -0.0677428 1.1142725 

0.20 -0.0828617 -0.0808987 -2.4264911 

0.15 -0.0962331 -0.0929094 -3.5773448 

0.10 -0.0923184 -0.0889011 -3.8439314 

0.05 -0.0646962 -0.0638143 -1.3819460 

0.00 0.0000000 0.0000000 0.0000000 
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Table 15- Comparison of Predicted Non-dimensional values of Vertical Velocity along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
5
 (  = 356.6 K, H=0.0144m and 21 X 21) 

 

  Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(Constant ) 

Non-dimensional 

Vertical 

Velocity,  

( Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2093566 -0.2203230 4.9774195 

0.90 -0.1630863 -0.1482642 -9.9970862 

0.85 -0.0850964 -0.0773353 -10.035699 

0.80 -0.0337917 -0.0353622 4.4411213 

0.75 -0.0113363 -0.0141749 20.025142 

0.70 -0.0043228 -0.0075802 42.972368 

0.65 -0.0045029 -0.0060678 25.789552 

0.60 -0.0066290 -0.0078408 15.455837 

0.55 -0.0092771 -0.0088425 -4.9148134 

0.50 -0.0112224 -0.0094607 -18.620428 

0.45 -0.0117948 -0.0069627 -69.400468 

0.40 -0.0096178 -0.0008446 -1038.7143 

0.35 -0.0017328 0.0132710 113.05706 

0.30 0.0165154 0.0388702 57.511265 

0.25 0.0526970 0.0820472 35.772274 

0.20 0.1129559 0.1426556 20.819161 

0.15 0.1957559 0.2091187 6.3900550 

0.10 0.2702196 0.2412191 -12.022472 

0.05 0.2444604 0.1800874 -35.745421 

0.00 0.0000000 0.0000000 0.0000000 
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Table 16- Comparison of Predicted Non-dimensional values of Temperature along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
5
 (  = 356.6 K, H=0.0144m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(Constant ) 

Non-dimensional 

Temperature,  

(Variable ) 

% Deviation 

in  

1.00 0.4005175 0.4005175 0.0000000 

0.95 0.6880814 0.8184327 15.926941 

0.90 0.8781839 0.9827196 10.637388 

0.85 0.9661263 1.0501240 7.9988363 

0.80 0.9919955 1.0705230 7.3354332 

0.75 0.9937108 1.0724990 7.3462259 

0.70 0.9900559 1.0697560 7.4503064 

0.65 0.9867782 1.0664140 7.4676251 

0.60 0.9838625 1.0631580 7.4584868 

0.55 0.9801099 1.0588480 7.4362042 

0.50 0.9741970 1.0527800 7.4643325 

0.45 0.9652914 1.0442670 7.5627784 

0.40 0.9531033 1.0338590 7.8110941 

0.35 0.9384271 1.0233100 8.2949350 

0.30 0.9243982 1.0176280 9.1614814 

0.25 0.9186205 1.0261480 10.478751 

0.20 0.9359822 1.0637710 12.012811 

0.15 0.9999081 1.1468870 12.815464 

0.10 1.1384730 1.2812960 11.146760 

0.05 1.3570710 1.4443730 6.0442835 

0.00 1.5994830 1.5994830 0.0000000 
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Figure 25- Comparison of Steady State Non-dimensional Horizontal Velocity Distributions along 

the Vertical Centerline of the Enclosure for Constant and Variable Fluid 

Properties at   Ra= 10
5
 (  = 356.6 K, H = 0.0115m) 
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Figure 26- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along 

the Horizontal Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra= 10
5
 (  = 356.6 K, H = 0.0115m) 
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Figure 27- Comparison of Steady State Non-dimensional Temperature Distributions along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra= 10
5
 (  = 356.6 K, H = 0.0115m) 
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Table-17:  Comparison of Predicted Non-dimensional values of Horizontal Velocity along 

the Vertical Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra =5 x 10
4
 (  = 356.6 K, H=0.0115m and 21 X 21) 

 

Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

(Constant) 

Non-dimensional 

Horizontal 

Velocity,  

(Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.1010880 0.0842762 -19.948369 

0.90 0.1608237 0.1356474 -18.560105 

0.85 0.1867887 0.1616705 -15.536662 

0.80 0.1832999 0.1652628 -10.914192 

0.75 0.1625545 0.1544248 -5.2645041 

0.70 0.1307763 0.1320511 0.9653838 

0.65 0.0965233 0.1042924 7.4492772 

0.60 0.0635012 0.0735256 13.633982 

0.55 0.0353098 0.0439724 19.700226 

0.50 0.0122669 0.0172566 28.914988 

0.45 -0.0068705 -0.0058550 -17.344015 

0.40 -0.0233795 -0.0251376 6.9936982 

0.35 -0.0407417 -0.0433361 5.9866850 

0.30 -0.0581902 -0.0596543 2.4543729 

0.25 -0.0785703 -0.0780983 -0.6044561 

0.20 -0.0957358 -0.0932317 -2.6859203 

0.15 -0.1085417 -0.1062663 -2.1412244 

0.10 -0.1023104 -0.1009673 -1.3302326 

0.05 -0.0692979 -0.0701084 1.1561509 

0.00 0.0000000 0.0000000 0.0000000 
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Table 18- Comparison of Predicted Non-dimensional values of Vertical Velocity along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 5 x 10
4
 (  = 356.6 K, H=0.0115m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(Constant ) 

Non-dimensional 

Vertical 

Velocity,  

( Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2079249 -0.2181263 4.6768317 

0.90 -0.1805588 -0.1735712 -4.0257830 

0.85 -0.1105591 -0.1065565 -3.7563170 

0.80 -0.0555643 -0.0564429 1.5565636 

0.75 -0.0254680 -0.0274957 7.3747006 

0.70 -0.0122137 -0.0132682 7.9472724 

0.65 -0.0085119 -0.0080180 -6.1597252 

0.60 -0.0085827 -0.0067362 -27.411106 

0.55 -0.0098464 -0.0066076 -49.015896 

0.50 -0.0102490 -0.0053554 -91.375590 

0.45 -0.0082766 -0.0009993 -728.21051 

0.40 -0.0019325 0.0087003 122.21279 

0.35 0.0122559 0.0273276 55.151703 

0.30 0.0386824 0.0584576 33.828290 

0.25 0.0833502 0.1055321 21.019045 

0.20 0.1483615 0.1650306 10.100611 

0.15 0.2259767 0.221059 -2.2246097 

0.10 0.2786205 0.2356686 -18.225550 

0.05 0.2286864 0.1671887 -36.783407 

0.00 0.0000000 0.0000000 0.0000000 
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Table 19- Comparison of Predicted Non-dimensional values of Temperature along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra =5 x 10
4
 (  = 356.6 K, H=0.0115m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(Constant ) 

Non-dimensional 

Temperature,  

(Variable ) 

% Deviation 

in  

1.00 0.4115081 0.4115081 0.0000000 

0.95 0.6617610 0.7668620 13.705334 

0.90 0.8384050 0.9422544 11.021375 

0.85 0.9328032 1.0257650 9.0626800 

0.80 0.9688077 1.0578800 8.4198869 

0.75 0.9757017 1.0652240 8.4040821 

0.70 0.9720609 1.0628410 8.5412681 

0.65 0.9660809 1.0577420 8.6657332 

0.60 0.9598690 1.0521630 8.7718347 

0.55 0.9532482 1.0462480 8.8888867 

0.50 0.9453675 1.0394670 9.0526683 

0.45 0.9356530 1.0315640 9.2976296 

0.40 0.9243249 1.0232780 9.6702069 

0.35 0.9131055 1.0171590 10.229816 

0.30 0.9065261 1.0188430 11.023965 

0.25 0.9133821 1.0377910 11.987856 

0.20 0.9482343 1.0867650 12.747070 

0.15 1.0301340 1.1763090 12.426581 

0.10 1.1754250 1.3047870 9.9144151 

0.05 1.3757300 1.4503020 5.1418256 

0.00 1.5884920 1.5884920 0.0000000 
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Figure 28- Comparison of Steady State Non-dimensional Horizontal Velocity Distributions along 

the Vertical Centerline of the Enclosure for Constant and Variable Fluid 

Properties at   Ra= 5x 10
4
 (  = 356.6 K, H = 0.0115m) 
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Figure 29- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along 

the Horizontal Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra= 5 x 10
4
 (  = 356.6 K, H = 0.0115m) 
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Figure 30- Comparison of Steady State Non-dimensional Temperature Distributions along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra= 5 x 10
4
 (  = 356.6 K, H = 0.0115m) 
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Table 20- Comparison of Predicted Non-dimensional values of Horizontal Velocity along the 

Vertical Centerline of the Enclosure for Constant and Variable Fluid Properties at 

Ra = 10
4
 (  = 356.6 K, H=0.0067m and 21 X 21) 

 

Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

(Constant) 

Non-dimensional 

Horizontal 

Velocity,  

(Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.1083175 0.0862691 -25.557658 

0.90 0.1756615 0.1418459 -23.839673 

0.85 0.2116735 0.1744832 -21.314544 

0.80 0.2217043 0.1879760 -17.942875 

0.75 0.2141084 0.1879882 -13.894595 

0.70 0.1926927 0.1765157 -9.1646238 

0.65 0.1629599 0.1569659 -3.8186637 

0.60 0.1272570 0.1303389 2.3645281 

0.55 0.0889332 0.0988132 9.9986813 

0.50 0.0497051 0.0637028 21.973478 

0.45 0.0108663 0.0265779 59.115146 

0.40 -0.0264220 -0.0105711 -149.94404 

0.35 -0.0627750 -0.0475411 -32.043747 

0.30 -0.0961872 -0.0818469 -17.520782 

0.25 -0.1268682 -0.1145173 -10.785182 

0.20 -0.1486439 -0.1396459 -6.4434401 

0.15 -0.1578665 -0.1546874 -2.0551770 

0.10 -0.1419982 -0.1439025 1.3233265 

0.05 -0.0931065 -0.0969537 3.9680692 

0.00 0.0000000 0.0000000 0.0000000 
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Table 21- Comparison of Predicted Non-dimensional values of Vertical Velocity along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
4
 (  = 356.6 K, H=0.0067m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(Constant ) 

Non-dimensional 

Vertical 

Velocity,  

( Variable) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.1823712 -0.2083991 12.489449 

0.90 -0.2134350 -0.2101146 -1.5802804 

0.85 -0.1835589 -0.1661266 -10.493382 

0.80 -0.1361653 -0.1167885 -16.591359 

0.75 -0.0923559 -0.0752924 -22.662900 

0.70 -0.0569510 -0.0426731 -33.458736 

0.65 -0.0304331 -0.0179429 -69.610304 

0.60 -0.0094573 0.0021489 540.08904 

0.55 0.0083900 0.0200227 58.097265 

0.50 0.0263901 0.0386682 31.752292 

0.45 0.0469496 0.0603234 22.170256 

0.40 0.0727090 0.0869015 16.331734 

0.35 0.1055913 0.1189967 11.265354 

0.30 0.1459709 0.1546759 5.6278967 

0.25 0.1914424 0.1888658 -1.3642491 

0.20 0.2335142 0.2121595 -10.065398 

0.15 0.2573774 0.2139577 -20.293590 

0.10 0.2404851 0.1834930 -31.059549 

0.05 0.1609832 0.1140888 -41.103421 

0.00 0.0000000 0.0000000 0.0000000 
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Table 22- Comparison of Predicted Non-dimensional values of Temperature along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra = 10
4
 (  = 356.6 K, H=0.0067m and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(Constant ) 

Non-dimensional 

Temperature,  

(Variable ) 

% Deviation 

in  

1.00 0.4048320 0.4048320 0.0000000 

0.95 0.5606439 0.6564321 14.592248 

0.90 0.6961532 0.8109570 14.156582 

0.85 0.7969056 0.9066408 12.103492 

0.80 0.8610080 0.9619112 10.489866 

0.75 0.8953147 0.9905590 9.6152071 

0.70 0.9093859 1.0029400 9.3279857 

0.65 0.9116908 1.0064310 9.4134818 

0.60 0.9082556 1.0060100 9.7170405 

0.55 0.9031278 1.0051570 10.150573 

0.50 0.8991418 1.0065670 10.672434 

0.45 0.8988663 1.0128870 11.257001 

0.40 0.9052760 1.0271490 11.865172 

0.35 0.9222708 1.0528780 12.404780 

0.30 0.9548032 1.0936110 12.692611 

0.25 1.0082650 1.1516130 12.447584 

0.20 1.0870050 1.2264310 11.368434 

0.15 1.1917150 1.3141070 9.3137012 

0.10 1.3177410 1.4085590 6.4475822 

0.05 1.4555180 1.5036310 3.1997877 

0.00 1.5951680 1.5951680 0.0000000 
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Figure 31- Comparison of Steady State Non-dimensional Horizontal Velocity Distributions along 

the Vertical Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra=10
4
 (  = 356.6 K, H = 0.0067m) 
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Figure 32- Comparison of Steady State Non-dimensional Vertical Velocity Distributions along 

the Horizontal Centerline of the Enclosure for Constant and Variable Fluid 

Properties at Ra= 10
4
 (  = 356.6 K, H = 0.0067m) 
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Figure 33- Comparison of Steady State Non-dimensional Temperature Distributions along the 

Horizontal Centerline of the Enclosure for Constant and Variable Fluid Properties 

at Ra= 10
4
 (  = 356.6 K, H = 0.0067m) 
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Figure 34- Comparison of Non-dimensional Vertical Velocity Profiles along the Horizontal 

Centerline of the Enclosure between  = 64.8 K and   = 356.6 K (Ra = 10
5
) 

for Variable Properties. 
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Figure 35- Comparison of Non-dimensional Vertical Velocity Profiles along the Horizontal 

Centerline of the Enclosure between Ra = 10
4
, Ra = 5 x 10

4
, and Ra = 10

5            

(  = 356.6 K) for Variable Properties. 
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Chapter 9 

The Study of Effects of Inclination of the Enclosure on Natural 

Convection 

 

 

The effects of inclination of the enclosure are presented for the laminar natural 

convection phenomenon in this chapter. The velocity fields and temperature distributions were 

observed at different angles of the enclosure.  

In this study, primitive variables are predicted for different angles (0 deg, 30 deg, 45 deg, 

60 deg and 90 deg) of the enclosure. The predicted non-dimensional values of horizontal and 

vertical velocities are presented for various angles of the enclosure in Table 23 and 24, 

respectively. As the inclination of the enclosure increases, the magnitudes of the horizontal and 

vertical velocities are increasing. When inclined angle becomes 90 deg, the velocity profile is 

observed in opposite direction to the previous cases as shown in Figure 36 and 37.  The predicted 

temperature distribution is presented in Figure 38 for different angles of the enclosure. This 

shows that as angle of the enclosure increases, the magnitudes of the temperature are decreasing.  
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Table 23- Steady State Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline of the Inclined Enclosure at Various Angles for Ra = 10
5                            

(∆  = 1.0E-5 and 21 X 21) 

Non-

dimensional 

Horizontal 

Distance,  

Non-

dimensional 

Vertical 

Velocity,  

(Angle 0) 

Non-

dimensional 

Vertical 

Velocity,  

(Angle 30) 

Non-

dimensional 

Vertical 

Velocity,  

(Angle 45) 

Non-

dimensional 

Vertical 

Velocity,  

(Angle 60) 

Non-

dimensional 

Vertical 

Velocity,  

(Angle 90) 

1.00 0.00000 0.00000 0.00000 0.00000 0.00000 

0.95 -0.24602 -0.26058 -0.25779 -0.24928 0.21951 

0.90 -0.20141 -0.24630 -0.27096 -0.28980 0.30641 

0.85 -0.10434 -0.16668 -0.21887 -0.26821 0.34053 

0.8 -0.03502 -0.10694 -0.17004 -0.22956 0.31293 

0.75 -0.00233 -0.07122 -0.13153 -0.18897 0.26161 

0.70 0.00942 -0.04878 -0.09502 -0.14116 0.19542 

0.65 0.01127 -0.03580 -0.06627 -0.09980 0.13691 

0.60 0.01016 -0.02174 -0.03761 -0.05934 0.08114 

0.55 0.00757 -0.01251 -0.01921 -0.03202 0.03820 

0.50 0.00476 -0.00042 0.00002 -0.00343 -0.00849 

0.45 0.00190 0.00849 0.01290 0.01678 -0.04752 

0.40 0.00004 0.02114 0.03239 0.04633 -0.09612 

0.35 0.00109 0.03349 0.05384 0.07773 -0.14396 

0.30 0.00842 0.05287 0.08696 0.12320 -0.20211 

0.25 0.02823 0.07945 0.12814 0.17658 -0.26020 

0.20 0.06702 0.12094 0.17873 0.23593 -0.31358 

0.15 0.12808 0.18484 0.23919 0.29394 -0.33307 

0.10 0.19448 0.25241 0.29254 0.33381 -0.31983 

0.05 0.20148 0.25950 0.27693 0.29038 -0.22554 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 
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Table 24- Steady State Non-dimensional values of Horizontal Velocity along the Vertical 

Centerline of the Inclined Enclosure at Various Angles for Ra = 10
5                            

(∆  = 1.0E-5 and 21 X 21) 

 

Non-

dimensional 

Vertical 

Distance,  

Non-

dimensional 

Horizontal 

Velocity,  
(Angle 0) 

Non-

dimensional 

Horizontal 

Velocity,  
(Angle 30) 

Non-

dimensional 

Horizontal 

Velocity,  
(Angle 45) 

Non-

dimensional 

Horizontal 

Velocity,  
(Angle 60) 

Non-

dimensional 

Horizontal 

Velocity,  
(Angle 90) 

1.00 0.00000 0.00000 0.00000 0.00000 0.00000 

0.95 -0.08853 -0.22133 -0.28419 -0.31367 0.31299 

0.90 -0.14139 -0.28811 -0.34372 -0.37180 0.37906 

0.85 -0.14126 -0.24311 -0.28114 -0.30926 0.33793 

0.80 -0.11099 -0.15650 -0.18309 -0.21767 0.27140 

0.75 -0.08158 -0.08556 -0.10562 -0.14397 0.21131 

0.70 -0.05042 -0.03216 -0.05050 -0.09015 0.16028 

0.65 -0.02672 -0.00095 -0.01738 -0.05259 0.11681 

0.60 -0.00818 0.01021 -0.00296 -0.02824 0.07712 

0.55 0.00879 0.01594 0.00743 -0.00613 0.03956 

0.50 0.02091 0.01190 0.00873 0.00929 0.00203 

0.45 0.03566 0.01725 0.01842 0.03015 -0.03673 

0.40 0.04859 0.02441 0.02831 0.04963 -0.07771 

0.35 0.06550 0.04901 0.05506 0.08079 -0.12216 

0.30 0.08214 0.08378 0.09221 0.11902 -0.17037 

0.25 0.09846 0.13280 0.14878 0.17484 -0.22378 

0.20 0.10825 0.18676 0.21675 0.24286 -0.27964 

0.15 0.10867 0.22557 0.27849 0.31166 -0.33096 

0.10 0.08889 0.22107 0.29699 0.34198 -0.34849 

0.05 0.05825 0.15283 0.22115 0.26664 -0.27077 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 
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Figure 36- Steady State Non-dimensional Horizontal Velocity Distributions along the Vertical 

Centerline of the Inclined Enclosure for Constant Fluid Properties at Ra= 10
5
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Figure 37- Steady State Non-dimensional Vertical Velocity Distributions along the Horizontal 

Centerline of the Inclined Enclosure for Constant Fluid Properties at Ra= 10
5
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Figure 38- Steady State Non-dimensional Temperature Distributions along the Horizontal 

Centerline of the Inclined Enclosure for Constant Fluid Properties at Ra= 10
5
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Chapter 10 

The Study of Natural Convection Using the Second Order Accurate 

in Time Model 

 

 

  The study of natural convection phenomenon is also conducted using the second order 

accurate in time model. The results of the second order accurate in time model are presented in 

this chapter. Also, these results are compared to the first order accurate in time model to verify 

the accuracy of the second order accurate in time model for different Rayleigh numbers.    

10.1. Results of the Second Order Accurate in Time Model 

For, Ra = 10
5
, the temperature between the vertical walls of the enclosure was taken to be 

64.8 K.  A uniform and orthogonal mesh of 21 x 21 was utilized.  The predicted primitive 

variables along the horizontal centerline and vertical centerline of the enclosure are presented in 

Table 25 and 26 respectively at steady state. The qualitative results of general characteristics of 

computational mesh, vectors, streamlines, temperature contours are presented in Figure 39, 42, 

43 and 44. The flow inside square enclosure is not unicellular. Two secondary vortices formation 

is evident from Figure 43. The core flow is more stagnant relative to the boundary regions. The 

velocity (u and v) histograms at a point closer to the high temperature wall where  = 0.05 and  

 = 0.5 are presented in Figures 40 and 41.  The non-dimensional horizontal velocity distribution 

along the vertical centerline, vertical velocity distribution along the horizontal centerline and 

temperature distribution along the horizontal centerline are presented in Figure 45, 46 and 47 

respectively. The maximum non-dimensional vertical velocity is observed as 0.25 at near the hot 

wall and the maximum non-dimensional horizontal velocity is observed as 0.11 at near the cold 

wall. The temperature gradients are higher near the walls and equal to zero at the center of the 



100 

 

enclosure. This fact is easily illustrated by isotherms being almost horizontal in the center of the 

enclosure. The qualitative results of general characteristics of computational mesh, vectors, 

streamlines, temperature contours are also presented in Figure 48, 49, 50 and 51 for grid size of 

81 x 81.  

Table 25- Steady State Non-dimensional values of Primitive Variables along the Horizontal 

Centerline of the Enclosure for Ra = 10
5
 in Second Order Time Accurate Approximation          

(∆  = 1.0E-5 and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

 

Non-dimensional 

Pressure,  

 

Non-dimensional 

Temperature,  

 

1.00 0.0000000 1605.1374 0.8919274 

0.95 -0.2440447 1605.1374 0.9541405 

0.90 -0.2002889 1605.1374 0.9988405 

0.85 -0.1043035 1605.1374 1.0214050 

0.80 -0.0357540 1605.1374 1.0290520 

0.75 -0.0031484 1605.1374 1.0300350 

0.70 0.0086785 1605.1374 1.0291910 

0.65 0.0106349 1605.1374 1.0283880 

0.60 0.0095869 1605.1374 1.0279430 

0.55 0.0070514 1605.1374 1.0277350 

0.50 0.0043028 1605.1374 1.0274820 

0.45 0.0015100 1605.1374 1.0269280 

0.40 -0.0003056 1605.1374 1.0258250 

0.35 0.0007269 1605.1374 1.0240220 

0.30 0.0079743 1605.1374 1.0216240 

0.25 0.0276678 1605.1374 1.0193210 

0.20 0.0664488 1605.1374 1.0189950 

0.15 0.1278468 1605.1374 1.0242100 

0.10 0.1949693 1605.1374 1.0399920 

0.05 0.2027110 1605.1374 1.0697490 

0.00 0.0000000 1605.1374 1.1080730 
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Table 26- Steady State Non-dimensional values of Primitive Variables along the Vertical 

Centerline of the Enclosure for Ra = 10
5
 in Second Order Time Accurate 

Approximation (∆ = 1.0E-5 and 21 X 21) 

 

  Non-dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

 

Non-dimensional 

Pressure,  

Non-dimensional 

Temperature,  

 

1.00 0.0000000 1605.1353 1.0821941 

0.95 0.0595109 1605.1354 1.0821070 

0.90 0.0905230 1605.1357 1.0811453 

0.85 0.1101803 1605.1358 1.0782586 

0.80 0.1092251 1605.1361 1.0745235 

0.75 0.0986764 1605.1363 1.0685488 

0.70 0.0816850 1605.1365 1.0627430 

0.65 0.0644987 1605.1367 1.0548044 

0.60 0.0472117 1605.1370 1.0472641 

0.55 0.0340867 1605.1372 1.0370585 

0.50 0.0192216 1605.1374 1.0274822 

0.45 0.0071675 1605.1376 1.0151296 

0.40 -0.0096449 1605.1379 1.0043528 

0.35 -0.0278360 1605.1381 0.9916311 

0.30 -0.0510775 1605.1383 0.9815297 

0.25 -0.0815223 1605.1386 0.9703938 

0.20 -0.1101736 1605.1388 0.9618196 

0.15 -0.1394019 1605.1391 0.9521419 

0.10 -0.1390995 1605.1393 0.9454112 

0.05 -0.0867933 1605.1396 0.9394930 

0.00 0.0000000 1605.1398 0.9369507 
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Figure 39- Computational Mesh of the Non-dimensional domain for the Natural Convection 

Case in Second Order Time Accurate Approximation (21 x 21, Ra = 10
5
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Figure 40- Non-dimensional Horizontal Velocity Histogram for Ra=10
5 
at  =0.2 and   =0.5  

(21 x 21, ∆  = 1.0E-5) in Second Order Time Accurate Approximation 
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Figure 41- Non-dimensional Vertical Velocity Histogram for Ra=10
5 

at  =0.2 and   =0.5      

(21 x 21, ∆  = 1.0E-5) in Second Order Time Accurate Approximation 
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Figure 42- Steady State Non-dimensional Temperature Contours for Ra=10
5     

                           

(21 x 21, ∆  = 1.0E-5) in Second Order Time Accurate Approximation 
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Figure 43- Steady State Non-dimensional Velocity Vectors for Ra=10
5 
(21 x 21, ∆  = 1.0E-5) in 

Second Order Time Accurate Approximation 

  

Non-dimensional Horizontal Distance, x

N
o

n
-d

im
e
n

s
io

n
a
l
V

e
rt

ic
a
l
D

is
ta

n
c
e
,
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



107 

 

 

 

 

 

Figure 44- Steady State Non-dimensional Velocity Streamlines for Ra=10
5 

                               

(21 x 21, ∆  = 1.0E-5) in Second Order Time Accurate Approximation 
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Figure 45- Steady State Non-dimensional Horizontal Velocity Distribution along the Vertical 

Centerline of the Enclosure for Ra=10
5 
(21 x 21, ∆  = 1.0E-5) in Second Order 

Time Accurate Approximation 
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Figure 46- Steady State Non-dimensional Vertical Velocity Distribution along the Horizontal 

Centerline of the Enclosure for Ra=10
5 
(21 x 21, ∆  = 1.0E-5) in Second Order 

Time Accurate Approximation 
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Figure 47- Steady State Non-dimensional Temperature Distribution along the Horizontal 

Centerline of the Enclosure for Ra=10
5 
(21 x 21, ∆  = 1.0E-5) in Second Order 

Time Accurate Approximation 
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Figure 48- Computational Mesh of the Non-dimensional domain for the Natural Convection 

Case in Second Order Time Accurate Approximation (81 x 81, Ra = 10
5
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Figure 49- Steady State Non-dimensional Velocity Vectors for Ra=10
5 
(81 x 81, ∆  = 1.0E-6) in 

Second Order Time Accurate Approximation 
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Figure 50- Steady State Non-dimensional Velocity Streamlines for Ra=10
5 

                               

(81 x 81, ∆  = 1.0E-6) in Second Order Time Accurate Approximation 
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Figure 51- Steady State Non-dimensional Temperature Contours for Ra=10
5     

                           

(81 x 81, ∆  = 1.0E-6) in Second Order Time Accurate Approximation 
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10.2. The Comparison between First Order and Second Order Accurate in 

Time Models 

The comparison of the present model with first order accurate in time CMSIP model shows 

negligible differences. A quantitative comparisons of the first order and second order accurate in 

time CMSIP models for Rayleigh number 10
5
 with ΔT = 64.84 deg K are presented in Table 27 

through 29. The qualitative comparison is presented in Figure 52 through 54. The results for 

Rayleigh number 10
4
 by changing the temperature difference between the vertical walls of the 

enclosure with the same size are presented quantitatively in Table 30 through 32 and 

qualitatively in Figures 55 through 57. These results indicate that the accuracy of second order 

accurate in time model can be verified successfully with first order accurate in time model.  

The differences can be seen when one compares the velocity and temperature profiles in 

horizontal and vertical directions for different Rayleigh numbers. The comparisons of the above 

results at constant wall temperature difference for different Rayleigh numbers 10
4
 and 10

5
 are 

presented. The qualitative comparisons of these results (velocity and temperature) are presented 

in Figure 58 through 60. As shown in Figure 58, the magnitudes of the horizontal velocities are 

predicted higher for Ra number 10
4
 compared to Ra 10

5
. But the magnitudes of the vertical 

velocities and temperature are predicted higher for Ra 10
5
 as depicted in Figure 59 and 60, 

because of the increase in temperature difference between the walls of the enclosure.  
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Table 27- Comparison of Non-dimensional values of Horizontal Velocity along the Vertical 

Centerline between First Order and Second Order Time Accurate Approximations 

(Ra = 10
5
, ∆  = 1.0E-5 and 21 X 21) 

 

 

  

Non-

dimensional 

Vertical 

Distance,  

Non-dimensional 

Horizontal 

Velocity,  

(1st Oder) 

Non-dimensional 

Horizontal 

Velocity,  

(2nd Order) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.0592333 0.0595109 0.4665191 

0.90 0.0900378 0.0905231 0.5360290 

0.85 0.1097794 0.1101803 0.3638581 

0.80 0.1089421 0.1092251 0.2590979 

0.75 0.0986343 0.0986764 0.04262419 

0.70 0.0817787 0.0816850 -0.1147088 

0.65 0.0647388 0.0644987 -0.3723174 

0.60 0.0474760 0.0472117 -0.5598186 

0.55 0.0344048 0.0340867 -0.9334432 

0.50 0.0194978 0.0192216 -1.4371830 

0.45 0.0074592 0.0071675 -4.0704532 

0.40 -0.0094205 -0.0096449 2.3259011 

0.35 -0.0276257 -0.0278360 0.7554943 

0.30 -0.0509145 -0.0510775 0.3190640 

0.25 -0.0814199 -0.0815223 0.1257077 

0.20 -0.1101176 -0.1101736 0.0508288 

0.15 -0.1395627 -0.1394019 -0.1153499 

0.10 -0.1394197 -0.1390995 -0.2301949 

0.05 -0.0870163 -0.0867933 -0.2568744 

0.00 0.0000000 0.0000000 0.0000000 



117 

 

Table 28- Comparison of Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline between First Order and Second Order Time Accurate Approximations    

(Ra = 10
5
, ∆  = 1.0E-5 and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(1st Order) 

Non-dimensional 

Vertical 

Velocity,  

(2nd Order) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.2440669 -0.2440447 -0.0090966 

0.90 -0.2001967 -0.2002889 0.0460335 

0.85 -0.1041439 -0.1043035 0.1530149 

0.80 -0.0356895 -0.0357540 0.1803991 

0.75 -0.0030238 -0.0031484 3.9582403 

0.70 0.0087026 0.0086785 -0.2781932 

0.65 0.0107321 0.0106349 -0.9147241 

0.60 0.0096055 0.0095869 -0.1936064 

0.55 0.0071374 0.0070514 -1.2197429 

0.50 0.0043102 0.0043028 -0.1719107 

0.45 0.0015751 0.0015100 -4.3091294 

0.40 -0.0003151 -0.0003056 -3.1057804 

0.35 0.0007948 0.0007269 -9.3348089 

0.30 0.0079977 0.0079743 -0.2939556 

0.25 0.0277972 0.0276678 -0.4676911 

0.20 0.0664985 0.0664488 -0.0748997 

0.15 0.1278577 0.1278468 -0.0085258 

0.10 0.1946601 0.1949693 0.1585890 

0.05 0.2022876 0.2027110 0.2088687 

0.00 0.0000000 0.0000000 0.0000000 
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Table 29- Comparison of Non-dimensional values of Temperature along the Horizontal 

Centerline between First Order and Second Order Time Accurate Approximations    

(Ra = 10
5
, ∆  = 1.0E-5 and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(1st Order) 

Non-dimensional 

Temperature,  

(2nd Order) 

% Deviation 

in  

1.00 0.8919274 0.8919274 0.0000000 

0.95 0.9541786 0.9541405 -0.0039931 

0.90 0.9990383 0.9988405 -0.0198029 

0.85 1.0216900 1.0214050 -0.0279027 

0.80 1.0293790 1.0290520 -0.0317768 

0.75 1.0303840 1.0300350 -0.0338823 

0.70 1.0295550 1.0291910 -0.0353675 

0.65 1.0287620 1.0283880 -0.0363675 

0.60 1.0283270 1.0279430 -0.0373561 

0.55 1.0281210 1.0277350 -0.0375583 

0.50 1.0278720 1.0274820 -0.0379568 

0.45 1.0273150 1.0269280 -0.0376852 

0.40 1.0262080 1.0258250 -0.0373358 

0.35 1.0243960 1.0240220 -0.0365226 

0.30 1.0219900 1.0216240 -0.0358253 

0.25 1.0196770 1.0193210 -0.0349252 

0.20 1.0193410 1.0189950 -0.0339550 

0.15 1.0245320 1.0242100 -0.0314388 

0.10 1.0402610 1.0399920 -0.0258655 

0.05 1.0699080 1.0697490 -0.0148633 

0.00 1.1080730 1.1080730 0.0000000 
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Figure 52- Comparison of Steady State Horizontal Velocity Distribution along the Vertical 

centerline of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
5
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Figure 53- Comparison of Steady State Vertical Velocity Distribution along the Horizontal 

Centerline of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
5
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Figure 54- Comparison of Steady State Temperature Distribution along the Horizontal Centerline 

of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
5
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Table 30- Comparison of Non-dimensional values of Horizontal Velocity along the Vertical 

Centerline between First Order and Second Order Time Accurate Approximations 

(Ra = 10
4
, ∆  = 1.0E-6 and 21 X 21) 

 

Non-

dimensional 

Vertical 

Distance,  

Non-

dimensional 

Horizontal 

Velocity,  

(1st Oder) 

Non-dimensional 

Horizontal 

Velocity,  

(2nd Order) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 0.0718289 0.0716946 -0.1873362 

0.90 0.1109938 0.1108348 -0.1434567 

0.85 0.1421789 0.1418300 -0.2459987 

0.80 0.1526182 0.1521436 -0.3119421 

0.75 0.1559837 0.1553692 -0.3955095 

0.70 0.1456733 0.1449529 -0.4969890 

0.65 0.1320233 0.1312004 -0.6272084 

0.60 0.1075737 0.1067081 -0.8111849 

0.55 0.0826481 0.0816952 -1.1664944 

0.50 0.0481424 0.0472270 -1.9384242 

0.45 0.0139338 0.0129922 -7.2470014 

0.40 -0.0285451 -0.0292848 2.5260817 

0.35 -0.0714584 -0.0719673 0.7071402 

0.30 -0.1186585 -0.1186277 -0.0259635 

0.25 -0.1640687 -0.1633397 -0.4463091 

0.20 -0.2022790 -0.2006958 -0.7888555 

0.15 -0.2229911 -0.2206229 -1.0734153 

0.10 -0.2130995 -0.2103346 -1.3145245 

0.05 -0.1350920 -0.1333185 -1.3302729 

0.00 0.0000000 0.0000000 0.0000000 
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Table 31- Comparison of Non-dimensional values of Vertical Velocity along the Horizontal 

Centerline between First Order and Second Order Time Accurate Approximations 

(Ra = 10
4
, ∆  = 1.0E-6 and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Vertical 

Velocity,  

(1
st
 Order) 

Non-dimensional 

Vertical 

Velocity,  

(2nd Order) 

% Deviation 

in  

1.00 0.0000000 0.0000000 0.0000000 

0.95 -0.1774396 -0.1748586 -1.4760497 

0.90 -0.2428447 -0.2397430 -1.2937602 

0.85 -0.2299650 -0.2278353 -0.9347541 

0.80 -0.1823231 -0.1809458 -0.7611671 

0.75 -0.1288377 -0.1284063 -0.3359648 

0.70 -0.0824661 -0.0822997 -0.2021511 

0.65 -0.0464804 -0.0467008 0.4720043 

0.60 -0.0195359 -0.0196341 0.5004028 

0.55 0.0016007 0.0013556 -18.078290 

0.50 0.0195719 0.0195468 -0.1283070 

0.45 0.0374285 0.0372685 -0.4293166 

0.40 0.0566598 0.0566889 0.0512798 

0.35 0.0796021 0.0793940 -0.2621734 

0.30 0.1061552 0.1060370 -0.1114705 

0.25 0.1366630 0.1361237 -0.3961837 

0.20 0.1663514 0.1657783 -0.3457026 

0.15 0.1886132 0.1874899 -0.5991256 

0.10 0.1873610 0.1863276 -0.5546145 

0.05 0.1414387 0.1402807 -0.8254877 

0.00 0.0000000 0.0000000 0.0000000 
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Table 32- Comparison of Non-dimensional values of Temperature along the Horizontal 

Centerline between First Order and Second Order Time Accurate Approximations 

(Ra = 10
4
, ∆  = 1.0E-6 and 21 X 21) 

 

Non-dimensional 

Horizontal 

Distance,  

Non-dimensional 

Temperature,  

(1st Order) 

Non-dimensional 

Temperature,  

(2nd Order) 

% Deviation 

in  

1.00 0.9891927 0.9891927 0.0000000 

0.95 0.9925951 0.9928062 0.0212629 

0.90 0.9959832 0.9961624 0.0179890 

0.85 0.9989185 0.9990303 0.0111908 

0.80 1.0011520 1.0012220 0.0069914 

0.75 1.0026770 1.0027260 0.0048866 

0.70 1.0036120 1.0036520 0.0039854 

0.65 1.0041200 1.0041590 0.0038838 

0.60 1.0043510 1.0043920 0.0040820 

0.55 1.0044200 1.0044650 0.0044799 

0.50 1.0044090 1.0044590 0.0049778 

0.45 1.0043770 1.0044310 0.0053761 

0.40 1.0043710 1.0044290 0.0057744 

0.35 1.0044400 1.0045010 0.0060726 

0.30 1.0046400 1.0047040 0.0063700 

0.25 1.0050360 1.0051000 0.0063675 

0.20 1.0056900 1.0057500 0.0059656 

0.15 1.0066410 1.0066930 0.0051654 

0.10 1.0078790 1.0079160 0.0036709 

0.05 1.0093140 1.0093330 0.0018824 

0.00 1.0108070 1.0108070 0.0000000 
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Figure 55- Comparison of Steady State Horizontal Velocity Distribution along the Vertical 

Centerline of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
4
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Figure 56- Comparison of Steady State Vertical Velocity Distribution along the Horizontal 

Centerline of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
4
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Figure 57- Comparison of Steady State Temperature Distribution along the Horizontal Centerline 

of the Enclosure between First Order and Second Order Time Accurate 

Approximation for Ra= 10
4
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Figure 58- Comparison of Steady State Horizontal Velocity Distribution along the Vertical 

Centerline of the Enclosure between Ra= 10
4
 and Ra= 10

5 
in Second Order Time 

Accurate Approximation 

  

Non-dimensional Horizontal Velocity, u

N
o

n
-d

im
e
n

s
io

n
a
l
V

e
rt

ic
a
l
D

is
ta

n
c
e
,
y

-0.2 -0.1 0 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2nd Order Accurate InTime & Ra = 1.0E4

2nd Order Accurate InTime & Ra = 1.0E5



129 

 

 

 

 

 

Figure 59- Comparison of Steady State Vertical Velocity Distribution along the Horizontal 

Centerline of the Enclosure between Ra= 10
4
 and Ra= 10

5
 in Second Order Time 

Accurate Approximation 
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Figure 60- Comparison of Steady State Temperature Distribution along the Horizontal Centerline 

of the Enclosure between Ra= 10
4
 and Ra= 10

5
 in Second Order Time Accurate 

Approximation 
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Chapter 11 

The Study of Unsteady Natural Convection in Square Enclosure 

 

 

The unsteady thermal and hydrodynamic behavior of the working fluid was studied by 

imposing a sudden wall temperature change in a square enclosure. The unsteady development of 

the velocity vectors and temperatures for Ra = 10
5
 and grid size of 41 x 41 for different non-

dimensional time levels (1 s, 5 s, 10 s, 15 s, 20 s, and 50 s) using second order accurate in time 

model are presented in this chapter. The density of the air near the hot wall is lower than that of 

the cold wall. As a result, the hot air rises near the left hot wall and falls near the cold right wall 

ensuring in a clockwise circular motion. These results are presented in Figures 62 through 67 in 

terms of velocity vectors. The flow is not unicellular as evident that the formation of two 

secondary vertices.  The temperature contours are presented in Figures 68 through 73. These 

plots show the development of the expected temperature stratification at vertical centerline of the 

square enclosure. The isotherms are parallel to the side walls of the enclosure depicting that 

conduction is the major mode of heat transfer before imposing a sudden wall temperature 

change. They compare favorable to ones given by Kublbeck [36].  A histogram of non-

dimensional temperature at location  = 0.05 and  = 0.5 is given in Figure 61.  
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Figure 61- Non-dimensional Temperature Histogram for Ra = 10
5 
at  = 0.05 and  = 0.5 

(41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate Approximation 
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Figure 62- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 1 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 63- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 5 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 

  

Non-dimensional Horizontal Distance, x

N
o

n
-d

im
e
n

s
io

n
a
l
V

e
rt

ic
a
l
D

is
ta

n
c
e
,
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



135 

 

 

 

 

 

Figure 64- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 10 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 65- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 15 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 66- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 20 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 67- Unsteady State Non-dimensional Velocity Vectors for Ra=10
5 
at Non-dimensional 

Time,  = 50 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 68- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 1 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 69- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 5 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 70- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 10 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 71- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 15 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 72- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 20 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Figure 73- Unsteady State Non-dimensional Temperature Contours for Ra=10
5 
  at Non-

dimensional Time,  = 50 (41 x 41, ∆  = 5.0E-6) in Second Order Time Accurate 

Approximation 
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Chapter 12 

Calculations of Wall Heat Flux and Nusselt Number 

 

 

The calculations of heat flux at the walls of the enclosure (the high temperature wall in 

this case) and Nusselt number are presented in this chapter.  

The rate of heat transfer is observed to be proportional to the temperature difference and 

is expressed by Newton’s law of cooling as 

                         )(  TThq wconv


      (9.1)
 

where h is the heat transfer coefficient in W/m
2
-K,  wT is temperature at hot wall side of the 

enclosure, and T is the reference temperature.  

The heat transfer from the solid surface to the fluid adjacent to the surface is by pure 

conduction can be expressed as  

0











x

cond
dx

dT
kq

      (9.2)
 

where T is the temperature distribution in the fluid, 
0










xdx

dT
is the temperature gradient at the 

surface of hot wall, and k is thermal conductivity of the fluid  in W/m-K  

Conduction heat flux from the solid surface to the fluid is equal to the convection heat 

flux to the fluid adjacent to surface, at x = 0.  Therefore, equating equations 9.1 and 9.2 and 

solving for the heat transfer coefficient yields,  


















TT

dx

dT
k

h
w

x 0                    (9.3) 
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Non-dimensional heat transfer coefficient (or) Nusselt number is defined as, 

                                   
k

hH
Nu                                                   (9.4)              

The wall heat fluxes and Nu numbers for ΔT = 64.8 deg K and ΔT = 356.6 deg K   at       

Ra = 10
5
 were calculated from the temperature profiles (see Figures 74 through 77)  near the 

high temperature wall as predicted by both models, the constant property and the variable 

property. The results of these calculations are presented in Table 33. 
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Figure 74- Dimensional Temperature Distribution along the Horizontal Distance for Constant 

Properties (ΔT = 64.8 deg K) 
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Figure 75- Dimensional Temperature Distribution along the Horizontal Distance for Variable 

Properties (ΔT = 64.8 deg K) 
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Figure 76- Dimensional Temperature Distribution along the Horizontal Distance for Constant 

Properties (ΔT = 356.6 deg K) 
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Figure 77- Dimensional Temperature Distribution along the Horizontal Distance for Variable 

Properties (ΔT = 356.6 deg K) 
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Table 33 - Comparison of the Results of the Present Study (Variable properties) and 

Constant Properties for Different Wall Temperature differences at Ra=10
5 

 

ΔT ( 
0
K ) 

Variable 

Properties 

w (W/m
2
) 

Constant 

Properties 

w (W/m
2
) 

% 

Deviation 

in w 

64.8 234.23 264.03 - 12.80  

356.6 2180.00 3593.30 - 64.82  

 

ΔT ( 
0
K ) 

Variable 

Properties 

Nu 

Constant 

Properties 

Nu 

% 

Deviation 

in Nu 

64.8 6.40 7.21 - 12.65  

356.6 4.83 7.97 - 65.02  

 

As shown in the above table, the variable property model predicts the wall heat flux and 

the Nu number values lower than the constant property model. The wall heat flux predicted by 

the variable property model deviates by - 12.8 % from the values predicted by the variable 

property model for ΔT = 64.8 
0
K   . However, this difference is more for higher wall temperature 

differences. Similarly, the computed value of Nusselt number of the variable property model is 

12.6% less than the corresponding value predicted by the constant property model, and this 

difference is high for higher wall temperature differences.  
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Chapter 13 

Conclusions 

 

A numerical study of unsteady natural convection inside a square enclosure has been 

carried out to determine the effect of variable properties, i.e., thermodynamic and transport 

properties, on circulation patterns, velocity profiles in vertical and horizontal directions, and 

temperature characteristics for a fluid with Pr number 0.72 and a Ra number ranging from 10
3
 to 

10
6
. The following conclusions are drawn from this study. 

1. A newly updated Coupled Modified Strongly Implicit Procedure (CMSIP) was 

successfully employed to solve the governing equations of unsteady laminar natural 

convection inside an enclosure using a first order and a second order accurate in time 

finite difference approximations.   

2. The results of the numerical study carried out using the mathematical model and solution 

procedure proposed in this thesis fair well when compared to the results of the benchmark 

case given in the literature. 

3. There is a notable difference between the results of the variable property and the constant 

property models. The variable property model predicts the wall heat fluxes and the Nu 

number values lower than the constant property model.   

4. The effect of variable properties on circulation patterns and velocity profiles is more 

pronounced for high Ra numbers when the temperature difference between the walls of 

the enclosure is high. 

5. There is negligible difference between the results of the first order and second order 

accurate in time models.  
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6. Transient development of circulation patterns and temperature isotherms were 

qualitatively comparable to those found in literature. 
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Chapter 14 

Recommendations 

 

The following recommendations are made to improve the present model in simulating natural 

convection inside an enclosure with differentially heated side walls. 

1. A finer mesh should be utilized to obtain more accurate results, especially at high 

Rayleigh numbers. 

2. Due to the boundary layer nature of the flow for high Rayleigh numbers, a stretched grid 

should be incorporated near the walls of the enclosure to improve the accuracy of the 

predicted results. 

3. Effects of different boundary conditions such as constant and variable heat flux should be 

considered. 

4. A turbulence model k-ε should be incorporated to study natural convection in the 

turbulent region, that is for  Ra > 10
6
. 

5. Density should be considered as a primitive variable instead of pressure so that the model 

can be applied to any fluid (liquid or gas). 
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Appendix I 

Vector Form of Governing Differential Equations 

 

 

The continuity equation is given by: 
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The momentum equations are given by: 
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where total energy, Et,  
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The heat transfer by conduction in Eq. I.3 is  
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Equation of state for ideal gas is given by: 

                                  TRp                                                                                     (I.4) 
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Appendix II 

Dimensional Form of Governing Differential Equations 

(A. Conservative Form) 

 

 

The continuity equation is given by: 
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The momentum equation in the x-direction is given by: 
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The momentum equation in the y-direction is given by: 
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The energy equation is given by: 
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Appendix II 

 Dimensional Form of Governing Differential Equations 

(B. Using in terms of Primitive Variables u, v, p, T) 

 

 

The continuity equation is given by: 
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The momentum equation in the x-direction is given by: 
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The momentum equation in the y-direction is given by: 
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The energy equation is given by: 
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Appendix III 

Sub Models of Thermodynamic and Transport Properties 

 

 

 

1. Variable Specific Heat at Constant Pressure (Cp(T)) 

Constant-volume and constant-pressure specifics heats are assumed to be functions of 

temperature. That is, 

Cv= f (T) and Cp= f (T) 

because all gases approach ideal-gas behavior as the pressure approaches zero.  

The specific heat at constant pressure function of temperature for an ideal gas,
0pC  can be given 

as (refer to Sonntag, Engineering Thermodynamics) 

3

3

2

2100  CCCCC p   
   KJ/Kg K                                    (III.1)                        

where  
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T
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For Air, values of constants in the above equation are as follows 

0C = 1.05, 1C  = -0.365, 2C  = 0.85, 3C  = -0.39  

This approximate form can be valid from 250K to 1200 K 

 

2.  Variable Viscosity (μ(T)) 
 

A widely used approximation resulted from a kinetic theory by Sutherland (1893) using 

an idealized intermolecular-force potential. The formula is (refer to Frank M. White, Viscous 

Flow) 
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where  

   is the Viscosity, N.s/m
2
 

0 is the Reference value, N.s/m
2
 

T  is the Absolute Temperature, K 

0T is the Reference Value, K and  

S  is the Sutherland Constant, which is characteristic of the gas, K 

 

For Air, Values of constants in the above equation are as follows  

0 = 1.716 x 10
-5

 N.s/m
2
 

0T = 273 K 

S  = 111 K 
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Appendix IV 

 Non-Dimensional Form of Governing Differential Equations 

 

 

Continuity Equation 
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Momentum equation in x-direction 
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Momentum equation in y-direction  
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Energy equation 
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Appendix V 

Formula to Calculate the Lower [L] and Upper [U] Matrices for 

CMSIP Method 

 

 

The lower and upper diagonal matrices [L], and [U] have the following form 
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The elements of these matrices are calculated using the following formulas: 
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Appendix VI 

Flow Chart for the Computer Program 

(A. First Order Accurate in Time Model) 
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              Continued on p.173 

Natural Convection Program 

Read input parameters 

(Operating, Geometrical, Transport, 

Non-dimensional, Computational) 

 

Calculate physical 

location of each node 

Initializes the unknown 
vectors of u, v, p, T 

Initializes the counters           

(time*=0, TIMEWR*=0, TIMEWRH*=0) 

 =0) 

If time = 0 Store Initial values of   
u, v and T at vmax 

Update counters with time increment Δt                              

(time= time + Δt, TIMEWR = TIMEWR+Δt, 

TIMEWRH = TIMEWRH + Δt) 

Calculates present values by assuming 

future values of u, v, P, T and assign 

boundary values to u, v and T 

Call MODPVAR, To solve for unknown matrix X 
using Linearization and SIP algorithm (see p.174) 

Continued 
on p.173 

START 

100 
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               Continued on p.172 
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If time < (2 x Δt) Store output values of   

u, v, p, T 

Store output values of   
u, v, p, T 

 

TIMEWRH > 
TIMEOUTH 

Creates data for 

counterplots of u, v, p, T 

TIMEWR > 
TIMEOUT 

Store final values of   
u, v and T at vmax 

 
Set TIMEWRH = 0 

Time < TIMESM 

Print the spatial coordinates, 

x and y values 

Creates data for counterplots 
of u, v, p, T 

 

      STOP 

Continued from p.172 

Set TIMEWR = 0 
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MODPVAR  

(Subroutine for Modification of Primitive Variables using Linearization Iteration) 
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Initializes the counters           

(l=0, k=0, IFLAG* =0) 

Assigns the boundary values 

to dummy matrix XV 

Update the linearization counter 

(l = l + 1) 

Re-define coefficient matrix A 

If time < (2 x Δt) 

 

Check dominance 

factor for matrix A 

Find inverse of matrix A 

Define known vector b  

Separate matrix A into lower (L) 

and upper (U) matrices 

Call SIP                                             

To solve unknown matrix X using 

SIP algorithm (see p.175) 

Check convergence criteria for 

modified primitive variables         

(refer to Eq. 5.24) 

RETURN 

START 

Find inverse of matrix A 
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SIP 

(Subroutine to Solve Unknown Primitive Variables using Strongly Implicit Procedure) 
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Initializes the counters                    

(k=0, IFLAG=0) 

Assigns ASCII values of unknown matrix 

X to previous unknown matrix X
1
 

Update SIP counters (k=k+1) 

Calculates R vector to solve for 

unknown matrix X  

Calculates initial values for 
inner cells 

Check the convergence criteria for 

Strongly Implicit Procedure (SIP) 

Calculates initial values for boundary 

cells using inner cells 

Assigns ASCII values of unknown 

matrix X to previous unknown matrix X
1
 

 

IFLAG=0 
RETURN 

START 

3 

Calculates W vector to solve for 

unknown matrix X  

Calculates D vector to solve for 

unknown matrix X  
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*     List of Program Variables used in the Flow Chart 

Time – Non-dimensional time 

TIMESH - Total time of simulation 

TIMEOUT - Time interval for prints 

TIMEOUTH - Time interval for histograms 

IFLAG - Conditional counter 

TIMEWR - Time to write ASCII values of output primitive variables 

TIMEWRH - Time to write ASCII values of output primitive variables as histogram data 
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Appendix VI 

Flow Chart for the Computer Program  

(B. Second Order Accurate in Time Model) 
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               Continued on p.178 

Natural Convection Program 

Read input parameters 

(Operating, Geometrical, Transport, 

Non-dimensional, Computational) 

 

Calculate physical 

location of each node 

Initializes the unknown 
vectors of u, v, p, T 

Initializes the counters           

(time*=0, TIMEWR*=0, TIMEWRH*=0) 

 =0) 

If time = 0 Store Initial values of   
u, v and T at vmax 

Update counters with time increment Δt                              

(time= time + Δt, TIMEWR = TIMEWR+Δt, 

TIMEWRH = TIMEWRH + Δt) 

Calculates present values by assuming 

future values of u, v, P, T and assign 

boundary values to u, v and T 

Call MODPVAR, To solve for unknown matrix X 
using Linearization and SIP algorithm (see p.179) 

Continued 

on p.178 

START 

100 
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               Continued from p.177 
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If time < (2 x Δt) Store output values of   

u, v, p, T 

Store output values of   

u, v, p, T 

 

TIMEWRH > 
TIMEOUTH 

Creates data for 
counterplots of u, v, p, T 

TIMEWR > 
TIMEOUT 

Store final values of   

u, v and T at vmax 

 
Set TIMEWRH = 0 

Time < TIMESM 

Print the spatial coordinates, 
x and y values 

Creates data for counterplots 

of u, v, p, T 

 

      STOP 

Continued from p.177 

Set TIMEWR = 0 
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MODPVAR  

(Subroutine for Modification of Primitive Variables using Linearization Iteration) 
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          Continued to p.180 

Initializes the counters           

(l=0, k=0, IFLAG* =0) 

Assigns the boundary values 

to dummy matrix XV 

Update the linearization counter 

(l = l + 1) 

Re-define coefficient matrix A 

If time < (2 x Δt) 

 

Check dominance 

factor for matrix A 

Find inverse of matrix A 

Define known vector b  

Separate matrix A into lower (L) 

and upper (U) matrices 

Call SIP                                             

To solve unknown matrix X using 

SIP algorithm (see p.181) 

Check convergence criteria for 

modified primitive variables         

(refer to Eq. 5.24) 

START 

Find inverse of matrix A 

Continued to p.180 

2 



180 

 

 Continued from p.179 

 

 

 

 no 

          

yes 

RETURN 

IFLAG = 0 

Update the pressure at each node using 
pressure smoothening function                    

(refer to Eq. 5.26) 

Continued from p.179 
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SIP 

(Subroutine to Solve Unknown Primitive Variables using Strongly Implicit Procedure) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

                                                      

                         yes    no 

 

Initializes the counters                    

(k=0, IFLAG=0) 

Assigns ASCII values of unknown matrix 

X to previous unknown matrix X
1
 

Update SIP counters (k=k+1) 

Calculates R vector to solve for 

unknown matrix X  

Calculates initial values for 
inner cells 

Check the convergence criteria for 

Strongly Implicit Procedure (SIP) 

Calculates initial values for boundary 

cells using inner cells 

Assigns ASCII values of unknown 

matrix X to previous unknown matrix X
1
 

 

IFLAG=0 
RETURN 

START 

3 

Calculates W vector to solve for 

unknown matrix X  

Calculates D vector to solve for 

unknown matrix X  
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*     List of Program Variables used in the Flow Chart 

Time – Non-dimensional time 

TIMESH - Total time of simulation 

TIMEOUT - Time interval for prints 

TIMEOUTH - Time interval for histograms 

IFLAG - Conditional counter 

TIMEWR - Time to write ASCII values of output primitive variables 

TIMEWRH - Time to write ASCII values of output primitive variables as  histogram data 
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Appendix VII 

Program Parameters – Common to all Runs 

 

 

List of program Parameters used in the Computer Program that are common to all runs: 

AR = 1 

g = 9.81 m/s
2 

 = 2.21 x 10
5
 m/s

2
 

R = 287.0 J/Kg-K 

cp0 = 1006.5 J/Kg-K 

μ0 = 1.716 x 10
-5

 J/Kg-K 

Pr  = 0.72 

γ  = 1.4 

 = 0.2 

 = 1.0 x 10
-7 

 = 1.0 x 10
-7
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Appendix VIII 

Program Parameters - Specific to Each Run 

 

List of parameters that are specific to the Base Run: 

Mesh size: 21 x 21 

Δ   = 1 x 10
-5

 

Ra  = 1 x 10
5
 

Gr  = 1.413265 x 10
5
  

pref  = 1 x 10
5 
N/m

2
 

Tref  = 300 K 

uref  = 0.232073 m/s (calculated) 

Lref  = 0.0254 m 

ΔT  = 64.84 K 

Th  = 332.42 K (calculated) 

Tc  = 267.58 K (calculated) 

Fr  = 0.464914 
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