
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-6-2009

Taintx: A System for Protecting Sensitive Documents Taintx: A System for Protecting Sensitive Documents

Patrice Dillon
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Dillon, Patrice, "Taintx: A System for Protecting Sensitive Documents" (2009). University of New Orleans
Theses and Dissertations. 976.
https://scholarworks.uno.edu/td/976

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/976?utm_source=scholarworks.uno.edu%2Ftd%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Taintx: A System for Protecting Sensitive Documents

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
In

Computer Science
Information Assurance

by

Patrice Dillon

B.S. Dillard University, 2004

August, 2009

ii

Copyright 2009, Patrice Dillon

iii

Acknowledgements

I have to thank God for getting me through this. I would like to thank my parents John Dillon,

Viola Dillon and Gloria Singleton you guys don’t know what you mean to me. My brother and

sister, John and Shonell we will always be the three musketeers. To Tynia Turner a wonderful

person that has always been supportive, I truly appreciate everything. To all of my friends,

thanks for putting up with my constant neglect and naming me “Pathesis.” To Dr. Gloria C. Love

thanks for always helping me with any and everything. I could not end this without saying a very

big thank you to the best Linux Hacker I know Dr. Golden Richard III. Thank you for being very

patient and always lending your expertise.

iv

Table of Contents
List of Figures ..vi

Abstract ... vii

Chapter 1 .. 1

Introduction .. 1

Rationale of the Study .. 2

 Statement of the Problem ... 2

Purpose of the Study... 3

 Importance of the Study ... 4

Research Approach ... 5

Chapter 2 .. 5

 The Linux Kernel .. 5

Inode Attributes .. 7

 File System Administration ... 10

Design of Taintx... 9

 The Scheduler .. 10

The task_struct.. 10

 Configuration of Taintx .. 11

Processes ... 16

 Directory Entry .. 17

Dentry ... 18

 Pathname Operations ... 19

Pathname Lookup ... 19

 Path_lookup function .. 20

Link_path_walk function ... 21

 System Calls ... 23

 Open System Call ... 24

 Write System Call .. 25

v

Chapter 3 .. 27

Results ... 27

 Limitations of the Study .. 27

 Related Work ... 28

 Future Work .. 29

Conclusion ... 30

Bibliography .. 31

Vita ... 32

vi

List of Figures

Figure 1 : Linux kernel Diagram... 6

Figure 2: Inode Structure .. 7

Figure 3: Struct task_struct ... 11

Figure 4: Transition between User and Kernel Mode ... 24

vii

Abstract

Across the country members of the workforce are being laid off due to downsizing. Most of

those people work for large corporations and have access to important company documents.

There have been several studies suggesting that employees are taking critical information after

learning they will be laid off. This becomes an issue and a threat to a corporation’s security.

Corporations are then placed in a position to make sure sensitive documents never leave the

company. In this study we build a system that is used to assist corporations and systems

administrators. This system will prevent users from taking sensitive documents. The system used

in this study helps to maintain a level of security that is not only beneficial but is a crucial part of

managing a corporation, and enhancing its ability to compete in an aggressive market.

Keywords

Linux

Linux Kernel

System Call

Scheduler

Process ID (PID)

Inode

File System

1

 Chapter 1: Introduction

The taintx system is designed to present a reliable solution for securing documents on a Linux

system. This system attempts to provide companies with a secure way to share documents with

employees, while preventing the documents from being copied outside of a protected area.

There are several ways that a systems administrator can prevent users from viewing documents,

such as placing group rights on documents and placing read only rights on any given document

within an organization. While all of these methods are useful, none of these implementations

address the issue of giving a user typical read and write privileges, while preventing that user

from taking critical documents. Recently, there has been a surge in employees taking sensitive

information from companies. The Ponemon Institute, a Tucson, Ariz.-based privacy and

management research firm, said almost 60 percent of workers who were either shown the door or

quit, left with proprietary company information. The survey included queries of 945 adults

nationwide who were fired, laid off, or switched jobs in the last 12 months. Additionally, a

survey commissioned by the data loss prevention department of Symantec, found that 45 percent

of respondents took non-financial business information; 39 percent, customer contact lists; 35

percent, employee records; and 16 percent, financial information (MCALEAVY, 2009). This

presents a problem because these sensitive documents are being shared with competitors. The

taintx system has been developed to prevent a typical system user from removing critical data

from a workstation. The system developed in this study allows files and directories to be placed

in a protected area. The files that have been placed in the protected area can be read and written

to just like any other document on a Linux system. The taintx system prevents users from saving

the files to any external medium. Users will also be restricted from writing the information to a

2

file that is not in the protected area or emailing critical files that are associated with the protected

area. The system that is used in this particular study will be beneficial to corporations as well as

to their employees. Many employees have fallen into the habit of taking documents home to edit.

While this practice may be within company policies, it could easily foster a work environment

where employees mistakenly take documents that could be considered sensitive. This system will

protect users from making such innocent mistakes that could possibly cost them their jobs.

Rationale of the Study
Although there are a number of ways to prevent documents from being copied or extracted on

some commercial operating systems, there is no direct study using the Linux operating system.

One example of this type of system is PdfGuard. PdfGuard is a copy protection product that

encrypts pdf files. After the pdf files have been encrypted, only viewing privileges are permitted

(zappersoftware, 2004). Our study involves modifying the Linux kernel and making adjustments

that will allow documents to be used for viewing and editing purposes only, within a restricted

directory. By making this possible on a Linux machine, this study acknowledges the vast amount

of Linux users and the need of corporations to protect their critical documents on an open

system.

Statement of Problem

In recent years, there has been a tremendous amount of growth in the number of companies that

use Linux based systems. There are several reasons why companies have started using the Linux

operating system. While most companies admit that their use of Linux is due to the extremely

low cost of maintaining the average system, some cite performance as their top reason for using

3

the Linux system. In a recent interview, Orbitz cites Linux as a competitive advantage, “Orbitz

is a company that leverages open-source projects in its production environment and isn't afraid to

be public about it. We currently use over 750 Linux machines in our production environment.

Our web servers are Apache running on Linux, our application servers are proprietary servlet

engines running on Linux and the back-end “booking engine” is comprised entirely of Java

services running on Linux. Lastly, the software that does the low fare searching that is one of the

key differentiators between Orbitz and our rivals also is running on Linux.” (Searls, 2003).

Many companies are losing critical documents due to insufficient security. There are several

different reasons that would motivate an employee to take documents from a company. Studies

have shown that employees who have been fired are more likely to take confidential information.

In a survey that polled workers who had been laid off over the past 12 months, 59 percent

admitted to stealing company data, while 67 percent used their former company’s confidential

information to find a new job. Most of this behavior is considered to be “emotional in a time of

stress.” (Messmer). There are several ways that an employee can steal a company’s information.

The most commonly used methods are to remove documents using a CD, diskette, USB or

sending the documents in an email. The removal of confidential data from companies has proven

to be a major issue. This study implements a system that prevents the removal of critical

documents by restricting a user’s ability to copy them outside a designated, protected area.

For

this reason an increased need of system security has become very important.

Purpose of the Study

These days, companies are focusing on finding different methods to properly secure their most

private data. Due to the recent hike in internal theft, organizations have begun to take a more in

4

depth look at the field of computer security. There are systems in place to help companies secure

their data. These systems are built solely for popular operating systems. Organizations that use

less popular systems or operating systems for which commercial software is not typically

developed, such as Linux, do not have the same options when it comes to properly securing

documents.

Importance of the Study

The taintx system involves modifying the Linux kernel to implement a restricted area in the

filesystem in which documents can be viewed or edited, but not copied outside of the restricted

area. We undertook this study because data that has been shared with employees can have

detrimental effects on a company if shared with outside parties. Losing sensitive data could cost

companies millions of dollars. This study describes the implementation of our system, called

taintx, which reserves a protected space inside of the file system for processing of sensitive

documents. This space will be called the protected area in the remainder of the thesis and this

protected area will be used to hold all sensitive data. When a process accesses any data inside the

protected area, it will become a tainted process. Tainted processes will not have access to certain

system calls within the Linux system and restricted access to others, in order to prevent

disallowed copying of sensitive documents.

Research Approach

The objective of this study is to provide an area of the Linux file system that can securely store

documents. As stated above, this area will be known as the protected area. The protected area is

5

considered “tainted” (in the sense that it marks entities that come in contact with it) and any

process that accesses content in the protected area will become tainted as well. Similarly, when a

parent process becomes tainted the child process becomes tainted also. A tainted process will

only be granted rights to open and edit files in the protected area. If a tainted process accesses

content outside of the protected area, no create or write access will be granted to that process. A

tainted process will also be prohibited from writing to a file that was previously opened before

the process became tainted, regardless of its initial file access rights.

Chapter 2:

The Linux kernel

Linux has recently become a very popular operating system. The system was first built by Linus

Torvalds. The Linux kernel is a member of the family of UNIX like operating systems that are

open source. The source code for the Linux kernel is written mostly in the C programming

language (with some critical portions in assembler) and has thousands of contributors. Recently,

the popularity of the Linux system has exploded. There are many benefits to using an open

source system. The operating system itself is free and there are thousands of free software

downloads that accompany the system. While Linux has become known for being one of the

most secure operating systems available today, Linux systems are so open that they sometime

lack the proper security that may be necessary for a system administrator. The Linux kernel is

essentially the brains of the operating system. Without the kernel, applications would not be able

to effectively communicate with hardware. Things such as process scheduling, memory

management and handling system calls are all important functions that are carried out by the

Linux kernel.

6

Figure 1 : Linux kernel Diagram

The Linux operating system contains several different components, but for the purpose of this

study we will focus on the command shell, the file system and the kernel. There are many

different files that are supported by the Linux kernel. The main three file types are regular file,

directory and symbolic links. The information that is necessary for the file system to handle these

files is stored in a data structure that is known as an inode. An inode is assigned to each file and

is used to identify that file and to map the location of its data blocks.

7

Figure 2: Inode Structure

Essentially, an inode represents the information needed by the kernel to manipulate a file or

directory (Love, 2005). For the purpose of this study we utilize inodes to provide a method of

identifying the directory representing the protected area, via its unique inode number. Processes

accessing pathnames that pass through the protected area become tainted, which impacts their

ability to copy, write, and create files.

Inode Attributes

An inode is required to provide these standard attributes. We are concerned primarily with the

unique number associated with each inode.

• File type

8

• Number of hard link associated with the file

• File length in bytes

• Device ID (an identifier of the device containing the file)

• UID of the file owner

• User group ID of the file

• Several timestamps that specify the inode status change time, the last access time, and the last

modify time

File System Administration

In the Linux file system there are several file permissions that can be set by a Linux

administrator. Each file has information in its inode regarding the permissions that have been

given to the file. The information that gives the set permissions for a particular file is called the

mode of a file. The mode is divided into three basic sections.

• User (owner) permissions

• Group (group owner) permissions

• Other (everyone on the Linux system) permissions.

An administrator can assign these three different permissions to a given file. Those permissions

are read, write and execute. Read allows a user to open and read the contents of the file. This

permission also allows a user to list the contents of the directory. Write allows the reader to

open, read and edit the contents of the file. This permission also allows the user the ability to add

or remove files to and from the directory. Execute allows the user the ability to execute a given

file in memory. Additionally, this permission allows the user the ability to enter the directory and

9

work with directory contents. These basic access rights can prevent a group or an individual from

viewing files that should not be viewed by them or files that are not beneficial to their particular

area of work. Although setting file permissions is a great way to give access only when deemed

necessary, these permissions do not prevent users from copying documents, for example, from a

workstation to a removable storage device.

For the purpose of this study, a user will have arbitrary read, write, and execute permissions for

files both inside and outside the protected area. The taintx system is not built to simply take away

the rights of the users; this system will allow read and write permissions to given files inside of

the protected area in the usual manner, while preventing the files from being copied outside of

the protected area.

Design of the Taintx System

The interface to the taintx system is housed inside of the /proc file system. The /proc file system

is a virtual file system inside of the Linux kernel. This virtual file system provides information

on processes that are currently running on a Linux system and resides only in memory. The

/proc file system also allows information to be written to virtual files to communicate with the

Linux kernel. The /proc file system is enormously powerful. It allows the users to view the

system as the kernel views the system and to easily communicate configuration information to

the kernel.

10

The Scheduler

The scheduler in the Linux kernel is responsible for making sure that the correct processes are

running when they are needed. In a multitasking operating system such as Linux, the scheduler

decides which process to run. These processes are selected in a manner that will best utilize

system resources or meet necessary computational deadlines. Most modern operating systems

provide preemptive multitasking. Preemptive multitasking allows the scheduler to decide which

process should stop running or which process should start or continue running. In preemptive

multitasking, a process is given a certain amount of CPU time. This time is referred to as a time

slice. A time slice helps prevent one process from utilizing all of the system resources. A process

is considered expired when the time slice is out. There are two algorithms that are used inside the

scheduler, the time-sharing algorithm and the real-time algorithm. The time-sharing algorithm is

based upon fair preemptive scheduling. The real-time algorithm is based on giving priority to

more important task.

The Task_Struct

The Linux kernel stores the list of processes that are scheduled in a circular doubly linked list

called the task list. Inside the list each element in the given task list is a process descriptor of the

type struct task_struct. The process descriptor contains all the information about a specific

process. The struct task_struct is defined in the include file “sched.h”. For the purpose of this

study we initialize a new flag in the task_struct, called the “tainted flag”. This will allow us to

track whether a process has accessed content in the protected area.

11

Figure 3: Struct task_struct

Configuration of taintx

In order to handle configuration of the taintx system, we introduce several new files in the /proc

filesystem. We then install handlers for access to these files so that configuration information

can be queried and supplied. The following code defines the handlers for our new /proc

filesystem entries, so that reads and writes to these files can be trapped and processed. The code

is straightforward. The core_initcall(taintx_init) function call causes the kernel to execute the

taintx_init() function during kernel initialization. The following code appears in the kernel

source file “sched.c.”.

12

static int __init taintx_init(void) {
proc_mkdir("taintx", 0);

if(!(taintx_pid_proc_file = create_proc_entry(
 "taintx/pid", 0644, NULL))) {

printk(KERN_ALERT "Error: Could not
initialize/proc/taintx/pid\n");
printk(KERN_INFO "All /proc/taintx* entries
removed\n");
return 0;

}
taintx_pid_proc_file->read_proc = taintx_proc_read;
taintx_pid_proc_file->write_proc = taintx_proc_write;
taintx_pid_proc_file->owner = 0;
taintx_pid_proc_file->uid = 0;
taintx_pid_proc_file->gid = 0;
taintx_pid_proc_file->data = (void *)TAINTX_PID;
return 0;

}

core_initcall(taintx_init);

We use the file /proc/taintx/pid to allow manually tainting a process (by PID) and to query the

last manually tainted file. The taintx_proc_read function handles querying of the last manually

tainted PID. The /proc/taintx/pid file is primarily for testing purposes, since the taintx system

automatically taints processed based on their accesses to files in the protected area. The code for

handling querying of manually tainted PIDs is listed below.

int taintx_proc_read(char *buffer,char **buffer_location,
off_t offset, int buffer_length,int *eof, void *data) {

struct task_struct *p=find_task_by_pid(taintx_pid);
int ret=0;
if (! offset > 0 && (int)data == TAINTX_PID) {

if (!p) {
ret=sprintf(buffer, "%1d:0d\n", taintx_pid);

}
else {

ret=sprintf(buffer, "%1d:%1d\n",
taintx_pid, p->taintx);

}
}
return ret;

}

13

We must also handle writes against the files in the /proc filesystem. The function

taintx_proc_write function tracks write access to the pid file inside of the taintx directory. The

code is provided below. One particularly interesting portion is the use of the copy_from_user()

function, to copy a buffer that describes the PID of the process to be manually tainted. This

buffer does not reside in the kernel and the kernel must use copy_from_user to copy the buffer

contents to the kernel before access. Another interesting section of the code is the use of

find_task_by_pid() function to locate the process descriptor of the process to be manually

tainted.

int taintx_proc_write(struct file *file, const char *buffer,
 unsigned long count, void *data) {

int ret=0;
char c[10];
struct task_struct *p;
if ((int)data == TAINTX_PID) {

ret=count;
if (copy_from_user(c, buffer, 9)) {

ret = -EFAULT;
}

taintx_pid=simple_strtol(c, 0, 10);

 p=find_task_by_pid(taintx_pid);
if (p) {
 p->taintx=1;
 printk("PID %d will be tainted.\n", taintx_pid);
}
else {

printk("Didn't taint: no such PID %d\n",
 taintx_pid);

}
return ret;

}

To configure the location of the protected area, we introduce an additional file in the /proc

filesystem, /proc/taintx. This file contains the pathname of the protected area.

After pathname of the protected area has been configured, sensistive documents can be placed

inside of the the protected area to prevent unauthorized copying. The taintx_proc_read_dir

14

function handles read accesses against /proc/taintx/dir. Only allows users with root privileges the

ability to modify the location of the protected area. The code for the taintx_proc_read_dir

function follows. The implementation of this function is straightforward.

int taintx_proc_read_dir(char *buffer,char**buffer_location,
off_t offset, int buffer_length,int *eof, void *data) {
int ret=0;
if (! offset > 0 && (int)data == TAINTX_DIR) {

ret=sprintf(buffer, "%s\n", taintx_dir);
}
return ret;

}

The function taintx_proc_write_dir handles writes against /proc/taintx/dir to allow setting the

pathname for the protected area. As for handling writes against /proc/taintx/pid, the buffer that

contains the pathname does not reside in the kernel’s address space and therefore

copy_from_user must be used before access. Each time the protected area is changed, the

path_lookup function (described in further detail below) is called to determine and store the

inode number of the protected directory. Three parameters are passed to path_lookup, including

taintx_dir, which is a pointer to the pathname of the protected directory. The second parameter

is a flag, LOOKUP_DIRECTORY, indicating that the last component of the pathname must be a

directory. The final parameter is a pointer to a nameidata structure. After the pathlookup

function is performed the taintx_inode is set to the directory entry’s inode number, stored in the

nameindata structure.

int taintx_proc_write_dir(struct file *file, const char *buffer,
unsigned long count, void *data) {
int ret=0;
struct nameidata nd;
char buf[100];
int i;
nd.taintx=0;
if ((int)data == TAINTX_DIR) {

15

taintx_inode=0;
printk("Handling /proc/dir...about to
copy_from_user()\n");
ret=count;
if (copy_from_user(taintx_dir, buffer, count)) {

ret = -EFAULT;
printk("copy_from_user() failed\n");

}
else {

// clean pathname
taintx_dir[count-1]=0;

for (i=0; i < count; i++) {

if (taintx_dir[i] == '\n') {
 taintx_dir[i] = 0;

}
}
taintx_trace=1;

sprintf(buf, "Using tainted directory
\"%s\"\n",taintx_dir);
printk(buf);
path_lookup(taintx_dir, LOOKUP_DIRECTORY, &nd);
taintx_trace=0;
printk("Back from path_lookup(),
settinginode.\n");
taintx_inode= nd.dentry->d_inode->i_ino;
sprintf(buf, "Just set inode to
%ld\n",taintx_inode);
printk(buf);

}
}
return ret;

}

As with the handlers for /proc/taintx/pid, a handler installation function must be written. This

version of the taintx_init() is placed inside of the kernel source file for pathname processing.

Again, a core_initcall(taintx_init) is placed at the end of the source file to insure that the function

executes when the kernel boots.

static int __init taintx_init(void) {

proc_mkdir("taintx", 0);

if (! (taintx_dir_proc_file =
create_proc_entry("taintx/dir", 0644,

NULL))) {
printk(KERN_ALERT "Error:Could not initialize
/proc/taintx/dir\n");

16

printk(KERN_INFO "All /proc/taintx/dir entries
removed\n");

return 0;

}

taintx_dir_proc_file->read_proc = taintx_proc_read_dir;

taintx_dir_proc_file->write_proc = taintx_proc_write_dir;

taintx_dir_proc_file->owner = 0;

taintx_dir_proc_file->uid = 0;

taintx_dir_proc_file->gid = 0;

taintx_dir_proc_file->data = (void *)TAINTX_DIR;

taintx_dir[0]=0;

return 0;

}

Processes

fork() is a system call that allows a process to create a new process, called a child process. The

child process initially executes the same code as the parent process, but the parent and child

processes are assigned unique PID values. Each process may create many child processes but

will have only one parent process, except for the very first process which has no parent. The first

process, called init in Unix, is started by the kernel at boot time and never terminates. A child

process inherits most of its attributes, such as open files, from its parent. In fact in Unix, a child

process is created (using fork) as a copy of the parent. The child process can then overlay itself

with a different program (using exec) as required (Howe, 2007)

• The child process has a unique process ID.

. A child process is attributed

with the following characteristics.

• The child process ID also does not match any active process group ID.

• The child process has a different parent process ID (that is, the process ID of the parent process).

http://dictionary.reference.com/browse/init�
http://dictionary.reference.com/browse/Unix�
http://dictionary.reference.com/browse/kernel�
http://dictionary.reference.com/browse/boot%20time�
http://dictionary.reference.com/browse/fork�
http://dictionary.reference.com/browse/exec�

17

• The child process has its own copy of the parent's file descriptors. Each of the child's file

descriptors refers to the same open file description with the corresponding file descriptor of the

parent.

• The child process has its own copy of the parent's open directory streams. Each open directory

stream in the child process may share directory stream positioning with the corresponding

directory stream of the parent.

• The child process may have its own copy of the parent's message catalogue descriptors.

• File locks set by the parent process are not inherited by the child process.

In the taintx system, we modify fork () and exec() to force processes to inherit the “tainted”

status of their parent. This means that restrictions imposed on a process because it has accessed

files in the protected area are also imposed on any child processes that are created.

 Directory Entry

In the Linux kernel, a pathname is composed of a set of directory entries, possibly terminated

with a file entry. Each directory entry is represented by a single structure called a dirent. In the

taintx system, we use the dentry to track the inode associated with each component of a

pathname. In particular, we track the inode of the directory that implements the protected area

and during pathname processing, we track inodes of pathname components to see if a pathname

refers to a file or directory inside of the protected area. This information is valuable to our

system because it gives us a way to identify when a process must be tainted, based on access to a

file or directory in the protected area.

18

Dentry

When a file system resolves each element of a path name and reaches the end of the path which

is stored into a dentry object, the kernel then caches the dentry object and stores it away into the

dentry cache. Each dentry object may be in one of the four states:

Free: The dentry object contains no valid information and is not used by the virtual file system.

The corresponding memory area is handled by the slab allocator.

Unused: The dentry object is not currently used by the kernel. The d_count usage counter of the

object is 0, but the d_inode field still points to the associated inode. The dentry object contains

valid information and cannot be discarded.

In use: The dentry object is currently used by the kernel. The d_count usage counter is positive,

and the d_inode field points to the associated inode object. The dentry object contains valid

information and cannot be discarded.

Negative: The inode associated with the dentry does not exist, either because the corresponding

disk inode has been deleted or because the dentry object was created by resolving a pathname of

a nonexistent file. The d_inode field of the dentry object is set to NULL, but the object still

remains in the dentry cache, so that further lookup operations to the same file pathname can be

quickly resolved. The term “negative” is somewhat misleading, because a negative value is not

involved.

19

Pathname Operations

A file’s pathname is used to identify the file in the context of a system call, such as open() or

mkdir(), to initiate a file operation. For the purpose of this study we will utilize the kernel’s

pathname lookup functions to determine when a process has entered the directory named by the

/proc/taintx/dir entry. The link_path_walk() function is used to determine the unique inode

number for the directory associated with the protected area. This inode number is stored and

checked whenever any pathname lookup operations are performed in the kernel. The next section

gives a brief overview of the pathname lookup function and its components.

Pathname Lookup

Using the path_lookup function, the virtual file system maps a particular pathname to an inode

corresponding to the final component or 2nd

An absolute pathname is one that begins with a forward slash “/”. This indicates that the search

actually starts from the directory that is identified by current->fs->root, which is the root

directory of the process. If a pathname is relative, it indicates that the search starts from a

directory that is identified as current->fs->pwd, which is the current working directory of a

process. For each pathname component, the inode for that component is looked up. This process

 to last component, depending on the value of a flag.

In a path_lookup the path name is broken down into a sequence of directories and possibly a

single file; only the last component in a path can represent a file. All other components in the

pathname must be directories. In the first component of the path lookup, the process checks to

see if the directory is relative or absolute.

20

is repeated until the full path name is resolved. The path_lookup function receives three

parameters:

• name: A pointer to the file pathname to be resolved

• flags: The value of flags indicates how the pathname lookup should proceed—that is, whether

the inode corresponding to the pathname being looked up should refer to the final pathname

component or the 2nd

• nd: The address of the nameidata data structure, which stores the results of the lookup operation.

The nd structure contains information that is used in the pathname lookup procedure.

 to last component (in the case of a file creation, where the inode for the

parent directory of the file being created is needed). Other behavior of the function can also be

controlled by the flags parameter.

path_lookup() Function

The path_lookup operation begins its process by initializing the nd structure. The current->fs-

>lock is acquired for the read or write process. The path lookup operation then goes through the

process of determining if the initial directory is absolute or relative after the path lookup

established the type of directory. It increases the usage counters and stores the address in nd-

>mnt and nd->dentry. After the current-> fs->lock-> read or write semaphore is released then the

total_link_count field in the descriptor of the current process is set to 0. The next process in the

path lookup operation is tremendously important to this particular study. The link_path_walk

function is the primary function of the path_lookup and it is in link_path_walk() that we perform

critical checks for determining when processes should be tainted.

21

link_path_walk Function

The link_path_walk process begins by initializing look_up flags variables with nd->flags. Before

the first component of the pathname all leading slashes are passed over. A value of 0 is given

back if the left over path is empty. When the depth fields of the nd descriptor are positive, a

lookup_follow flag is set.

The pathname that has been passed is then broken down into distinct components. The function

then checks the permissions of the inode corresponding to each component as the path is walked.

When the name of the component is equal to “..” the function climbs to the parent directory. If

the follow_mount option is set, function on the last resolved component is used, then the process

will not be allowed to climb. If the nd->mnt file system is the namespace root file system then

the process is allowed to climb and the follow_mount function is called upon for the last resolved

component. If the last resolved directory is not the root directory of a mounted file system then

the function must basically climb to the parent directory. nd->dentry is then checked by the

follow_mount function to see if it is a mount point. If nd->dentry is a mount point then

lookup_mnt will be invoked to search the root directory of the mounted file system in the dentry

cache. The nd->dentry and nd->mnt is then updated with the object address that corresponds to

the mounted file system. This operation is repeated which will essentially invoke the

follow_mount() function. It is then necessary to climb the parent directory because it is a

possibility that the process could start the pathname lookup from a directory that is included in a

file system that has been hidden by another file system that is mounted over the parent directory.

The lookup_continue flag in the nd->flag is then set. This lets the system know that there is a

next component that has to be analyzed. do_lookup is then invoked. This function derives the

dentry object that is associated with the parent directory and filename. The dentry object and

22

mounted file system object of the component are pointed to from the dentry and mnt fields. After

the follow_mount() function is checked, the system then checks for symbolic links.

At this point of the pathname lookup function, all of the components of the original pathname

have been resolved besides the last one. If the name of the last component is “.” execution is

terminated and will return a 0 value. If the name of the last component is “..” the system will

then climb to the parent directory. If the name of the last component is not “.” or “..” the

directory entry must be looked up in dentry cache. The follow_mount() function is then used to

check if the last component of the system is a mount point. The system returns an error if no

inode is associated with the dentry object. If the last component has an inode, the

lookup_directory flag is set to check whether the inode has a custom lookup method. The nd-

>dentry and nd->mnt are returned as the last component, if the system does not return an error.

Most importantly, because we already know that the link_path_walk function retrieves the inode

number of each directory it walks through, we place a small piece of code inside the function that

will compare the inode number of the protected area’s directory against the current inode number

(for the current pathname component). If this condition is met, then a flag in the current process’

process descriptor is set to indicate that the process is tainted (via contact with data in the

protected area). A brief snip of the code is provided below; taintx_inode is the inode for the

protected area, current is a pointer to the current process’ descriptor, and inode->i_ino is the

inode for the current pathname component.

If (taintx_inode != 0 && current && taintx_inode ==

inode->i_ino) {
 nd->taintx=1;

if (current->taintx) {
printk("Process already tainted\n");

}

23

else {

printk("Tainted Process!! \n ");

current->taintx=1;

}

}

System Calls

System calls in the Linux system gives applications access to hardware and operating system

resources that would not normally be available. These system calls provide a way to securely

give rights to system resources and to a given application or a user. By accepting or denying

request, the system calls provide a level of security that protects the user from harming the

system. When a Linux system is in user mode it cannot access kernel data structures. A process

that is in user mode can issue a system call that will transition into kernel mode. After the system

call is satisfied the process then returns to user mode.

In order to properly implement the taintx system there are certain system calls that must be

monitored to prevent content from the protected area from being copied to an unprotected area of

the file system. If a user enters this protected area and has the rights to move the documents out

of the protected area or to copy data to a file outside of the protected area then the system would

not be useful. In the open.c and namei.c source files within the kernel, we make adjustments to

appropriate system calls that will prevent a process from moving critical data out of the protected

area. In the read_write.c file we make adjustments to the kernel that will prevent the tainted

process from writing data to a file that is outside of the protected area.

24

Figure 4: Transition between User and Kernel Mode

 Open System Call

One system call that must be monitored is the open system call, sys_open. Essentially, tainted

processes are not allowed to open files with write permissions outside of the protected area.

When a file is opened by a tainted process outside of the protected area the taintx system will

deny that process from saving any information to that file. Most of the work that is performed by

sys_open() is done inside of filp_open(). Inside of filp_open, open_namei() is called.

Open_namei() is a helper function of filp_open that is found in namei.c. The open_namei()

function does a simple pathname lookup and checks file permissions. We insert code to perform

further checks, namely, to determine if write access is being requested by a tainted process to a

file inside of the protected area. If the content is inside of this area, then access is allowed. If the

write access is to a file outside the protected area, then the access is denied. If a process is not

tainted, then taintx doesn’t impose additional restrictions on opening files. Currently, the taintx

25

system only checks open operations on regular files (checked with the S_ISREG macro, below).

Consider the following code snippet, which performs the checks discussed above when a file is

opened.

if ((flag &
 /* write access requested */

(FMODE_WRITE | O_CREAT | O_APPEND)) &&
 /* S_IS_REG checks for regular file */

S_ISREG(nd->dentry->d_inode->i_mode) && current &&
/* process is tainted and file being opened is outside
protected area...
*/
current->taintx && ! nd->taintx) {
sprintf(buf, “Access IS DENIED on \"%s\"\n", pathname);

 printk(buf);
 error=-EACCES;

goto exit;
 }

 Write System Call

Unfortunately, preventing a process from opening with write access or creating files outside of

the protected area after it has become tainted (both conditions handled via modification of the

open system call, discussed above) is not enough. A process may have files outside of the

protected area already opened with write access before

To prevent the tainted process from writing to a file that is not in the protected area, the

sys_write function is modified to check the pathnames corresponding to files being written by

tainted processes. If any write operation is detected to a file outside of the tainted area, the

system call fails and an error is returned. We don’t currently restrict writes to standard output or

standard error.

 it becomes tainted. To solve this

problem, we modify the write system call, the code for which is contained in the read_write.c

kernel source file.

26

Our check works as follows: We check whether the file descriptor involved in the write is

greater than 2 (to eliminate standard output and standard error restrictions). We then use a

kernel function for looking up the absolute pathname of the parent directory of the file being

written to. Once this pathname is obtained, the path_lookup function is called to determine if the

path traverses the protected directory. Because we don’t want to prevent write access to files

that are not considered regular files, we again use the S_ISREG macro. The conditions that are

checked to determine if write access is allowed are illustrated in the code snippet below:

if (fd > 2 && ! file->taintx) {

char buf[300];
char *p;
struct nameidata nd;

 /* assume no taint for file */
 nd.taintx=0;
 /* get pathname of file being written to */
 p=d_path(file->f_dentry, file->f_vfsmnt, buf, 299);
 /* does the pathname traverses the protected area? */

path_lookup(p, LOOKUP_DIRECTORY, &nd);
 file->taintx = nd.taintx;
 }
 if (fd < 3 || !S_ISREG(file->f_dentry->d_inode->i_mode) ||

! current || ! current ->taintx || file->taintx){
 ret = vfs_write(file, buf, count, &pos);

 file_pos_write(file, pos);
 }
 else {
 printk(“WRITE DENIED!\n");
 ret=-EACCES;
 }

27

Chapter 3:

Results

The taintx proof of concept goes inside of the Linux file system and creates a protected area that

has not been provided by any other system. This system will taint any process that comes across

the protected area. After a process has become tainted, it is prevented from accessing the open

and write system calls. Taintx accomplishes the task of providing a systems administrator a

secure place to store sensitive information. By tainting a process that moves into the protected

area, we are able to prevent that process from writing critical information to documents that are

outside of the protected area. The taintx system will provide a secure place that allows users to

make changes to documents without moving them from the system. This study proves that it is

possible to secure a Linux system just as it is possible to secure the more popular operating

systems.

Limitations of the study

Taintx is currently only a proof of concept. Our system has been built inside of the Linux kernel

and because the copy and paste functions are not a part of the kernel and these functions are not

used as system calls, the copy and paste functions are still permissible on a system that

implements taintx. Furthermore, additional system calls require modifications to make the

system fully usable, including those for copying mapping files into memory (mmap()), UDP

sockets, etc. All of these issues can be dealt with given additional time, however, the important

point is that even in its present state, taintx illustrates the promise of the proposed approach.

28

Related Work

Trying to properly secure data on a system has always been a difficult task. There have been

other studies that have in their own way touched on the issue of securing documents. (Peter C.S.

Kwan) presents a system called Vault. The Vault system was built to introduce a way to secure

sensitive data and insure that the sensitive information that a user inputs into the system will

remain secure and will not be compromised by things such as Trojan horse, spyware and

keystroke loggers. The system is comprised of two virtual machines. One virtual machine is used

for system activities that do not require a heavily monitored environment known as the untrusted

system. The untrusted system is set in a virtual machine that is not as secure as the other system.

This virtual machine can use any software that the users choose and is not overly secure. The

second virtual machine used in the vault system is a heavily monitored system that is a much

more secured environment. The secure virtual machine runs a minimal operating system with a

very restricted functionality. If a user is on the untrusted machine and is about to make a

purchase online, the system switches over to the secure virtual machine before the user inputs

any sensitive information such as a credit card number. After the transaction has been made on

the secure virtual machine, the Vault system automatically switches the user over to the

untrusted virtual machine.

(Peter Tarasewich) has proposed a system for securing information. This study touches on

securing information that may be viewed in a public place. Increases in mobile computing have

made it very easy for users to access sensitive data while on the go. While this mobility is a good

thing, users are not always able to control that environment. This means that while working on a

mobile device there may be other people that can see a user’s information and record that

sensitive information. The system used in this paper introduces blinders. Blinders are used on

29

PDAs and other mobile devices. The blinders are used with the Firefox browser in this study and

use html lookup to find sensitive information that may be on a certain web page. When this

information is discovered there is a colored tab that is placed over the sensitive information. The

information that has been deemed sensitive by the system is then not viewable to anyone that

may be close to the user. The user has the choice of keeping the information covered by the

blinders or the user can access that information by placing the stylus over the blinders. The

information is revealed for a set amount of time then the blinders return once again to cover the

sensitive information.

(XiaoFeng Wang) introduces a technique, which allows the patched applications to perform fine

grained tracking and controlling of sensitive data flows online. Leapfrog was built to prevent

network applications from leaking sensitive user data. The system is used to protect highly

sensitive data from being leaked out through unknown execution paths.

Future Work

While the system used in this study covered many varied ways that a user can obtain

information, there are still many other ways that are beyond the scope of this paper. This system

was built with the typical user in mind. Further studies should include all types of users and

should not only thwart attempts by the typical user but should also prevent more seasoned users

from removing critical documents from a system. Support for system calls such as mmap which

allows users to send data through shared memory and the system call popen which allows a user

to open a program and send data through that program is needed. Future systems should include

support for cut and paste. In the Linux operating system the cut and paste is not stored in the

30

kernel as a system call. The cut and paste facilities are implemented in the windows manager.

The taintx system is implemented using the Linux kernel version 2.6.11 to make this system

distributable the system must be portable to different kernel versions.

Conclusion

In this study we introduce the taintx system. This system was built to prevent users from taking

sensitive documents from a Linux system. The taintx proof of concept provides an area in the

Linux file system that can securely store documents. By placing the sensitive documents and

directories inside of a protected area, we are able to track down the processes that enter the

protected area. Any process that enters inside of the protected area has been tainted. After a

process has been tainted, write privileges to any file outside of the protected area are prevented.

A tainted process is not allowed to move any documents out of the protected area. The

implementation in this study shows that it is possible to secure documents on a Linux machine.

31

Bibliography

Howe, D. (2007). Dictionary.com. Retrieved from Dictionary.com:
http://dictionary.reference.com/browse/child+process

Love, R. (2005). Linux Kernel Development. Indianapolis: Novell Press.

MCALEAVY, T. (2009, 3 16). NorthJersey. Retrieved from www.northjersey.com:
http://www.northjersey.com/business/workplace/Laid-off_employees_taking_data_with_them.html

Messmer, E. (n.d.). Retrieved from
http://www.itbusiness.ca/it/client/en/home/News.asp?id=52148&PageMem=2

opengroup. (n.d.). Opengroup.org. Retrieved from opengroup.org:
http://www.opengroup.org/onlinepubs/007908799/xsh/fork.html

Peter C.S. Kwan, G. D. Practical Uses of Virtual Machines for Protection of Sensitive User Data.

Peter Tarasewich, J. G. Protecting the Privacy of Displaying Information. Boston.

Searls, D. (2003, 7 1). linux journal. Retrieved from www.linuxjournal.com:
http://www.linuxjournal.com/article/6585

XiaoFeng Wang, Z. L. Leapfrog: Enhancing Information Protection In commodity Applications With
Dataflow Control. Bloomington.

zappersoftware. (2004). Retrieved from Zapper Software: http://www.zappersoftware.com/site-
summary.html

32

Vita

Patrice Marie Dillon was born in Metairie, Louisiana, on 14 September 1981, the daughter of

Viola Dillon and John Dillon Sr. After completing her work at East Jefferson High School, she

went on to the Dillard University in New Orleans where she studied Computer Science and

received her Bachelor of Science in May 2004. For the next three years she pursued a career in

Information Technology, doing desktop technician work in the New Orleans Area. In January

2007 she entered The Graduate School at The University of New Orleans.

	Taintx: A System for Protecting Sensitive Documents
	Recommended Citation

	Taintx1cover
	patrice_dillon_thesis_final2
	Bibliography

