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Abstract 

With the ever present desire for ships and boats to run faster while carrying a greater 

load, a need exists to reduce the drag while simultaneously increasing hydrodynamic lift. 

Therefore, a need for semi-planing/semi-displacement hullforms exists for vessels to carry 

relatively high loads (between 500 and 3000 tons) with a general length Froude number range 

between 0.4 and 1.0. 

A hybrid method for calculating the lift and drag of semi-planing/semi-displacement hull 

forms is developed.  This is done by separating the kinematic boundary condition into odd and 

even parts.  The odd and even parts of the kinematic boundary condition are solved 

independently along with the free-surface boundary condition and superimposed for a complete 

“hybrid” solution. 

The superimposed solution components relate to Michell’s (1898) “thin ship” integral for 

odd flow and Maruo’s (1967) “flat ship” integral for even flow.  A generalized form of Michell’s 

(1898) integral is provided for high speed slender bodies by implementing a more realistic near 

field condition (Ogilvie, 1975) and a wake trench (Vorus, 2009).  A generalized form of Maruo’s 

(1967) integral has also been developed.  Comparisons of the generalized methods have been 

made with available model test and/or analytical data. 

With this, the concept of the Semihull (Vorus, 2005) is revisited.  Some results are given 

concerning the validity of the Semihull as compared to a traditional displacement ship.  Hull 

form optimization is also explored and the deadrise angle distribution proves to be a major factor 

in calm water hydrodynamic performance. 

 

Keywords: hydrodynamics, semi-planing, semi-displacement, Semihull 
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Introduction 

With the ever present desire for ships and boats to run faster while carrying a greater 

load, a need exists to reduce the drag while simultaneously increasing hydrodynamic lift. 

However, a fully planing vessel may not always be the answer.  For one reason, getting a large 

ship or boat to plane generally requires an unrealistic amount of power.  There are also 

limitations with regards to structural integrity and seakeeping. 

Therefore, a need for semi-planing/semi-displacement hullforms exists for vessels 

between 500 and 3000 tons.  Particular interest has been placed, in recent years, on high-speed 

ferries, littoral combat ships, and high speed yachts.  All are required to carry relatively high 

loads with a general length Froude number range between 0.4 and 1.0.  (Lamb, 2003) 

All surface ships or boats, regardless of size and/or hull form, develop some circulation 

induced lift, and associated drag.  The lift can be either positive or negative and is affected by 

wave making.  The wave drag is always positive.  (Vorus, June 2005) 

 In typical “displacement” ship hulls, hydrodynamic lift is ignored.  The Froude number is 

generally small enough (< 0.3), and the hulls symmetrical enough, that lift can be attributed 

purely to hydrostatics.  The wave drag, which results from displacement effects only, is then 

considered.  This wave drag can be predicted by various methods.  One of which is the Michell-

Kelvin thin ship theory (Michell, 1898) which has been widely studied and said to produce 

reasonably reliable, efficiently computed results.  Michell’s thin ship theory has also produced 

satisfactory results for shapes that would not be considered as “thin”.  (Tuck, 2002) 

The purpose of this dissertation is to develop a hybrid method in which the hydrodynamic 

lift (including gravity effects) is calculated independently of hydrostatic lift and superimposed to 
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result in the total lift developed by the vessel.  Investigations into wave drag and hull form 

optimization are also addressed. 

Newman (1977) presents a linearized two-dimensional theory for flows past lifting foils.  

By linearizing the boundary conditions, Newman is able to separate the velocity potential into 

odd and even functions.  The odd and even functions correspond to two different physical 

problems.  The even function represents the effects of foil thickness while the odd function 

represents the effects of the surface’s camber and angle of attack.  Newman goes on to present 

the linear solution in which the thickness and lifting problems can be separated and solved 

independently.  He does this by using a source distribution for the thickness and a vortex 

distribution for the lift.  The two distributions are then superimposed to arrive at a complete 

solution. 

Vorus (June 2005) proposed the idea of a thin-ship/flat-ship theory for the prediction of 

lift and wave resistance on semi-planing/semi-displacement hull forms.  In his report, Vorus 

showed that the kinematic boundary condition could be separated into odd and even parts.  The 

odd boundary condition, which corresponds to the transverse flow, can be used to predict the 

wave making resistance due to displacement.  The even boundary condition, which corresponds 

to the vertical flow, can be used to predict the dynamic lift and wave making resistance due to 

circulation.  It is this realization that allows one to separate the problem into an odd problem, 

which Vorus solved with Michell’s thin ship theory (Michell, 1898), and into an even problem, 

which Vorus solved using Maruo’s flat ship theory (Maruo, 1967 and Vorus, April 2005).  In his 

work, Vorus presents some preliminary results and makes a comparison between a Hybrid 

Semihull and a Doubly Parabolic hull form.  As this work is just an initial report, Vorus (June 
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2005) still leaves room for further development of the theory and also provides opportunity to 

determine an optimum design. 

Faltinsen and Sun (2007) investigated the significance of gravity on planing vessel 

hydrodynamics by developing a “2D+t” theory.  Of particular interest to Faltinsen and Sun was 

the jet flow and bow spray created where the hull surface interacts with the free surface.  They 

used previously developed schemes to model the jet flow and cut-off the bow spray in order to 

avoid numerical errors due to small contact angle in water re-entry, respectively.  Faltinsen and 

Sun’s method yielded fairly good results for a prismatic hull in terms of generated lift and free 

surface profile form when compared to experimental data of both Savitsky (1964) and Troesch 

(1992).    However, Faltinsen and Sun (2007) admit to having trouble capturing the 3-D effects 

on pressure near the transom stern.  Faltinsen and Sun (2007) justify this inadequacy by 

concluding that there is an infinite pressure gradient at the transom which causes the pressure to 

rapidly decrease to atmospheric pressure.  However, Faltinsen and Sun (2007) developed a semi-

empirical correction to account for this shortcoming.  In the end, Faltinsen and Sun (2007) draw 

three important conclusions to their analysis: 

1.) Gravity effect is negligible forward of the chine wetting position, but it is more 

important when approaching the transom stern. 

2.) Gravity is more important in the case of moderate planing (i.e. “hump” region or 

semi-planing/semi-displacement hulls). 

3.) Gravity influences the hydrodynamic part of the force because it changes the fluid 

flow around the hull and affects the free surface elevation. 

Maruo (1967) presents solutions for “flattish” ships, typical of planing hulls.  In 

particular, he analyzes both the high-aspect ratio (i.e. beam >> length >> draft) and low-aspect 
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ratio (i.e. length >> beam >> draft) cases.  Of particular interest here is the low-aspect ratio case, 

that is, slender ships. Maruo goes on to solve the Laplace equation using the linear free surface 

condition with the fluid velocity normal to the body surface being zero.  In his formulation, 

Maruo develops an integral equation describing the flow around a planing surface.  The kernel of 

Maruo’s integral is highly singular which Maruo admits is a “formidable” task to solve 

generally.  He goes on to make the assumption of very large Froude number and presents an 

explicit solution for a triangular hull surface with no twist (i.e. flat delta hydrofoil).  Maruo’s 

final results for the low-aspect ratio flat ship case indicate that the effect of gravity increases the 

planing lift. 

Tuck (1975) also studied the low-aspect-ratio flat-ship integral equation of Maruo (1967).  

Tuck attempted to overcome the difficulty of Maruo’s singularity by rewriting the equation in 

terms of the stream function.  Tuck goes on to present the results of three waterplanes: blunt, 

delta, cusped.  The “delta” waterplane is of direct comparison to Maruo’s results.  Tuck was able 

to mimic Maruo’s results using his own formulation for large Froude numbers (i.e. ν < 1).  

However, Tuck’s results do not follow a straight line as Maruo’s results do.  Rather, Maruo’s 

curve provides the asymptote for Tuck’s results.  Tuck goes on to mention that he does not seem 

very convinced of the accuracy his results.  This is mainly due to the fact that his formulation is 

predicting negative loadings at certain areas of the “hull” while at lower Froude numbers. Tuck 

also encounters a singularity along the flat keel, which is not physical. Because Tuck’s program 

is so “crude”, he goes on to explain that he cannot determine if the physically unacceptable 

results are due to a breakdown in the theory or numerical errors. 

Cole (1988) provides a solution to Maruo’s low-aspect ratio case with an analytical 

example.  She admits to initially attempting to solve the integral equation for the general case, 
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but came up short of a solution.  However, the results of Cole’s analytical solution do not go 

without merit.  In this solution she discovers that the wave drag is the sum of the spray drag and 

the energy carried away by the vertical flow and free-surface waves. 

Michell (1897) presents a general solution, in the form of an integral, to the wave 

resistance of a “thin” ship moving with uniform velocity in an inviscid liquid.  Michell’s Integral 

has been well known for over a century in the field of theoretical naval architecture.  However, it 

has been only relatively recent that this method, in computational form, has been applied in the 

practical design of actual ships.  Essentially, the only approximation is that the vessel is 

represented by a centerplane distribution of Havelock sources of strength proportional to the hull 

slope.  Michell’s Integral provides usefully reliable results.  The only limitation is that the beam 

is small compared to the length; however, draft is irrelevant. 

Vorus and Taravella (2008) suggest that Michell’s Integral may be insufficient for high 

speed ships.  There are two complications here: with transom sterns the integrated source 

strength does not close, and it must to satisfy continuity; and secondly, the standard Michell’s 

Integral implies effectively a rigid-wall boundary condition on the near field free-surface .   

In the first of these, the source strength deficit is physically in the wake trough in the 

free-surface aft of the transom.  The effect of the wake trough is said to increase the effective 

length of the vessel, thus lowering its wave making resistance.  Approximate modeling is 

employed here by extending the centerplane source panels downstream into the wake.   Vorus 

(March 2009) developed a method for determining the “wake trench” downstream of high-speed 

vessels with blunt transom sterns.  As with much of the other work cited here, the assumption of 

ideal irrotational flow is made and higher order terms are omitted to establish the linear dynamic 

boundary condition.  Point sources are defined on the center plane of the wake trench.  The 
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strengths of sources just aft of the transom are assumed to equal the strength of the sources just 

forward of the transom which can be determined from the Michell thin ship analysis (1898).  A 

spatial step downstream is then presented for determining the remaining source strengths which 

then lead to the length of the trench.  Vorus proceeds by making comparisons to published 

experimental data in which the length of the wake trench nicely compares.  The length of the 

wake trench is important in a wave making resistance analysis because it increases the effective 

length of the vessel, thus decreasing the effective Froude number. 

The second misrepresentation in the Michell’s near field free-surface boundary condition 

is eliminated by reformulating the near field in terms of “slender body” theory, versus “thin body 

theory.”  This was originally completed by Ogilvie (1972).  However, Ogilvie limited his results 

to wedge shaped bodies.  Vorus and Taravella (2008) have developed a general solution based on 

Ogilvie’s (1972) formulation which yields very accurate results for length Froude numbers 

greater than 0.38. 
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1.0 Presentation of Problem 

1.1 Kinematic Boundary Condition 

Consider a general floating body whose cross-section at an axial position x (downstream) 

is depicted in Figure 1.1. 

 

Figure 1.1 – Floating body cross section 

 

The geometry of the floating body can be defined by either of the two surface functions: 

),(0 zxYyFy m±≡           (1.1) 

or 

),(0 yxZzFz −≡           (1.2) 

The plus/minus signs in equation (1.1) imply that a transversely symmetric hull is assumed so 

that Y0 is an odd function with respect to y = 0. 
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The unit normal vector can be written for either equation (1.1) or (1.2) as 

F

F
n

∇

∇
= r

r
r

           (1.3) 

for F either Fy or Fz. 

The kinematic boundary condition on the body surface in the coordinate system 

translating with vessel speed U is: 

0=⋅ nV
rr

 on F = 0         (1.4) 

with 

kwjviuUV
rrrr

+++= )(          (1.5) 

Equations (1.4) and (1.5) along with (1.1) and (1.2) can be combined such that two alternative, 

but equivalent, kinematic boundary conditions exist. 

From equations (1.1) and (1.5), we obtain 

0)(),,( 000 =+± zx wYYuUzYxv mm   on Fy = 0      (1.6) 

From equations (1.2) and (1.5), we obtain 

0)( 00 =+− yx vZZuUw m   on Fz = 0      (1.7) 

Since both (1.6) and (1.7) equal zero, they are equal to each other and can be superimposed to 

produce yet a third form of the kinematic boundary condition: 
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zx YzYxwYzYxuUzYxv 00000 ),,()],,([),,( mm +±       

 0),,()],,([),,( 00000 =+−+ yx ZZyxvZZyxuUZyxw m     (1.8) 

where, from Figure 1.1: lx ≤≤0 , )(0 xby ≤≤ , 0)( ≤≤− zxd     (1.9) 

Provided the sum of the terms in equation (1.8) is collectively zero for all x, y, and z 

specified by (1.9), the kinematic condition of zero normal flow on the body surface is achieved.  

Note that equation (1.8) is a linear sum of terms that are either odd or even in y about the vertical 

centerplane.  Equation (1.8) can therefore be re-separated into groups of even and odd terms, 

with both groups equal to zero. 

0),,(),,()],,([),,( 0000000 =+± yzx ZZyxvYzYxwYzYxuUzYxv mmm    (1.10) 

0)],,([),,( 000 =+− xZZyxuUZyxw         (1.11) 

Now, neither equation (1.10) nor (1.11) correspond to zero normal flow on the body boundary, 

but their sum, equation (1.8), does. 

The evenness and oddness of the groups of terms constituting equations (1.10) and (1.11) 

is now exploited in producing approximate solutions in the same general way as the 

superposition used with linearized hydrofoil theory (Newman, 1977).  Recall that the section 

thickness offset is an odd function with respect to the meanline and the meanline camber is even.  

This characteristic reduces the solution to a superposition of independent solutions for a 

symmetric thickness form, producing an odd transverse flow with no lift, is in terms of sources, 

and the even camberline flow, which produces lift, is in terms of vortices. (Vorus, June 2005) 
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In order to produce a similar superimposed flow solution for the ship hull case, it is first 

necessary to linearize equations (1.10) and (1.11).  We do this by assuming the velocity 

unknowns, as well as the geometry offsets and derivatives in (1.10) and (1.11) are small.  

Discarding the products and satisfying the resulting conditions on Y0 and Z0 = 0, respectively, 

gives: 

0),(),0,( 0 =± zxUYzxv xm          (1.12) 

0),()0,,( 0 =− yxUZyxw x          (1.13) 

Equations (1.12) and (1.13) are the standard linearized kinematic boundary conditions for two 

well known approximate solutions: the odd condition, equation (1.12), corresponds to a sheet of 

sources, q(x,z), on the vertical hull centerplane, and the even condition, equation (1.13), 

corresponds to a sheet of transverse (or axial) vortices, γ(x,y), on the undisturbed waterplane.  

The sources produce a transverse displacement flow without circulation and lift, and the vortices 

produce a purely lifting flow with circulation. 

The first order free-surface boundary condition, similarly linearized, accompanies both 

equations (1.12) and (1.13). 

0)0,,()0,,( 2 =+ yxuUyxgw x         (1.14) 

where g is the gravitational constant. 

Adding a condition of no waves propagated upstream, equations (1.12) and (1.14) 

generate “Michell’s Integral” (Michell, 1898), (Tuck, 1987) for thin ship wave resistance, and 
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equations (1.13) and (1.14) correspond to Maruo’s “flat ship” theory for planing (Maruo, 1967), 

(Vorus, 2005), (Vorus and Taravella, 2009). 

1.2 Solution Coupling 

The solutions to these two ideal flow boundary-value problems are to be superimposed 

according to the separation at equation (1.8).  The model is therefore that of a slender ship which 

is both thin, equation (1.12), and also flat, equation (1.13).  The schematic model “T” cross-

section is depicted on Figure 1.2. 

 

Figure 1.2 – Thin/Flat slender ship model (Sources and Vortices) 

 

Coupling of the thickness, q(x,z), and lifting, γ(x,y), elements of this composite model 

must be addressed.  The transverse vortices produce no transverse normal velocities, v, on the 

centerplane, so that q can be determined independently of γy.  However, in general, the sources 

do produce a vertical normal velocity component on the waterplane. 
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2.0 Odd Flow 

The wave resistance due to the odd flow can be addressed by using a form of the once 

forgotten “Michell’s Integral” (Michell, 1898).  Michell’s integral provides a solution for the 

wave resistance of a thin-body (i.e. small beam).   

Michell’s integral along with equations (1.12) and (1.14) is straight forward.  The 

standard models consist of a centerplane of source panels as depicted in Figure 2.1.  The 

gradients in z are considered small relative to those in x and y, with the result (dimensionless on 

U): 

);(2);0,(2);( zxhzxvzxq x==         (2.1) 

 

Figure 2.1 –Source Panel Arrangement for Michell’s Integral Computation (no wake 

shown) 

 

Michell’s integral for wave resistance is formulated as: 

( ) λ
λ

λ
π

κρ

λ

dQP
U

Dw

22

1
2

222

1
+

−
= ∫

∞

=

       (2.2) 

where Dw is the wave drag and κ is the wave number (i.e. κ ≡ g/U
2
).  P and Q are defined as: 

∫ ∫
= =

=+
L

x

xd

z

xiz

x dxdzeehiQP
0

)(

0

2

2 λκλκ         (2.3) 
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The double integral of equation (2.3) can easily be executed analytically if one assumes that the 

source strength is constant on a given hull panel shown in Figure 2.1.  Further, the integral of 

equation (2.2) can easily be computed numerically for general hull forms. 

 

Model 1846B Wave Resistance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6

Fn

C
w

Model Test

Michell (1898)

 

Figure 2.2 – Comparison of Wave Resistance for 1846B Model Test to Michell’s (1898) 

Integral (Ogilvie, 1969) 

 

 Although Michell’s integral (Michell, 1898) seems rather crude, the accuracy when 

compared to model tests, as in Figure 2.2, is not bad at low speeds (Fn < 0.3) and can provide 

similar results to most available CFD codes (which were not available to Michell) in a fraction of 

the computational time and effort.  Since Michell’s (1898) work, other authors including Tuck 

(1975); Tuck, Scullen and Lazauskas (2000) and (2002); and Vorus and Taravella (2008), to 

name a few, have expanded his work to address multi-hull vessels and high speed vessels.  The 

work of Vorus and Taravella (2008) is presented herein. 
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2.1 Near Field Slender Body Theory 

As can be seen from Figure 2.2, Michell’s (1898) integral underestimates wave resistance 

at high speeds.  While Michell’s (1898) integral provides decent results for far field wave 

resistance, he does not address the influence of the near field flow.  Although not explicitly 

stated by Michell (1898), further investigation by Vorus and Taravella (2008) led to the 

discovery that Michell’s integral mimics the low speed free surface condition (transverse flow 

only-the free surface acts like a rigid wall) in the near field.  The typical high speed free-surface 

condition (vertical flow only) was also investigated by Vorus and Taravella (2008), and it 

generated results that grossly overestimated model test results for wave resistance for the speed 

range of interest.  (The latter results are presented in section 2.3 of this work.)  It was therefore 

deemed necessary to develop a more accurate slender body method for the speed range of 

interest. 

Ogilvie (1972) investigated a boundary element method for slender ships.  In his method, 

Ogilvie recognized that near a slender ship’s bow, rates of change of flow variables should be 

greater than those usually assumed by slender body theory.  Ogilvie’s result is still a slender 

body theory in that the rates of change in the near field are much greater in the transverse 

direction than in the longitudinal direction; however, the difference in order of magnitude 

between them is less than the usual slender body assumptions. 
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Figure 2.3 – Boundary conditions for the first approximation: (a) General body, (b) Thin 

body (Ogilvie, 1972) 

 

From the thin body boundary conditions in Figure 2.3, an expression for the velocity 

potential was developed in Ogilvie (1972), equation 1 as: 

∫∫ −+−






−−++=
−

)(

0

0

)(

)ln(),()ln(),(Re),,(

xH

x

xH

x diizyxb
U

diizyxb
U

zyx ζζζ
π

ζζζ
π

φ  

 




+−
− ∫

∞

∞−

η
η

ηψ
π

d
izy

x

i )(

),(1
        (2.4) 

where the third integral is a velocity potential for any other source distribution which induces no 

net normal velocity component on y = 0 and –H(x) < z < 0.  ψ is a linear auxiliary function. 

2.1.1 Mathematical Formulation 

The y and z components of velocity are found as: 
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In order to satisfy the boundary condition on y = ±0, it is required that 

),(),( yxyx −=ψψ           (2.6) 

Ogilvie (1972) also found that by approaching the plane of the undisturbed free surface 

from below, we have 

{ } ),(),,(
0

lim
zxzyx

z
ψφ =

↑
         (2.7) 

In equation (2.4), the first two integrals represent the flow due to a line of 2-D sources on 

the negative z axis and a line of sinks symmetrically located on the positive z axis.  Alone, these 

two integrals result in the general high speed free-surface boundary condition—only vertical 

flow at the plane of the undisturbed free surface.  The third integral, however, represents a flow 

with both vertical and horizontal components at the plane z = 0. 

Substituting the above potential function into the free surface condition, we get: 
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The task at hand is to solve equation (2.8) for ψ(x,η), then use the result in equation (2.4). 

Ogilvie (1972) generated a solution for a particular hull form—wedge-like bodies.  

However, it is of interest of this work to utilize a general solution. 

Vorus and Taravella (2008) developed a general solution to Ogilvie’s (1972) formulation 

using the formulation in this section along with the integral formulation of Appendix A.  The 

Fourier transformed equation for auxiliary function ψ(x,y), from equation (2.8) is generalized as: 
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We can solve the y integral of equation (2.9) by defining  
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From integral formula 3.723.2 of Gradshteyn and Ryzhik (2000): 
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Therefore, from equation (2.9): 
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We can now solve this ordinary differential equation and take the inverse transform. 

The homogeneous solution of equation (2.12) becomes: 
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Generate the particular solution by Variation of Parameters as in Hildebrand (1976): 
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xxu lκcos)(1 =           (2.15) 

xxu lκsin)(2 =           (2.16) 

Such that equation (2.14) becomes 
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By taking the Wronskian, W, 
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we can generate the particular solution as: 
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Where from equation (2.12): 
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In equation (2.19), assume no wave ahead of the bow x = 0.  This gives: 

[ ]
[ ]

ξ
ξξ

ξξξ
ψ

ξ

d
uuW

xuuxuuh
x

x

∫
=

−
=

0 21

1221*

)(),(

)()()()()(
),( l       (2.21) 

Substitute equations (2.15), (2.16), (2.18) and (2.20) into equation (2.21): 
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The inverse transform is a cosine since the integrand is even in l . 
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Make the change of variable 2
s=l  
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Using the integral formulation of Appendix A and making a change of variable from y to η, 

equation (2.24) becomes  
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where I(x,ξ,η,ζ) can be determined from equation (A5). 
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For utilization in equation (2.5), it is necessary to take the derivative of equation (2.25) 

with respect to η. 
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Here, 
η

ζηξ
d

xdI ),,,(
 can be determined from equation (A6) of Appendix A. 
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2.1.2 Numerical Analysis 

Recall equation (2.5) and the body boundary condition, 
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and assume the source strengths on the right hand side as unknown, q, such that equation (2.27) 

becomes 
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and 
η

ζηξ
d

xdI ),,,(
 can be determined from equation (A6) of Appendix A. 

We can now change the limits of the second integral of equation (2.30) such that we are 

integrating over the wetted hull. 
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Factoring, we have 
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We can now discretize the length of the hull (or hull and wake trench) by Nx and the draft 

at each nx by Nz.  The discretization is as follows: 

1) The z-axis is divided into Nz elements with ∆z = 1/Nz 

2) The j = 1, Nz points (ζ-pts) at the element centers are the locations of the sources. 

3) The k = 1, Nz points (z-pts) at the element centers are Nz field points where the 

kinematic boundary condition is satisfied. 

Following this discretization, equation (2.33) becomes: 
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Rearranging terms, we have 
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         for j = 1 to Nz  (2.36) 

Now, this set of linear equations can be solved for qnxjk which is the near field source 

strength (for slender ships with a wake trench) which can be used in a modified version of 

Michell’s Integral.  Equation (2.36) should be executed along the x-axis starting at the bow, nx = 

1, to the stern (or end of wake trench), nx = Nx.  It is important to note that there is an upstream 

dependence in the Iψnx term, equation (2.35).  It is this upstream dependence that makes it 

necessary to resort to the modified Michell’s Integral of section 2.3 for slender vessels with a 

wake trench. 

 While ships without a wake trench are not of interest for this work, it is worth mentioning 

that the generalized Ogilvie (1972) formulation of Vorus and Taravella (2008) can also be used 

to directly calculate the wave resistance for those vessels with closed sterns.  Once the source 

strengths are determined from equation (2.36), the total velocity potential can be approximated 

by parallel flow superimposed by the residual flow from equation (2.4).  The velocity field can 

then be determined, and Bernoulli’s equation can then be used to calculate the hull surface 

pressure.  Integration of the hull surface pressure over the hull surface will result in the wave 

resistance. 
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2.2 Wake Trench 

Vorus (March 2009) developed a wake trench analysis that can be used directly with the 

modified Michell Integral of section 2.3.  
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Figure 2.4 – Wake trench geometry 

 

By using the typical assumption of ideal irrotational flow, a linear boundary condition 

and a sheet of sources on the centerplane of the wake trench, Vorus arrived at the following 

equation: 
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  (2.37) 

Equation (2.37) is discretized along the x-axis and solved in a spatial stepping manner.  The 

length of the wake trench is when the trench depth at a given x position (Txi) approaches zero. 

The results of Vorus’ analysis as presented in Figure 2.5 compare very well with those of 

experiments performed by Doctors and Beck (2005). 
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Figure 2.5 - Wake Trench Depth Versus Length for Fnb = 3.0, Calculations and 

Experimental Envelope (Vorus, March 2009) 

 

2.3 High Speed Michell’s Integral 

After determining the strengths of the sources of the hull as outlined in section 2.1, these 

sources are collapsed to the centerplane.  It is necessary to revert back to Michell’s integral 

instead of using Ogilvie’s (1972) formulation exclusively because of the wake trench.  Since 

Ogilvie’s formulation is a downstream stepping sequence, the downstream effects do not reflect 

upstream.  Therefore, the effects of the wake trench are not properly ordered. The hull 

centerplane source strengths are used in conjunction with the centerplane source strength of the 

wake trench to determine the drag on the hull due to centerplane wave making sources. 

The generalized Michell’s integral thus becomes: 
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P, Q, P1 and Q1 are defined as: 
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where Lw in equation (2.40) is the wake trench length discussed in section 2.2.  

2.4 Results 

 The results for wave resistance using the high-speed formulation of sections 2.1 and 2.3 

were calculated and compared to model test data for models 1846B and N43 as shown in 

Appendix B.  The model test data was obtained from Ogilvie (1969).  Since these models have 

closed sterns, as typical of most displacement hulls, the wake trench was not considered.  The 

wake trench will be considered in later analysis for semi-planing/semi-displacment hull forms in 

which a transom stern does exist. 

 Both models used in the calculations, 1846B and N43, have a length of 16 ft, beam of 1.5 

ft and a draft of 1 ft.  A discretization of 20 x 20 was chosen and deemed to give very reliable 

results.  It is noted that increasing the discretization significantly increases the calculation time.  

This has been attributed to the “infinite” summation of equation (2.36) required for each 

centerplane panel which has to be handled numerically in the code. 

 



 

25 

Model 1846B Wave Resistance
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Figure 2.6 – Comparison of wave resistance calculations from Michell (1898) and 

Vorus/Taravella (2008) to model test data (Ogilvie, 1969) for Model 1846B 

 

 As can be seen from Figures 2.6 and 2.7, the method originally presented by Ogilvie 

(1972) and generalized by Vorus and Taravella (2008) yields excellent results for Froude 

numbers greater than 0.38 for these particular hull forms.  This Froude number range and length-

to-beam ratio used in the analysis above is directly applicable to the hull forms being studied in 

this work.   
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Model N43 Wave Resistance
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Figure 2.7 – Comparison of wave resistance calculations from Michell (1898) and 

Vorus/Taravella (2008) to model test data (Ogilvie, 1969) for Model N43 

 

It is also noted that at low Froude numbers, the results of Vorus and Taravella (2008) 

seem to oscillate heavily.  By comparison to the results of Michell’s integral (1898), it is deemed 

that these oscillations are the result of the far-field wave formulation and not the formulation of 

the near field as presented in section 2.1.  The influence of the near field formulation seems to 

slightly increase the results of Michell’s integral. 

 In addition to the formulation of section 2.1 and 2.3 for determining the source strength, 

Vorus and Taravella (2008) also investigated the use of the typical high-speed near field free-

surface condition which states that flow only exists in the vertical direction across the z = 0 

plane.  This was done in an effort to save computational time while still using the typical high 

speed free surface boundary condition, and it was accomplished by placing negative images of 
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the centerplane sources above the waterline.  The results of this analysis, as shown in Figure 2.8, 

grossly over-estimated the wave making resistance and were deemed as not satisfactory for the 

speed range of interest.   
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Figure 2.8 – Comparison of Wave Resistance for 1846B Model Test to Michell’s (1898) 

Integral with High Speed Free-Surface Condition (Vorus/Taravella, 2008) 

 

 

 



 

28 

3.0 Even Flow 

When the lift of a vessel exhibits significant dynamic lift (as is the case for full planing or 

semi-planing/semi-displacement hull forms) fluid sources alone are not applicable.  Either 

vortices or doublets are needed to capture the circulation processes. 

Maruo’s (1967) integral is based on ideal flow theory and represents a solution to the 

Laplace equation for a velocity potential, subject to the linearized free surface boundary 

condition, with gravity included, and a radiation condition of no waves far upstream. 

Referring to Figure 3.1, x is positive downstream with the coordinate system located at 

the bow and z is positive up.  The planing surface is considered to occupy the region of the z = 0 

plane corresponding to )()( xYyxY ≤≤−  and Lx ≤≤0 .  The kinematic boundary condition is 

satisfied on the surface, z = 0.  The Maruo theory can therefore be considered a “flat ship” theory 

(Tuck, 1975), in the same sense that Michell’s integral is called “thin ship” theory. 

 

Figure 3.1 – Coordinate system and nomenclature for even flow problem 
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Maruo reduces his general formulation in the limits of high and low aspect ratio to “thin” 

and “slender” bodies, respectively.  It is the slender body formulation of interest here due to its 

applicability to planing, or semi-planing, craft.  The craft must therefore have wetted geometry 

that can be characterized as both “flat and slender.” 

3.1 Slender Body Theory and Formulation 

The basis for slender body theory is that the gradients of both the body geometry and the 

flow variables are larger in cross sectional dimensions (y and z) than in x.  For consistency of 

order of magnitudes of the terms retained in the linearized free-surface boundary condition, it is 

also required that the Froude number, Fn, be large on the order of the square-root of length-to-

beam ratio.  This leads to slender body equations that are parabolic in x and elliptic in the cross-

sectional dimensions y and z. 

The Maruo integral for slender planing surface is from Maruo (1967), equation 55: 
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y −−−=Φ ∫ ∫ ∫
−= =

∞

=

coscos),(
1

),,(

)(

)( 0 0

      (3.1) 

Here, referring to Figure 3.1, Φ is the velocity potential in the fluid region z ≤ 0.  γy is the unknown 

transverse (y-directed) vortex density component on the planing surface.  The companion axial vortex 

density component, γx, is the usual subject of the conventional zero gravity slender body formulation of 

planing, but the two components are related by the condition of zero divergence of the two dimensional 

surface vector. 

κ in equation (3.1) is the wave number 2/Ug≡κ  and is present from the derivation of equation 

(3.1) in satisfying the linearized free surface boundary condition, allowing for gravity wave generation. 
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Note from equation (3.1) that only the sections at ξ < x upstream convect into the current x-

solution section; γy for ξ < x will always be known from upstream computation steps.  This x-marching 

characteristic of elliptic solutions in the y-coordinate system is common to the parabolic reduction in x 

associated with all slender body theories. 

The linearized kinematic boundary condition on the z = 0 planing surface is: 

x

z
U

z ∂

∂
=

∂
Φ∂ 0  on z = 0, -Y(x) ≤ x ≤ Y(x), 0 ≤ x ≤ L      (3.2) 

Here, z0(x,y) is the definition of the planing surface 0),(0 =− yxzz , which is presumed to be known. 

Non-dimensionalize velocities on U and dimensions on the transom chine-half-beam Ych, and 

denote derivatives by subscripts.  Equation (3.2) with equation (3.1) becomes: 
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0    (3.3) 

on z = 0.  With this non-dimensionalization, the Froude number appearing in equation (3.3) is: 

ch

n
gY

U
F ≡            (3.4) 

Since the boundary conditions are being satisfied on the z = 0 plane, z is set to zero in equation 

(3.3).  However, while the resulting equation can then be integrated in terms of special functions, a non-

obvious essential singularity results in the 2-D sectional-y solutions that produces non-convergent 

results.  Maruo (1967) very indirectly implied recognition of this difficulty in his general formulation.  

Later, Tuck (1975), pursued Maruo’s integral equation.  Tuck recognized the singularity problem and 

showed it very succinctly, but was still not satisfied that he had dealt with it effectively in achieving 

stable, convergent numerical predictions.  Vorus (April 2005) developed a general solution but admitted 

to needing further development.  Later, Vorus and Taravella (2008) further refined the procedure which 

is derived below. 
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3.1.1 Mathematical Formulation 

Redefine η and y of equation (3.1) as dimensionless on Y(x) in order to create a 

rectangular grid: 
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Redefine λ as ν (x) = Y(x)λ.  Then, equation (3.5) becomes: 
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Integrate piecewise in ξ over the currently active nx elements; Nxnx ≤ : 
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The x, ξ discretization is numbered with element i bounded by points i and i+1 and x1 = 0.  nx 

elements gives the terminal point as i = nx+1.  By definition of the derivative: 
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Take the limit as iξ∆  goes to zero: 
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With substitution, equation (3.7) becomes: 
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Where ( )1
2

1
++= iii ξξξ  and with 1+≡ nxx ξ  equation (3.10) becomes: 
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Now redefine the solution argument as:  

2

i

yii
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≡∆ γξ            (3.12) 

The argument of the cosine in the first term of equation (3.11) is small such that equations (3.11) 

and (3.12) are: 
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Exchange differentiation in y for differentiation in η: 
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Use Maruo’s (1967) improper integral definition:  
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(Here )(cos η±∞
∞−

ye Y

z

is taken as zero for arbitrarily small z). 
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Equation (3.14) can be written with variable change 2ζν =  in the 2
nd

 integral of 

equation (3.14): 
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where:  η
ξ
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−

= ya
xYF

x
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i
i ,

)(2
                     

 The ζ-integral in equation (3.16) can be performed using integral formula 3.851.2 of 

Gradshteyn and Ryzhik (2000): 
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where C and S are Fresnel integrals for sine and cosine (Abramowitz and Stegun, 1964), 

respectively. 

Return to equation (3.16): 
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where the circulation at x: )()(

1

yGyG
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i

inx ∑
=

∆= .    
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Note that for the infinite Fn case, bi = 0 in equation (3.18) and the first two terms coalesce 

to: 
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In equation (3.18), using the product rule: 

[ ])()(
)(

)(
)(

)( ηη
ηη

η
η

η
η

η FG
G

F
F

G i
i

i ∆
∂
∂

+
∂

∆∂
−=

∂
∂

∆      (3.20) 

with )(2 ηγ
η xi

iG
∆≡
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, which is the complimentary axial vortex density distribution at i. 

Further, 
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since Gi(1) = ∆Gi(-1)  = 0 by definition of the circulation. 

Equation (3.18) becomes: 
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For convenience, in later numerical analysis, collapse equation (3.22) with the field 

points on the positive axis.  
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Using the following integral formulas from Mathematica (2008): 
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equation (3.24) becomes 

∑ ∫∫
−

= == 














+
−

−
∆+









+
−

−
∆=

1

1

1

0

1

0

0

11
)(

111
)(

1
)(),(

nx

i

ixnxxx d
yy

d
yy

xYyxz η
ηη

ηγ
π

η
ηη

ηγ
π ηη

  

































−
−
















−















−
∆−

+
=
∑

j

i

j

i

Ny

j
j

i

jxi

y

b
S

y

b
S

y

b
C

ηηη
ηγπ

1
1

)(2  

 

































−
−
















−















−
∆+

+
=
∑

j

i

j

i

Ny

j
j

i

jxi

y

b
C

y

b
C

y

b
S

ηηη
ηγπ

1
1

)(2  

































+
−
















+















+
∆−

+
=
∑

j

i

j

i

Ny

j
j

i

jxi

y

b
S

y

b
S

y

b
C

ηηη
ηγπ

1
1

)(2  









































+
−
















+















+
∆+

+
=
∑

j

i

j

i
Ny

j
j

i

jxi

y

b
C

y

b
C

y

b
S

ηηη
ηγπ

1
1

)(2    (3.28) 

with 
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3.1.2 Numerical Analysis 

Considering that all of the xiγ∆  for nxi <  are known from upstream steps, write 

equation (3.28) for solution as: 

)(
11

)(
1

)(),( 1

1

0

0 yRd
yy

xYyxz nxnxxx −

=

+








+
−

−
∆= ∫ η

ηη
ηγ

π η

     (3.30) 

with: 

∑ ∫
−

= =

−















+
−

−
∆=

1

1

1

0

1

11
)(

1
)(

nx

i

ixnx d
yy

yR η
ηη

ηγ
π η

  

































−
−
















−















−
∆−

+
=
∑

j

i

j

i
Ny

j
j

i

jxi

y

b
S

y

b
S

y

b
C

ηηη
ηγπ

1
1

)(2  

 

































−
−
















−















−
∆+

+
=
∑

j

i

j

i
Ny

j
j

i

jxi

y

b
C

y

b
C

y

b
S

ηηη
ηγπ

1
1

)(2  

































+
−
















+















+
∆−

+
=
∑

j

i

j

i
Ny

j
j

i

jxi

y

b
S

y

b
S

y

b
C

ηηη
ηγπ

1
1

)(2  









































+
−
















+















+
∆+

+
=
∑

j

i

j

i
Ny

j
j

i

jxi

y

b
C

y

b
C

y

b
S

ηηη
ηγπ

1
1

)(2    (3.31) 

From equation (3.30): 

xkxnxkkj zC 0=∆γ           (3.32) 

The discretization is as follows: 

1)  The positive-side axis is divided into Ny elements with ∆y = 1/Ny. 
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2)  The j = 1, Ny points (η-pts) at the element ends, excluding the origin, are the locations of 

point vortices jxijxij y∆∆=∆Γ γ2  

3)  The k = 1, Ny points (y-pts) at the element centers are Ny field points where the kinematic 

boundary condition is satisfied. 
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The point vortices are of strength l∆∆=∆Γ jnxjnx ,, 2 γ  where Ny/1=∆l .  From equation (3.30): 
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Equation (3.33) is inverted for the point vortices with spreading back to vortex 

distribution by: 
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l∆

∆Γ
=∆ jnx

jnx
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,2 γ           (3.36) 

With γx(x, y) now known, γy(x, y) can be determined by: 
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The Bernoulli equation can now be used to give the planing surface pressure. 
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Linearize equation (3.38) and evaluate the result on z = 0. 

),(),( yxUuyxp ρ−=   on z = 0       (3.39) 

The coefficient of pressure difference across the surface is then: 
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Substitute equation (3.39) into equation (3.40): 
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Considering all velocity quantities henceforth dimensionless on U, u(x,y) is written on the 

planing surface in terms of vortex strength γy as: 

),(),( yxyxu yγ−=           (3.42) 

The pressure coefficient is given in terms of equation (3.41), is then just: 

),(2),( yxyxC yp γ=           (3.43) 

The sectional lift coefficient is given in terms of equation (3.43) as: 
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The total lift coefficient is: 
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The sectional drag is the sectional integral of the axial projection of the surface pressure: 
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The total drag coefficient is: 
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3.2 Results 

The general formulation of the Maruo theory has been applied to a body whose projection 

on the z = 0 plane is a flat delta foil.  It is applied to a low-aspect ration foil with a length-to-

beam ratio of five as has been done on two previous occasions: Maruo (1967) and Tuck (1975).  

The triangular planing plate (or delta plate), Figure 3.2, therefore serves as a comparative basis 

for checking the general slender-body planing theory formulated in Section 3.1. 

 

Figure 3.2 – Flat delta planing plate test model 
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Maruo (1967) never actually solved his integral equation; he said it was too difficult.  

Instead, Maruo produced an asymptotic approximation by requiring the Froude number to be 

very high: )1(
1

O
Y

L

F chn

= .  This allowed Maruo to substitute the infinite Froude number 

solution, γΙy(x, y), by equation (3.19), with the full kernel of equation (3.3) to calculate the 

correction for wave effects. 

Tuck (1975) did solve the full equation numerically, but he was pessimistic about his 

numerical analysis being poorly conditioned due to the higher order singular behavior in y.  That 

appears to have led to some questionable predictions by Tuck (by his own admission).   

As can be seen in Figures 3.3 through 3.5, Vorus and Taravella’s (2009) general solution 

yields results comparable to Maruo (1967) and Tuck’s (1975) for the flat delta foil.  Variations of 

discretization were investigated by Xie (2005), who mentioned that Tuck (1975) and various 

others that attempted a solution to this problem required a coarse discretization in the transverse 

direction (i.e. limited to using less than five or six buttock lines).  Xie (2005) noted that this is 

not due to the singularity in the problem, as was claimed by Maruo (1967), Tuck (1975) and 

Cole (1988).  Rather it is due to the numerical accuracy (or lack thereof) of the methods used.  

Xie (2005) also mentioned that discretization, in these cases, should be chosen with speed in 

mind.  It is noted that in his computed results, Tuck’s (1975) finest grid is 20 by 20.  It appears 

that Tuck (1975) did indeed use a coarser grid for lower speeds as Xie (2005) claimed, but the 

exact values of Nx and Ny are not evident for all of the cases presented.  

With this in mind, Vorus and Taravella (2009) investigated the effects of the 

discretization on the numerical results.  The results of their analysis are compared to Maruo 

(1967) and Tuck’s (1975) results in Figures 3.3 to 3.6 for the delta plate.   
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For their numerical analysis, Vorus and Taravella (2009) chose to perform computations 

for the delta plate with a length to half-beam ratio (L/Ych) of 10 and a unit angle of attack (α = 1 

radian).  Variations of the results are plotted for 60 ≤ Nx ≤ 100 and 10 ≤ Ny ≤ 30.   

Figures 3.3 to 3.6 depicts the lift of the flat delta plate, scaled with respect to the zero 

gravity limit, and plotted against BUgL 22 /=ν . As can be easily seen from these figures, Vorus 

and Taravella’s (2009) results compare quite nicely with Maruo (1967) and Tuck (1975).  A 

close look at the curve of Vorus and Taravella (2009) shows that the slope of the lift curve as 

Froude number approaches infinity is zero.  This result is physically realistic.  It is not seen in the 

results of Maruo (1967) or Tuck (1975) to their order of approximation. 

Figures 3.3 to 3.5 depict the affect of the selection of transverse discretization (i.e. Ny) on 

the results of Vorus and Taravella’s (2009) general solution.  For the plan forms studied, 

convergence was achieved around Ny = 30.  However, when considering computational time, 

numerical accuracy (as compared to Maruo), and the pressure distribution analysis, Ny = 20 

seems to offer the best results for this test case.   

The results for Ny = 20 predicts about 2% less computed lift as opposed to the converged 

solution at Ny = 30.  This is done at a fraction of the computational time.  For Ny = 20, the 

algorithm has to solve a 20 x 20 system of linear equations for every station as opposed to a 30 x 

30 or greater system of linear equations for every station.  This cuts the computational time 

significantly.  As will be discussed later, the pressure distributions begin to oscillate wildly for 

larger Ny.   



 

43 

Delta Plate, Nx = 100
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Figure 3.3 – Comparison of Vorus-Taravella’s (2009) general solution with Nx = 100 to 

Maruo (1967) and Tuck (1975) for delta plate 

 

Delta Plate, Nx = 80
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Figure 3.4 – Comparison of Vorus-Taravella’s (2009) general solution with Nx = 80 to 

Maruo (1967) and Tuck (1975) for delta plate 
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Delta Plate, Nx = 60
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Figure 3.5 – Comparison of Vorus-Taravella’s (2009) general solution with Nx = 60 to 

Maruo (1967) and Tuck (1975) for delta plate 

 

 Figure 3.6 depicts the results for varying Nx.  The general solution presented in Section 

3.1 is not nearly as sensitive to Nx as it is to Ny.  As can be seen in the figure below, cutting the 

x-discretization nearly in half minimally affects the results. 
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Delta Plate, Ny = 20
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Figure 3.6 – Comparison of Vorus-Taravella’s (2009) general solution with Ny = 20 to 

Maruo (1967) and Tuck (1975) for delta plate 

 

 

Tuck’s (1975) transverse pressure distributions indicate a centerplane singularity as 

Froude number decreases.  He admitted to having numerical difficulty in this area, but he 

attributes this sharp pressure peak to the existence of a leading-edge spray sheet. Tuck’s (1975) 

lack of confidence in his results, however, was mostly because he was calculating a negative 

pressure at the chine which implies a negative infinity in the pressure.  Tuck claimed that this 

singularity seems not to be present in the physical problem.   

The present pressure distribution results (Vorus and Taravella 2009) for the delta planing 

foil are shown in Figures 3.7 and 3.8.  While the results indicate that gravity does have an effect 

on the centerline distribution at relatively low Froude numbers, they do not indicate that a 

centerline singularity is present as in Tuck (1975).  Recall, that the infinite Froude number (zero 

gravity) distribution in y are semi-elliptical.  There are also no negative edge loadings.  It is 

noted, however, that when the y-discretization is increased beyond, say, Ny > 25, the transverse 
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pressure distributions begin to oscillate wildly, especially near the transom.  While increasing Ny 

seems to offer the best comparison to Maruo’s (1967) results in regards to total lift, increasing 

the Ny discretization predicts some unrealistic pressure distributions. 

From Figure 3.7, one can see that the elliptical infinite Froude number (or zero gravity 

solution) is evident at the bow.  The distributions depicted here do not become erratic in the first 

few stations as Tuck (1975) suggested occurred in his analysis.  Rather, the oscillations slowly 

develop toward the transom while a zero pressure gradient is maintained across the centerplane 

of the vessel.  Tuck (1975) computed a pressure singularity at the centerplane which he attributed 

to leading edge spray drag, but Tuck also mentions that this could be the result of inaccuracies of 

his program.  This phenomenon is not evident in Vorus and Taravella’s (2009) results presented 

below. 

Transverse Pressure Distribution for Delta Plate 

(Nx=60, Ny=20)
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Figure 3.7 – Transverse pressure distribution at quarter stations for delta plate at νννν = 1.25 

(Nx = 60, Ny = 20) 
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Trailing Edge Pressure Distribution for Delta Plate 

(Nx=60, Ny=20)
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Figure 3.8 – Trailing edge pressure distribution at various νννν for delta plate (Nx = 60, Ny = 

20) 

 

The oscillations seen in the pressure distributions above have been discussed by many 

authors in the past.  Maruo (1967) claimed that the integral equation for low-aspect ratio lifting 

bodies is highly singular and will cause analytical and numerical difficulty.  Tuck (1975) never 

seemed satisfied with his routine or results.  He also agreed with Maruo that the equation was 

singular and he did offer some possible suggestions for addressing the singularity.  Whether or 

not Tuck pursued these methods is unknown.  Tuck (1975) also suggested that the oscillations in 

the pressure distribution are the result of short diverging waves and not entirely a numerical 

anomaly.   Xie (2005) suggests that Tuck’s (1975) problems were the result of numerical 

accuracy of his computer code, especially near the singularity, and not due to the theoretical 

formulation.   
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Vorus and Taravella (2009) believe that the oscillation of the pressure distribution is the 

result of physics as opposed to numerical accuracy.  The singularity often discussed has been 

somewhat eliminated by integral equations (3.26) and (3.27).  While the argument of the Fresnel 

integrals may be still be singular, both the sine and cosine Fresnel integrals approach 1/2 as the 

argument approaches infinity.  Therefore, there is a limit.  It is believed that the pressure 

oscillations can be initially attributed to the diverging wave system and exasperated by the 

numerical accuracy of the routine. 

 

Lift Distribution for Detla Plate (Nx=60, Ny=20)
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Figure 3.9 – Sectional lift coefficient distributions at various νννν for delta plate (Nx = 60, Ny = 

20) 
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In addition to the triangular waterplane, Tuck (1975) also presented results for a cusped 

waterplane.  This waterplane is defined as: 

2

2
)( x

L

Y
xy ch 








=           (3.48) 

and is depicted in Figure 3.10. 

 

Figure 3.10 – Cusped planing plate test model 

 

For further analysis and discussion, Vorus and Taravella (2009) also computed results for the 

cusped plate (of similar dimensions as the delta plate) using the general solution presented in 

section 3.1.  These results were also compared to Tuck’s (1975) analysis. 

 The results of the discretization analysis of the cusped plate yielded very similar results to 

that of the delta plate.  The results reached convergence for Nx = 60 and Ny = 30; however, more 

realistic pressure distributions were obtained without sacrificing much precision (with regards to 

total lift) when Ny = 20. 
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Cusped Plate, Nx = 60
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Figure 3.11 – Comparison of Vorus-Taravella’s (2009) general solution with Nx = 60 to 

Tuck (1975) for cusped plate 

 

 

 The results of the transverse pressure distribution analysis are presented in Figure 3.12.  

For ν = 1.25, the transverse pressure distribution remains somewhat elliptic.  There are no 

oscillations in the transverse pressure distributions for the speeds covered in Figures 3.12 and 

3.13.  This is said to be due to the shape of the waterplane.   

 Similar results to the delta waterplane as for the cusped waterplane are achieved at the 

trailing edge.  These results present more of an elliptic loading pattern as compared to those of 

Tuck (1975).  For the results printed below, there are no obvious pressure oscillations; however, 

as the speed is further decreased, these oscillations will appear. 
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Transverse Pressure Distribution for Cusped Plate 

(Nx=60, Ny=20)
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Figure 3.12 – Transverse pressure distribution at quarter stations for delta plate at νννν = 1.25 

(Nx = 60, Ny = 20) 

 

Trailing Edge Pressure Distribution for Cusped Plate 
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Figure 3.13 – Trailing edge pressure distribution at various νννν for delta plate (Nx = 60, Ny = 

20) 
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 The sectional lift distribution for the cusped plate is depicted in Figure 3.14.  As for the 

delta plate, the distribution is smooth with no erratic jumps or discontinuities.  One can also 

observe that the center of lift moves toward the transom as the Froude number decreases.  This 

effect is the result of the hull form obtaining additional dynamic lift from the waves that are 

being developed aft.  This will make the selection of the stern lines of a slender semi-

planing/semi-displacement hull form important when designing the hull form.   

Lift Distribution for Cusped Plate (Nx=60, Ny=20)
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Figure 3.14 – Sectional lift coefficient distributions at various νννν for cusped plate (Nx = 60, 

Ny = 20) 

 

 

 As shown from the results of the delta plate and the cusped plate presented in this section, 

Vorus and Taravella (2009) have produced an applicable general solution to Maruo’s (1967) low 

aspect ratio planing problem.  The effects of the infamous singularity have been eliminated.  

Vorus and Taravella (2009) obtained a reasonable comparison to Maruo (1967) for total lift and 

physically acceptable pressure distributions at high to moderate speeds.  No centerline loading 

singularities or negative edge pressures were obtained using a reasonable discretization for an 
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appropriate speed range.  Vorus and Taravella (2009) also achieved a convergent solution for 

total lift. 
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4.0 Application to Semi-Planing/Semi-Displacement Hulls 

 Application of the hybrid method will be completed for variations of a semi-hull which 

was originally described by Vorus (2005).  While Vorus (2005) admitted to having some 

limitations to his method (mainly with high speed Michell’s integral, wake trench determination 

and numerical difficulties with Maruo formulation), he was able to draw some very important 

conclusions with regard to hull form.   

Improvements have been made in regards to the high speed Michell integral and the 

general solution for the Maruo integral by Vorus and Taravella (2008 and 2009) and presented in 

this work.  The conclusions drawn by Vorus (2005) have been further investigated for the semi-

hull with the current improvements to the hybrid method.  Adjustments to various hull 

parameters are made and the effects on lift and drag are studied.  Finally, recommendations will 

be made for optimization of the semihull. 

4.1 Semi-hull Geometry Definition 

 The semihull is defined as a fine-formed, wave piercing, displacement bow with a flat, 

planing stern.  The geometry of the semihull can be described by 12 main parameters as shown 

in Table 4.1 and Figures 4.1 through 4.3.  The hull form is basically defined by the chine offset, 

deadrise angle distribution, and keel upset.  The chine offset is defined as cubic a curve starting 

at the bow and transitioning into a straight line that is parallel to the centerline until it reaches the 

transom (see Figure 4.1).  The deadrise angle distribution is defined, generally, as a cubic curve 

starting at the bow, and transitioning to a constant distribution for a given distance and then 

transitions into another cubic line until it reaches the transom (see Figure 4.2).  The height of the 
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chine can be determined from the given chine offset, deadrise angle and draft at a given 

longitudinal position. 

 

Table 4.1 – Twelve parameters that describe the Semihull 

 

L Length of waterline 

Ych Chine offset at transom 

HT Transom draft 

Y0x Slope of chine offset at entry 

Lac Forward chine tangent point, forward from transom 

β0 Deadrise angle at entry 

β0x Rate of change of deadrise angle at entry 

β01 Intermediate constant value of deadrise angle 

β1 Deadrise angle at transom 

β1x Rate of change of deadrise angle at transom 

Lab Forward deadrise tangent point, forward from transom 

Lbb Aft deadrise tangent point, forward from transom 
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Figure 4.1 – Half-breadth plan depicting geometry components for the Semihull 
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Deadrise Angle Distribution
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Figure 4.2 – Deadrise angle distribution depicting geometry components for the Semihull 
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Figure 4.3 – Body plan depicting geometry components for the Semihull 
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4.2 Semihull 1 – Base Case 

 The evaluation of the prototype semihull using the present formulation has been 

completed as was done by Vorus (June 2005).  Admittedly, the theory presented by Vorus (June 

2005) was an initial attempt at the hybrid theory and there were some short comings in the 

components of the theory.  The present evaluation will consider the modified Michell’s integral 

for high speed and the Maruo general solution presented in this work. 

 The analysis completed by Vorus (June 2005) was done for a semihull with geometric 

parameters as shown in Table 4.2, a length of 196.85 ft (60 m) and a running speed of 50 knots 

(Fn = 1.060). 

Table 4.2 – Semihull 1 geometric parameters 

Length of waterline L 10  

Chine offset at transom Ych 1  

Transom draft HT 0.6  

Slope of chine offset at entry Y0x 0.3  

Forward chine tangent point, forward from transom Lac 5  

Deadrise angle at entry β0 90 deg. 

Rate of change of deadrise angle at entry β0x -25 deg./(ft/ft) 

Intermediate constant value of deadrise angle β01 45 deg. 

Deadrise angle at transom β1 20 deg. 

Rate of change of deadrise angle at transom β1x -8.5 deg./(ft/ft) 

Forward deadrise tangent point, forward from transom Lab 6  

Aft deadrise tangent point, forward from transom Lbb 5  

 

 

 Figure 4.4 shows the running body plan and Figure 4.5 shows the running half breadth 

plan.   
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Semihull 1 Body Plan
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Figure 4.4 – Running body plan of Semihull 1 

 

 

Semihull 1 Half-Breadth Plan
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Figure 4.5 – Running half-breadth plan of Semihull 1 
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Semihull 1 Profile
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Figure 4.6 – Running Profile of Semihull 1 

 

 

 As can be seen in Figure 4.4, a rising jet head has been taking into account.  This jet-head 

has been computed using an approximate method from Vorus (1996).  Xcw indicated on Figure 

4.5 and 4.6 is the chine wetting point, where the jet-head has risen up the hull sides to intersect 

the chine.  The jet-head offset is shown on Figure 4.5 and lies under the chine intersection at 

Xcw, after which the jet-head and the chine are coincident.  The implication of Figure 4.5 is that 

the hard chine is not involved with the hull surface flow until it wets at 75% of the length aft (for 

this prototype).  The forebody can therefore be viewed as chineless, with the forward lines like 

those of a conventional fine-hulled displacement ship.  Note from Figures 4.4 and 4.6 that, unlike 

planing craft, the trim is zero consistent with displacement vessel attitude.  This allows the 

application of a surface (or wave) piercing stem, as shown in Figure 4.6.  The subsurface stem is 

pointed over its wetted depth. 

 The rapid reduction in deadrise angle, as depicted in Figure 4.4 and plotted specifically in 

Figure 4.7, is responsible for the rapid rise of the jet-head toward chine wetting seen in Figure 

4.5. 
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Deadrise Angle Distribution
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Figure 4.7 – Deadrise angle distribution in x of Semihull 1 

 

4.2.1 Maruo Calculation 

 The high rate of deadrise reduction provides the high-lift stern.  The lift coefficient 

distribution in x over the length is shown in Figure 4.8.  Figure 4.8 depicts total lift, which 

includes the hydrostatic lift due to gravity.  The total lift has been determined from the 

hydrostatic lift distribution and the dynamic lift distribution from the vortices of the generalized 

Maruo solution of Section 3.1.  The centerplane source distribution, being without circulation, 

produces no lift.  The lift and drag coefficients are defined on vessel half-beam (as in equations 

3.45 and 3.47) rather than length.  The drag components of the Maruo analysis are spray drag, 

induced drag, and wave drag due to waterplane wave making vortices.   



 

61 
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Figure 4.8 – Lift distribution of Semihull 1 at Fn = 1.06 

 

 It is noted that the general Maruo solution for the Semihull 1 produces negative lift 

between x/Ych equals 2 and 5.  The negative lift is not physically acceptable; however, it is well 

known that ventilation in this area does occur for high speed hull forms with buttock lines of 

high slope at the bow.  For the purposes of this analysis, the dynamic pressure was superimposed 

with the hydrostatic pressure.  Any resulting negative pressure was zeroed (as shown in Figure 

4.8) when computing the total lift.  Proper investigation of this problem would require a 

ventilation analysis; however, a ventilation analysis is not of interest here and is beyond the 

scope of this work.   

 It can also be seen, from Figure 4.8, that the maximum lift is produced at the chine 

wetting point with a majority of the lift being produced just forward of that.  This signifies the 

importance of the deadrise angle distribution in this area. 
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Figure 4.9 – Projected waterplane discretization for Maruo analysis 

 

 

 Figure 4.9 depicts the discretization of vortices of the waterplane for the Maruo analysis.  

Each transverse line is divided into twenty equally spaced line vortices. 

4.2.2 Michell-Ogilvie Calculation 

 The source wave resistance was calculated by the high speed Michell formulation of 

Section 2.3.  The centerplane discretization is shown in Figure 4.10, including the wake 

extension calculated by Vorus’ (March 2009) wake trench formulation.  The hull model is 

composed of 20 panels in 0 to L, and 20 panels over the draft.  The wake trench model is 

composed of 15 panels over the length and 20 panels over the depth for Fn of 1.06. 

 

Figure 4.10 – Panel model for high speed Michell calculation of Semihull 1 at Fn = 1.06 

 

Wake Extension x = 10 
x = 0 

x = 10 

x = 0 
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Figure 4.11 – Body plan for centerplane panelization 

  

The body plan for computing q(x,z) is shown in Figure 4.11.  Note the difference between 

Figure 4.11 and the wetted body plan, Figure 4.4.  The Michell’s integral calculation is with 

respect to the undisturbed water surface.  Therefore, the jet rise present in Figure 4.4 has been 

truncated on Figure 4.11.  This is a discretization error from dividing the offset into 20 equal 

elements at each x. 

 Figure 4.12 is a plot of Michell wave resistance over a range of Froude numbers that 

include the design Froude number of 1.060. 
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Semihull Michell Drag Coefficient
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Figure 4.12 – Michell-Ogilvie’s Wave Resistance versus Froude number 

 

 The non-dimensionalization of Figure 4.12 is the same as on Figure 4.8 in terms of half-

breadth. 

4.2.3 Hybrid Solution 

 The solution for lift and drag due to the odd and even flow are additive by linearity 

(Section 1.2).  However, there remains two additional components of drag that have yet to be 

discussed.  First, the transom hydrostatic drag is due to the axially unbalanced hydrostatic 

pressure from the wake defect associated with separation of flow along the transom base.  

Second, the viscous drag is from the ITTC friction line and is the only empiricism present in the 

analysis.  Both of these components have been non-dimensionalized in terms of half-beam. 

 Table 4.3 summarizes the predicted prototype design performance after the superposition 

of the hydrodynamic components. 
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Table 4.3 – Analysis Summary – Prototype hybrid Semihull 1 calm water performance 

 

Hull length/Ych 10

Vessel operating draft/Ych 0.6

Vessel operating trim τ 0.0 deg.

Vessel speed U 50.0 knots

Design Beam Froude No. Fnb 3.353

Design Length Froude No. Fnl 1.060

Reynold's No. Re 1.40E+09

Hydrostatic lift 0.6841

Dynamic lift 0.4992

Total Lift C L 1.1833

Viscous drag 0.0693

Transom drag 0.0433

Drag due to waterplane vortices (wave, spray, induced) 0.1304

Wave drag due to centerplane wave-making sources 0.0232

Total Drag C D 0.2662

Lift/Drag Ratio L/D 4.45  
 

4.2.3 Comparison of Semihull to Displacement Hull 

 At this point it is useful to explore the question of whether the hybrid semihull form, 

which develops dynamic lift but also a dynamic lift related component of wave resistance has the 

potential to compete with the non-lifting displacement hull, which develops only the one 

displacement component of wave resistance.  

 For this analysis the parabolic hull form 1846B of Appendix B was compared to the 

Semihull 1 of the previous sections.  The parabolic hull form was set with the same speed, 

length, and beam of the semihull.  However, in order to achieve the same weight, a draft 

adjustment from T/L = 0.060 to T/L = 0.072 was required.  The trim was set to zero, giving an 

Xcg/L = 0.5 with the fore-and-aft symmetry. 
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 The calculated wave resistances of both the parabolic hull form and the hybrid semihull 

from the centerplane sources via the Michell-Ogilvie solution of Chapter 2 are shown in Figure 

4.13.  The resistance for the Semihull is just the displacement wave resistance from Figure 4.12. 

Michell Drag Coefficient Comparison

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fnl

C
D

W Semihull 1

1846B

Fn = 1.060

CDW = 0.2154

CDW = 0.0232

 

Figure 4.13 – Comparison of Michell-Ogilvie Wave Resistance for Semihull 1 and parabolic 

hull form 

 

  A summary of the results for the comparison of the semihull and parabolic hull from at 

Fn = 1.060 (50 knots) can be found in Table 4.4. 
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Table 4.4 – Hydrodynamic comparison of hybrid Semihull 1 to parabolic hull form 1846B 

Semihull 1 1846B

Hydrostatic lift 0.6841 1.1833

Dynamic lift 0.4992 0.0000

Total Lift 1.1833 1.1833

Viscous drag 0.0693 0.0509

Transom drag 0.0433 0.0000

Drag due to waterplane vortices (wave, spray, induced) 0.1304 0.0000

Wave drag due to centerplane wave-making sources 0.0232 0.2154

Total Drag 0.2662 0.2663

Lift/Drag Ratio 4.45 4.44  

  

While the comparison of Table 4.4 yields very similar results for calm water performance 

when comparing the Semihull to the displacement hull form, it is well known that displacement 

monohulls of these proportions cannot be run at Froude number greater than about 0.35 because 

of the prohibitively large wave resistance developing beyond that point, as demonstrated in 

Figure 4.13. 

Since displacement wave resistance (from centerplane sources) is proportional to beam 

squared, the direction taken by the naval architecture field striving for faster and faster ships is to 

design them to be thinner and thinner.  But as the monohull becomes thinner and thinner it loses 

waterplane inertia, as beam cubed, and may encounter transverse instability.  To counter the 

transverse instability the monohulls are expanded to multihulls (e.g. catamarans and trimarans).  

But with the hull surface area varying most strongly with length and draft, and not beam, the 

viscous resistance tends to increase roughly proportional to the number of multihulls. 

It can be argued based on the analysis presented here that this approach of resorting to 

multihulls may not have the potential to lead to optimum designs, at least not from the standpoint 
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of calm-water resistance.  The semi-displacement/semi-planing concept (i.e. the Semihull) is 

suggested as a competing approach to very thin multihulls. 

4.3 Semihull Variations 

 In an effort to optimize the Semihull, various parameters from Table 4.2 were adjusted to 

develop a more efficient design.  For the purposes of this work the, the deadrise angle parameters 

were varied while the principal dimensions remained constant.  Table 4.5 provides a summary of 

the key dimensions of the semihull variations.  Semihull 1 is the base case studied in Section 4.2.  

The deadrise angle parameters were changed one at a time for Semihulls 2 to 4.  The 

modifications (as compared to Semihull 1) are highlighted in yellow.  Semihull 5 is a 

compilation of all modifications made to Semihulls 2 to 4. 

 

Table 4.5 – Geometric Parameters for Semihull Variation 

 
Semihull 1 Semihull 2 Semihull 3 Semihull 4 Semihull 5

Length of waterline L 10 10 10 10 10

Chine offset at transom Y ch 1 1 1 1 1

Vessel operating draft H T 0.6 0.6 0.6 0.6 0.6

Slope of chine offset at entry Y 0x 0.3 0.3 0.3 0.3 0.3

Forward chine tangent point, forward from transom L ac 5 5 5 5 5

Deadrise angle at entry β 0 90 90 90 90 90

Rate of change of deadrise angle at entry β 0x -25 -35 -25 -25 -35

Intermediate constant value of deadrise angle β 01 45 45 45 50 50

Deadrise angle at transom β 1 20 20 20 20 20

Rate of change of deadrise angle at transom β 1x -8.5 -8.5 -10 -8.5 -10

Forward deadrise tangent point, forward from transom L ab 6 6 6 6 6

Aft deadrise tangent point, forward from transom L bb 5 5 5 5 5  

 The various deadrise angle distributions are shown in Figure 4.14.  The distribution for 

Semihull 1 is not easily seen because it is overlapped by another Semihull’s distribution at all 

longitudinal positions. 
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 Figure 4.14 – Deadrise Angle Distributions for Semihull Variations 

  

Table 4.6 – Calm Water Performance of Semihull Variations at Fn = 1.06 

 
Semihull 1 Semihull 2 Semihull 3 Semihull 4 Semihull 5

Hydrostatic lift 0.6841 0.7053 0.6737 0.6245 0.6348

Dynamic lift 0.4992 0.5127 0.5760 0.7515 0.7468

Total Lift C L 1.1833 1.2180 1.2496 1.3760 1.3816

Viscous drag 0.0693 0.0669 0.0696 0.0735 0.0711

Transom drag 0.0433 0.0433 0.0433 0.0433 0.0433

Drag due to waterplane vortices (wave, spray, induced) 0.1304 0.1100 0.1282 0.1654 0.1557

Wave drag due to centerplane wave-making sources 0.0232 0.0250 0.0226 0.0248 0.0263

Total Drag C D 0.2662 0.2452 0.2637 0.3069 0.2964

Lift/Drag Ratio L/D 4.45 4.97 4.74 4.48 4.66  

The results of the hybrid analysis for the five variations of the Semihull can be found in 

Table 4.6.  The maximum lift in each category has been highlighted in orange, while the 

minimum drag value for each category has been highlighted in blue for Semihulls 2 to 5.  The 

transoms on all of the Semihull variations are identical in geometry; therefore, they offer the 

same amount of drag. 

Here we can see that by decreasing the rate of change of deadrise angle at entry (β0x) in 

Semihull 2, we decrease the total drag while the total lift slightly increases when compared to 
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that of Semihull 1.    The main contributor to the higher efficiency of Semihull 2 is the decreased 

drag due to the waterplane vortices.  The lower vortex strength offers lower drag and lower 

dynamic lift.  However, by decreasing the rate of change of deadrise angle at entry from -25 to -

35, the bow of Semihull 2 becomes fuller when compared to that of Semihull 1.  This offers an 

increase in hydrostatic and dynamic lift.  The fuller hull in the bow of Semihull 2 does not 

significantly increase the wave drag due to the centerplane sources at the speed analyzed.   

Decreasing the rate of change of deadrise angle at the transom (β1x), as in Semihull 3, 

offers an increase in dynamic lift while sacrificing minimal hydrostatic lift.  This is due to the 

fact that the slope of the buttock lines at the transom are increasing (in the negative sense) 

providing increasing dynamic lift.  This agrees with the description of the Semihull in which the 

aft hull lines are designed to be similar to those of a planing hull, thus, generating a majority of 

the dynamic lift.  Care with this hull modification must be taken so that the drag due to the wave 

making vortices does not increase significantly. 

The third modification made to the base case was to increase the intermediate constant 

value of deadrise angle (β01) from 45 degrees to 50 degrees.  This hull modification in Semihull 

4 significantly increased the dynamic lift.  While this modification also decreased the hydrostatic 

lift, the total lift increased significantly when compared to Semihull 1.  While this hull 

modification offered a significant increase in lift, it also offered a significant increase in drag.  

All aspects of drag (accept transom) increased.  This resulted in a lift-to-drag ratio very similar to 

that of Semihull 1. 

Semihull 5 is a compilation of all of hull modifications made thus far.  While all of the 

changes seemed to be the most favorable for lift, an increase in drag was also obtained.  While 
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Semihull 5 may have better calm water performance values when compared to Semihull 1, it is 

not the best designed when compared to all five hulls.  

 Of all of the modifications made to Semihull 1, adjusting the rate of change of deadrise 

angle at entry seemed to have the most favorable impact, as seen in Semihull 2.  While this hull 

form may not offer the most lift, it does offer the least drag and the best lift-to-drag ratio of the 

hulls compared here. 
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5.0 Conclusion 

 In this work, a hybrid method was presented for computing lift and drag of semi-planing/ 

semi-displacement slender hull forms.  This was done by separating the linear problem into odd 

and even parts, solving each part independently, and then superimposing the solutions.  The odd 

part was solved using a high-speed form of Michell’s integral (1898) for thin ships, and the even 

part was solved by using a general form of Maruo’s (1965) flat ship theory. 

 Michell’s integral (1898) has been used for many years.  However, it has proved to 

produce unacceptable results at high speeds.  A method was introduced here utilizing Ogilvie’s 

(1972) equation for bow wave flow.  Vorus and Taravella (2008) developed a general solution to 

Ogilvie’s (1972) equation which provided a near field solution.  This near field solution was then 

collapsed to the centerplane to obtain the centerplane source distribution for direct use in 

Michell’s integral (1898).  As can be seen in this work, the results of the general high-speed 

Michell’s integral compared quite nicely to model test results. 

 High-speed vessels with transom sterns also produce a wake trench.  Vorus (2009) 

developed a solution for determining the length of the wake trench.  This was utilized in the 

present theory. 

 Maruo (1967) presented an equation for low-aspect ratio planing with gravity.  In his 

work, the boundary condition is satisfied on the waterplane of general flat-type vessels following 

the infinite Froude number work of Von Karman’ (1929) and Wagner (1932).   Maruo’s solution 

was limited to waterplanes of simple geometric shapes (i.e. delta).  Maruo admitted that this 

equation was difficult to solve because of the singular nature of the problem.  Vorus and 

Taravella (2009) developed a general closed form solution to Maruo’s equation.  The results are 

presented here and compare quite well to the results of Maruo (1967) and Tuck (1975).  While 
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some future development may still be necessary, the results of the general Maruo equation are 

adequate for use in the hybrid theory presented here.  

 The presentation of the hybrid method led to the development of the Semihull concept—a 

vessel which has properties of both a thin displacement hull and a high-speed planing hull.   

Optimization proves that an increase in displacement will increase the hydrostatic lift 

while only slightly increasing the wave making resistance due to displacement flow.  Therefore, 

a good balance is needed between hydrostatic and dynamic lift.  The results also indicate that 

much of the dynamic lift is developed near the stern.  This gives indication that the Semihull 

obtains additional lift from the wave generated by its form.  The center of this lift changes with 

speed variation, thus resulting in a change in trim of the Semihull, unlike displacement vessels. 

The Semihull is also shown to be a viable alternative to multi-hulled high speed vessels.   

As seen from the results of this work, the hybrid method provides a feasible method for 

predicting calm water performance of semi-planing/semi-displacement hull forms utilizing the 

classical methods of Michell (1898), Ogilvie (1972) and Maruo (1965).  While additional testing 

and numerical verification may be necessary, this method seems to compare quite well to the 

available data.   
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Appendix A – Ogilvie Integral 
 

From equation (36) 
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Solve integrals using equation 3.322.2 of Gradshteyn and Ryzhik (2000). 
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Where Φ  is the error function. 
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It is now necessary to take the derivative with respect to y.  
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Taking the derivative of the error function as ( ) 22 ZeZ
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The complex error function (also known as the Faddeeva function), denoted by w, (Abramowitz 

and Stegun, 1964) can be used such that:  ( ) ( ) ( )[ ]
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Taking the derivatives of the nβ  equations above, we have: 
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Appendix B – Ogilvie Test Models  

Model 1846 B
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Figure B1 – Body Plan of Model 1846 B 

 

The hull offsets are defined by: 

( )( )( )222 2.0111 ξξζη +−−=          (B1) 

 

Table B1 – Model 1846 B Form Coefficients 

 

Block Coefficient 0.462 

Prismatic Coefficient 0.693 

Mid-Section Coefficient 0.667 

Waterplane Coefficient 0.693 

½ Angle of Entrance on LWL 12.7
o
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Model N43
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Figure B2 – Body Plan of Model N43 

 

The hull offsets are defined by: 

( )( )( ) ( )( )4282222 112.0111 ξζζξξζη −−++−−=        (B2) 

 

Table B2 – Model 1846 B Form Coefficients 

 

Block Coefficient 0.561 

Prismatic Coefficient 0.617 

Mid-Section Coefficient 0.909 

Waterplane Coefficient 0.693 

½ Angle of Entrance on LWL 12.7
o
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