University of New Orleans

ScholarWorks@UNO

University of New Orleans Theses and

Dissertations Dissertations and Theses

8-6-2009

Distributed Support Vector Machine With Graphics Processing
Units

Hang Zhang
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation

Zhang, Hang, "Distributed Support Vector Machine With Graphics Processing Units" (2009). University of
New Orleans Theses and Dissertations. 991.
https://scholarworks.uno.edu/td/991

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/991?utm_source=scholarworks.uno.edu%2Ftd%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Distributed Support Vector Machine
With Graphics Processing Units

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science
in
Computer Science
Bioinformatics

by
Hang Zhang

August, 2009

@Copyright 2008, Hang Zhang

Acknowledgments

First and foremost, | want to thank my adviBor Stephen Winters-Hilt. His endless support
and wisdom helped me to finish this thesis. Hisiesiasm for Bioinformatics was contagious—
and | definitely caught it. His depth of knowledmyad very precise academic guidance brought
me to an understanding of machine learning algworithdepth.

| would also like to thank Murat Eren. He was alwagady to give me hints whenever |
needed them. We learned SVM algorithm togetherhasmthtegral knowledge helped me
understand SVM quicker.

My bioinformatics group members helped me withitsenart ideas and enlightened the
thoughts behind my thesis. For their help | am degmteful.

I would like to express my gratitude to all thoseoshelped to make this thesis a reality: Vico
Marziale, Fangfang Liu, George Voulgarakis, Guorg With their aid and encouragement, |
made it through the thesis-writing process.

Lastly, I would like to thank my parents. Their onditional support has been very important

for every aspect of my study.

Table of Contents

LISt Of FIQUIES .o Y
LISt Of TADIES ... Vi
LISt Of HIUSTFALIONS ...t et e et st stbe bt bbbssensnennne Vii
Y 0 1] 1= (o P RSRSPPPPRN Viii
Chapter 1. INTTOTUCTIONuiiiiiiimmmman et e s bbb e s bsbssebanesensnennnnes 1
0 Y/ o 1A= 11 0] o PSPPI 1
2 @ 1Y = V1 PSPPI 2
Chapter 2. SUpPOrt VECtOr MaChINES...... ...ttt e eeeeeeene 3
P2 R [0 { fo o [Tox i o] o IR PP P PP PP PPPPPPP 3
2.2 SVIM APPICALIONS ...etvtiiiiiiiiiiiiitiiiteeree e ee e e et e ettt ettt e et eeeeteeee et e teeeaaaeeeaeaaaaaaaaaaaaeaeeeeeaens 3
2.3 Find the DecCiSion HYPEIPIANE............ o eeeeeeieniieiiiiieiieiisiesaeeeeesesseineenneeeeeeeeeeeeeeeeesees 5
2.4 KerNel FUNCLIONSc.ooiiiiiiiiiiiie ettt 7
2.5 MEICEI'S CONTITIONSuviiieiiiee e e s sttt e e e e e ettt e e e e e senmr e e e e e e s e e b eeeeaeeens 9
2.6 DAtaSEt ACQUISTLIONuuuiiiriiiiiiiitmmmnnnseseaesenenaaesanaaeeaaesanssssns s aaannssssseseessssnensnssensnes 10
2.7 SVM ChunKing MELNOUScoeeiiiiiiiiit ettt e e e e e e e e e e e e e eaees 11
Chapter 3. Implementation of Chunking SVM with GRUL.........ccoooiiiiiiiii s 12
3.1 INtrodUCTHION t0 GPU ..ottt ettt e e e e e be e e e e s s e e e e e e e e e e 12
T G101 YN o o Te | &= 10] 1111 0o T 13
3.3 SVM Kernel Implementations 0N GPU ... e 17
3.3.1 GAUSSIAN KEBIMEL ...ttt cmmmmme e e sn e 22
3.3.2 Absdiff Kernel ... 25
3.3.3 SENLIrOPIC KEIMEI ..o e 28
Chapter 4. Chunking SVM using GPU CIUSLErScoooiiiiiii s 32
4.1 Message Passing INTEITACEouiiiiiiiiiiiiiiiiieeie et 32
4.2 Combine MPIL and CUDAooiiiiiei ettt e e e st nreeee e e s 33
B3 RESUILS ...ttt e et e e e e e e e e e e e e s reaee e e s 36
Chapter 5. CONCIUSION........uiiiiiiiiiiiiteeeeeme e s e bebebsbesbb s snnnnnnnnas 38
RETEIENCES ...ttt ettt ettt ettt ettt ettt et e e e e eeeaaeeaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaes 39
Y o] 01T oo [PP PPPPPPPPPTP 41
LY - TP RUPT S TPOPPPPRPRRRR 60

List of Figures

Figure 2.1 Non-linear separable iINPUL SPaACE.....ccc.uiuiiiiiiiiiiiiiii e eeeeeeees 8
Figure 2.2 Linearly separable high dimensional &espace...........ccooooeiieiiiiii i 8
Figure2.3 Electrochemistry setup for the nanop@m8adcccoooiiiiiiiiininiie s 11
Figure3.1.1 Comparison between GPU and CPU. oo 12
Figure 3.1.2 An enormous transistor devoted to gBdaessingocooeeveeeeeeiiieineeeeceeeees 13

Figure 3.2.1 Execution sequence and thread higrarch..............ccccc 15
Figure 3.2.2 Hierarchy of streaming multiproceq8M) ... 16
Figure 3.3.1 Breaking training data into DIOCKS................uuiiiii e 18
Figure 3.3.2 Thread orgnization within one threlmth..................o 19
Figure 3.3.3 Matrix calculations within thread IROC...............cc 19
Figure 3.3.4 Decide the number Of DIOCKSuuueuiiii s 21
Figure 3.3.1.1 Gaussian kernel performance CONMIALIS.............uuuvvrrruverimemirinenensmmenneennens 24
Figure 3.3.1.2 SVM classification time using Gaasernel...........cccccccvvviiiiiiiiiiiiiceeeee e 25

Figure 3.3.2.1 Absdiff kernel time CoOmMpPariSON.........ccoovveiiieiiiieeeee e 27
Figure 3.3.2.2 SVM classification time using AbSHErNelccccevvvviviiiiiiieeeeeee 27

Figure 3.3.3.1 Sentropic kernel calculation timenparisoncccceveveiiiiiiiiiiiiiaceeeeeeee. 29

Figure 3.3.3.2 SVM classification time using Septedkernelccccooooiiiiiiiiiiiiiiiiccce e, 30

Figure 3.4.1 MPI data sending construction model................ccc 33
Figure 3.5.1 Combine MPI and CUDA data sending rode............ccccceeveiiiiinininieiicenenn. 35

Figure 3.5.2 MPI-CUDA fIOWCNAITutt et 36

List of Tables

Table 3.1.1 GeForce 8800 Ultra fEALUINES .. e e 13
Table 3.3.1.1 Gaussian kernel performance COMpPat&meccoooeeiiiiiiirier e e 23
Table 3.3.1.2 Gaussian kernel performance COmMpat&meccoooeeiiiiiiiieer e e 23
Table 3.3.1.3 Gaussian kernel performance COMpPat&meccoooeeiiiiiiiiier e e 24
Table 3.3.2.1 Absdiff kernel performance comparisiie.................. 26
Table 3.3.2.2 Absdiff kernel performance comparisiie.................. 26
Table 3.3.2.3 Absdiff kernel performance comparigime................ccoooeeiiin s 27
Table 3.3.1.1. Sentropic kernel performance corspartable.cccce e, 28
Table 3.3.3.2. Sentropic kernel performance corspartable.ccco e, 29
Table 3.3.3.3. Sentropic kernel performance corspartable.ccccoiiineene, 29

Vi

List of Illustrations

lllustration 3.1 Original Absdiff kernel funCtiomMOoCPU ... e e 18
Illustration 3.2 Device code for Absdiff Kernel fTiionccooovvviiii e, 20
Illustration 3.3 Unrolled device code for Absdidael function.........ccooeeeeiiiviiiiiiniiceemens 21
IHustration 3.4 BIOCK With FEMAINAETveeeieiiii et e e e 22

vii

Abstract

Training a Support Vector Machine (SVM) requires fiolution of a very large quadratic
programming (QP) optimization problem. SequentiaiMal Optimization (SMO) is a
decomposition-based algorithm which breaks thigd&@P problem into a series of smallest
possible QP problems. However, it still costs {Paomputation time. In our SVM
implementation, we can do training with huge dats & a distributed manner (by breaking the
dataset into chunks, then using Message Passiaddo¢ (MP1) to distribute each chunk to a
different machine and processing SVM training witeach chunk). In addition, we moved the
kernel calculation part in SVM classification tgeaphics processing unit (GPU) which has zero
scheduling overhead to create concurrent threadhid thesis, we will take advantage of this

GPU architecture to improve the classification perfance of SVM.
Keywords

Distributed
Parallel
SVM
Support Vector Machine
GPUs
Graphics Processing Units
SMO

Sequential Minimization Optimization

viii

Chapter 1. Introduction

1.1 Motivation

Support Vector Machine (SVM) classificatisra very promising technique because it has
already demonstrated good performance in a vaofedypplications [7] and has a solid
mathematical foundation. However, its computatidimaé is expensive due to the large data
sample size and to the numerous numbers of cleatsifns per optimization step. Much
research has already been presented to reduasithied time by breaking the data into chunks
[3] or by a better decomposition approach (SMO) §MM training time is still a bottle-neck
for a large dataset.

With the PC’s increasing power for supercatimg happening at the low-end, the use of
GPUs (graphics processing units), which cost leas CPUs (central processing units) is
becoming popular. GPUs are not only good at ptasgBD graphics as specialized processors,
but also have been used as accelerators becatlsasrdfighly paralleled structures. This makes
them perform better on paralleling implementatitha on general-purpose CPUs. By taking
the advantage of this, we can move the computdtintensive part of the algorithm, such as
kernel trick part, from CPU to GPU by creating hreds$ of threads with extremely low latency
to accelerate the whole SVM training process.

In this thesis, we propose a parallel methoactelerate SVM training time running on
GPUs. We used the NVIDIA GeForce8800 Ultra G80 GRhich has 768 MB of device RAM,
and 128 stream processors which are organized éhtoultiprocessors and have a clock rate of

1.5GHz.

1.2 Overview

The body of this thesis is organized intdh&pters. In chapter 2 we review Support Vector
Machine, the training and classification procesaad, our improved SVM chunking method. In
chapter 3 we describe an overview the GPU andagramming environment, and the
implementation details of SVM with GPU. In chapfewe discuss the chunking SVM with

GPU clusters. In chapter 5 we present the conciusi@ur results and future efforts.

Chapter 2. Support Vector Machines

2.1lIntroduction

Support Vector Machines (SVMs) were first amuced by Vapnik and his co-workers in
1992 at the COLT conference [1]. SVMs can be usddnary classification tasks. It maps non-
linearly separable input data to a high dimensiontd linearly separable feature data and
estimates a separating hyperplane. SVMs perforencthassification task by choosing a good
kernel function. The original SVMs method is velyvg, since it requires solving a large
quadratic programming (QP) optimization problemhvitie data size increasing riThis
limits the training data size to be small and cauke training time to be very expensive. Platt’s
sequential minimal optimization (SMO) algorithm,syaroposed in 1998 [2], compared and
updated two Lagrange multipliers (alphas) at a fimezach optimization step) to bypass the
large QP problem. This eliminated the time consugnémge QP optimization, increased training

speed, and made the SVM classification approacle fieasible to use.

2.2 SVM Applications

Handwriting recognition is used in many aréase is called offline recognition [4], such as
check and mail that people write daily. The othee & called online recognition [4]; for
example, some applications (like “smart” phone)enavhandwriting interface integrated in them.
After the input device gets the image of the ward first filtered and pre-processed to get a
clean image using a safety rules. After this steget of segments of this word is obtained. These
segments would be used to calculate the word seoieh in turn calculates the possibility of

representing a letter (classified and labeled)dden Markov Model (HMM) and hybrid of

Neural Network (NN) are popular methods previoustgd in handwriting recognition systems.
To improve the recognition rate, SVMs have beer uis@lace of NNs at the segment
classification level [5]. A1.1% test error rate wdgained by SVM, which is the same as the
error rate of a carefully constructed NNs [7].

Speech identification’s recognition rate haeémimproved significantly by using SVMs.
SVMs provide a distance (known as margin) thatlmunsed to classify data; where the thicker
the margin the more accurately we can separatgpibech signal from background noise. Also,
SVMs are more robust and easier to converge competk other classification methods like
NNs. People classify a minimum 25ms of voice segdr{feaame), and by taking advantage of the
segmentation process, the correlations of framelsiaf become unimportant [6] [10]. Because
of SVM kernel mapping, it allows sentence leveemattions.

Text classification has played a significasierin the rapidly developing internet area.

Examples of text classification include web searghemail filtering etc.
The objective of text classification is to classifiich documents belong to which category—
multiple, merely one, or no category at all. Thietfstep is to get extract features by
transforming a stem of words into signals. Accogdim the frequency of each distinct word
occurrence in the document, people assign the satuthnis word feature vector. Words like
“and”, "or” and “the” are typically unnecessary dasince they cannot carry any information
about the document type, and therefore cannotdiaries. SVMs can work very well for this
kind of non-related data, since it can map the otahigher dimensional space and find the
decision boundary [11].

We are using SVM to classify DNA hairpin blacle signals. This data is obtained from

nanopore detector and then sent through a HMM psotteremove noise and extract features.

The features obtained by the HMM are used to coas&l150 component feature vector. The
class labels come from the two different molecblackades observed defined such as 9GC and
9CG [12]. SVMs are a powerful method in nonsep&ahkes, like this DNA hairpin dataset,

when the data is difficult for pervious method®IiKNs.

2.3 Find the Decision Hyperplane

Suppose we hawetraining data “points” (feature vectors with hipdabels):
{Ce, v1), (o2, y2), o, i Y3, X € R™,y; € {£13.

Let x; denote the feature vectors, anbe the class labels. All of the training data naadisfy
the decision boundary:

wx; —b = +1fory; = +1,

wx;—b < —1fory, = —1.
This can be rewritten ag;(wx; — b) — 1 = 0,V;. Data points that satisfy this constraint are
called “support” vectors (S.V.s), since they residethe boundaries which are known as

To obtain an optimal discriminating hypermawe should maximize the distance from the
boundary to the hyperplannaj—)ﬁ) or maximizing||w||~2 (minimizing ||w]|?) instead of
maximizing||w||~! and also subject to:

yi(wx; —b) —1>0,V,.
This is a constrained optimization problem. Solvinig requires using Lagrangian formulation:
L(@,b, @) = llwll* = % a; [y(w - x; — b) = 1], a; 2 0,
whereq; is a Lagrangian multiplier. Using Lagrangian opgation theory, we seek to minimize

L on {®, b} and maximize L on &}. By minimizing ||w||?, we can derive:

n
W — z a;yix; =0
i=1
> & = Xl ayix
= Yis1ay; =0, ;20
Substituting these relations back into the Lagramgve arrive at the dual problem (the Wolfe
dual). If we knoww then we know alk;; if we know alla;, we knoww. Thus, we obtain a QP
problem—to maximize:
L(a) = Ziai%Zi,j ai“j)’i)’jfi 'fj,
subjecttg),i-; a;¥; =0, @; = 0.

The maximun; value can always be found.

Solving the QP problem is equivalent to sodva set of constraints known as the Karush-
Kuhn-Tucker (KKT) relations: for all i,

=0 yf(x)=1
0<a; <o e yf(x) =1
ap=00 & yf(x) <1

where thex; value is only reached for non-separable data eerdun this derivation. SMO is
used in solving KKT relations. It optimizes the diest QP problem.

So far, we have only considered the linepassble cases. How do we generate a linear
hyperplane for non-linear cases? It turns out teetemn almost identical formula: rescile)

(diff is have & a; < C) KKT relations unaltered aside froem — C.

2.4 Kernel Functions

As mentioned, we can lift our feature vec{as§ from input space to a higher dimensioned
feature space by doing non-linear mappingreprocessing. Input space is a spaceithate
located in. Feature space is an abstract spacew{@f) is represented as a point in n-
dimensional space being transformed. This can bepaverful for a linear classifier algorithm,
since it can be easily transformed to a non-lirdgorithm to identify a separating hyperplane in
a higher-dimensional mapping. We apply

x> ®d(x) for »:R" - R

Therefore, the above training data can be prepsecess:
{(@(x1), 1), (P(x2),¥2), o) (@ (X), Y} € R+ y)™
The problem of explicitly apply this mapping to tik@a might result in the extremely high
dimensional space. The kernel trick avoids thiglg@®@mputation. Suppose:
D(x) = (x2,V2x125,x2), x = (1, %)
Mapping the points ifR? to points inR3, the inner product is:
< O(x), P(y) >= (x1y1 + X2¥2)?
So we can define the kernel function as below:
K(x,y) = (ayr + x252)*
= (<xy>)*

The kernel function avoids carrying out mappiegxplicitly.

Input Space

U — Fas
Fa¥
iy
iy
= -
iy
>< iy
o4 o o o o Hoo o 0 o o 00
Fa¥
o iy
iy
Fa¥
| T T
15 20 25

Y

Figure 2.1 Non-linear separable input space

Then after plugging in the qualified kernel functiove can transform the data into kernel space.

Feature Space

Figure 2.2 Linearly separable high dimensional kespace

Recall that in the SVM optimization, the iriaig data only appear as dot produgt- (x;)
between two vectors. As long as we can calculaenher product in the kernel wrapped space,
the mapping process can be implicit. The inner peod(x;) - ®(x;) can be described as kernel
function:

Kij = ®(x;) - P(x;).
Therefore, instead of concerning the storage aadnidnipulation of the high dimensional data
in infinite dimensional feature space, we only havealculate the kernel function whenever the

(x; - x;) dot product is used.

2.5 Mercer’s conditions

Kernel functions must satisfy Mercer’s comatis [15] (positive definite K) to express dot
product in feature space. LEtbe a Hilbert space of functions. For AlE H, the flowing

condition is Mercer’s theorem:

j Ko fOfGdxdy =0 Vf

Given this condition, we can expand the functi@(x, y) in its eigenfunctions:
K(x,y) = X521 490;(0)e;(y), @;(x) is an eigenfunction.
If we choose, we can map in feature space as:
D(x) = (JAp;(x)) forj =1...00
From above, we s€é(x, y) can be expressed as an inner product:
K(x,y) =< ®(x), (y) >
Therefore, all of the valid kernel functions whdttisfy Mercer’s condition can be used right

away without knowing the mapping or the dot product

2.6 Dataset Acquisition

| use training and testing Data on DNA hairpiockade signals which are obtained from my
advisor’'s nanopore detector experiments (see figLae[17]. An HMM is used to remove noise
from the acquired signals, and to extract feattnea them. The HMM is implemented with 50
states. Each blockade signature is de-noised burads of Expectation-Maximization (EM)
training on the parameters of the HMM. After the E&tations, 150 parameters are extracted
from the HMM. The 150 feature vectors obtained fittve 50-state HMM-EM/Viterbi
implementation are: the 50 dwell percentages irdtfierent blockade levels from the Viterbi
trace-back states, the 50 variances of the emigsaability distributions associated with the
different states, and the 50 merged transition gidities from the primary and secondary
blockade occupation levels (meant to work well vivtlo-state dominant modulatory blockade
signals). The first 50 features, correspondindneodwell times are, effectively, a de-noised
histogram of the blockade samples seen in thevicwindow between 20% and 70% of the

open channel.

1M KCL
Temp: 23°C

Diam = 1pm

10

Figure2.3 Electrochemistry setup for the nanopengat [17]

The datasets that we use in this thesis project h80 feature components (the column number),

and select 200,400, 800, or1600 as the numbemagblea (the row number).

2.7 SVM Chunking Methods

After the preprocessing is done, a SVM cléssdlgorithm is used to find a separating
hyperplane. A big problem is related to the sizéheftraining dataset, which is huge compared
with the maximum memory that one computer can aghl while doing SVM training. SVM
Chunking methods are used to classify large datagatre instead of training the given dataset
as a whole, the dataset is broken up into a nuaibgtunks and the idea is to then run SVMs
within each chunk. After each chunk converge, tha ghoints which are selected as SVs after
the training process will be pulled out to the nexiink level while the week data points which
are not SVs will be mostly discarded. This proaeastinues until the final convergence on a
single, reduced, training chunk.

Previous work (Cascade SVM [13] is a good eplajrhas already presented a chunking
method to run SVMs in parallel. At first, it reqe breaking the original dataset into chunks and
running SVMs within each chunk. When all chunks@everged, the second level chunks are
created using the SVs from the pairs of the fesel chunks. This will continue running until a
final chunk is converged. The chunking approachedmnKen [14] in our group is different
from Cascade SVM. We mergéae SVs and some non-SVs together from all chunks and then
re-chunk to the next level, instead of only merdimg SVs from pairs of chunks together. Ken
used Java RMI to distribute running SVM via cliant servers. | am usirg M Pl and GPU to

run SVM to make the training time even faster.

11

Chapter 3. Implementation of Chunking SVM with GPU

3.1 Introduction to GPU

A graphics processing unit is a processor éddo a graphics card and specialized in highly
paralleled floating-point computations. It hasawen sufficient device memory and is organized
as a set of multiprocessors which execute thousaintiseads. Creating these threads is
extremely light weight computationally, than th€iPU center points in this regard. With the
need of a faster processing speed, the more cotignakintensive cases are being offloaded
from CPU to GPU (see the performance comparisdigiume 3.1.1). And from learning its
hardware architecture (Figure 3.1.2), GPU attribatsignificant portion of its transistors to
calculation units-- arithmetic logic units (ALU) @wery few logic controls which makes it more
specialized in data processing. Another differdadbe memory bandwidth. A modern GPU

disposes of +/- 100 GB/s while a CPU is only +/-GBJs.

GFLOPS

G20 = GaForce BB00GTY Gl

30{) _ G711 = GeForce 7S00GTE

570 = GeForce TH00 GTH G71

GT70-512

: NV40 = GaFarce 6800 Ul
200 - G70

MV35 = GeForce FX 3950 Ulba

MY30 = GaForce FX 5500

100-

, 3.0 GHz
. i _sz Duo
1MV3
e = = S .
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

Figure3.1.1 Comparison between GPU and CPU [20]

12

Control ALU | ALU T I T TTITITITITITTIIT]
T T TTTITTTTITTITIT1T1]

ALU ALU ==

-

W TT T TTTITTITITITITITIT1T1]
=]
-
T T TTTITTITITTTITIT1T1]

CPU GPU

Figure 3.1.2 An enormous transistor devoted to dedaessing [20]

In this thesis, we used NVIDIA GeForce8800 Ult@0G5PU. Some of its specific

characteristics are listed in table 3.1.1.

Stream Processors 128
Multiprocessors 16
Core Clock(MHz) 612
Shader Clock(MHz) 1500
Memory Clock(MHz) 1080
Memory Amount 768MB
Memory Interface 384-bit
Memory Bandwidth(GB/sec)| 103.7
Texture Fill Rate(billion/sec) | 39.2

Table 3.1.1 GeForce 8800 Ultra features (NVIDIA wied)

3.2 CUDA Programming

NVIDIA developed an architecture which is for geslgrurpose parallel computing called

Compute Unified Device Architecture (CUDA) for pragn on GPU to solve computational

13

intensive problems. This programming architectul@s people to write C extended code that
can run on the programmable graphics card (GeRsegies and above).

As we mentioned above, GPU has its own daviemory acting like a co-processor to the
host CPU which can do massive threading taskstderdo compute on the GPU device, we
need to complete four steps (figure 3.2.1):

i) Allocate memory space on the device: cudaMalloc();

i) Copy data from host memory to device memory (GPe&sdwmt include I/O): cudaMemcpy();

iii) Launch the code that will execute on the devicks fbiece of code is called kernel which can
invoke the GPU device and will be parallel scatedun on GPU’s multiprocessors, while it
is different from the kernel function that we deised before which is a mapping function to
map the data into feature space); kernel<<<dim@lidBlock>>>();

iv) Copy the results back from device to host. cudaMsif)c

14

C Program

Sequential
Exacution

Serial code

Farallel kexrmnel

Keznell<<<z>>(}

Serial code=

Parallel kermnel

Eernell<<ess=> ()

-

Device

Grid

| Biock (0, 0) || Block (1, 0) || Block (2, 0) |

.' i tn'."i.} e {1,1l:| —— .(2'";}

Host

| Device
| Grid 1
Biock (0, 0) Block (1, 1)
Block (0, 1) Block (1, 1)
Block (0, 2) Black (1. 2)

£

Figure 3.2.1 Execution sequence and thread hierg2th

The device processes one kernel at a timarBdfivoking the kernel function to execute on

the device through a batch of threads, we needdoify the number of thread blocks and the

number of threads in each thread block. We canrgethread hierarchy in figure 2: a set of

threads is organized as a grid of thread blocksatts within the block can cooperate with each

other. Each thread block can be executed by ongpradessor and blocks can run concurrently

through shared memory. The shared memory size emuitiprocessor is 16k, so the thread

block size needs to be decided to have enoughneesotor at least one block to run on a

multiprocessor at a time. Up to 8 blocks on onetipndcessor as resource are allowed and the

maximum number of threads within each block is 512.

15

As mentioned above, multiprocess are the fundamental processing units for theatt
blocks. Inside of eacimultiprocessor ar8 streaming processors, and eAthJ is for running
one CUDA thread. Figure. 3.z shows the hierarchy oftrt@aming Multiprocessor (SN Threads

within each SM can be up to 768. All threiare schedulednd managed by SI and SMs

assigned and mawmned thread is.

t0t1t2.. tm

NN

. SM 0 SM 1 *
0.. R
., ‘0’
& [« (8
)))))))))))))
2000000000 >
R ¢ Blocks
))))))) P))) D))
AAAAAAA I_l
) ¥
. 0
. v
OCKS :
) .
[l x
[l .
»
¥
»
]
»
»
.
[} .
. »
. 0
. X
[X
) .
. ¥

Figure 3.2. Hierarchy ofstreaming multiprocessor (SMYUC lecture)

082, tm
NN

-
I“‘-

TheCUDA code is a scalable architect. Every thread will execute the kell calculation
no matter how mansnultiprocessors GPU has. All the thread blocks mal parallel, and afte
one multiprocessor is full oflocks, it will assign new work to one of the otlspare
multiprocessor and keep all of the proces busy. This is done by hardware whis called
compute work distribution and its work is to genera stream of requisto start thread bloc
[19]. The most importarthing that we should keep in miall the time ighatthe shared
memory is 16kand that the threinumber within each block can be up to £

However, what is the best combination of the theeadmber o aGPU?As we know, one
threadblock can only have up to 512 threaOne SM can run up % blocks concurrent. we

can have many combinations of threads number: 88l,16*16, and 32*32. For 4, we have

16

16 threads per block, since each SM can take Up&ahreads, and the thread capacity allows
48 blocks. However, each SM can only take up t8Ks; thus there will be only 128 threads in
each SM! For 8*8, we have 64 threads per blockc&aach SM can take up to 768 threads, it
could take up to 12 blocks. However, each SM cdy take up to 8 blocks, only 512 threads
will go into each SM! For 16*16, we have 256 thre@er block. Since each SM can take up to
768 threads, it can use 3 blocks and achieve &placity. For 32*32, we have 1024 threads per
block. Not even one can fit into an SM! Therefdhes best number of threads within each block

is 256 (16*16).

3.3 SVM Kernel Implementations on GPU

SVM kernel computational cost is one of the liidas in the real-time classification
performance running on a standard CPU. Motivateduzgessful earlier work introduced in the
CUDA manual, we can also take advantage of the GRlghly parallel architecture by
implementing the kernel function on GPU. We presemtpromising results. The training
dataset is the DNA hairpin dataset which has 1&Q8 dxamples and 150 feature components.

We copy the training dataset from the host to #ng@ak. Then we let one thread get two
elements from two matrixes to do the SVM kernetgkition. We specify 10 by 10 threads in
one thread block, since 10 is the greatest commasod of 1600 and 150. Because the result
matrix’s dimension is 1600 by 1600, then we detaaithe number of blocks is 160 by160.
10*10 is block size when we break the data intolsbtacks to do kernel calculation. Figure

3.3.1 shows the breaking process and how we mbegeesults together.

17

"""" wEa

1010 Bl L o

<C

= g

3 A °ll . B C =
= o
> £
@

colA colB rowB

Figure 33.1 Breaking training data into blocks

In the training process, we break data A into béoakd each block will operate with t
correspondindplocks in data B (copy of +. As shown in the above are the first set of the K
of A and B. We do calculations with pairs of bloaksA and B: thefirst block of A will operate
with the first block of B, then the second blockfoWwill operate with the second block of B a
so on. Finally the first set of blocks result woul@rge together ¢he firs block of C.

The algorithms below att@e kernel algorithm on GPU compared wiliginal algorithm or

CPU.

1 for (1 = 0; 1 < Rowa; ++1i)§

2 for (7 = 0; 7 < RowB; ++7) |

3 sum = 0;

4 temp=0;

5 for (k= 0; k < Columna; ++k) |
6 float a = A[indexa];

7 float b = B[indexE];

8 temp=h-a;

= sum += abs({temp);

10 '

11 tempResult=***kernel function***
12 Result[indexResult] = tempResult;
13 }

14 }

15

A

lllustration3.1 Original Absdiff kernel functionon CPL

After the vectors have been cof from the host to the device, we start to calcullagekerne

functionon the GPU device sic In order to utilize th&PU’s high performanc each thread

18

within the block loads each elem from each matrix from global memory to shared mey to
bring it closer to ALUwhich maksthe calculation even faster (see figur3.2). Then calculate
two matrixes togethewithin shared memo; each thread computese element of the bloc
sub-matrix (see figure 3.3.3ince each thread block uses 10 * 10 * 2* 4B= 0B9Kemory

which is muchsmaller than 1€ of shared memory, the gled memory here is not the limitit

factor.

| block_size o block_size |
I 1 I 1

c_r__ tx

3| | [ty

l?T

o, S —

® k k

Figure 33.2 Thread orgnization within one thread bl

The values of threadldx.x(txxhreadldx.y and k are dlom O to block_siz-1. The loop within

the block is line 11 to line 18hown in illustratior3.2.

CICAEAC o B, .

Ad,, Ad;; Ad,, Ad;; ®() Bd,, Bd;; Bd,, Bd;; = ol cd, Cdy

Cdy Cdy Cdy, Cdyy

Cdy, Cdy; Cd;, Cdy

Figure 33.3 Matrix calculationsvithin thread bloc

Below is the algorithm foabove breaking process thet use to calculate the kert

function This idea came fro [20] (lllustration 3.2).

19

Z for (...0 |

3 /7 inside the block

4 shared float As[BLOCE SIZE] [BLOCE SIZE];
5 shared float Bs[BLOCK SIZE] [BLOCK_SIZE];
]

7 As[ty] [tx] = Alindexd];

=] B=[ty] [tx] = E[indexE];

= ___syncthreads();

10

11 for (k = 0; k < BLOCK SIZE; ++k) |

1z sum += abs(BA[tx] [k]-&A3[ty] [k]);

153 }

14 ___syncthreads();

15 }

16 tempResult=***kernel function***

17 Result[indexResult] = tempResult;

15 }

19

Illustration 3.2 Device code for Absdiff kernel fttion

From the above algorithm, we can see k is fairlpl§rtherefore to increase the performance,
we will unroll the “ for loop” in our device codBecause in each for loop that executes 2
floating point arithmetic instructions, there isedoop branch instruction, two address arithmetic
instructions, and one loop counter increment irc$itbn. That is, only 1/3 of the instructions
executed are floating-point calculation instrucsioWith limited instruction processing
bandwidth, this instruction mixture limits the aetable performance to no more than 1/3 of the
peak bandwidth.

An easy way to improve the above instruction igniooll the loop, as shown in illustration
3.3. Given a block size, one can simply unrolkiad iterations and simply express the
computation as one long add expression. This etitagithe branch instruction and the loop

counter update. As a result, the long expressiaregacute at close to peak performance!

20

z2 for (...) {

3 /7 inside the block

4 shared float As[BLOCE SIZE] [BLOCK SIZE];
5 shared float Bs[BELOCK SIZE] [BLOCK SIZE];
&

7 As[ty] [tx] = Alindexd];

=] Bz[ty] [tx] = E[indexE];

9 __syncthreadsi);

10

11 sum += abs(BI[tx] [0]-&a3[ty] [0]);

12 e

13 sum += abs (B3 [tx] [L3]-&3[ty] [15]);

14

15 ___syncthreadsi();

16 }

17 tempResult=***kernel function**?*

18 Result[indexResult] = tempResult;

19 }

Illustration 3.2 Unrolled device code for Absdikernel functiol

We considerethe block size which can lexactlydivided by the size of the vectHow

about the vector size thatnst the integral number of the e of the block (see figui3.3.4)?

lbIock_size

IbIock_size
I 1

9IS HI0|q

9IS >00|q

~
P

e
=

Divide exactly by the block_size Not integral number of the block_size

Figure 33.4 Decide the number of blocks

We select 16 by 16 as the block ¢, which is the optimahumber for on thread block

according to CUDA desigOur 1600*150 dataset cannot be evenly divided sydimenion of

21

block, therefore, we can also create this numbénrefds in the block while not letting the

thread do any calculation (see lllustration 3.4oscade for this calculation).

_ _shared float As[BELOCE 2IZE] [ELOCE S3IZE];
_ shared float Bs[BLOCE SIZE] [ELOCK 3IZE];

ifithreadx<remainder){
AB(ty, tx) = Ala + ColNum * ty + tx];

3

4

5

6 i1if (last Block with remainder)

-

5]

= BSity, tx) = E[b + ColNum * ty + tx];

10 }

11

12 ___syncthreads();

13 for {(int k = 0; k < remainder; ++k)/{

14 sum += abs(B3(tx, k)-A3(ty.k));

15 }

1e

17 ___syncthreads();

13 lelse |

19 A3ity, tx) = Ala + ColWum * ty + tx];
zZ0 B8ity, tx) = E[b + ColNum * ty + tx];
21

22 ___synothreads();

23 for {(int k = 0; k < BLOCK SIZE; ++k){
Z4 sum += abs(B3(tx, k)-A3(ty.k));

25 }

Za __synethreads();

z7 1

28 1

29 tempResult=***kernel function***

30 Result[indexResult] = tempResult;

31}

32

Illustration 3.4 Block with remainder

Next, we will explain all of the kernel functionacthe performance running on different

datasets.

3.3.1 Gaussian Kernel

Gaussian kernel is defined as:

22

N

|%; — fj|2
202

K¢ (%, %) = exp(—)
which has one of the best performances among kiermetions. We can consider Gaussian
function as aperture function for some observatioris an inner scale and it can only be
positive.

The performance of our C code with G#Java code and C code on CPU is listed below:

training dataset: 9GC9TA.train, sigma: 0.05, ro@0, column #: 150

sensitivity (sn) is: 0.800000, specificity (sp) 8960000, accuracy (acc) is: 0.880000

CPU | CPU| GPU Time Speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel calculation time (5)0.305 | 0.04| 0.14 2.18 0.14
Kernel on Device (S) 0.0021 0.0035
Total time (s) 2.72 05| 0.79 3.44 0.68

Table 3.3.1.1 Gaussian kernel performance compatéadue

The performance of our C code with G#®Java code and C code on CPU is listed below:
training dataset: 9GC9TA.train, sigma: 0.05, rov8@0, column #: 150

snis: 0.91,spis: 0.94,acc is: 92.5

CPU | CPU| GPU | Time Speedup GPU
(Java)| (C) | (10*10) (16*16)
Kernel Calculation Time (5) 0.761| 0.16] 0.15 5.1 0.15
Kernel on Device (s) 0.0082 0.014
Total time (s) 9.899 3.79 3.12 3.2 3.35

Table 3.3.1.2 Gaussian kernel performance compatéadue

23

The performance of our C code with G®Java code and C code on CPU is listed below:
training dataset: 9GC9CG_9AT9TA . train, sigma: 0:@by #: 1600, column #: 150

snis: 0.835,sp is: 0.785, acc is: 0.81

CPU |CPU | GPU Time Speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel calculation time (5)2.745 | 0.62 | 0.17 16.1 0.2
Kernel on Device (S) 0.032& 0.056
Total time (s) 87.594 38.41| 14.75 5.9 22.37

Table 3.3.1.3 Gaussian kernel performance compataue

Gaussian kernel time comparison

w

N

// —o—JAVA+CPU
—8—C+CPU
7%@ CUDA+CPU
'(I(— T 1
400 800 1600

N

[EnY

Kernel Running Time (s)
[EEN
(02}

o
w
!

o

Data Size

Figure 3.3.1.1 Gaussian kernel performance congaris

24

SVM classification time using Gaussian kernel
[= 3
3 s »
(]
/-
E 7 —6—JAVA+CPU
s / P ~B-C+CPU
ig / / C+GPU
2 3.2 p— % _—
S 344" - ' . ' -
é 400 800 1600

Data Size

Figure 3.3.1.2 SVM classification time using Gaasskernel

From the tests above, we can see the GPlékeatculation time is very small, which is
more obvious when the dataset is larger. When altee skt is small, GPU cannot show its
performance advantages. The speed increases ftioneS8to 16 times faster than the original
java version. The total training time makes mofédence -- which is 5 times faster than the
original one with the data getting larger. Thibé&ause Java ,every time, needs to call the
library (cern scientific matrix calculation librgrthen get the value, while in C there is no need

to call the library. It just gets the value frone tarray.

3.3.2 Absdiff Kernel

For kernel functions, far away points resuliarge polarization values and small kernel

values. We can take the other extreme. Next weidenthe Absdiff kernel [21]:

— il — m)

Kindicator = KAbsdiff (x, y) = exp(252
The performance of our C code with GR®Java code and C code on CPU is listed below:
training dataset: 9GC9TA.train, sigma: 0.5, rot@0, column #: 150

25

sn is: 0.920000,sp is: 0.920000,acc is: 0.920000

CPU | CPU| GPU Time speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel calculation time (5)0.305 | 0.12| 0.13 2.3 0.13
Kernel on Device (S) 0.0021 0.0036
Total time (s) 2.261 0.3% 0.37 6.1 0.37

Table 3.3.2.1 Absdiff kernel performance comparitdsie

The performance of our C code with GJava code and C code on CPU is listed below:

dataset: 9GC9TA.train, sigma: 0.5, row #: 800, soiu#: 150

snis: 0.95, spis: 0.93, acc is: 0.94

CPU | CPU| GPU | Time speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel Calculation Time (5) 0.743| 0.48 0.14 5.3 0.16
Kernel on Device (S) 0.0082 0.013
Total time (s) 5.253 212 1.74 3.01 1.77

Table 3.3.2.2 Absdiff kernel performance comparitdsie

The performance of our C code with GR&lUava code and C code on CPU is listed below:

dataset: 9GC9CG_9ATI9TA.train, sigma: 0.5, row #HA,&olumn #: 150

snis: 0.87,sp is: 0.84,acc is: 0.855

CPU | CPU | GPU Time speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel calculation time () 3.5 1.96 | 0.18 19.4 0.21
Kernel on Device (S) 0.032& 0.05

26

Total time (s) 64.6 17.8411.8 5.47 12.48

Table 3.3.2.3 Absdiff kernel performance comparitadoie

Absdiff kernel time comparison

3.5 /
3

2:5 / —o—JAVA+CPU
—@—C+CPU

1? / / C+GPU

0.5 ﬁ{/
0 3

400 800 1600

Kernel Running Time (s)
N

Data Size

Figure 3.3.2.1 Absdiff kernel time comparison

SVM classification time using Absdiff kernel
o
% 5.47 /)
& 7
E / —o—JAVA+CPU
.§ / —f—C+CPU
= / /_. C+GPU
2 3.01 —— W/;(/
; 6.1 ' o ' ' ' '
s 400 800 1600

Data Size

Figure 3.3.2.2 SVM classification time using Ab$##érnel

The performance of the Absdiff kernel is miike the Gaussian kernel, since they have

almost the same number of arithmetic instructions.

27

3.3.3 Sentropic Kernel

Next we consider the Sentropic kernel:

1
KSentropic(x' y) = exp (_; [D (x| ly) + D(y||x)D

where

DGxIly) + DO =) =y tn ()

2 l

is the symmetric Kullback-leibler divergence.
The performance of our C code with GRUJava code and C code on CPU is listed
below: training dataset: 9GC9TA.train, sigma: @dwy #: 400, column #: 150

snis: 0.770000,sp is: 0.960000,acc is: 0.865000

CPU | CPU | GPU Time Speedup GPU

(Java)| (C) | (10*10) (16*16)
Kernel calculation time (g)1.12 | 0.787 0.14 8 0.15
Kernel on Device (S) 0.0075 0.011
Total time (s) 3.498 1.71] 0.73 4.8 0.73

Table 3.3.1.1. Sentropic kernel performance corspartable.

The performance of our C code with GJava code and C code on CPU is listed below:
dataset: 9GC9TA.train, sigma: 0.5, row #: 800, poiu#: 150

snis: 0.91,sp is: 0.93,acc is: 0.92

CPU | CPU| GPU | Time Speedup GPU

(Java)| (C) | (10*10) (s) (16*16)
Kernel Calculation Time (s) 4.49 | 3.102 0.17 26.4 0.18
Kernel on Device (s) 0.03 0.044

28

Total time (s) 11.44 6.09 181 6.4 2.3

™Y

Table 3.3.3.2. Sentropic kernel performance corspartable.

The performance of our C code with G®lJava code and C code on CPU is listed below:
dataset: 9GCI9CG_9ATITA.train, sigma: 0.5, row: 16@0umn: 150

snis: 0.875,sp is: 0.82, acc is: 0.8475

CPU |CPU |GPU Time Speedup GPU

(Java)| (C) (10*10) (16*16)
Kernel calculation time (s) 18.07 | 12.012 0.27 66.9 3.2
Kernel on Device (s) 0.12 0.178
Total time (s) 128.92 24.46 8.58 15.02 8.33

Table 3.3.3.3. Sentropic kernel performance corspartable.

Sentropic kernel time comparison

20

— 18
z pal
£ 124 /
= /
g YA
c
e 7 7 —o—JAVA+CPU
g ° / / —@—C+CPU
()]
£ 4 Py
g n//" crery
0 1 1 1
400 800 1600
Data Size

Figure 3.3.3.1 Sentropic kernel calculation timenparison

29

SVM classification time using Sentropic kernel

2 15.02 »

/

& / —o—JAVA+CPU

: / -
C+CPU

= J/

8 / | C+GPU

E 64 I "h‘ % |

£ 4.8

a 400 800 1600

(@)

S Data Size

>

(7,]

Figure 3.3.3.2 SVM classification time using Sepicdernel

For the Sentropic kernel, the kernel instructiodifferent from the first two, since we need to
compare with the cutoff value before we calculatekernel function. Therefore, most of the
time gets wasted there. However, we can see thitthe more function calls and the larger
dataset, the C and CUDA version is more efficiaanhtthe Java version. This is true, because the
function calls in C and CUDA are very light.

According to the tests above, the GPU performefabian the CPU for the same kernel
function algorithm used on different block sizegpesdicted. The reason is the highly parallel
architecture of the GPU. However, as we increasdlbck size of the GPU to 16 by 16, we
notice that the performance decreases as compaee@PU with block size 10. This occurs
because in a larger block size there are moredhkreperating and therefore there is more
context switch. In addition, although the GPU cesahread with zero overhead, the extra
threads which are not used by the kernel calculare actually still doing the comparison work

by the if statement. After all, we can see that3h classification time has been improved

30

with the C and CUDA version for, at least, abouwe&s faster, and the larger the dataset, the

more efficient performance we can get, comparet thi¢ other approach.

31

Chapter 4. Chunking SVM using GPU clusters

4.1 Message Passing Interface

With all the tests above, we can see that GPUigesva cheap solution for SIMD (Single
Instruction, Multiple Data) vector computation. Weuld like to harness this power in the
scientific computation area by using GPU clustassye use clusters that have been built to
harness the power of the standard CPU. The Mes$xaggng Interface (MPI) helps us to
combine multi-CPU and multi-GPU together.

MPI is a standard message passing library whichvala wide range of computers to
communicate with each other. It has been develapddmplemented by many of today’s high
performance computing companies (Sun, IBM, SGI) atied is mainly used for solving
significant scientific and engineering problemspamallel computers. The draft of this standard
called MPI-1was presented at Supercomputing 19%d about 128 functions which
emphasizes message passing and has a static r@munenment. In 1998 version MPI-2.1
(called MPI-2) was completed, which includes 28dctions and adds new features like parallel
I/0, dynamic process management and remote menpanations. It is important to note that
MPI-2 is mostly a superset of MPI-1, although sdurections have been deprecated. Thus MPI-
1.2 programs still work under MPI implementatioesnpliant with the MPI-2 standard.

There are two types of parallelism. One type is @arallelism, which is parallelizing by
giving a subset of the data to each process, whih each process performs the same tasks on
the different subsets of data. The other typesk parallelism which is parallelizing by giving a
subset of the tasks to each process, which théorpes a different subset of tasks on the same

data. We are using the data parallelism to impmweSVM classification performance.

32

The paradigm of aNPI program can be undersd in two parts: 1}he naster node is
responsible for dcomposing the problem insmall tasks and distributes th tasks to a farm of
slaves process, and gath#rs partial results in order to produce the "result of the
computation; 2) thelave nodes executevery simple cycles which géte nessage with the

task, process the taskad sen the results to the master (see figure 3.4.1).

send l
send send

receive

Figure 3.4.1 MPI data sending construction m

4.2 Combine NPl anc CUDA

If the MPI implementatioris compared to the CUDA onthe MPI implementation shot
show a response for a largerallel pal, which means that MPI distribugtevork to all of the
machines, while within eaclGUDA is used to do its smaller paralfgrt olwork.

There are some similaritié®tween these twio implementing parallel tasthreadldxvs
MPI1_Comm_rank(are constant varile. threadldx can be initialized ltlye useto let the GPU
know to createhe number of parallel threads to run within aaliblock. MP1_Comm_rank() i
the number of machingkat user defined parallel runningamong the cluste They are self-
increasing valuesom 0O to the number that user defir They both have the simili
synchronization mechanisrfa theall of the thread$o finish each round of parallel wc and

return the correct value for each ro: syncthreads(@ys MPI_Barrier().

33

There are some differences between the two as GdDA uses shared memory for all of the
threads within the same block to communicate wéttheother. All of the threads can be
synchronized only within the thread block. The camination within the shared memory and
transferring data from global memory to shared mgrovery cheap compared with the data
transformation between machines using MPI, whidhigbly dependent on network latency.

We have run our SVM chunking algorithm on four maek. We put our dataset (1600 by 150
dimensions) on a network shared hard disk and ewaine will read one chunk of this dataset
to send it to the GPU to calculate kernel functioen start to run SVM within this chunk. After
each chunk converges, the result will be send bathe master machine. In order to avoid
wasting time on transferring data back and forth,only use MPI to send the indexes of the
resulting dataset and re-chunk the data usingtiaeged indexes, then continue to run kernel
function on GPU and finally run SVM on all of theanhines. This step will stop unless the
merged data chunk is smaller than twice the sizbefirst chunk layer (see figure3.5.1 for data
sending structure).

The trick of compiling the MPI and CUDA codetisuse nvcc to compile everything. Because
nvcc compiler wrapper is more complex than mpiangiber wrapper, it is easier to make MPI
code into CUDA code (.cu) and compile with nvcertluse mpirun to execute on different

machines.

34

GPU_kernel

datzﬂ

MPI_Send

dataﬂ

MPI_Receive

data

datazl

(@ [~[e]e |

MPI_Send

MPI_Send

datagl

Figure3.5.1 Combine MPI and CUDA data sending m

35

Main() MPISetUp()

: : KemelGPU()
start
start()
Breakdata()
SVM()
readfile():Read GPU create threads and
data file into A calculate data within a
memory end data chunk block
i‘ }
KernelGPU() calculate one calculate one
MPISetUp() value of a result value of a result
matrixon thread 0 | ™ matrix on thread N
=) '
—
receive results
e
SVMCleanUP() i
receive result from
other machine and return results back
re-chunk if the size to host
is larger than twice
of one chunk size
v
MPI_Finalize()
end
4
gather data result
4
end
end
Figure 3.5.2 MPI-CUDA flowchart

Clusters’ environment: 4 Ubuntu machines: eadhem has 4 processors and each processor
is Intel Core 2 Extreme CPU Q6850 3.00GHz. MemerGB. GPU is NVIDIA Corporation
GeForce 8800 Ultra and has two on each machine.

We decided to use the Absdiff kernel, since atstihg the three kernels, Absdiff was chosen
as the best kernel for the DNA hairpin datasetsbge of its high accuracy (average is: 90.5)
and because it takes the least amount of timerteezge. The training dataset is
9GCI9CG_9AT9TA.train which has 1600 data samplesl&fdfeature components. The testing

dataset is 9GCI9CG_9ATITA.test which has 400 datgkss and 150 feature components. The

36

total classification time cannot be obtained, siftzesome reason it cannot converge. The reason
might be that | only pass 80% support vectors iheonext chunk and make SVM cannot find
the hyperplane. The time could be also wasted pgicg data back and forth many times on
GPU and sending data between machines. Or bedasetwork is not high speed infiniband

and result long time data transformation.

37

Chapter 5. Conclusion

SVM is a very useful technique in the area of é¢fasgion. It has been utilized in various
pattern recognition applications. However, a mainstraint of SVM is its training time often
costing a lot of time when a large dataset is belagsified. Then the very natural way to solve
this problem is using data parallelism to breakdat into many small chunks. After obtaining
results from these small chunks, we can trace theckriginal problem and then make it easier
to solve.

GPU is very popular now in scientific computatawmains. Because of its highly paralleled
architecture, we can implement SVM on GPU which lealp improve the performance on SVM
classification time. Although GPU has a lot of liations, such as shared memory is very small
and only one kernel function can be execute on@R¥ card at one time, we can also
implement our SVM on it, as long as we manage temary carefully. As shown in table 3.3
serial, we conclude that GPU can improve SVM pentonce a lot better than CPU while
maintaining the same accuracy as C and Java.

Although the testing result on distributed machana many GPUSs is not well illustrated, we
still have space to improve it. For example, thé&/Bkérnel function part on GPU needs to be
revised to take the thread block size not only sguared number but as any number.

With the chunking idea, the problem of a lardataset running on SVM would not be a
problem anymore and several machines could beediliogether to make the classification
process faster. In addition, for reaching the hégtevel of performance, in the future, multiple
GPUs could be used as one time; in this case wd bawe distributed machines with

distributed GPUs having massive thread running.

38

References

[1] B. E. Boser, I. Guyon, V. Vapnik: A Training gorithm for Optimal Margin Classifiers.
Proceedings of the Fifth Annual Workshop on Comiporial Learning Theory 144-152, 1992.
[2] J.C. Platt: Sequential Minimal Optimization:Fast Algorithm for Training Support Vector
Machines, Microsoft Research, Technical Report MI$R98-14, 1998.

[3] E. Osuna, R. Freund, F. Girosi: Improved TraghAlgorithm for Support Vector
Machines," Proc. IEEE NNSP '97, 1997.

[4] Handwriting recognition: Wikipedia.

[5] C. Bahlmann, B. Haasdonk , H. Burkhardt : QrelHandwriting Recognition with Support
Vector Machines—A Kernel Approach, publ. in Protthe 8th Int. Workshop on Frontiers in
Handwriting Recognition (IWFHR), pp. 49-54, 2002.

[6] A. Ganapathiraju, J. E. Hamaker, J. Picone:l&pgions of Support Vector Machines to
Speech Recognition, IEEE Transactions on Signatdasing; Vol. 52 Issue 8, Aug2004.

[7] L. Bottou et al. Comparison of classifier meds: a case study in handwritten digit
recognition. Proceedings of the 12th IAPR Inteorai Conference on Pattern Recognition, vol.
2, pp. 77-82.

[8] C.J. C. Burges: A tutorial on support vectaaahines for pattern recognition, Knowledge
Discovery Data Mining, vol. 2, no. 2, pp. 121-16998.

[9] V. N. Vapnik: Statistical Learning Theory. Nevork: Wiley, 1998.

[10] J. Padrell-Sendra, D. Mart"in-lglesias andHaz-de-Mar’1a: Support Vector Machines for
Continuous Speech Recognition

[11] T. Joachims: Text Categorization with Suppéettor Machines, LS VIII Technical Report,

No. 23, University of Dortmund, 1997.

39

[12] S. Winters-Hilt, A. Davis, I. Amin, E. Moraleslanopore current transduction analysis of
protein binding to non-terminal and terminal DNAyi@ns: analysis of transcription factor
binding, retroviral DNA terminus dynamics, and oeiral integrase-DNA binding, BMC
Bioinformatics, 2007

[13] H.P., Graf, E., Cosatto, L., Bottou, I., Dund&ic, V., Vapnik: Parallel Support Vector
Machines: The Cascade SVM, in proceedings NIP$4 200

[14] S. Winters-Hilt, and K. Armond Jr.: Distribut&SVM Learning and Support Vector
Reduction, Department of Computer Science, UnitierdiNew Orleans

[15] J. Mercer: Functions of positive and negatiyse and their connection with the theory of
integral equations, Philos. Trans. Roy. Soc. Lonti@po

[16] Sam Meren, thesis 2008

[17] S. Winters-Hilt, E. Morales, I. Amin, and Atdyanov: Nanopore-based kinetics analysis of
individual antibody-channel and antibody-antigeteiactions, 8(Suppl 7): S20, BMC
Bioinformatics, 2007

[18] W. Gropp, E. Lusk and A. Skjellum: “Using MRiortable parallel programming with the
message-passing interface”. MIT Press In Sciemdifid Engineering Computation Series,
Cambridge, MA, USA. 307 pp, 1994

[19] video: http://www.youtube.com/watch?v=nIGnKRm{E

[20] NVIDIA CUDA programming guide 2.0

[21] S. Winters-Hilt, A. Yelundur, C. McChesney, Mandry: Support Vector Machine

Implementations for Classification & ClusteringSuppl 2): S4, BMC Bioinformatics, 2006.

40

Appendix

Al.C++ code implement SVM

/~k

* SVM.c

*

* Created on: Feb 5, 2009
* Author: Hang Zhang
*

#include"SVM.h"

SVMModel *learnSVM(SVMModel *model,dataoutput *datatputinst,constint RowNum,constint CoINumfloat parameter2,
int type,int argc,char* argv) {

printf("training... row=%d, col=%d \nRowNum,ColNum);

float* inputFeatures = dataoutputinst->inputFeaturesld,;

float* inputLabels = dataoutputinst->inputLabels;

clock_t kerneltime=clock();

float* kernelMat=kernelMatrix(inputFeatures,inputFeatjRowNum,ColNum,RowNum,sigma, type, argc, argv);

printf("\nsvm kernel time is:%f,,((doublgclock()-kerneltime));

float *alpha=newfloatfRowNum];

float *errorCachenewfloatfRowNumj;

float threshold=0;

int numChanged;

int examineAll;
inti;
int supp = 0;

/* Initialize alpha array to all zero */
for (i = 0; i < RowNum; i++) {
alphali] = 0;
errorCacheli] = 0;

numChanged = 0;
examineAll = 1;
int iter=0;
int maxlIter=1000;
clock_t start,finishftime
float costtime;
start = clock();
while ((humChanged > 0 || examineAll == 1) && iter < @riter == 0)?iter+1:maxliter)) {
iter++;
numChanged = 0;
if (examineAll == 1) {
/* Loop over all training examples */
for (i=0; i < RowNum; i++) {
numChanged += examineExample(i,inputLabels,RomkernelMat,&threshold,alpha,
errorCache);
}
/I printf("examineAll=1\n");
} elsef
/* Loop over examples where alphais not 0 & ndt C
for (i = 0; i < RowNum; i++)
if (alpha]i] '= 0 && alphali] != cVal) {
numChanged +=
examineExample(i,inputLabels,RowNum,kernelMat,&#ireld,alpha, errorCache);

}
}

if (examineAll == 1)

41

examineAll = 0;
elseif (numChanged == 0)

examineAll = 1;
}

finish = clock();
costtime = finish-start;

printf("\ntraining time spend (ms): %f, iteration: %d,ebinold: %f} costtime, iter, threshold);
deletéerrorCache);
//*****************Construct SVM Model************* *kkk

{

model->setlter=iter;
model->setThreshold=threshold;
vectordnt> nonZeroAlphalndList;
vectordnt> polarizationindList;

int upto = 0;
for (inti=0; i < RowNum; i++) {
float thisalpha = alpha[i];
if (thisalpha > 0 && thisalpha != cVal){
nonZeroAlphalndList.push_back(i);
}

/I count the vectors in the polarization set
if (thisalpha ==0) {
polarizationindList.push_back(i);

}
++upto;
}
/*
* allocate the alpha corresponding to supportarsc
*

float* tmpSvAlphas =newfloatinonZeroAlphalndList.size()];
for (inti = 0; i < (nt)nonZeroAlphalndList.size(); i++) {
tmpSvAlphas][i]= alpha[nonZeroAlphalndList.at(i)]

}
model->setSvAlphas=tmpSvAIph4s;
model->setsupp#{t)nonZeroAlphalndList.size()i////

int suppLength3at)nonZeroAlphalndList.size();
int nonSuppLengthaft)polarizationindList.size();

int* nonZeroAlphalndArraynewint[nonZeroAlphalndList.size()];
int* polarizationindArraymewint[polarizationindList.size()];

for(int i=0; i<suppLength;i++){
nonZeroAlphalndArray[i]l=nonZeroAlphalndList.gt(i

model->setSvindices=nonZeroAlphalndArrdy;
for(int i=0;i<nonSuppLength;i++){
polarizationIndArray[i]=polarizationindList.aj(i

model->setPolarizationIndices=polarizationindAcra ////

/[allocate original features

model->setSuppFeatures=viewSelectionFeats(inptuFes,nonZeroAlphalndArray,suppLength, ColNum);

/ allocate original labels

model->setSvLabels=viewSelectionLabel(inputLapetsZeroAlphalndArray,suppLength);

printf('\n #SV = %d, threshold = %f, Iterations: %donZeroAlphalndList.size(), model->setThreshold,
iter);

42

free(kernelMat);
returnmodel;

}

float* viewSelectionFeatfipat* featsjnt* thisindex,int thisLengthjnt ColNum){
unsignednt size_features = thisLength*ColNum;
unsignednt mem_size_featuressizeoffloat) * size_features;
float* selectFinal =float*) malloc(mem_size_features);
for(int i=0;i<thisLength;i++){
for(int j=0;j<ColNum;j++)
selectFinal[i*ColNum+j]=feats[(thisindex[i])*CNum+i];
}

returnselectFinal;

}

float* viewSelectionLabef{oat* labelsjnt* thisindex,int thisLength){
float* selectFinalmewfloat[thisLength];
for(int i=0;i<thisLength;i++){
selectFinal[i]=labels[(thisIndex[i])];
}

returnselectFinal;

}
float outputNonlineai(it i,float *inputLabelsgconstint RowNum,float *kernelMat,float *thresholdfloat *alpha) {

float alphad = 0;
float sum = 0;

for (int j=0; j < RowNum,; j++){
if ((alphaJ = alphalj]) > 0){
sum += alphaJ * inputLabels][j] *kernelMat[i*RoveNn+i];
}
}

returnsum - *threshold;
}
int examineExampléft i2 float *inputLabels constint RowNum,float *kernelMat,float *threshold float *alpha,float
*errorCache) {

float r2=0;

float E2=0;

float alph2 = alpha[i2];
float y2 = inputLabels[i2];
float tol=tolerance;

if (alph2 >0 && alph2 < cVal)
E2 = errorCachel[i2];

else

E2 = outputNonlinear(i2,inputLabels,RowNum, kektet, threshold, alpha) - y2;
2 =E2*y2,
/~k

* if alpha2 violates the KKT condition within alesance

* then look for an alphal and optimize both alptiake_step(i1,i2))
*

if ((r2 <-tol && alph2 < cVal) || (r2 > tol && alph2 0))

{
/~k
* Once a alphaz2 is chosen, SMO chooses alphatakimize
* the size of the step taken during joint opgation
* (take_step(i1,i2))

43

*/
intil=-1;
float tmax = 0;

for (int k = 0; k < RowNum; k++)

{
float alpha_k = alpha[k];
if (0 < alpha_k && alpha_k < cVal)
{
float temp;
float E1 = errorCachel[k];
/*
* SMO approximates the step size by absolateesof (E1-E2)
*
temp = abs(E1 - E2);
if (temp > tmax) {
tmax = temp;
il1=k;
}
}
}
if (i1>-1)
if (takeStep(il, i2,RowNum, inputLabels,kernelMagstrold, alpha, errorCache) == 1)
returnl;
}
/*

* At this point no positive progress was madst(fzaragraph
*in Platt's paper section 2.4).
*

* first check the non bound alphas from a rangeace

*

{ srand(0);
intk=0;
intil=-1;

/I int kO = abs(rand()*327688*RowNum);
int kO = abs(rand()*RowNum);
for (k = kO; k < RowNum + kO; k++)

{
il = k % RowNum;
float alpha_k = alphalil];
if (0 < alpha_k && alpha_k < cVal)
if (takeStep(il, i2,RowNum, inputLabels,kernelMatethold, alpha,
errorCache)==1)
returnl;
}
}
}
/*

* if still no progress then iterate through akfure vectors
* starting from a random place
*
{ srand(0);
intk =0, i1=-1;
/I int kO = abs(rand()*327688*RowNum);
int kO = abs(rand()*RowNum);
for (k = kO; k < RowNum + kO; k++)

44

il = k % RowNum;
if (takeStep(i1, i2,RowNum,inputLabels,kernelMat gi@d,alpha,errorCache) == 1)
returnl;

}

returnO;

int takeStep(t i1, int i2, constint RowNum,float *inputLabels float *kernelMat,float *threshold float *alpha,float
*errorCache) {

float eps=epsilon;

float alpha_old_1, alpha_old_2; // old_values of alpha_1, alpha_2

float alpha_new_1, alpha_new_2/ new values of alpha_1, alpha_2

floatyl, y2, s, E1, E2, L, H, k11, k22, k12, eta, Ldtgbj;

if (il ==i2)returnO;

alpha_old_1 = alpha[il];
y1 = inputLabels[il];

if (alpha_old_1 > 0 && alpha_old_1 < cVal)
E1 = errorCachelil];
else
E1 = outputNonlinear(il,inputLabels,RowNum, kektat,threshold, alpha) - y1;

alpha_old_2 = alpha[i2];
y2 = inputLabels[i2];

if (alpha_old_2 > 0 && alpha_old_2 < cVal)
E2 = errorCachel[i2];

else
E2 = outputNonlinear(i2,inputLabels,RowNum,keMat,threshold, alpha) - y2;
s=yl *y2;
if (yl1 ==y2)
{
float gamma = alpha_old_1 + alpha_old_2;
if (gamma > cVal)
L = gamma-cVal;
H=cVal;
}
else
{
L=0;
H = gamma,;
}
}
else
{

float gamma = alpha_old_2 - alpha_old_1;
if (gamma > 0)

L = gamma;
H =cVal;

else

45

L=0;
H = cVal + gamma;
}
}
if (L==H){
returnO;

}

k1ll=kernelMat[il*RowNum-+il];
k12=kernelMat[il1*RowNum+i2];
k22=kernelMat[i2*RowNum-+i2];

eta = k11 + k22 - 2*k12;

if (eta > 0)
{
alpha_new_2 = alpha_old_2 +y2 * (E1 - E2) / eta;
if (alpha_new_2 <L)
alpha_new_2 =1L;
elseif (alpha_new_2 > H)
alpha_new_2 = H;

else

floatfl = y1 * (E1 + *threshold) - alpha_old_1 * k15 + alpha_old_2 * k12;
floatf2 = y2 * (E2 + *threshold) - alpha_old_2 * k2% * alpha_old_1 * k12;
float1l = alpha_old_1 + s * (alpha_old_2-L);

float hl = alpha_old_1 + s * (alpha_old_2-H);

Lobj = 111 + L*2 + 1/2 * ((1I1H1)*K11 + (L*L) *k22 + 2*s*L*1*k12);
Hobj = h1*f1 + H*2 + 1/2 * ((h1*h1)*k11 + (H*HJk22 + 2*s*H*h1*k12);

if (Lobj < Hobj-eps)
alpha_new_2 =1;

elseif (Lobj > Hobj+eps)
alpha_new_2 =H;

else
alpha_new_2 = alpha_old_2;

}

if (abs(alpha_new_2 - alpha_old_2)< eps * (alpha_gewalpha_old_2 + eps))
return0;

alpha_new_1 = alpha_old_1 + s * (alpha_old_2 halmew_2);
if (alpha_new_1 <0)

alpha_new_2 +=s * alpha_new_1;
alpha_new_1=0;

elseif (alpha_new_1 > cVal)

floatt = alpha_new_1 - cVal;
alpha_new_2 +=s *t;
alpha_new_1 =cVal;

}

/* updating the threshold */
float b1, b2, bnew, delta_b;
bl = *threshold + E1 + y1 * (alpha_new_1 - alphd_a&) * k11 + y2 * (alpha_new_2 - alpha_old_2) *X%1

46

b2 = *threshold + E2 + y1 * (alpha_new_1 - alphd_a&) * k12 + y2 * (alpha_new_2 - alpha_old_2) *%2

if (alpha_new_1 >0 && alpha_new_1 < cVal)
bnew = b1;

elseif (alpha_new_2 >0 && alpha_new_2 < cVal)
bnew = b2;

else
bnew = (bl + b2) / 2;

delta_b = bnew - *threshold;
*threshold = bnew;

/*

* updating the error cache

*

floattl = y1 * (alpha_new_1-alpha_old_1);
floatt2 = y2 * (alpha_new_2-alpha_old_2);

for (inti=0;i < RowNum; i++)
{
float alpha_i = alphali];

if (0 <alpha_i && alpha_i < cVal)

{
float kli=kernelMat[i1*RowNum-+i];
float k2i=kernelMat[i2*RowNum-+i];
float error_old_i = errorCacheil;
float error_new_i = error_old_i + t1*k1i + t2*k2i - deltb;
errorCacheli]=error_new_i;
}

errorCachelil]= 0;
errorCachel[i2]= 0;

/*

* updating the alphas

*/

alphalil]= alpha_new_1,;
alphali2]= alpha_new_2;

returnl;

A2. Host code to launch the GPU function call

SVM_kernel_host.cu

/I includes, kernels
#include"Absdiff_kernel_device.cu"
#include"Gaussian_kernel_device.cu"
#include"Sentropic_kernel_device.cu"

/I includes, project
#include<cutil_inline.h>

[T L L
/I declaration, forward

47

void printDiff(float*, float*, int, int);
void printAB(float*, float*, int , int);

void AbsdiffGold(float*, constfloat*, constfloat*, unsignednt, unsignednt,unsignednt, float);
void GaussianGoldfloat*, constfloat*, constfloat*, unsignednt, unsignednt,unsignednt, float);
void SentropicGoldfloat*, constfloat*, constfloat*, unsignednt, unsignednt,unsignednt, float);

s

float* kernelMatrixfloat* features1float* features2jnt RowNum,int ColNum,int RowNumz2float sigma,int type,int argc,
char* argv){

if (cutCheckCmdLineFlag(arga@dnstchaf*)argv, "device"))
cutilDevicelnit(argc, argv);

else
cudaSetDevice(cutGetMaxGflopsDeviceld());

float parameter =1/(2*sigma*sigma);

float parameter2=1/(sigma*sigma);

/l allocate host memory for matrices A and B

unsignednt size_A = RowNum * ColNum;

unsignednt mem_size_A =sizeoffloat) * size_A,;

unsignednt size_B = RowNum2 * ColNum;
unsignednt mem_size_B sizeoffloat) * size_B;

float* d_A;
cutilSafeCall(cudaMalloc(id**) &d_A, mem_size_A));
float* d_B;
cutilSafeCall(cudaMallocypid**) &d_B, mem_size_B));

/I copy host memory to device
cutilSafeCall(cudaMemcpy(d_A, featuresl, mem_sizeudaMemcpyHostToDevice));
cutilSafeCall(cudaMemcpy(d_B, features2, mem_$zeudaMemcpyHostToDevice));

/ allocate device memory for result

unsignednt size_C = RowNum * RowNum2;
unsignednt mem_size_C sizeoffloat) * size_C;

float* d_C;

cutilSafeCall(cudaMalloc(pid**) &d_C, mem_size_C));

/ allocate host memory for the result
float* h_C = loat*) malloc(mem_size_C);

/[create and start timer

unsignednt timer = 0;
cutilCheckError(cutCreateTimer(&timer));
cutilCheckError(cutStartTimer(timer));

/] setup execution parameters

dim3 threads(BLOCK_SIZE, BLOCK_SIZE);

dim3 grid(RowNum2 / threads.x, RowNum / threads.y)

/I execute the kernel

switch(type){
case0: AbsdiffKernel<<< grid, threads >>>(d_C, d_A,Rl RowNum, ColNum, parametef)reak
casel: GaussianKernel<<< grid, threads >>>(d_C, d_A ,dRowNum, ColNum, parametebreak
case2: SentropicKernel<<< grid, threads >>>(d_C, ddAB, RowNum, ColNum, parameter®yeak

}

/I check if kernel execution generated and error
cutilCheckMsg(Kernel execution failed;

/I stop and destroy timer

48

cutilCheckError(cutStopTimer(timer));
printf("kernel on the device Processing time: %f (ms) tutGetTimerValue(timer));
cutilCheckError(cutDeleteTimer(timer));

/I copy result from device to host
cutilSafeCall(cudaMemcpy(h_C, d_C, mem_size_CatleincpyDeviceToHost));

cutilSafeCall(cudaFree(d_A));
cutilSafeCall(cudaFree(d_B));
cutilSafeCall(cudaFree(d_C));
cudaThreadExit();

returnh_C;

A3. Absdiff kernel function code on GPU, BLOCKSIZE¥

Absdiff_kernel_device.cu

/*
* Device code.
*/

#ifndef ABSDIFF_KERNEL_DEVICE_H_
#define_ ABSDIFF_KERNEL_DEVICE_H_

#include<stdio.h>
#include"SVM_kernel_host.h"
#defineCHECK_BANK_CONFLICTS 0
#if CHECK_BANK_CONFLICTS
#define AS(i, j) cutiiBankChecker(((float*)&As[0][), (BLOCK_SIZE *i + j))
#define BS(i, j) cutiiBankChecker(((float*)&Bs[0][R (BLOCK_SIZE *i +j))
#else
#defineAS(i, j) As[i][j]
#defineBS(i, j) BsI[i][j]
#endif
T
/labsdiff kernel
T
__global__void
AbsdiffKernel(float* C, float* A, float* B, int RowNum,int ColNum,float Para)
{
/I Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index
int tx = threadldx.x;
int ty = threadldx.y;

/I Index of the first sub-matrix of A processedthg block
int aBegin = ColNum * BLOCK_SIZE * by;

/I Index of the last sub-matrix of A processed g block
intaEnd = aBegin + ColNum - 1;

/] Step size used to iterate through the sub-nesstraé A
int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processedthg block

49

int bBegin = ColNum * BLOCK_SIZE * bx;

/] Step size used to iterate through the sub-nestioé B
int bStep = BLOCK_SIZE;

/I Csub is used to store the element of the blabkraatrix
/[that is computed by the thread
float Csub = 0;
float Cresult=0;
/I Loop over all the sub-matrices of A and B
/I required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
a<=aEnd;
a += aStep, b += bStep) {

/I Declaration of the shared memory array As used t
/I store the sub-matrix of A
__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];

/I Declaration of the shared memory array Bs ueed t
/I store the sub-matrix of B
__shared_float BsS[BLOCK_SIZE][BLOCK_SIZE];

/I Load the matrices from device memory
/I to shared memory; each thread loads
/I one element of each matrix

AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

/I Synchronize to make sure the matrices are loaded
__syncthreads();

/I Calculate the two matrices together;

/I each thread computes one element

/I of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k){
Csub += abs(BS(tx, k)-AS(ty,k));

__syncthreads();

}

/I Write the block sub-matrix to device memory;
/[each thread writes one element

float norm1_diff_squared = sqgrtf(Csub);
Cresult=expf(-Para*norm1_diff_squared);

int Row=by*BLOCK_SIZE+ty;

int Row2=bx*BLOCK_SIZE+tx;

C[RowNum * Row + Row2] = Cresult;

}
#endif// #ifndef ABSDIFF_KERNEL_H_

A4. Absdiff kernel function code on GPU, BLOCK SIZES

Absdiff_kernel_device.cu

* Device code.

50

#ifndef_ABSDIFF_KERNEL_DEVICE_H_
#define_ABSDIFF_KERNEL_DEVICE_H_

#include<stdio.h>
#include"SVM_kernel_host.h"
#defineCHECK_BANK_CONFLICTS 0

#if CHECK_BANK_CONFLICTS

#define AS(, j) cutiiBankChecker(((float*)&As[
#define BS(i, j) cutiiBankChecker(((float*)&Bs|[
#else

#defineAS(i, j) Asil[j]

#defineBS(i, j) BsI[i][j]

#endif
T T L T

/[absdiff kernel

T L L T

__global__void

AbsdiffKernel(float* C, float* A, float* B, int RowNum,int ColNum,float Para)

{

10, (BLOCK_SIZE *i +)

0
OJID (BLOCK_SIZE *i + j))

/I Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index
int tx = threadldx.x;
int ty = threadldx.y;

/I Index of the first sub-matrix of A processedthg block
int aBegin = ColNum * BLOCK_SIZE * by;

/I Index of the last sub-matrix of A processed g block
intaEnd = aBegin + ColNum - 1;

/I Step size used to iterate through the sub-nestra¢ A
int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processedthg block
int bBegin = ColNum * BLOCK_SIZE * bx;

/] Step size used to iterate through the sub-nestioé B
int bStep = BLOCK_SIZE;
int remainderA=ColNum % BLOCK_SIZE;
/I Csub is used to store the element of the blabkraatrix
/[that is computed by the thread
float Csub = 0;
float Cresult=0;
/I Loop over all the sub-matrices of A and B
/I required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
a<=aEnd;
a += aStep, b += bStep) {

__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];
__shared_float BsS[BLOCK_SIZE][BLOCK_SIZE];
if (a==aBegin+(ColINum/BLOCK_SIZE)*BLOCK_SIZE)X{
if (tx<remainderA){
AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

__syncthreads();

51

for (int k = 0; k < remainderA; ++k){
Csub += abs(BS(tx, k)-AS(ty,k));

__syncthreads();
}else{
AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];
__syncthreads();
for (int k = 0; k < BLOCK_SIZE; ++k){
Csub += abs(BS(tx, k)-AS(ty,k));

__syncthreads();

}

float norm1_diff_squared = sqgrtf(Csub);
Cresult=expf(-Para*norml_diff_squared);
int Row=by*BLOCK _SIZE +ty;

int Row2=bx*BLOCK_SIZE+tx;
C[RowNum * Row + Row2] = Cresult;

}
#endif// #ifndef ABSDIFF_KERNEL _H_

A5. Gaussian kernel function code on GPU, BLOCK E5iZ0

Gaussian_kernel_device.cu

/*
* Device code.
*/

#ifndef _GAUSSIAN_KERNEL_DEVICE_H_
#define_ GAUSSIAN_KERNEL_DEVICE_H_

#include<stdio.h>
#include"SVM_kernel_host.h"
#defineCHECK_BANK_CONFLICTS 0
#if CHECK_BANK_CONFLICTS
#define AS(i, j) cutiiBankChecker(((float*)&As[0][(, (BLOCK_SIZE *i + j))
#define BS(i, j) cutiiBankChecker(((float*)&Bs[0][R (BLOCK_SIZE *i +j))
#else
#defineAS(i, j) As[i][j]
#defineBS(i, j) BsIi][j]
#endif
T L L L T
/[absdiff kernel
I T T T LT T
__global__void
GaussianKernef{oat* C, float* A, float* B, int RowNum,int ColNum,float Para)
{
int bx = blockldx.x;
int by = blockldx.y;

int tx = threadldx.x;
int ty = threadldx.y;

int aBegin = ColNum * BLOCK_SIZE * by;

intaEnd = aBegin + ColNum - 1;

52

int aStep = BLOCK_SIZE;
int bBegin = ColNum * BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE;

/I Csub is used to store the element of the blatkreatrix

/[that is computed by the thread

float Csub = 0;

float Cresult=0;

float temp=0;

/I Loop over all the sub-matrices of A and B

/I required to compute the block sub-matrix

for (int a = aBegin, b = bBegin;a <= aEnd;a += aStep, bStep) {

/I Declaration of the shared memory array As used t
/I store the sub-matrix of A
__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];

/I Declaration of the shared memory array Bs ueed t
/I store the sub-matrix of B
__shared_float BsS[BLOCK_SIZE][BLOCK_SIZE];

/I Load the matrices from device memory
/I to shared memory; each thread loads
/I one element of each matrix

AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

/I Synchronize to make sure the matrices are loaded
__syncthreads();

/I Calculate the two matrices together;

/I each thread computes one element

/I of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k){
temp=BS(tx, k)-AS(ty,k);
Csub += temp*temp;

}

__syncthreads();

}

/I Write the block sub-matrix to device memory;

/[each thread writes one element

float norm1_diff_squared = powf(sqrtf(Csub),2.0);
Cresult=expf(-Para*norml_diff_squared*1.0);

int Row=by*BLOCK_SIZE +ty;

int Row2=bx*BLOCK_SIZE+tx;

C[RowNum * Row + Row2] = Cresult;

}
#endif// #ifndef _GAUSSIAN_KERNEL_H_

A6. Gaussian kernel function code on GPU, BLOCK EsiZ6

Gaussian_kernel_device.cu

* Device code.

53

*

#ifndef_GAUSSIAN_KERNEL_DEVICE_H_
#define_ GAUSSIAN_KERNEL_DEVICE_H_

#include<stdio.h>
#include"SVM_kernel_host.h"
#defineCHECK_BANK_CONFLICTS 0
#if CHECK_BANK_CONFLICTS
#define AS(i, j) cutiiBankChecker(((float*)&As[0][, (BLOCK_SIZE *i + J))
#define BS(i, j) cutiiBankChecker(((float*)&Bs[0][(BLOCK_SIZE *i + J))
#else
#defineAS(i, j) As[i][j]
#defineBS(i, j) BsJ[i][j]
#endif
T
/labsdiff kernel
M LN
__global__void
GaussianKernel{oat* C, float* A, float* B, int RowNum,int ColNum,float Para)
{
/I Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index
int tx = threadldx.x;
int ty = threadldx.y;

/I Index of the first sub-matrix of A processedthg block
int aBegin = ColNum * BLOCK_SIZE * by;

/I Index of the last sub-matrix of A processed g block
intaEnd =aBegin + ColNum - 1;

/I Step size used to iterate through the sub-nestraé A
int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processedthg block
int bBegin = ColNum * BLOCK_SIZE * bx;

/] Step size used to iterate through the sub-nestioé B
int bStep = BLOCK_SIZE;

int remainderA=ColNum % BLOCK_SIZE;

/I Csub is used to store the element of the blabkraatrix
/[that is computed by the thread

float Csub = 0;

float Cresult=0;

float temp=0;

/I Loop over all the sub-matrices of A and B

/I required to compute the block sub-matrix

for (int a = aBegin, b = bBegin;a <= aEnd;a += aStep, bStep) {

/I Declaration of the shared memory array As used t
/I store the sub-matrix of A

__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];
/I Declaration of the shared memory array Bs ueed t
/I store the sub-matrix of B

__shared_float Bs[BLOCK_SIZE][BLOCK_SIZE];

if (a==aBegin+(CoINum/BLOCK_SIZE)*BLOCK_SIZE){

54

if (tx<remainderA){
AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

}

__syncthreads();

for (int k = 0; k < remainderA; ++k){
temp=BS(tx, k)-AS(ty,k);
Csub += temp*temp;

__syncthreads();
}elsef{

AS(ty, tx) = A[a + ColNum * ty + tx];

BS(ty, tx) = B[b + ColNum * ty + tx];

__syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k){
temp=BS(tx, k)-AS(ty,k);
Csub +=temp*temp;

__syncthreads();

}

/I Write the block sub-matrix to device memory;

/I each thread writes one element

float norm1_diff_squared = powf(sqrtf(Csub),2.0);
Cresult=expf(-Para*norml_diff_squared*1.0);

int Row=by*BLOCK_SIZE +ty;

int Row2=bx*BLOCK_SIZE+tx;

C[RowNum * Row + Row2] = Cresult;

}
#endif// #ifndef _GAUSSIAN_KERNEL_H_

A7. Sentropic kernel function code on GPU, BLOCKZE+10

Sentropic_kernel_device.cu

/*
* Device code.
*

#ifndef _SENTROPIC_KERNEL_DEVICE_H_
#define_SENTROPIC_KERNEL_DEVICE_H_

#include<stdio.h>

#include"SVM_kernel_host.h"

#defineCHECK_BANK_CONFLICTS 0

#if CHECK_BANK_CONFLICTS

#define AS(i, j) cutiiBankChecker(((float*)&As[0][), (BLOCK_SIZE *i + j))
#define BS(i, j) cutiiBankChecker(((float*)&Bs[0][(BLOCK_SIZE *i + J))
#else

#defineAS(i, j) As[i][j]

#defineBS(i, j) BsJ[i][j]

#endif

T N

/labsdiff kernel

T LN

__global__void

SentropicKernelfloat* C, float* A, float* B, int RowNum,int ColNum,float Para)

{
55

/I Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index
int tx = threadldx.x;
int ty = threadldx.y;

/I Index of the first sub-matrix of A processedthg block
int aBegin = ColNum * BLOCK_SIZE * by;

/I Index of the last sub-matrix of A processed g block
intaEnd =aBegin + ColNum - 1;

/] Step size used to iterate through the sub-nesstraé A
int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processedthg block
int bBegin = ColNum * BLOCK_SIZE * bx;

/] Step size used to iterate through the sub-nestioé B
int bStep = BLOCK_SIZE;

/I Csub is used to store the element of the blabkraatrix

/[that is computed by the thread

/I float Csub = 0;

/I float Cresult=0;

float exp_term = .0;

float MIN_PROB = le-6f;

/I Loop over all the sub-matrices of A and B

/I required to compute the block sub-matrix

for (int a = aBegin, b = bBegin;a <= aEnd;a += aStep, bStep) {

/I Declaration of the shared memory array As used t
/I store the sub-matrix of A
__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];

/I Declaration of the shared memory array Bs ueed t
/I store the sub-matrix of B
__shared_float BS[BLOCK_SIZE][BLOCK_SIZE];

/I Load the matrices from device memory
/I to shared memory; each thread loads
/I one element of each matrix

AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

/I Synchronize to make sure the matrices are loaded
__syncthreads();

/I Calculate the two matrices together;

/I each thread computes one element

/I of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k){
float v1_i = (AS(ty,k)<MIN_PROB)?MIN_PROB:AS(ty,k);
float v2_i = (BS(tx,k)<MIN_PROB)?MIN_PROB:BS(tx,k);
exp_term += (v1_i - v2_i)*(logf(vl_i/v2_i));

}

__syncthreads();

56

int Row=by*BLOCK_SIZE+ty;
int Row2=bx*BLOCK_SIZE+tx;
C[RowNum * Row + Row2] = expf(-Para*sqrtf(exp_te)m

}
#endif// #ifndef SENTROPIC_KERNEL H_

A8. Sentropic kernel function code on GPU, BLOCKZES16

Sentropic_kernel_device.cu

/*
* Device code.
*/

#ifndef _SENTROPIC_KERNEL_DEVICE_H_
#define_SENTROPIC_KERNEL_DEVICE_H_

#include<stdio.h>

#include"SVM_kernel_host.h"

#defineCHECK_BANK_CONFLICTS 0

#if CHECK_BANK_CONFLICTS

#define AS(i, j) cutiiBankChecker(((float*)&As[0][), (BLOCK_SIZE *i + j))
#define BS(i, j) cutiiBankChecker(((float*)&Bs[0][R (BLOCK_SIZE *i +j))
#else

#defineAS(, j) As[i][j]

#defineBS(i, j) BsJ[i][j]

#endif

T N

/labsdiff kernel

T T

__global__void

SentropicKernelfloat* C, float* A, float* B, int RowNum,int ColNum,float Para)

/I Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index
int tx = threadldx.x;
int ty = threadldx.y;

/I Index of the first sub-matrix of A processedthg block
int aBegin = ColNum * BLOCK_SIZE * by;

/I Index of the last sub-matrix of A processed g block
intaEnd =aBegin + ColNum - 1;

/] Step size used to iterate through the sub-nesstraé A
int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processedtbg block
int bBegin = ColNum * BLOCK_SIZE * bx;

/] Step size used to iterate through the sub-nestioé B
int bStep = BLOCK_SIZE;
int remainderA=ColNum % BLOCK_SIZE;

float exp_term = .0;

57

float MIN_PROB = 1e-6f;
/I Loop over all the sub-matrices of A and B
/I required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;

a += aStep, b += bStep) {

/I Declaration of the shared memory array As used t
/I store the sub-matrix of A
__shared_float AS[BLOCK_SIZE][BLOCK_SIZE];

/I Declaration of the shared memory array Bs used t
/I store the sub-matrix of B
__shared_float BsS[BLOCK_SIZE][BLOCK_SIZE];

if (a==aBegin+(CoINum/BLOCK_SIZE)*BLOCK_SIZE){
if (tx<remainderA){
AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];

__syncthreads();

for (int k = 0; k < remainderA; ++k){
float v1_i = (AS(ty,k)<MIN_PROB)?MIN_PROB:AS(ty,k);
float v2_i = (BS(tx,k)<MIN_PROB)?MIN_PROB:BS(tx,k);
exp_term += (v1_i - v2_i)*(logf(vl_i/v2_i));

__syncthreads();
telse{
AS(ty, tx) = A[a + ColNum * ty + tx];
BS(ty, tx) = B[b + ColNum * ty + tx];
__syncthreads();
for (int k = 0; k < BLOCK_SIZE; ++k){
float v1_i = (AS(ty,k)<MIN_PROB)?MIN_PROB:AS(ty,k);
float v2_i = (BS(tx,k)<MIN_PROB)?MIN_PROB:BS(tx,k);
exp_term += (v1_i - v2_i)*(logf(v1l_i/v2_i));
__syncthreads();
}

}

int Row=by*BLOCK_SIZE+ty;

int Row2=bx*BLOCK_SIZE+tx;

C[RowNum * Row + Row2] = expf(-Para*sqrtf(exp_te)m

}
#endif// #ifndef SENTROPIC_KERNEL_H_

58

Vita
Hang Zhang was in Jilin, China on Marct'2885. She received her Bachelor degree in

Computer Science from Beijing Normal University,uflai campus in 2007. Then she came to

University of New Orleans to continue her furthierdy in Computer Science area.

59

	Distributed Support Vector Machine With Graphics Processing Units
	Recommended Citation

	thesisdraftHang_new

