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Abstract

Genome transcription is much more widespread than has been traditionally thought
because our view of a “gene” or “transcription unit” has changed dramatically over the past 4 to
5 years with the identification of many different non-coding ribonucleic acids. In the yeast,
Saccharomyces cerevisiae, meiosis and sporulation are an important part of the life cycle and
IME4 gene expression is required for these processes. IME4 sense transcript levels of
expression are influenced by the level of its complementary non-coding antisense strand by
mechanisms that are currently unknown. The al-alpha2 heterodimer binding in the downstream
3’ region of IME4 is one component required for repression of IME4 antisense transcription.
However, this thesis shows that the general regulatory protein Rebl is also required in this
system. Rebl involvement is most likely to create a nucleosome-free zone in the promoter

region of the IME4 antisense strand therefore contributing to transcription.

Keywords: Rebl site mutant, IME4, sporulation, antisense transcription, regulation of ncRNA,
al-a2 repression, RNA strand-specific qPCR analysis
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Introduction

Cell-type circuit in Saccharomyces cerevisiae

The budding yeast Saccharomyces cerevisiae is a model unicellular organism that is
extensively studied to better understand molecular processes in eukaryotic cells. There are three
distinct cell types including a, alpha (o), and a/alpha (o) types based on the allele present at the
mating-type locus. The MATa type and the MATa type are both haploid with regard to DNA
content. The a cell and the alpha cell mate with each other, ultimately combining cytoplasms
and undergoing nuclear fusion, to produce a single nucleus with a diploid complement of
chromosomes, the a/alpha cell-type. The a/a cell can undergo meiosis and sporulation to
produce four haploid cells (Herskowitz, 1988). The cell-type can be characterized by the genes
that are active in the life of the cell when it is exposed to certain environments. For each
Saccharomyces cerevisiae cell-type, there are specific genes that are active and inactive as a
result of interactions between the specific genes and proteins functioning as transcription
regulators (Herskowitz, Rine, and Strathern, 1992). The MATa locus encodes the al and a2
proteins and the MATa locus encodes proteins al and a2. In the a cell, the protein a1, along
with Mcml protein, binds to promoters of a-specific genes and promoters of haploid-specific
genes resulting in transcriptional activation. The a2 protein along with Mcml protein represses
transcription of genes specific to the a cell-type in a cells. In a cells, a-specific genes are active
and a-specific genes are not because al is not present. In the diploid a/alpha cell-type, only
proteins al, a2, and a2 are expressed. There is no al so the a-specific genes are not expressed

while the presence of a2 ensures that the a-specific genes are not expressed. The al-a2 protein
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complex inhibits expression of the a1 protein and the haploid-specific genes (hsg). A diagram

of the yeast cell types and the al-a2 regulatory pathway is shown in Figure 1.

a cell a cell o cell

/ RME1
IME2
o Y Lo
hsg’s antilME4 IME1 l
/\‘ \ & NDTSO,

th
IME4 ? others OHhers

Figure 1. Diagram of yeast cell types and al-a2 regulatory pathway. hsg = haploid-specific gene

Transcription and repression by al-¢?2 protein complex

In eukaryotes like Saccharomyces cerevisiae, transcription is a complex process because
of the way that DNA is packaged in the nucleus. The helical DNA is wrapped around a number
of protein complexes called nucleosomes, and each nucleosome is comprised of histones. A pair
of four different histones: H2A, H2B, H3, and H4, create an octamer, plus the helical DNA, and
a single H1 histone make up a nucleosome. The DNA is wrapped one and three-fourths turns, or
about 145 base pairs, on each nucleosome. This bead-like structure is then coiled around itself
and coiled again to create the chromosome structure. The result of the tight packaging of DNA

in a eukaryotic cell is that the DNA must be unwound and separated from the nucleosomes in
2



order for genes to be transcribed into RNA. The transcriptional activating proteins and
repressing proteins, in addition to other proteins involved in the initiation of transcription, must
have access to the DNA, specifically the promoter and operator of target genes (reviewed by
Cairns, 2009)

In Saccharomyces cerevisiae, the al-a2 protein complex functions with other proteins to
accomplish repression. Studies by Harashima et al (1989) found that the a2 protein domain
required for repression is different from the a2 protein domain required for the protein complex
formation and interaction in al-a2. They identified another protein termed the AAR1 product
for al-a2 repression, now known as Tupl, which is also associated with the al-a2 protein
complex. Tupl is part of a general co-repressor complex that contributes to repression of many
classes of genes, including glucose repressible genes and DNA damage-inducible genes, among
others (reviewed by Malave and Dent, 2006). During cell type regulation, Tupl and the al-o.2
protein complex work together to influence repression of haploid-specific genes, and the gene
responsible for the al protein. Mukai et al (1991) found that Tup1 interacts with protein
complex al-a2 to influence expression of the MATa gene. Tupl also was found to interact
with the protein Ssn6 to act as a repressor of transcription in yeast (Keleher, 1992).
Furthermore, Gavin et al (2000) found that Tup1 along with a2 proteins may block Mcm1
protein transcriptional activity. Tupl contains a helical N-terminal section for interaction with
Ssn6, and the C-terminal section has 7 tryptophan-aspartate (WD) domain that folds into a
propeller structure for interaction with other proteins like a2 (reviewed by Malave and Dent,
2006). Studies by Huang et al (1997) showed that histones H3 and H4 are also involved in al-

a2 repression and when these histones are truncated and/or have mutations, the repression



mediated by al-a2 is decreased. The Tup1-Ssn6 repressor complex recruits other proteins to the
complex which in turn interact with proteins involved in initiating transcription, including a
component of the RNA polymerase II holoenzyme, inhibiting their activity (reviewed by Smith
and Johnson, 2000 and Malave and Dent, 2006). Tupl also interacts with N terminal tails H3
and H4 and also with several histone deacetylases (HDAC’s) (Watson et al, 2000). This, in turn,
leads to repression.

In addition to cooperating with the Tup1-Ssn6 protein complex, the al-a2 protein
complex has its own specific DNA binding affinity (Jin et al 1999). The consensus al-a.2 site,
which showed the most repression in comparison to naturally occurring al-a2 binding haploid-
specific gene operators in J-galactosidase assays, was 5’-TCATGTAATTAATTACATCA-3".
Li et al (1998) determined the structure of the al-a2 heterodimer in complex with DNA
containing a string of A’s between the sequences that are in contact with the proteins. Komachi
et al (1994) showed that the a2 protein specifically binds to tryptophan-aspartate (WD) repeats
in Tupl carboxyl terminus. Repression mediated by al-a2 also requires the N-termni of histones
H3 and H4 (Huang et al, 1997). They showed that mutations in the N-termini of these histones
derepressed al-a2 induced repression and truncated versions of these histones increased the
derepression even further.

More recently, studies using microarrays have been utilized to identify targets of the al-
a2 transcription factor, which include genes involved in mating in haploid cells, mating-type
switching, recombination, and other cellular processes (Nagaraj et al (2004). Also in 2004,
Galgoczy et al used chromatin immunoprecipitation (ChIP) experiments to identify genes that

were bound by the al-a2 protein haploid and diploid cells in vivo, by using antibodies against



the a2 protein. This study confirmed all genes previously shown to be repressed by al-a.2 and
also revealed, by using transcriptional profiling analysis with microarrays and phylogenetic
comparison, some open reading frames whose transcription was not known to be regulated by
al-a2. Although a great deal is known about the yeast cell-type circuit (Sprague 2005), all al-
a2-DNA binding events are still not fully explained.

Meiosis, Sporulation, and IME4

As mentioned above, haploid a and a cells will mate (fuse) to form a diploid a/a cell,
which can go through meiosis and sporulation under particular nutritional conditions when
nitrogen and carbon are not present. Haploid yeast cells do not go through meiosis because the
RMEL gene, a haploid-specific gene that encodes a protein that represses meiosis, is expressed;
however in diploid cells this gene is repressed by al-a2 (Mitchell and Herskowitz, 1986).
Covitz et al (1991) showed evidence that Rmel protein contains zinc fingers, which are nucleic
acid-binding motifs, and these regions allow transcriptional repression. As a result of this
repression of RME1 by al-a2, IME1 can be expressed.

RMEL1 represses IMEL, the key transcriptional activator of meiosis in Saccharomyces
cerevisiae. IME1 product contains an activation domain which activates expression of genes
involved in meiosis including the IMEZ2 transcript (Smith et al 1993). Guttmann-Raviv et al
(2002) identified a kinase activity of Ime2 protein, and this activity is required for targeting Imel
for degradation by proteasomes. Ime2 also influences other genes involved in the meiotic
pathway and sporulation. IMEZ is necessary for the expression of additional transcriptional
activators such as Ndt80, which activates genes specific to the middle phase of sporulation (Pak
and Segall, 2002). They found that Ime2 inactivates the repressor, Suml, of Ndt80. Pierce et al

(2003) found that Sum1 and Ndt80 have overlapping binding-site sequences and, suggested that
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these proteins may compete for these sites during meiosis. The genes activated during initiation
of meiosis include those necessary for DNA replication and chromosome segregation (reviewed
by Honigberg and Purnapatre, 2003). In summary, meiosis is a complex process involving
many different genes.

IMEA4, or inducer of meiosis 4, is a gene whose mRNA is highly elevated in cells
undergoing sporulation and was found to be a key player in the pathway that leads to meiosis
and sporulation (Shah and Clancy, 1992). Certain nutritional environmental conditions such as
reduced nitrogen and carbon, in turn triggers a transcriptional response that ultimately allows an
a/a cell to undergo meiosis. The diploid cell forms four ascopores, each being haploid in DNA
content within one mother cell (reviewed by Herskowitz, 1988). Ime4 protein is likely to have
RNA-directed methyltransferase activity resulting in its role in activating sporulation (Clancy et
al, 2002). IME4 gene also has a binding site for the protein complex al-a?2 less than 200bp from
the stop codon. Investigation in the Clancy laboratory is consistent with the results of Hongay et
al (2006) that IME4 transcription may be regulated by the expression of its own antisense
transcript in a/a diploid cells.

Rebl protein: a general regulatory factor

The Rebl protein binding site is present in operators and promoters in rDNA genes
transcribed by RNA polymerase I and genes transcribed by RNA polymerase II. Rebl
involvement in regulation is vital to many pathways in molecular processes of the budding yeast.
Rebl protein has several different and potentially antagonistic roles including activation,
repression, silencing of RNA polymerase II transcribed genes, and influence in RNA polymerase
I and RNA polymerase Il mediated transcription. The Reb1l (rRNA enhancer binding) protein

was first observed by Morrow et al (1989). They found Reb1 protein binds DNA at a specific
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sequence in the region of DNA where the ribosomal RNA is transcribed by RNA polymerase 1.
The region where Rebl1 protein binds was found between genes in a region of sequence
previously found to be an enhancer element for RNA polymerase I. The location of the
enhancer allows the elements it binds to influence activity upstream and downstream of the
binding event. Rebl has been previously called GRF2 or general regulatory factor 2 (Chasman
et al, 1990) because of its binding in the upstream activating sequence of genes transcribed by
RNA polymerase II. The Rebl binding site in DNA is also involved in terminator activity of
RNA polymerase I (Lang and Reeder, 1993). Lang and Reeder further found that Reb1 protein
interacts with a T-rich element in the DNA and suggested its role was to stall transcription by
RNA polymerase I and thereby influence the release of the newly transcribed RNA molecule
(1995). More recently, Sanchez-Gorostiaga et al (2004) uncovered evidence suggesting that
Rebl protein may play a role in blocking the replication fork at its barriers which are located 3’
to the coding region of ribosomal DNA.

Studies by Morrow et al (1990) describe a consensus binding site for the Rebl protein
which is 5’-CCGGGTAA-3’. They also found that the Rebl protein is a single polypeptide
chain that is phosphorylated and has an apparent mass of 125,000 Da by methods of sodium-
dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). According to the

Saccharomyces cerevisiae database (www.yeastgenome.org), Rebl protein is comprised of 810

amino acids with a calculated mass of 91,874 Daltons. Kulkens et al (1992) showed that a
mutation in the binding site sequence for Reb1 protein interrupts binding and results in
decreased transcription from RNA polymerase I at the rDNA enhancer. Liaw and Brandl (1994)

found the optimal consensus sequence for Reb1 protein binding to be 5°-



GNCCGGGGTAACNC-3’. In budding yeast, the silencing of genes is also affected by Rebl
protein binding to the silencer in K. lactis (Sjostrand et al, 2002).

Studies from Wang et al (1990) found Reb1 protein binding sites in promoters of genes
transcribed by RNA polymerase I, actively repressing transcription. Rebl protein also binds
DNA upstream activating sequence (UAS) of the gene CLB2, and this action reduces expression
(Van Slyke and Grayhack, 2003). In apparent conflict with a role in repression, Reb1 protein
along with other proteins associated in a complex, promotes high basal transcription levels
(Remacie and Holmberg, 1992). In reference to transcriptional activation, Schuller et al (1994)
found that mutations in a Rebl protein binding site reduces transcription of the fatty acid
synthase gene FAS1 and that Reb1 protein is involved in activation of the FAS2 gene.
Reconciling these observations, it has been observed that the binding of Rebl protein to its
consensus sequence in upstream activation sequences of genes directly effects the positioning of
nucleosomes (Scott and Baker, 1993). Nucleosome positioning is important because RNA
polymerase II needs access to its target DNA. Fedor et al (1988) identified a protein-binding
sequence in the upstream activating sequence of galactose response genes that is necessary for
the arrangement of nucleosomes and therefore affects the actual structure of the tightly packed
DNA in its chromatin structure. Angermayr and Woodlaw (2003) and Angermayr et al (2003)
confirmed the requirement for Reb1 protein binding sites in the promoters of yeast GCY1 gene
induced by Gal4p, and the yeast profilin promoter, function to keep the region accessible to the
transcription machinery, free of nucleosomes.

More recent studies have shown that Reb1 binding contributes to specific positioning of
nucleosomes on chromatin including location of nucleosome free regions, where transcription

start sites are located (Martinez-Campa et al, 2004; Raisner et al, 2005; Koerber et al, 2009).
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There is evidence that Reb]1 recruits chromatin remodelers, mainly the Rsc complex (Hartley and
Madhani et al, 2009), that create nucleosome-free regions in the vicinity of transcription start
sites, thereby improving accessibility of the DNA to proteins involved in transcriptional
regulation like TATA-binding factor among others.

We have observed a potential Reb1 protein binding site located in the 3’ region of the
IME4 gene, suggesting Rebl could bind to the 5’ region of the antisense IME4 strand, as seen in

Figure 2.

IME4 sense

> al-a2

10—

< : Rebl
IME4 antisense

Figure 2. Schematic of IME4 gene. Located on chromosome VII in Saccharomyces cerevisiae. It is
drawn from 5’ to 3’ including the 3’ region downstream of the stop codon.

This discovery in Saccharomyces cerevisiae led us to propose that the Reb1 binding site is also
in other yeast species in the 3’ region of IME4 homologs. A search in the yeast Genome
database, using the program ClustalW aligned four species of yeast where this is indeed the case

(Figure 2).
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The focus of this thesis was to determine whether the Reb1 binding site plays a role in the
expression or regulation of sense and antisense IME4 RNA. One approach was to create a
mutant Reb1 protein binding site in the IME4 gene downstream sequence and to characterize the
effects of this mutation in a and o haploid cells and a/a diploid cells from the genus
Saccharomyces cerevisiae. In addition, verification of any transcriptional activity regulated by
the presence of Rebl protein at its binding site in the antisense mRNA transcript of IME4, in a,
a, and a/a cells from Saccharomyces cerevisiae will be examined. This thesis will also study
the expression patterns of the IME4 sense and antisense strands in a/a diploid Saccharomyces
cerevisiae cells along with Rebl protein binding effects on strand specific transcription. I
hypothesize that the Reb1 general transcription factor has transcriptional activity in the antisense
strand of the IME4 gene and that this could in turn influence IME4 sense strand production. The
results show that mutations disrupting efficient binding of Reb1 protein to its target DNA
sequence in the IME4 gene context indeed affects expression of sense and antisense IME4

mRNAs and in turn have an impact on sporulation in diploid yeast.
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Materials and Methods

Growth media for E. coli and yeast

o[ B: 1% Bactotryptone, 0.5% Bacto-yeast extract, 0.5% NaCl, pH 7.5 plus 100 ug per mL
ampicillin when selection for plasmids was required.

oYEPD: 1% Bacto-yeast Extract, 2% Bacto-peptone, 2% glucose

¢SC: 0.67% Bacto-yeast nitrogen base without amino acids, 2% glucose, 0.2% Drop-out mix,
1% agar, plus histidine, tryptophan, leucine, and adenine (20ug/mL each)

¢SC casamino acids: 0.67% Bacto-yeast nitrogen base without amino acids, 1% dextrose, 0.5%
casamino acids, 20mg adenine, 1% agar

oPSP: 1% potassium acetate, 0.067% Yeast nitrogen base, 0.1% Bacto-yeast extract, pH 5.5,
plus tryptophan, histidine, and leucine (20pg/mL of each)

oSPM: 1% potassium acetate, plus histidine, tryptophan, leucine, and uracil (20pg/mL of each)

Microscopy

8uL of cells were placed on a plain glass microscope slide (3”x1” Corning), covered with
a microscope cover glass (Fisherbrand), and observed using the Nikon Labophot microscope at
40 X magnification.
General molecular biology techniques

Agarose gel electrophoresis for DNA analysis

A 1% agarose in 1X TBE buffer (100mM Trizma base, 88 mM Boric acid, ImM EDTA
[ethylenediaminetetraacetic acid disodium salt dehydrate]) gel was placed in a gel box filled
with 1X TBE buffer. Loading buffer was added to the DNA samples to be run in a 1:4 volume

ratio of loading buffer to DNA sample. The DNA samples were then loaded along with Kb
12



ladder 250bp-12Kb (Stratagene) and the gel run-time ranged from 30 minutes to an hour, at 100
volts. The gel was then stained with diluted ethidium bromide (1pg/mL) for 10 minutes, rinsed
with deionized water and then a picture was taken under ultraviolet light (BIORAD
Geldoc2000).
Northern blot hybridization for RNA analysis
Northerns were performed on purified RNA following the protocol from Brown et al
(2004).
Restriction enzyme digest
For the restriction digest, 3-5 pL. plasmid DNA with up to 1 uL restriction enzyme
(Promega), along with 2 uL of the appropriate 10X buffer (Promega) and sterile water, for a
total volume of 20uL, was pipetted into a 1.5mL tube. For some experiments the total volume
was multiplied, so the components of the reaction were multiplied by the same amount. The
tube was placed in a 37°C heating block for at least 30 minutes, followed by agarose gel
electrophoresis.
Plasmid DNA purification
All plasmids used in this study were isolated and purified from the E. coli colonies using
the StrataPrep Plasmid Miniprep Kit from Stratagene.
PCR product purification
PCR products used for cloning were purified using the Wizard PCR Preps DNA
Purification System (Promega) followed by the StrataPrep PCR Purification Kit (Stratagene).
DNA sequencing
For sequencing, 300-400ng plasmid DNA and 6 pmol of a primer (Sigma-Aldrich), along

with ddNTPs, buffer, and DNA polymerase were put into a PCR tube. PCR was performed in a
13



thermocycler programmed for 96°C for 1 minute followed by 50 cycles of 96°C for 20 seconds,
48°C for 10 seconds, 60°C for 4 minutes, then held at 10°C. The newly synthesized DNA
strands were isolated by pipetting the PCR reactions on a sephadex column for size selection and
removal of the ddNTPs. The sample was resuspended in formamide and injected into the
sequencer for analysis (all sequencing performed by Robin Rowe). Sequences from the trace

files were copied and BLASTed against the yeast genome (www.yeastgenome.org) to compare

the mutagenized sequences with the yeast genome reference sequence.
Recombinant DNA plasmid construction
Site-directed mutagenesis

A putative Rebl mutant was constructed by site-directed mutagenesis of the 3’ end of the
IME4 gene contained in plasmid pRM2b using forward and reverse primers ANOTHERRebl,
substituting a HindlIII restriction enzyme site for the Reb1 binding site. The 50 uL mutagenesis
reaction contained 50-100 ng template plasmid pRM2b, 200 ng of each primer, 5 uL 10X
PfuUltra reaction buffer (Stratagene), and 0.5 uL (1.25 units) of Pfu polymerase (Stratagene) in
sterile water. A thermocycler from Bio-Rad was programmed for 94°C for 4 minutes followed
by 18 cycles of 94°C for 1 minute, 55°C for Imin, and 65°C for 18 minutes to complete the
mutagenesis. Next, 20 pL of this reaction was transferred to a new 1.5 mL tube and digested
with 10 units of restriction enzyme Dpnl in a 37°C heating block for one hour. The Dpnl-treated
DNA from the mutagenesis reaction was then transformed into XL10-Gold Ultra Competent E.
coli cells (Stratagene) following the Stratagene protocol. The plasmid DNA was isolated from
the colonies and the presence of the mutation was confirmed by restriction digest using HindIII

and EcoRI. Isolates showing the desired restriction pattern were then further analyzed by DNA
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sequencing using primers 2190 Reverse, Cys-Rich Forward, Cys-Rich Reverse, MTase Forward,

and MTase Reverse. A list of all primers and their sequences can be found in Table 1.

Table 1. Primers used in this study. All primers obtained from Sigma-Aldrich.

Primer Sequence (5 23°)

ANOTHER Reb1 Forward AACTGGAACAATTTATTAAGCTTATGTTTAAAAATT
GTTGTCG

ANOTHER Rebl Reverse GCGACAACAATTTTTAAACATAAGCTTAATAAATTG
TTCCAGTT

+2190 reverse GCATCTAGATTCGCTATTCCCACAGTTTCC

-444 Forward GCGCTCGAGCATTGGCGACACACCTAAAA

Cys-rich Forward TTTTGAATTCCACCCAGGATTAATTGAGTGC

Cys-rich Reverse TTTTGTCGACTTGCAAGCATGACGGAAT

MTase Forward TTTTGAATTCCATTGTATCAAAAAGGCTTTA

MTase Reverse TTTTGTCGACGCTCTTCATAAACTCCTGGTACTT

newActin Forward TTTCTCCACCACTGCTGAAA

newActin Reverse ACGGACATCGACATCACACTT

1143 Forward TCTTTGGGTGACGGGTAGAG

1328 Reverse TTACCCTTTAAGCCCACCAA

myol 2725 Forward GCGCAAAATCTTGAAGAAGC

myol 2725 Reverse AAAGACTGGGAGCTCTGTTCC

IME4 region 2 Forward GTCAGGAAAATCACCCAGGA

IME4 region 2 Reverse TTTTCACTCGCAGTTTCACG

ADHBgl Forward ATCAAGATCTAGAAGCTTTGGACTTCTTCG

ADHBgl Reverse TCGAAGATCTGGTAGAGGTGTGGTCAATA

IME4 Rebl psx okay2 Forward | ATTATCCGAGTCCGTGTA

IME4 Rebl psx okay2 Reverse | CCATGGGAAAGAACCGACCAAG

RPA190 3000 Forward AGATCCGGTTATTTGCAACG

RPA190 3000 Reverse CAATCAGTGCTGATGGGTTG

pSX Forward AAACTCGAGATTATCCGAGTCCGTGTA

pSX Reverse 2 AAACTCGAGCCATGGGAAAGAACCGACCAAG

TAP42 Forward 1 GCGCAACCAAAAAATAACAAAGA

TAP42 Reverse 1 TTGTTAATCGTATCAAGACTAAA

IME4 Region 4 Forward 1 ACGAAATGGATGTCGAGAGGA

IME4 Region 4 Reverse 2 TGGAATTGTTGTTTTTGTTGC

Construction of ADH1 terminator plasmid
Cloning of the ADH1 terminator sequence was done by first creating primers, ADH Bgl

forward and ADH Bgl reverse, which complement a region upstream of the 3’ terminator part
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and downstream of the 5’ part of the template plasmid pAD-Gal4-2.1 (Stratagene), to produce a
PCR fragment about 300 base pairs long with restriction enzyme BglII sites on the ends. The
PCR reaction tubes contained 5 pL template DNA, 10 uL 5X Green GoTaq Reaction Buffer
(Promega), 1 uL of each primer (50 pmol), 1 uL PCR Nucleotide Mix (40nmol/uL, Promega),
32.5 uL sterile water, and 0.5 uL. GoTaq polymerase (2.5 units, Promega). The PCR program
was: 94°C for 4 min, then 30 cycles of 95°C for 30 seconds-55°C for 30 seconds-72°C 45
seconds, then 72°C for 3 minutes, then 4°C hold (BIORAD Thermocycler). Next, agarose gel
electrophoresis was done using 10 uL of the PCR reaction; the gel ran for 30 minutes. Next the
PCR product was purified, then 10 puL this PCR product was digested with 5 puL (50 units) BglII
ina 100 pL total volume digest and incubated overnight. Next, 4 puL of either vector pRM2b,
pRM2bmutE, or pPRMmut5 were digested with 1 pL (10 units) Bglll and 1 pL (10 units) BamH1
in a 40 pL total volume digest and incubated for 2 hours. The restriction enzymes in the
digestions were heat inactivated at 65°C for 5 minutes. The cut vectors were then phosphatase
treated for 1 hour at 37°C using 10 units of calf intestinal phosphatase (CIP; New England
BioLabs). 30 puL cut DNA vector was added to a 1.5 mL microfuge tube along with 6 pL 10X
buffer (New England BioLabs), 0.25 pL (2.5 units) CIP (New England Biolabs), and 23.75 uL
sterile water then incubated. The phosphatase and Bglll enzymes were inactivated by heat at
65°C for 5 minutes. The cut vectors and the PCR product with BglII ends were then purified.
Next, the clean cut vectors were ligated to the PCR product in a ligation reaction containing the
following in a 1.5 mL tube: 10 uLL PCR product, 10 pL purified digested vector, 4 uL. 10X T4

DNA Ligase buffer (New England BioLabs), 15 uL sterile water, and 1 pL (400 units) T4 DNA
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Ligase (New England BioLabs). The ligation reaction tube was incubated overnight in 4°C in a
styrofoam box half filled with tap water.

The ligation reaction was then used to transform XL 1-Blue Competent E. coli cells
(Stratagene) following the Stratagene transformation protocol, selecting for the ampicillin
resistance gene on the plasmid. Next, single colonies were numbered, picked with sterile
toothpicks and patched on LB+ampicillin plates and individual isolates inoculated into 1 mL
LB-+ampicillin to grow overnight at 37°C with shaking.

The overnight cultures were then centrifuged at maximum speed for 1 minute to pellet
cells, the supernatant was discarded, and the plasmid DNA was purified. Aliquots of the
plasmid DNAs were then digested with restriction enzymes to identify isolates in which the
desired manipulation had been accomplished. A list of all plasmids utilized in this study is in

Table 2.
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Table 2. All plasmids used in this study

Plasmid Description Source

pRS316 CEN6 ARSH4 URA3 Amp" f1-ori ATCC

pRM2b pRS316 - IME4 (Figure 3) Rowan Madison

pRM2bmutE | pPRM2b with HindIII sequence replacing nt 1995-2000 This study
relative to IME4 start codon

pRMmut5 pRM2b with Kpnl sequence replacing nt 1973-1978 This study
relative to IME4 start codon

pSX178 2u, AMP, ori, lacZ, CYCL(TATA region) UAS, URA3 Guarente L. and

Mason T, (1983)

p31 pSX178 — wild type IME4 3’ region spanning 180 bp This study
including nt1947 to 2127 relative to IME4 start codon

p5-2 p31 with Kpnl sequence replacing nt 1973-1978 relative This study
to IME4 start codon

p53 p31 with HindIII sequence replacing nt 1995-2000 This study
relative to IME4 start codon

pAD-GAL4- | 7.7 kb phagemid vector containing ADH1 terminator Stratagene

2.1 (tapmi) (1168-1318 bp)

pM1.TF pRM2b with ADH1 terminator (1160-1495 bp in pAD- This study
GAL4-2.1) replacing a region spanning from nt -155 to
+977 relative to IME4 start codon, removing the ATG
(Figure 4)

pME.TF pRM2bmutE with ADH1 terminator (1160-1495 bp in This study
pAD-GALA4-2.1) replacing a region spanning from nt -155
to +977 relative to IME4 start codon, removing the ATG

pMS.TF pRMmut5 with ADH1 terminator (1160-1495 bp in pAD- | This study

GAL4-2.1) replacing a region spanning from nt -155 to
+977 relative to IME4 start codon, removing the ATG
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Figure 4. Map of pRM2b. Genes
are annotated along with restriction
enzyme sites and other important
characteristics.

7460 bp
Xbal - 2017

Reb1 binding site - 2212
al/alpha2 binding site - 2230

Xhol - 4655
BglII - 4363
EcoRI - 4234

+1 - 4208

BamHI - 3232

Figure 5. Map of pM1.TF.
Genes are annotated along with

restriction enzyme sites and
other important characteristics.

pM1.TF
6652 bp

Xbal - 2017

Reb1 binding site - 2212
al/alpha2 binding site - 2230

Xhol - 3846
BelII - 3554
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Yeast Transformation

Yeast transformation was generally done by the method of Gietz et al (1992).
Saccharomyces cerevisiae strains to be transformed were streaked on YEPD media plates and
grown overnight at 30°C. 25 pL scraped cells were suspended in ImL sterile water and pelleted
at maximum speed in a microcentrifuge (Eppendorf Centrifuge 5415 C) for 5 seconds. The
supernatant was discarded and the following added on top of the pellet in order: 240 pL
polyethylene glycol (50% w/v), 36 uL 1.0M lithium acetate, 50 uL salmon sperm carrier DNA
(boiled and quick-chilled on ice), 5 pL transforming plasmid DNA, and 20 uL sterile water, then
incubated at room temperature for 20 minutes. The sample was vortexed at least one minute to
resuspend pellet in transformation mix then incubated for 20 minutes at 42°C. The cells were
pelleted at maximum speed for 10 seconds followed by removal of the supernatant, and then the
cells were resuspended in 300 uL sterile water by pipetting up and down. 150 pL of the cell
suspension was spread per SC-uracil plate and incubated at 30°C to select for transformed cells.
Colonies grew in 2-4 days.

For some experiments, a higher efficiency transformation method was used (Linda
Hoskins/Hahn Lab). First, 5 mL YEPD was inoculated with a half-filled loop of freshly grown
YYF101 MATa/MATa cells and grown overnight at 30°C with shaking at 225 rpm. Then 0.5
mL culture was diluted 1:10 with 4.5 mL sterile YEPD and 1mL diluted culture’s optical density
was measured at 660nm; it was 0.2, so the remaining 4.5 mL overnight culture was added to
40.5 mL fresh YEPD along with the initial SmL diluted culture into a 250 mL flask and grown
up to the exponential phase, about 4 hours at 30°C with shaking at 225 rpm. The cells were

pelleted at 3000 rpm for 5 minutes at room temperature, the supernatant discarded, the cells
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washed with 10 mL sterile water then centrifuged again. The supernatant was discarded and the
cells were resuspended in 1 mL sterile water and transferred to a 1.5 mL tube and centrifuged
again. The supernatant was discarded and the cells resuspended in 1 mL sterile TE/LiOAc
(made from 10X TE [0.1M Tris-HCIL, 0.01M EDTA, pH 7.5] and 10X LiOAc [IM LiOAc pH
7.5, adjusted with diluted acetic acid]) and centrifuged. The supernatant was carefully discarded
using a pipette and the cells were resuspended in 250 pLL TE/LiOAc. For each separate
transformation, 50 pL yeast cells, 5 uL plasmid DNA, and 10 pL carrier salmon sperm DNA
(2mg/mL) were mixed in a sterile 1.5 ml tube. Then, 300 pL sterile polyethylene glycol (40%
polyethylene glycol 4000, 1X TE, 1X LiOAc, made from sterile 50 % polyethylene glycol 4000,
10X TE, and 10X LiOAc) was added to the tube and mixed thoroughly. The transformation
reaction tubes were then incubated at 30°C for 60 minutes with occasional gentle shaking. Next
40 uL dimethyl sulfoxide (DMSO) was added to the transformation reactions then the cells were
heat-shocked in a 42°C water bath for 15 minutes. The tubes were microfuged for 10 seconds,
the supernatant removed, the cells resuspended in 1 mL 1X TE then microfuged again for 10
seconds. The cells were resuspended in 1 mL 1X TE then 100 pL cells were spread on each
labeled SC casamino acids medium plate and incubated at 30°C for 2-4 days.
Reporter constructs

The pSX forward 2 and pSX reverse primers were used to PCR a region downstream of
the IME4 stop codon. The PCR reaction tubes contained 5 pL template DNA, 10 uL 5X Green
GoTaq Reaction Buffer (Promega), 1 uL of each primer (50 pmol), 1 uL PCR Nucleotide Mix
(40 nmol/pL, Promega), 32.5 uL sterile water, and 0.5 uL. GoTaq polymerase (2.5 units,

Promega). The PCR program was: 94°C for 4 min, then 30 cycles of 95°C for 30 seconds-55°C
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for 30 seconds-72°C 45 seconds, then 72°C for 3 minutes, then 4°C hold (BIORAD
Thermocycler). Plasmid pSX178 was cut with Xhol as was the PCR product, and the enzyme
was inactivated and the cut vector was phosphatase treated as stated earlier. The PCR product
and the cut vector were then purified. The PCR product with Xhol ends was then ligated to the
cut pSX178 in a 1.5 mL tube containing the following: 10 uL clean PCR product, 10 uL clean
cut vector, 4 uL 10X T4 DNA Ligase buffer (New England BioLabs), 15 uL sterile water, and
1 uL (400 units) T4 DNA Ligase (New England BioLabs). The ligation reaction tube was
incubated overnight in 4°C in a styrofoam box half filled with tap water.

The ligation reaction was then used to transform XL1-Blue Competent E. coli cells
(Stratagene) following the Stratagene transformation protocol, selecting for the ampicillin
resistance gene on the plasmid. Next, single colonies were numbered, picked with sterile
toothpicks and patched on LB+ampicillin plates. Individual isolates were initially analyzed by
colony PCR using the pSX forward 2 and pSX reverse primers to determine presence of the
clone. Colonies that contained the desired clone were miniPreped and digested with Xhol to
check for the insert. Finally, the clone was sequenced using primers to determine the orientation
of the insert and that no unwanted mutations occurred during the PCR of the insert.

For colony PCR, in a 1.5 mL tube a small amount of single colonies were picked with a
sterile toothpick and put into 50 uL sterile water. Next, the cells were vortexed at maximum
speed, then incubated in a 95°C heating block for 10 minutes. The cells were vortexed again
then centrifuged at maximum speed (Eppendorf Centrifuge 5417C, 14000 rpm), and 2.5 pL of

the supernatant was used as the template in a 50 uLL PCR reaction.
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f-galactosidase reporter assays

Strains were grown on SC-ura plates overnight at 30°C to maintain plasmid, and then
strains were inoculated in 5 mL cultures of SC, PSP, or YEPD and grown in 30°C with 225 rpm
shaking overnight. Cells were harvested by centrifugation at 2000 rpm for 5 minutes. The
supernatant was discarded and the cells resuspended in 250 uL breaking buffer (100 mM Tris-Cl
pH 8, 1 mM dithiothreitol, 20% glycerol) then 0.5 mm glass beads (Sigma) were added to a level
right under the meniscus of liquid, which was about 2.5 grams of glass beads. Next, 12.5 uL
phenylmethylsulfonyl fluoride or PMSF (40 mM in 100% isopropanol) was added to each
sample followed by vortexing at maximum speed in 15 second bursts until cells were lysed
(about 9 times) with cells chilled on ice between bursts. Then, 250 puL breaking buffer was
added and mixed well followed by removal of the liquid by plunging a 1000 pL pipette to the
bottom of the sample and transferred to a new 1.5mL tube. Samples were then centrifuged at
maximum speed in a microfuge for 15 minutes. Next, 100 puL of the clarified extract was added
to 900 uL “Z” buffer (0.06M Na,HPOs- 7 H,0O, 0.04M NaH,P04-H,0, 0.075% KCI, 0.0246%
MgSOy4, 0.27% beta-mercaptoethanol, pH 7) in a glass tube (12x75 mm, VWR) and incubated at
28°C for 5 minutes. The hydrolysis reaction was initiated by the addition of 200 uL o-
nitrophenyl-p-D-galactoside or ONPG (4 mg/mL in “Z” buffer) then incubated at 28°C until the
samples turned yellow. At this point, the reaction is terminated by the addition of 500 uL of 1M
Na,COj3. The time ONPG was added and the time Na,CO3; was added was recorded in a table
for calculating specific activity. The optical density was measured at 420 nm (Beckman DU-64
Spectrophotometer) and recorded. Next the Bradford Assay for protein concentration was

performed. The Bradford (BioRad) reagent was diluted five-fold in deionized water then filtered
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through Whatman 540 paper. The extract was diluted 1:10 in sterile water then 5 pLL was added
to 1 mL diluted Bradford reagent followed by measuring and recording the optical density at 595
nm (Beckman DU-64 Spectrophotometer). The standard curve ranged from 0 to 150
micrograms per mL. The specific activity of the extracts was calculated according to the
following equation: (ODuyo x1.7) / (0.0045x protein (mg/mL) x extract (mL) x time (minutes)) =
SA (nmole/minute/mg protein) (Amberg et al, 2005).
Growth and Sporulation

Yeast strains were grown overnight at 30°C on SC-caa media plates, then cells were
transferred to 10 mL SC-caa media and grown overnight at 30°C with 225 rpm shaking. Cells
were diluted 1:10 in 10 mL PSP media in a sterile tube and incubated for 24 hours at 30°C then
transferred to a 15 mL tube, and centrifuged for 3 minutes. The supernatant was discarded as
much as possible, and then the cells were washed in 10 mL sporulation media. Cells were
centrifuged for 3 minutes, supernatant was discarded, and the cells were resuspended in 10 mL
SPM, supplemented as required by the strain, transferred to a sterile flask, and incubated at 30°C
with shaking 225 rpm for a time interval. 8 uL of the cell culture was put on a microscope slide
and live pictures were taken with a Nikon Eclipse E800 at 600 X magnification.
RNA lIsolation and cDNA synthesis

Isolation of RNA from yeast cells was performed following the RNeasy Midi Kit
(Qiagen) protocol with the DNasel treatment. RNA was quantified following the BIORAD
Experion RNA StdSens Analysis Kit or the Nanodrop3000. Next, BIORAD iScript Select cDNA
Synthesis Kit was used to do a reverse transcriptase reaction to make DNA from mRNA

expressed in the yeast cells. The primers used for the cDNA library include the Oligo(dT),

24



primer provided in the kit, and the gene specific primers, which will be discussed more in the
results.
Quantitative Real-Time PCR

Real-Time PCR was performed on the cDNA products following the iQ SYBR Green
Supermix and MYiQ Single Color Real-Time PCR Detection System from BIORAD. Primers
used for the Quantitative RT-PCR include newACTforward and newACTreverse for detection of
the control gene actin, TAP42 forward and reverse primers also for detection of the control gene
TAP42, and a number of different sets of IME4 primers to detect the IME4 gene sense and anti-
sense DNA strands (Table 1). The program for the RT-PCR was as follows: Cycle 1 was one
step at 95°C for 3 minutes, Cycle 2, which was repeated 40 times, was step 1 at 95°C for 10
seconds then step 2 at 55°C for 30 seconds. Data collection and real-time analysis was enabled
during cycle 2. Cycle 3 was one step at 95°C for 1 minute, cycle 4 was one step at 55°C for 1
minute, and cycle 5, which was repeated 81 times, was one step with temperature rising from
55°C to 95°C within 30 seconds. Melt curve data collection and analysis was enabled during
cycle 5. The PCR Quantification Detailed reports were printed out and the percent of the target
gene was calculated as a percent of actin and/or as a percent of TAP42 according to the

following equation: % of Control Gene = ( 2 (Conto! Gene Ct—Target Gene Cyy o 13y
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Results

Identification of a haploid-specific UAS (upstream activating sequence) 3’ to the IME4 coding
region

Although there is evidence of expression of sense and antisense IME4 transcripts, the
factors that influence this expression are unknown. Previous strand specific IME4 mRNA
studies in the Clancy laboratory detected the presence of both sense and antisense mRNA in wild
type a/a. Saccharomyces cerevisiae cells after sporulation was induced. To verify these initial
findings, RNA was isolated from wild type IME4 a, o, and &/a haploid and diploid yeast grown
in SC caa media. Northern blot hybridization was performed on the RNA after it was separated
by size in an agarose gel (Figure 6). The RNA was transferred to a nylon membrane, which was
then incubated with IME4 sequence-specific DNA probe. The IME4 gene probe was double-
strand, thus detecting both sense and antisense transcripts. Shown in Figure 6 is RNA from
haploids in lanes 1 and 2, and diploids in lanes 3 and 4 of a blot incubated with the double strand
IME4 gene probe. Transcripts from the IME4 region were detected in both haploid and diploid
cells. The probe detecting the IME4 antisense RNA has sequence identical to the IME4 sense
strand, thus binding its complement, the antisense strand. Conversely, the probe for the IME4
sense RNA has sequence identical to the IME4 antisense strand, which binds and detects the
complement sense strand. Thus, both sense and antisense IME4 RNAs are detected by this

probe.
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Figure 6. Northern Hybridization of wild type Saccharomyces cerevisiae.
Lanes 1 and 2 contain RNA from haploid cells. Lanes 3 and 4 contain RNA from
diploid cells. The probe was radiolabeled DNA fragment internal to the IME4 gene

In a second experiment, diploid strain YYF101 a/a. was transformed with plasmids
containing the wild type IME4 gene (pRM2b) or a mutant allele (pRMmut5) lacking a functional
al-a2 site after IME4 (see Figure 2), or vector control (pRS316). Strain YYF101 was chosen
because the IME4 gene has been removed and replaced by the TRP1 gene. In Figures 7A and
7B, the blot contains RNA from diploid &/a cells that carried the wild type and from those cells
that carried the al-a2 site mutant (pRMmut5). In Figure 7A, the blot incubated with a single-
stranded T7-transcribed RNA probe (IME4 antisense probe) detected IME4 sense strand only in
the wild type (Lane 3). When the blot was incubated with IME4 sense probe (a single-stranded
T7 transcript), in Figure 7B, the IME4 antisense strand was detected only in the al-a2 site
mutant. These findings are consistent with Hongay et al (2006). Thus, the IME4 mRNA is
expressed only in a/a cells whereas the antisense RNA is observed in haploid cells.
Investigation of this al-a2 site mutant in the downstream region of IME4 confirmed that this
mutation allows antisense transcription in diploid MATa/MATa cells and this reduces sense

strand accumulation which can lead to a sporulation defect.
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Sense probe Antisense probe

al-a2 al-a2
Control site mut IME4 WT

Control site mut IME4 WT

Figure 7. Northern blot of MATa/MATa IME4 knockout yeast. (A) Lane 1 contains RNA from

cells that carried the vector only-pRS316, lane 2 contains RNA from cells that carried the al-a2

site mutant pPRMmut5, and lane 3 contains RNA from cells that carried the wild type-pRM2b.
(B) Same as in (A).

Based on the northern results that the antisense IME4 strand is transcribed, further investigation
about the region before the start site of the antisense transcript was conducted. We wanted to

further define sequences responsible for expression and regulation of the two IME4 RNAs. A

model of meiosis regulation is shown in Figure 8.

In haploids: a, a In diploids: /o

RMEL \_ al-o2

IME1

RME1

IME4

"
-

anti IME4

Figure 8. Diagram of meiosis regulation in Saccharomyces cerevisiae.
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These results open the questions including what are the mechanisms by which antisense
transcription occurs and how do the mechanisms decrease the sense strand.

Initially, a 392 base pair segment of DNA, starting with the stop codon of the IME4 gene
in Saccharomyces cerevisiae, was aligned with other yeasts using the Saccharomyces cerevisiae
database fungal alignment tool (Figure 3). The al-a2 binding site is conserved among these
other yeasts, whereas most of the rest of the 3’ region is not highly conserved. The nucleotide
sequences that comprise an apparent Reb1 binding site were present in most of the yeasts in this
group, suggesting that this was an important sequence element for some aspect of gene
expression. Comparison of this Rebl binding site sequence to the Transfac database, which
contains information about transcription factors and their target genes and regulatory binding
sites, identified the sequence as the consensus binding site for Rebl (www.gene-
regulation.com). The Rebl binding site sequence identified in the database from the multiple
sequence alignment is consistent with genome-wide studies that also identified this as a strong
potential binding site (Liaw et al, 1994 and Houseley et al 2008).

Site-directed mutagenesis to create a Reb1l mutant

A putative Rebl mutant was constructed by site-directed mutagenesis of the 3’ end of the
full-length IME4 gene contained in plasmid pPRM2b. PCR with forward and reverse primers
ANOTHERReb1 substituted a HindIII restriction enzyme site, which is 5’-AAGCTT-3", for the

Rebl binding site, which is 5’-ACCCGG-3’. The specific base changes are shown in Figure 9.
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_o2- al

Wild Type: CATCCGGGTAATAAATTGTTCCAGTTGATGTAAAAAAATACACGGACTCGGATAA

Reb1lsite al/o2 site
ARebl: CAAAGCTTTAATAAATTGTTCCAGTTGATGTAAAAAAATACACGGACTCGGATAA
Aal/w2: CATCCGGGTAATAAATTGTTCCAGTCCATGGAAAAAAATACACGGACTCGGATAA

Figure 9. Putative Rebl binding site mutant sequence. Mutations in the Rebl protein binding site and
also in the al/a2 site in our mutant plasmids. The wild type sequence is shown for reference.

The ligation mix was then transformed into E. coli colonies that were grown overnight; then
single colonies were minipreped to isolate the plasmid DNA. The plasmids were initially
analyzed by restriction enzyme digest with EcoRI and HindIII restriction enzymes. These
enzymes were utilized because the EcoRI site is present in the IME4 gene and the HindIII site

was introduced by the mutagenesis reaction.

3Kb
2Kb . .

Figure 10. Ecorl and HindIII
Restriction Digest pRM2bmutE.
Lanes 1 and 4 contain the Kb DNA

1Kb ladder 250bp to 12 Kb. Lane 2
contains pPRM2b. Lane 3 contains
pRM2bmutE.

250bp
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Plasmids containing both the IME4 gene along with the mutant Reb1 binding site contained a
2000 base pair fragment of DNA when digested with EcoRI and HindlIl, as seen in lane 3 on the
agarose gel in Figure 10. As expected, the control plasmid pRM2b (lane 2) is 5 kb with no
additional fragments observed. In this experiment, there were 6 out of 20 randomly-selected
colonies whose plasmids contained the 2 kb fragment. These six plasmids were further analyzed
by sequencing the region of the desired mutation using the 2190 reverse primer and comparing
that to the Saccharomyces cerevisiae genome with BLAST (Figure 11). The entire insert
containing the full-length IME4 gene was also sequenced using -444 forward primer, 2190
reverse primer, Cys-rich forward and reverse primers, MTase forward and reverse primers, and
IME4 Region4 reverse and forward primers (See Table 1) and then compared with the genomic
DNA of Saccharomyces cerevisiae (Appendix A). The resulting plasmids, which contained the
potential Reb1 binding site mutation but no other changes in the IME4 gene, were retained for

further analysis.
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Stop
Query: 449 AAACAGCAACAAAAACAACAATTCCAAACACTAAATAACCTATATTTTGCTCAGTARAGC 390

PEEEEREEEr e e ettt bbb e e ety
Sbjct: 143998 AAACAGCAACAARAACAACAATTCCARACACTARATAACCTATATTTTGCTCAGTARAGC 144057

pA pA
Query: 389 GTTARATAATCCTTTTAAACATTAATAGCATTGCATARARAAGATGGTCATARRARAGAC 330

FEEEErrerrrereerererrere et e b et e e et bbb b e bbbt
Sbject: 144058 GTTAAATAATCCTTTTAARCATTAATAGCATTGCATAARAAAGATGGTCATAAAAARGAC 144117

Query: 329 TGCAGCGGGEAGTAAATGGTTTCCTGGTCTGTRTTAGACAAACTTTGGAATAGAGAAGGA 270
PRVt rreere e et e e e e et
Shbijct: 144118 TGCAGCGGGAAGTAAATGGTTTCCTGGTCTGTATTAGACAARACTTTGGAATAGAGAAGGA 144177

) al-o2

Query: 269 TATGGTTTATGTCCAATAATTATTATCCGAGTCCGTGTATTTTTTTACATCAACTGGAAC 210
PEerrrrrerereerere e et e et et e rere e b et e e
Sbjct: 144178 TATGGTTTATGTCCAATAATTATTATCCGAGTCCGTGTATTTTTTTACATCAACTGGAAC 144237

Rebl
Query: 209 AATTTATTAAGCTTATGTTTAAAAATTGTTGTCGCCTGGAGARAGCTAATACTAGTTCTG 150

PErereeer r rerrrrrere et e e e e e e e e e e e el
Sbjct: 144238 AATTTATTACCCGGATGTTTAAARATTGTTGTCGCCTGGAGARAGCTAATACTAGTTCTG 144297

N

Figure 11. BLAST results comparing pRM2bmutE with the S. cerevisiae genome database.
(www.yeastgenome.org). The Rebl site mutant is from base 196 to 201 of the query sequence. IME4
Stop codon starts at base 144052 of the subject

[-galactosidase assays

We tested the hypothesis that the 3’ IME4 region contains a haploid-specific
transcriptional regulatory region. Transcription promoting activity of the 3’ region of the IME4
gene, where the Rebl1 and al-alpha2 binding sites are located, was tested using beta-
galactosidase assays. A 190 base pair region spanning nucleotides 144 to 334 downstream of the
IME4 stop codon was cloned into a yeast high copy vector with a lacZ reporter gene, a schematic
is shown in Figure 12. Plasmid pSX178 contains an E. coli lacZ reporter fused downstream of a
portion of the yeast CYC1 gene. The CYCLI region includes the TATA box and transcription and
translation initiation sites but lacks the upstream activation sequence present in the full length
gene. This plasmid also contains the yeast URA3 and E. coli Amp" (confers ampicillin
resistance) genes for selection in yeast and E. coli, respectively and is maintained in high copy
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by the origin of replication located on the plasmid. The plasmid pSX178 is the empty vector,
p31 has the wild type IME4 downstream region, p5-2 has the IME4 downstream region from
pRMmut5 which has the al-alpha2 binding site converted to a Kpnl restriction enzyme site, and
p53 has the downstream IME4 region from pRM2bmutE with the Reb1 binding site switched to

a HindIII restriction enzyme site.

A) p31
lacz
{ Reb1 [ al/a2 } TATA >
Xhol Xhol
B) p53
lacz
{ Hindlll [~ al/a2 } TATA [— >
Xhol Xhol
C) p5-2
lacz
{ Rebl (— Kpnl } TATA —| >
Xhol Xhol

Figure 12. Beta-galactosidase Reporter constructs. A 190 bp region downstream of IME4 stop codon,
Xhol sites indicated by the red brackets, was cloned into a vector containing the lacZ reporter gene.
Panel A shows the wild type IME4 named p31, panel B shows the mutant Reb1 binding site from IME4
named p53, and panel C shows the al/a2 binding site mutant named p5-2.

To confirm the presence of the beta-galactosidase constructs, restriction enzyme digest
followed by agarose gel electrophoresis was performed on the plasmids from the transformed E.
coli. Figure 13 shows a picture of the agarose gel of the restriction digest of the plasmids with
Xhol restriction enzyme. Restriction enzyme Xhol cuts double stranded DNA at the sequence

5’-CTCGAG -3’; this site is located on both ends of the insert. A digestion in which the correct
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sized fragment was cut from the plasmid confirmed the presence of the insert and its orientation.
Lane 1 contains the 12 Kb DNA ladder for reference fragment size. Lane 2 shows the empty
vector plasmid. Lanes 3 through 5 contain the beta-galactosidase constructs which have two
bands in each lane. It is clear that the beta-galactosidase constructs for assays were successfully
cloned because of the band at 190 base pairs. The insert orientation was confirmed by
sequencing (not shown). These constructs were then used to assay for any transcriptional

activity.

250bp

Figure 13. Restriction Digest of lacZ constructs
with Xhol. Lane 1 contains the Kb DNA ladder
250bp to 12Kb, lane 2 contains the pSX178
vector, lane 3 contains p31, lane 4 contains
pR53, and lane 5 contains p5-2. (see Figure 11)

Each of the four reporter plasmids was transformed into diploid MATa/MATa., haploid
MATa, and haploid MATa IME4-knockout yeast strain YYF101. Transcription can be
determined indirectly by determining whether lacZ beta-galactosidase activity is detected. If the
lacZ gene is expressed, the enzyme beta-galactosidase is synthesized, and is detected by
hydrolysis of a substrate called 0-nitrophenyl-B-D-galactoside (ONPG). Soluble extracts from

each transformed strain were assayed for beta-galactosidase activity. Absorbance of light at 420
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nm for each assay measured hydrolysis of 0-nitrophenyl--D-galactoside (ONPG). The
absorbance was used to calculate specific activity of the beta-galactosidase enzyme. Specific
activity of beta-galactosidase was determined by utilizing the equation described in Materials
and Methods.

Figure 14 shows the specific activity of the wild type IME4 3° downstream region
compared to the IME4 3’downstream al-a2 site mutant. Yeast strains containing either plasmid
were grown in the presence of either glucose (Figure 14A) or acetate (Figure14B). As expected
from the expression pattern of the antisense RNA observed in the Northern analysis, beta-
galactosidase activity was observed in both a and a haploids carrying the wild type and al-a2
site mutated sequences. The specific activity of the reporter was constant in the haploid cells
containing the wild type and al-alpha2 site mutant. In the diploid cells by contrast, the activity
of the reporter was repressed from the wild type plasmid--activity was essentially undetectable
in these cells. This repression is significant in diploids and is relieved 9-fold in cells carrying the
al-a2 site mutant versus the cells carrying the wild type. In glucose p-value was 0.0001 and in
acetate p-value was 0.0000007. Surprisingly, the repression from the wild type appears even
lower than in the vector only cells because of the strength of the al-a.2 repression. In the al-a2
site mutant, however, activity was comparable to that of the haploids’ specific activity of 17
from wild type versus 15 from the al-a2 site mutant in a cells (p= 0.246) and specific activity of
30 from wild type versus 20 from the al-a.2 site mutant in o cells (p = 0.398) for strains in
glucose. For haploids in acetate, p-value was 0.15 for a cells and .007 for a cells. Specific

activity is typically low in diploids because the cells are larger.
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A Analysis of al/alpha2 site mutant in glucose grown strains
50

45

40

35

30

25

ma Cells

20 ®alphacells

15

ma/alphacells

10

Specific Activity (nmoles/min/mg. prot.)

Vector Only Wild Type al/alpha2 gite mutant

Analysis of al/alpha2 site mutant in acetate grown strains
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Figure 14. Specific activity of IME4 3’ region with the al-a2 site mutant in lacZ
reporter strains. (A) Yeast cultures were grown in glucose (B) Yeast cultures were grown in acetate



We conclude that this 190 bp region 3’ to IME4 contains haploid-specific UAS activity and that
the al-a2 site is functional in this context, repressing UAS activity more than 10 fold.

Reb1 binding sites have most frequently been associated with activation of RNA
polymerase II promoters; however they also contribute to repression of some genes. To examine
their effects on UAS activity, we examined transformants carrying the wild type (pRM2b) and
mutant (pRM2bmutE) forms of the sequence (Figure 11, pg. 31). Figure 15, shows the specific
activity from the lacZ reporter of the wild type 3* downstream region of IME4 in comparison to
the Reb1 binding site mutant. Again, yeast strains were grown in the presence of either glucose
(Figure 15A) or acetate (Figure 15B). The results show (Figure 15) that the specific activity of
the beta-galactosidase enzyme was clearly reduced in the haploid a and alpha cells carrying the
Reb1 site mutant, in comparison to the wild type. For strains in glucose, the p-values were
0.00006 and 0.0005 for a cells and a cells respectively. For strains in acetate, the p-values
were 0.0000001 and 0.002 for a cells and a cells respectively. No activity was detected in the
diploid a/alpha cells, p-values were 0.298 and 0.307 for strains in glucose and acetate
respectively, because of repression in Cis by the al-a.2 site on the plasmid. The specific activity
that is lower in comparison to the wild type means the beta-galactosidase enzyme is not being
synthesized from the mutant plasmid as much as it is from the wild type. Transcription of the
lacZ gene is consistently less from the Rebl binding site mutant plasmid in the context of this
reporter. As shown in the figure, the Reb1 site mutant diminished promoter activity to 20% of
the wild type level. This magnitude decrease is consistent with earlier work with GCY1
(Angermayr and Bandlow, 2003) where the mutant Reb1 site diminished activity to a third of the

activity of wild type cells.
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A Analysis of Rebl site mutant in glucose grown strains

30

25

20

B Vector only
mWild Type

= Reb1 site nutant

15

10

Specific Activity (nmoles/min/mg prot.)

a Cells o Cells a/a Cells

B Analysis of Rebl site mutant in Potassium acetate grown strains

44
40

306

32
28

24 = Vector only

20 EWild Type

16 m Putative Reb1 mutant

12

Specific Activity (nmoles/min/mg prot.)

a Cells o Cells a'a, Cells

Figure 15. Specific activity of IME4 3’ region containing the Reb1 binding site mutant
in lacZ reporter strains. (A) Yeast cultures were grown in glucose (B) Yeast cultures were grown in
acetate.
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Diploid phenotype in sporulation media: Complementation assay

We wanted to observe the effects of the site-directed mutation of the Rebl site in the
context of the full-length IME4 gene. Centromeric yeast plasmids containing either the wild
type IME4 gene (pRM2b) or the full-length gene with the Reb1 binding site mutant
(pPRM2bmutE) were transformed into diploid YYF101 a/a cells. These cells are unable to
sporulate because IME4 is deleted from the strain. A normal Saccharomyces cerevisiae a/a.
diploid cell will undergo meiosis and sporulation when environmental conditions are favorable.
Typically when the diploid cell finds itself starved for nitrogen and carbon, transcription of the
repressor of meiosis gene-RMEL1 is repressed, and the cell can begin the meiotic cycle. The
results of meiosis are the formation of four ascopores in the cell, a structure referred to as a
tetrad. DIC microscopy was utilized to observe the cells to see if they contained asci after being
incubated in sporulation media lacking nitrogen and carbon sources. Figure 16 shows the
appearance of wild type diploid cells and the IME4 3° downstream region containing the Rebl
binding site mutant diploid cells at 400X magnification. The wild type cells contain tetrads in
more than 80% of the field of view, while the cells with the Rebl binding site mutant have 1 or 2
tetrads but closer to none. Table 4 shows the percentage of sporulated diploid cells observed
after counting cells with tetrads. The percentages are consistent with what is seen in the

microscope image.
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Rebl site mutant

Figure 16. Phenotype of Saccharomyces cerevisiae after 48 hours in
sporulation media. The wild type diploid cells are on the left and those
containing the 3’ IME4 Reb1 binding site mutant are on the right.

Table 3. Sporulation in MATa/MAT o YYF101 S. cerevisiae

Plasmid Number of cells Number of cells % of cells with tetrads
containing tetrads without tetrads
Empty vector 0 2,852 0.0 %
Wild type IME4 948 146 86.7 %
Rebl site mutant #1 2 1,015 0.2 %
Rebl site mutant #2 2 1,014 0.2 %
Reb1 site mutant #3 0 1,047 0.0 %

Table 3. Sporulation Phenotype of diploid yeast. The percentage of sporulation is in the third column.

These results are surprising given the reporter assays above; Reb1 site mutant reduced

transcription of the anti sense IME4 in that assay, which in turn was expected to either enhance

sporulation in a/a. diploid cells or to have no effect on sporulation. Instead, the Rebl site mutant

behaved like the al-a2 site mutant, which allows antisense IME4 transcription and prevents




sporulation in &/a cells. These results suggested that the Rebl1 site plays a different role in the
context of the full-length gene than it does in the artificial reporter plasmid.
Development of a strand-specific and quantitative assay for RNA

The lack of complementation by the site-directed mutant plasmids suggested that the
putative Rebl binding site is important for some positive aspect of IME4 expression. Thus, in
order to analyze expression of sense versus antisense strand of genes, an assay had to be
developed. Previous protocols were too cumbersome for this study as these used *P labeled T7-
synthesized single-stranded riboprobes. The objectives of the assay were that it had to be able to
clearly distinguish between the antisense and the sense strand and be quantitative at the same
time. The assay also had to be reasonable for a large number of samples to be analyzed and have
a very low background or no background at all. Taking into account these objectives, an assay
utilizing cDNA synthesis by reverse transcriptase followed by quantitative PCR and data
analysis was established for this strand-specific analysis.

To first test this strand-specific assay, a, a., and a/o. Saccharomyces cerevisiae were
grown in glucose overnight, and the RNA was isolated from all three cell types. Primers were
developed that complement each strand of the gene for actin, and used separately for the gene-
specific cDNA synthesis reactions. Figure 17 shows an overview of the strand specific gPCR

analysis.
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Figure 17. Flow-chart diagram of a strand-specific analysis for RNA.

The oligo dT primer was used for cDNA synthesis of RNA with poly-A tails. The newly
synthesized cDNA was amplified with the Actin gene-specific primers in a qPCR analysis to
determine if a specific strand is favorably expressed and the quantity of each actin strand in the
different cell types. Amplification charts of the qPCR show the difference in sense strand and
antisense strand quantity detected based on the threshold cycle (Cr), the number of cycles of
repeated synthesis it would take to cross the threshold value where exponential growth of the
sequenced fragment is at its peak. The lower the cycle number means the more abundant that
target DNA sequence. The higher the cycle number means a low quantity of the target DNA
sequence. Figure 18 shows the curve generated by the BIORad MyiQ Single-Color detection
system for the Actin RNA analysis. The samples that crossed the threshold first include the

Actin sense cDNA strand primed with the Actin reverse primer and the oligo-dT primer. The
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next groups of samples that come up 10 cycles later include the Actin antisense cDNA primed
with the Actin forward primer and the sample that had no primers, which shows that there is a
very small amount of product made from the RNA itself as a primer. The data are shown in the

form of bar graphs (Figure 19).
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Figure 18. Amplification Chart of Actin qPCR. Actin sense DNA strand is 10 cycles quicker in
appearance than the antisense strand.

Figure 18 shows the results of this analysis with the quantity of each strand expressed as a
percent of the quantity of actin detected in the oligo-dT primed cDNA reaction. There is no
evidence that the actin antisense RNA is transcribed so I hypothesized that only the actin sense
strand will be detected in this analysis. The graph clearly shows that no antisense actin RNA
was found in neither the haploid a and alpha cells, nor in the a/a diploid cells. These results
satisfy the goal of strand specificity distinguishing between the two strands. The result of this

first test of the assay was for a housekeeping gene, actin, which is always expressed in cells.
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Actin RNA analysis in wildtype S. cerevisiae
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Figure 19. Strand-specific analysis of Actin. qPCR of Actin after single-primer cDNA
synthesis reactions with actin forward (detects antisense) primer or reverse (detects
sense) primer.

Next, cDNA synthesis specific for the sense versus antisense IME4 gene strands was
followed by qPCR to quantify the two strands from RNA of wild type strain of Saccharomyces
cerevisiae a, a, and a/a cells. Total RNA was isolated as before, and cDNA was synthesized
using primers for sense or antisense IME4 RNAs. Then amplification was conducted using both
IME4 primers in the qPCR reactions. The results (Figure 20) show that the antisense RNA is
detected primarily in haploid cells, with very little seen in a/a diploids. Conversely, the IME4
sense RNA predominates in a/a diploid cells, as expected from previous Northern blot analysis.
These experiments were repeated using primers from three different regions of the IME4 gene

and similar results were observed (data not shown).
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IME4 RNA analysis in wildtype S. cerevisiae
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Figure 20. Strand-specific analysis of IME4. qPCR results of IME4 sense and
antisense single strand cDNA synthesis reactions with IME4 Region 2 forward or
reverse primer.

We conclude that this approach can be used to distinguish relative sense versus antisense RNA
levels in the mutant strains.
Strand-specific gPCR analysis of Reb1 binding site mutant

After development of the strand-specific RNA analysis utilizing qPCR, Saccharomyces
cerevisiae yeast strain YYF101 a and a haploid, and a/a diploid strains were transformed with
plasmids pRM2b and pRM2bmutE. Transformed cells were grown overnight in SC caa,
glucose-rich medium then RNA was isolated and tested for IME4 sense and antisense RNA
expression by the strand-specific assay. RNA was incubated with a single primer for cDNA
synthesis. Primers included the IME4 antisense probe with sequence identical to the sense
strand, IME4 sense primer with sequence identical to the antisense, and the oligo-dT primer.
The newly synthesized cDNA was then amplified following a qPCR protocol and quantified. In
Figure 20, the amplification chart of from the analysis shows in the sample with the lowest

threshold cycle is the oligo-dT primed cDNA amplified with actin primers because actin is the
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reference gene. The next two curves that come up on the chart were the antisense and sense
IME4 cDNA samples, and vice versa depending on the cell. The last curve to come up was the
control with no reverse transcriptase in the cDNA reaction enforcing the validity of the strands
detected in lower cycle numbers. The quantity of each of the IME4 strands were calculated as a
percent of actin and the ratio of IME4 antisense strand to sense strand was graphed in Figure 22.
In the IME4 wild type diploid a/a. cells, there is about a five cycle difference in the sense strand
versus the antisense strand (Figure 21). This is partial evidence that there is more IME4 sense
strand than IME4 antisense strand expressed in these cells in the presence of glucose, based on

the lower cycle number for the sense strand to be detected.
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Figure 21. Amplification chart of a Strand-specific qPCR for IME4. cDNA from a/a cells carrying the
wild type full-length IME4 gene and 3 downstream region.
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As seen in the bar graph in Figure 21, in the haploid MATa and MATa cells, the IME4 antisense
strand was expressed about twice as much in the wild type than in the Reb1 site mutant.
However, diploid MATa/MATa cells showed an opposite pattern compared to what is observed
in the haploids; the IME4 antisense strand was expressed about three times less in the wild type

than in the Rebl site mutant.
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Figure 22. Ratio of IME4 sense to antisense strands in IME4 knockouts. RNA was
Isolated from cells grown in glucose and strand-specific assay detected the separate
strands.

Further RNA analysis of diploid Saccharomyces cerevisiae transformed with either the
empty vector plasmid pRS316, the full length IME4 on plasmid pRM2b , the full length IME4
with Rebl binding site mutant on plasmid pRM2bmutE, or the full length IME4 with the al-a.2
site mutant on plasmid pRMmut5 was performed to examine how nutrition affects the IME4
antisense expression. These transformants were grown in liquid SC caa overnight to reach the
exponential growth phase followed by 1:10 dilution of the cells in PSP media for 24 hours to
grow. Next the transformants were incubated in liquid sporulation media for 3, 4, or 7 hours,

then their RNA was isolated and quantified. Then strand-specific cDNA synthesis of the IME4
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sense and antisense strands was carried out followed by qPCR for quantification. Actin and
TAP42 housekeeping genes were used as a reference in calculating the quantity of each strand.
Efficiency of the TAP42 primers in qPCR analysis was also done on a serial dilution of a
plasmid containing TAP42 to verify the primers function correctly. Figure 23 shows the
standard curve generated by the qPCR reaction, showing clearly that the lower the concentration
of the target DNA, the higher the threshold cycle for product or newly synthesized DNA in the
PCR reaction is detected. The r* value of 0.99 suggests that human error is at a minimum in

technique and set-up of the assay.
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Figure 23. Standard curve for TAP42 primers. Efficiency of TAP42 primers amplification of its target
DNA in a serial dilution of a plasmid carrying the TAP42 gene.

The graph in Figure 24 shows the result of the qPCR analysis with the quantity of each
strand calculated as a percent of actin for the cells grown in sporulation media for 3 hours. RNA
from the diploid cells carrying the empty vector pRS316 had no IME4 strands detected, which

was expected because pRS316 has no IME4 sequence incorporated into it. In the cells that were
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carrying the wild type IME4 gene on plasmid pRM2b, sense and antisense IME4 strands were
detected and quantified in reference to actin. There was about seven times as much sense IME4
detected than antisense, which had little to no detecton, in the wild type. In cells carrying IME4
plus a mutant Reb1 protein binding site (pRM2bmutE), IME4 sense strand was detected six
times lower than it was in the wild type, and there is detection of IME4 antisense strands also at
2-3 times more than in the wild type. In the cells carrying IME4 along with the al-a2 site
mutant (pRMmut5) there is no detection of the IME4 sense strand; however, the antisense strand
is detected, consistent with the Northern analysis above. The results suggest the Rebl site and

the al-a2 site in the 3 downstream region of IME4 are required for full exprssion of the sense

IMEA4 strand.
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Figure 24. gqPCR strand-specific analysis of diploids 3hrs in SPM. Cells were incubated
in sporulation media for 3 hours beore RNA was isolated from them for analysis.
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The graph in Figure 25A shows the result of the qPCR analysis with the quantity of each
strand calculated as a percent of actin for the cells grown in sporulation media for 4 hours. As
expected, RNA from the diploid cells carrying the empty vector pRS316 had no IME4 strands
detected and was not graphed. In the cells that were carrying the wild type IME4 gene on
plasmid pRM2b, sense and antisense IME4 strands were detected and once again quantified in
reference to actin. There was about six times as much sense IME4 detected than antisense,
which had very low detecton, in the wild type. In cells carrying IME4 plus a mutant Rebl
protein binding site on plasmid pPRM2bmutE, IME4 sense strand was detected eight times lower
than it was in the wild type, and detection of IME4 antisense strands were twice as much in this
mutant than in the wild type. Among the RNA isolated from the cells carrying IME4 along with

the al-a?2 site mutant the IME4 antisense strand was detected 9 times more than the sense strand.

The results with the al-a2 mutant are consistent with Hongay et al (2006).
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Figure 25. qPCR strand-specific analysis of diploids 4hrs in SPM..(A) IME4 sense and antisense
strands quantified as a percent of actin after 4 hours of nitrogen and carbon starvation. (B) IME4 sense
and antisense strands quantified as a percent of TAP42 after 4 hours of nitrogen and carbon starvation.

The same samples of RNA isolated for the 4 hour analysis were assayed again except this
time with oligo-dT primed cDNA amplified wih primers for TAP42 in the qPCR step. Figure

25B shows the result of the strand-specific analysis with the quantity of each strand calculated as
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a percent of TAP42. IME4 sense strand was detected about four times as much as the antisense
strand in cells carrying the wild type plasmid. In cells carrying the Rebl binding site mutant
there was about three times as much IME4 antisense strand detected than sense strand. In the
RNA samples from the cells carrying the al-o2 site mutant plasmid, IME4 antisense strand was
detected 8 times more than IME4 sense strand. These results with TAP42 as a reference are
consistent with the results obtained using actin as a reference.

This same strand-specific assay was performed on diploid MATa/MATa YYF101
transformants exposed to sporulation media for 7 hours to observe if the expression patterns
were similar to that of the 3 and 4 hour samples. Actin was used as the reference gene for the
calculations so quantity of each strand was calculated as a percent of actin. The results, in
Figure 26, showed an expression pattern similar to that of the 4 hour samples, however, on a
much smaller scale. In the diploid cells carrying the wild type 3’ IME4 downstream region
(pRM2b), there was 4 times more sense IME4 RNA detected than antisense IME4 RNA. In the
cells carrying the Reb1 site mutation (pRM2bmutE), IME4 antisense strand was detected about 3
times more than the sense strand. Furthermore, in cells carrying the al-o2 site mutant
(pPRMmut5) IME4 antisense was detected 10 times more than the sense strand, which was barely
detected at all. The mutant plasmids generated a mixed pattern of IME4 sense versus antisense
RNA accumulation, and more antisense with less sense IME4 versus in the wild type. These
results together show that Reb1 protein does indeed play a role in the expression of the IME4
gene in Saccharomyces cerevisiae. Rebl is necessary for the proper levels of IME4 sense and

antisense transcripts, which are in turn required for sporulation to occur.
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Figure 26. qPCR strand-specific analysis of diploids in 7 hrs SPM. Cells were incubated in
sporulation media for 7 hours beore RNA was isolated from them for analysis. The quantity of each
strand was calculated as a percent of actin

In the wild type, Rebl and al-a2 binding at their sites in the 3’ region of IME4, keep
IME4 sense RNA at a level necessary for sporulation, and IME4 antisense at a manageable level
s0 as to have no effect on sporulation. In contrast to the wild type, when the al-a2 site is
mutated and the Rebl1 binding site is still functional, transcription of sense IME4 is somehow
disrupted and the antisense IME4 transcription is detected. Moreover, in the Rebl site mutant,
with a functioning al-a2 site, there is not enough sense IME4 detected to allow sporulation, and
there is more antisense IME4 detected than sense IME4 RNA. In order to analyze if
transcription of sense IME4 RNA is truly affecting antisense IME4 RNA, transcription of the
sense strand must be demolished without altering the 3’ downstream region of the gene. This
will help better understand if al-a.2 and Rebl have separate roles in strand —specific expression

of the IME4 gene.
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Construction of an ADH1 terminator plasmid

Two broadly different models were considered to explain the discrepancy between the
results with the lacZ reporter gene and the full-length IME4 gene. The differences are expected
to reflect the underlying mechanisms by which their sites are active. One difference between the
two is that transcription from the IME4 promoter of the full-length gene could enter the 3’
region, leading to chromatin reorganization in response to RNA polymerase II passage or
termination. In this model repression is disrupted by transcription and needs to be re-
established, thereby imposing a requirement for Rebl. In the second type of model, sequence
context of the 3’ end is the critical determinant of the requirement for Reb1. Nucleosome
positions are determined by a combination of DNA sequence and the response of the remodeling
complex to bound activators. If the first model is correct, then disrupting transcription from the
IME4 promoter will relieve the requirement for Rebl in al-a2 repression. We expect that in the
absence of sense-strand transcription, Reb1 will not be required, as for the CYC1-lacZ reporter
construct. Alternatively, if the sequence context or nature of the promoter is more important,
then disrupting sense-strand transcription will have no effect: the requirement for Rebl1 for al-
a2 repression will remain.

The results of the qPCR led to the question of whether transcription through the IME4
sense RNA would have an effect on al-a2 repression from the 3’ downstream region.
Moreover, would the Reb1 site still be functional in antisense IME4 expression, and how will the
site-directed mutant affect the expression detected in strand-specific qPCR assays above. To
examine if full transcription of the sense IME4 strand would have an effect on or regulate the
role of Rebl in expression of the antisense RNA, a terminator sequence from enzyme alcohol

dehydrogenase 1 or ADH1, was inserted into the middle of the IME4 gene so the sense IME4
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promoter and 5’ half of the coding region is missing. Restriction digest with Xbal and Xhol
initially confirmed that the ADH1 terminator sequence was successfully cloned into the plasmids
pRM2b, pRM2bmutE and pRMmut5. Figure 27 shows a picture of the restriction digest product
after agarose gel electrophoresis. The 12 kb DNA ladder is in lanes 1 and 18, and in lanes 3 - 17
are the potential clones after digesting with Xbal and Xhol. A potentially successful clone is
expected to have a band pattern similar to the positive control in lane 2 which has two distinctive
bands. There is one band at the 1800 base pair mark containing the ADH1 terminator sequence
insert, and one band between the 4kb and the 5 kb marks, the rest of the plasmid. A diagram of

the 1800 base pair insert is shown in Figure 28.
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Figure 27. Restriction Digest with Xbal and Xhol to characterize possible !
ADH]1 terminator sequence clones. Lanes land 18 contain the Kb DNA

ladder. Lane 2 contains the positive control. Lanes 3 — 17 contain

potential successful clones.
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Figure 28. Diagram of ADH1term clone insert from pM1.TF. The insert is approximately 1800 base
pairs.

Plasmids with the desired restriction digest pattern were then sequenced with six primers: ADH
Bgl forward, ADH Bgl reverse, IME4 Region4 Forward, IME4 Region 4 reverse, IME4 pSX
okay? reverse, and -444 forward, to verify the inserted PCR product and its orientation, and that

no other mutations were introduced (Figure 29).
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Identities = 270/271 (99%), Gaps = 1/271 (0%), Frame = +1 / +1

Query: 2 CTGATTAGAATCGTTTCA-GATGCTTTCAGTTCAACATTTAGTAACATAGTAGGARTATC 60
RN RN R N N RN
Sbjct: 141826 CTGATTAGAATCGTTTCAAGATGCTTTCAGTTCAACATTTAGTAACATAGTAGGAATATC 141885

Query: 61 ACGTTTAACGATGCCCCARAGAACATCGAGAATCCTCTATATAGAGTATARACAGGGCAT 120

(AR RN RN RN R R R R N NN
Sbjct: 141886 ACGTTTAACGATGCCCCARAGAACATCGAGAATCCTCTATATAGAGTATAARCAGGGCAT 141845

Query: 121 TCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACGGG 180

RN RN RN A N N NN NN RNy
Sbijct: 141946 TCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACGGG 142005

Query: 181 AATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTGAA 240
(RN RN NN RNy
Sbjct: 142006 AATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTGAA 142065

Query: 241 ACTTGTTATAARCAARGARAGAGAAAGATCT 271
(NN RN AR R RNy
Sbjct: 142066 ACTTGTTATAAACAAAGARAGAGAARGATCT 142096

chryll ! J

i 143300 143400
All Annotated Sequence Features
YGL192W

e o S R T RN
IME4, Verified, Probable mRNA N6-adenosine methyltrans

Score = 158.8 bits (1018), Expect = 2.4e-97, P = 2.4e-97 [ Retrieve Sequence / ORF Map / Genome
Browser |

Identities = 230/245 (93%), Gaps = 12/245 (4%), Frame = +1 / +1

Query: 598 GATCCGTTGCGATGTGCGGARATTTGATTTTAGGGT TCTTGGAARGTTTTCGGTAGTTAT 657
PEEEREE e et et r e e et
Sbjct: 143229 GATCCGTTGCGATGTGCGGAAATTTGATTTTAGGGTTCTTGGAAAGTTTTCGGTAGTTAT 143288

Query: 658 TGCAGATCCTGCATGGAARTATCCATATGAACCTACCATACGGTACTTGCAACGATATTGA 717
(RN R RN AR AR R RN
Sbjct: 143289 TGCAGATCCTGCATGGAATATCCATATGAACCTACCATACGGTACTTGCAACGATATTGA 143348

Figure 29. BLAST comparison of the ADH1termnator sequence insert plasmids.
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(Figure 29 continued)

Query: 620 ATTTCCGCACATC-GCARCGG-AT-CTGGTAGAGGTGTGGTCAATAAGAGCGACCTCATG 564

LR o IR o e A B 4 0 5 0 0 1 M
Sbjct: 159336 ATTTGCAGGCATTTGCT-CGGCATGCCGGTAGAGGTGTGGTCAATAAGAGCGACCTCATG 159394

Query: 563 CTATACCTGAGAARGCAACCTGACCTACAGGAAAGAGTTACTCAAGAATARGAATTTTCG 504

FEPEEEEEEE et et e bbb r bbb e e et b e e el
Sbjct: 159395 CTATACCTGAGAAAGCAACCTGACCTACAGGAAAGAGTTACTCAAGAATAAGAATTTTCG 159454

Query: 503 TTTTAAAACCTAAGAGTCACTTTAARATTTGTATACACTTANNNNNNNNATAACTTATTT 444
LELEEREErrer et bbbt e et el [RERRERERN
Sbjct: 159455 TTTTAARACCTARGAGTCACTTTAAAATTTGTATACACTTATTTTTTTTATAACTTATTT 159514

Query: 443 AATAATAARAATCATAAATCATAAGAAATTCGCTTATTTAGAAGTGTCAACAACGTATCT 384

0 1 1 T T o 5 1 A 0 01 Y O I 9
Sbjct: 159515 AATAATAAAAATCATAAATCATAAGARATTCGCTTATTTAGAARGTGTCAACAACGTATCT 159574

Query: 383 ACCAACGATTTGACCCTTTTCCATCTTTTCGTARATTTCTGGCAAGGTAGACAAGCCGAC 324

RN RN RN AR NN AR
Sbjct: 159575 ACCAACGATTTGACCCTTTTCCATCTTTTCGTAAATTTCTGGCAAGGTAGACARGCCGAC 159634

Query: 323 AACCTTGATTGGAGACTTGACCARACCTCTGGCGARGAAGTCCAAAGCTTCT 272
FEErrerreeere et e e bbb e e e bbbl
Sbjct: 159635 AACCTTGATTGGAGACTTGACCARACCTCTGGCGAARGAAGTCCARAGCTTCT 159686

The successfully cloned plasmids were named pM1.TF for the wild type IME4 + ADH1
terminator sequence in the forward orientation, pME.TF for the IME4 with mutant Reb1 binding
site + ADHI terminator sequence in the forward orientation, and pM5.TF for the IME4 with
mutant al/alpha2 binding site + ADH1 terminator sequence in the forward orientation.
Saccharomyces cerevisiae strain YYF101 MATa/MATa was transformed with pM1.TF,
pME.TF, and pM5.TF separately following the Yeast transformation high efficiency protocol
from Linda Hoskins/Hahn Lab, with a few modifications.
gPCR Strand-specific analysis of ADH1 terminator sequence plasmids

A terminator sequence from the alcohol dehydrogenase enzyme gene ADH1 was inserted
into the middle of the IME4 gene, strategically removing the promoter and 5’ region of the IME4
sense strand, including the transcriptional start codon. The terminator sequence tells the RNA

polymerase to stop transcribing; the terminator also prevents transcription read-through from any
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upstream plasmid sequences. These plasmids containing the disrupted gene should help to
understand if the expression of the sense strand will have an impact on the expression of the
antisense strand.

YYF101 MATa/MATa transformants were incubated in sporulation media for 4 hours;
the RNA was isolated and assayed for IME4 strand-specific expression patterns. cDNA was
synthesized using one of the following primers: oligo-dT, IME4 region 4 forward, or IME4
region 4 reverse. The oligo-dT primed cDNA was amplified with TAP42 or actin primers while
the IME4 primed cDNA was amplified with IME4 region 4 primer pair. As shown in Figure 28,
the wild type has little, or no, IME4 sense nor antisense strand produced when IME4 is
disrupted. However, when IME4 is disrupted in either the Reb1 binding site mutant or the al-o.2
binding site mutant, IME4 sense strand expression is reduced while the IME4 antisense strand
expression continues as it does in the plasmids that IME4 was not disrupted in Figure 30. The

quantity of each strand was calculated as a percent of actin in Figure 30B, and as a percent of

TAP42 in Figure 30A.
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6
c [
g 4
=
C'E.:' 3
- B Antisense RNA
£ 2
m IME4 RNA
-
0 -
WT w/ terminator Rebl site mutant  al/alpha2 site
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Figure 30. ADH1 terminator insert qPCRstrand-specific analysis. Strand- specific assay of RNA from
diploid yeast containing the ADH1terminator sequence disrupting the IME4 gene and either the wildype

IME4 gene 3° downstream region, the 3’downstream IME4 Reb1 binding site mutant, or the 3’

downstream region of IME4 al-a2 site mutant. (A) Strand quantity calculated as a percent of the TAP42

gene. (B) Strand quantity calculated as a percent of actin.

These results show evidence that the Rebl site is necessary for al-o2 repression in this sequence
context, thus supporting our second model, that some aspects of this promoter sequence dictate

the requirement in this context. We conclude that there may be other elements that may account

for these results including the sequence and possible sequence-dependent nucleosome
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positioning, and the TATA-less nature of this promoter. A model of the IME4 antisense

promoter region is shown in Figure 31.

Ssn6/Tupl _ SRB10

/.

__—7 HDACs

> Other targets
still unknown

Rebl ~— al-a2 _

Figure 31. Model of proposed IME4 antisense promoter. DNA is orientated from 5’ to 3’.
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Discussion

Summary

The focus of this thesis was to explore the factors that contribute to IME4 transcription in
Saccharomyces cerevisiae. IME4 is important for sporulation in diploid cells and without it
functioning properly, diploid a/alpha cells are unable to go through meiosis, nor form
ascospores. IME4 is important because it most likely acts on other transcripts necessary for
sporulation, although this has not yet been tested directly (Clancy et al, 2002). IME4 homologs
in humans and Arabidopsis suggest that its role is very important (Zhong, S. et al. 2008, and
Bokar et al 1997); the gene is essential in both organisms, leading to embryonic lethality in
knockdown strains.

After initial studies utilizing northern blot hybridization confirmed that IME4 is
expressed in both haploids and diploids, further analysis of transcription of this gene was
necessary to understand its regulation. The Northern studies conducted in the Clancy lab were a
beginning to what is now seen as a very complex regulatory system involving many
components. The information that is already known regarding al-alpha2 functioning as a
repressor presented a starting point because of the genome wide studies of transcriptional
regulators that identify known and previously unknown binding sites for these transcription
factors (Galgoczy et al, 2004). Strand specific analysis in various environmental conditions and
cell types gave more insight and understanding of how the IME4 gene is regulated.

The discovery of Rebl, the general regulatory factor protein, binding site within 200 base
pairs of the stop codon for IME4 was exciting because of its known regulatory functions. This

putative binding site led to the hypothesis that it may be controlling transcription of the antisense
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IME4 strand that is transcribed in haploid cells, and diploid cells. The purpose of this antisense
strand seems to be regulation of the sense strand; however the exact mechanism is unknown
(Hongay et al, 2006). The presence of the al-alpha2 binding site and the Rebl binding site both
in the 3’ downstream region of IME4 sense and the 5’ upstream region of its antisense led to
questions regarding each factor’s role in the complex regulation of this gene. This thesis
attempts to answer some of these questions through examination at the level of transcription, or
the synthesis of RNA from DNA, with quantification of the expressed RNA. Analysis of the
RNA allows identification of which gene, or in this context, which strand of a gene is being
expressed, in what quantity, and to observe the consequences. Moreover, the work addresses
whether sporulation and meiosis is taking place in cells where the Rebl1 protein is unable to bind
to its site in the 3’ downstream region of IME4? This thesis will also help to determine if Reb1
functioning properly in regulation of IME4 requires al-alpha 2 protein complex functioning at
its binding site in the 3° downstream IME4 region. Overall, understanding the transcription
pattern of the antisense IME4 will allow a better understanding of the complex process of
meiosis and sporulation in Saccharomyces cerevisiae, and the roles of antisense transcription in
eukaryotic gene regulation.
Verification of a haploid-specific UAS in the 3’ downstream region of IME4

The observation of antisense IME4 in the al-alpha2 site mutant is evidence that the 3’
region of IME4 regulates transcriptional activity. Results from the beta-galactosidase assays
were informative in this regard. Wild type haploid yeast cells showed activity from this 3’
downstream IME4 region that the diploid cells did not show. In contrast, both diploid and
haploid yeast showed activity from the reporter when the al-alpha2 site mutant is present in the

3’ downstream IME4 region. This observation led to the conclusion that this 3’ downstream
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region of IME4 does indeed have a haploid-specific upstream activation sequence activity.
These results were surprising because activity is usually observed from promoters, which are
found in the 5 upstream region of a transcribed gene. Another interesting observation was that
there was activity from the haploids and not the diploids, yet IME4 has no known function in
haploid cells. These results show that transcription is induced by this region and IME4 antisense
is what’s being transcribed.

The Rebl binding site present in the 3 downstream region of IME4 was of interest
because of the known regulatory functions of this abundant protein. The role of the Rebl
binding site with regard to IME4 has not been explained. The mutated Reb1 binding site was
created to examine the consequences of Rebl not binding in the context of IME4. In contrast to
the wild type, haploid cells carrying the site-directed mutant showed consistently decreased
activity from the reporter, suggesting a positive role for Rebl in promoter activity. However, in
diploid cells, both the wild type and the Rebl binding site mutant showed very little activity
from the reporter. This repression that is seen in the diploids is due to the al-alpha2 mediated
repression as observed from the beta-galactosidase assays with the al-alpha2 site mutant in
which repression was relieved. Rebl binding site does seem to have an effect on the expression
of the antisense IME4 strand as evidenced by the reduced activity of the reporter observed in the
mutants in comparison to the wild type (Figure 15). From the reporter construct studies, Rebl
was observed to only influence activity in the haploid cells.

Diploid phenotype of a site-directed mutant Rebl in the 3’downstream region of IME4

In the lacZ reporter assay, the Reb1 site-directed mutant had no observed altered function

in the diploid cells; however the complementation assay showed another story. Diploid a/alpha

cells transformed with plasmids carrying the full-length IME4 gene plus the 3’ downstream
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region containing the mutant Rebl site, had little or no ascopore formation taking place in
nitrogen and carbon starvation. These results disagree with the beta-galactosidase reporter assay
results because the activity observed was the same in wild type and Reb1 site mutants in the
diploid cells being repressed in both cases. This result suggested that the Reb1 site mutant in the
full-length gene caused an increase in the IME4 antisense strand, inhibiting sporulation. This
discord between the two types of experiments has been observed before. For example, Tabtiang
and Herskowitz (1998) examination of Nutl and Nut2 binding effects on HO gene transcription
regulation in Saccharomyces cerevisiae, previously found the sequences in lacZ to be interfering
with the activity of the URS2 region under examination as compared to what is seen in the
northern hybridization analysis of the same region. In another example, in studies with the
PHO5 promoter, the lacZ —fusion reporter had transcriptional requirements that were different
from the natural promoter (Martinez-Campa et al, 2004). The conclusion from these
experiments is that Reb1 also must play a different role in the natural conformation with full-
length IME4 than it does with the artificial lacZ fusion construct. This observation was
intriguing and led to the question of how much IME4 sense is being transcribed, if any, because
meiosis and sporulation is not happening.
Quantitative strand-specific analysis of IME4 RNA

The contrasting results of the beta-galactosidase assays and the complementation assay
required another protocol for the purpose of quantifying the two separate RNA molecules: IME4
sense and antisense. The site-directed mutant Reb1 did not allow sporulation; therefore the
question of whether or not IME4 was transcribed was addressed. cDNA was synthesized from
RNA isolated from the different cell types, carrying either the wild type or the altered plasmid,

grown in sporulation media. The appropriate negative controls for the reverse transcription
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reaction were performed also to ensure the results were as accurate as possible (Haddad et al,
2007), including the no primer control and the no reverse transcriptase in the cDNA synthesis
reaction. Specificity and efficiency of the primers utilized were also performed as another
control or check of the protocol. Studies by Perrochi et al (2007) recently found that there can
be antisense artifacts in reverse transcription reactions that may interfere with authentic signals
in the analysis of RNA using micro arrays. They use actinomycin D to lower these unwanted
occurrences. Analysis of the housekeeping gene actin also verified that the assay truly serves its
purpose. The equation used to calculate the strand quantity has also been previously described
(Pfaffl, 2001). The strand-specific analysis utilized in the work for this thesis is reliable
nevertheless.

In wild type Saccharomyces cerevisiae, the primers designed for detection of each IME4
strand were specific for each strand. As expected, the primer to detect the sense IME4 did so
only in the diploid &/alpha cells while the antisense IME4 was detected in the haploids a and
alpha cells. These same primers were used for analysis in the ime4:TRP1 knockout strains
carrying the plasmid with IME4. The transformants that were grown in the presence of glucose
showed a pattern of expression that was consistent with the analysis of the wild type yeast and
the beta-galactosidase assays. Once again, in haploid cells, the antisense strand is more
abundant than the sense strand, and the site-directed mutant Reb1 represses this transcription. In
diploids, the pattern is reversed, with very little antisense detected in wild type with the mutated
Rebl site causing an increase in the antisense. Thus, the Rebl site mutant caused a diploid cell
to behave like the haploid cell in this respect.

The strand specific analysis in nitrogen and carbon starved cells was examined to

characterize the expression pattern of the IME4 sense and antisense strands. The results were
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not surprising based on what was previously observed in this thesis. In the wild type diploid
a/alpha cells, where IME4 sense is necessary for meiosis and sporulation, the sense strand was
detected and the antisense strand level detected was very low. In these wild type cells, al-
alpha2 and Reb1 function in such a way that sporulation is able to progress. The presence of al-
alpha?2 is indispensable for IME4 mRNA accumulation, and it most likely interacts with its co-
repressors to arrange the chromatin in a way that is inaccessible for RNA polymerase II to access
the antisense strand. As a result, sense transcript can be produced. Rebl seems to be necessary
for the al-alpha2 function because when either the Reb1 or al-alpha?2 site is nonfunctioning,
expression of the sense strand is severely reduced and sporulation is nonexistent when favorable
conditions exist. To further explain the role of Rebl in regards to IME4 transcription, further
strand-specific analysis was performed on RNA from yeast where IME4 sense transcription was
incomplete.

The ADH1 terminator was utilized because the sequence is conveniently available on the
Gal4 activation domain plasmid from Stratagene. Diploid yeast in sporulation media were
analyzed because we wanted to obtain more information about the way in which Reb1 and al-
alpha2 regulate IME4. The results in the wild type demolished detection of the sense strand to
the level of the antisense strand which is close to none. The putative Rebl site mutant and the
al-alpha2 site mutants showed the same pattern of expression; low to no sense strand detected
and antisense strand expression at a level that seems to be unaffected by the inserted ADH1
sequence. RNA polymerase II cannot transcribe the sense strand because the TATA box and
other promoter elements are missing from the sequence. Complete transcription of the sense
IME4 strand through the 3’ region of IME4 was abolished so that the transcription machinery

will have no effect on the promoter region of the antisense IME4 strand. These results suggest
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that Rebl is indeed required for al-alpha2 repression of IME4. Rebl most likely contributes by
sequence dependent mediated nucleosome positioning due to the TATA-less nature of the
promoter of the IME4 antisense strand.

Rebl is a very important regulator in the Saccharomyces cerevisiae genome, as
evidenced by its many binding sites. Some regulatory factors that have more than one binding
site have different functions depending on its arrangement in the sequence, binding of regulatory
factors, and environmental conditions (Harbison et al, 2004). Rebl binding in the 3’
downstream region of IME4 may influence the location of a nucleosome which can in turn
influence the processes that can occur at genes in the affected region. The question now is if
there are other instances where al-a2 repression requires extra factors such as Rebl and if so
what are they. The mechanism for the repression may be at the level of al-a2 maintaining in the
region, or at the level of the Tup1 co-repression or one of its targets. This proposed nucleosome
positioning has been studied for other repressors such as the alpha2-mcm1 repressor of a-
specific genes (Morohashi et al, 2006). Disrupting the sequence by insertion led to a loss of
nucleosomes at the region under examination, and this loss relieved but did not demolish the
repression there. Morohashi et al (2007) further showed that a nucleosome can block binding of
a transcriptional activator, thereby influencing repression. In addition, Martinez-Campa et al
(2004) examined how the sequence dictates whether histone H4 tails and bromodomain factor-
Bdf1 are required for transcription activation and chromatin remodeling at the PHOS5 promoter.
They found that in the context of PHOS5, when the TATA box is poorly accessible or absent,
interaction between histone H4 tails acetylated lysines and Bdf1 is required for TFIID to be
maintained on the promoter and activation of transcription. By analogy, Rebl1 in the antisense

IME4 promoter region perhaps may be facilitating TFIID.
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Reb1 binding sites more recently have been linked to the formation of the nucleosome
free region or NFR, where the transcription start is located. Raisner et al (2005) showed that the
Rebl site is in a region free of nucleosomes but flanked by two H2A.Z nucleosomes, in the
context of the SNT1 promoter. Mutation in the Reb1 binding site effectively increases
nucleosome localization in the region. Rebl in the antisense strand of IME4 may be contributing
to a nucleosome free region there, to allow transcription of this strand. The important aspect of
these studies on nucleosome localization in turn led to examination of the actual pathway that
leads to the chromatin arrangement at promoters (Hartley and Madhani, 2009) and Rebl is
required. Moreover, Koerber et al (2009) found that Reb]1 is required for positioning of the -1
nucleosome, which is about 230 base pairs upstream of the transcriptional start sites, in
Saccharomyces cerevisiae. The -1 nucleosome is at the nucleosome free region-proximal border
suggesting again that Reb1 is required for the strategic positioning. An ‘atlas’ of nucleosome
positions has been compiled from genome-wide studies (http://atlas.bx.psu.edu/yeast-
maps/yeast-index.html).

The Rebl binding site is associated with the expression of a non-coding RNA, the
antisense IME4. Non-coding RNA is not translated to protein but some have been shown to
have specific functions in gene regulation (reviewed by Harrison et al, 2009). These non-coding
RNA’s are distinct from transfer RNAs, ribosomal RNAs, small nuclear RNAs, and small
nucleolar RNAs and are exclusively transcribed by RNA polymerase II. A recent study by
Drinnenburg et al (2009) revealed that RNA interference, the gene-silencing pathway that is
induced by double-stranded RNA is present in the budding yeast Saccharomyces castellii and
has been lost in Saccharomyces cerevisiae. Drinnenburg et al also found proteins Dcrl and Agol

that contain RNaselll domains suggesting they are involved with Dicer-like activity. This
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distinct RNA interference pathway was reconstituted in Saccharomyces cerevisiae by
overexpressing the Agol and Dcrl proteins. This pathway for non-coding RNA can be used to
further study transcription regulation in Saccharomyces cerevisiae. Additional analysis of the
antisense IME4 transcript perhaps may determine if it functions by utilizing this RNA
interference pathway in other budding yeast.

The function of the non-coding RNA is now being studied more extensively because so
many exist in the genome of Saccharomyces cerevisiae as well as complex eukaryotes (e.g.
human). In the context of IME4, the antisense transcript has a regulatory role (Hongay et al,
2006), which we verified. The expression of the antisense however also depends on certain
factors, and we have shown that Rebl is one of them. Rebl is required for the antisense IME4
transcription as it is in the context of the yeast GAL gene cluster (Houseley et al, (2009). In this
system, a Reb1 site was shown to be necessary for the production of a non-coding RNA
antisense to the GAL1-10 gene. They showed that GAL10-noncoding RNA transcription recruits
a methyltransferase and promotes histone deacetylation in cis which leads to chromatin
modifications and glucose repression at GAL1-10 under certain physiological conditions.
Furthermore, Bumgarner et al (2009) most recently identified two non-coding RNAs that
function in cis to control variegated gene expression at FLO11 in yeast. Taken together, non-
coding RNAs can be important for gene expression, so the regulation of non-coding RNA
expression is important as well.

Overall, there is still much to learn about regulation of the non-coding RNA and the
specific functions of them. High-throughput technology to analyze the transcriptome has been
used to identify many non-coding RNAs (reviewed by Beretta and Morillon, 2009). Many

features of non-coding RNA suggest they are ideal regulatory molecules including their mobility
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and their ability to be synthesized and degraded rather quickly in response to the environment
changes, however further investigation is necessary to determine exact function of each
molecule (reviewed by Beretta and Morillon, 2009). In conclusion, Reb1, found all over the
genome of Saccharomyces cerevisiae, is found in IME4 antisense, where it most likely aides in
transcription regulation. Future experiments with chromatin immunoprecipitation will help
understand the mechanism by which Reb1 regulates expression of the antisense transcript. We
propose a model in which Rebl1 binding in this region cleans the area, therefore, maintaining a
nucleosome-free region that is necessary for transcription machinery such as transcription

factors to initiate transcription of the antisense IME4.
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Appendices

Appendix A: Sequences

Query: 1 ACTGAATTAGAATCGTTTCA-GATGCTTTCAGTTCAARCATTTAGTAACATAGTAGGAATA 59

PEUEE TR Tr et ver e bbb e e e e e e e e e e el
Sbjct: 141825 ACTGA-TTAGAATCGTTTCAAGATGCTTTCAGTTCAACATTTAGTAACATAGTAGGAATA 141883

| Query: 60 TCACGTTTAACGATGCCCCAAAGAACATCGAGAATCCTCTATATAGAGTATARACAGGGC 119
| CLECERE e e e e b e e e el
Sbjct: 141884 TCACGTTTAACGATGCCCCARAGAACATCGAGAATCCTCTATATAGAGTATARACAGGGC 141943

Query: 120 ATTCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACG 179

PEEELE et e bbb et
Sbjct: 141944 ATTCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACG 142003

Query: 180 GGAATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTG 239

FELPEREREE e et e e e e e ety
Sbjct: 142004 GGAATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTG 142063

Query: 240 AAACTTGTTATAARACAAAGAAAGAGARAGATCTCCCCGGCATTCTGGAAGATCGGTAACC 299
PEOTEEL T et e e e e e e b e e e el
Sbjct: 142064 AAACTTGTTATAARCAAARGARAGAGAAAGATCTCCCCGGCATTCTGGARGATCGGTAACC 142123

Query: 300 GCTGGAGCTATAGGAAAGGGAGATGGATAACAGTARAGRARACGGACCATATAAGTTAGC 359
RN RN RN R R R R RN RN RN AR R RN NN
Sbjct: 142124 GCTGGAGCTATAGGAAAGGGAGATGGATAACAGTARAGARRACGGACCATATAAGTTAGC 142183

Query: 360 ATTGGGGGTTTTCGARARAAATAAGAATTGGCATTCAGACTTGAATTCATARAAGTTGTA 419
CELEERTTE e e e e e e e e e e et bbb
Sbjct: 142184 ATTGGGGGTTTTCGAARARAATAAGAATTGGCATTCAGACTTGAATTCATAAAAGTTGTA 142243

Query: 420 AGCAGGCTATGATTAACGATARACTAGTACATTTTCTGATCCAGAATTATGATGACATCC 479
PEEErrrrrerrrere e erereerrrerer et er et rrrrend
Sbjct: 142244 AGCAGGCTATGATTAACGATAARACTAGTACATTTTCTGATCCAGAATTATGATGACATCC 142303

Query: 480 TAAGAGCACCGCTTTCTGGACAGCTCAAAGATGTGTATTCACTGTACATCAGTGGCGGAT 539

AR RN AR RN AR R RN RN RN R RN
Sbject: 142304 TAAGAGCACCGCTTTCTGGACAGCTCAAAGATGTGTATTCACTGTACATCAGTGGCGGAT 142363

Sequence 1. Rebl site mutant BLAST results. BLAST results comparing pRM2bmutE, the
Rebl1 site mutant, with the Saccharomyces cerevisiae genome, using the S. cerevisiae database.
(www.yeastgenome.org).
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(Sequence 1 continued)

Query:

Sbjct:

Query:

Sbjct:
Query:
| Sbict:
Query:
Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbict:

Query:

Sbject:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

751

142335

691

142395

631

142455

571

142515

511

142575

451

142635

391

142695

331

142755

271

142815

211

142875

151

142935

TGTGTATTCACTGTACATCAGTGGCGGATACGATGATGAGATGCAGAAGTTGAGRARCGA
Prerrerrererrerrrretrererr et et e e et e et e e e et
TGTGTATTCACTGTACATCAGTGGCGGATACGATGATGAGATGCAGAAGT TGAGARACGA

TAAAGACGAGGTCTTACAGT TTGAACAGTTTTGGAATGATCTTCAGGATATTATATTTGC

RN AR NN AR N R R N RN N AR NN
TARAGACGAGGTCTTACAGTTTGRACAGTTTTGGAATGATCTTCAGGATATTATATTTGC

ARCGCCGCAGTCCATTCAATTTGACCAGAATCTATTAGTGGCAGATAGGCCAGARAAAAT
PEreerrrrerrerrererre e e e et r et eereend
AARCGCCGCAGTCCATTCRATTTGACCAGAATCTATTAGTGGCAGATAGGCCAGAAARAAT

TGTTTACCTGGACGTTTTTTCCTTGAARATTCTCTATAACAAGTTCCATGCCTTCTACTA
FEEEEEEEr et et e et ettt b et re et
TGTTTACCTGGACGTTTTTTCCTTGAARATTCTCTATAACAAGTTCCATGCCTTCTACTA

TACATTAAAATCGTCCAGTTCTTCATGTGAAGAAARAGTGTCGAGTTTAACARCARAACC
FELEREREer et r et e e e et e e et ere el
TACATTAARATCGTCCAGTTCTTCATGTGRAGAARAAGTGTCGAGTTTAACAACARAACC

GGAAGCTGATTCGGARARRAGACCARCTGCTGGGTAGACTGCT TGGAGTCCTGAACTGGGA
R R N R RN AR R R RN RN AR RR R AR RN
GGAAGCTGATTCGGAAAAAGACCARCTGCTGGGTAGACTGCTTGGAGTCCTGARCTGGGA

CGTTAACGTCAGCAACCAGGGGTTACCACGTGAACAACTGAGCAATCGCTTACARAATTT
RN R R R R R R R RN RN RN RN RN RN EREREN!
CGTTAACGTCAGCARCCAGGGGTTACCACGTGAACAACTGAGCAATCGCTTACARARTTT

ATTGAGGGAAARACCATCATCTTTTCAGCTTGCTARAGARAGAGCCAAATACACGACCGA
R RN N RN RN RN RN R R RN RN RN RN RR RN
ATTGAGGGAAARACCATCATCTTTTCAGCTTGCTAAAGAARGAGCCARATACACGACCGA

GGTCATTGAATACATCCCGATATGTAGTGACTATTCGCATGCATCTCTATTGTCCACCTC
R N N RN AN RN RN AR RN
GGTCATTGAATACATCCCGATATGTAGTGACTATTCGCATGCATCTCTATTGTCCACCTC

GGTGTACATTGTCAATAACARAATCGTTTCTTTACAATGGTCCARRATATCCGCATGTCA
NN R R R AR RN R RN RN AR AN ER NN
GGTGTACATTGTCAATAACARAATCGTTTCTTTACAATGGTCCARARTATCCGCATGTCA

GGAAAATCACCCAGGATTAATTGAGTGCATTCAATCARAAATTCACTTTATCCCTAATAT
(R R R R RN RN AR AR AR
GGAAAATCACCCAGGATTAATTGAGTGCATTCAATCAAARATTCACTTTATCCCTAATAT

77

692

142394

632

142454

572

142514

512

142574

452
142634
392

142694

332

142754

272

142814

212

142874

152

142934

92

142994



(Sequence 1 continued)

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbijct:

2

142964

61

143024

121

143084

181

143144

241

143204

301

143264

528

143304

468

143364

408

143424

348

143484

288

143544

228

143604

TTCA-TCAAAAATTCACTTTATCCCTAATATCARRCCACRAACTGATATTTCGTTAGGAG 60
COLE T TE e e bbb e e et

TTCAATCARARATTCACTTTATCCCTAATATCARACCACARACTGATATTTCGTTAGGAG 143023

ATTGTTCCTATTTGGATACCTGTCATAARATTARATACGTGTCGATACATTCATTACCTGC 120
PECETEEEEE e e e e e e e e e e e eyl

ATTGTTCCTATTTGGATACCTGTCATAAATTAAATACGTGTCGATACATTCATTACCTGC 143083

AARTATATTCCGTCATGCTTGCAAGAGCGAGCTGATCGTGAAACTGCGAGTGARRATARAR 180
COERTEEE e e e e e e e e e et e e el

AATATATTCCGTCATGCTTGCAAGAGCGAGCTGATCGTGARACTGCGAGTGARAATAAAR 143143

GAATACGGTCARACGTTTCCATTCCATTTTATACTCTGGGCAATTGCTCCGCACATTGTA 240
N RN R AR RN R R AR R R NN RN RN R R

GAATACGGTCAAACGTTTCCATTCCATTTTATACTCTGGGCAATTGCTCCGCACATTGTA 143203

TCAAAAAGGCTTTACCTGCACAGTGGATCCGTTGCGATGTGCGGARATTTGATTTTAGGG 300
PLEEEErrerree et rrre et ee e reee ey

TCARRAAGGCTTTACCTGCACAGTGGATCCGTTGCGATGTGCGGARATTTGATTTTAGGG 143263

TTCTTGGAAAGTTTTCGGTAGTTATTGCAGATCCTGCATGGAATATCCATATGAACCTAC 360
PECEETEEET et r e e b bbb e e e e ren

TTCTTGGARAGTTTTCGGTAGTTATTGCAGATCCTGCATGGAATATCCATATGAACCTAC 143323

GAATATCCATATGARCCTACCATACGGTACTTGCAACGATATTGAACTATTAGGTTTGCC

PEEEEEEEE e et e e e e e e e e e e e e eyl
GAATATCCATATGAACCTACCATACGGTACTTGCAACGATATTGAACTATTAGGTTTGCC

TTTGCACGAACTACAAGATGAAGGTATTATTTTTCTTTGGGTGACGGGTAGAGCTATAGA
AN R AR R R R RN RN AR A RN RN
TTTGCACGAACTACAAGATGAAGGTATTATTTTTCTTTGGGTGACGGGTAGAGCTATAGA

ATTGGGTAARAGAGTCTTTGAATAACTGGGGTTACAACGTGATAAATGAAGTTTCATGGAT
FELEEREEER e e e e e e e e e e e e e e e e e e e et
ATTGGGTAAAGAGTCTTTGAATAACTGGGGTTACAACGTGATAARATGAAGTTTCATGGAT

AAAGACAARCCARACTGGGTAGAACAATTGTTACAGGTCGTACGGGTCATTGGTTAARATCA

FEETERETTEE et e e e e e e e e e e et
AARGACAAACCAACTGGGTAGAACAATTGTTACAGGTCGTACGGGTCATTGGTTARATCA

TTCTAAGGAGCATTTATTGGTGGGCTTAAAGGGTAATCCARAGTGGATCAACARACATAT
Prrrrrerrrrrr e e e e e et e bbb e e e e e e el
TTCTAAGGAGCATTTATTGGTGGGCTTARAGGGTAATCCARAGTGGATCAACARACATAT

TGACGTCGATTTGATCGTATCAATGACCAGAGAGACTAGTAGAAAGCCTGATGARACTGTA
PRrrrrerre et ettt et e r e e et rr e ettty
TGACGTCGATTTGATCGTATCAATGACCAGAGAGACTAGTAGAAAGCCTGATGAACTGTA

78

469

143363

409

143423

349

143483

289

143543

229

143603

169

143663



(Sequence 1 continued)

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbject:

447

143555

387

143615

327

143675

267

143735

207

143795

147

143855

ATTTATTGGTGGGCTTARAGGGTAATCCARAGTGGATCAACARACATATTGACGTCGATT

FEEEEEE e el
ATTTATTGGTGGGCTTAAARGGGTAATCCARAGTGGATCAACARACATATTGACGTCGATT

TGATCGTATCAATGACCAGAGAGACTAGTAGARAGCCTGATGAACTGTATGGTATAGCAG
CCEEEEER e e e et e e et et e e e ey
TGATCGTATCAATGACCAGAGAGACTAGTAGARAGCCTGATGARCTGTATGGTATAGCAG

AACGGTTGGCAGGCACCCATGCCAGARRACTAGAGATATTCGGAAGGGATCACAATACGC

CLLELrrerrrrerrrrrerrrereererrerrrrrreere et b e e et et
AACGGTTGGCAGGCACCCATGCCAGAAAACTAGAGATATTCGGARGGGATCACAATACGC

GGCCTGGCTGGTTTACCATCGGARACCAGTTGACAGGARATTGCATTTACGARATGGATG

FEETLEEET ettt e e et e e e el
GGCCTGGCTGGTTTACCATCGGAARCCAGTTGACAGGARATTGCATTTACGARATGGATG

TCGAGAGGAAGTACCAGGAGTTTATGAAGAGCARAACTGGAACCAGCCACACTGGTACTA
FEETLETEE ettt e e et e et e el
TCGAGAGGAAGTACCAGGAGTTTATGAAGAGCARAACTGGAACCAGCCACACTGGTACTA

ARAAAATCGACAAAAAGCAACCTTCARAATTACAGCAGCAGCATCAGCAGCAGTATTGGA

PECEEEEErEEr et e e et e et bbb e et
ARRRARTCGACARAAAGCAACCTTCAARATTACAGCAGCAGCATCAGCAGCAGTATTGGA

79

388

143614

328

143674

268

143734

208

143794

148

143854

88

143914



(Sequence 1 continued)

Query:

Sbijct:

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbijct:

Query:

Sbijct:

Query:

Sbjct:

569 TCAARATTACAGCAGCAGCATCAGCAGCAGTATTGGAATAATATGGATATGGGGAGTGGET

FEEEEREREEr e e bbb bbb e e e e e e e bbb
143878 TCAAAATTACAGCAGCAGCATCAGCAGCAGTATTGGAATAATATGGATATGGGGAGTGGET

509 AAGTATTATGCTGAGGCCAAGCAGAATCCTATGAATCAAARACATACTCCCTTTGAATCC
RN R R RN R RN R R R R RN AN R R RN
143938 AAGTATTATGCTGAGGCCAAGCAGAATCCTATGAATCAAAARACATACTCCCTTTGAATCC

449 AAACAGCARCAAAAACAACAATTCCAARCACTAAATAACCTATATTTTGCTCAGTAAARGT

R R R R R RN RN RN NN AR RN
143998 ARACAGCAACAARARACAACAATTCCARACACTAAATAACCTATATTTTGCTCAGTARAGC

389 GTTAAATAATCCTTTTAAACATTAATAGCATTGCATARRRRAAGATGGTCATAARARARGAC

FECEEREEEEr et b e e e bbb e e bbb e bbb e rrnd
144058 GTTAAATAATCCTTTTAAACATTAATAGCATTGCATARRARAGATGGTCATARAARAGAC

329 TGCAGCGGGAAGTARATGGTTTCCTGGTCTGTATTAGACARACTTTGGAATAGAGAAGGA

0 0 0 0 0 1 0 0 81 0 0 Y T D T i 1611 6 0 i 62 1
144118 TGCAGCGGGAAGTAAATGGTTTCCTGGTCTGTATTAGACAAACTTTGGAATAGAGAAGGA

N

269 TATGGTTTATGTCCAATAATTATTATCCGAGTCCGTGTATTTTTTTACATCAACTGGAAC

PECEEERET Rt et et e et er e e e et e e e e e e e e et
144178 TATGGTTTATGTCCAATAATTATTATCCGAGTCCGTGTATTTTTTTACATCARCTGGAAC

209 AATTTATTAARGCTTATGTTTAAARATTGTTGTCGCCTGGAGARAGCTAATACTAGTTCTG

R N e e R RN R R RN R NN RN RN
144238 AATTTATTACCCGGATGTTTAAAAATTGTTGTCGCCTGGAGAAAGCTAATACTAGTTCTG

80

510

143937

450

143997

390

144057

330

144117

270

144177

210

144237

150

144297



S. cerevisiae WU-BLAST2 Search Page 3 of 8

Identities = 270/271 (99%), Gaps = 1/271 (0%), Frame = +1 / +1

Query: 2 CTGATTAGAATCGTTTCA-GATGCTTTCAGTTCAACATTTAGTAACATAGTAGGAATATC 60

PEEEEEE T e b e e i
Sbjct: 141826 CTGATTAGAATCGTTTCAAGATGCTTTCAGTTCAACATTTAGTAACATAGTAGGAATATC 141885

Query: 61 ACGTTTAACGATGCCCCARAGAACATCGAGAATCCTCTATATAGAGTATARACAGGGCAT 120
PEErrrrrrererrerrererreerrrrrererrrerrrrrrr et e rer et erent
Sbjct: 141886 ACGTTTARCGATGCCCCAARGAACATCGAGAATCCTCTATATAGAGTATARACAGGGCAT 141945

Query: 121 TCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACGGG 180
|||||1|||||l\|||[|||||||||1|||||||||Ill]l|i|||||||IIIIII|II
Sbjct: 141946 TCTACATTGGTATAGAGGTGCCTTAGGTATATAGTGGTACCGGTCACATARATTGACGGG 142005

Query: 181 AATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTGAA 240
(RN RN R NN Ry
Sbjct: 142006 AATATGCGTCTTTAGGCGGCTTTTGGCGTACAGTATTGTTCTTTCTTTCGTGCTTGTGAA 142065

Query: 241 ACTTGTTATARACAARGARAGAGARAGATCT 271

FEELRTREEE et
Sbjct: 142066 ACTTGTTATARRCARAGAAAGAGAARGATCT 142096

chrvll

b

w

143300 143400
All Annotated Sequence Features
YGL192W

e A e e P S PR
IME4, Verified, Probable mRNA Né-adenosine methyltrans

Score = 158.8 bits (1018), Expect = 2.4e-97, P = 2.4e-97 [ Retrieve Sequence / ORF Map / Genome
Browser |

Identities = 230/245 (93%), Gaps = 12/245 (4%), Frame = +1 / +1

Query: 598 GATCCGTTGCGATGTGCGGARATTTGATTTTAGGGTTCTTGGARARGTTTTCGGTAGTTAT 657
POREEEERT et
Sbjct: 143229 GATCCGTTGCGATGTGCGGAAATTTGATTTTAGGGTTCTTGGARAGTTTTCGGTAGTTAT 143288

Query: 658 TGCAGATCCTGCATGGAATATCCATATGAACCTACCATACGGTACTTGCAACGATATTGA 717

PR ettt ey e el
Sbijct: 143289 TGCAGATCCTGCATGGAATATCCATATGARCCTACCATACGGTACTTGCAACGATATTGA 143348

Sequence 2. ADH1 ¢ insert plasmids BLAST results. BLAST results comparing plasmid pM1
with the Saccharomyces cerevisiae genome using the S. cerevisiae database
(wWww.yeastgenome.org).
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(Sequence 2 continued)

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbict:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbijct:

Query:

Sbjct:

620

159336

563

159395

503

159455

443

159515

383

159575

323

159635

308

143229

368

143289

428

143349

488

143409

548

143469

608

143529

ATTTCCGCACATC-GCAACGG-AT-CTGGTAGAGGTGTGGTCAATAAGAGCGACCTCATG

RN CEIE aEs sl = b BV EEEREE LV REL ELELLLEVLEEED ELLEEL
ATTTGCAGGCATTTGCT-CGGCATGCCGGTAGAGGTGTGGTCAATAAGAGCGACCTCATG

CTATACCTGAGAAAGCAACCTGACCTACAGGAAAGAGTTACTCAAGAATAAGAATTTTCG

80 1 T T T 0 1 T T R
CTATACCTGAGAAAGCAACCTGACCTACAGGAAAGAGTTACTCAAGAATAAGAATTTTCG

TTTTAARACCTRAGAGTCACTTTARRATTTGTATACACTTANNNNNNNNATAACTTATTT

FPLERERERER et bbb e e el (RERRAREAN
TTTTARARCCTAAGAGTCACTTTAAAATTTGTATACACTTATTTTTTTTATAACTTATTT

AATAATAARARTCATARATCATAAGAAATTCGCTTATTTAGAAGTGTCAACAACGTATCT

RN R R R RN R RN RN R RN RN
AATAATAAAAATCATARATCATAAGAAATTCGCTTATTTAGAAGTGTCAACRACGTATCT

ACCAACGATTTGACCCTTTTCCATCTTTTCGTARATTTCTGGCAAGGTAGACAAGCCGAC

CLRPEEREE et e e e e e et et e e e e e e e bt r ey
ACCAACGATTTGACCCTTTTCCATCTTTTCGTAAATTTCTGGCAAGGTAGACARGCCGAC

564

159394

504

159454

444

159514

384

159574

324

159634

AACCTTGATTGGAGACTTGACCARACCTCTGGCGARGAAGTCCARAGCTTCT 272
Prrererrerrrerrerrerrrr e et e et e

GATCCGTTGCGATGTGCGGARATTTGATTTTAGGGT TCTTGGAAAGTTTTCGGTAGTTAT

RN R AR RN NN RN RE RN
GATCCGTTGCGATGTGCGGARATTTGATTTTAGGGTTCTTGGAAAGTTTTCGGTAGTTAT

TGCAGATCCTGCATGGAATATCCATATGAACCTACCATACGGTACTTGCAACGATATTGA

AR RN R RN RN RN RN NN RN RRRE Y
TGCAGATCCTGCATGGAATATCCATATGAACCTACCATACGGTACTTGCARCGATATTGA

ACTATTAGGTTTGCCTTTGCACGAACTACAAGATGAAGGTATTATTTTTCTTTGGGTGAC
(RN RN RN R R R A N AR RN AR RN EE RN RN
ACTATTAGGTTTGCCTTTGCACGAACTACAAGATGAAGGTATTATTTTTCTTTGGGTGAC

GGGTAGAGCTATAGAATTGGGTAARGAGTCTTTGAATAACTGGGGTTACAACGTGATAAA

COECEREL b et e e e ettt
GGGTAGAGCTATAGAATTGGGTARAGAGTCTTTGAATAACTGGGGTTACARCGTGATARA

TGAAGTTTCATGGATARAGACAAACCAACTGGGTAGRACAATTGTTACAGGTCGTACGGG

PLEEEERrerrr et e et e e e e e e e e e b e b ey
TGAAGTTTCATGGATAAAGACAARCCARCTGGGTAGAACAATTGTTACAGGTCGTACGGG

TCATTGGTTARATCATTCTARGGAGCATTTATTGGTGGGCT TARAGGGTAATCCARAGTG
PErrrerrrererrrrererrrrr et e e et
TCATTGGTTARATCATTCTARGGAGCATTTATTGGTGGGCTTAARGGGTAATCCARAGTG

82

AACCTTGATTGGAGACTTGACCARACCTCTGGCGAAGAAGTCCAAAGCTTCT 159686

367

143288

427

143348

487

143408

547

143468

607

143528

667

143588



(Sequence 2 continued)

Query:

Sbjct:

Query:

Sbiet:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbict:

Query:

Sbjct:

Query:

Sbject:

Query:

Sbjct:

Query:

Sbject:

Query:

Sbjct:

Query:

Sbject:

572 ATARAGAGTCTTTGAATAACTGGGGTTACAACGTGATARATGARGTTTCATGGATARAGA
RN RN RN RN RN NN AR RN NN RN RN
143429 GTAAAGAGTCTTTGAATAACTGGGGTTACAACGTGATARATGAAGTTTCATGGATARAGA

512 CAARCCAACTGGGTAGAACARTTGTTACAGGTCGTACGGGTCATTGGTTAAATCATTCTA

R N N R R RN N RN RN RN
143489 CARACCAACTGGGTAGAACAATTGTTACAGGTCGTACGGGTCATTGGTTAAATCATTCTA

452 AGGAGCATTTATTGGTGGGCTTARAGGGTAATCCARAGTGGATCAACARACATATTGACG

(RN RN R R RN R RN R AR RN R NN
143549 AGGAGCATTTATTGGTGGGCTTAAAGGGTAATCCAARGTGGATCAACAARCATATTGACG

392 TCGATTTGATCGTATCAATGACCAGAGAGACTAGTAGAAAGCCTGATGARCTGTATGGTA

RN R R R R R R R AR RN RN RN AR R AR RN
143609 TCGATTTGATCGTATCAATGACCAGAGAGACTAGTAGAAAGCCTGATGAACTGTATGGTA

332 TAGCAGAACGGTTGGCAGGCACCCATGCCAGAAAACTAGAGATATTCGGAAGGGATCACA

RN R R R R R R RN RN NN RN NN RE AR RN
143669 TAGCAGARCGGTTGGCAGGCACCCATGCCAGARAACTAGAGATATTCGGAAGGGATCACA

272 ATACGCGGCCTGGCTGGTTTACCATCGGARACCAGTTGACAGGAAATTGCATTTACGAAA

(NN RN R R R RN RN RN RN AR R RN R NA RN
143729 ATACGCGGCCTGGCTGGTTTACCATCGGAAACCAGTTGACAGGAAATTGCATTTACGARA

212 TGGATGTCGAGAGGAAGTACCAGGAGT TTATGAAGAGCAARACTGGAACCAGCCACACTG
AR RN R RN R RN RN R RN RN RA R RN RN
143789 TGGATGTCGAGAGGAAGTACCAGGAGTTTATGAAGAGCAARACTGGAACCAGCCACACTG

152 GTACTAAAAAARTCGACAARARGCAACCTTCARAATTACAGCAGCAGCATCAGCAGCAGT

RN N R R R R RN N RN RN RN AR R R
143849 GTACTARARARATCGACARARAGCAARCCTTCAAAATTACAGCAGCAGCATCAGCAGCAGT

B CCAGGAGTTTATGA-GAGCARA-CTGGAACCCGCCACACTGGTACTAARARAATCGACAR
CELLETEREEren e v et brrr e e e e
143808 CCAGGAGTTTATGAAGAGCAARACTGGAACCAGCCACACTGGTACTARARARATCGACAR

62 ARAGCARACCTTCAAAATTACAGCAGCAGCATCAGCAGCAGTATTGGAATAATATGGATAT

PECEEEEEE i et r e e bbb b e e e bbb r e e et
143868 ARAGCAACCTTCAAAATTACAGCAGCAGCATCAGCAGCAGTATTGGRATAATATGGATAT

122 GGGGAGTGGTAAGTAT TATGCTGAGGCCARGCAGAATCCTATGAG-CATGARRRCATACT

PrErerrerrrrr e rerer e rererere e e beerreid
143928 GGGGAGTGGTAAGTATTATGCTGAGGCCAAGCAGAATCCTATGAATCA--ARAACATACT

&3

513

143488

453

143548

393

143608

333

143668

273

143728

213

143788

153

143848

93

143908

61

143867

121

143927

180

143985



(Sequence 2 continued)

Query:

Shjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

Query:

Sbjct:

385

143971

325

144031

265

144091

205

144151

145

144211

85

144271

ARTCARAAACATACTCCCTTTGAATCCARACAGCAACAARAACARCAATTCCAAACACTA

RN N R N R R R RN RN RN AR
ARTCARAARCATACTCCCTTTGAATCCAAACAGCAACAARAACAACAATTCCARACACTA

AARTAACCTATATTTTGCTCAGTARAGCGTTARATAATCCTTTTARACATTAATAGCATTG

N RN R N N RN RN RN RRRNY
AATAACCTATATTTTGCTCAGTAAAGCGT TARATAATCCTTTTARACATTAATAGCATTG

CATAAAAAAGATGGTCATARAARAGACTGCAGCGGGAAGTARATGGTTTCCTGGTCTGTA

RN N N NN RN RN RN RN RN
CATAARARAGATGGTCATAAARAAGACTGCAGCGGGAAGTARATGGTTTCCTGGTCTGTA

TTAGACARACTTTGGAATAGAGARGGATATGGTTTATGTCCAATAATTATTATCCGAGTC

(R R R R R R NN RN RN ER RN
TTAGACAAACTTTGGAATAGAGAAGGATATGGTTTATGTCCAATAATTATTATCCGAGTC

CGTGTATTTTTTTACATCARCTGGAACAATTTATTACCCGGATGTTTAARRATTGTTGTC

RN N RN RN RN RN AR RN
CGTGTATTTTTTTACATCAACTGGAACAATTTATTACCCGGATGTTTARARATTGTTGTC

GCCTGGAGAAAGCTAATACTAGTTCTGGCCATATTTTCAACCATTARACACTACTAATGT
RN R R R RN R RN AR R NN RN RN
GCCTGGAGAAAGCTAATACTAGTTCTGGCCATATTTTCARCCATTARACACTACTAATGT

84

326

144030

266

144090

206

144150

146

144210

B6

144270

26

144330



Appendix: Plasmid Maps

pRS316
4887 bp

Xbal - 2017
Xhol - 2080

pRM2b
7450 bp

Xbal - 2017

Reb1 binding site - 2212
al/alpha2 binding site - 2230

Xhol - 4655
BglII - 4363
EcoRI - 4234

+1 - 4208

BamHI - 3232

&5



pRMZbmutE
7460 bp

Xbal - 2017

HindIII - 2212
al/alpha2 binding site - 2230

Xhol - 4655
BglII - 4363
EcoRI - 4234

+1 - 4208

BamHI - 3232

pRMmuts
7460 bp

Xbal - 2017

Reb1 binding site - 2212
Kpnl - 2230

Xbal

Xhol - 4655
BglII - 4363
EcoRI - 4234

+1 - 4208

BamHI - 3232

86



Xbal - 2017

Reb1 binding site - 2212
al/alpha2 binding site - 2230

Xhol - 3846
Bglll - 3554

pME.TF
6652 bp

Xbal - 2017
HindIII - 2212

al/alpha2 binding site - 2230
ADHI ter
Xhol - 3846

BglIl - 3554

87



pMBE_TF
6652 bp

Xbal - 2017
Reb1 binding site - 2212

Kpnl - 2230
HLADRT ter

Xhol - 3846

BgllI - 3554

88
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