
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

12-20-2009 

Malware Recognition by Properties of Executables Malware Recognition by Properties of Executables 

Cory Redfern 
University of New Orleans 

Follow this and additional works at: https://scholarworks.uno.edu/td 

Recommended Citation Recommended Citation 
Redfern, Cory, "Malware Recognition by Properties of Executables" (2009). University of New Orleans 
Theses and Dissertations. 1013. 
https://scholarworks.uno.edu/td/1013 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1013?utm_source=scholarworks.uno.edu%2Ftd%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


  
 

Malware Recognition by Properties of Executables 
 
 
 

A Thesis 
 
 
 

Submitted to the Graduate Faculty of the 
University of New Orleans 
in partial fulfillment of the 

requirements for the degree of 
 
 
 

Master of Science 
in 

Computer Science 
 
 
 

by 
Cory Redfern 

B.S., Western Illinois University, Illinois, 2004 
December, 2009 

  



  
 

Table of Contents 
 
List of Figures:          iv 
Abstract:           v 
Introduction:          1 
Methodology:          2 

Sample Set 1, Malware Makeup:      3 
Sample Set 3, Malware Makeup:      4 

 
Experiment 1:          10 
Experiment 2:          12 
Experiment 3:          15 
Experiment 4:          17 
Experiment 5:          19 
Experiment 6:          21 
Experiment 7:          24 
Experiment 8:          26 
Experiment 9:          28 
 
Final Conclusions:          30 
Future Work:          31 
References and Credits:         32 
 
Appendix A, Glossary:         33 
Appendix B, Experiment 4 Data:       34 
Appendix C, Source Code:        54 
Vita:            64
 
 
 
 
 
 
 
 
 
 
 
 

ii  



  
 

Acknowledgments 

 
I wish to thank Dr. Bilar for his insight and for helping turn my crazy ideas into 
something that might be useful.  I wish to thank Dr. Winters-Hilt for politely 
explaining why my first two ideas were not going to work.  I wish to thank Dr. 
Richard III for taking a kid with no sense of reality and producing a successful work 
in progress.  I wish to thank Dr. Niño for beating me over the head with the 
Knowledge Stick, twice (metaphorically speaking).  And to all the faculty and staff 
who have ever dealt with me anywhere, I offer my profound and heartfelt 
apologies. 
 
Thanks to Matteo Cantoni of nothink.org for providing malware samples; also 
thanks to Netlux.org for same.  Thanks to all my colleagues who have been here 
before for their advice.  Also, once more, thanks to Dr. Bilar for pointing me in the 
right direction every time I got lost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iii  



  
 

List of Figures 
 
Sample set 1 makeup chart:        3 
Sample set 3 makeup chart:        4 
Affinity propagation example:        8 
PE header characteristic flags:        29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iv  



  
 

Abstract 
 
This thesis explores what patterns, if any, exist to differentiate non-malware from 
malware, given only a sequence of raw bytes composing either a received file or a 
fixed-length initial segment of a received file.  If any such patterns are found, their 
effectiveness as filtering criteria is investigated. 
 
Keywords: affinity propagation, malware, filter 
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Introduction 
 
Background: 
This work is inspired by Bilar’s prior work on opcode frequency comparisons 
between samples of known non-malware and known malware [2]. 
 
Motivation: 
Malware detection and defense remains an unsolved problem.  Zero-day attacks 
are difficult to predict and counter.  On the zero-day, a NIDS can only use the data 
in received packets to make a decision whether to run an executable.  If a 
differentiating pattern exists in the raw data of a signal, a NIDS can predict 
whether it is malware with a specified probability of certainty. 
 
Modern malware hides in slack space to keep the file size unchanged and defeats 
signature-based detection with polymorphic techniques.  Both of these 
approaches result in statistical differences between a malicious and a non-
malicious executable.  If the nature of these differences can be found by static 
composition analysis, we can improve on current anti-malware technology. 
 
Objectives: 
The main objective of this work is to answer this question: can one construct a 
useful malware filter by employing established techniques for pattern 
recognition? 
 
Approach: 
This work consists of a sequence of experiments using the scientific method.  By 
asking a question within a specific framework, performing analysis, and then 
answering the question based on the results, the researcher seeks first to present 
the truth and then to offer an interpretation of the truth. 
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Methodology: Sample Sets 
 
Sample set selection: I used random sampling in sample sets 1 and 3, since I am 
looking for classifying patterns that exist in the set of all executables.  Sample sets 
2A and 2B show nonrandom sampling because they were built from sample set 1 
to test a hypothesis.  In the sample sets, only files whose class was known were 
used.  In sample set 3, I assumed that samples caught by a honeypot are definitely 
malware.  Elimination of samples in the malware subsets occurred due to 
corruption in many files that made them unreadable, but acceptably large 
quantities remained. 
 
Sample set 1: Contains 1987 malware samples from a vx.netlux.org archive and 
1425 samples of non-malware from the Vista system32 directory, for a total of 
3412 files.  The malware ranges in size from 4 bytes to 9,499,648 bytes and 
includes a mix of Win32, MS-DOS, and boot-sector malware, with an average size 
of approximately 95 KB. 
 
Sample set 2A: Contains 1425 malware samples from a vx.netlux.org archive and 
1425 samples of non-ware from the Vista system32 directory, for a total of 2850 
files.  From sample set 1, 558 samples of malware were removed according to the 
ratio 9:3:3:1:1:1, referring to the malware classes 
Virus:VirTool:Trojan:HackTool:Email:Constructor.  4 additional samples were 
removed from 4 of the smaller partitions. 
 
Sample set 2B: Contains 1425 malware samples from a vx.netlux.org archive and 
1425 samples of non-malware from the Vista system32 directory, for a total of 
2850 files.  From sample set 1, 562 Virus class samples were removed. 
 
Sample set 3: Contains 961 samples of malware from a honeypot provided by 
Matteo Cantoni of nothink.org and 1425 samples of non-malware from the Vista 
system32 directory, for a total of 2386 files.  The malware ranges in size from 11 
bytes to 4,383,744 bytes, with an average size of approximately 167 KB. 
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Sample Set 1: Malware Makeup 
 

Sample set 1 contains 1987 files, with 1203 distinct family names.  Some of the 
family names are different spellings of the same basic name; however, we are not 
completely certain which name groups can be merged, so we will not reduce this 
number by guessing. 
 
Out of 1987 samples, the largest family accounted for 72 samples or about 4% of 
the total malware.  The 2nd largest accounted for about 2% and there were 6 
families that each accounted for 1%.  The following bar graph shows the statistics: 
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Sample Set 3: Malware Makeup 
 
Sample set 3 contains 961 files.  Since they are named by hash codes, I ran AVG 
on a copy of the archive to get their true names.  AVG found 866 threats, of which 
151 were unique; of those 151, there were 24 unique families.  2 of the files 
contained a threat found in an alternate data stream; 97 files were found without 
contained threats.  RBot was the most prevalent with 491 occurrences.  The 
following bar graph shows the top 10 families: 
 

 
 
Sample set 3 shows the nature of malware distribution in the wild; the most 
prevalent species captured are reflected by these skewed statistics.  Around 
March 2009, when these samples were captured, most of these families were 
recognized by the Virus Bulletin (www.virusbtn.com).  The reported overall 
prevalence of each type differs from this chart, since this only refers to one 
honeypot system, but most of the malware captured here was also seen in the 
Virus Bulletin reports. 
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Methodology: Techniques and Tools 
 
Data Tabulation Type 1: For each sample, 256 features are extracted, 
corresponding to the number of times each possible byte value appears in the 
file, using the TableMaker utility. 
 
Data Tabulation Type 2: For each sample, 256 features are extracted, 
corresponding to the number of times each possible byte value appears after a 
0x0F byte in the file, using the OpcodeTableMaker utility. 
 
Sample Size Normalization: Before performing clustering or other operations, 
each byte count is divided by the total number of bytes in the associated sample, 
using the TableNormalizer utility. 
 
Similarity Preprocessing: The similarity metric used is the Euclidean distance.  The 
apCluster utility requires a file containing a similarity measure for each pair of 
tuples in the set, which is provided by the APSimilarityPreprocessor utility. 
 
Preference Preprocessing: This is set to the default preference -15.561256 for 
each tuple in a given set, so that all samples initially have the same chance to 
become a representative sample.  The value -15.561256 was chosen by the 
authors of the apCluster utility. 
 
Clustering: Affinity propagation, a method proposed by Frey and Dueck, is 
employed using their apCluster utility.  The following section explains affinity 
propagation in detail. 
 
Hex Analysis: HxD by Maël Hörz was used; it played a small but key role. 
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Methodology: Affinity Propagation 

 
In a nutshell, affinity propagation is a data clustering technique that does not 
require any initial estimation external to the given data; it treats all data points as 
potential representative samples and uses iterative message passing to select the 
right ones.  This gives it an advantage over algorithms like k-means that usually 
have to be run multiple times with different initial guesses. 
 
When the 2007 paper is quoted in this section, the term “exemplar” is defined to 
mean “representative sample”. 
 
Implementations of Frey & Dueck’s affinity propagation algorithm require a file 
containing a similarity measure for each sample pair and a file containing an initial 
preference for each sample.  Implementations ensure that a partitioning of the 
sample set is generated in accordance with the algorithm specification. 
 
At the start of execution, the chosen preferences give the likelihood for each data 
point to become a representative sample.  If all preferences are equal at 
initialization, then all data points are equally likely to be representative samples.  
In this work, all preferences were initialized to the default value of -15.561256; 
this value was used in the sample preferences file that came with the apCluster 
utility provided by the authors of the 2007 paper. 
 
At the start of execution, the initial similarity measures have the following format: 
(i, k, s(i, k)).  The s(i, k) refers to “how well the data point with index k is suited to 
be the exemplar for data point i.” 
 
During execution, the values of s(i, k) are updated by message passing.  Two types 
of messages are passed: the “responsibility” r(i, k) and the “availability” a(i, k).  
The message r(i, k) is sent from point i to point k, telling k the “accumulated 
evidence for how well-suited point k is to serve as the exemplar for point i, taking 
into account other potential exemplars for point i.”  The message a(i, k) is sent 
from point k to point i, telling i “the accumulated evidence for how appropriate it 
would be for point i to choose point k as its exemplar, taking into account the 
support from other points that point k should be an exemplar.”  Initially, all 
availability values are zero. 
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The values r(i, k) at each iteration are computed as s(i, k) – max {a(i, k’) + s(i, k’)} 
where the max function is calculated over all k’ such that k’ ≠ k.  This means that 
for each k’ other than k, its availability to and similarity with i are added to obtain 
the total attractiveness of k’, and the highest such value is subtracted from the 
similarity of i with k to get the net attraction of i to k.  For the self-responsibility 
r(k, k), we perform s(k, k) – max {a(k, k’) + s(k, k’)}; that is, the input preference 
minus the highest attractiveness from k to one specific k’. 
 
The values a(i, k) at each iteration are computed as min {0, r(k, k) + sum (max {0, 
r(i’, k)}) } where the sum function is calculated over all i’ such that i’ ≠ i or k.  This 
means we sum all the positive external responsibility values, add that to the self-
responsibility, and use the minimum of the result and zero.  Thus, a(i, k) <= 0 for 
all (i, k).  The values a(k, k) are computed as sum (max {0, r(i’, k)}) where i’ ≠ k. 
 
In sum: self-availability is an aggregate of a data point’s positive responsibility 
values regarding all other points; self-responsibility is the difference between the 
input preference and the maximum attractiveness of all other data points; 
attractiveness is the sum of availability and similarity; availability is the minimum 
of zero and the sum of the point’s self-responsibility with the aggregate of its 
positive external responsibility values; and responsibility is the difference 
between the similarity of one point to another point and the maximum 
attractiveness of all data points other than the two chosen.  The calculations of a 
point’s responsibility affect its availability, and vice versa.  Each calculation 
requires information spanning the data set; thus, at each iteration, each point’s 
values are updated according to the point’s relationships with all other points. 
 
Quoted text in this section comes from [1].  Everything in this section was written 
while consulting [1]. 
 
In the next section, an example from the original paper is shown. 

 
 
 
 
 
 
 
 
 

7  



  
 

Methodology: Affinity Propagation Example 
 
This example, taken from [1], shows the iterations of affinity propagation in a 
simple data set: 
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Methodology: Affinity Propagation Example 
 

In the previously shown example, part A illustrates the iterative process of 
electing the representative samples.  Parts B and C illustrate the message-passing 
process: members tell each candidate how likely they are to vote for them, and 
candidates tell each member why they should be the representative.  After much 
discussion, the representatives are elected. 
 
Part D illustrates the way AP converges.  The example data set had 25 points, so 
initially 25 clusters existed.  There is no purpose in obtaining either 1 point per 
cluster or 1 cluster containing all points, so the algorithm finds the non-singleton 
set of representative samples with the largest range in its shared preference. 
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Experiment 1 

 
Question: What is the natural clustering of the data set based on the byte counts 
of the sample files? 
 
Materials: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

cliconfg.exe Good 214 45 21% 
deploytk.dll Good 332 210 63% 

dvdupgrd.exe Good 529 387 73% 

netsh.exe Good 400 251 63% 
ntoskrnl.exe Good 810 519 64% 

Trojan.Win32.Bancos.j Mal 921 909 99% 
Virus.MSExcel.Feeder Mal 206 205 100% 
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Experiment 1 Analysis 
 
In this experiment, it is observed that the two representative malware samples 
collected only 13 non-malware samples between them, indicating high specificity.  
Out of 1987 samples, 1114 were captured by these representative samples, 
totaling about 56% of the malware; this is a low sensitivity. 
 
The high specificity of the malware classification gives positive evidence for the 1-
gram count classification of signals.  It is possible that these values result from 
having more malware than non-malware.  We can test this by using a sample set 
with a 1:1 ratio and a sample set with significantly less malware. 
 
The next experiment will test clustering with two different schemes for reducing 
sample set 1 to a 1:1 ratio. 
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Experiment 2A 
 
Question: If the number of malware samples is reduced to equal the number of 
non-malware samples, will the classifying specificity of malware change? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

dvdupgrd.exe Good 639 502 79% 
lprmonui.dll Good 385 299 78% 

ntoskrnl.exe Good 751 521 69% 

Email-Worm.VBS.Brit Mal 188 95 51% 
Net-Worm.Win32.Randon Mal 887 877 99% 
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Experiment 2B 
 
Question: If the number of malware samples is reduced to equal the number of 
non-malware samples, will the classifying specificity of malware change? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

dvdupgrd.exe Good 678 545 80% 
regwiz.exe Good 265 188 71% 

serialui.dll Good 342 255 75% 

Trojan-Dropper.Win32.Delf.dp Mal 672 274 41% 
VirTool.DOS.Apiary Mal 778 773 99% 

VirTool.Win32.NPE Mal 115 81 70% 
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Experiment 2 Analysis 
 
The results indicate a reduction in the malware classification specificity and an 
increase in the non-malware classification specificity after reducing the ratio to 
1:1.  Despite this, one of the malware representative samples served very well in 
each reduction scheme.  The next experiment will determine whether that event 
occurs in a different sample set with a malware:non-malware ratio that is less 
than 1. 
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Experiment 3 
 
Question: If a different, smaller, set of malware samples is combined with the 
same set of non-malware samples, will the trend in representative malware 
samples occur again? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 
Representative sample Class 

 
# files in 
cluster 

# files in 
same 
class 

Classifying 
specificity 

blackbox.dll Good 626 475 76% 
deploytk.dll Good 306 273 89% 

dvdupgrd.exe Good 453 437 96% 
regwiz.exe Good 301 233 77% 

370c2cc8ec1948f1cbbccb9ec58d18ed Mal 700 693 99% 
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Experiment 3 Analysis 

 
In experiment 2, the amount of malware was reduced relative to the amount of 
non-malware, and the results showed a decrease in the specificity of malware and 
an increase in the specificity of non-malware representative samples.  Since that 
effect happened by two different reduction schemes, it seemed to represent a 
trend.  Experiment 3 shows that trend in the non-malware representative 
samples.  However, experiment 3 was done with even fewer malware samples, 
yet the lone malware representative sample had 99% specificity.  This resistance 
to the trend must be the result of the differences between the Cantoni archive 
and the Netlux archive.  This means that modern malware shares a strong 
boundary with modern non-malware.  It also provides preliminary evidence that 
a classifying pattern exists in the frequency histogram of 1-gram features. 
 
Since a pattern seems to have been found, the next question is whether the 
pattern holds for sample segments of a maximum length.  It would be almost 
pointless to design a filter that requires the entire signal to be received, 
assembled, and fully counted before deciding what it is.  If it can be determined 
from the first packet, though, then the filter can reject the rest of it. 
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Experiment 4 
 
This experiment determines the classifying specificity of representative samples 
with a fixed upper bound on the histogram size.  For each of the 4 sample sets 
used in previous experiments, the count is stopped at 256, 512, 1024, 2048, and 
4096 bytes, resulting in 20 cluster sets that are then analyzed just like before. 
 
Experiment 4A uses sample set 1.  Experiment 4B uses sample set 2A.  Experiment 
4C uses sample set 2B.  Experiment 4D uses sample set 3. 
 
The data for this section is found in Appendix B; a detailed analysis follows next. 
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Experiment 4 Analysis 
 
The previously defined trend was for malware representative samples to get 
worse and for non-malware representative samples to get better at classifying as 
the ratio of malware to non-malware decreased.  Experiment 3 showed that 
something in sample set 3 had changed that trend, causing an improvement in 
the classifying specificity of both types. 
 
In experiments 1, 2, and 3, the set of malware representative samples tended to 
have one member with high sensitivity relative to the uniform expectation.  
Experiment 4 showed that sample sets 1, 2A, and 2B continued this trend for each 
of the 5 segment bounds, but sample set 3 did not. 
 
For quantification, out of each result set from the 5 experiments under the 4C 
heading, the size of the malware-exemplified cluster having the greatest 
combination of specificity and size was accumulated, and the result was averaged; 
the sizes were 729, 786, 800, 770, and 738, with a truncated average of 764.  
Thus, while maintaining high specificity, these five Netlux malware representative 
samples attracted 27% of sample set 2B on average, compared with 27% 
attracted by Apiary in experiment 2B.  However, in experiment 4D the variables in 
question were filled by the values 327, 333, 390, 495, and 482, averaging to 405 
or 17% of sample set 3.  Compared with the value 29%, or 700 out of 2386, from 
experiment 3, this is a significant decrease in size. 
 
The only change between executions of the apCluster utility was the underlying 
byte counts, and the counts used in experiment 4 are based on the same files 
counted in the previous corresponding experiments.  Experiment 3 and 
experiment 4D each show a trend that differs from the trend seen in experiments 
1 and 2 and in experiments 4A, 4B, and 4C, respectively.  The sample sets behind 
those experiments differed from the sample set behind experiments 3 and 4D 
only in the source of the malware samples.  Taken together, these facts indicate a 
fundamental difference between samples from Netlux and samples from 
Cantoni’s honeypot as pertains to the objective of this work.  This means one of 
the sets must be chosen, excluding the other, when doing analysis to create a 
malware filter.  I chose to focus on the newer Cantoni archive from here on. 
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Experiment 5 
 
Sample set: I used the size-normalized representative sample composition tuples 
from the experiments on the Cantoni archive. 
 
Question: Do the measured differences among the natural clusters represent real 
properties of the underlying samples? 
 
Tools: MS Excel 
 
Procedure: 

1. Create a copy of the sizenorm file for each sample table. 
2. From each copy, remove all but the previously determined representative 

samples. 
3. Build a record of the 256 components of the Euclidean distance for each 

pair of representative samples, normalized so that the row sum is 1 for 
each row. 

4. Using MS Excel, put together a spreadsheet and investigate connections 
between the statistical relationships and real-world properties of the 
representative sample sets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

19  



  
 

Experiment 5 Analysis 
 
When a principal component analysis was done on the Euclidean distance 
elements, the majority of the representative sample pairs differed primarily in the 
ratio of 0x00 bytes in the files.  Given that a uniform distribution over 256 
features would yield less than 0.005 across the board, a value larger than 0.10 is 
substantial.  For most representative sample pairs, the ratio of the difference 
between the 0x00 counts and the sum of all differences between counts was 
above 0.90.  The principal component of the distance between representative 
samples was the 0x00 feature in 50 out of 52, or 96%, of the pairings within the 6 
representative sample sets found in experiments 3 and 4D. 
 
When considering executable files, the appearance of 0x00 signifies one of the 
following cases: the ADD Eb,Gb opcode; the 2-byte SLDT opcode; the end of a 
character string; empty bytes in a numeric value; slack space in a sector; or a byte 
within a random-equivalent file segment, i.e. a packed section or an embedded 
JPG.  The following facts are known: that some malware makes use of SLDT during 
its operation, and that using slack space at the ends of sectors is a common 
infection technique.  Aside from SLDT use and slack infection, there seems to be 
no transparent explanation for the 0x00 phenomenon.  We will focus on the 
possibility of SLDT use as a classifying property. 
 
To investigate the effect of SLDT instructions on malware classification, as well as 
the classifying properties of extended opcodes in general, we will count 2-byte 
opcodes in sample set 3, employing the 5 count limits used in experiment 4D in 
addition to counting entire files. 
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Experiment 6 

 
Assumptions: According to the Intel x86 opcode reference, all 2-byte opcodes 
begin with 0x0F as the first byte; thus, when counting the number of 2-byte 
opcodes I simply retained the 256-feature model and only counted the number of 
times each byte appeared after 0x0F.  This method shows errors in cases where a 
0x0F value appears in a non-opcode context.  I chose to consider the existence of 
this error margin in the analysis rather than to try removing its influence. 
 
Materials: Sample set 3, OpcodeTableMaker, TableNormalizer, 
APSimilarityPreprocessor, APPreferencePreprocessor, apCluster, 
ClusterSplitterAP. 
 
Procedure 1: 

1. Run OpcodeTableMaker on the sample archive 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 
7. Repeat 1-6 for max byte counts of 256, 512, 1024, 2048, and 4096. 

 
Procedure 2: We perform exp. 5 on the opcode count table. 
 
Results: AP did not converge for the 256, 512, and 1024 byte cases. 
 
Full file case: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

6821bb6c7c39735854ec71afa727df0e Mal 1127 907 80% 

deploytk.dll Good 704 651 92% 

dmdskmgr.dll Good 416 416 100% 
kbdsp.dll Good 75 75 100% 

MP43DMOD.dll Good 64 63 98% 
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Experiment 6 Results (continued) 
 
2048 byte case: 
Representative sample Class 

 
# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

5e1247a6bdb42424a806d25ac24626b5 Mal 90 85 94% 
8bc77c747cc8fdb738736b339ffd5818 Mal 148 138 92% 

5943eea30260fb1e36ee199867205b05 Mal 138 84 61% 
8842eabe965c0b94d7ba54ed65c125b5 Mal 105 58 55% 

65250e322c63df6e96a8cf448c2b0f9b Mal 86 73 85% 
aa5dbda6ad99ccdceb2e9cc3e750f28e Mal 128 116 91% 

catsrvps.dll Good 153 151 99% 

hlink.dll Good 139 98 71% 
kbdno.dll Good 58 58 100% 

napstat.exe Good 141 141 100% 
netevent.dll Good 95 89 94% 

PortableDeviceWiaCompat.dll Good 1060 702 66% 

smlogcfg.dll Good 45 45 100% 
 
4096 byte case: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

1b525361c2435f0b9ca313771b9d82b4 Mal 90 71 79% 

1fe325940d5f28536d62bd4046b36bcf Mal 128 65 51% 

4e46e9f237b6187b745c0b2b5a7a972c Mal 88 70 80% 
95af9bdce8cdd936d3f250c896621e0c Mal 92 82 89 % 

531c6309f57f38e09bb3b9d21f371636 Mal 157 139 89% 
asferror.dll Good 1080 613 57% 

kbdsw.dll Good 66 66 100% 

napstat.exe Good 122 122 100% 
sens.dll Good 371 347 94% 

shmgrate.exe Good 92 52 57% 
ssdpsrv.dll Good 100 97 97% 
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Experiment 6 Analysis 
 
In this experiment, unlike in previous experiments, the clustering algorithm did 
not converge in all cases, given the underlying data of 2-byte opcode counts.  It 
converged for the whole-file case, the 2048-byte case, and the 4096-byte case. 
 
From the clustering results, I found no additional information that would be 
useful in malware filtering. 
 
When I isolated the representative samples and performed exp. 5 again, I 
discovered that 0x00 was the principal component in all cases again, followed by 
0x01 as the second component in the limited count cases.  These opcodes signify 
two instruction groups that can be used by malware to detect a virtual machine. 
 
The next step is to measure the raw counts in all samples associated with these 2 
principal components. 
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Experiment 7 

 
Question: How well are malware and non-malware separated by the sum of the 
0x0F00 and 0x0F01 counts in modern malware? 
 
Materials: Sample set 3 tables, MS Excel 
 
Procedure: 

1. Copy each opcode count table to an Excel spreadsheet. 
2. Add the first two counts into a sum column and sort by the sum. 
3. Split a copy of the table into these 3 classes: sum is 0, sum is 1, sum is > 1. 
4. Calculate the amount of malware present in each class. 
5. Repeat 1-4 for all 6 cases; cluster convergence is not a factor here. 

 
Results: 
Exemplar set   Sum 0   Sum 1   Sum > 1 

3.256 23% specificity 
37% sensitivity 

67% specificity 
46% sensitivity 

99% specificity 
15% sensitivity 

3.512 5% specificity 
6% sensitivity 

71% specificity 
75% sensitivity 

92% specificity 
17% sensitivity 

3.1024 5% specificity 
6% sensitivity 

71% specificity 
73% sensitivity 

80% specificity 
19% sensitivity 

3.2048 5% specificity 
6% sensitivity 

66% specificity 
72% sensitivity 

67% specificity 
20% sensitivity 

3.4096 7% specificity 
6% sensitivity 

54% specificity 
54% sensitivity 

58% specificity 
38% sensitivity 

3.FULL 31% specificity 
3% sensitivity 

65% specificity 
25% sensitivity 

55% specificity 
70% sensitivity 

 
*Note: Due to truncation, the sum of sensitivities across classes is less than 100% 

 
 
 
 
 
 
 
 

24  



  
 

Experiment 7 Analysis 
 
The results clearly show a statistical property of malware capable of separating it 
from non-malware: when the first 256 bytes of each sample were counted, 147 
samples showed 2 or more occurrences of 0x0F00 or 0x0F01, and 146 of those 
samples were malware.  With 961 malware samples in total, we have 15% 
sensitivity and 99% specificity. 
 
In terms applicable to a practical filter, this experiment seems to suggest that a 
NIDS can filter out 15% of malware currently in the wild, with a 1% FP rate, simply 
by scanning the first packet once. 
 
Unfortunately, there are 2 big problems with the results as they stand now.  First, 
there is no executable code in the first 256 bytes of any file, so the occurrences of 
0x0F00 and 0x0F01 cannot be explained by VM checking opcodes.  Second, only 1 
malware sample set was used to reach these conclusions. 
 
In exp. 8, we will apply the exp. 7 procedure to the 1st sample set as an answer to 
the second problem.  In exp. 9, we will answer the first problem by hex analysis. 
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Experiment 8 
 
Question: How well are malware and non-malware separated by the sum of the 
0x0F00 and 0x0F01 counts in older malware? 
 
Materials: Sample set 1 tables, MS Excel 
 
Procedure: 

1. Copy each opcode count table to an Excel spreadsheet. 
2. Add the first two counts into a sum column and sort by the sum. 
3. Split a copy of the table into these 3 classes: sum is 0, sum is 1, sum is > 1. 
4. Calculate the amount of malware present in each class. 
5. Repeat 1-4 for all 6 cases. 

 
Results: 
Exemplar set   Sum 0   Sum 1   Sum > 1 

1.256 55% specificity 
76% sensitivity 

67% specificity 
22% sensitivity 

94% specificity 
< 1% sensitivity 

1.512 55% specificity 
72% sensitivity 

64% specificity 
25% sensitivity 

76% specificity 
2% sensitivity 

1.1024 53% specificity 
62% sensitivity 

64% specificity 
26% sensitivity 

82% specificity 
10% sensitivity 

1.2048 54% specificity 
58% sensitivity 

58% specificity 
25% sensitivity 

77% specificity 
16% sensitivity 

1.4096 60% specificity 
54% sensitivity 

50% specificity 
22% sensitivity 

62% specificity 
22% sensitivity 

1.FULL 92% specificity 
44% sensitivity 

69% specificity 
12% sensitivity 

41% specificity 
43% sensitivity 

 
*Note: Due to truncation, the sum of sensitivities across classes is less than 100% 

 
 
 
 
 
 
 
 

26  



  
 

Experiment 8 Analysis 
 
The results based on sample set 1 show the same high specificity of malware for 
the sum class “> 1” in the 256 byte case, but the sensitivity is low; only 18 
malware samples out of 1987 were captured.  The trend as the count limit 
increases is jumpy as well.  Considering also that the sensitivity of malware in the 
sum class “0” is 76%, along with the nature of the sample set, the age range of the 
malware is probably the cause of these differences. 
 
The differences between the results of these 2 experiments indicate physical 
evidence of malware evolution.  Modern malware instances, such as those that 
appear in Cantoni’s archive, have a higher likelihood of containing VM checks 
than older instances, as evidenced by this data. 
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Experiment 9 

 
Question: What is the reason for the occurrences of 0x0F00 and 0x0F01 in the 
first 256 bytes of an executable file? 
 
Materials: Sample set 1, sample set 3, HxD 
 
Procedure: Use HxD to look for the named occurrences in the file headers. 
 
Results: The sequence 0x0F01 seems to be part of a semi-constant string in the PE 
header.  In samples that fell into the sum class “> 1”, this semi-constant string 
appeared within the first 256 bytes. 
 
The part of the PE header that affects our statistics is the Characteristics field, a 
word containing 16 flags.  When 0x0F01 is found, this means that only the 5 flags 
shown in the next illustration are set. 
 
The Characteristics field does not serve to classify malware; the reason behind the 
statistic seen in exp. 7 is the size of the MZ header that directly precedes the PE 
header.  If the MZ header is small, then the Characteristics field will appear within 
the first 256 bytes and it is usually 0x0F01; the other occurrence typically seems 
to happen by accident.  If we assume that 1 occurrence has happened by 
accident, then the active classifier is the length of the MZ header.  In fact, 
combining the MZ and PE headers is a known hex editing technique. 
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PE Characteristic Flags 

 

 
 

This image is copied from [7].  Intel hardware stores words in reverse, so that the 
value 0x010F is stored as 0x0F followed by 0x01. 
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Final Conclusions 
 
Based on this work, it is apparent that a pattern capable of filtering malware with 
a NIDS exists.  The pattern is that the sum of 0x0F00 and 0x0F01 occurrences 
within the first 256 bytes is 2 or greater in 15% of modern executables, with 99% 
of those executables being malware. 
 
The filter cannot be made complete with the current results, but it can be 
partially constructed. 
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Future Work 
 
The future plan for using these results is first to construct a filter using the 
occurrences of 0x0F00 and 0x0F01.  After that, more experiments with modern 
malware are necessary to increase the amount of malware that can be filtered 
correctly.  Future work thus includes more experiments like exp. 7. 
 
Future work also includes an algorithm for maximizing the sensitivity of malware 
captured by AP clustering and an investigation of 3-byte opcodes and fuzzy 
matching around the counted bytes. 
 
Future work also includes the use of different distance metrics in the clustering of 
samples, such as the Kullback-Leibler divergence.  KL divergence fits particularly 
well within this work since the size-normalized data is essentially a probability 
distribution. 
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Appendix A: Glossary 
 
Zero-day attack: the first appearance of a new malware strain 
Slack space: empty space in a disk block immediately following valid file data 
NIDS: Network Intrusion Detection System 
Opcode: a byte or sequence of bytes referring to a valid instruction 
 
AP: shorthand for affinity propagation 
Attractiveness: the sum of a point’s similarity and availability to another point 
Exemplar: a representative sample out of a data set 
Distance measures: metrics for determining how similar two samples are 
Euclidean distance: a distance measure based on spatial closeness 
Kullback-Leibler divergence: the distance between two probability distributions 
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Appendix B: Experiment 4 Data 
 

Experiment 4A.256 
 
Question: How is the cluster distribution different when only the first 256 bytes 
are counted? 
 
Tools: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 256 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

msvcrt20.dll Good 400 202 51% 

Constructor.DOS.DPOG.02.a Mal 774 774 100% 
Constructor.Win32.VCL Mal 217 216 > 99% 

Virus.BAT.IBBM.generic Mal 248 248 100% 
Virus.DOS.Corrupted.RCE-2772 Mal 25 25 100% 

Virus.DOS.GCAE.x Mal 188 171 91% 
Virus.MSWord.Ping.f Mal 107 107 100% 

Virus.Win9x.CIH.dam Mal 1453 248 17% 
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Experiment 4A.512 
 
Question: How is the cluster distribution different when only the first 512 bytes 
are counted? 
 
Tools: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 512 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

msvbvm60.dll Good 746 562 75% 
HackTool.Win32.Wuftpd Mal 291 244 84% 

Trojan.BAT.FormatC.k Mal 221 221 100% 

Virus.Boot-DOS.ZhengZhou.3584.c Mal 921 130 14% 
Virus.DOS.Corrupted.RCE-2772 Mal 24 24 100% 

Virus.DOS.Istanbul.1397 Mal 871 864 99% 
Virus.DOS.SillyC.432.c Mal 231 213 92% 

Virus.MSWord.Sun Mal 107 107 100% 
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Experiment 4A.1024 
 
Question: How is the cluster distribution different when only the first 1024 bytes 
are counted? 
 
Tools: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 1024 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

sigverif.exe Good 706 511 72% 
Spoofer.Win32.VB.c Mal 612 204 33% 

Trojan.BAT.FormatC.t Mal 218 218 100% 

Trojan.Win32.ICQUkr Mal 830 137 17% 
Virus.DOS.Capicua.511 Mal 25 25 100% 

Virus.DOS.Nado.Fatill.1336 Mal 914 897 98% 
Virus.MSWord.Rimes Mal 107 107 100% 
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Experiment 4A.2048 
 
Question: How is the cluster distribution different when only the first 2048 bytes 
are counted? 
 
Tools: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 2048 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

hnetmon.dll Good 735 524 71% 
kbduk.dll Good 312 198 63% 

rcbdyctl.dll Good 731 484 66% 

VirTool.Win32.EnterRing0.b Mal 414 209 50% 
Virus.DOS.Corrupted.RCE-2772 Mal 28 28 100% 

Virus.DOS.Nado.Fatill.1336 Mal 879 865 98% 
Virus.MSExcel.Feeder Mal 214 214 100% 

Virus.MSWord.Rimes Mal 99 99 100% 
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Experiment 4A.4096 
 
Question: How is the cluster distribution different when only the first 4096 bytes 
are counted? 
 
Tools: Sample set 1, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 4096 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

cleanmgr.exe Good 639 498 78% 
kbddv.dll Good 377 249 66% 

Backdoor.Win32.SubSeven.214 Mal 835 375 45% 

VirTool.Win32.PSP95 Mal 475 276 58% 
Virus.Boot-DOS.Kuarahy.4640 Mal 860 841 98% 

Virus.MSWord.Tech.c Mal 226 226 100% 
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Experiment 4B.256 
 
Question: How is the cluster distribution different when only the first 256 bytes 
are counted? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 256 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

msvcrt20.dll Good 326 202 62% 
Backdoor.Win32.Amitis.143 Mal 103 102 99% 

Constructor.DOS.DPOG.02.a Mal 867 867 100% 

Trojan.Win32.Icqpush.b Mal 1377 172 12% 
Virus.DOS.Corrupted.RCE-2772 Mal 20 20 100% 

Virus.DOS.GCAE.x Mal 157 140 89% 
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Experiment 4B.512 
 
Question: How is the cluster distribution different when only the first 512 bytes 
are counted? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 512 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

ir50_32.dll Good 927 724 78% 
Virus.Boot-DOS.ZhengZhou.3584.c Mal 777 102 13% 

Virus.DOS.Corrupted.RCE-2772 Mal 19 19 100% 

Virus.DOS.Istanbul.1397 Mal 936 929 99% 
Virus.DOS.SillyC.432.c Mal 191 172 90% 
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Experiment 4B.1024 
 
Question: How is the cluster distribution different when only the first 1024 bytes 
are counted? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 1024 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

kbdsl.dll Good 451 213 47% 
sigverif.exe Good 662 511 77% 

Trojan.Win32.ICQUkr Mal 751 67 9% 

Virus.DOS.Nado.Fatill.1336 Mal 986 969 98% 
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Experiment 4B.2048 
 
Question: How is the cluster distribution different when only the first 2048 bytes 
are counted? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 2048 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

hnetmon.dll Good 637 522 82% 
kbdhela2.dll Good 274 199 73% 

msvcp50.dll Good 328 206 63% 

rcbdyctl.dll Good 685 485 71% 
VirTool.DOS.Apiary Mal 905 892 99% 

Virus.DOS.SillyOC.2000 Mal 21 21 100% 
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Experiment 4B.4096 
 
Question: How is the cluster distribution different when only the first 4096 bytes 
are counted? 
 
Tools: Sample set 2A, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 4096 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

cleanmgr.exe Good 605 520 86% 
kbddv.dll Good 315 249 79% 

msvcp50.dll Good 325 199 61% 

HackTool.Win32.NetHacker Mal 738 293 40% 
VirTool.DOS.Apiary Mal 867 855 99% 
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Experiment 4C.256 
 
Question: How is the cluster distribution different when only the first 256 bytes 
are counted? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 256 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

msvcrt20.dll Good 382 202 53% 
Trojan.BAT.KillFiles.at Mal 202 201 > 99% 

Trojan.Win32.Icqpush.b Mal 1411 206 15% 

Trojan-Dropper.Win32.Delf.cf Mal 729 729 100% 
Virus.DOS.GCAE.x Mal 126 109 87% 
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Experiment 4C.512 
 
Question: How is the cluster distribution different when only the first 512 bytes 
are counted? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 512 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

Spoofer.Win32.VB.c Mal 325 236 73% 
Trojan-Dropper.Win32.Raven Mal 778 160 21% 

Virus.Boot-DOS.ZhengZhou.3584.c Mal 786 93 12% 

Virus.DOS.Corrupted.Eddie.Sign Mal 175 157 90% 
Virus.DOS.Istanbul.1397 Mal 786 779 99% 
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Experiment 4C.1024 
 
Question: How is the cluster distribution different when only the first 1024 bytes 
are counted? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 1024 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

msr2cenu.dll Good 588 207 35% 
sigverif.exe Good 666 512 77% 

Trojan.Win32.ICQUkr Mal 796 106 13% 

VirTool.DOS.WeirdBinder Mal 800 784 98% 
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Experiment 4C.2048 
 
Question: How is the cluster distribution different when only the first 2048 bytes 
are counted? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 2048 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

hnetmon.dll Good 713 524 73% 
kbduk.dll Good 297 198 67% 

rcbdyctl.dll Good 687 485 71% 

VirTool.DOS.Apiary Mal 770 757 98% 
VirTool.Win32.EnterRing0.b Mal 383 178 46% 
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Experiment 4C.4096 
 
Question: How is the cluster distribution different when only the first 4096 bytes 
are counted? 
 
Tools: Sample set 2B, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 4096 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files of 
same class 

Classifying 
specificity 

cleanmgr.exe Good 553 469 85% 
msvcp50.dll Good 389 201 52% 

regwiz.exe Good 363 276 76% 

Backdoor.Win32.SubSeven.214 Mal 807 340 42% 
VirTool.DOS.Apiary Mal 738 726 98% 
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Experiment 4D.256 
 
Question: How is the cluster distribution different when only the first 256 bytes 
are counted? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 256 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

msacm.dll Good 1449 1180 81% 

msvcrt20.dll Good 375 220 59% 
88ced2768eba4b2b77372726850bdfad Mal 327 320 98% 

bdd14a3ccfa6c7162e425266bce0c729 Mal 235 217 92% 
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Experiment 4D.512 
 
Question: How is the cluster distribution different when only the first 512 bytes 
are counted? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 512 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

23ddbaed383511a9968f53b7bdbbf2e9 Mal 781 17 2% 

581a6310045be2711de6105d4cf3f354 Mal 883 309 35% 
5b760960b279a54b984d5d9ccc9560b7 Mal 273 217 79 % 

e732601321962a9810986d418e839ae2 Mal 333 320 96 % 

ff20a4b54baaedf479805d44013bb443 Mal 116 98 84% 
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Experiment 4D.1024 
 
Question: How is the cluster distribution different when only the first 1024 bytes 
are counted? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 1024 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

ctl3d32.dll Good 916 601 66% 

onex.dll Good 560 535 96% 
0526a33d93d1bc96d7ea3cfe20fed0bf Mal 406 194 48% 

235abf3acbb7b052e83a481f53a7c46b Mal 114 99 87% 

e92b09accfabaaaf0566444c7224e079 Mal 390 328 84% 
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Experiment 4D.2048 
 
Question: How is the cluster distribution different when only the first 2048 bytes 
are counted? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 2048 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

hnetmon.dll Good 633 572 90% 

msvcp50.dll Good 367 227 62% 
2f1bfdfc7045e1ae0b70acd1c646e77c Mal 495 404 82% 

f6b8239db7a1b96fd9afd3df0725c13f Mal 891 356 40% 
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Experiment 4D.4096 
 
Question: How is the cluster distribution different when only the first 4096 bytes 
are counted? 
 
Tools: Sample set 3, TableMaker, TableNormalizer, APSimilarityPreprocessor, 
APPreferencePreprocessor, apCluster, ClusterSplitterAP 
 
Procedure: 

1. Run TableMaker on the sample archive with a max byte count of 4096 
2. Run TableNormalizer on the data 
3. Run APSimilarityPreprocessor on the size-normalized data 
4. Run APPreferencePreprocessor to set the preferences 
5. Run apCluster using the calculated similarities and preferences 
6. Run ClusterSplitterAP to place all the sample files in their correct clusters 

 
Results: 

Representative sample Class 
 

# files in 
cluster 

# files 
of same 
class 

Classifying 
specificity 

netsh.exe Good 446 432 97% 

regwiz.exe Good 248 243 98% 
783128a871bfec9ebbd2e2595a5be2b7 Mal 482 447 93% 

8dfac3855eb7f4cf36b7826e640c8c0e Mal 336 135 40% 

c1b1a396e2d9ad407fe00c1ec56c101b Mal 874 360 41% 
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Appendix C: Source Code 
TableMaker.java 

import java.io.*; 
 
class TableMaker 
{ 
  public static void main(String[] args) throws Exception 
  { 
    int huge = 2000000000; 
 
    File mainDir = new File(args[0]); 
    File[] samples = mainDir.listFiles(); 
    FileInputStream input; 
 
    int[] byteCounts = new int[256]; 
    String[] sampleTable = new String[samples.length]; 
    PrintWriter output; 
 
    int readLength = huge; 
    try 
    { 
      readLength = Integer.parseInt(args[1]); 
      output = new PrintWriter(args[0] + "." + readLength + ".data"); 
    } 
    catch(Exception e) 
    { 
      readLength = huge; 
      output = new PrintWriter(args[0] + ".data"); 
    } // if a limit is provided as an argument, use it; otherwise the limit is ~2GB 
 
    int holder; 
    int filePosition; 
    for(int i = 0; i < samples.length; i++) 
    { 
      try 
      { 
        input = new FileInputStream(samples[i]); 
        for(int j = 0; j < 256; j++) byteCounts[j] = 0; 
 
        filePosition = 0; 
        holder = input.read(); 
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        while(holder != -1 && filePosition < readLength) 
        { 
          holder = (holder + 256) % 256; 
          byteCounts[holder] = byteCounts[holder] + 1; 
          filePosition++; 
          holder = input.read(); 
        } // read and count bytes until the limit or EOF is reached 
 
        sampleTable[i] = samples[i].toString() + ","; 
        for(int j = 0; j < 256; j++) 
        { 
          sampleTable[i] = sampleTable[i] + byteCounts[j] + ","; 
        } // construct the 256-feature data line for the current sample 
 
        sampleTable[i] = sampleTable[i].substring(0, sampleTable[i].length() - 1); // drop trailing , 
        output.println(sampleTable[i]); // print the line to the data file 
      } 
      catch(FileNotFoundException fnf) 
      { 
        System.out.println(samples[i]); 
      } // if the file is not there, print its name to the console 
    } 
    output.close(); 
  } 
} 
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TableNormalizer.java 
import java.io.*; 
 
class TableNormalizer 
{ 
  public static void main(String[] args) throws Exception 
  { 
    File mainTable = new File(args[0]); 
    String dataline = ""; 
    String[] tokens; 
    double numTotalBytes; 
    double normalizedByteRatio; 
    String outputLine = ""; 
 
    BufferedReader console = new BufferedReader(new FileReader(mainTable)); 
    PrintWriter output = new PrintWriter(args[0] + ".sizenorm"); 
 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      tokens = dataline.split(","); 
 
      numTotalBytes = 0.0; 
      for(int i = 1; i < 257; i++) // position 0 is the filename 
      { 
        numTotalBytes = numTotalBytes + Double.parseDouble(tokens[i]); 
      } // get sum of counts for current line 
 
      if(numTotalBytes = 0.0) numTotalBytes = 1.0; // required to avert DivZero errors 
      outputLine = tokens[0] + ","; 
      for(int i = 1; i < 257; i++) 
      { 
        normalizedByteRatio = Double.parseDouble(tokens[i]) / numTotalBytes; 
        outputLine = outputLine + normalizedByteRatio + ","; 
      } // normalize counts as fractions of the sum of counts 
      outputLine = outputLine.substring(0, outputLine.length() - 1); 
      output.println(outputLine); 
      dataline = console.readLine(); 
    } 
    output.close(); 
  } 
} 

56  



  
 

APSimilarityPreprocessor.java 
import java.io.*; 
 
class APSimilarityPreprocessor 
{ 
  public static void main(String[] args) throws Exception 
  { 
    File mainTable = new File(args[0]); 
    String dataline = ""; 
    String[] tokens; 
    double[] pointOne = new double[256]; 
    double[] pointTwo = new double[256]; 
    double similarity; 
 
    double[][] dataPoints = new double[30000][256]; // recompile if more than 30000 samples 
    int lastRowIndex = 0; 
 
    BufferedReader console = new BufferedReader(new FileReader(mainTable)); 
    PrintWriter output = new PrintWriter(args[0] + ".similarities"); 
 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      tokens = dataline.split(","); 
      for(int i = 0; i < 256; i++) 
      { 
        dataPoints[lastRowIndex][i] = Double.parseDouble(tokens[i + 1]); 
      } 
      lastRowIndex = lastRowIndex + 1; 
      dataline = console.readLine(); 
    } 
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    for(int i = 1; i <= lastRowIndex; i++) 
    { 
      pointOne = dataPoints[i - 1]; 
      for(int j = 1; j <= lastRowIndex; j++) 
      { 
        if(j != i) 
        { 
          pointTwo = dataPoints[j - 1]; 
          similarity = -1.0 * euclideanDistance(pointOne, pointTwo); // AP uses negative similarities 
          output.println("" + i + " " + j + " " + similarity); 
        } 
      } 
    } // calculate and store all pairwise distances 
 
    output.close(); 
  } 
 
  static double euclideanDistance(double[] pointOne, double[] pointTwo) 
  { 
    if(pointOne.length != pointTwo.length) return -1.0; // one should avoid letting this happen 
 
    double sum = 0.0; 
    double partDiff = 0.0; 
    for(int i = 0; i < pointOne.length; i++) 
    { 
      partDiff = pointOne[i] - pointTwo[i]; 
      sum = sum + (partDiff * partDiff); 
    } 
    return Math.sqrt(sum); 
  } 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 

58  



  
 

APPreferencePreprocessor.java 
import java.io.*; 
 
class APPreferencePreprocessor 
{ 
  public static void main(String[] args) throws Exception 
  { 
    File mainTable = new File(args[0]); 
    String dataline = ""; 
 
    BufferedReader console = new BufferedReader(new FileReader(mainTable)); 
    PrintWriter output = new PrintWriter(args[0] + ".preferences"); 
 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      output.println("-15.561256"); // default preference; all are set equally 
      dataline = console.readLine(); 
    } 
    output.close(); 
  } 
} 
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ClusterSplitterAP.java 
import java.io.*; 
 
class ClusterSplitterAP 
{ 
  public static void main(String[] args) throws Exception 
  { 
    int arrayMax = 30000; // recompile if more than 30000 samples 
 
    File clusterDefinitions = new File(args[0] + ".clusters/idx.txt"); 
 
    File dataTable = new File(args[0]); 
    String[] fileNames = new String[arrayMax]; 
    BufferedReader console = new BufferedReader(new FileReader(dataTable)); 
 
    File workingFile; 
 
    FileInputStream input; 
    FileOutputStream output; 
 
    String sourceFile; 
    String clusterDirectory; 
    String destinationFile; 
 
    String dataline = ""; 
    String[] tokens; 
 
    int positionCounter = 0; 
    int slashIndex = 0; 
 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      tokens = dataline.split(","); 
      fileNames[positionCounter] = tokens[0]; 
 
      positionCounter++; 
      dataline = console.readLine(); 
    } 
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    console = new BufferedReader(new FileReader(clusterDefinitions)); 
 
    positionCounter = 0; 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      sourceFile = fileNames[positionCounter]; 
      destinationFile = fileNames[Integer.parseInt(dataline) - 1]; 
 
      slashIndex = destinationFile.indexOf("\\"); 
      destinationFile = destinationFile.substring(slashIndex + 1, destinationFile.length()); 
 
      clusterDirectory = args[0] + ".clusters/" + destinationFile + ".ap"; 
      // the directories are named for the representative samples 
      try 
      { 
        workingFile = new File(clusterDirectory); 
        workingFile.mkdir(); 
      } 
      catch(Exception e) {} // if it’s not there, make it; otherwise do nothing 
 
      slashIndex = sourceFile.indexOf("\\"); 
      destinationFile = sourceFile.substring(slashIndex + 1, sourceFile.length()); 
      destinationFile = clusterDirectory + "\\" + destinationFile; // split around the \ and rebuild 
 
      workingFile = new File(sourceFile); 
      input = new FileInputStream(workingFile); 
 
      output = new FileOutputStream(destinationFile); // place copies within correct clusters 
 
      int holder = input.read(); 
      while(holder != -1) 
      { 
        output.write(holder); 
        holder = input.read(); 
      } // copy file byte by byte 
      output.close(); 
      dataline = console.readLine(); 
      dataline = console.readLine(); // IDX files are double-spaced 
      positionCounter++; 
    } 
  } 
} 
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EuclideanDistanceTabulator.java 
import java.io.*; 
// calculate and store 256 components of pairwise Euclidean distances for use in PCA 
class EuclideanDistanceTabulator 
{ 
  public static void main(String[] args) throws Exception 
  { 
    File mainTable = new File(args[0]); 
    String dataline = ""; 
    String[] tokens; 
    double[] pointOne = new double[256]; 
    double[] pointTwo = new double[256]; 
    double[] differences = new double[256]; 
    double diffLineTotal; 
 
    double[][] dataPoints = new double[30000][256]; // recompile if more than 30000 samples 
    int lastRowIndex = 0; 
 
    BufferedReader console = new BufferedReader(new FileReader(mainTable)); 
    PrintWriter output = new PrintWriter(args[0] + ".differences"); 
 
    dataline = console.readLine(); 
    while(dataline != null) 
    { 
      tokens = dataline.split(","); 
      if(tokens.length == 257) // ignore malformed rows 
      { 
        for(int i = 0; i < 256; i++) 
        { 
          dataPoints[lastRowIndex][i] = Double.parseDouble(tokens[i + 1]); 
        } 
        lastRowIndex = lastRowIndex + 1; 
      } 
      dataline = console.readLine(); 
    } 
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    for(int i = 1; i <= lastRowIndex; i++) 
    { 
      pointOne = dataPoints[i - 1]; 
      for(int j = 1; j <= lastRowIndex; j++) 
      { 
        if(j != i) 
        { 
          pointTwo = dataPoints[j - 1]; 
          if(pointOne.length == pointTwo.length) 
          { 
            dataline = ""; 
            diffLineTotal = 0.0; 
            output.print("" + i + "," + j + ","); 
            for(int k = 0; k < pointOne.length; k++) 
            { 
              differences[k] = pointOne[k] - pointTwo[k]; 
              differences[k] = differences[k] * differences[k]; 
              diffLineTotal = diffLineTotal + differences[k]; 
            } // get the sum of all components on the current line 
 
            for(int k = 0; k < pointOne.length; k++) 
            { 
              differences[k] = differences[k] / diffLineTotal; 
              dataline = dataline + differences[k] + ","; 
            } // normalize each component against the line sum 
 
            dataline = dataline.substring(0, dataline.length() - 1); 
            output.print(dataline + "\n"); // output 256 normalized distance metric components 
          } 
        } 
      } 
    } 
 
    output.close(); 
  } 
} 
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