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ABSTRACT 

 

 The genetic status of the critically endangered Mississippi sandhill crane (Grus 

canadensis pulla) was analyzed using 2009 studbook data from the U.S. Fish and Wildlife 

Service managed captive breeding and release program. Microsatellite DNA data provided 

information on shared founder genotypes, allowing for refined analysis of genetic variation in the 

population, and informed breeding recommendations. The genetic variation observed in the 

Mississippi sandhill crane was contrasted with variation observed in the Florida sandhill crane 

(Grus canadensis pratensis).  Results show far less variation in the Mississippi population.  

Results also suggest that while gene flow no longer occurs between the two populations, the 

introduction of cranes from the Florida population would help to increase the observed genetic 

diversity of the Mississippi sandhill crane population. 

 

Key words: captive breeding, Grus canadensis pulla, Mississippi sandhill crane, Grus 

canadensis pratensis,  pedigree analysis, microsatellite DNA
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INTRODUCTION 

 

1.i. INTRODUCTION 

The Mississippi sandhill crane (Grus canadensis pulla) is an IUCN Red listed critically 

endangered subspecies of sandhill crane.  Although it is believed that the Mississippi sandhill 

crane population was once part of an extensive resident population of cranes in the southeastern 

United States (USFWS, 1991), today the Mississippi sandhill crane is found only in Gautier, 

Mississippi at the Mississippi Sandhill Crane National Wildlife Refuge, and in captivity.  The 

refuge population has been supplemented by a U.S. Fish and Wildlife managed captive breeding 

program since 1981 when the wild population numbers dropped below 40 individuals (Valentine 

& Noble, 1970).  There are now approximately 110 birds on the refuge (S. Hereford, U.S. Fish 

and Wildlife Service, personal communication).  

The recovery objective for the Mississippi sandhill crane [MSC] is to “maintain a 

genetically viable, self-sustaining, free-living MSC population (USFWS, 1991).”  To achieve 

this goal it is critical that the captive population used to supplement the wild population be 

properly managed. Although population numbers on the refuge have increased since the 

initiation of the captive breeding and release program, successful rearing of wild hatchlings have 

been few, and the wild population remains heavily dependent on supplemental captive breeding 

to stay above 100 individuals.  

Current management of the captive MSC population relies on population pedigree 

information.  Using pedigree information, managers are able to mate underrepresented 

individuals with one another in order to maintain a high level of genetic diversity in the captive 
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population.  Pedigree information, however, does not take into account relatedness among the 

founders of the captive population. Given the population bottleneck observed prior to the 

establishment of the captive breeding program, it is likely that the founders of the captive MSC 

population were related to one another.  This could have a significant effect on the levels of 

genetic diversity and the amount of inbreeding occurring in the current captive population.  

Previous studies on the population genetics of the Mississippi sandhill crane support this 

hypothesis; both allozyme (Dessauer et al., 1992) and microsatellite analyses (Jones, 2003) 

reported that MSCs show only half the level of heterozygosity when compared to other sandhill 

cranes. 

As a low level of gene flow has been observed between crane populations (Jones, 2005), 

it has been suggested that the genetic diversity of the Mississippi sandhill crane population could 

be increased by introducing Florida sandhill cranes (Grus canadensis pratensis), a sub-species of 

sandhill crane, to the MSC population (Jones, 2003). The impact of such an introduction, 

however, has not previously been assessed. 

For this study I have conducted both pedigree and molecular analyses of captive and 

released Mississippi sandhill cranes in an effort to clarify the genetic status of the population.  A 

breeding recommendation chart was developed based on the combination of these analyses. In 

addition, the variance in molecular genetic diversity between Mississippi sandhill cranes and 

Florida sandhill cranes was evaluated, and projected changes in the genetic diversity following 

the introduction of individuals from the Florida population were assessed.  The ultimate goal of 

this study was to use the information found from these analyses these to promote management 

decisions that result in maintaining the genetic diversity of the endangered Mississippi sandhill 

crane.    
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1.ii.  LOSS OF GENETIC VARIATION IN SMALL POPULATIONS 

Individuals possess many thousands of genes, the location of which on a chromosome is 

referred to as its locus.  Each gene may have multiple alleles, alternate forms of the gene. The 

variation of these alleles observed within and between populations is referred to as genetic 

variation. There are many ways to measure genetic variation, including allelic diversity (or 

allelic richness) and heterozygosity (Ballou and Foose, 1996).  Allelic diversity is a measure of 

the number of different alleles at a given locus. High levels of allelic diversity are necessary to 

provide the potential for evolutionary adaption to changing environments (Fernandez, 2005).  

Heterozygosity refers to the percentage of loci in a population or individual for which two 

different alleles are found (i.e. heterozygous) (Ballou and Foose, 1996).   

In small populations both allelic diversity and heterozygosity can be lost through genetic 

drift, the random change in the number and frequency of alleles due to chance. In addition to 

genetic drift, a reduction of genetic diversity in small populations is often the result of 

inbreeding. Inbreeding refers to the probability of identity by descent (IBD) at a given locus 

(Fernandez, 2005), e.g. higher inbreeding equals more likelihood of identity by descent. 

 USING MOLECULAR GENETICS TO MEASURE GENETIC VARIATION 

 The development molecular DNA technologies have enabled researchers to investigate 

different measures of genetic variation, such as the allelic diversity or variation observed within 

and among populations.   Several methods for assessing genetic variation have been developed 

since the discovery of the structure of DNA (Watson & Crick, 1953).  These include allozyme 

loci, mitochondrial DNA, Major Histocompatibility Complex loci, and Variable Number of 

Tandem Repeat (VNTR) markers.  VNTR markers, which are comprised of repetitive DNA 
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sequences, are divided into two categories; minisatellites (between 15-70 base pairs), and 

microsatellites (between 2-6 base pairs) (Estoup and Angers, 1998).  

1.v.ii.  POPULATION ANALYSIS USING MICROSATELLITES 

 Microsatellite DNA are hyper-variable, single locus markers that exhibit co-dominant 

inheritance (Queller et al., 1993).  These features make them a powerful tool for inferring 

relationships between individuals (Queller et al., 1993; Haig, 1998), but they can also be 

extrapolated to assess population differentiation (Balloux & Lugon- Moulin, 2002; Nybom, 

2004).   

 Prior to individual or population level analysis using microsatellite markers the 

assumptions of selective neutrality and the non-random association of alleles at different 

microsatellite loci should be assessed.  The presence of selection may be detected by a 

comparison of observed genotypic frequencies to those expected from the Hardy-Weinberg 

equilibrium principle.  The Hardy-Weinberg equilibrium principle proposes that allele and 

genotypic frequencies will remain in equilibrium from one generation to next unless affected by 

disturbing influences such as mutations, non-random mating, or selection (Hardy 1908; 

Weinberg, 1908).  Deviations from expected values of Hardy-Weinberg equilibrium can be due 

to a variety of causes.  An excess of heterozygotes may be the result of outbreeding or a 

population bottleneck.  Such events result in a reduction in allelic diversity, producing an 

observed heterozygosity that is larger than the expected heterozygosity, as expected 

heterozygosity is calculated by the number of alleles present (Corneut and Luikart, 1996).  If an 

excess of homozygotes is found this may be attributed to selection at the loci being assessed, null 

alleles, population substructure, or inbreeding in the population (Pressoir and Berthaud, 2004). 
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The likelihood of each of these explanations for deviations from Hardy-Weinberg can be 

assessed from additional information such as pedigree knowledge (Paetkau et al.., 1995).   

 The ability to measure the level and loss of genetic variation in populations is a valuable 

tool when working with small populations, such as in captive breeding programs. Molecular 

analysis methods, such as microsatellites DNA analysis, grant managers of captive populations 

insights into the genetic diversity present in their population, and provide a background for 

making insightful management decisions. 

1.ii. CAPTIVE BREEDING OF ENDANGERED AVIAN SPECIES 

Over the last century captive breeding of endangered avian species, such as the California 

Condor (Gymnogyps californianus), the Guam Rail (Rallus owstoni), and the Mississippi 

sandhill crane (Grus canadensis pulla), has become necessary to ensure the survival of the 

species.  Captive breeding programs, like many aspects of endangered species science, however, 

face serious challenges (Snyder et al., 1996). Captive populations of endangered avian species, 

as observed in the Whooping Crane (G. americana) (Lewis, 1990) and the Hawaiian Crow 

(Corvus hawaiiensis) (NRC, 1992), have experienced low numbers, high mortality, infertility, 

and incompatibility of mates.  These problems were the result of the many difficulties and 

limitations of captive breeding, including increased likelihood of disease, lack of necessary 

husbandry knowledge, and inbreeding (Snyder et al., 1996).   

Inbreeding depression and the observed reduction in population fitness as a result is a 

significant force affecting the viability of captive populations (Leberg and Firmin, 2008). 

Inbreeding depression has been observed in avian species, such as the pink pigeon (Columba 

mayeri), where inbreeding reduced juvenile and adult survival and egg fertility (Swinnerton et 
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al., 2004).  Inbreeding depression occurs due to the increased genomic homozygosity that is 

observed in inbreeding populations and results in the exposure of deleterious recessive alleles 

(Frankham et al., 2002).  In large, natural populations, selection decreases the frequency of such 

alleles in a process referred to as purging, resulting in decreased future inbreeding depression. In 

captivity, selection is often removed as a force, and therefore, purging does not occur.  In an 

effort to restore selection in captivity, Leberg and Firmin (2008) attempted the purging of captive 

populations of western mosquitofish (Gambusia affinis) through a series of bottlenecks. Purging, 

however, was not an observed result in this study. Instead, the serial bottlenecks resulted in an 

increased probability of extinction, suggesting that avoiding inbreeding and loss of variation 

through minimization of kinship and avoiding small population sizes should remain the objective 

of captive breeding programs (Leberg and Firmin, 2008).  

The ultimate goal of many captive breeding programs is the reestablishment of viable 

wild populations (IUCN, 1987). At the time of publication a total of 168 avian species have been 

reared in reintroduction programs, with more than 550 release sites (Lincoln Park Zoo, Avian 

Reintroduction and Translocation Database, lpzoo.org). Unfortunately, reintroduction programs 

have faced challenges similar to captive breeding programs. Griffith et al., (1989) reported a 

32%  success rate from 31 reintroduction projects, and Beck et al., (1994) using more stringent 

criteria calculated a success rate of only 11%  for 145 reintroduction projects. It has even been 

suggested that supplementation programs may actually hinder the wild populations they are 

designed to help, due to the effect of a genetic supplementation load (Lynch and O’Hely, 2001). 

This load is based on the many genetic challenges facing captive breeding programs mentioned 

above, including a loss of genetic diversity due to isolation or inbreeding, accumulation of mildly 

deleterious alleles (through random genetic drift), or  adaptation to captivity (Frankham et al., 
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2002).  Through statistical modeling Lynch and O’Hely (2001) found that this genetic 

supplementation load can have clear negative effects on the fitness of a wild population in just a 

few dozen generations. Such findings highlight the imperative of working to maintain genetic 

variation in captive populations. 

The current goal of most captive breeding programs is to retain 90% of the genetic 

diversity observed in the founding population for 100 years (Frankham et al., 2002). This means 

that the decisions made during the founding stage are extremely important, as the founding 

process sets the genetic characteristics for the captive population. The captive population will not 

maintain the same level of genetic diversity as the wild population, as the establishment of a 

captive breeding program inevitably leads to a population size bottleneck (Frankham et al., 

2002). In order to avoid the effects of this bottleneck the founding population must be 

sufficiently large (Frankham et al., 2002).  As discussed in Frankham et al., (2002), Marshall and 

Brown (1975) recommend that the number of founders be sufficient to obtain (with a 95% 

certainty) all the alleles at a random locus occurring in the target population with a frequency 

greater than 0.05. Therefore, the number of founders necessary to prevent the loss of allelic 

diversity is dependent on the frequency of alleles in the wild population (i.e., the more rare 

alleles in the population the greater the number of founders you will need to properly maintain 

that genetic diversity).  Unfortunately, most captive breeding programs have been established 

when the number of wild individuals is already too low to meet this criteria, which leads to 

decreased heterozygosity in the captive population, and often to severe founder effects.  The 

effects of low founder numbers, for example, have been observed in the California condors (G. 

californianus) where 9% of the captive population carries the allele for chondrodystrophy, a 

lethal form of dwarfism (Ralls et al., 2000).  
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As in the case of the California condor, many captive breeding programs are established 

when wild populations were extremely low and little genetic information was known about the 

founding population.  Instead of using genetic analysis to understand the allelic diversity in their 

population, managers of most captive populations must rely on pedigree information in order to 

retain genetic diversity and avoid inbreeding in their population (Glatston, 1986). When pedigree 

information is complete, pedigree analyses can provide powerful methods for determining 

lineage structure, calculating individual inbreeding coefficients, for resolving genetic importance 

of specific individuals to breeding, and for recording the loss of genetic diversity over time (Haig 

and Ballou, 2002).   

Although these analyses are useful for estimating the genetic diversity present in the 

current population as compared to the founding captive population, pedigree analysis alone 

cannot estimate true levels of genetic variation. If the founding population had low levels of 

genetic variation as the result of a population bottleneck, for example, the genetic variation in the 

current captive population will likely be much lower than as predicted by pedigree analysis. 

Increasingly managers of captive populations are combining molecular genetic analyses with 

pedigree analyses.  This allows managers to compare the genetic diversity expected by analysis 

of the pedigree alone to the genetic variation observed in the molecular data, providing a more 

accurate picture of the genetic management of their population. In addition, genetic data can be 

valuable for filling in gaps in pedigree information, such as resolving unknown parentage, or for 

providing estimates of pairwise relatedness (Ivy et al., 2009).   
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1.iv. STUDY SPECIES 

There are fifteen species in the crane family (Gruidae), two of these species belong to the 

crowned crane subfamily (Balearicinae), and 13 belong to the typical crane subfamily (Gruinae). 

The fossil records for crowned cranes date back to the Eocene, 37-54 million years ago, and the 

two surviving species of crowned cranes, the black crowned crane (Balearica pavonina) and the 

grey crowned crane (Balearica regulorum) are found exclusively in Africa (Meine and 

Archibald, 1996).  The typical cranes, which first appear in the Miocene fossil records, 5-24 

million years ago, inhabit all continents except South America and Antarctica (Meine and 

Archibald, 1996). There are three genera of typical cranes: Arthropoides, Burgeranus, and Grus.  

Members of the Arthropoides, the demoiselle crane (A. virgo) and blue crane (A. paradisea) are 

closely genetically related to the larger wattled crane (Bugeranus carunculatus) (Krajewski and 

Fetzer, 1994; Meine and Archibald, 1996).  The species in the genus Grus are delineated into 

four groups: the sandhill crane (Grus canadensis) of North America; the Siberian crane (G. 

lecogeranus); the “Group of Three” including the sarus crane (G. antigone) of India and 

southeast Asia, the white-naped crane (G. vipio) of northeast Asia, and the brolga (G. 

rubicundus) of Australia and New Guinea; and the “Group of Five,” which includes the Eurasian 

crane (G. grus), the whooping crane (G. americana) of North America, the hooded crane (G. 

monachus) of Russia and northern China, red-crowned crane (G. japonensis) of east Asia, and 

the black-necked crane (G. nigricollis) of China and India (Meine and Archibald, 1996).  The 

sandhill crane (G. canadensis) has been further delineated into six subspecies, three migratory 

subspecies: the greater sandhill crane (G. canadensis tabida), the lesser sandhill crane (G. 

canadensis canadensis), the Canadian sandhill crane (G. canadensis rowani); and three non-

migratory subspecies: the Florida sandhill crane (G. canadensis pratensis), the Cuban sandhill 
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crane (G. canadensis nesiotes), and the Mississippi sandhill crane (G. canadensis pulla) 

(Archibald and Lewis, 1996). 

Cranes are generally monogamous, staying together throughout the year and often until 

one bird dies (Meine and Archibald, 1996), although there has been documented evidence of 

extra-pair matings in sandhill cranes (Hayes et al., 2006).  Paired cranes will isolate themselves 

on their territories during the breeding season, but will gather with other groups of cranes during 

the non-breeding season (Meine and Archibald, 1996).  Diurnal in their habits, cranes forage, 

rest, preen, and socialize within flocks, or tend to young during the day, and either stay on their 

nests during breeding season or roost with large flocks at traditional roosting sites (Meine and 

Archibald, 1996).  

Cranes are omnivores, but their diets can vary significantly among species and with 

seasons, as cranes will shift their foraging strategies on a seasonal, or even daily, basis to take 

advantage of available food (Meine and Archibald, 1996).  Sandhill cranes, for example, feed 

primarily on small grains during the fall through the spring, but their diet changes during nesting 

season, when they frequent wetland areas, to include items such as crayfish, tubers, frogs and 

rodents (Archibald and Lewis, 1996).  Non-migratory subspecies of sandhill cranes, such as the 

Mississippi, also use seasonally variable wetlands, grasslands and pine savannas (Meine and 

Archibald, 1996). 

1.v. MOLECULAR ANALYSES OF GRUIDAE 

The literature on the levels of genetic variation among cranes is rapidly developing.  

Krajewski and Fetzner (1994) completed phylogenetic analysis across all 15 species and Jones et 

al. (2005, 2006) analyzed intra-specific variation among wattled (G. carunculatus), sarus (G. 
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antigone), and sandhill crane populations (G. canadensis). The sandhill crane has been analyzed 

by several molecular genetic analyses.  Gaines and Warren (1984), Tacha et al., (1986), and 

Dessauer et al., (1992), utilized allozymes; Jarvi et al., (1995) and Jarvi et al., (1999) conducted 

MHC analyses; Rhymer et al., (2001), Glenn et al., (2002), and Petersen et al., (2003) worked 

with mitochondrial DNA, and Jones et al. (2005, 2006), used microsatellite analysis.  With only 

3.0-7.2 alleles per locus, and 0.028-0.41 observed heterozygosity (Jones, 2005) cranes show 

lower genetic diversity when compared with other birds (4.9-14.1 alleles per locus, 0.43-0.85 

observed heterozygosity) (Neff & Gross, 2001).  The reason for this difference is unknown, but 

may be the result of the shorter repeat length of crane loci (7-20 repeats) in contrast with other 

birds (12-20 repeats) (Neff & Gross, 2001) or due to k-selected life history traits of cranes. 

1.vi. DECLINE OF THE MISSISSIPPI SANDHILL CRANE 

Cranes are the most endangered family of birds in the world, with 13 of its 15 species in 

peril (Crane Conservation Act, 2008). Although sandhill cranes (G. canadensis) are not 

endangered as a species they are threatened by the loss and degradation of wetland and breeding 

habitats.  Loss of habitat has been especially damaging to the non-migratory subspecies of 

sandhill cranes, such as the Mississippi sandhill crane (MSC), which is an IUCN critically 

endangered subspecies, protected under the U.S. Endangered Species Act (Gee & Hereford, 

1995).  

The decline of the MSC population parallels the development of agriculture, industry and 

forestry practices in its historic range of the pine savannas in southeastern Mississippi. In 1972, 

when the MSC was first described as a subspecies (Aldrich, 1972) the range of the MSC ran east 

of the Pascagoula River to areas west of the Jackson county line, north to an east-west line 8-16 
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km north of VanCleave, and south to Simmons Bayou (Valentine & Noble, 1970; Aldrich, 1972; 

Gee & Hereford, 1995).  According to Gee and Hereford (1995), during the 1800s the species 

was abundant enough for farmers to consider it a pest, however by the 1940s the population had 

dropped below 100 individuals. Over the next twenty years the suitable pine savanna habitat 

continued to decline, and shrunk from over 400 km
2
 in 1940 to only 105 km

2
 in the 1960s. By 

1970 on 38-40 cranes remained in the area (Valentine & Noble, 1970).  The U.S. Fish and 

Wildlife service listed the MSC as an endangered species under the Endangered Species Act in 

1973, and in 1974 the Mississippi Sandhill Crane National Wildlife Refuge was created from 

land donated by the Nature Conservancy, the U.S. Department of Transportation, and the State of 

Mississippi (Gee & Hereford, 1995).   In addition to the establishment of the Mississippi 

Sandhill Crane National Wildlife Refuge, in 1965 the U.S. Fish and Wildlife Service initiated a 

captive breeding program for the Mississippi sandhill crane.  After 40 years, the breeding 

program continues to successfully produce offspring that are now reintroduced to the Mississippi 

Sandhill Crane National Wildlife Refuge. 

The Mississippi sandhill crane provides an opportunity to assess the genetic status of an 

endangered sub-species through both pedigree and molecular analysis. Through the assessment 

of comprehensive pedigree records and thorough sampling of the captive population, this study 

aims to increase knowledge about the genetic variation present in the Mississippi sandhill crane 

population, and make management recommendations that result in improvement to the breeding 

program.  
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CHAPTER 2: PEDIGREE ANALYSIS OF THE MISSISSIPPI SANDHILL CRANE 

2.i. INTRODUCTION 

2.i.i. Pedigree analysis 

Captive breeding programs keep detailed information on individuals in their populations 

in databases called “studbooks.”  These databases contain a variety of information including 

parentage, offspring, rearing methods, medical history, etc. Pedigree analyses use studbook data 

to determine relationships between individuals in the captive population and use this information 

to make breeding decisions (Van Dyke, 2008).   

Studbooks are based on the original “founder” population established when the captive 

breeding program was begun.  These “founders” are assumed to be unrelated (Ballou & Lacy, 

1995). Through pedigree analyses, genetic parameters of the current captive population are 

determined by estimating losses or changes to genetic variability relative to this hypothetical 

“founder” population (Ralls & Ballou, 2004).  Pedigree analysis programs use a variety of 

models to make these estimations.  For example, Gene-drop simulation model analyses give each 

founder two unique alleles that are then “dropped” down through the pedigree, assuming 

Mendelian inheritance, so that each descendant receives one randomly selected allele from its 

mother, and one randomly selected allele from its father. Several thousand iterations are 

performed to simulate sampling throughout the individual’s genome. This model assumes no 

linkage, and no selection (Haig and Ballou, 2002).   

Gene-drop models are used to estimate gene diversity (GD) and founder genome 

equivalents (FGE) of captive populations. GD is based on the probability that random sampling 

across the population will result in two alleles from the same locus that are identical by descent 
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(Lacy & Ballou, 2001), i.e. expected heterozygosity.  GD is calculated using gene-drop models 

by counting the allele frequencies of the founder alleles remaining in the extant population.  FGE 

refer to the number of equally represented founders that would produce the same level of gene 

diversity as that observed in the current population, assuming no loss of alleles (Lacy & Ballou, 

2001).  Gene-drop models can also estimate the potential FGE (pFGE) and potential GD (pGD).  

pFGE refers to the number of FGE that would be found in the captive population if the alleles of 

all founders still present in the population were represented equally (Ballou & Foose, 1995). 

pGD reflects the gene diversity that would be found in such a population.  

Pedigree programs also use a matrix of additive genetic relatedness between all 

individuals (Ralls & Ballou, 2004) to determine kinship and inbreeding values.  Mean kinship 

(MK) is derived from the average kinship between each individual in the population and all other 

individuals in the population (Ballou & Lacy, 1995).  This is a useful tool for identifying 

genetically important individuals, as minimizing the population’s mean kinship acts to maximize 

the retention of founder gene diversity (Miller, 1995).  Inbreeding coefficients (F) measure the 

amount of kinship between parents of an individual, and are calculated as the probability that the 

two alleles at a locus are identical by descent due to their joint inheritance from a common 

ancestor.  Although a loss of gene diversity is inevitable in small, captive populations due to 

genetic drift, population managers can use these measures of genetic diversity based on pedigree 

analysis to influence how quickly gene diversity is retained or lost (Van Dyke, 2008) 
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2.i.ii. History of the Mississippi sandhill crane captive breeding program 

Beginning in 1965, the U.S. Fish and Wildlife service began collecting eggs from multi-

clutch MSC nests at the Mississippi Sandhill Crane National Wildlife Refuge for captive 

propagation (Valentine & Noble, 1970).  Under the management of the U.S. Fish and Wildlife, a 

captive breeding population was established at the Patuxent Wildlife Research Center, in Laurel, 

Maryland, and in 1981 the first captive reared MSC was successfully released on to the 

Mississippi Sandhill Crane National Wildlife Refuge (MSCNWR). There are currently 41 

individuals in the captive flock which is now split between the White Oak Conservation Center 

in Yulee, FL, and at the Audubon Center for Research on Endangered Species, in New Orleans, 

LA (M. Savoie, Audubon Center for Research on Endangered Species, personal 

communication).   

 Pedigree information is available for all captive individuals in the MSC population, and 

as 80.77% of the birds currently on the refuge were reared in captivity, pedigree information is 

available for a majority of the individuals on the Mississippi Sandhill Crane Wildlife Refuge as 

well. Here, I use five pedigree analysis programs, SPARKS, GENES, Pedigree Viewer, 

Population Management 2000 and Mate RX to analyze the current genetic status of the 

captive/released Mississippi sandhill crane population. My specific objectives were (1) 

determine the current genetic structure of the total captive and released population; (2) compare 

inbreeding to survivorship; (3) conduct analyses to make recommendations for future 

management.   
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2.ii. MATERIALS AND METHODS 

2.ii.i. Data 

The data used for this study was collected from the Mississippi Sandhill Crane Studbook, 

current through January 2009 (Savoie, 2009). From this studbook, which I refer to as MSC -  

presumed,  I have created an additional studbook, the MSC – confirmed. 

 When working with a supplemented population, information on released individuals can 

be difficult to ascertain; for instance, when leg-bands are lost and individuals can no longer be 

identified, or when individuals die without a carcass being found.  Pedigree analysis software 

assumes that all individuals reported in the studbook are still alive until otherwise indicated, 

resulting in larger population estimates than actually exist.  The MSC – confirmed studbook 

addresses this issue by only including in the analysis individuals of the captive and released 

population confirmed to be alive as of March 2009 (S. Hereford, U.S. Fish and Wildlife Service, 

personal communication).   

2.ii.ii. Analysis 

Analyses were conducted using SPARKS Studbook Management software (Lacy, 2004), 

GENES 12.0 (Lacy, 1998), Statistical Package for Social Sciences (SPSS 16.0 for Mac 2007), 

Pedigree Viewer (Kinghorn & Kinghorn, 2006), Population Management 2000 (Lacy & Ballou, 

2001), and MateRx version 1.9 (Ballou et al., 2001). 
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2.ii.iii. Software 

 The Single Population Analysis and Records Keeping System [SPARKS] (Lacy, 2004), 

is the species management software program used to manage the MSC population. SPARKS was 

used for individual pedigree analyses, and for exporting pedigree data. GENES 12.0 (Lacy, 

1998) was used to measure gene diversity (Lacy and Ballou 2001), founder genome equivalents, 

mean kinship (Ballou & Lacy 1995) and inbreeding. To evaluate the effect increased inbreeding 

levels may have on individuals, I analyzed the relationship between inbreeding coefficients and 

the percentage of individuals surviving past 2 years of age, the age at which MSCs can reach 

reproductive maturity (Mirande et al., 1996).  This regression analysis was conducted using the 

Statistical Package for Social Sciences (SPSS 16.0 for Mac 2007).  Using the pedigree file 

exported from SPARKS, Pedigree Viewer (Kinghorn & Kinghorn, 2006) was utilized to visually 

display the complete population pedigree structure, as well as the pedigrees of select individuals, 

such as high output breeders. Following these analyses, Population Management 2000 (Lacy & 

Ballou, 2001) was used to model the current MSC population management goal of maintaining 

90% gene diversity in the population for 100 years. 

Finally, MateRx version 1.9 (Ballou et al., 2001) was used to evaluate the genetic value 

of mating different pairs.  This program integrates four genetic components into a single index: 

the Mate Suitability Index (MSI).  The four components are (1) the change in population’s 

genetic diversity associated with the pairing of two individuals, with preference given to those 

with low mean kinships; (2) the difference in mean kinships of the male and female, as it can be 

detrimental to pair animals with very different mean kinship due to the possibility of linking 

under-represented alleles with over-represented alleles (Ralls & Ballou 2004); (3) inbreeding 

coefficients; (4) amount of unknown ancestry in the male and female, as managers try to exclude 
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individuals with unknown pedigrees (Ballou et al., 2001). The MSI ranges from 1 (very 

beneficial to the genetic diversity of the population) to 6 (very detrimental). Pairs known to exist 

in the released population were analyzed for their MSI value, but captive individuals were 

analyzed by MateRx to locate the best possible mate (who would result in the lowest MSI), 

independent of whether those birds could realistically be paired together. 
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2.iii. RESULTS 

For the MSC – presumed studbook, GENES reported a population size of 351 

individuals, with 30 founders and 282.25 living descendents (individuals with incomplete 

ancestries are tallied as partial genetic individuals).  For the MSC – confirmed studbook, GENES 

reported a population size of 144 individuals, with 30 founders and 136 living descendents.  This 

confirmed population consisted of 100 cranes from the Mississippi Sandhill Crane Wildlife 

Refuge and 45 captive cranes.   

The graphical representation of the pedigree of the MSC – presumed studbook, as 

produced by Pedigree Viewer, reveals a 7 generation pedigree, with several non-breeders, and a 

few high output breeders (Fig.1).  For example, Studbook #1020, fathered 112 offspring, 43 of 

which are still presumed alive in the population.   
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Figure 1. Graphical representation of MSC - presumed studbook pedigree. (a) represents 

the unknown parents of the wild founders, (b) wild founders, (c) eggs first brought into captivity 

as basis for captive breeding program, (d) – (h) descendents of (c).  

 

a) 

 

b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 

The unbalanced breeding of individuals in the MSC population has resulted in a loss of 

genetic diversity. The proportion of gene diversity retained from the original founder population 

is below 96% for both studbooks, with only 8 around founder genome equivalents (depending on 

which studbook is analyzed). (Fig. 2). The average mean kinship ranged from 0.060 - 0.061 (Fig. 

2), with individual mean kinships in all studbooks ranging from 0 to 0.094. The potential for 

increasing these statistics is reported by the potential gene diversity (pGD) (0.970 - 0.99) and 

potential founder genome equivalents (pFGE) (19.24 - 40.74) (Fig. 2).  Population Management 

2000 reported similar results when management goals were modeled, estimating the need for 20 

new founders in order to maintain 90% gene diversity for 100 years in the MSC – presumed 

studbook. 
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Figure 2. Mississippi sandhill crane studbook comparisons for (a) mean kinship, (b) mean 

inbreeding, (c) gene diversity, (d) founder genome equivalents (FGE and pFGE).  Differences in 

the two MSC studbooks analyzed are shown. 

a)        b) 

  

c)       d) 
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Mean inbreeding (F) of the studbooks ranged from 0.0075 - 0.0083 (Fig. 2), with 

inbreeding coefficients between 0 and 0.325.  In order to study the possible effects of this 

inbreeding on the MSC captive and released population, I analyzed the relationship between 

inbreeding coefficients and the percent of individuals surviving past 2 years of age in the MSC – 

presumed studbook.  Inbreeding was significantly negatively correlated with survivorship (n = 6, 

p < 0.001) (Figure 3).  

Figure 3.  Covariation between percent of individuals surviving past 2 years of age and the 

mean inbreeding coefficient of those individuals found in the MSC – presumed studbook. (n = 6, 

p < 0.001) 
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MateRx analyzed the mate suitability of all possible pairs (MSC – presumed studbook) in 

the captive and released population.  The majority of these pairings (68%) would be detrimental 

to the population (MSI > 3) (Fig 4). The genetic value of all current mating pairs in the released 

population was evaluated by calculating the mate suitability indices for each pair.  Values of 

these pairs ranged from 2 – 7, with an average rating of 4.58. Optimal pairing was analyzed for 

each captive individual.  Despite pairing individuals to produce the lowest possible MSI, the 

average MSI for the captive pairings was 4.19 (slightly detrimental).   

Figure 4.  Distribution of Mate Suitability Index (MSI) values for all possible pairings in the 

presumed population (left-hand y-axis), and the distribution of MSI values for current refuge 

pairs (right-hand y-axis), as reported by MateRX.  A value of 1 is very beneficial to the diversity 

of the population, a value of 6 is very detrimental.   
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2.iii.i. DISCUSSION 

More than three quarters of the wild MSC population has been raised in captivity.  

Considering this, an understanding of the population structure of the captive MSC population is 

imperative if the goal of sustaining a non-supplemented wild population with high genetic 

diversity is to be achieved.  As predicted, analysis of the presumed population resulted in a 

population size that was much higher than that of the confirmed population size.  Due to several 

birds residing on the refuge that have not been identified, the total MSC population is likely 

around 170 individuals (S. Hereford, U.S. Fish and Wildlife Service, personal communication).  

This population was derived from 19 captive founders, with 30 wild parent founders.  As 

shown by the confirmed studbook analysis, due to unequal breeding of the wild founder lines, 

many fewer contributing founders would be needed to produce the same genetic diversity 

currently observed in the captive and released population.  Unequal genetic contributions by 

founders often leads to greater inbreeding in future generations, and a loss of the genetic 

diversity originally present in the founding population (Lacy, 1989).  This study confirmed this 

in the MSC population as, as the gene diversity decreased 6%, and inbreeding coefficients have 

been observed as high as 0.375. Additionally, as a mean kinship of 0.125 is comparable to half-

siblings, the mean kinship of 0.06 observed in confirmed studbook population is equivalent to 

individuals being related to the population on average at the level of first cousin (Ralls & Ballou, 

2004).   

Despite high kinship levels, and the results of MateRX, which reported that a majority of 

all possible pairings would have a negative effect on the population’s gene pool, the high number 

of potential founder genome equivalents in the confirmed population (MSC - Confirmed 
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studbook) of 19.24 indicates that equalization of founder representation may help to slow the 

loss of genetic diversity.   

Some of the observed differences in the two studbooks assessed are a result of the 

different studbook designs.  For example, the presumed studbook reported potential founder 

genome equivalents of 40.73.  This is a result of the wild parents still listed as “living” in the 

presumed studbook, although they are no longer accounted for on the refuge, and many would be 

over 40 years old.  The difference observed in mean inbreeding for the presumed and confirmed 

populations is likely the result of the inverse relationship between inbreeding and survivorship.  

No individuals with inbreeding coefficients higher than 0.25 survived past the first year of 

release.  The low survival of individuals with high inbreeding coefficients also explains the 

relatively low mean inbreeding numbers observed in the populations; although highly inbred 

individuals have existed in the population, they have not survived long enough to reach sexual 

maturity.  

The goal of most captive breeding programs is to retain 90% gene diversity for 100 years 

(Frankham et al., 2002).  Given that the current gene diversity in the MSC population is 94% 

following only 44 years of captive breeding, that the majority of all possible pairings in the 

population would have a negative effect on the population’s genetic diversity, and that modeling 

of management goals indicate the need for 20 additional founders, this goal may not be attainable 

for the MSC.   Achievement of 90% gene diversity after 100 years may be even less likely given 

the primary assumption of all pedigree analyses: that founders are unrelated. When captive 

breeding programs are established from small isolated founding populations, as in the case of the 

Mississippi sandhill crane, estimates of mean kinship and inbreeding coefficients in resulting 

captive populations are likely much larger than are observed by pedigree analysis alone.  In order 
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to address this issue, molecular genetic analyses were conducted on samples from Mississippi 

sandhill cranes to more accurately assess the genetic status of the population (See chapter 3).  

  



32 
 

2.iv.  LITERATURE CITED 

Ballou, J. D., J. Earnhardt and S. Thompson.  (2001). MateRx: Genetic management software. 

Smithsonian Institution, National Zoological Park, Washington, D.C., USA. 

 

Ballou, J. D., and R. C. Lacy. (1995). Identifying genetically important individuals for 

management of genetic diversity in captive population. In:  Ballou, J.D.,  Gilpin, M., and 

Foose, T.J. (eds.). Population Management for Survival and Recovery. Analytical 

Methods and Strategies in Small Population Conservation. Columbia University Press, 

New York, New York, USA, 76-111. 

 

Haig, S. M., & Ballou, J.D. (2002). Pedigree analysis in wild populations. In: S. R. Beissinger,  

D. R. McCullough (editors). Population Viability Analyses. University of Chicago Press, 

Chicago, Illinois, USA, 388-405. 

  

Kinghorn, B. and Kinghorn, S. (2006). Pedigree Viewer Program, Version 5.5. University of 

New England, Armidale, New South Whales, Australia. 

 

Lacy, R. C. (1989). Analysis of founder representation in pedigrees: Founder equivalents and 

founder genome equivalents. Zoo Biology, 8:111-123.  

 

Lacy, R.C. (1998). GENES 12.0. Chicago Zoological Society, Chicago. 

 

Lacy, R. C. (2004). SPARKS-Single Population Analysis Record Keeping System. Chicago 

Zoological Society, Brookfield, Illinois, USA. 

 

Lacy, R. C. & Ballou, J.D. (2001). Population Management 2000 User's Manual. Chicago 

Zoological Society, Brookfield, Illinois, USA. 

 

Miller, P. (1995). Selective Breeding Programs for Rare Alleles: Examples from the 

Przewalski’s Horse and California Condor Pedigrees. Conservation Biology, 9:1262-

1273. 

 

Mirande, C. M., Gee, G.F.,  Burke, A., and Whitlock, P. (1996). Egg and Semen Production. In: 

Ellis, D., Gee, G.F., and Mirande, C.M. (eds.). Cranes: Their Biology, Husbandry, and 

Conservation. Department of the Interior, National Biological Service, Washington, D.C., 

USA, 45-57. 

 

Ralls, K. & Ballou, J.D. (2004). Genetic status and management of California Condors. The 

Condor, 106:215-228. 

 

Savoie, M. 2009. Mississippi Sandhill Crane Studbook (Grus canadensis pulla). Audubon 

Institute for Research on Endangered Species, New Orleans, Louisiana, USA. 

 

SPSS Inc. 2001. SPSS 16.0.1 for Mac User’s Guide. SPSS Inc., Chicago, Illinois, USA. 



33 
 

U.S. Fish and Wildlife Service (USFWS). 1991. Mississippi Sandhill Crane Recovery Plan. U. S. 

Fish and Wildlife Service, Atlanta, Georgia, USA. 

 

Valentine, J., Noble, R.E. (1970) A colony of sandhill cranes in Mississippi. Journal of Wildlife 

Management. 30:4, 761-768. 

 

Van Dyke, F. (2008) Conservation Biology: Foundations, Concepts, Applications, 2
nd

 Edition. 

Springer Publishing, New York, NY, 185-199. 

 

  



34 
 

 

CHAPTER 3: INTEGRATION OF MOLECULAR ANALYSIS INTO PEDIGREE  

3.i. INTRODUCTION 

3.i.i. Use of molecular analysis in captive management  

The minimization of kinship in captive populations can be achieved through the use of 

pedigree information. Pedigree knowledge alone, however, is not sufficient if pedigree 

information is missing or questionable (Lutaaya et al., 1999) or when working with a population 

that has experienced a severe bottleneck before the captive population was established (Jones et 

al., (2002).  If this is the case, as it often is for endangered species, the amount of genetic 

diversity in the founding population is likely to have been diminished to begin with, and may 

result in higher levels of inbreeding and lower genetic diversity than those calculated by pedigree 

analyses.  

Several studies have used molecular markers to contribute to captive breeding 

management.  In these studies molecular markers were used to for a variety of analyses, such as 

assessing founder relationships (Geyer et al.,1993; Haig et al., 1994; Haig et al., 1995; Gautschi 

et al., 2003; Jones et al., 2002), for pedigree reconstruction (Morin & Ryder, 1991; Bowling et 

al., (2003), for subspecies identification (O’Brien et al., 1987; Ely et al., 2005), and the 

identification of genetically valuable individuals (Jones et al., 2002; Russello & Amato 2004).   

A powerful molecular tool for individual level genetic analysis is microsatellite DNA.  

These are single locus markers with repetitive, short sequence patterns (1-6 bp) that exhibit co-

dominant inheritance (Queller et al., 1993).  Microsatellite loci tend to be highly polymorphic, 
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making them useful for the inference of relationships between individuals (Queller et al., 1993; 

Blouin et al., 1996; Haig 1998).   

3.i.ii. Relatedness estimators  

Genotypes derived from multiple microsatellite loci can be used to derive relatedness 

coefficients (Queller and Goodnight, 1989), which can then be applied to estimate relationships 

in captive populations. Several methods have been proposed for estimating relatedness from 

molecular markers such as microsatellites. These methods can be grouped into two classes: 1) 

methods that use moment estimators (MOM) to estimate pair-wise relatedness of individuals, 

and those that use a likelihood approach to place pairs or groups into relationship categories, 

such as parent-offspring, or full-sibs.    

MOM and likelihood estimators work by indentifying the proportion of matching alleles 

within a pair.  These alleles are said to be identical by state (IBS).  Alleles that are IBS can be 

classified into two categories, those that are identical due to chance, and those that are or 

identical by descent (IBD) due to deriving from a common ancestor (Blouin, 2003).  MOM 

estimators (Queller and Goodnight, 1989; Lynch and Ritland, 1999) estimate relatedness (r) as a 

continuous measure of overall IBD.  Likelihood estimators (Milligan, 2003; Kalinowski et al., 

2006) calculate the likelihood of observing the genetic data of a given pair based on the 

probabilities that a pair share zero, one or two alleles at given locus that are IDB (Thomas, 

2005).  Although both types of estimators have been used in the management of captive breeding 

programs (Kozfkay et al., 2008; Ivy et al., 2009; Russello & Amato, 2004 ), each method has 

inherent limitations.  Maximum likelihood estimators assume no inbreeding, and no population 

structure (Oliehoek et al., 2006).  Populations in need of conservation such as the Mississippi 
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sandhill crane (MSC), however, are often highly inbred with complex pedigree structures.  MOM 

estimators on the hand, such as Queller and Goodnight (1989), report (r) values that are much 

more variable than can be accounted for by true variance in actual pedigrees (Van horn et al., 

2008), and tend to underestimate relatedness between closely related individuals (i.e. full sibs) 

(Frentiu et al., 2008).  As the Queller and Goodnight (1989) relatedness estimator measures 

relatedness based on the mean relatedness in the measured population these discrepancies are 

likely to be enhanced when working with a population with a very low level of diversity at the 

start, or a population with few highly related individuals in the population.  

Given the lack of consensus on the accuracy of these relatedness estimators (Lynch & 

Ritland, 1999; van de Casteele et al., 2001; Toro et al., 2003;, Blouin, 2003; Oliehoek et al., 

2006), some researchers have instead relied on the simple calculation of the proportion of alleles 

shared, or allelic similarity (s), as a measure of how common or rare a molecular genotype is in 

the population (Blouin et al., 1996, Jones et al., 2003).  While allelic similarity (s) cannot 

distinguish individuals that are IBD from those that are simply IBS, when this information is 

assessed in tandem with pedigree information, informative estimates of relatedness can be 

achieved.  

3.i.iii. Genetic analysis of the Mississippi sandhill crane  

To date three types of genetic analyses have been conducted on the Mississippi sandhill 

crane population: (1) allozyme analyses (Dessauer et al., 1992); (2) mitochondrial DNA 

(Rhymer et al., 2001); and (3) microsatellite DNA (Jones, 2003).  These studies were focused on 

population differentiation among cranes, and therefore no within-population analysis has yet 

been applied to the pedigree of the captive Mississippi sandhill crane population.  The objective 
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of this study was to utilize microsatellite DNA analysis to assess the level of genetic variation in 

the MSC, and to use this information to refine the genetic management of the population.  
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3.ii. MATERIALS AND METHODS 

3.ii.i. Sample collection 

In order to assess genetic variation in the MSC population, whole blood samples were 

collected from individuals living in captivity and on the Mississippi Sandhill Crane National 

Wildlife Refuge in Gautier, MS.  Trapping efforts on the refuge were conducted intermittently 

from January 23
rd

 2008 to March 25
th

 2009.  Cranes were captured using foot noose lines, a bird-

catching technique from India (Hereford et al., 2000).  Crane foraging sites identified as 

potential trapping locations were baited with corn kernels.  After cranes were observed feeding 

on the bait, noose lines were set during pre-dawn hours, and bait sites were monitored from 

distant blinds to minimize disturbance.  When cranes feeding on the bait corn step through a foot 

noose their leg becomes snared and the crane is unable to fly away.  Captured cranes are then 

restrained and hooded to limit stress while measurements are taken and blood is collected from 

the medial metatarsal vein. A total of 19 samples were collected in this manner. (Appendix A). 

Additionally, blood samples were collected from the 19 juveniles in the 2008 cohort 

release, and from the captive population:  28 individuals at Audubon Center for Research on 

Endangered Species and 14 captive individuals at the White Oak Conservation Center.  

(Appendix A).  For all whole blood samples, approximately 4 ml of collected blood was placed 

in a lysis buffer (0.1 M Tris, 0.1 EDTA, 5% SDS, 0.01M NaCl; Longmire et al., 1991).  

Tissue samples from 14 frozen crane carcasses and embryos were also collected and kept 

frozen until DNA could be extracted (Appendix A).  In total, 94 samples were collected. 
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3.ii.ii. Molecular genetic analysis 

DNA was extracted from the blood and tissue samples using Qiagen DNeasy Blood & 

Tissue Kit (QIAGEN). This extraction was completed first by digesting the histones and other 

proteins associated with DNA with the enzyme proteinase K.  The DNA was then selectively 

bound to a silica-gel membrane during centrifugation, and cellular remains were washed off the 

DNA using a series of salt and ethanol containing buffers.  Lastly, the DNA sample was eluted in 

buffer (Qiagen, 2006) and was kept at 20° C until use.   

 The 94 Mississippi sandhill samples were genotyped at 14 microsatellite loci [GRAM6, 

GRAM8, GRAM11, GRAM17, GRAM20, GRAM22, GRAM24, GRAM25, GRAM30, 

GRAM31, GRAM32a, GRAM40, GRAM42 , GRAM45] developed by Dr. Kenneth Jones from 

a genomic library of the whooping crane (Grus Americana) (Jones et al., in prep), a species of 

the same genus as the sandhill crane (Krajewski & Fetzner, 1994).  

Polymerase chain reactions (PCR) were carried out in a thermocycler (Bio-Rad Icycler) 

in a volume of 15 microliters.  PCR protocols showed optimization with 1x Promega Taq 

polymerase reaction buffer [Promega Corp., Madison, WI], 1.5 MgCl2, Qiagen dNTP mix [100 

uM each], forward and reverse primers [0.5 uM forward, 0.005 uM reverse], one unit Promega 

Taq polymerase, and with least 25 nanograms of DNA.  Additionally, in order to avoid labeling 

individual primers, all primers were designed with a CAG tag attached to the 5’ end of the 

reverse primer, and a labeled CAG tag was added to the amplification reactions [0.5 uM] 

(Boutin-Ganache et al., 2001).  Each reaction was run with an initial denaturation at 95°C for 5 

minutes, followed by 35 cycles of 95°C for 30 seconds, 50-65°C for 30 seconds, 72° for 40 

seconds, with a final extension step of 72°C for 5 minutes. PCR products were pooled together 
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and run against Genescan™ 500 ROX™ (red) internal size standard in an Applied Biosystems 

Inc. 3760 Genetic Analyzer (Applied Biosystems, Inc., Foster City, CA).  Samples were 

genotyped using GeneMapper v. 4.0 (Applied Biosystems, Inc., Foster City, CA). 

3.ii.iii Microsatellite DNA analysis  

 The program Micro-checker (Van Oosterhout et al., 2006) was used to identify 

genotyping errors.  The number of alleles per locus, observed heterozygosity (Ho) and expected 

heterozygosity (He) was calculated with the web-based (http://wbiomed.curtin.edu.au/genepop) 

version of GENEPOP (Raymond & Rousset, 1995).  FSTAT (Goudet, 2001) was used to test for 

deviations from Hardy-Weinberg equilibrium, and to evaluate loci for linkage disequilibrium.  A 

sequential Bonferroni test (Rice, 1989) was used to compensate for multiple comparisons. 

 As previously discussed, (3.i.ii) several methods exist for estimating relatedness, and 

there is little consensus among researchers as to the best method.  In order to address this issue 

two relatedness estimators were used:  (1) Allelic similarity (s), calculated as the proportion of 

alleles shared (Blouin, 1996); and, (2) Queller and Goodnight’s (1989) MOM relatedness 

estimator (r).  Likelihood estimators (Milligan, 2003; Kalinowski, 2006) were not chosen for 

estimation of relatedness as these methods assume a large panmictic population.  As established 

in Chapter 2, the MSC population does not meet this criteria.  

 Allelic similarity coefficients were calculated by dividing the number of allelic positions 

shared between two individuals by the total number of allelic positions assessed (Blouin et al., 

1996).  A matrix of pairwise similarity coefficients was created for all sampled individuals using 

Microsatellite Toolkit for Excel (Park, 2001), and then reduced to reflect only the “founders” of 

the captive population.  

http://wbiomed.curtin.edu.au/genepop
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 MARK v.3.1. (Ritland, 2006) was used to calculate Queller & Goodnight’s (1989) 

pairwise relatedness coefficients (r) (see Appendix B for equation).  As with allelic similarity, a 

matrix of pairwise relatedness coefficients was created for all sampled individuals, and then 

reduced to reflect only the “founders” of the captive population.   

3.ii.iv. Studbook revision, pedigree analysis, and DNA integration  

The MSC – confirmed studbook (Chapter 2) was used as the base studbook for the 

integration of molecular data into pedigree analyses of the MSC population. However, while the 

MSC – confirmed studbook reports a more accurate picture than the historical studbook of the 

individuals currently found in the population, a difficulty in estimating founder relatedness 

persists given that this studbook is coded such that it is not the first individuals brought into 

captivity that represent the founding MSC population, but their wild parents, assigned by 

breeding territory.  For the integration of microsatellite DNA data, the parentage assignment of 

the first individuals brought into captivity were reassigned with the “wild x wild” code, 

designating the starting captive population, and any individuals with unknown wild parents (such 

as eggs later collected from the refuge) as founders.  Following the methods of Jones et al. 

(2002) molecular data was integrated into this studbook, named the MSC – DNA studbook.   

As inaccurate or incomplete information can occur in pedigree record keeping that spans 

more than 40 years, genotypes of sampled individuals were first compared to known pedigree 

relationships, to identify any mislabeling or misidentification that may be present in the 

studbook.  ML-Relate (Kalinowski et al., 2006) was then used to test a priori parent/offspring 

hypotheses of individuals with multiple possible sires, or with multiple possible identities.  This 

test works by evaluating two competing a priori hypotheses based on the genotypic data; that the 
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individuals are unrelated (null hypothesis); and that the individuals have a parent/offspring 

relationship (See Appendix B for test statistic).    

Integration of the relatedness estimates was completed through GENES 12.0 (Lacy, 

1998).  Founder matrices for both (s) and (r) were entered individually into GENES, replacing 

the default founder matrix of zero relatedness among founders.  GENES 12.0 (Lacy, 1998) was 

also utilized to compare the results of integrating the different founder similarity and relatedness 

matrices into the MSC – DNA studbook.  The changes in mean inbreeding (F), mean kinship 

(MK), founder genome equivalents (FGE),  potential founder genome equivalents (pFGE), and 

gene diversity (GD) (as described in Chapter 2) were assessed.   

  Finally, a breeding recommendation chart was developed for the captive MSC 

population based on the combined results of the pedigree analysis of the MSC – presumed 

studbook (the historical studbook), and the MSC – DNA studbooks with both and the allelic 

similarity and Q&G relatedness estimates integrated.  This recommendation chart is based on a 

procedure for breeding recommendations developed by Dr. Ken Jones for the captive Whooping 

Crane (Grus Americana) population (Jones et al., in prep) in which individual pair 

recommendations are made based on three criteria: 1) mean kinship and inbreeding levels as 

calculated by pedigree analysis of the historical studbook with founder relatedness equal to zero; 

2) mean kinship and inbreeding calculations of a pairing as calculated by the DNA – studbook 

pedigree analysis with founder allelic similarity coefficients integrated; 3) mean kinship and 

inbreeding calculations of a pairing as calculated by the DNA- studbook pedigree analysis with 

founder Q&G relatedness coefficients integrated.  A step-wise analysis beginning with criteria 

(1) and ending with criteria (3) results in a breeding recommendation chart in which individual 

pairings are identified as either beneficial to the gene diversity of the population (green and 
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blue), harmful to the gene diversity of the population but offspring are suitable for wild release 

(orange and yellow), or harmful and to be avoided under all circumstances (black). See 

Appendix C for enumeration of chart organization. 
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3.iii. RESULTS 

3.iii.i. Microsatellite Analysis 

 DNA fragments from 14 loci were successfully amplified (Table 1).  Loci 24 and 25 were 

monomorphic (Table 1), and were subsequently removed from the study.  The remaining 12 

alleles were screened for all 94 individuals, resulting in 77 complete genotypes, and 17 

individuals missing data for 1 or more loci (Appendix D). Size range, number of alleles, and 

expected heterozygosity were calculated (Table 1). 

Table 1. Summary of microsatellite alleles observed in samples from Mississippi sandhill 

crane population. 

Locus 

No. of 

samples 

Fragment 

Size (bp) 

No. of 

alleles He 

 

Ho 

GRAM6 94 235-257 5 0.80 0.83 

GRAM8 90 361-393 4 0.52 0.33 

GRAM11 93 256-324 8 0.70 0.79 

GRAM17 84 359-395 6 0.75 0.80 

GRAM20 88 379-414 4 0.51 0.55 

GRAM22 92 158-170 3 0.52 0.51 

GRAM24 93 355 1 0.00 0.00 

GRAM25 94 147 1 0.00 0.00 

GRAM30 90 157-189 7 0.78 0.98 

GRAM31 92 255-259 2 0.48 0.52 

GRAM32a 94 247-255 3 0.27 0.28 

GRAM41 93 266-296 3 0.34 0.38 

GRAM42 93 165-168 2 0.33 0.40 

GRAM45 94 255-264 2 0.20 0.22 

  

 

Two loci, Gram8 and Gram30, showed deviations from Hardy-Weinberg proportions, but 

the deviations were not significant after correcting for multiple comparisons (Table 1).  All loci 

were in linkage equilibrium after correcting for multiple comparisons. 
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 Allelic similarity (s) and Queller & Goodnight relatedness estimates (r) were calculated 

for each pair of individuals in the dataset.  The (s) values ranged from 0.222 to 0.917, with a 

mean value of 0.59. The (r) values ranged from -0.909 to 1.00.  As expected with (r) estimates, 

the mean value of (r) for the population was 0.00.  

3.iii.ii. STUDBOOKS AND STUDBOOK INTEGRATION 

Studbook/Genotype comparisons 

To test the accuracy of the studbook records, the genotypes of samples were compared 

with expected parent/offspring genotypes. Only 2.02% (48/2376) of the alleles called did not 

match expected parent/offspring alleles.  Given the comprehensive nature of the MSC studbook, 

few gaps could be filled from the molecular analyses. However, the identity of one refuge 

resident crane, and the probable sires of two individuals were confirmed based both on visual 

confirmation of genotypes, and by the ML-Relate a priori hypothesis test of parent/offspring 

relationships (Table 2). 

Integration of relatedness estimates 

Samples were available for microsatellite analysis for 11 out of the 19 founders in the 

DNA studbook as reported by GENES 12.0. Based on offspring genotypes, the genotypes for 4 

additional founders were estimated at 8 loci or more.  For the remaining 4 founders, offspring for 

whom samples were available replaced their founding parents.  This resulted in a final founder 

matrix of 20 founders.  
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Table 2. Changes to studbook based on genotypic information and hypothesis testing.  

The P-value refers to the null hypothesis test (individuals are not related).  A high P-

value indicates the null hypothesis cannot be rejected. A low P-value supports the 

alternative hypothesis of a parent-offspring relationship.   

 

Individual 
Unknown 

information 

P/O 

relationship 

tested 

P- value Conclusion 

1385/1223 

Wild 

caught – ID 

thought to 

be 1385 or 

1223 

1034: 1223 

1018: 1223 

1137:1385 

1163:1385 

p = 0.98 

p = 1.00 

p = 0.064 

p = 0.001 

ID= 1385 

1149 

Multiple 

possible 

sires: 1020, 

1034 

1020:1149 

1034:1140 

 

p = 0.023 

p = 0.936 

1149 sire = 

1020 

1352 

Multiple 

sires: 1040, 

1152 

1040:1352 

1152:1352 

p = 0.014 

p = 0.049 

1352 sire = 

likely 1040 

 

Allelic similarity (s) and Queller & Goodnight (1989) (r) estimates of relatedness were 

calculated using the 4 estimated founder genotypes and 94 genotypes of sampled individuals.  

The average (s) for the founder population was 00.59, whereas the average (r) of the founders 

was only 0.012.  The differences observed in these calculations are reflected in the results of the 

incorporation of the founder relatedness matrices into MSC-DNA studbook.  When MSC 

founders were redefined as interrelated by (s), the population appeared more genetically similar 

than as reported by studbook analysis alone (Fig 5).  When MSC founders were redefined by the 

(r) estimates, however, results reported a population slightly less genetically similar than as 

reported by studbook analysis alone (Fig. 5).  
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Figure 5.  Mississippi sandhill crane studbook comparisons for (a) mean kinship, (b) mean 

inbreeding, (c) gene diversity, (d) founder genome equivalents (FGE and pFGE).  Differences 

are shown for the three studbook strategies: pedigree = DNA-Studbook with founder relatedness 

= 0; (s)= DNA-Studbook with founder allelic similarity relatedness values incorporated; (r) = 

DNA-Studbook with founder Queller & Goodnight relatedness values incorporated. 

a)        b) 

  

 c)      d) 
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 Using the output from the MSC – presumed studbook (the historical studbook), and the 

output from the MSC – DNA studbook for both (s) and (r) estimates, a comprehensive breeding 

recommendation chart was developed for the captive MSC population (See Appendix C).  Out of 

the 412 possible pairing combinations in the captive population, only 18.20% would result in 

offspring that would increase the gene diversity of the population, and therefore should be kept 

in captivity for future breeding (green and blue highlighted pairs). 25.24% of pairings would 

result in offspring that would decrease the gene diversity of the captive population, but have low 

levels of inbreeding and are therefore suitable for release on to the Mississippi Sandhill Crane 

National Wildlife Refuge (orange and yellow highlighted pairs).  56.55% of the pairings result 

either in high inbreeding or a significant loss of gene diversity and should not be paired for any 

reason (black highlighted pairs).  The integration of genetic variation data into the studbooks 

reveal several pairings that appear beneficial to the gene diversity of the population based on 

pedigree information alone, but are actually more genetically similar than the average pairing in 

the population (Table 3).    

 

 

 

 

 



49 
 

Table 3. Inbreeding coefficients of pairings as calculated by the MSC – presumed studbook, 

and the MSC – DNA studbook with founder allelic similarity (s) and relatedness (r) 

information integrated into the analysis.  Pairings listed appear beneficial to the captive 

population according to the MSC – presumed studbook, however microsatellite analysis 

reveals the pair to be more genetically similar than the average pairing in the population.  

The average mean kinship for the MSC – DNA (s) studbook is 0.32, the average mean 

kinship for the MSC – DNA (r) studbook is 0.03.  Inbreeding coefficients above these 

average mean kinships will result in a reduction in observed heterozygosity across the DNA 

markers.   

   

Sire Dam 

MSC –presumed 

inbreeding (F) 

MSC – DNA (s) 

inbreeding (F) 

MSC-DNA (r) 

inbreeding (F) 

1033 1217 0.000 0.335 0.60 

1033 1774 0.000 0.340 0.046 

1044 1163 0.000 0.375 0.114 

1258 1774 0.000 0.340 0.117 

1258 1138 0.000 0.335 0.031 

1804 1774 0.001 0.295 0.057 

1804 1138 0.016 0.335 0.067 
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3. iv. DISCUSSION 

3.iv.i. Microsatellite Analysis 

 Twelve of 14 microsatellite DNA markers were successfully amplified and were 

polymorphic.  The genotypic frequencies differed from panmictic expectations in two loci but 

were not significant after Bonferroni correction.  

3.iv.ii. Studbook Integration 

 With only 2% of the alleles called varying from expected pedigree relationship calls, the 

historical MSC studbook appears to be relatively comprehensive and accurate. Of the 

mismatches, 54% can be accounted for by 4 individuals; three who have likely been mis-

identified in the field (1412, 1757, 1824), and one whose sire/dam information appears to be 

incorrect in the studbook (1646).  The remaining incongruent allele calls appear to have resulted 

from allelic dropout and/or incorrect allele calls. 

 The integration of allele sharing (s) and relatedness (r) estimates of founders into the 

MSC - DNA studbook levels resulted in a large variation in reported levels of genetic diversity in 

the MSC population.  For example, mean kinship (MK) increased over 500% when allele sharing 

estimates were introduced. While dramatic, a (MK) value of 0.31 does not accurately predict the 

average kinship of this population (full sib kinship = 0.25). The drastic changes in observed 

genetic diversity are the result of the high average allelic similarity (0.59) of the MSC 

population. This measurement does indicate an underlying population structure that is very 

similar, but without knowledge of the historic allele frequencies there is no way to differentiate 

between alleles IBD and IBS.   
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 Conversely, the integration of Q&G relatedness estimates resulted in a population that 

appeared less genetically similar than as estimated by studbook alone.  This is likely the result of 

the nature of the (r) calculation which first calculates mean (r) and then designates pairwise 

relatedness coefficients based on whether pairs or more or less similar than the mean  (-1 ≤ R ≤ 

1) (Hedrick, 2005).  Therefore, given the low level of allelic diversity observed in the MSC 

population (mean s = 0.59), small differences in genotypes were inflated by the relatedness 

estimates. In other words, the changes observed in the population after the integration of (r) is 

not the result of an increase in genetic diversity of the population, but rather a decrease in the 

amount of diversity lost due to the fact that there was less diversity to begin with.   

 The integration of allelic similarity (s) and relatedness (r) into the MSC studbook reveals 

the care required when choosing and relying on only one relationship estimator to analyze the 

genetic diversity of a population, especially if that information is subsequently used to make 

breeding recommendations.  Despite the discrepancies observed between the estimators the 

information revealed by them can prove useful for managers of captive populations.  Estimates 

of relatedness, for example, provide clear indication of a good or bad pairing.  If the (r) for a 

given pairing is positive, those individuals are more related than the population average, 

indicating a poor pairing.  Thus managers can work to only pair individuals with negative (r) 

values.  Estimates of allelic similarity, on other hand, can indicate the commonness or rareness of 

an individual’s genotype in the population.  As pointed out by Jones et al., (2002) this 

information can be used to select matings that work to equalize founder allele frequencies, and 

can lead to heterozygosities in the population above that of the founder population.  
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Allelic similarity and relatedness estimates are also useful for identifying pairings that 

may appear unrelated according to studbook information, but are shown to be more genetically 

similar than the average population pairing after molecular analysis.  As shown in the MSC 

breeding recommendation chart (Appendix C) and Table 3, the integration of genetic variation 

data into the MSC studbooks revealed several pairings that appear beneficial to the gene 

diversity of the population based on pedigree information alone, but that are actually more 

genetically similar than the average pairing in the population (Table 3).   The pairing of these 

individuals would result in a loss of observed heterozygosity across the population (a loss of 

genetic variation), and should therefore be avoided.  

The breeding recommendation chart introduced in this study combines the valuable 

information gleaned from both allelic similarity (s) and relatedness (r) estimators with the 

traditional pedigree information provided by studbook analysis. Pairing of individuals in the 

chart is still based primarily on mean kinship and inbreeding as estimated by the historical 

studbook.  The decision process, however, is aided by knowledge of how the genetic variation 

(i.e., observed heterozygosity) in the population will change as a result of that pairing. This 

combined knowledge provides a powerful tool for breeding managers working to prevent 

inbreeding and increase genetic variation in their captive population. 

  



53 
 

3.v. LITERATURE CITED 

Blouin, M.S., Parsons, M., Lacaille, V., Lotz, S. (1996) Use of microsatellite loci to classify 

individuals by relatedness. Molecular Ecology, 5, 393-401. 

   

Blouin, M.S. (2003) DNA-based methods for pedigree reconstruction and kinship analysis in 

natural populations. Trends in Ecology and Evolution, 18, 503-511. 

 

Boutin-Ganache, I., M. Raposo, M. Raymond, and C.F. Deschepper. 2001. M13-Tailed Primers 

Improve the Readability and Usability of Microsatellite Analyses Performed with Two 

Different Allel-Sizing Methods. BioTechniques 31:23-28.  

 

Bowling, A.T., Zimmermann, W., Ryder, O., Panado, C., Peto, S., Chemnick, L.G., 

Yasimerskaya, N., Zharkikh, T. (2003) Genetic variation in Przewalski’s horses, with 

special focus on the last wild caught mare. 231 Orlieza III. Cytogenetic Genome 

Resource, 1111, 226-234. 

 

Dessauer, H.C., Gee G.F., Rogers, J.S.  (1992) Allozyme evidence for crane systematics and 

polymorphisms within populations of  sandhill, sarus, Siberian, and whooping cranes.  

Molecular Phylogenetics and Evolution, 1:4, 279-288. 

 

Ely, J.J., Dye, B., Frel, w.J., Fritz, J. Gagneux, P., Khun, H.H., Switzer, W.M., Lee, D.R. (2003) 

Subspecies composition and founder contribution of the captive U.S. chimpanzee (Pam 

troglodytes) population. American Journal of Primatology, 67, 223-241. 

 

Frentiu F.D, Clegg S.M, Chittock J, Burke T, Blows M.W, Owens I.P.F. Pedigree-free animal-

models: the relatedness matrix reloaded. Proc. R. Soc. B. 2008;275:639–647.   

 

Gautschi, B., Jacob, G., Negro, J.J., Godoy, J.A., Muller, J.P., Schmid, B. (2003). Analysis of 

relatedness and determination of the source of founders in the captive bearded vulture, 

Gypaetus barbatus, population. Conservation Genetics, 4, 479-490. 

 

Geyer, C.J., Ryder, O.A., Chemnick, L.G., Thompson, E.A. (1993).  Analysis of relatedness in 

the California condors, from DNA fingerprinting. Molecular Biology and Evolution, 10, 

479-490. 

 

Goudet,  J. (2001) FSTAT, a program to estimate and test gene diversities and fixation indices 

(version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. 

 

Haig, S.M. (1998) Molecular contributions to conservation. Ecology, 79, 413-425. 

http://www.unil.ch/izea/softwares/fstat.html


54 
 

 

Haig, S.M., Ballou, J.D., Casna, N.J. (1994).  Identification of kin structure among Guam rail 

founders: a comparison of pedigrees and DNA profiles. Molecular Ecology, 3, 109-119. 

 

Haig, S.M., Ballou, J.D., Casna, N.J. (1995) Genetic identification of kin in Micronesian 

kingfishers. Journal of Heredity, 86, 423-431. 

 

Hedrick, P. W. Genetics of Populations (2
nd

 edn). (2005) Jones and Bartlett Publishers, Sudbury, 

MA., 274-280. 

 

Hereford, S. G., Grazia, T.E., Nagendran, M., Hussain, A. (2000) Use of traditional Indian  

trapping methods to capture sandhill cranes. Proceedings North American Crane 

Workshop, 8, 220. 

 

Ivy, J.A., Miller, A., Lacy, R.C., DeWoody, J.A. (2009) Methods and prospects for using 

molecular data in captive breeding programs: An empirical example using parma 

wallabies (Macropus parma).  Journal of Heredity, 100:4, 441-454. 

 

Jones, K.L., Glenn, T.C., Lacy, R.C., Pierce, J.R., Unruh, N., Mirande C.M., Chavez-Ramirez, F. 

(2002) Refining the Whooping Crane studbook by incorporating microsatellite DNA and 

leg-banding analyses. Conservation Biology, 16:3, 789-799. 

 

Jones, K.L. (2003) Genetic variation and structure in cranes: A comparison among species. Ph.D. 

dissertation, University of Illinois at Chicago. 100-127. 

http://www.savingcranes.org/images/stories/pdf/conservation/K_Jones_Phd_Thesis_7-

11-03_Part_1_of_3.pdf 

 

Jones, K.L. Development of primers for Whooping Crane (Grus Americana), in prep. 

 

Kalinowski, S.T., Wagner, A.A.P., Taper, M.L. (2006) ML-RELATE; a computer program for 

maximum likelihood estimation of relatedness and relationship. Molecular Ecology 

Notes, 6, 576-579. 

 

Kozfkay, C. C., M. R. Campbell, J. A. Heindel, D. J. Baker, P. Kline, M. S. Powell, and T. A. 

Flagg. (2008). A genetic evaluation of relatedness for broodstock management of captive, 

endangered Snake River sockeye salmon, Oncorhynchus nerka.. Conservation Genetics, 

9:6, 1421-1430.  

 

Lacy, R.C. (1998). GENES 12.0: computer program for pedigree analysis and management. 

Chicago Zoological Society, Chicago. 

http://www.savingcranes.org/images/stories/pdf/conservation/K_Jones_Phd_Thesis_7-11-03_Part_1_of_3.pdf
http://www.savingcranes.org/images/stories/pdf/conservation/K_Jones_Phd_Thesis_7-11-03_Part_1_of_3.pdf


55 
 

 

Longmire, J. L., A. K. Lewis, N. C. Brown, J. M. Buckingham, L. M. Clark, M. D. Jones, L. J. 

Meincke, J. Meyne, R. L. Ratliff, F. A. Ray, R. P. Wagner and R. K. Moyzis. (1988) 

Isolation and molecular characterization of a highly polymorphic centromeric tandem 

repeat in the family Falconidae. Genomics 2:14-24.  

 

Lynch, M., Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. 

Genetics, 15:2, 1753-1766. 

 

Lutaaya, E., Misztal, I., Bertrand, J.K, Marby, J.W. (1999) Inbreeding in populations with 

incomplete pedigrees. Journal of Animal Breeding and Genetics, 116:6, 475-480. 

 

Milligan, B.G. (2003) Maximum-likelihood estimation of relatedness. Genetics, 163, 1153-1167. 

 

Morin, P.A., Ryder, O.A. (1991) Founder contribution and pedigree inference in a captive 

breeding colony of lion-tailed macaques, using mitochondrial DNA and DNA fingerprint 

analyses. Zoo Biology, 23, 521-531. 

 

O’Brien, S.J., Joslin, P., Smith, G.L. 3
rd

, Wolfe, R., Schaffer, N., Heath, E. Ore-Joslin, J., Rawal, 

P.P., Bhattacharjee, K.K., Martenson, J.S. (1987) Evidence for African origins of 

founders of the Asiatic lion species survival plan. Zoo Biology, 6, 99-116. 

 

Oliehoek, P.A., Windig, J.J., van Arendonk, J.a.M., Bijma, P. (2006) Estimating relatedness 

between individuals in general populations with a focus on their use in conservation 

programs. Genetics, 173, 483-496. 

 

Park, S.D.E. (2001) Trypanotolerance in West African Cattle and the Population Genetic Effects 

of Selection [Ph.D. thesis ] University of Dublin. Available at 

http://acer.gen.tcd.ie/~sdepark/ms-toolkit/index.php. 

 

Qiagen (2006) DNeasy Blood & Tissue Handbook.  

 

Queller, D.C., Goodnight, K.F. (1989).  Estimating relatedness using genetic markers. Evolution, 

43, 258-275. 

 

Queller, D.C., Strassmann, J.E., Hughes, C.R. (1993) Microsatellites and kinship. Trends in 

Ecology and Evolution, 8, 285-288. 

 

Raymond, M., Rousset, F. (1995) Genepop (version 1.2): population genetics software for exact 

tests and ecumenicism. Journal of Heredity, 86, 248-249. 

http://acer.gen.tcd.ie/~sdepark/ms-toolkit/index.php


56 
 

 

Rhymer, J.M., M.G. Fain, J.E. Austin, D.H. Johnson, & C. Krajewski. (2001) Mitochondrial 

phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes 

(Grus Canadensis; Aves; Gruidae). Conservation Genetics, 2, 203-218. 

 

Rice, W.R. (1989) Analyzing Tables of Statistical Tests. Evolution, 43, 223-225. 

 

Ritland, K. (2006) Mark – Marker inferred Relatedness and Quantitative inheritance program, 

ver. 3.1. http://www.genetics.forestry.ubc.ca/ritland/programs.html.  

 

Russello, A., Amato, G. (2004) Ex situ  population management in the absence of pedigree 

information. Molecular Ecology, 13, 2829-2840. 

 

Thomas, S.C. (2005) The estimation of genetic relationships using molecular markers and their 

efficiency in estimating heritability in natural populations. Phil. Trans. of Royal Society 

Biology, 360:1459, 1457-1467. 

Toro , M.A., Barragan, C., Ovilo. (2003) Estimation of genetic variability of the founder 

population in a conservation scheme using microsatellites. Animal Genetics, 34, 226-228. 

 

Van de Casteele, T., Galbusera, P. & Matthysen, E. (2001) A comparison of microsatellite-based 

pairwise relatedness estimators. Molecular  Ecology, 10, 1539–1549. 

 

Van Horn, R.C., Altmann, J., Alberts, S.C. (2008) Can’t get there from here: inferring kinship 

from pairwise genetic relatedness. Animal Behavior, 75, 1173-1180. 

 

Van Oosterhout, C., Weetman, D., Hutchinson, W.F. (2006) Estimation and adjustment of 

microsatellite null alleles in nonequilibrium populations. Molecular Ecology Notes, 6, 

255-256. 

 

 

 

  

http://www.genetics.forestry.ubc.ca/ritland/programs.html


57 
 

CHAPTER 4: POPULATION DIFFERENTIATION IN NON-MIGRATORY SANDHILL 

CRANES 

4.i. INTRODUCTION 

4.i.i. Use of molecular DNA analysis and statistics to measure population differentiation 

 Discrete populations of most species exhibit at least some degree of genetic 

differentiation (Avise, 1994).  This differentiation, referred to as genetic structure, represents the 

distribution of genetic variation within and between groups or populations (Wright, 1951).  

Analysis of genetic structure is rooted in the Hardy-Weinberg principle that gene frequencies 

within a population will not change from one generation to the next (Hardy, 1908; Weinberg, 

1908).  If a population becomes divided, each of the new sub-populations will evolve its own 

gene frequencies via selection and drift (Wright, 1951).  Therefore, by analyzing the genetic 

structure in two populations, the level of gene flow between those populations can be assessed.  

Several approaches to the statistical description of population structure and population 

subdivision have been developed.  One of the earliest and still implemented approaches is Sewell 

Wright’s (1951) F-statistics; FIS, FIT, and FST, which describe population structure in terms of 

allelic correlations.  FIS represents the correlation between homologous alleles within individuals 

in a local population, and FIT is the corresponding allelic correlations for the total population.  

The variance of allele frequency among populations is represented by FST (Wright, 1951) (See 

Appendix B for equation).  FST hypothesizes that given the Hardy-Weinberg principle, if two 

populations were interbreeding they would exhibit similar gene frequencies at all neutral loci, 

and the variance between the frequencies would be zero (Wright, 1951).  Due to the neutral loci 

used in microsatellite DNA analyses, Wright’s FST can be easily calculated using the gene 
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frequencies estimated from this method. One limitation of the Wright’s FST, however is the 

requirement of a large number of populations with equal sample sizes.  To overcome this 

limitation Weir and Cockerham (1984) developed (θ), an estimator that provides the power of 

FST, but allows for a small number of populations and unequal sample sizes (See Appendix B).   

FST is also commonly used as a measure of gene flow among populations (Avise, 1994).  

Gene flow, (i.e., the transfer of genetic material between populations), is usually expressed by 

the proportion of alleles in a population for each generation that is of migrant origin, known as 

the migration rate, m (Avise, 1994).  As distinguishing between the effects of drift and gene flow 

is difficult, however, most estimates of gene flow rely of Nm, which is defined as the absolute 

number of individuals exchanged between populations per generation (Avise, 1994).  Wright 

(1951) used FST to calculate Nm based on expectations for neutral alleles and equilibrium 

expectations (See Appendix B). 

Nm has also been calculated based on the average frequency of private alleles in a 

population (See Appendix B).  Private alleles are those that are found in only one population 

(Avise, 1994).  Slatkin’s (1985) private allele method is rooted in the theory that private alleles 

are only likely to attain high frequency when Nm is low.  When enough genetic information is 

available FST and private allele methods should result in comparable estimates of gene flow 

(Slatkin & Barton, 1989).  

4.i.ii. History of sandhill cranes in the southeastern United States 

Of the 15 described species of cranes, the sandhill crane (Grus canadensis) is the most 

abundant (Meine & Archibald, 1996) and diverse, with nine designated populations and six 

subspecies. The lesser sandhill crane (G.c.canadensis), from the arctic region of North America, 
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was the first sandhill to be designated a member of the crane family (Grus canadensis) by 

Brisson in 1760.  In 1794 a non-migratory population of sandhills in Florida was described as the 

Florida sandhill crane (G. c. pratensis) by Meyer (1794, as found in Rhymer, 2001), and in 1854 

another non-migratory population was identified on the mainland of Cuba by Poey (1854).  This 

Cuban sandhill (G.c. nesiotes) was subsequently named a subspecies by Bangs and Zappey 

(1905).  Two additional migratory subspecies, greater sandhills (G.c.tabida), and Canadian 

sandhills (G.c.rowani) were later defined by Walkinshaw (1965).   

The final sandhill crane sub-species to be identified, the Mississippi sandhill crane (G. c. 

pulla), was first described as a non-migratory subspecies of sandhill crane in 1972 (Aldrich, 

1972).  In addition to the morphological distinction of having darker plumage than other sandhill 

cranes, the Mississippi sandhill cranes (MSC) are reported to mature earlier, and begin egg 

production about 6 weeks later than Florida sandhill cranes (Gee and Hereford, 1995).  Although 

the MSC population is now considered reproductively isolated from other sandhill crane 

populations (Gee and Hereford, 1995; Meine and Archibald, 1996), it is believed that the MSC 

was once part of an extensive non-migratory population that spanned from Florida to central 

Texas along the Gulf coast (USFWS, 1991) (Fig. 6).  Overhunting and habitat alterations (Meine 

& Archibald, 1996) resulted in the fragmentation of this coastal population, leading to its 

extirpation from Louisiana and Texas by 1919 (Oberholster, 1974).  By 1960 only a small 

remnant population, now identified as the MSC, remained west of Florida (Aldrich, 1972) (Fig. 

6).   

Although also listed as threatened by the USFWS (Meine & Archibald, 1996), the eastern 

portion of the non-migratory coastal sandhill population, the Florida population, has remained 

persistent in its historical range, and now spans the length of Florida from the Okefenokee  
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Figure 6. a) Historical range of sandhill cranes in the southeastern United States. b) 

Current ranges of the Florida and Mississippi sandhill cranes. 

 a) 

 

b) 
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National Wildlife Refuge in southeastern Georgia to the Florida everglades (Meine & 

Archibald, 1996) (Fig. 6).  Tacha et al., (1994) estimated the population size of the Florida 

sandhill crane to be between 4,000 – 6,000 individuals. 

4.i. iii. Integration of Florida sandhill cranes into the Mississippi flock? 

Despite reports of reproductive isolation in the Mississippi population (Gee &  Hereford, 

1995),  recent molecular genetic analyses of the non-migratory sandhill crane populations have 

not supported the distinction of the Mississippi population as a separate subspecies.  Rhymer et 

al. (2001) found no significant phylogenetic divergence in the mtDNA haplotypes of the Grus 

canadensis subspecies, and suggesting that the Florida and Mississippi populations be treated as 

Distinct Population Segments (DPS).  Both Rhymer et al., (2001) and Jones (2003), however, 

observed relatively large allele frequency differences between the Florida and Mississippi 

sandhill crane populations.  Jones (2003) hypothesized that the difference observed between the 

Florida and Mississippi populations  (FST = 0.15) was larger than the differences between the 

Florida population and all other sandhill crane populations (mean FST = 0.0675) not due to true 

endemism, but as a result of the genetic drift and inbreeding occurring in the Mississippi 

population due to isolation.   

In consideration of the connectivity between the historical ranges of the Mississippi and 

Florida populations, Jones (2003) suggested that translocations of birds from the more abundant 

Florida population to the Mississippi Sandhill Crane National Wildlife Refuge could be used to 

bolster the genetic variability of the MSCs.  Given that an additional 20 MSC founders were 

reported to be needed to maintain 90% gene diversity in the historical MSC studbook for 100 

years (Chapter 2), this suggestion is not unreasonable.  Wright (1931) suggested that one migrant 
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individual per generation was sufficient to maintain genetic diversity and prevent inbreeding in 

isolated populations.  Wang’s (2004) research into the implications this has for conservation 

management found that although the number of migrants necessary can vary by sex ratio and 

age, between one and ten effective migrants per generation is a valid for maintaining gene flow.  

This would suggest that if Florida sandhill cranes were to be introduced to the Mississippi 

population, very low numbers of cranes would be needed to significantly increase the genetic 

variation observed in the MSC population.  

The goal of this study was to first compare the population structure and levels of gene 

flow observed between the Florida and Mississippi sandhill crane populations using newly 

developed microsatellite markers (Jones et al., in prep) to the differentiation observed in Jones’ 

2003 study, and to then test the hypothesis that the allele frequency differences observed in the 

Jones’ study were due to isolation and not endemism. In addition, this study aimed to observe the 

potential changes in genetic diversity that would be observed if small numbers of Florida 

sandhill cranes were integrated into the captive Mississippi population.  
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4.ii. MATERIALS AND METHODS 

4.ii.i. Sample Collection 

The 40 Florida sandhill crane (FSC) samples used for this study were acquired from 

Jones’ (2003) analysis of population differentiation in cranes.  Those samples were obtained 

from juvenile cranes fledged in Florida (Jones, 2003).  

3.ii.ii. Molecular Genetic Analysis 

 As with the 45 MSC samples analyzed in Chapter 3, the 40 FSC samples were genotyped 

at 14 microsatellite loci [GRAM6, GRAM8, GRAM11, GRAM17, GRAM20, GRAM22, 

GRAM24, GRAM25, GRAM30, GRAM31, GRAM32a, GRAM40, GRAM42 , GRAM45 ] 

developed by Dr. Kenneth Jones from a genomic library of the whooping crane (Grus 

Americana) (Jones et al., in prep). Microsatellite amplification followed procedures as described 

in Chapter 3.  Fluorescently labeled PCR products were pooled together and run against 

Genescan™ 500 ROX™ (red) internal size standard in an Applied Biosystems Inc. 3760 Genetic 

Analyzer (Applied Biosystems, Inc., Foster City, CA).  Samples were genotyped using 

GeneMapper v. 4.0 (Applied Biosystems, Inc., Foster City, CA). 

 In addition to the genotypes obtained from the Florida sandhills, genotypes from the 

Mississippi sandhill cranes (94) were made available from Chapter 3.  

3.ii.iii Microsatellite DNA Analysis  

 The program Micro-checker (Van Oosterhout et al., 2004) was used to identify 

genotyping errors.  The number of alleles per locus, observed (Ho) and expected heterozygosity 

(He) was calculated with a web-based (http://wbiomed.curtin.edu.au/genepop) version of 

http://wbiomed.curtin.edu.au/genepop
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GENEPOP (Raymond & Rousset, 1995).  FSTAT (Goudet, 2001) was used to calculate allelic 

richness, to test for deviations for Hardy-Weinberg, and to evaluate loci for linkage 

disequilibrium.  A sequential Bonferroni test (Rice 1989) was used to compensate for multiple 

comparisons. 

 Pairwise multilocus FST  estimates were calculated using FSTAT based on the approach 

of Weir & Cockerham (1984) and were tested for significance by bootstrapping. Pairwise values 

for the number of migrants per generation between populations (Nm) were calculated by 

GENEPOP (Raymond & Rousset, 1995) using Slatkin’s private allele method (Slatkin, 1985; 

Barton & Slatkin, 1986) and Wrights (1951) Nm.   

In order to test the hypothesis that the differentiation observed between Mississippi and 

Florida sandhill cranes in Jones' 2003 study of gene flow between sandhill cranes was the result 

of genetic drift and inbreeding caused by the isolation of the Mississippi population, and not 

endemism, FSC genotypes were compared to two separate datasets: 1) all MSCs sampled; and, 

2) founders and wild caught MSC samples only.   

 Using Microsatellite Toolkit for Excel (Park, 2001), allelic similarity coefficients (s) 

were calculated for within the Florida population, and between the Florida and Mississippi 

populations. The two FSC individuals with the lowest average relatedness to all individuals in 

the MSC population were identified. A matrix of pairwise similarity coefficients was created for 

all sampled individuals (both Florida and Mississippi) and then was reduced to reflect only the 

“founders” of the captive MSC population with the addition of the two FSC individuals 

described above. 
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3.ii.iv. Pedigree Analysis Following the Integration of Florida Sandhill Cranes  

A founder relatedness matrix, including the addition of the two FSC individuals with the 

lowest average (s) was integrated into the MSC – DNA studbook as utilized in Chapter 3.  

Integration of the (s) estimates was completed through GENES 12.0 (Lacy, 1998), replacing the 

default founder matrix of zero relatedness among founders.   

GENES 12.0 (Lacy, 1998) was utilized to compare the results of integrating the FSC 

added founder similarity matrices into the MSC – DNA studbook.  However, new additions to a 

studbook remain “potential founders,” and do not affect population statistics until they have 

generated offspring in the population.  In order to assess potential changes to the MSC 

population after the introduction of two FSCs, the program Population Management 2000 (Lacy 

& Ballou, 2001) was used to hypothetically pair the two introduced FSCs with two individuals in 

the captive MSC population, and produce offspring. GENES 12.0 (Lacy, 1998) was used to 

calculate the changes in mean inbreeding (F), mean kinship (MK), founder genome equivalents 

(FGE), potential founder genome equivalents (pFGE), and gene diversity (GD) (as described in 

Chapter 2).   

Finally, in order to assess whether the same results observed after introducing FSC into 

the MSC population could be achieved simply by improving the pairing of individuals currently 

in the captive MSC population, the changes in mean inbreeding (F), mean kinship (MK), founder 

genome equivalents (FGE), potential founder genome equivalents (pFGE), and gene diversity 

(GD) (as described in Chapter 2) were calculated by GENES 12.0 (Lacy, 1998) after using 

Population Management 2000 (Lacy & Ballou, 2001) to hypothetically mate the two optimal (as 

identified by lowest average allelic similarity) MSC pairs.  The results of this analysis were then 
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compared to the current population statistics, as well as the predicted population statistics after 

the introduction of the FSC cranes. 
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4.i. RESULTS 

4.iii.i. Microsatellite Analysis 

 DNA fragments from 14 loci were successfully amplified (Table 4).  Once again, Loci 24 

and 25 were monomorphic (Table 4), and were subsequently removed from the study.  The 

remaining 12 alleles were screened for all 40 Florida sandhill crane samples, resulting in 30 

complete genotypes, and 10 individuals missing data for 1 or more loci (Appendix D). Size 

range, number of alleles, and expected and observed heterozygosity and were calculated (Table 

4). 

Table 4.  Summary of microsatellite alleles observed in Florida sandhill crane 

population. 

 

Locus 
No. of 

samples 

Fragment 

Size (bp) 

No. of 

alleles 
He Ho 

GRAM6 40 231-275 10 0.89 0.88 

GRAM8 38 361-401 9 0.80 0.47 

GRAM11 40 248-324 13 0.90 0.70 

GRAM17 35 359-395 6 0.75 0.80 

GRAM20 39 374-430 12 0.86 0.74 

GRAM22 39 158-174 4 0.53 0.54 

GRAM24 31 355 1 0.00 0.00 

GRAM25 30 147 1 0.00 0.00 

GRAM30 34 157-189 8 0.81 0.85 

GRAM31 40 255-259 2 0.28 0.32 

GRAM32a 40 243-259 5 0.65 0.72 

GRAM41 33 260-296 4 0.53 0.67 

GRAM42 40 162-171 4 0.57 0.60 

GRAM45 40 255-264 2 0.05 .05 
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 Although three loci, Gram8, Gram11, and Gram41 showed deviations from Hardy-

Weinberg proportions, none were significant after correcting for multiple comparisons (adjusted 

nominal level 5% ) (Table 4).  All loci were in linkage equilibrium after correcting for multiple 

comparisons. 

 While the MSC population reported only 2 private alleles, the FSC population reported 

30 (Table 5). When measurements of diversity are compared with the Mississippi population the 

Florida population reports significantly (p < 0.05) higher gene diversity (He) and allelic richness 

than the Mississippi population (Table 6).  The difference in observed heterozygosity (Ho) 

however, was not significant at the 0.05 level. 
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Table 5. Table of alleles found in only one population (i.e. private alleles).  

Locus Allele Frequency Found 

GRAM6 231 0.113 Florida 

GRAM6 243 0.088 Florida 

GRAM6 247 0.175 Florida 

GRAM8 361 0.010 Mississippi 

GRAM8 369 0.053 Florida 

GRAM8 381 0.039 Florida 

GRAM8 385 0.066 Florida 

GRAM8 389 0.105 Florida 

GRAM8 397 0.118 Florida 

GRAM8 401 0.026 Florida 

GRAM11 248 0.014 Florida 

GRAM11 252 0.125 Florida 

GRAM11 264 0.137 Florida 

GRAM11 296 0.075 Florida 

GRAM11 304 0.088 Florida 

GRAM11 316 0.013 Florida 

GRAM17 383 0.014 Florida 

GRAM30 157 0.021 Mississippi 

GRAM20 374 0.026 Florida 

GRAM20 382 0.013 Florida 

GRAM20 390 0.218 Florida 

GRAM20 398 0.244 Florida 

GRAM20 402 0.154 Florida 

GRAM20 410 0.039 Florida 

GRAM20 418 0.039 Florida 

GRAM20 430 0.026 Florida 

GRAM30 181 0.088 Florida 

GRAM32a 243 0.05 Florida 

GRAM32a 259 0.063 Florida 

GRAM41 250 0.061 Florida 

GRAM42 162 0.038 Florida 

GRAM42 171 0.038 Florida 
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Table 6. Descriptive statistics for Florida and Mississippi sandhill crane populations 

derived from multilocus microsatellite DNA genotypes.   

 

Population 

Average 

number of 

genotypes 

Alleles per 

polymorphic 

locus 

Allelic 

Richness 

He Ho 

Mississippi 87.5 4.08 4.07 0.52 0.55 

Florida 41.5 6.58* 6.51* 0.54* 0.611 

* = significant difference between populations (p < 0.05) 

 

 A significant (p < 0.05) FST value of 0.137 was observed for pairwise comparisons 

between all Florida and Mississippi sandhill cranes sampled.  Estimates of Nm for the same 

comparison were 0.62 for Slatkin’s (1985) private allele method, and 1.57 based on FST. The 

variance observed in allele frequencies between the two populations decreased significantly (p < 

0.05) when only samples from captive MSC founders and wild-hatched Mississippi sandhills 

were included in the analysis (Table 6).  

Table 7. Pairwise estimates of FST and Nm based on microsatellite DNA genotypes. 

 
FST (Weir & 

Cockerham, 1984) 
Nm (Slatkin, 1985) 

Nm (FST, Wright, 

1951) 

 Florida 

Mississippi – all 

samples 
0.137 0.62 1.57 

Mississippi – founders 

and wilds only 
0.094* 0.97 2.41 

*  =  Significant pairwise comparison 
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The average allelic similarity for each pair of individuals within the Florida population 

((s)  = 0.46)  was significantly less (p < 0.05) than the average similarity for each pair of 

individuals within the Mississippi population ((s)  = 0.59). The average allelic similarity for all 

Florida and Mississippi samples combined was 0.50. The lowest average allelic similarity of an 

individual Florida sample to all Mississippi samples was 0.17.   

3.iii.ii. Studbooks and Studbook Integration  

The two individuals with the lowest average pairwise allelic similarity to the Mississippi 

samples (samples 313 and 320, average (s) = 0.31 and 0.37, respectively) were selected for 

hypothetical integration into the captive MSC population.  The pairwise allelic similarity of these 

individuals to the “founders” were added to the “founder” matrix of the MSC – DNA studbook. 

This resulted in a final founder matrix of 22 founders.   

When the founders of this new MSC population including two FSC were redefined as 

related based on allelic similarity (s) the hypothetical pairing and successful mating of 

individuals 313 and 320 with two individuals from the captive MSC population (individuals 

1708 and 1479) resulted in a decrease in mean kinship and mean inbreeding in the total MSC 

population, and corresponding increases in gene diversity (GD) and founder genome equivalents 

(FGE) (Figure 7).  One offspring per pair resulted in a 0.96% decrease in MK, a 2.5% decrease 

in F, a 0.29% increase in GD and a 1.2% increase in FGE. The hypothetical production of two 

offspring per pair resulted in a 1.9% MK decrease, a 2.8% decrease in F, a 0.87% increase in 

GD, and a 1.9% increase in FGE (Figure 7).    

The two captive MSC individuals with the lowest average pairwise allelic similarity to 

the other Mississippi samples were identified (samples 1560 and 1787, average (s) = 0.51 and 
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0.54, respectively) and hypothetically mated with two additional low kinship individuals in the 

captive MSC flock (1809 and 1135).  As with the FSC introduction and pairing, these optimal 

MSC pairings resulted in a decrease in mean kinship and mean inbreeding in the total MSC 

population, and corresponding increases in gene diversity (GD) and founder genome equivalents 

(FGE) (Fig. 6).  However these changes were not as significant as the changes observed after the 

FSC introduction. The hypothetical production of two offspring per pair resulted in a 0.96% MK 

decrease, a 0.82% decrease in F, a 0.44% increase in GD, and a 0.62% increase in FGE (Figure 

7).    
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Figure 7.  Comparison of GENES results of MSC – DNA (s) studbook following the hypothetical 

pairing of 1) MSC – optimized = 2 optimal MSC pairings as identified by average allele sharing 

and mean kinship statistics; 2) FSC – introduced = pairing of 2 FSCa with two MSCs. 

Comparisons are shown for (a) mean kinship, (b) mean inbreeding, (c) gene diversity, (d) 

founder genome equivalents (FGE) following the successful production of 2 and 4 offspring. 

a)         b) 

  
 

c)        d) 
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4.iv. DISCUSSION 

4.iv.i. Microsatellite Analysis 

 As with the analysis of the Mississippi sandhill crane samples, 12 out 14 DNA markers 

were successfully amplified and were polymorphic (Table 4).  The genotypic frequencies 

differed from panmictic expectations in three loci but were not significant after Bonferonni 

correction. Although not significant, the heterozygote deficiency seen at these loci is likely the 

result of sampling scheme.  The samples from the Florida population used for this study were 

obtained from the research of Jones (2003), in which the Florida population was observed 

outside of Hardy-Weinberg equilibrium expectations. Jones (2003) suggested the variance 

between observed and expected heterozygosity was the result of sampling across subpopulations.  

The sampling scheme for the Florida samples used in this and the 2003 study were collected 

from nest sites at two different locations within Florida. Thus the decrease in heterozygosity in 

the total population was a consequence of different allele frequencies in the subpopulations, also 

known as the Wahlund effect (Wahlund,1928). 

4.iv.ii. Population differentiation and integration 

 Private alleles were found in both the Mississippi and Florida populations. In the 

Mississippi population no unique allele was held at a frequency higher than 10%.  The Florida 

population held several private alleles above 10% (Table. 5).  Given the significantly higher 

allelic richness of the Florida population (Table 6) and the bottleneck experienced by Mississippi 

population, the high numbers of private alleles in the Florida population are not surprising.  This 

high number, however, has likely led to the variances observed in estimates of Nm, as the private 

allele method of Nm calculation relies on the number of private alleles in a population.  
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 The variance observed in the microsatellite DNA allele frequencies (FST = 0.137) (Table 

7) between the Florida and Mississippi populations were comparable to the variance observed for 

the same comparison in Jones’ (2003) study (FST = 0.15).  However, when comparisons were 

made between the Florida population and only founders and wild hatched birds in the Mississippi 

population the allelic differentiation decreased 34% (Table 7).  This supports Jones’ (2003) 

hypothesis that the differentiation observed between the Mississippi population and other 

populations of sandhill cranes is the result of isolation and inbreeding.  If the lower level of gene 

flow observed between the Mississippi population and other populations of cranes was the result 

of endemism, we would expect to see the similar levels of allele frequency variance between the 

Florida samples and the wild-hatched/founders samples as we see for all Mississippi samples. It 

has been established (Chapters 2&3) that high levels of inbreeding are present in the captive 

MSC population (Chapters 1&2). The differences observed when only wild-hatched/founder 

samples are assessed suggest that this inbreeding has led to further isolation of the Mississippi 

population.  

Higher allelic richness has also led to lower mean allelic similarity (0.46) in the Florida 

population.  With the hypothetical integration of two individuals from the Florida population into 

the Mississippi population with the lowest (s) values an overall increase in genetic diversity was 

observed (Fig. 7).  An overall increase in genetic diversity was also observed following the 

breeding of the optimal MSC pairs. This increase, however, was not as large as the change seen 

after the introduction of the FSCs, and the impact of the pairing appears to taper off after the first 

two offspring were introduced to the population (Figure 7).  The introduced Florida cranes, on 

the other hand, continued to increase the genetic diversity of the MSC population with the 
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production of more offspring, highlighting the impact the introduction of just a few cranes from 

the Florida population could have on Mississippi population.   

One danger that must be considered before such an introduction, however, is the 

possibility of outbreeding depression.  Outbreeding depression is the reduced fitness of offspring 

that results from the mating of two genetically divergent individuals (Tallmon et al., 2004).  

Orangutans (Pongo pygmaeous), for example, were once managed in captivity as one species.  

After Warren et al., (2001) reported molecular genetic evidence that the Sumatran and Borneo 

populations were two distinct groups the captive breeding program began preventing 

interbreeding between the two populations.  In this study, however, Warren et al., (2001) found 

evidence that the populations diverged approximately 1.1 million years ago.  The Mississippi 

population is believed to have been isolated for less than 100 years, suggesting that outbreeding 

depression would be an unlikely consequence of the introduction of Florida sandhill cranes.   

 Overall this study supports the findings of Rhymer (2001) and Jones (2003), that while 

the Mississippi population of sandhill cranes shows little evidence of current gene flow with the 

Florida population, this is the result of geographic isolation caused by anthropogenic events, and 

gene flow is likely to have occurred in the recent past.  The results of this study suggest that the 

introduction of individuals from the Florida population would result in an increase in the genetic 

variation of the Mississippi sandhill crane population. Hybridization of crane species and 

subspecies has been observed both in the wild and in captivity (Johnsgard, 1984), but further 

research is needed to assess the behavioral and biological impacts of such an introduction.  

Additional research is also suggested into the levels of gene flow between the Mississippi 

population and other migratory populations of sandhill cranes.  Both Rhymer (2001) and Jones 

(2003) found less allele frequency variation between the Mississippi sandhills and migratory 
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populations, than observed between the Mississippi and Florida populations.  Further study may 

reveal that the introduction of greater sandhill cranes (G. c. tabida), for example, into the 

Mississippi captive breeding program, will represent a pairing more analogous to historical gene 

flow.  
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CHAPTER V 

5.i. CONCLUSIONS 

Pedigree analysis of the Mississippi sandhill crane (MSC) captive and released 

population revealed a population with reduced genetic diversity due to unequal breeding of 

founder lines.  The historical MSC studbook (MSC – presumed) was edited to more accurately 

reflect true population size (MSC-confirmed).  Regardless of the studbook analyzed, more than 

6% of the gene diversity present at the establishment of the captive breeding program has been 

lost. At the current pace and without the addition of at least 20 new MSC founders to the 

historical studbook, the levels of gene diversity in this population will not meet the goal of most 

captive breeding programs of 90% gene diversity after 100 years (Frankham et al., 2002). 

The primary assumption of all pedigree analyses is that founders are unrelated. Given the 

population bottleneck experienced by the MSC population prior to the establishment of the 

captive breeding program, it was hypothesized that this assumption was invalid. Microsatellite 

DNA analysis of samples from both captive and wild-hatched Mississippi sandhill cranes, 

supported this hypothesis, finding low allelic richness and high allelic similarity.  Resulting 

estimates of relatedness based on these measures of genetic variation in the founding population 

were integrated into the studbook analyses. 

 The integration of relatedness estimates into the MSC pedigree analyses exposed the 

difficulties and careful consideration necessary when choosing a relatedness estimator. 

Considering the increasing use of molecular markers to assess relationships both in-situ and ex-

situ, this study recommends further research into the variation observed between estimators.   
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 For captive breeding programs with detailed studbook records available, the breeding 

recommendation chart developed by  Jones et al. (in prep) used for this study provides a 

powerful alternative to relying on either molecular markers or studbook analysis alone for 

breeding decisions. The development and comparison of the utility of similar breeding 

recommendation charts for other captive populations with molecular data available is suggested. 

 Finally, this study found allele frequency variation between the Florida and Mississippi 

populations similar to those observed in previous studies (Rhymer et al., 2001; Jones, 2003). 

When the analysis was limited to founders and wild-hatched MSC less differentiation was 

observed than when the entire Mississippi population was considered, suggesting that inbreeding 

and isolation has been the source of genetic structure in the MSC population. While the practical 

application of integrating Florida sandhill cranes with the Mississippi sandhill cranes needs to be 

addressed in further studies, the hypothetical integration conducted in this study highlights the 

impact that the introduction of just a few birds could have on the Mississippi population.   

Before such drastic measures are implemented, however, it is recommended that 

managers of the captive MSC population begin making pairing decisions based on the chart 

introduced in this study.  Doing so is the first step towards breeding management decisions that 

will result in the maintenance, if not promotion, of genetic diversity of the endangered 

Mississippi sandhill crane.   
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APPENDIX A:  SAMPLE INFORMATION 

Sample information including date collected, type of sample collected, studbook number of 

sample individual, location of sample individual, quality of sample, and sample individuals 

history, i.e. captive, released or wild. 

Date Sample Type Studbk # Loc. ID Location Quality History 
3/3/2009 Frozen liver tissue 1020 Stubby ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1024 038402 ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1033 037602 ACRES Good Captive 

1/9/2009 .5 ml whole blood in 5 ml buffer 1081 940347 Yulee Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1117 038411 ACRES Good Captive 

1/2/2009 .5 ml whole blood in 5 ml buffer 1128 940345 Yulee Good Captive 

1/6/2009 .5 ml whole blood in 5 ml buffer 1135 940352 Yulee Good Captive 

1/8/2009 .5 ml whole blood in 5 ml buffer 1137 940349 Yulee Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1138 038508 ACRES Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1144 297 ACRES Good Captive 

3/3/2009 Liver tissue sample - frozen 1152 038512 ACRES Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1156 038516 ACRES Good Captive 

2/26/2009 L. wing tissue - frozen 1162 861 USFWS Poor Released 

2/26/2009 Breast tissue - frozen 1162 861 USFWS Poor Released 

1/8/2009 .5 ml whole blood in 5 ml buffer 1163 940350 Yulee Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1168 038656 ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1217 038918 ACRES Good Captive 

1/13/2009 .5 ml whole blood in 5 ml buffer 1242 980303 Yulee Good Captive 

1/23/2008 3 drops whole blood in 1.5ml buffer 1255 920 USFWS Good Released 

2/26/2009 Liver tissue sample - frozen 1257 922 USFWS Acceptable Released 

1/8/2009 .5 ml whole blood in 5 ml buffer 1258 940355 Yulee Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1278 039043 ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1296 196 ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1307 039092 ACRES Good Captive 

1/2/2009 .5 ml whole blood in 5 ml buffer 1322 940359 Yulee Good Captive 

2/26/2009 Liver tissue sample - frozen 1326 105 USFWS Acceptable Released 

2/18/2009 .5 ml whole blood in 5 ml buffer 1356 039105 ACRES Good Captive 

2/18/2009 .5 ml whole blood in 5 ml buffer 1361 039181 ACRES Good Captive 

10/16/2008 3 drops whole blood in 1.5ml buffer 1385 202 (UB) USFWS Good Released 

2/17/2009 .5 ml whole blood in 5 ml buffer 1401 039202 ACRES Good Captive 

2/26/2009 Liver tissue sample - frozen 1412 - ? 292 - ? USFWS Acceptable Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1431 039251 ACRES Good Captive 

11/4/2008 .5 ml whole blood in 5 ml buffer 1440 314 USFWS Good Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1458 039325 ACRES Good Captive 

1/8/2009 .5 ml whole blood in 5 ml buffer 1479 950354 Yulee Good Captive 

2/26/2009 Liver tissue sample - frozen 1528 501 USFWS Acceptable Released 

2/13/2009 .5 ml whole blood in 5 ml buffer 1534 503 USFWS Good Released 

2/18/2009 .5 ml whole blood in 5 ml buffer 1560 039706 ACRES Good Captive 

2/18/2009 .5 ml whole blood in 5 ml buffer 1580 039798 ACRES Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1586 818 USFWS Good Released 

2/17/2009 .5 ml whole blood in 5 ml buffer 1599 039819 ACRES Good Captive 

12/15/2008 .5 ml whole blood in 5 ml buffer 1611 954 USFWS Good Released 
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Date Sample Type Studbk # Loc. ID Location Quality History 
2/18/2009 .5 ml whole blood in 5 ml buffer 1615 039910 ACRES Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1621 039916 ACRES Good Captive 

1/27/2009 .5 ml whole blood in 5 ml buffer 1624 961 USFWS Good Released 

2/26/2009 Liver tissue sample - frozen 1640 403 USFWS Acceptable Released 

2/26/2009 Liver tissue sample - frozen 1646 052 USFWS Acceptable Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1681 030220 ACRES Good Captive 

11/25/2008 .5 ml whole blood in 5 ml buffer 1701 334 USFWS Good Released 

1/9/2009 .5 ml whole blood in 5 ml buffer 1708 Y55321 Yulee Good Captive 

12/12/2008 .5 ml whole blood in 5 ml buffer 1726 163 USFWS Good Released 

12/5/2008 .5 ml whole blood in 5 ml buffer 1751 442 USFWS Good Released 

10/6/2008 3 drops whole blood in 1.5ml buffer 1757 459 USFWS Good Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1758 275 ACRES Good Captive 

12/31/2008 .5 ml whole blood in 5 ml buffer 1759 Y45005 Yulee Good Captive 

2/19/2009 .5 ml whole blood in 5 ml buffer 1774 030503 ACRES Good Captive 

1/9/2009 .5 ml whole blood in 5 ml buffer 1787 Y55309 Yulee Good Captive 

12/31/2008 .5 ml whole blood in 5 ml buffer 1794 Y55315 Yulee Good Captive 

2/17/2009 .5 ml whole blood in 5 ml buffer 1804 030502 ACRES Good Captive 

1/6/2009 .5 ml whole blood in 5 ml buffer 1809 Y75305 Yulee Good Captive 

12/4/2008 .5 ml whole blood in 5 ml buffer 1819 30801 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1820 Y85001 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1823 030803 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1824 Y85004 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1825 Y85005 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1827 030805 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1828 30806 USFWS Good Released 

11/4/2008 .5 ml whole blood in 5 ml buffer 1830 030808 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1830 030808 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1831 030809 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1832 030810 USFWS Good Released 

12/9/2008 .5 ml whole blood in 5 ml buffer 1833 030811 USFWS Good Released 

2/18/2009 .5 ml whole blood in 5 ml buffer 1834 030812 ACRES Good Captive 

12/1/2008 .5 ml whole blood in 5 ml buffer 1835 030813 USFWS Good Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1836 030814 ACRES Good Captive 

12/1/2008 .5 ml whole blood in 5 ml buffer 1837 030815 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1838 030816 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1840 Y85006 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1841 030818 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1842 030819 USFWS Good Released 

12/1/2008 .5 ml whole blood in 5 ml buffer 1843 030820 USFWS Good Released 

2/19/2009 .5 ml whole blood in 5 ml buffer 1844 030821 ACRES Good Captive 

12/1/2008 .5 ml whole blood in 5 ml buffer 1845 030822 USFWS Good Released 

2/26/2009 Rotted egg membrane - frozen DP Nest 08 none USFWS Poor Wild 

5/27/2009 Rotten yolk and tissue – frozen HW 09 none USFWS Acceptable Wild 

2/26/2009 Rotten yolk and tissue - frozen LG Egg 08 none USFWS Poor Wild 

5/27/2009 Rotten yolk and tissue – frozen Vick 09 None USFWS Acceptable Wild 
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Date Sample Type Studbk # Loc. ID Location Quality History 
2/26/2009 Liver tissue sample – frozen WH04 W-04 USFWS Poor Wild 

11/5/2008 .5 ml whole blood in 5 ml buffer WH09 W-9 USFWS Good Wild 

9/16/2008 3 drops whole blood in 1.5ml buffer WH25 W-25 USFWS Good Wild 

10/22/2008 .5 ml whole blood in 5 ml buffer WH36 W-36 USFWS Good Wild 

2/29/2008 3 drops whole blood in 1.5ml buffer WH37 W-37 USFWS Good Wild 

9/17/2008 3 drops whole blood in 1.5ml buffer WH38 W-38 USFWS Good Wild 

10/22/2008 3 drops whole blood in 1.5ml buffer WH40 W-40 USFWS Good Wild 

10/22/2008 3 drops whole blood in 1.5ml buffer WH41 W-41 USFWS Good Wild 
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APPENDIX B: Test Statistics 

Queller and Goodnight relatedness calculation (Queller & Goodnight, 1989) as used by 

MARK v 3.1 (Ritland, 2006): 

Given individuals X = {x1, x2,….xL} and Y  = {y1, y2,….yL} the estimator is given by: 

 

𝑟QG  X, Y =  
 (δ𝑎𝑐 +  δ𝑎𝑑  +  δ𝑏𝑐  +  δ𝑏𝑑  −  𝑝𝑎 −  𝑝𝑏 −  𝑝𝑐 −  𝑝𝑑) 𝐿

𝑙−1

 ( 2 +  δ𝑎𝑏 +  δ𝑐𝑑  −  𝑝𝑎 −  𝑝𝑏 −  𝑝𝑐 −  𝑝𝑑) 𝐿
𝑙−1

 , 

 

where δxy is defined as δx,x = 1 and δx,y-x = 0 (the Kronecker delta), and the population 

frequencies of {a,b,c,d} alleles are represented by {pa, pb, pc, pd}. 

This equation can be stated more simply as: 

𝑟QG  X, Y =
   (𝑃𝑦 − 𝑃)

   (𝑃𝑥 − 𝑃)
 , 

 

where P  is the population frequency of the allele shown at the current locus and position, Px is 

the frequency of the current allele in the current individual (0.5 or 1.0, depending on whether the 

individual is heterozygous or not), and Py is the frequency of the current allele in the individual’s 

partner (i.e. the individual being compared to) (Beebee & Rowe, 2008). 
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A priori relationship hypothesis test (Kalinowski et al., 2006): 

Given that k-coefficients, k0, k1, k2 represent the probabilities that two individuals share zero, one 

or two alleles at a locus the test statistic, Λ, is equal to: 

 

 = Ln  
𝐿(𝐾(𝑃𝑢𝑡𝑎𝑡𝑖𝑣𝑒 )

𝐿 (𝐾(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 )
 ,  

 

where K(Putative) represents the k-coefficients for the putative relationship being tested, and 

K(Alternative) represents the k-coefficients for an alternative hypothesis (unrelated individuals).  

Genotypes for the alternative hypothesis are simulated for the pair being tested in two steps.  

First, the number of alleles IBD  is chosen from K, and then given K the genotypes for the 

alternative hypothesis are chosen.  This simulation is performed a large number of times 

(>1000).  The P value is equal to the proportion of times that the simulated Λ is greater than or 

equal to the observed Λ.  A small P value indicates the alternative hypothesis can be rejected. 

 

Wright’s FST statistic (Wright, 1951): 

Given Vp represents the variance of allele frequencies among populations, and 𝑝  the observed 

mean allele frequency: 

𝐹𝑆𝑇 =  
𝑉𝑝

𝑝  1 − 𝑝  
. 
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Weir and Cockerham’s (1984) calculation of FST (ϴST):  

Given 𝜎𝑇
2 = 𝜎𝐵

2  +  𝜎𝑊
2 +  𝜎𝐼

2 , where 𝜎𝑇
2 represents the total variance of allele frequency within a 

population, 𝜎𝐵
2 represents the between subpopulation variance in allele frequency, 𝜎𝑊

2  represnts 

the allele frequency variance between individuals within a subpopulation, and 𝜎𝐼
2 represents the 

between gametes within individuals variance in allele frequency.  ϴST  can be estimated from 

𝜽𝑺𝑻 =  
  𝝈𝑩

𝟐
𝒖𝒊

  𝝈𝑻
𝟐

𝒖𝒊

, 

where the variances in allele frequency are summed over all alleles i and all loci u.  

 

Wright’s Nm statistic (1951) as calculated from F-statistics: 

𝑁𝑚 ≅
(1 − 𝐹ST )

4𝐹ST
 . 

 

Slatkin’s (1985) Nm statistic as calculated from private alleles: 

ln  𝑝(1)  =  −0.505 ln  𝑁𝑚 −  2.440, 

, 

where  𝑝(1)  represents the average frequency of private alleles. 
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APPENDIX C: Mississippi Sandhill Crane Breeding Recommendation Chart 

 

C.i. CHART ORGANIZATION 

The chart is first organized by the mean kinship rank of individuals in the population as 

calculated by the MSC – presumed studbook (i.e., individuals at the top left of the table have the 

mean kinship values (MK) in the population). Males are listed across the top of the chart, and 

females are listed going down the left hand side of the chart. Red lines indicate the average mean 

kinship for the entire population (0.0599).  Individuals above and to the left of the red lines 

report lower MK values than the population average, individuals below and to the right of the red 

lines report higher MK values than the population average.   

Organizing the chart in order of MK, produces three categories of pairings; rare with rare 

(top left quadrant); rare with common (bottom left and top right quadrants); and common with 

common (bottom right quadrant).  Individual pairings are then color coded according to the 

quality of the pairing, as indicated by inbreeding coefficients and Mate Suitability index values 

(see Chapter 2 for description of MSI calculation) as reported by the MSC – presumed studbook 

and listed on the top row of individual pairing cells. (See Figure 7 for a description of the 

information found in each cell).  Pairings highlighted in green and blue represent the rare with 

rare pairings. These are individuals with few ancestors (low MK) and rare genotypes. Offspring 

from these pairings would increase the gene diversity of the population, and are therefore 

suitable for being kept in captivity. Offspring from pairings highlighted in yellow are pairings 

between genetically mismatched birds (i.e., common with rare).  These offspring along with the 

third category, common with common (highlighted in orange), should not be kept in captivity as 

they would decrease the population’s gene diversity.  Orange and yellow offspring, however, are 

suitable for refuge release. Pairings that would result in inbreeding coefficients larger than the 
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average mean kinship, or with MSI ratings above 4 are highlighted in black.  These are pairings 

that should not occur for any reason.   

Once the quality pairings have been color coded according to information reported by the 

historical studbook the information obtained from the DNA studbooks is incorporated into the 

breeding recommendations.  This is done by assessing the inbreeding levels indicated by the 

MSC – DNA (s) studbook, and the MSC – DNA (r) studbook.  Any pairings that report higher 

inbreeding values than the average MK value for the individual studbook (0.32 for (s), and 0.03 

for (r)) are blacked out, as these pairings would result in a reduction in observed heterozygosity 

across the DNA markers.   

 

Figure 7. Close up and description of data included in chart cells. a) Represents the location of 

the captive individual (ACRES = Audubon Center for Research on Endangered Species, New 

Orleans, LA; YULEE = White Oak Conservation Center, Yulee, FL). b) Indicates the three mean 

kinship ranks as calculated by the three studbook strategies (MK rank  of MSC – presumed, MK 

rank of MSC - DNA allelic similarity (s), and MK rank of MSC – DNA Queller and Goodnight 

(r), respectively). c) Indicates the studbook number of the captive individual. d) The first row in a 

pairing cell indicates the inbreeding coefficient, and Mate Suitability index (MSI) rating of the 

potential pairing as calculated by the MSC – presumed studbook. As described in Chapter 2 the 

MSI rating indicates the quality of a pairing on a 1-6 scale). For the cell shown below, the 

pairing of studbook number 1033 (male) with studbook number 1708 (female) would result in 

offspring with an inbreeding coefficient of 0.000, and a MSI rating of 1.000.  e) The second row 

in a pairing cell lists the inbreeding coefficient and MSI rating for the given pairing as 

calculated by the MSC – DNA (s) studbook. f) The third row in a pairing cell lists the inbreeding 

coefficient and MSI rating of a given pairing as calculated by the MSC – DNA (r) studbook. 
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Mississippi Sandhill Crane Breeding Recommendation Chart 
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Mississippi Sandhill Crane Breeding Recommendation Chart: Quadrant 1 – Rare with Rare pairings 
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Mississippi Sandhill Crane Breeding Recommendation Chart – Quadrant 2 – Common with Rare pairings 
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Mississippi Sandhill Crane Breeding Recommendation Chart – Quadrant 3 – Common with Rare pairings 
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Mississippi Sandhill Crane Breeding Recommendation Chart – Quadrant 4 – Common with Common pairings 
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APPENDIX D: MICROSATELLITE DNA GENOTYPES 

 Mississippi sandhill cranes: 

ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

1018 
272 / 

268 

373 

/? 

255 / 

263 

359 

/? 
?/? 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

157 

255 / 

259 

247 / 

255 

266 / 

266 

168 / 

165 

255 / 

264 

1020 
268 / 

268 

373 / 

377 

251 / 

251 

359 / 

375 

394 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1024 
272 / 

308 

377 / 

377 

251 / 

263 

359 / 

363 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

255 / 

255 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1033 
272 / 

308 

373 / 

393 

251 / 

263 

375 / 

391 

394 / 

394 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1034 
268 / 

308 

373 / 

377 

251 / 

255 

375 / 

363 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

161 

255 / 

259 

247 / 

247 

266 

/? 

168 / 

165 

264 / 

264 

1036 
272 / 

268 

377 / 

361 

251 

/? 

363 / 

375 

394 

/? 

158 

/? 

355 / 

355 

147 / 

147 

165 / 

169 

255 

/? 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1081 
268 / 

276 

373 / 

393 

267 / 

263 

363 / 

375 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

255 / 

264 

1117 
268 / 

272 

373 / 

373 

251 / 

255 

375 / 

359 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

255 

266 / 

266 

165 / 

168 

255 / 

264 

1128 
268 / 

308 

373 / 

377 

251 / 

263 
?/? 

394 / 

394 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1135 
268 / 

272 
?/? 

251 / 

251 

375 / 

375 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1137 
268 / 

272 

373 / 

361 

251 / 

255 

375 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1138 
256 / 

308 

373 / 

377 

255 / 

263 

391 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

255 

247 / 

247 

266 / 

269 

165 / 

168 

264 / 

264 

1144 
268 / 

268 

373 / 

373 

251 / 

263 

359 / 

375 

394 / 

414 

170 / 

166 

355 / 

355 

147 / 

147 

161 / 

169 

259 / 

259 

247 / 

247 

266 / 

266 

168 / 

168 

264 / 

264 

1149 
268 / 

308 

377 / 

393 

251 / 

263 

359 / 

375 

394 / 

414 

170 / 

158 

355 / 

355 

147 / 

147 

161 / 

169 

259 / 

255 

247 / 

247 

266 / 

269 

165 

/? 

255 / 

264 

1151 
272 / 

276 

373 / 

373 

255 / 

263 

363 

/? 

394 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

165 

/? 

255 / 

255 

247 / 

247 

266 

/? 

165 / 

165 

255 / 

264 

1152 
308 / 

308 

377 / 

377 

251 / 

251 

359 / 

359 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1156 
268 / 

276 

377 / 

393 

251 / 

263 

363 / 

391 

394 / 

394 

170 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1162 
276 / 

260 

393 / 

393 

255 / 

263 

363 / 

359 

414 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

255 

255 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1163 
256 / 

308 

373 / 

393 

251 / 

263 

359 / 

359 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

173 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1168 
268 / 

272 

373 / 

373 

255 / 

263 

375 / 

363 

394 / 

394 

166 / 

158 

355 / 

355 

147 / 

147 

161 / 

165 

255 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1217 
276 / 

308 

373 / 

373 

251 / 

251 

359 / 

391 

414 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1242 
308 / 

308 

373 / 

377 

251 / 

255 

359 / 

375 

394 / 

414 

158 

/? 

355 / 

355 

147 / 

147 

161 / 

165 

255 / 

259 

247 / 

247 
?/? 

165 / 

165 

264 / 

264 



99 
 

ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

1255 
272 / 

260 

377 / 

377 

251 / 

255 

391 / 

395 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1257 
268 / 

272 

373 / 

377 

251 / 

263 
?/? ?/? 

170 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1258 
260 / 

268 

373 / 

373 

255 / 

263 

359 / 

395 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

173 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

168 

264 / 

264 

1278 
308 / 

308 

373 / 

373 

263 / 

263 

359 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1296 
268 / 

272 

373 / 

373 

251 / 

251 

359 / 

375 

394 / 

414 

166 / 

158 

355 / 

355 

147 / 

147 

169 / 

169 

259 / 

255 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1307 
256 / 

272 

373 / 

373 

263 / 

263 

359 / 

363 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

255 / 

264 

1322 
276 / 

308 

377 / 

377 

251 / 

263 

391 / 

359 

394 / 

394 

170 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1326 
260 / 

268 

373 / 

373 

251 / 

267 

359 / 

375 

379 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

251 

266 / 

269 

165 / 

168 

264 / 

264 

1352 
308 / 

308 

373 / 

377 

251 / 

263 

359 / 

391 

394 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 
?/? 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1356 
268 / 

272 

373 / 

373 

251 / 

255 

359 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

255 

266 / 

269 

165 / 

165 

255 / 

264 

1361 
256 / 

272 

373 / 

373 

251 / 

255 

359 / 

363 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

157 / 

161 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

1385 
256 / 

268 

373 / 

393 

251 / 

263 

359 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1401 
260 / 

268 

373 / 

393 

235 / 

255 

359 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

189 

255 / 

259 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1412 
268 / 

268 

393 / 

393 

235 / 

255 

359 / 

363 

414 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

251 / 

255 

266 / 

296 

165 / 

165 

264 / 

264 

1431 
268 / 

276 

377 / 

377 

251 / 

263 

375 / 

391 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

161 

255 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

255 / 

264 

1440 
276 / 

276 

373 / 

377 

251 / 

255 

359 / 

363 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

255 

266 / 

266 

165 / 

168 

264 / 

264 

1458 
268 / 

272 

377 / 

377 

251 / 

251 

363 / 

375 

394 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1479 
272 / 

308 

373 / 

373 

251 / 

267 

391 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1528 
268 / 

308 

373 / 

373 

251 / 

263 
?/? 

394 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

1534 
260 / 

276 

373 / 

373 

251 / 

255 

359 / 

359 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

259 / 

259 

247 / 

247 

266 / 

296 

165 / 

165 

264 / 

264 

1560 
260 / 

268 

373 / 

373 

263 / 

267 

363 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

189 

259 / 

259 

251 / 

255 

266 / 

296 

165 / 

165 

264 / 

264 

1580 
268 / 

308 

373 / 

393 

251 / 

263 

359 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1586 
268 / 

308 

373 / 

373 

251 / 

263 
?/? 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

255 / 

264 

1599 
272 / 

276 

373 / 

373 

263 / 

263 

363 / 

363 

394 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 



100 
 

ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

1611 
268 / 

308 

373 / 

373 

251 / 

255 

359 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

259 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1615 
268 / 

268 

393 / 

393 

251 / 

255 

359 / 

375 

394 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

259 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1621 
256 / 

268 

377 / 

377 

251 / 

255 

375 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

173 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1624 
272 / 

308 

373 / 

377 

251 / 

263 

359 / 

363 

394 / 

394 
?/? 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1640 
268 / 

308 
?/? 

235 / 

251 
?/? ?/? 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

189 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

255 / 

264 

1646 
260 / 

276 
?/? 

235 / 

251 

391 

/? 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

173 / 

189 

259 / 

255 

247 / 

255 

266 / 

296 

165 / 

168 

264 / 

264 

1681 
268 / 

276 

373 / 

373 

255 / 

263 

359 / 

363 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

189 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1701 
268 / 

272 

373 / 

373 

251 / 

263 

363 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

259 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

255 / 

264 

1708 
260 / 

268 

373 / 

373 

251 / 

267 

375 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

259 / 

259 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

1726 
268 / 

272 

373 / 

373 

251 / 

263 

359 / 

391 

414 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1751 
276 / 

308 

377 / 

377 

263 / 

263 

359 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1757 
268 / 

276 

373 / 

373 

251 / 

255 

359 / 

363 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

255 

266 / 

266 

165 / 

168 

264 / 

264 

1758 
272 / 

308 

373 / 

373 

251 / 

263 

363 / 

391 

394 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1759 
268 / 

272 

373 / 

373 

251 / 

251 

375 / 

375 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1774 
256 / 

260 

373 / 

373 

255 / 

263 

359 / 

359 
?/? 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1787 
268 / 

268 

373 / 

373 

255 / 

263 

359 / 

359 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

255 / 

255 

247 / 

255 

266 / 

296 

165 / 

168 

255 / 

264 

1794 
256 / 

260 

373 / 

373 

255 / 

263 

359 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

173 / 

189 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1804 
260 / 

272 

373 / 

373 

251 / 

263 

391 / 

395 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1809 
260 / 

268 

373 / 

393 

251 / 

255 

363 / 

375 

394 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

259 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

255 / 

264 

1819 
260 / 

308 

373 / 

373 

235 / 

263 

359 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

296 

165 / 

165 

264 / 

264 

1820 
256 / 

268 

373 / 

393 

251 / 

251 

359 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1823 
256 / 

268 

373 / 

393 

251 / 

263 

359 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

259 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1824 ?/? 
393 / 

393 

255 / 

255 

391 

/? 
?/? 

166 / 

166 
?/? 

147 / 

147 
?/? 

255 / 

259 

247 / 

247 
?/? 

165 / 

168 

264 / 

264 

1825 
268 / 

272 

373 / 

373 

251 / 

255 

391 / 

395 

394 / 

414 

170 / 

170 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 



101 
 

ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

1827 
272 / 

276 

373 / 

377 

251 / 

255 

363 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1828 
268 / 

272 

393 / 

393 

251 / 

255 

359 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

189 

255 / 

255 

247 / 

255 

266 / 

269 

165 / 

168 

264 / 

264 

1830 
268 / 

276 

373 / 

373 

235 / 

263 

375 / 

391 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

296 

165 / 

168 

264 / 

264 

1831 
268 / 

268 

373 / 

393 

235 / 

255 

359 / 

359 

414 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

189 

255 / 

259 

247 / 

247 

266 / 

269 

165 / 

168 

255 / 

264 

1832 
256 / 

272 

373 / 

373 

263 / 

263 

359 / 

363 

414 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1833 
256 / 

260 

373 / 

373 

255 / 

263 

359 / 

359 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

173 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1834 
268 / 

272 

373 / 

393 

251 / 

263 

363 / 

375 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

259 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1835 
272 / 

272 

373 / 

373 

251 / 

263 

359 / 

363 

414 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1836 
256 / 

268 

373 / 

373 

251 / 

255 

359 / 

391 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

255 

266 / 

269 

165 / 

165 

264 / 

264 

1837 
260 / 

272 

393 / 

393 

255 / 

263 

363 / 

375 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

259 / 

259 

247 / 

247 

266 / 

269 

165 / 

165 

264 / 

264 

1838 
268 / 

272 

373 / 

377 

251 / 

263 

363 / 

375 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

1840 
256 / 

272 

373 / 

373 

251 / 

255 

375 / 

391 

414 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

255 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

1841 
268 / 

308 

373 / 

393 

251 / 

255 

375 / 

391 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

296 

165 / 

165 

264 / 

264 

1842 
256 / 

260 

393 / 

393 

251 / 

251 

375 / 

375 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 
?/? 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1843 
260 / 

268 

373 / 

373 

251 / 

255 

359 / 

359 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

247 

266 / 

296 

165 / 

165 

264 / 

264 

1844 
260 / 

272 

373 / 

373 

251 / 

255 

359 / 

359 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 
?/? 

259 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

255 / 

264 

1845 
256 / 

268 

373 / 

373 

251 / 

255 

359 / 

359 

414 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

177 

255 / 

259 

247 / 

255 

266 / 

266 

165 / 

168 

264 / 

264 

DPN

Est0

8 

260 / 

308 

373 / 

377 

255 / 

263 

363 / 

391 

394 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

177 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

HW

09 

308 / 

308 

373 / 

373 

263 / 

263 
?/? ?/? 

158 / 

170 

355 / 

355 

147 / 

147 

177 / 

177 
?/? 

247 / 

251 

266 / 

266 
?/? 

264 / 

264 

LGE

G8 

268 / 

268 

373 / 

373 

251 / 

251 
?/? 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

177 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

168 

264 / 

264 

VIC

K8 

256 / 

272 

373 / 

393 

251 / 

263 

359 / 

363 

394 / 

414 

158 / 

170 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

247 

266 / 

266 

165 / 

165 

264 / 

264 

WH

04 

272 / 

272 
?/? 

251 / 

255 
?/? ?/? 

166 / 

170 

355 / 

355 

147 / 

147 
?/? ?/? 

247 / 

247 

266 / 

266 
?/? 

264 / 

264 

WH

09 

268 / 

300 

373 / 

373 

251 / 

251 

375 / 

391 

379 / 

394 

158 / 

170 

355 / 

355 

147 / 

147 

157 / 

161 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

168 

255 / 

264 
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ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

WH

25 

268 / 

276 

373 / 

393 

235 / 

235 

359 / 

395 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

169 

259 / 

259 

247 / 

251 

296 / 

296 

165 / 

165 

264 / 

264 

WH

36 

300 / 

308 

377 / 

377 

267 / 

267 

359 / 

363 

394 / 

394 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

189 

255 / 

255 

247 / 

251 

266 / 

269 

165 / 

168 

264 / 

264 

WH

37 

276 / 

308 

373 / 

373 

251 / 

263 

363 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

161 / 

165 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

WH

38 

276 / 

308 

373 / 

373 

251 / 

263 

363 / 

391 

394 / 

414 

158 / 

158 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

WH

40 

268 / 

268 

373 / 

377 

251 / 

267 

359 / 

363 

394 / 

394 

158 / 

166 

355 / 

355 

147 / 

147 

161 / 

169 

255 / 

259 

247 / 

255 

266 / 

269 

165 / 

168 

255 / 

264 

WH

41 

308 / 

324 

373 / 

373 

251 / 

263 

387 / 

391 

406 / 

414 

158 / 

166 

355 / 

355 

147 / 

147 

157 / 

165 

255 / 

255 

247 / 

255 

266 / 

266 

165 / 

165 

264 / 

264 

 

 

Florida sandhill crane genotypes 

ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

304 
256 / 

268 

373 / 

397 

247 / 

263 

363 / 

395 

390 / 

394 

170 / 

174 
?/? ?/? ?/? 

255 / 

255 

247 / 

251 

266 / 

269 

165 / 

171 

264 / 

264 

305 
252 / 

264 

373 / 

373 

259 / 

263 

359 / 

359 

398 / 

398 

158 / 

166 
?/? ?/? 

165 / 

173 

255 / 

259 

251 / 

255 

266 / 

266 

165 / 

171 

264 / 

264 

306 
252 / 

260 

373 / 

373 

235 / 

247 

359 / 

391 

390 / 

402 

158 / 

170 
?/? ?/? 

173 / 

177 

255 / 

259 

255 / 

259 
?/? 

168 / 

168 

264 / 

264 

308 
272 / 

272 

373 / 

397 

247 / 

275 

359 / 

395 

414 / 

430 

158 / 

166 

355 / 

355 
?/? 

173 / 

173 

255 / 

259 

247 / 

251 

266 / 

269 

165 / 

165 

264 / 

264 

309 
264 / 

264 

385 / 

397 

251 / 

267 

363 / 

363 

390 / 

390 

166 / 

166 
?/? ?/? 

165 / 

181 

255 / 

255 

247 / 

247 
?/? 

168 / 

168 

264 / 

264 

310 
272 / 

296 

373 / 

377 

243 / 

251 

359 / 

363 

418 / 

430 

158 / 

166 

355 / 

355 
?/? 

169 / 

173 

255 / 

259 

247 / 

251 
?/? 

165 / 

165 

264 / 

264 

311 
260 / 

272 

381 / 

381 

263 / 

263 
?/? 

398 / 

414 

158 / 

166 
?/? ?/? 

161 / 

173 

255 / 

259 

251 / 

255 
?/? 

165 / 

165 

264 / 

264 

312 
272 / 

272 

373 / 

373 

263 / 

275 

359 / 

395 

398 / 

414 

158 / 

166 
?/? ?/? 

165 / 

173 

255 / 

259 

251 / 

255 

266 / 

269 

165 / 

165 

264 / 

264 

313 
256 / 

308 

373 / 

389 

243 / 

275 

363 / 

363 

398 / 

398 

166 / 

166 

355 / 

355 

147 / 

147 

169 / 

177 

255 / 

255 

243 / 

251 

266 / 

269 

168 / 

168 

264 / 

264 

315 
308 / 

308 

373 / 

373 

263 / 

267 

383 / 

391 

402 / 

406 

158 / 

158 

355 / 

355 

147 / 

147 

165 / 

173 

255 / 

255 

247 / 

247 

260 / 

269 

168 / 

168 

264 / 

264 

316 
260 / 

260 

369 / 

369 

263 / 

267 

363 / 

395 

398 / 

406 

166 / 

170 

355 / 

355 

147 / 

147 

173 / 

177 

255 / 

255 

247 / 

247 

266 / 

269 

165 / 

168 

264 / 

264 

320 
260 / 

304 

377 / 

377 

231 / 

231 

363 / 

395 

398 / 

398 
?/? 

355 / 

355 

147 / 

147 
?/? 

255 / 

255 

243 / 

247 
?/? 

165 / 

165 

264 / 

264 

322 
252 / 

252 

381 / 

389 

247 / 

267 

359 / 

391 

374 / 

398 

158 / 

166 

355 / 

355 

147 / 

147 

165 / 

169 

255 / 

259 

247 / 

259 
?/? 

165 / 

165 

264 / 

264 

323 
252 / 

308 

397 / 

397 

251 / 

267 

359 / 

395 

378 / 

398 

158 / 

174 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

255 

251 / 

259 

266 / 

266 

162 / 

165 

255 / 

264 
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ID # 
Gram 

11 

Gram 

8 

Gram 

6 

Gram 

17 

Gram 

20 

Gram 

22 

Gram 

24 

Gram 

25 

Gram 

30 

Gram 

31 

Gram 

32a 

Gram 

41 

Gram 

42 

Gram 

45 

328 
264 / 

308 

377 / 

389 

231 / 

259 

359 / 

363 

406 / 

406 

158 / 

166 

355 / 

355 

147 / 

147 

169 / 

173 

255 / 

259 

247 / 

259 

266 / 

269 

165 / 

168 

264 / 

264 

330 
296 / 

296 

389 / 

397 

247 / 

251 

363 / 

395 

390 / 

410 

166 / 

170 
?/? 

147 / 

147 

161 / 

173 

255 / 

259 

247 / 

251 
?/? 

168 / 

168 

264 / 

264 

331 
264 / 

272 

373 / 

373 

263 / 

263 

359 / 

363 

398 / 

402 

166 / 

166 
?/? 

147 / 

147 

165 / 

173 

255 / 

255 

247 / 

251 

266 / 

269 

165 / 

168 

264 / 

264 

333 
252 / 

260 

385 / 

389 

235 / 

247 

363 / 

391 

390 / 
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