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ABSTRACT 

 

 

     This research consists of three parts.  The first part is an investigation of several popular 

image restoration techniques.  The techniques are used to restore 2-D image data, f(x,y), that has 

been blurred by a known point spread function (PSF), b(x,y) and corrupted by an unknown 

amount of noise, n(x,y).  Several sample images are restored using all of the techniques.  Of the 

methods investigated the one which produces the best restoration results was determined to be 

the Wiener deconvolution method.  The determination of the best method is based on the quality 

of the restored image and the required restoration time. 

     The second part of this research involves the development of a noise standard deviation (σn) 

estimation method.  The method determines an estimate, σe, of σn based on the Morrison Noise 

Reduction Method (MNRM) and is therefore an iterative method.  The results of the noise, σn, 

estimating method (SIGEST) developed are rather good.  The error between σn and σe when 

average across several images all contaminated with a medium width or greater PSF and various 

amounts of noise, is less than 10 percent.  Knowledge of σn is important for the application of 

Wiener deconvolution.  All noise in this research is assumed to be uncorrelated noise. 

     The third part of this research involves the development of the Sub-Imaging Method, SIM.  In 

the third part of this research, the h2 and the hN of image data h is defined as follows: 

h2 = Image data h processed by two iterations of the MNRM 

hN = h – h2 

SIM divides an image’s hN into several rectangular parts, calculates σe of each part by the 

method described previously, calculates the average of the σe‘s and selects the part with a σe 



 xi

which is closest to the average of all the σe‘s.  The part with a σe closest to the average is defined 

to be the average sub-image (asi).  The following assertions concerning SIM are investigated: 

 

1. The asi of an image can be used in the place of the whole image to determine σe of σn 

and used to restore the whole image.  Therefore, the noise in a piece of an image can 

represent the noise in the whole image (provided it is the asi of the image’s hN). 

2. SIM can be combined with the Wiener image restoration method to restore 

contaminated image data without the σn of the data initially being known. 

 

In this research, image and numerical results are provided which validate the two claims about 

SIM.  The wiener method and SIM are combined to develop the Sub-Image Wiener Method 

(SIWM).  In this research, image and numerical results are provided to show that SIWM is an 

effective method of restoring blur and noise contaminated image data.  Image and numerical data 

are provided comparing SIWM to the Matlab function Wiener2.  The results show that SIWM is 

faster and yields better results than the Wiener2 method.
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CHAPTER 1 

INTRODUCTION 

 

 

     “One picture is worth more than ten thousand words”, is a familiar proverb that refers to the 

idea that complex stories can be told with just a single still image.  A single image may be more 

informative and or influential than a substantial amount of written information.  An image may 

be defined as a two-dimensional function, f(x,y), where x and y are spatial coordinates, and the 

amplitude of f at any location (x,y) is called  the intensity or gray level of the image at that point, 

[8].  Joseph Nicéphore Niépce using a sliding wooden box camera made by Charles and Vincent 

Chevalier in Paris made the first permanent image (photograph) in 1826 or 1827.  In many 

applications (e.g., satellite imaging, medical imaging, astronomical imaging, poor-quality family 

portraits) the imaging system introduces a slight distortion. Often images are slightly blurred and 

image restoration aims at deblurring the image.  

     Digital image processing is the manipulation of images by computer. One of the first 

applications of digital images was in the newspaper industry when pictures were first sent by 

submarine cable between London and New York in the 1920s.  Digital image techniques in 

image restoration and enhancement had their first fruitful application at the Jet Propulsion 

Laboratory of the California Institute of Technology, [2].   In the 1960s, as part of the program to 

land a man on the moon, it was decided to land unmanned spacecraft initially, which would 

televise back images of the moon’s surface and test the soil for later manned landings.  

Unfortunately, the limitations on weight and power supply made it impossible to launch a 

“perfect” TV camera system on the unmanned craft.  Thus, JPL measured the degradation 
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properties of the cameras before they were launched and then used computer processing to 

remove, as well as possible, the degradations from the received moon images, [2].   

     From the 1960s until the present, the field of image processing has grown significantly.  In 

addition to applications in medicine and the space program, digital image processing techniques 

now are used in a broad range of applications.  Computer procedures are used to enhance the 

contrast or code the intensity levels into color for easier interpretation of X-rays and other 

images used in industry, medicine, and the biological sciences.  Geographers use the same or 

similar techniques to study pollution patterns from aerial and satellite imagery.  Image 

enhancement and restoration procedures are used to process degraded images of unrecoverable 

objects or experimental results too expensive to duplicate.  In archeology, image processing 

methods have successfully restored blurred pictures that were the only available records of rare 

artifacts lost or damaged after being photographed.  In physics and related fields, computer 

techniques routinely enhance images of experiments in areas such as high-energy plasmas and 

electron microscopy.  Similarly, successful applications of image processing concepts can be 

found in astronomy, biology, nuclear medicine, law enforcement, defense and industrial 

applications [2].  Today, there is almost no area of technical endeavor that is not impacted in 

some way by digital image processing. 
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1.1  Preliminaries 
 

     Deconvolution is a process of recovering information which has been altered (contaminated) 

from its true original form.  The contamination for many images has two basic forms: blurring, 

which is described by the convolution, and noise addition. Thus contamination can be modeled 

as follows: 

    Figure 1.1 

 

).,(),(**),(),(],1.1[ yxnyxfyxbyxh +=    

h = Recorded image data. 

b = Blurring function or point spread function (PSF), also called the impulse response. 

n = Noise 

f = Actual input data (uncontaminated), referred to in optics as the object data. 

The symbol ** denotes convolution between the PSF and the actual data.  

Convolution describes the action of an observing instrument; it is generally a smoothing process.   

Mathematically, 2D convolution is defined (continuous and discrete variables respectively) as 

follows, 
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A numerical example of 2D convolution is shown in equation 1.4. 
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Noise is whatever distorts, deforms, prevents, interferes or changes the information being 

observed and or recorded other than that caused by a devices lens.  In this paper all noise is 

considered to be normally distributed (gaussian) with a mean of zero.  In my research I added 

noise to the various input image data by generating a random matrix using the Matlab function 

randn.  The function randn, generates random normally distributed values with a standard 

deviation of 1, the values are stored in the noise matrix, inoise.  The following equation is used 

to create the 2D noise matrix n(x,y) used in equation 1.1:  

.100)]()([),(),(],5.1[ nsfMinfMaxyxinoiseyxn ⋅−⋅=  

In equation 1.5, the value of ns is arbitrarily set from 0 to 100, so that the noise is set to have a σn 

which is ns% of the range of values of f, the original image data.  To ensure the non-negativity of 

h calculated in equation 1.1 and that it not exceed the maximum pixel value, if h is less than zero 

then it’s value is set equal to zero and if it is greater than 255 then it is set equal to 255.  

 

Point spread function is a mathematical term for the impulse response of a 2D optical system.  It 

is the impulse or point response of an optical system to a point input.  A lens focuses a single 

point of light into a complex shape known as a point spread function (PSF).  The shape of the 

PSF depends upon light wavelength, lens numerical aperture, and the optical aberration of the 

lens.  In this paper all PSF’s are 2D Gaussian types generated by the following equation: 
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In equation 1.6, x runs from -Nx/2 to Nx/2 and y from -Ny/2 to Ny/2.  The size of the matrix 

generated is Nx by Ny.  The variables σx and σy are the standard deviation in the x and y direction 

respectively.  For example, a 11 by 11 narrow PSF is given by, b = PSF(11,11,0.33,0.33), and is 

shown in figure 1.2a, a medium width PSF is given by b = PSF(11,11,1.0,1.0) shown in figure 

1.2b and a 11 by 11 wide PSF is given by, b = PSF(11,11,1.75,1.75), shown is shown in figure 

1.2c.  All of the PSF’s used in this paper are square in size, so hencforth all PSF’s will be 

indicated by PSF(Nxy, σx, σy), with Nxy = Nx = Ny.  Also from this point forward the amount of 

noise added to an image will be indicated by Noise(ns), the function which creates the noise 

matrix n(x,y) used in equation 1.1. 

 

 

     Figure 1.2 

 

     The purpose of deconvolution is to determine f by restoring the known h image data. For goal 

one of my research, the deconvolution techniques to be investigated will be coded in MatLab to 

calculate f based upon knowing h and b.  The case where b is unknown is called blind 
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deconvolution, which will not be considered in this research, [14].  The MatLab code (m files) 

are shown in the Code section of this dissertation.  Knowledge of the PSF b is possible because 

the blurring caused by a measuring instrument can be determined.  The PSF is mostly a function 

of an instrument’s lens for many optical systems.   

     The 2D image data contained in h and f specifies the light intensity measured from 0 through 

255 for this research. An example of black and white image data stored in f1 is shown in 

equation 1.7.  Each pixel in an image has an intensity value, [6].  The y and x index of the 

intensity corresponds to its position, e.g., f(2,4) = 220 means at position 2 units vertical and 4 

units horizontal the light intensity is 220.  The image generated by the f1 data is shown in figure 

1.3a.  An example of color image data f2 is shown in equation 1.8, each pixel is made of three 

separate intensities: red (f2(:,:,1)), green (f2(:,:,2)) and blue (f2(:,:,3)), [19].  The image generated 

by f2 is shown in figure 1.3b. 

[1.7], f1 = [180,  0, 30,  0,220,  0, 30,  0,180 
               0,  0,  0,220,120,220,  0,  0,  0 

               0,  0,220,  0,120,  0,220,  0,  0 

               0,220,  0,  0,120,  0,  0,220,  0 

             220,120,120,120,255,120,120,120,220 

               0,220,  0,  0,120,  0,  0,220,  0 

               0,  0,220,  0,120,  0,220,  0,  0 

               0,  0,  0,220,120,220,  0,  0,  0 

             180,  0, 30,  0,220,  0, 30,  0,180] 
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Figure 1.3 
 
 

 

[1.8], f2(:,:,1) =[255,  0,  0,  0,255,  0,  0,  0,  0 

                     0,  0,  0,220, 50,  0,  0,  0,  0 

                     0,  0,220,  0,  0,  0,  0,  0,  0 

                     0,220,  0,  0,  0,  0,  0,  0,  0 

                   255, 50,120,120,255,120,120, 50,255 

                     0,  0,  0,  0,  0,  0,  0,255,  0 

                     0,  0,  0,  0,  0,  0,255,  0,  0 

                     0,  0,  0,  0, 50,255,  0,  0,  0 

                     0,  0,  0,  0,255,  0,  0,  0,255] 

       f2(:,:,2) =[  0,  0,  0,  0,255,  0,  0,  0,255 

                     0,  0,  0,  0, 50,220,  0,  0,  0 

                     0,  0,  0,  0,  0,  0,220,  0,  0 

                     0,  0,  0,  0,  0,  0,  0,220,  0 

                   255, 50,120,120,255,120,120, 50,255 

                     0,  0,  0,  0,  0,  0,  0,255,  0 

                     0,  0,  0,  0,  0,  0,255,  0,  0 

                     0,  0,  0,  0, 50,255,  0,  0,  0 

                     0,  0,  0,  0,255,  0,  0,  0,255] 

       f2(:,:,3) =[  0,  0,  0,  0,255,  0,  0,  0, 40 

                     0,  0,  0,  0, 50,  0,  0,  0,  0 

                     0,  0,  0,  0,  0,  0,  0,  0,  0 

                     0,  0,  0,  0,  0,  0,  0,  0,  0 

                   255, 50,120,120,255,120,120, 50,255 

                     0,220,  0,  0,  0,  0,  0,  0,  0 

                     0,  0,220,  0,  0,  0,  0,  0,  0 

                     0,  0,  0,220, 50,  0,  0,  0,  0 

                   255,  0,  0,  0,255,  0,  0,  0,  0] 
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     Two criteria which are used to indicate how well the image g has been restored from the 

measured image data h are psdr and rmse. The peak signal to distortion (blur and noise) ratio 

(psdr), the root mean square error (rmse) and the mean square error (mse) are calculated as 

follows: 

.],9.1[ crrc NNN ⋅=  

.||),(),(||
1

],10.1[

2

∑∑ −=
r cN

i

N

jrc

jigjif
N

mse  

.],11.1[ msermse =  

).)((20],12.1[ rmsegMaxLogpsdr ⋅=  

 

     In equation 1.9, Nr and Nc are the number of pixels in each row and column of the image 

respectively, and Nrc is the total number of pixels in the image. Note that in equation 1.12 the 

psdr is given in dB.  The smaller the value of rmse the closer g is to f by this measure. The 

greater the value of psdr the less noise and blurring are in the restored image g although the value 

of maximum g also enters the result.  

     The average pixel intensity of f is p , the variance of image data f is σf
2
, and the standard 

deviation of f is σf shown in equations 1.13, 1.14 and 1.15 respectively.  The standard deviation 

of f is the statistical measure of spread or variability of the pixel intensities in f. 
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     The discrete Fourier transform (DFT) of f and the inverse discrete Fourier transform (IDFT) 

of F are defined in equations 1.16 and 1.17 respectively.  
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     Figure 1.4 shows an example of blur, noise and blur plus noise applied to a sample image.  

Note how the addition of noise to an image produces a salt and pepper type appearance. 

 

Figure 1.4 
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1.2  Image Domain Direct Method 
 

The Image Domain Direct method, IDDM, is a direct method that solves equation 1.1, with zero 

noise, algebraically for f [13].  The original image data f, is solved for by executing equation 

1.18 for all x from 1 to Nx and y from 1 to Ny. 

.
)1,1(

))1(),1((),(),(

),(],18.1[ 1 1

b

cyrxfcrbyxh

yxf

J

r

K

c

∑∑
= =

+−+−−

=  

Where, 

)).1(),((],19.1[ −= xbRowsMinJ    

)).1(),((],20.1[ −= ybColsMinK  

Advantages of the method: 

 1. Restores f very well, with b known and zero noise. 

Disadvantages of the method: 

 1. Is extremely sensitive to noise. 

 2. Is computationally expensive and slow. 

 3. If b(1,1) equals zero, PSF must be shifted to solve for f. 

This method restores the image data exactly provided the image contains zero noise and has a 

known PSF. I have written MatLab code in file “iddm.m” which calculates f by this method. The 

code is shown in the code section of this dissertation and several images restored by this method 

are shown in the Comparison of Methods section. 
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1.3  Fourier Transform Method 
 

The Fourier transform method is a direct method that solves equation 1.1, with zero noise, for f 

by first calculating the Fourier transform of Hh ⊃ and of Bb ⊃ , [13].  By the convolution 

theorem,  

.],21.1[ FBHhfb ⋅=⊃=∗∗  

with B · F, in equation 1.21, the point wise product of matrices B and F.  Thus, 

,],22.1[ BHF =  and 

).(],23.1[ FIDFTf =  

Advantages of the method: 

 1. Restores f very well, with zero noise. 

 2. Is computationally fast (especially compared to the direct method). 

Disadvantages of the method: 

 1. Is sensitive to noise. 

 

This method restores the image data very well, provided the image contains zero noise and has a 

known PSF. The MatLab code for this method is in file “ftm.m”. The code is shown in the code 

section of this dissertation and several images restored by this method are shown in the 

Comparison of Methods section. 
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1.4  Wiener Method 
 

The Wiener method is an optimum linear noise and deconvolution filter based in the Fourier 

domain.  It was invented by mathematician Norbert Wiener, [3].  Dr. Wiener first published the 

Wiener filter method in 1949.  The method is a direct method that solves for f by using the power 

spectra of the noise, Pn, and image data, Pf, by the following equations, which also show the 

approximations used in this dissertation, [15] [5] [17]:  

.],24.1[
*

rc

n
N

NN
P

⋅
=    

.],25.1[
*

rc

f
N

FF
P

⋅
=   

,ˆ],26.1[ 2

nnP σ≈ for white noise.    

.ˆ],27.1[ 2
*

n

rc

f
N

HH
P σ−

⋅
≈  

.
ˆˆ||||

],28.1[
2

*

2

*

fnfn PPB

B

PPB

B
G

+
≈

+
=  

             

        Dr. Norbert Wiener 1894-1964 

         Figure 1.5 

 

.],29.1[ HGF ⋅=  

).(],30.1[ FIDFTf =  

Advantages of the method: 

 1. Can restore f with noise present. 

Disadvantages of the method: 

 1. Requires an initial knowledge of Pf or an approximation as by equation 1.27. 
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 2. Requires knowledge of Pn or an approximation such as by equation 1.26, which then 

requires knowledge of σn or an estimate of it. 

This method restores the image data with a known PSF and noise present.  A flowchart of the 

method is shown in figure 1.5 and the MatLab code for this method is in file “dwiener.m”.  The 

code is shown in the code section of this dissertation and several images restored by this method 

are shown in the Comparison of Methods section.  The Wiener method is known to be one of the  

best linear filters if Pf and the contaminating noise are known.  It is derived to be the optimum 

filter in the least squares sense.  Of course in reality neither the Pn nor Pf are known, but for 

white noise they can be approximated very well by equations 1.26 and 1.27. 

 

 

Start: WIENER 

Input: h, b, σ  

Nrc = size(h) 

B = DFT(b) 

H = DFT(hr) 

Pf = H*H
*
 / (Nrc -σ

2
) 

PS = σ
2
 / (Pf ) 

W = B
*
 / (B*B

*
 + PS) 

F = W*H 

f = IDFT(F) 

 

Output: f 

END 

Figure 1.6 
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1.5  Van Cittert Method 
 

The Van Cittert method is an iterative deconvolution method, [13].  It approximates f in equation 

1.1, by setting an initial value f0 = f then iterating equation 1.31 an arbitrary maximum set 

number of times (Nitr) or until the change in rmse is less than some set tolerance (Tol), [10].  

].[],31.1[ 1 kkk fbhff ∗∗−+=+  

A flowchart of the method is shown in figure 1.7.  

 

 

Start: VCM 

h, b, Nitr  

f(k+1) = fk+ [h-b**fk] 

m = m +1 

drmse = Rmse(f(k+1) , fk) 

Output: f 

END 

Figure 1.7 

No 

Yes 

m < Nitr 

Nrc = size(h) 

Tol = 0.30 

k = 1 

fk = h 

m = 1 

No 

Yes 

drmse < Tol 
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Advantages of the method: 

 1. Can restore f with noise present. 

Disadvantages of the method: 

1. Number of iterations is by trial or estimate and or the value of the stopping tolerance 

is arbitrary. 

 

 

 This method restores the image data with a known PSF and noise present. The MatLab code for 

this method is in file “vcm.m”. The code is shown in the code section of this dissertation and 

several images restored by this method are shown in the Comparison of Methods section. 
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1.6  Richardson Lucy Method 
 

The Richardson Lucy method is an iterative deconvolution method, [13]. This method was 

developed from maximum likelihood theory and is modeled with Poisson statistics. It 

approximates f, with noise, by setting an initial value of f then iterating one of the following 

equations Nitr times, or until the change in rmse is less than some set tolerance (Tol):  

}])({)[(*],32.1[ 1 kkk fbhbff ∗∗∗∗−=+ ,  Poisson Noise Model.  

]
)(

[*],33.1[ 1
bfb

hb
ff

k

kk
∗∗∗∗

∗∗
=+ ,  Gaussian Noise Model.  

A flowchart of the method, for gaussian noise, is shown in figure 1.8. 

 

 

Start: RLM 

h, b, Nitr  

Figure 1.8 

Nrc = size(h) 

Tol = 0.10 

k = 1 

fk = h 

m = 1 

f(k+1) = fk* [(b**h) / (b**fk**b)] 

m = m +1 

drmse = Rmse(f(k+1) , fk) 

Output: f 

END 

No 

Yes 
m < Nitr 

No 

drmse < Tol 

Yes 
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Advantages of the method: 

 1. Can restore f with noise present. 

Disadvantages of the method: 

1. Number of iterations is by trial or estimate and or the value of the stopping tolerance 

is arbitrary. 

 

This method restores the image data with a known PSF and noise present. The MatLab code for 

this method is in file “rlmg.m”.  The code is written only for the case of gaussian noise.  It is 

shown in the code section of this dissertation and several images restored by this method are 

shown in the Comparison of Methods section.  Note that the division indicated in equations 1.32 

and 1.33 is element by element division. 
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1.7  CLEAN Method 
 

The CLEAN method is an iterative deconvolution method.  CLEAN was developed by J. D. 

Hogbom in 1974, [21].  The method is nonlinear and deconvolves b, referred to as the “dirty 

beam”, from h, referred to as the “dirty image”. The algorithm involves the creation of a residual 

image R, and a density image, D, [22] [23].  The CLEAN algorithm is described by the flowchart 

in figure 1.9. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start: CLEAN 

h, b, Nitr, g  

bc = zeros(size(b))  

bc(center) = center pixel in b  
D = 0 

R = h 

M = 0 

Locate max pixel intensity in R at (j,k), 

Pmax = R(j,k) 

R = R – g·Pmax·b 

D(j,k) = D(j,k) + g·Pmax 

 

f = D ** bc + R 

Output: f 

END 

Figure 1.9 

No 

Yes Pmax < TOL 

and 

M < Nitr 

M = M +1 
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The method assumes that the image (sky) brightness is essentially an ensemble of point sources 

(the sky is dark, but full of stars). 

Advantages of the method: 

 1. Can restore f with noise present. 

Disadvantages of the method: 

 1. Requires a large number of iterations. 

 2. Number of iterations is by trial or estimate. 

This method restores the image data with a known PSF and noise present. The MatLab code for 

this method is in file “clean.m”.  The code is shown in the code section of this dissertation and 

several images restored by this method are shown in the Comparison of Methods section. 
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1.8  Comparison of Methods 
 

In this dissertation the images shown in figure 1.10 shall be used to evaluate the various image 

restoration methods and techniques. 

 

 

Figure 1.10 
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The main objective of this section is to determine the best image restoration method of the six 

described in sections 1.1 through 1.6.  The method selected must be able to restore an image that 

has been contaminated with blur and noise.  The test comparison of the six methods is done 

using several of the images shown in figure 1.10.  The images are contaminated in three different 

ways: 

1. Blurred by a narrow width PSF(11,0.33,0.33) and Noise(30) 

2. Blurred by a medium width PSF(11,1.75,1.75) and Noise(0) 

3. Blurred by a wide width PSF(11,1.00,1.00) and with Noise(30) 

 

The first contamination (simulation) represents contamination mostly due to noise.  The second 

simulation represents contamination due to blurring with no noise.  The third simulation 

represents a moderate amount of contamination due to blurring and noise.   The third simulation 

is done using images 2, 5, 10 and 1, and the first and second is done using images 2 and 5.  The 

results of the simulation are shown in figures 11 through 17 and a summary of the third 

simulation results is shown in table 1.1.  For all of the figures, images restored with the Wiener 

method, sa in the title above the image is the actual σn and sg is a guessed value based on 

looking at the contaminated image.  For all images restored with RLM, VCM and CLEAN 

method, the values in parenthesis are the number of iterations used.  Below each restored image 

the psdr, rmse and execution time are shown. 
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Restoration results of an image contaminated with a small amount of blur and Noise(30). 

 

Figure 1.11 
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Restoration results of an image contaminated with no noise and a large amount of blur. 

Figure 1.12 
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Restoration results of an image contaminated with Noise(30) and blur. 

 

Figure 1.13 
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Restoration results of an image contaminated with a small amount of blur and Noise(30). 

 

Figure 1.14 
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Restoration results of an image contaminated with no noise and a large amount of blur. 

Figure 1.15 
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Restoration results of an image contaminated with Noise(30) and blur. 

Figure 1.16 
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Restoration results of an image contaminated with Noise(30) and blur. 

 Figure 1.17 
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Restoration results of an image contaminated with Noise(30) and blur. 

Figure 1.18 

 

 

 

 

 

 

 



 30 

 

Summary: Comparison Restoration Methods Results PSF(11,1.0,1.0) Noise(30) 

        

Image  Method Psdr Rmse Time Iterations Restored Best 

(No.)    sec   Method 

Lena Image data 23.7 15.4     

 (2) IDDM -Inf Inf 4.3 1 No  

 DFT -30.1 7577.7 0.7 1 No  

 Weiner 28.2 9.2 0.8 1 Yes Yes 

 VCM 9.6 78.2 1.1 6 No  

 RLM 23.2 16.4 2.6 5 Yes  

 CLEAN 10.7 69.4 204.9 10000 No  

        

Points Image data 23.6 16.8     

 (5) IDDM -Inf Inf 0.5 1 No  

 DFT -26.7 5506.4 0.2 1 No  

 Weiner 24.3 15.6 0.2 1 Yes Yes 

 VCM 13.9 51.5 0.3 5 No  

 RLM 23.8 16.5 0.7 5 Yes  

 CLEAN 16.4 38.5 54.4 10000 No  

        

Windmill Image data 22.1 19.8     

 (10) IDDM -Inf Inf 1.3 1 No  

 DFT -30.1 8063.4 0.5 1 No  

 Weiner 24.7 14.7 0.6 1 Yes Yes 

 VCM 10.7 73.1 0.7 5 No  

 RLM 22 20 1.5 4 Yes  

 CLEAN 11 71.2 143.1 10000 No  

        

Classmate Image data 21.8 20.8     

 (1) IDDM -Inf Inf 0.9 1 No  

 DFT -30.1 8169.4 0.6 1 No  

 Weiner 23.8 16.4 0.4 1 Yes Yes 

 VCM 7.7 104.9 0.8 8 No  

 RLM 21.5 21.5 1.3 5 Yes  

 CLEAN 11.8 65.8 95.9 10000 No  

 

Table of simulation results for PSF(11,1.0,1.0) and Noise(30) 

Table 1.1 
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     The data in figures 1.11 through 1.18 indicate that the best direct method is the Wiener 

method.  The Wiener method restored all of the test images, (although some better than others) 

for every type of PSF and amount of noise tested.  If there is no noise contamination then the 

best method for giving the consistently lowest rmse is the IDDM, however the data show that it 

is one the slowest methods and real world data will almost always contain noise.  The IDDM on 

average required 3 times more time than the next best non-noise handling method, the DFT 

method.  If keeping the restoration time to a minimum is important then the DFT is a better 

method than the IDDM.  The data show that the DFT can handle some noise unlike the IDDM, 

which did not restore any of the images with noise.  However the DFT failed to restore images 

with moderate noise and a medium width PSF, as shown by figures 1.13, 1.16, 1.17 and 1.18.  

The data in table 1.1 shows that for the worst simulation case (moderate amounts of blur and 

noise) the best method based on highest PSDR and smallest RMSE is the Wiener and the second 

best is RLM. 

     The data in figures 1.11 through 1.18 indicate that the best iterative method is the RLM 

because it produced the best looking restored image and best psdr and rmse numbers as 

compared to the other iterative methods.  The CLEAN only produced an improved image in 

figure 1.14, the case of a narrow PSF and moderate amount of noise, which is not surprising 

since the method is designed to restore images of bright points against a dark background.  The 

only image that is close to being in the category of bright spots on a dark background is the 

Points image 5 – which is used in figures 1.14 through 1.16.  The Clean method is the slowest of 

the three iterative methods.  It required thousands of iterations to produce an improved image – if 

it improved the image at all.   I think the CLEAN method is best suited for use with astronomical 
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type images, which is what it was originally designed for (recorded by an imaging system with a 

narrow PSF).   

     The data in figures 1.11 through 1.18 show the RLM and VCM to be better image restoration 

methods than the CLEAN method.  In addition, the figures show that the RLM tends to converge 

to a solution in fewer iterations than the VCM and for the same number of iterations the VCM is 

the faster of the two.  However the RLM produced better results for wide PSF’s than the VCM 

and has better noise handling abilities. 

      To summarize, the data in figures 1.11 through 1.18 and table 1.1 indicate that the best image 

restoration method in the presence of noise and blur, of the six investigated, is the Wiener 

method.  The Wiener method in almost every situation produced an improved restored image in 

terms of a higher PSDR and lower RMSE and by visual inspection. The biggest problem with the 

method is determining an estimate of the noise and thus the noise standard deviation, σn.  In the 

next chapter I will develop and investigate a method to automate the determination of σn using a 

noise reduction method.  It will be used in conjunction with the Wiener method. 
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CHAPTER 2 

NOISE SIGMA ESTIMATION METHOD 

 

     The first goal of this chapter is to investigate the effects of using noise reduction to enhance 

the appearance of contaminated image data.  There are currently various noise reducing methods, 

in this dissertation two of them will be tested and evaluated.  The first method of noise reduction 

is the Wavelet Noise Reduction Method (WNRM), [9].  The second method is the Morrison 

Noise Reduction Method (MNRM), [11].  The best method based on quality of results and speed 

of execution will be determined.  The last but most important goal of this chapter is to develop a 

method, which by use of the best noise reduction method selected (WNRM or MNRM), can be 

used to determine an estimate of σn of the noise in contaminated image data, without the noise 

being known. 
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2.1  Wavelet Noise Reduction Method 

 

     Wavelets are mathematical functions that cut up data into different frequency components, 

and then study each component with a resolution matched to its scale. They have advantages 

over traditional Fourier methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. Wavelets were developed independently in the fields of 

mathematics, quantum physics, electrical engineering, and seismic geophysics. Interchanges 

between these fields during the last twenty years have led to many new wavelet applications such 

as image compression, turbulence, human vision, radar, and earthquake prediction. In this 

research, wavelets are used for de-noising 2-d image data. 

The de-noising procedure of a noisy image can be divided into three stages, [25] [24]: 

1) The wavelet transform of an image. 

2) Thresholding of wavelet coefficients. 

3) The inverse wavelet transform.  

 

In the above stages, the vital key is stage (2), how to threshold the wavelet coefficients.  

For stage 1, the coefficients of the chosen wavelet must be calculated. I have chosen to use 

Daubechies wavelets, [4]. The coefficients, ak, are solved for from the following three conditions  
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where, u = k +2*(m-1) and, m = 1,2…(N/2). Next a forward transform matrix from the 

coefficients is constructed, [18]. For example for D4 wavelets the transform matrix is 
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For stage (2), thresholding is applied to F, that is the values in F below λ  are set equal to zero, 

this is called hard thresholding and is shown in equation 2.8. Soft thresholding is shown in 

equation 2.9 where the sgn(Fxy) is the sign of Fxy, [9] [7]. 

 

 )log(2)(],7.2[ MhSTD ⋅=λ  

 

 0||],8.2[ ,,,, ==≥ yxyxyxyx FelseFFthenFif λ  

 

 )])|(|,0([)sgn(],9.2[ ,,, λ−⋅= yxyxyx FMinFF  

 

STD = Standard deviation, and M = height and width of W, (W is a square matrix). Next the de-

noised image, f, is calculated using the inverse wavelet transform matrix which is equal to the 

transpose of the wavelet transform matrix. 

 FWf '],10.2[ =  

 

     A flow chart of the implementation of the WNRM method used in this dissertation is shown 

in figures 2.1 and 2.2.  The Matlab code implementing the method is shown in the Code section 

of this paper. 
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Start: WCDAUB 

Input: N 

a = a / sqrt(2) 

k = 0 

Output:  a, b 

End 

Figure 2.1 

N = 4 

No 

a = [0.6830127,1.1830127,0.3169873,-0.1830127] 

Yes 

N = 6 

No 

a = [0.47046721,1.14111692,0.650365, 

      -0.19093442,-0.12083221,0.0498175] 

Yes 

N = 8 

No 

a =[0.3258034,1.0109457,0.892201,-0.0396750, 

     -0.2645071,0.0436163,0.046504,-0.0149869] 

Yes 

N = 16 

No 

a = [0.0769556,0.4424672,0.9554861,0.8278165, 

      -0.0223857,-0.401658,6.68192e-4,0.1820766, 

      -0.0245639,-0.062350,0.0197721,0.0123688, 

      -6.8877e-3, -5.540e-4, 9.5522e-4,-1.66137e-4] 

Yes 

a = [1, 1] 

k < N b(k) = (-1)^(k-1)·a(N-k+1) 

k = k +1 

No 

Yes 
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Start: WNRM 

Input: h, N, t 

[r,c] = SIZE(h) 

[a,b] = WCDAUB(N) 

M = MAX(r,c) 

W = Wmatrix(a,b,M) 

F = W·h 

λ = STD(h)·sqrt[2·Log(M)] 

W = Transpose(W) 

f = W·F 

f = Resize(f,r,c) 

Output:  f 

End 

Figure 2.2 

t = 1 

For x =1 by 1 to M 

For y =1 by 1 to M 

|F(x,y)| ≥λ 

F(x,y) =0 F(x,y) =sgn(F(x,y))·Max([0, |F(x,y)|-λ]) 

No Yes 

Yes 

No 

For x =1 by 1 to M 

For y =1 by 1 to M 
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Results of the WNRM applied to image data contaminated by a medium width PSF and 

Noise(30). 

 

     Figure 2.3 
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(a) Lena PSF(11,1,1) NS(30)  

Method NI/WL PSDR RMSE Time 

Actual  23.729 15.429  

WNRM Soft-T D4 22.795 17.180 1.06 

WNRM Soft-T D8 22.864 17.044 1.05 

WNRM Soft-T D16 22.809 17.151 1.02 

WNRM Hard-T D4 24.228 14.567 0.31 

WNRM Hard-T D8 24.255 14.521 0.31 

WNRM Hard-T D16 24.235 14.554 0.33 

     

(b) Rose PSF(11,1,1) NS(30)  

Method NI/WL PSDR RMSE Time 

Actual  23.289 17.462  

WNRM Soft-T D4 21.384 21.744 1.84 

WNRM Soft-T D8 21.404 21.693 1.81 

WNRM Soft-T D16 21.356 21.814 1.89 

WNRM Hard-T D4 23.910 16.257 1.19 

WNRM Hard-T D8 23.933 16.214 1.17 

WNRM Hard-T D16 23.863 16.345 1.19 

     

(c) Circuit PSF(11,1,1) NS(30)  

Method NI/WL PSDR RMSE Time 

Actual  23.429 16.980  

WNRM Soft-T D4 22.582 18.720 2.45 

WNRM Soft-T D8 22.650 18.573 2.41 

WNRM Soft-T D16 22.628 18.622 2.42 

WNRM Hard-T D4 23.828 16.217 1.73 

WNRM Hard-T D8 23.855 16.168 1.73 

WNRM Hard-T D16 23.870 16.140 1.72 

 

Table 2.1, Medium width PSF and with time in seconds. 

 

 

     The data in figure 2.3 and table 2.1 show that WNRM using hard thresholding produces better 

restoration results than using soft thresholding.  The data also show that the best image 

restoration results, using D4 through D16 wavelet lengths, occurred most often when using a D8 

wavelet.  However, the results for all three wavelet lengths were very close.  Therefore to 

compare the WNRM to the Morrison Noise Reduction method, which will be discussed next 

section, only hard thresholding D8 wavelets will be used. 
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2.2  Morrison Noise Reduction Method 

 

     The Morrison Noise Reduction method (MNRM) is an iterative noise reduction, [11].  It is 

often used to reduce the noise in data before it is processed by another image restoration 

technique.  The method smoothes and reduces the noise in the known image data, h, by 

convolving the image h with the PSF b then iterating equation 2.12, shown below, a specified 

number of times to restore back to h gradually but without incompatible noise, [11] [12]. 

.1,],11.2[ 1 =∗∗= kbhh    .][],12.2[ 1 bhhhh kkk ∗∗−+=+  

One way to determine when to stop the iterations is to calculate the change in RMSE of (h - hk), 

if it is below some set tolerance then the process is stopped.  Stopping the method when the 

change in RMSE reaches a set tolerance or the maximum number of set iterations is reached are 

the two stopping criteria I use in my implementation of the MNRM.  One criterion for the 

method to give a significantly improved image (in terms of reduced noise) is the PSF must be of 

sufficient width.  In my research I have performed many simulations with various images and 

have determined numerically that the method will give a significantly improved image if 

equations 2.13 and 2.14 are satisfied.  

.8.0],13.2[ ≥xσ   .8.0],14.2[ ≥yσ  

In equations 2.3 and 2.4 σx and σy are the same variables defined in equation 1.6 for the PSF. 

The MNRM does not require that the PSF used be the actual PSF.  Thus if the given PSF is 

narrow, i.e., does not meet the conditions in equations 2.13 and 2.14, then another (wider) PSF 

can be substituted.  In my implementation of the MNRM I have set the PSF used to be one of 

medium width.  This is the same as the PSF shown in figure 1.2b.  
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      A flow chart of the implementation of the MNRM method used in this dissertation is shown 

in figure 2.4.  The Matlab code implementing the method is shown in the Code section of this 

paper.  Note in figure 2.4 if the variable w = 1 then the given PSF, bi, is narrow, if w = 2 then bi 

is of moderate width and if w = 3 then bi is a wide width PSF. 

 

  

 

 

 

Start: MNRM 

h, bi, Nitr 

hr = hr + [h - hr]**b 

rmse2 = RMSE(h, hr) 

dr = abs(rmse2 -rmse1) 

Output: f, k 

END 

No 

Yes 
k < Nitr 

and 

dr > Tol 

[r,c] = Size(h) 

hr = h**b 

rmse1 = RMSE(h, hr) 

T1 = (r · c) / 3000000 

Tol = max(Tol, 0.5) 

dr = 2*Tol 

k = 1 

Figure 2.4 

k = k +1 

rmse1 = rmse2 

[r2,c2] = Size(bi) 

w = NMW(bi) 

No Yes 

w = 1 b = bi b = PSF(r2,c2,1.0.1.0,1) 
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2.3  Comparison of MNRM and WNRM 

 

 The Rose image was corrupted with a small amount of contamination, the King Tut image with 

a moderate amount of contamination and the Windmill image with a large amount of noise and 

blur contamination.  The WNRM and the MNRM were used to restore the three images.  The 

restoration results are shown, respectively, in figures 2.5 through 2.7. 

 

 

Results of MNRM and WNRM applied to image data contaminated by a narrow width PSF and 

Noise(15). 

     Figure 2.5 
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Results of MNRM and WNRM applied to image data contaminated by a medium width PSF and 

Noise(30). 

    Figure 2.6 
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Results of MNRM and WNRM applied to image data contaminated by a wide width PSF and 

Noise(50). 

Figure 2.7 
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    The data in figures 2.5 through 2.7 show that my implementations of the MNRM and WNRM 

(using hard thresh-holding) reduces the noise in the given noise and blur contaminated images, 

because in all figures the resulting image has an increased PSDR and a decreased RMSE.  The 

data in parts (c) and (d) shows that the chosen tolerance in the MNRM algorithm yields a close to 

optimum number of iterations for the Morrison method (figure 2.4).  In all cases the number of 

Morrison iterations executed coincides fairly close to the minimum of the RMSE vs MNRM 

iteration graph.  The results in figure 2.5 indicate that the WNRM does a slightly better job of 

restoring the contaminated image than the MNRM.  Thus I conclude for small amounts of 

contamination the WNRM is a slightly better choice than the MNRM, but the MNRM is a very 

close second.  Figures 2.6 and 2.7 show that for moderate and lager amounts of image 

contamination, the MNRM produces better image restoration than the WNRM.  Additionally, the 

data in all three of the figures indicate that MNRM is faster than the WNRM.  This is surprising 

since the MNRM is an iterative method and the WNRM is a direct method.   It seemed that the 

WNRM should be faster – but the results, for the images I have run simulations on, show 

otherwise.  I do think that for some image sizes and amounts of contamination the WNRM could 

yield faster results than the MNRM – it just did not do so for the image and contamination 

combinations I investigated. 

     The MNRM and the WNRM unlike the Wiener method (chosen as the best restoration 

method in chapter 1) only reduce image noise contamination and not blur contamination.  

Because of their noise reducing abilities, I conclude the MNRM or the WNRM can be used as 

part of a noise estimation method to determine the σn of noise-contaminated image data.  The 

noise estimator, utilizing the MNRM, will be the subject of the next section. 
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2.4  Noise Sigma Estimation Method 

 

     I have developed the Sigma Estimation Method (SIGEST) to estimate the σe of the noise, σn, 

in contaminated image data without the noise actually being known.  SIGEST is based upon 

using the Morrison Noise Reduction Method (MNRM).  A flowchart of the SIGEST algorithm is 

shown in figure 2.8.  Note that in figure 2.8 the variable w, is defined as in figure 2.4. 

Start: SIGEST 

h, b, Nitr  

Output: hr,hs,σ1,σe 

END 

hr = MNRM(h,b,Nitr) 

hs = h -hr 

σ1 = STDEV(hs) 

w = NMW(b) 

Figure 2.8 

w = 1 

No 

Narrow width PSF, 

σe = -0.9008 +0.3404·σ1 +0.0947·σ1
2
 -0.0015·σ1

3
 

Yes 

w = 2 

No 

Medium width PSF, 

σe = -0.1501 +1.3141·σ1 +0.0076·σ1
2
 +0.0003·σ1

3
 

Yes 

Wide width PSF, 

σe = 0.0824 +1.2517·σ1 +0.0099·σ1
2
 +0.0003·σ1

3
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SIGEST determines a numerical estimate of σn of noise contaiminated image data h by 

calculating, via MNRM, a reduced noise version of h, hr.  To calculate the first estimated noise 

standard deviation, σ1, the method simply calculates the standard deviation of (h –hr).  The 

differenence between h and hr should give a good estimate of the noise in h.  As stated earlier in 

this dissertation, the MNRM does not remove all of the noise contamination from an image.  

Therfore I have incorporated in to SIGEST a correction equation to the value of σ1 to yield a 

more accurate estimated noise standard deviation, σe.  To develop the correction equations for σe, 

σ1 was calculated for NS(x) with x from 0 to 100 in steps of 5.  The calculations were done for 

the following images: Classmate, Moon-Man, Fruit-1 and Windmill.  Figure 2.9 shows a graph 

of the resulting data for the Fruit-1 image.  Notice that σ1 for all PSF widths used is almost 

always less than the actual σn, and the shape of the σ1 data is a curved line rather than a straight 

line as the shape of σn is.  The shape of the σ1 line for all PSF widths were very similar for the 

Classmate, Moon-Man and Windmill images as those shown in figure 2.9 for the Fruit-1 image.  

Thus I have selected the following equation to correct σ1 to σn (i.e., to calculate σe), 

.],15.2[ 3

14

2

13121 σσσσ ⋅+⋅+⋅+= cccce  

The values of c1 through c4 were determined using regression analysis, [20] [1], and calculated 

using Matlab code that I wrote.  For all four of the previously named images the value of the c’s 

are given by, 

.1200)],(),(),(,1[)(],16.2[ 32 bytofromrrrrrX σσσ=  

( ) .],17.2[
1

n

TT
XXXc σ⋅⋅⋅=

−
 

Note that in equation 2.16, X is a matrix calculated from the determined values of σe, some of 

which are shown in figure 2.9.  The value of the c’s for narrow, medium and wide width PSFs 

are shown in the SIGEST method flow chart shown in figure 2.8. 
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Results of SIGEST applied to image data contaminated by a narrow, medium and wide width 

PSF all with noise NS(x), with x varied from 0 to 100.  The actual sigma is in black the 

calculated first sigma is shown in red. 

Figure 2.9 

  

I have tested the method on the first ten of the images shown in figure 1.10, for noise levels of 

NS(10), NS(30) and NS(60) (recall equation 1.5).  The results of testing SIGEST are shown in 

tables 2.2 through 2.4.  In the tables the x in MNRM(x) is the acutal number of iterations done by 

the MNRM and the terms Dif(Sa,Se) and Dif(Sa,S1) are defined as follows: 

 

.100
)(

),(],18.2[ ⋅
−

=
Sa

SeSa
SeSaDif  

 

.100
)1(

)1,(],19.2[ ⋅
−

=
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SSa
SSaDif  
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(a) Results for  NS(10)  PSF(11,0.33,0.33)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 6 5.2681 10.0417 10.5477 90.61% 100.22% 

2 Lenna 4 4.8772 5.3505 3.4019 9.70% 30.25% 

3 Rose 5 5.2682 7.1238 5.7878 35.22% 9.86% 

4 Moon-Man 5 5.2239 5.7142 3.8566 9.39% 26.17% 

5 Points 5 5.2827 7.9009 6.9604 49.56% 31.76% 

6 Circuit 4 5.2022 5.3351 3.3830 2.55% 34.97% 

7 Clock 5 5.2554 6.5724 5.0012 25.06% 4.84% 

8 KingTut 7 5.2709 10.0697 10.5978 91.04% 101.06% 

9 Fruit1 5 5.2690 7.3134 6.0671 38.80% 15.15% 

10 Windmill 6 5.1939 7.3610 6.1378 41.72% 18.17% 

     Average = 39.37% 37.25% 

(b) Results for  NS(30)  PSF(11,0.33,0.33)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 7 15.8042 13.7720 17.8306 12.86% 12.82% 

2 Lenna 5 14.6317 11.1497 12.5881 23.80% 13.97% 

3 Rose 6 15.8045 11.9900 14.2092 24.14% 10.09% 

4 Moon-Man 5 15.6717 11.2847 12.8445 27.99% 18.04% 

5 Points 5 15.8480 10.3669 11.1345 34.59% 29.74% 

6 Circuit 5 15.6066 11.6376 13.5221 25.43% 13.36% 

7 Clock 5 15.7662 11.8267 13.8894 24.99% 11.90% 

8 KingTut 7 15.8128 13.6725 17.6224 13.54% 11.44% 

9 Fruit1 6 15.8071 11.3539 12.9766 28.17% 17.91% 

10 Windmill 7 15.5817 12.1302 14.4853 22.15% 7.04% 

     Average = 23.76% 14.63% 

(c) Results for  NS(60)  PSF(11,0.33,0.33)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 9 31.6083 21.0550 34.2471 33.39% 8.35% 

2 Lenna 7 29.2633 20.1997 32.2523 30.97% 10.21% 

3 Rose 8 31.6090 20.3195 32.5315 35.72% 2.92% 

4 Moon-Man 8 31.3433 19.1949 29.9164 38.76% 4.55% 

5 Points 6 31.6960 15.5393 21.6275 50.97% 31.77% 

6 Circuit 8 31.2132 20.1261 32.0809 35.52% 2.78% 

7 Clock 8 31.5324 19.2404 30.0218 38.98% 4.79% 

8 KingTut 9 31.6256 20.3618 32.6303 35.62% 3.18% 

9 Fruit1 8 31.6141 18.9057 29.2468 40.20% 7.49% 

10 Windmill 9 31.1633 20.6564 33.3171 33.72% 6.91% 

     Average = 37.38% 8.29% 

 

Table 2.2, Narrow width PSF 
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(a)   NS(10)  PSF(11,1.,1.)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 3 5.0968 4.1479 5.4528 18.62% 6.98% 

2 Lenna 3 4.6791 3.6957 4.8254 21.02% 3.13% 

3 Rose 3 5.2682 4.0906 5.3731 22.35% 1.99% 

4 Moon-Man 3 4.9613 3.7352 4.8800 24.71% 1.64% 

5 Points 3 5.2827 2.9991 3.8674 43.23% 26.79% 

6 Circuit 3 5.0965 4.0100 5.2610 21.32% 3.23% 

7 Clock 3 5.2554 3.9413 5.1656 25.00% 1.71% 

8 KingTut 4 5.2709 3.8720 5.0694 26.54% 3.82% 

9 Fruit1 3 5.2690 3.8041 4.9753 27.80% 5.57% 

10 Windmill 3 5.0074 4.0962 5.3809 18.20% 7.46% 

     Average = 24.88% 6.23% 

(b)   NS(30)  PSF(11,1.,1.)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 4 15.2903 11.3087 16.1164 26.04% 5.40% 

2 Lenna 4 14.0374 10.4929 14.8219 25.25% 5.59% 

3 Rose 4 15.8045 11.3235 16.1402 28.35% 2.12% 

4 Moon-Man 4 14.8840 10.2602 14.4569 31.07% 2.87% 

5 Points 3 15.8480 8.1171 11.1778 48.78% 29.47% 

6 Circuit 4 15.2894 11.3275 16.1466 25.91% 5.61% 

7 Clock 4 15.7662 10.9566 15.5549 30.51% 1.34% 

8 KingTut 4 15.8128 11.0272 15.6671 30.26% 0.92% 

9 Fruit1 4 15.8071 10.4189 14.7057 34.09% 6.97% 

10 Windmill 4 15.0223 11.1743 15.9016 25.62% 5.85% 

     Average = 30.59% 6.61% 

(c)   NS(60)  PSF(11,1.,1.)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 7 30.5806 19.9963 31.5645 34.61% 3.22% 

2 Lenna 7 28.0748 19.2344 30.0724 31.49% 7.12% 

3 Rose 7 31.6090 20.3188 32.2051 35.72% 1.89% 

4 Moon-Man 7 29.7680 18.5183 28.6962 37.79% 3.60% 

5 Points 5 31.6960 14.7052 21.7715 53.61% 31.31% 

6 Circuit 7 30.5788 20.1190 31.8077 34.21% 4.02% 

7 Clock 7 31.5324 19.3301 30.2581 38.70% 4.04% 

8 KingTut 7 31.6256 19.7564 31.0916 37.53% 1.69% 

9 Fruit1 7 31.6141 18.8416 29.3144 40.40% 7.27% 

10 Windmill 7 30.0446 20.2906 32.1489 32.47% 7.00% 

     Average = 37.65% 7.12% 

 

Table 2.3, Medium width PSF 
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(a)   NS(10)  PSF(11,1.75,1.75)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 3 5.0599 3.9325 5.1761 22.28% 2.30% 

2 Lenna 2 4.5967 3.7576 4.9414 18.25% 7.50% 

3 Rose 3 5.2681 3.9950 5.2601 24.17% 0.15% 

4 Moon-Man 3 4.9180 3.5781 4.7016 27.24% 4.40% 

5 Points 3 5.2826 2.8874 3.7863 45.34% 28.33% 

6 Circuit 3 4.8873 3.7910 4.9863 22.43% 2.03% 

7 Clock 3 5.2553 3.8365 5.0472 27.00% 3.96% 

8 KingTut 3 5.2709 3.8958 5.1267 26.09% 2.74% 

9 Fruit1 3 5.2689 3.7041 4.8699 29.70% 7.57% 

10 Windmill 3 4.9860 3.8755 5.0995 22.27% 2.28% 

     Average = 26.48% 6.12% 

(b)   NS(30)  PSF(11,1.75,1.75)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 4 15.1797 11.2537 15.8500 25.86% 4.42% 

2 Lenna 4 13.7901 10.3242 14.3906 25.13% 4.35% 

3 Rose 4 15.8043 11.3768 16.0459 28.01% 1.53% 

4 Moon-Man 4 14.7539 10.2123 14.2171 30.78% 3.64% 

5 Points 3 15.8478 8.2119 11.1949 48.18% 29.36% 

6 Circuit 4 14.6620 10.8953 15.2833 25.69% 4.24% 

7 Clock 4 15.7660 11.0049 15.4561 30.20% 1.97% 

8 KingTut 4 15.8126 11.0973 15.6021 29.82% 1.33% 

9 Fruit1 4 15.8068 10.5268 14.7058 33.40% 6.97% 

10 Windmill 4 14.9580 11.1300 15.6538 25.59% 4.65% 

     Average = 30.27% 6.24% 

(c)   NS(60)  PSF(11,1.75,1.75)  

No. Image MDNM(x) Sigma Sigma Sigma |Dif(Sa,S1)| |Dif(Sa,Se)| 

   Actual 1 Estimated   

1 Classmate 7 30.3593 19.9901 31.4566 34.15% 3.61% 

2 Lenna 7 27.5801 18.9434 29.3859 31.31% 6.55% 

3 Rose 7 31.6085 20.4502 32.3860 35.30% 2.46% 

4 Moon-Man 7 29.5078 18.4969 28.5207 37.32% 3.35% 

5 Points 5 31.6956 14.9153 21.9497 52.94% 30.75% 

6 Circuit 7 29.3240 19.4579 30.3962 33.65% 3.66% 

7 Clock 7 31.5320 19.4661 30.4124 38.27% 3.55% 

8 KingTut 7 31.6251 20.0304 31.5374 36.66% 0.28% 

9 Fruit1 7 31.6137 19.0410 29.5764 39.77% 6.44% 

10 Windmill 7 29.9159 20.2887 32.0583 32.18% 7.16% 

     Average = 37.16% 6.78% 

 

Table 2.4, Wide width PSF 
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     I define a successful noise estimate method to be one that gives results that are within 10% of 

the actual noise, when averaged over several different images.  In this case the images are the ten 

shown in tables 2.2, 2.3 and 2.4.  The data in tables 2.2, 2.3 and 2.4 shows that for narrow, 

medium and wide width PSFs and for all noise levels tested the SIGEST successfully estimates 

the actual σn – for all but one contamination combination.  The one contamination combination 

that the SIGEST method fails to yield a good average σe, is for a narrow PSF and noise of 

Noise(10), which is the smallest amount of contamination tested.  However if the biggest 

outliners were removed (Classmate and King Tut) then the average error would be 17.1%.  

Depending on the need and or use of σe, an error of 17.1% may be acceptable – as will be the 

case for image restoration using the Wiener method in chapter 3.  I think the SIGEST method 

does not calculate a good σe in table 2.2a (the smallest amount of contamination) because the 

images have little noise and blur contamination in them and thus there is very little noise that the 

MNRM can remove from the image.  However the MNRM does yield an improved restoration of 

the images even though they contain little contamination.  The images shown in figure 2.10, 

which have the worst two σe results in table 2.2a, show that although the PSDR and RMSE are 

not improved from the contaminated images the restored images do look better!  I think the 

visual improvement in the images is due to MNRM reducing the noise in the images while 

increasing the amount of blur in them. 

     The data in tables 2.2, 2.3 and 2.4, except for 2.2a, shows that the σ1 values are lower than the 

actual noise values because the Morrison method does not remove all of the noise in an image.  

However the results indicate that using a good stopping tolerance in MNRM (see figure 2.4) 

results in the Morrison method removing a significant amount of noise contamination from an 

image.  I developed the stopping tolerance shown in figure 2.4 after trying various stopping 
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criteria.  The stopping criteria in figure 2.4 produced the best results when used with the images 

shown in figure 1.10 for various amounts of noise.  Also note that the correction equations 

developed do a very good job at calculating σe from the value of σ1, as the majority of the data in 

the average percent difference cells of tables 2.2, 2.3 and 2.4 clearly show. 

 

 

Results of MNRM applied to image data containing little contamination, i.e., a narrow width PSF 

and Noise(10). 

Figure 2.10 

 

     One possible way the SIGEST method could be made more accurate is to adjust the value of 

Tol based upon small, medium and large amounts of noise but this would require more user input 

to the method.  One of my requirements for the SIGEST method is that it require very little user 

input thus the value of Tol will be calculated as shown in figure 2.4.  The SIGEST method will 

be used by the sub-imaging restoration method described in the next chapter.  
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CHAPTER 3 

SUB-IMAGING METHOD 

 

     The goal of this chapter is to develop an algorithm using the Wiener method that automates 

the determination of a good noise σ for a given set of contaminated image data, h, and restores 

the image data.  For the case of whole image noise contamination, the method improves the 

speed of the noise estimation method (SIGEST) by using sub-images. The method is named the 

Sub-Image Wiener Method (SIWM).  
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3.1  Sub-Imaging Method 
 

     I define the h2 of an image to be the resulting image data produced by two iterations of the 

MNRM applied to the image i.e, 

).2,(2],1.3[ hMNRMh =  

I define the hN of an image to be the estimated noise in the image resulting from two iterations 

of the Morrison Method.  The calculation of hN is shown in equation 3.2.  

.2],2.3[ hhhN −=  

     The Sub-Imaging Method (SIM) divides the hN of an image into several pieces and selects 

the piece with an estimated σe of σn which is closest to the average of the standard deviation of 

all of the pieces.  I define the selected sub-image to be the average sub-image (asi).  A flow chart 

showing the calculation of an image’s asi is shown in Figure 3.1. 

Start: CALC_ASI 

h, b, pn 

Output: ha, asi END 

[hr,h2,σe,ait] = SIGEST(hk,b,100) 

Calc values for σn for each sub-image 

[map,σn,β] = subimgs(h2,1) 

[σa,asi] = calcavg(σn) 

ha = SubImage(asi) 

Figure 3.1 

pn = 1 

No Yes 

asi = 0 

ha =ImgCtr(h,96,96) 
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For image data that are uniformly noise contaminated throughout the image pn is set to 0, 

(meaning no partial noise).  An example of this is shown in figure 3.2 and its’ asi is shown in 

figure 3.3.  For this noise case, the function Calc_Asi does the following: 

1. Set asi = 0 

2. Set ha equal sub-image of the given image equal to a 96 by 96 pixel image copied 

from the center of the contaminated image, returns ha and asi.   

 

For image data that are partially noise contaminated as in figure 3.4, pn is set to 1 (meaning 

partial noise is present).   For this noise case, the function Calc_Asi does the following: 

1. Divide the image into sub-images each having a size as close as possible to 96 by 96 

pixels. 

2. Calculate the sigma of each sub-image.  Select the sub-image with a sigma closest to 

the average of all the sigmas, this is the asi.  

3. Set ha equal to the asi and return ha and its’ sub-image number. 

 

Blur and nose contaminated Lena image divided into 5 rows by 5 columns of sub-images.  Note 

that part 22 is the asi of the image. 

Figure 3.2 
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Note figure 3.2 shows the results of setting pn equal to 1, in Calc_Asi, however since the image 

is uniformly noise contaminated, the average of the sub-images is approximately equal to all of 

the sub-images as is the shown in the figure.  Thus in figure 3.2 the best choice is to set pn equal 

to 0 when using Calc_Asi and the resulting sub-image is shown in figure 3.3.  Figure 3.4 shows 

the results of a partially noise contaminated image with pn equal to 1. 

 

 

Blur and nose contaminated Lena image with center sub-image extracted.  Note that the noise 

sigma is approximately the same as that of the asi in figure 3.2. 

Figure 3.3 
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Blur and partially noise contaminated Classmate image divided into 4 rows by 3 columns of sub-

images. The asi of the image is part 4. 

Figure 3.4 
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3.2  Sub-Imaging Wiener Method 
 

The following assertions are made concerning SIM: 

1. The asi of an image can be used in the place of the whole image to determine σe of σn and 

used to restore the whole image.  Therefore, the noise in a piece of an image can 

represent the noise in the whole image (provided it is the asi of the image’s hN). 

2. SIM can be combined with SIGEST and the Wiener method to restore contaminated 

image data without the noise σ of the data being known.  This combination I define to be 

the Sub-Image Wiener Method (SIWM). 

A flow chart of the SIWM is shown in figure 3.5. 

 

 

Start: SIWM 

Read h, b, pn, width 

[ha,asi] = calc_asi(h,b,pn) 

[σ1,σe]  = SIGEST(ha,b,100) 

Restore f, 

f = WIENER(h, b,0.9*σe) 

Output:  f, asi, σe 

End 

Figure 3.5 
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3.3  Comparison of the SIWM and the Wiener Method  
 

     Note that in the SIWM the sigma used in the Weiner part of the method is σ1, which as shown 

in chapter 2 is typically 10% to 25% less than the actual sigma, σn.  I have chosen to use σe*0.9 

instead of σe because in executing the many simulations with the SIWM and Wiener methods the 

results lead to an increased PSDR and decreased RMSE.  Using a smaller value of sigma also 

leads to a better looking restored image because the smaller value causes more detail and noise to 

remain in the restored image.  However the human eye has filtering abilities, thus the eye filters 

out the extra noise and more detail is seen.  Nevertheless the value of σe is returned because the 

true estimated value of sigma may be needed for other reasons. 

     The SIWM was applied to images 1, 2, 4, 7, 9, 10, 11, 12, 13 and 14.  Some of the restored 

image results are shown in figures 3.6 through 3.8 and all are summarized in table 3.1.  In figures 

3.6 through 3.8, in the title of image (c) the value of sigma given is the actual σn of the image 

noise.  In the title of image (d) the calculated values of σ1 and σe are shown as s = σ1 and σe and 

the x in SIWM(x) is the actual number of iterations of the MNRM used to calculated σ1.  Note 

that the values of PSDR and RMSE are shown below image (b) in figures 3.6 through 3.8 and the 

values of PSDR, RMSE and the amount of time in seconds for execution of the SIWM is shown 

at the bottom of image (d).  Similar information is shown below image (c), except the time 

shown is for execution of the Wiener method.  
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Results of SIWM applied to Fruit-1 image contaminated with Noise(35). 

Figure 3.6 
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Results of SIWM applied to Shuttle image contaminated with Noise(70).  Note that although the 

image is contaminated by a very large amount of noise the method still noticeably improves the 

image. 

Figure 3.7 
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Results of SIWM applied to Classmate image partially contaminated with Noise(40).  In 3.8(d) 

the asi is used and in 3.8(e) it is not, note the restoration in 3.8(e) is degraded from 3.8(d) – the 

asi is needed! 

Figure 3.8 
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(a) PSF(11,11,0.33,0.33)     

Image Method Sigma PSDR RMSE Time (sec) 

Classmate Contaminated 21.13 21.99 20.27  

Noise(40) SIWM(4,15.54) 21.63 14.21 49.65 1.19 

 Wiener 21.13 14.18 49.84 0.91 

Lena Contaminated 13.06 25.24 12.97  

Noise(30) SIWM(2,9.87) 10.25 16.36 36.04 2.56 

 Wiener 13.06 16.35 36.10 1.98 

Moon-Man Contaminated 18.39 23.45 17.08  

Noise(35) SIWM(3,13.19) 16.63 13.25 55.27 1.77 

 Wiener 18.39 13.20 55.55 1.28 

Clock Contaminated 22.54 21.90 20.49  

Noise(45) SIWM(3,15.64) 21.84 14.19 49.78 3.41 

 Wiener 22.54 14.05 50.59 2.66 

Fruit1 Contaminated 17.65 24.53 15.15  

Noise(35) SIWM(2,12.46) 15.14 14.14 50.07 1.83 

 Wiener 17.65 14.00 50.88 1.44 

Windmill Contaminated 31.26 18.35 30.46  

Noise(60) SIWM(7,19.70) 31.09 14.79 45.93 1.83 

 Wiener 31.26 14.57 47.07 1.45 

Fruit2 Contaminated 13.08 26.00 12.73  

Noise(25) SIWM(3,14.09) 18.49 15.39 43.19 4.25 

 Wiener 13.08 15.35 43.41 3.06 

Sphinx Contaminated 9.76 28.05 9.70  

Noise(20) SIWM(2,7.04) 5.67 18.65 28.63 1.80 

 Wiener 9.76 18.76 28.26 1.45 

Eagle Contaminated 14.95 24.73 14.79  

Noise(30) SIWM(2,11.22) 12.73 14.06 50.56 1.75 

 Wiener 14.95 14.00 50.89 1.38 

Shuttle Contaminated 36.80 17.54 33.84  

Noise(70) SIWM(5,19.17) 29.86 13.53 53.73 4.11 

 Wiener 36.80 13.11 56.35 3.22 

 

Table 3.1 
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(b) PSF(11,11,1.00,1.00)     

Image Method Sigma PSDR RMSE Time (sec) 

Classmate Contaminated 21.13 20.21 24.89  

Noise(40) SIWM(2,14.82) 21.98 23.29 17.45 1.19 

 Wiener 21.13 23.28 17.47 0.95 

Lena Contaminated 13.06 24.28 14.48  

Noise(30) SIWM(2,9.45) 13.20 28.51 8.90 2.52 

 Wiener 13.06 28.51 8.90 2.02 

Moon-Man Contaminated 18.39 22.11 19.92  

Noise(35) SIWM(2,13.10) 19.05 25.36 13.71 1.63 

 Wiener 18.39 25.26 13.86 1.27 

Clock Contaminated 22.54 21.12 22.42  

Noise(45) SIWM(3,15.51) 23.17 25.87 12.97 3.41 

 Wiener 22.54 25.82 13.04 2.64 

Fruit1 Contaminated 17.65 23.18 17.69  

Noise(35) SIWM(2,12.10) 17.39 27.46 10.81 1.81 

 Wiener 17.65 27.38 10.91 1.50 

Windmill Contaminated 31.26 17.59 33.27  

Noise(60) SIWM(4,20.02) 31.61 22.61 18.67 1.83 

 Wiener 31.26 22.66 18.56 1.44 

Fruit2 Contaminated 13.08 22.15 19.83  

Noise(25) SIWM(2,9.31) 12.98 23.32 17.33 4.23 

 Wiener 13.08 23.25 17.47 3.08 

Sphinx Contaminated 9.76 26.47 11.64  

Noise(20) SIWM(2,6.49) 8.78 29.95 7.79 1.80 

 Wiener 9.76 30.01 7.74 1.45 

Eagle Contaminated 14.95 22.81 18.46  

Noise(30) SIWM(2,10.88) 15.43 26.81 11.64 1.72 

 Wiener 14.95 26.84 11.61 1.38 

Shuttle Contaminated 36.80 16.79 36.90  

Noise(70) SIWM(4,19.26) 30.11 21.20 22.21 4.11 

 Wiener 36.80 21.46 21.56 3.19 

 

Table 3.2 
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(c) PSF(11,11,1.75,1.75)     

Image Method Sigma PSDR RMSE Time (sec) 

Classmate Contaminated 21.13 19.40 27.33  

Noise(40) SIWM(2,14.90) 21.93 22.58 18.96 1.20 

 Wiener 21.13 22.55 19.02 0.92 

Lena Contaminated 13.06 23.20 16.39  

Noise(30) SIWM(2,9.46) 13.06 27.01 10.57 2.45 

 Wiener 13.06 26.92 10.69 2.00 

Moon-Man Contaminated 18.39 20.59 23.74  

Noise(35) SIWM(2,13.13) 18.90 23.33 17.31 1.61 

 Wiener 18.39 23.23 17.51 1.30 

Clock Contaminated 22.54 20.23 24.83  

Noise(45) SIWM(3,15.52) 23.02 24.56 15.09 3.36 

 Wiener 22.54 24.47 15.25 2.61 

Fruit1 Contaminated 17.65 21.98 20.30  

Noise(35) SIWM(2,12.15) 17.29 25.88 12.96 1.83 

 Wiener 17.65 25.76 13.14 1.42 

Windmill Contaminated 31.26 16.93 35.89  

Noise(60) SIWM(4,20.25) 31.99 21.68 20.78 1.81 

 Wiener 31.26 21.64 20.85 1.44 

Fruit2 Contaminated 13.08 20.93 22.81  

Noise(25) SIWM(2,9.30) 12.82 22.36 19.36 4.16 

 Wiener 13.08 22.30 19.50 3.06 

Sphinx Contaminated 9.76 25.15 13.55  

Noise(20) SIWM(2,6.50) 8.72 28.43 9.28 1.80 

 Wiener 9.76 28.30 9.43 1.41 

Eagle Contaminated 14.95 21.18 22.27  

Noise(30) SIWM(2,10.88) 15.25 26.40 12.21 1.73 

 Wiener 14.95 26.35 12.27 1.38 

Shuttle Contaminated 36.80 16.20 39.50  

Noise(70) SIWM(4,19.40) 30.29 20.93 22.91 4.09 

 Wiener 36.80 20.82 23.22 3.20 

 

Table 3.3 
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     The data in figures 3.6 through 3.8 and tables 3.1, 3.2 and 3.3, show that SIWM in every case 

restores the given image data, i.e., increases the PSDR and decreases the RMSE of the 

contaminated image.  The data show that the σn estimation method, SIGEST, developed in 

chapter 2, works fairly well.  In every case, of whole image noise contamination, the method 

determined an estimate of σn that is within 18% of the actual σn.   The tabulated data show that as 

the number of sub-images is increased the accuracy of the calculated σn remains fairly constant 

(up to a limit in the number of sub-images chosen) and restoration time is reduced.  Thus σe 

remains close enough to σn for SIWM to restore the image data.  In addition, increasing the 

number of sub-images reduces the amount of time required to restore the image.  Therefore the 

two assertions about SIM are validated for these data.  However there are a few instances where 

an increase in the number of sub-images causes a significant increase in the percent difference 

between σn and σe.  The increase is an indication that there is a limit to the number of sub-images 

that can be used beyond which the restoration results are significantly degraded.  The data also 

shows that for the case of whole image noise contamination it is not necessary to use the images 

asi, any sub-image can be used.  The difference in results between figures 3.8(d) and 3.8(e) show 

for the case of partial noise contamination the asi should be used for best restoration results. 
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3.4  Comparison of the SIWM and MatLab Wiener2 
 

 

     The MatLab function Wiener2, performs a lowpass filter on an image that has been 

contaminated by constant power additive noise.  It uses a pixel-wise adaptive Wiener method 

based on statistics estimated from a local neighborhood of each pixel and it calculates an 

estimate of the noise contained in the image data, [16].  Wiener2 estimates the local mean, µ, and 

variance, σ
2
, around each pixel and they are calculated using the following equations: 
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In this section the wiener2 function is compared to the SIWM.  In figure 3.9 the methods are 

applied to an image containing with very little contamination, in figure 3.10 a moderate amount 

of contamination and in figure 3.11 a large amount of distortion. 

 
 

Figure 3.9 
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Figure 3.10 

 

 

 
Figure 3.11 
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      The results shown in figure 3.9 shows that both the SIWM and the Wiener2 methods are 

capable of restoring images which contain very little distortion, with the Wiener2 method 

producing slightly better results numerically.  Notwithstanding, in my opinion, the SIWM result 

looks better.  Figure 3.9 also shows that the SIWM is faster than the Wiener2 method.  Figures 

3.10 and 3.11 show that the SIWM does a better job of restoring image data with moderate and 

large amounts of contamination – and does it faster than the Wiener2 method.  Lastly all three of 

the figures show that the SIWM produces a more accurate estimate of the image contaminating 

noise standard deviation, σn.   
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Summary and Discussion  
 

 

     In this dissertation six well know image restoration methods have been investigated.  Three of 

the methods are direct and three are iterative.  For chapter 1 several contaminated images were 

processed using all six of the investigated methods.  The results are – the Wiener method is the 

best method (of the six) for the cases investigated.  In chapter 2 the Morrison De-Nosing method 

(MNRM) is described and is shown to be a viable noise reducing method. The MNRM is used to 

develop a method of estimating the standard deviation of noise, σn, contained in contaminated 

image data, h.  The method was tested on the first ten images shown in figure 1.10 and is found 

to yield good results.  The sigma estimation method (SIGEST) is shown in figure 2.4.  

     In chapter 3, the Sub-Imaging Method (SIM) is introduced and two assertions about it are 

made:   

1. The asi of an image can be used in the place of the whole image to determine σe of σn and 

used to restore the whole image.  Therefore, the noise in a piece of an image can 

represent the noise in the whole image (provided it is the asi of the image’s hN). 

2. SIM can be combined with the Wiener method to restore contaminated image data 

without the noise σ of the data being known. 

An algorithm utilizing SIM and the Wiener method was developed and tested using 10 of the 

images shown in figure 1.10.  The results validate both assertions concerning SIM for these 

images.  However two exceptions were discovered.  There is a limit to the number of sub-images 

that an image can be divided into and have assertion two remain valid.   The second is that as 

shown by figure 3.2 compared to figure 3.3, it is not necessary that the sub-image chosen be the 

asi of the whole image if the whole image is completely contaminated with noise.  If the image is 

partially contaminated with noise then its asi must be used for best restoration results as shown 
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by figure 3.8.  Additionally the more sub-images used, the less time required by the SIM 

restoration method.   

     The first conclusion of this dissertation is that the method SIGEST, based on the MNRM can 

be used to determine a good estimate of the standard deviation of noise contained in image data, 

σn.  The second conclusion is that SIM combined with the Wiener method is a viable restoration 

method that enables blur and noise contaminated image data to be restored without the noise 

being known (using σn as determined by SIGEST).  The final conclusion is that SIM works best 

as a restoration method when applied to images which contain a moderate amount, and more, of 

blur and noise contamination.  The SIWM is least accurate for narrow width PSF images, so one 

possible improvement would be to use another filter to restore images with a narrow PSF.  

Another improvement in the method would be to develop an algorithm that adjusts the sub-image 

size of 96 by 96 pixels used in the Calc_Asi function (figure 3.1).  The sub-image size has a 

great affect on partially noise contaminated images.  I think further research that resolves the two 

previously mentioned weakness in the SIWM, would substantially improve the method.  

However I think the SIWM as developed and coded in this work, is an effective image 

restoration tool.  But as with any other method the user must review the results and perhaps 

reapply the method, changing the inputs as needed.  A fairly complete flow chart of the whole 

SIWM is shown in figure 3.12. 
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pn = 1 

Start: SIGEST 

Read h, b, Nitr  

Output: hr, hs, s1, se END 

hr = MNRM(h, b, Nitr) 

hs = h -hr 

s1 = STDEV(hs) 

wf = NMW(b) 

se = CalcSig(s1,wf) 

Figure 3.12 

Start: MNRM 

h,  Nitr  

hr = hr + [h - hr]**b 

rmse2 = RMSE(h, hr) 

dr = abs(rmse2 -rmse1) 

Output: hr, k END 

No 

Yes 
k < Nitr 

and 

dr > Tol 

[r,c] = Size(h) 

hr = h**b 

rmse1 = RMSE(h, hr) 

T1 = (r · c) /3000000 

Tol = max(T1,0.5) 

dr = 2*Tol 

k = 1 

k = k +1 

rmse1 = rmse2 

b = PSF(11,1.0.1.0,1) 

Start: WIENER 

Input: h, b, σ  

Nrc = size(h) 

B = DFT(b) 

H = DFT(hr) 

Pf = H*H* / Nrc 

PS = σ2 / (Pf - σ2) 

W = B* / (B*B* + PS) 

F = W*H 

f = IDFT(F) 

 

Output: f END 

Start: SIWM 

Read h, b, pn, width 

[ha,asi] = calc_asi(h,b,pn) 

[σe, σ1] = SIGEST(ha,b,100) 

Restore f, 

f = WIENER(h, b, 0.9*σe) 

Output:  f, asi, σe 

End 

Start: CALC_ASI 

Read h, b, pn 

Output: ha, asi 

END 

[hr,h2,σe,ait] =SIGEST(hk,b,100) 

[map,σn,β] = subimgs(h2,1) 

[σa,asi] = calcavg(σn) 

ha = SubImage(asi) 

asi = 0 

ha=ImgCtr(h,96,96) 

Yes 

No 
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Computer Code 

 
 

 

     This section is a listing of all of the major computer code I used in performing the image 

restoration methods and various parameter calculations in this dissertation.  All of the code is 

written in Matlab version 7.1. 
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function [f,dt] = iddm(oi,b1,inoise,ns,Show) 

tic; 

% All equations developed involve dividing by b(1,1) so thus, 

if abs(b1(1,1)) < 0.001, 

   disp('First element of b can not be zero or nearly zero.'); 

   disp('Will adjust PSF upward by 0.5 and normalize b(1,1) to one.'); 

   b1 = b1 + 0.5; 

end 

b   = double(ceil(b1/b1(1,1))); 

[h] = blur1(oi,inoise,b,ns,0);  % Blur the given image. 

[m3,n3] = size(h); % size of h 

[m1,n1] = size(b); % size of b 

m2 = m3 -m1 +1; % number of rows of f 

n2 = n3 -n1 +1;      % number of cols of f 

f  = double(zeros(m2,n2)); 

%-------------------------------------------------------- 

for col = 1:1:n2, 

   for row = 1:1:m2, 

   %---------------------------------------------- 

   tot = double(0.0); 

   c = 1;    j = min(m1,row);    k = min(n1,col); 

      while c <= k, 

         r = 1; 

   while r <= j, 

            tot = tot +b(r,c)*f((row+1-r),(col+1-c)); 

            r = r +1; 

         end 

          c = c +1; 

  end 

   f(row,col) = (h(row,col) -tot) / b(1,1); 

 %---------------------------------------------- 

   end 

end 

%-------------------------------------------------------- 

dt = toc; 

%------------------------------------------------------------------- 

% Plot the images; Original, Contaminated and Restored. 

%------------------------------------------------------------------- 

if Show == 1,   

   if ns > 0,  xtxt2 = sprintf('Blurr +noise'); 

   else         xtxt2 = sprintf('Blurr');    

   end    

   xtxt3 = sprintf('Restored; Direct'); 

   showi3(oi,h,f,dt,'Original',xtxt2,xtxt3); 

end 

return 
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function [f,dt] = ftm(oi,b,inoise,ns,Show) 

tic; 

[h] = blur1(oi,inoise,b,ns,0);  % Blur the given image. 

[r1,c1] = size(b); % size of b is (r1,c1) 

[r3,c3] = size(h); % size of h is (r3,c3) 

r2 = r3 -r1 +1;  % size of image is (r2,c2) 

c2 = c3 -c1 +1; 

f  = zeros(r2,c2); 

row = 1; col = 1; r = 1; c = 1; j = 1; k = 1; 

% Use the convolution Thm; Convolution in one domain is 

% equal to multiplication in the other domain. 

%-------------------------------------------------------- 

B  = fft2(b,r3,c3);  

H  = fft2(h,r3,c3);  

% inverse filter  

Filter = (abs(B) > 0.0001) .* (1./B);  

f  = ifft2(H.*Filter); % F = H / B, and f = ifft2(IMAGE) 

f  = real(f); 

%-------------------------------------------------------- 

% Plot the images, 

dt = toc; 

if Show ~= 0, 

   showims(oi,h,f,ns,'Restored; FFT',dt,Show); 

end 

return 
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function [f,dt] = dwiener(oi,b,inoise,ns,sigma) 

 

tic; 

[h] = blur1(oi,inoise,b,ns,0);  % Blur the given image. 

% Solve for h, by the Wiener Method. 

 [r,c] = size(h); 

B     = fft2(b,r,c); 

H     = fft2(h,r,c); 

Pf    = conj(H).*H /(r*c); % Estimate f = h 

Pn    = ones(r,c) * sigma^2; 

% Calculate the wiener filter, 

PS  = Pn ./ (Pf -sigma^2); 

W   = (conj(B)) ./ (conj(B).*B + PS); 

% Restore the image. 

F   = W.*H; 

f   = real(ifft2(F)); 

dt = toc; 

return 
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function [f,dt,j] = dvcm(oi,b,inoise,ns,Nitr,Show) 

 

dt = cputime; 

[h]  = blur1(oi,inoise,b,ns,0);  % Blur the given image. 

[r,c]= size(h); 

Nrc   = r * c; 

Tol = 0.30; 

f     = h;      % Initial guess for the image. 

fprintf(1,'Tolerence for stopping = %f\n',Tol); 

% Iterate m times using Van Citter's Method. 

%-------------------------------------------------------- 

j   = 1; 

rmse1 = 1; 

rmse2 = 10 * rmse1; 

while (abs(rmse2 -rmse1) > Tol) & (j <= Nitr), 

   R  = (h -conv2(f,b,'same')); 

   fj = f + R; 

   rmse2 = rmse1; 

   rmse1 = sqrt(abs(mserror(f,fj))); 

   fprintf(1,'%2d, Rmse1 = %.6f, Rmse2 = %f\n',j,rmse1,rmse2); 

   j = j +1; 

   f = fj; 

end 

j = j -1; 

%-------------------------------------------------------- 

f  = xtract(oi,f,0); 

h  = xtract(oi,h,0); 

dt = cputime - dt; 

return 
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function [f,dt,j] = drlmg(oi,inoise,b,ns,Nitr,Show) 

 

[h] = blur1(oi,inoise,b,ns,0);  % Blur +noise the given image. 

dt  = cputime; 

[xr,xc] = size(h); 

[r2,c2] = size(b); 

Nrc     = xr * xc; 

Tol = 0.10; 

fprintf(1,'Tolerence for stopping = %f\n',Tol); 

j     = 1; 

rmse1 = 1; 

rmse2 = 10 * rmse1; 

% For the blurred +noise image data, h; 

%============================================================= 

   fi  = h;    % Initial reference image. 

   f2  = h ./2; % Initial guess of deconvoled image. 

   % Determine if 'b' has a zero in it. 

   %-------------------------------------------------------- 

   HasZero = 0; 

   for r = 1:1:r2, 

      for c = 1:1:c2, 

         if abs(b(r,c)) < 0.01, 

            HasZero = 1; 

         end 

      end 

   end 

   %-------------------------------------------------------- 

    

 % Iterate nitr times using Richardson Lucy Method (gaussian noise). 

 %------------------------------------------------------------------- 

   if HasZero == 0, 

   while (abs(rmse2 -rmse1) > Tol) & (j <= Nitr), 

      s1 = conv2(f2,b,'same'); 

      s2 = conv2(s1,b,'same'); 

      s3 = conv2(h,b,'same') ./ s2; 

      f2 = f2 .* conv2(s3,b,'same'); 

    rmse2 = rmse1; 

    rmse1 = sqrt(abs(mserror(f2,fi))); 

    fprintf(1,'%d, Rmse1 = %.6f, Rmse2 = %f\n',j,rmse1,rmse2); 

      fi = f2; 

      j  = j +1; 

   end   end 

 %------------------------------------------------- 

   if HasZero == 1, 

   while (abs(rmse2 -rmse1) > Trmse) & (j <= Nitr), 

      s1 = conv2(f2,b,'same'); 
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      s2 = conv2(s1,b,'same'); 

      [r3,c3] = size(s2); 

      s3 = s2; 

      for r = 1:1:r3, 

         for c = 1:1:c3, 

            s3(r,c) = s2(r,c); 

             if s2(r,c) == 0, 

                s3(r,c) = 1; 

             end 

          end 

       end  

      s4 = conv2(h,b,'same') ./ s3; 

      f2 = f2 .* conv2(s4,b,'same'); 

    rmse2 = rmse1; 

    rmse1 = sqrt(abs(mserror(f2,fi))); 

      fprintf(1,'%d, Rmse1 = %.6f, Rmse2 = %f\n',j,rmse1,rmse2); 

      fi = f2; 

      j  = j +1; 

   end  end 

 fprintf(1,'..... Finished! .....\n');  

   %------------------------------------------------------------------- 

j = j -1;    

%f   = f2; 

f  = xtract(oi,f2,0); 

h  = xtract(oi,h,0); 

dt = cputime-dt; 
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function [f,R,D,dt,steps] = clean(oi,inoise,b,ns,gamma,Pmax,itr,dn,Show) 

 

[h,noise]  = blur1(oi,inoise,b,ns,0);  % Blur the given image. 

[row,col]  = size(h); 

[row2,col2]= size(b); 

Nrc        = row * col; 

rr  = max([floor((row2 -1)/2 +1), 1]); 

cc  = max([floor((col2 -1)/2 +1), 1]); 

tic; 

if (dn > 0) & (ns > 0),  % Do pre de-noising. 

   disp('... De-Noising the imagage ...'); 

   hn = h; 

 h = ioupdn(hn,b,dn,0); 

end 

% Clean beam, bc, 

bmax  = max(max(b)) * 1; 

bc    = gaussmtx(row2,col2,0.01,0.01,0,0); 

R     = h;               % Residual image 

D     = zeros(row,col);  % Density image  

Tol   = max(max(h)) * Pmax; 

Imax  = 2 * Tol; 

steps = 0; 

% 

%------------------------------------------------------------------- 

while (Imax > Tol) & (steps < itr), 

   [v1,m1] = max(R);      % Row of max values, µ 

   [Imax,m2] = max(v1);   % Max pixel value 

   j  = m1(m2);           % Location of max pixel, R(j,k) 

   k  = m2; 

   gp = gamma * Imax; 

   r1 = j -rr +1; 

   c1 = k -cc +1; 

   r2 = j +rr -1; 

   c2 = k +cc -1; 

   W  = zeros(row,col); 

   % Copy center of (gp * b) to W at (j,k). 

   W(r1:r2,c1:c2) = gp * b; 

   R  = R -W; 

   D(j,k) = D(j,k) + gp; 

   steps  = steps +1; 

end 

f  = conv2(D,bc,'same'); 

f  = D + R; 

% Scale max intensity in f to match that in h, the given data. 

sf = min(max(max(h)),255) / max(max(f)); 

f  = f * sf; 
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%------------------------------------------------------------------- 

dt = toc; 

fprintf(1,'------ CLEAN Method finished, iterations = %d ------\n\n',steps); 

 

% Plot the original, contaminated, Residual & Restored images. 

%------------------------------------------------------------------- 

if Show == 1,   

   xtxt2 = sprintf('Psf(%d,%.1f,%.1f) & Noise(%.1f)\r\n',nb,sbx,sby,ns); 

   xtxt3 = sprintf('Residual, g =%.2f, tol =%.2f',gamma,Pmax); 

   if dn ~= 0, 

      xtxt4 = sprintf('CLEAN +PNR, itrs = %d',steps); 

   else 

      xtxt4 = sprintf('CLEAN, itrs = %d',steps); 

   end 

   showi4b(oi,h,R,f,dt,dt,'Original',xtxt2,xtxt3,xtxt4); 

end 

 

% Plot the original, contaminated, Density & Restored images. 

%------------------------------------------------------------------- 

if Show == 2,   

   xtxt2 = sprintf('Psf(%d,%.1f,%.1f) & Noise(%.1f)\r\n',nb,sbx,sby,ns); 

   xtxt3 = sprintf('Density, g =%.2f, tol =%.2f',gamma,Pmax); 

   if dn ~= 0, 

      xtxt4 = sprintf('CLEAN +PNR, itrs = %d',steps); 

   else 

      xtxt4 = sprintf('CLEAN, itrs = %d',steps); 

   end 

   showi4b(oi,h,D,f,dt,dt,'Original',xtxt2,xtxt3,xtxt4); 

end 

return 
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% Function description: 

% Blurrs the given 2D B&W image with the given Point Spread Function  

% 'psf' and adds noise if ns > 0. Resulting 2D image is returned as h. 

% The model is; 

%              h = b(*)image + noise 

%================================================================ 

function [h] = blur1(image,inoise,b,ns,Show) 

h = conv2(b,image); % conv2(image,b,'same'); 

[r,c] = size(h); 

[ny2,nx2] = size(inoise); 

if (r <= ny2) & (c <= nx2), % Use the given noise if possible. 

   noise = inoise(1:r,1:c); 

else 

   noise = randn(r,c); 

end 

% Det min and max values of h so that if noise is to be added; 

% it is added as a percentage of (max -min). 

%-------------------------------------------------------- 

if ns <= 0,  noise = noise * 0;  end 

if ns > 0, 

   vmin = min(min(h)); 

   vmax = max(max(h)); 

   magnitude = vmax -vmin; 

   noise = noise * magnitude * (ns / 100.0); 

   h = h + noise; 

   % Ensure that all pixel values are in the range of 0 to 255. All values outside of the allowed  

   % range must be truncated to 0 or 255, because an imaging system will not record values  

   % outside of this range, some detail is lost but in actuality this is what occurs. 

   for j = 1:1:r, 

      for k = 1:1:c, 

         if h(j,k) < 0,   h(j,k) = 0;    end 

         if h(j,k) > 255, h(j,k) = 255;  end 

      end 

   end 

end 

return 
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% Function description: 

% Blurrs the given color 2D image with the given Point Spread Function  

% 'psf' and adds noise if ns > 0. Resulting 2D image is returned as h. 

% The model is;      h = b(*)image + noise 

%============================================================== 

function [h,noise] = cblur(image,inoise,b,ns,Show) 

[hr,hg,hb] = color2rgb(image); 

hr = conv2(b,hr);     hg = conv2(b,hg);     hb = conv2(b,hb); 

[ny,nx] = size(hr); 

[ny2,nx2] = size(inoise); 

if (ny <= ny2) & (nx <= nx2), % Use the given noise if possible. 

   noise = inoise(1:ny,1:nx); 

else 

   noise = randn(ny,nx); 

end 

[rows,cols] = size(hr); 

% Det min and max values of h so that if noise is to be added; add as a percentage of (max -min). 

%-------------------------------------------------------- 

if ns <= 0, noise = noise * 0; end 

if ns > 0, 

   hbw = color2bw(image); 

   vmin = min(min(hbw)); 

   vmax = max(max(hbw)); 

   magnitude = vmax -vmin; 

   noise = noise * magnitude * (ns / 100); 

   hr = hr + noise; 

   hg = hg + noise; 

   hb = hb + noise; 

   % Ensure that all pixel values are in the range of 0 to 255. All values outside of the allowed  

   % range must be truncated to 0 or 255, because an imaging system will not record values  

   % outside of this range, some detail is lost but in actuality this is what occurs. 

 for j = 1:1:ny, 

    for k = 1:1:nx, 

       if hr(j,k) < 0,   hr(j,k) = 0;    end 

       if hr(j,k) > 255, hr(j,k) = 255;  end 

       if hg(j,k) < 0,   hg(j,k) = 0;    end 

       if hg(j,k) > 255, hg(j,k) = 255;  end 

       if hb(j,k) < 0,   hb(j,k) = 0;    end 

       if hb(j,k) > 255, hb(j,k) = 255;  end       

    end 

 end 

end 

h(:,:,1)  = hr; 

h(:,:,2)  = hg; 

h(:,:,3)  = hb; 

return 
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% Function description: Morrison Noise Reduction Method 

% De-noises the given 2-D image data by the Morrison method: 

%   h = b (*) io + noise 

% Resulting 2D image is returned as 'hr'. 

%   f     = The original (un-contaminated) image data 

%   h     = The measured (contaminated) image data 

%   bi    = Actual blurring funct, Impulse response (Point Spread Function) 

%   bm    = Is the actual PSF used so, bm = b 

%   Nitr  = Max number of iters of Morrison method 

%   Show  = 1, De-noised image is displayed. 

%   Show  = 2, De-noised and Original images are displayed. 

%   j     = The actual number of iterations done. 

% The algorithm is; 

%              hr(j) = hr(j-1) +[(h-hr(j-1))(*)b] 

%================================================================ 

function [hr,j,bm] = mnrm(f,h,bi,Nitr,Show) 

  

[r,c]   = size(h);    [rb,cb] = size(bi);   [wf,na] = nmw(bi); 

% Morrison method works well using a medium width PSF. 

% If the given PSF is narrow or wide then substitute a medium width of the same size. 

%------------------------------------------------------------------ 

if (wf ~= 2), 

    bm = gaussmtx(rb,cb,1.0,1.0,1,0); 

else 

    bm = bi; 

end 

tol2  = (r * c) * 2e-007;  % Allow only a little error for each pix. 

Tol   = max([tol2, 0.5]); 

hr    = conv2(h,bm,'same'); 

rmse1 = sqrt(abs(mserror(h,hr)));   amin = 0;   j = 1;   xrmse(j) = rmse1; 

% Iterate max of Nitr times using Morrison Method to reduce the noise in the given image data. 

%-------------------------------------------------------- 

while (amin == 0) & (j <= Nitr), 

   j  = j +1; 

   hr = hr +conv2((h -hr),bm,'same'); 

   rmse2 = sqrt(abs(mserror(h,hr))); 

   % Located a min if set TOL being reached. 

   if (abs(rmse2 -rmse1) < Tol), 

      amin = 1; 

   else 

      rmse1 = rmse2;     xrmse(j) = rmse1; 

   end 

end 

% Plot the images. 

if Show == 1,     showi2(f,fr,'De-noised image');   end 

return 
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% Function description: Wavelet Noise Reduction Method 

% Reduces the noise in the given image by applying the DWT constructed from,  

%   a = The scaling function coefficients, and, 

%   b = The wavelet function coefficients 

% a and b are calculated for the given Daubechies length N. 

% Next the indicated thresholding method is applied as follows; 

%   thold = 1 => Soft threshold, and, 

%   thold = 2 => Hard threshold 

%   N     = Length of wavelet to use. 

%   f     = The De-noised image 

%============================================================= 

function [f] = wnrm(image,N,thold,Show) 

  

[h,y1,x1,y2] = sqimage(image); % Image must be square! 

x2 = y2; 

[ny1,nx1]    = size(h); 

M     = max([ny1,nx1]); 

[a,b] = wcdaub(N); 

% Construct the DN forward transform matrix; 

%-------------------------------------------------------------------- 

W  = zeros(M,M); 

dc = 1; 

for r=1:2:(M-1), 

   k  = 1; 

   c2 = min([(dc+N-1),M]); 

   for c=dc:1:c2, 

     W(r+0,c) = a(k); 

     W(r+1,c) = b(k); 

     k = k +1;   

   end 

   dc = dc +2; 

end 

%-------------------------------------------------------------------- 

% Apply W to the given image. 

%-------------------------------------------------------------------- 

F1 = W * h; 

%-------------------------------------------------------------------- 

% Apply the indicated thresholding to F1 of the image. 

%-------------------------------------------------------------------- 

sigma  = std(reshape(h,ny1^2,1)); 

lambda = sqrt(sigma)*sqrt(2*log10(M)); 

F2 = zeros(M,M); 

if thold == 1,  % Soft thresholding 

   for r=1:1:M, 

      for c=1:1:M, 

        F2(r,c) = sign(F1(r,c))*max([0,(abs(F1(r,c))-lambda)]); 
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      end 

   end 

end 

if thold == 2,  % Hard thresholding 

   for r=1:1:M, 

      for c=1:1:M, 

         if abs(F1(r,c)) > lambda, 

            F2(r,c) = F1(r,c); 

         else 

            F2(r,c) = 0; 

         end 

      end 

   end 

end 

%-------------------------------------------------------------------- 

% Apply the IWT to F2 to recover the image. 

%-------------------------------------------------------------------- 

f = W' * F2; 

f = f(1:y1,1:x1); % Reset f to the orginal image size. 

%--------------------------------------------------------------------    
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%============================================================ 

% Function description: Determines if the matrix data (PSF) width is, 

%     wf = 1 => narrow 

%     wf = 2 => medium 

%     wf = 3 => wide. 

% 

% EFS,  © 2006 

%============================================================= 

function [wf,Na] = nmw(A2) 

  

% First normalize A2, 

Amax = max(max(A2)); 

A    = A2 / Amax; 

Amax     = max(max(A)); 

[r1,c1]  = size(A); 

Nrc = r1 * c1; 

Amax1 = Amax * 0.50; 

Na  = 0; 

% Determine the number of elements in A >= Amax1. 

for r = 1:1:r1, 

   for c = 1:1:c1, 

      if (A(r,c) >= Amax1), 

         Na = Na +1; 

      end 

   end 

end 

if Na < 1, 

   wf = -1; 

   return 

end 

Rab = Na / Nrc; 

if Rab < 0.02, 

   wf = 1;   % Narrow PSF 

end 

if Rab >= 0.02 & Rab < 0.09, 

   wf = 2;   % Medium PSF 

end 

if Rab >= 0.09, 

   wf = 3;   % Wide PSF 

end 

return 
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%=============================================================== 

% [hr,hs,sig1,sigmae,Ait] = sigest(h,b,Nitr) 

% ENAS 7050 

% Image Deconvolution Research - IV 

% 

% Function description: Sigma Estimation Method 

% Calculates an estimate of the noise in 2-D image data h. 

%   h     = The noise contaminated image data 

%   b     = The PSF of the image data 

%   Nitr  = Max number of iterations to use in Morrison De-Noising method 

% Returns: 

%   hr     = Reduced noise version of h 

%   hs     = The estimated noise data in h 

%   sigmae = Estimated standard deviation of noise in the h 

%   sig1   = The un corrected est std of the noise in h 

%   Ait    = Actual number of iterations used in MDNM 

% 

% EFS,  © 11/2006 

%=============================================================== 

function [hr,hs,sig1,sigmae,Ait] = sigest(h,b,Nitr) 

  

[r1,c1]  = size(h); 

[hr,Ait] = mnrm(h,h,b,Nitr,0); 

hs       = (h -hr); 

sig1     = std(reshape(hs, 1, (r1 * c1))); 

sigmae   = sigact(sig1,b); 

return 
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%============================================================ 

% function [siga] = sigact(sige,psf) 

% ENAS 7050 

% Image Deconvolution Research - IV 

% Function description: Calculates the actual noise sigma, siga, given   

% the estimated noise sigma, sige, and the image PSF data. 

%  

% EFS,  © 11/2006 

%============================================================ 

function [siga] = sigact(sige,psf) 

  

% First determine if the PSF is narrow, medium or wide width. 

[wf,Naa] = nmw(psf); 

siga = sige; 

if wf == 1,  % Narrow width PSF. 

    siga = -0.9008 +0.3404*sige +0.0947*sige^2 -0.0015*sige^3; 

end 

if wf == 2,  % Medium width PSF. 

    siga = -0.1501 +1.3141*sige +0.0076*sige^2 +0.0003*sige^3; 

end 

if wf == 3,  % Wide width PSF. 

    siga = 0.0824 +1.2517*sige +0.0099*sige^2 +0.0003*sige^3; 

end 

siga = siga * 1.00;  % Final adjustments to sigma can be made here. 

return 
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%============================================================ 

% [ha,asi,uniform,rows,cols] = calc_asi(h,b,pn,show); 

% Function description: 

% Calculates the asi of the given noise contaminated image data, h, return; 

%   ha      = The sub-image of h for asi 

%   asi     = The index to the average sub-image 

%   uniform = 0 => Noise is uniform else is not uniform. 

%  

% For a 3 by 3 the sub-imaging the indexing is as follows; 

%    | 1 | 2 | 3 | 

%    | 4 | 5 | 6 | 

%    | 7 | 8 | 9 | 

% EFS,  © 11/2006 

%============================================================ 

function [ha,asi,uniform,rows,cols] = calc_asi(h,b,pn,show) 

  

% Calculate hN from h2 (h2 is calc'ed in sigest), (2 iterations of the Morrison Method) of h. 

[hr,hN,sig1,sigmae,Ait] = sigest(h,b,2); 

if pn == 0, 

% Partition the image into 1 center sub-image. 

    rows = 1;       cols = 1;   uniform = 0; 

    [ha,hac,alpha,asi] = imgcenter(hN,hN,0); 

else 

%------------------------------------------------------------------ 

% Partition the image into sub-images of (rows, cols). 

    [map,alpha,beta,rows,cols] = subimgs(hN,0); 

    % Calc the average std of hN, and the asi to it. 

    [av,asi] = calcavg(alpha); 

    if show == -1, 

       [av,asi] = calcavg3(alpha);  % min 

    end 

    if show == -2, 

       [av,asi] = calcavg2(alpha);  % max 

    end 

    r1 = map(asi,1);   c1 = map(asi,2);   r2 = map(asi,3);   c2 = map(asi,4); 

    ha = h(r1:r2,c1:c2); 

    % Determine if the noise is uniform. 

    smin = min(alpha);      smax = max(alpha); 

    stol = 0.1 * av; 

    sdel = abs(smax -smin); 

    if sdel > stol,      uniform = 1; 

    else                     uniform = 0; 

    end 

%------------------------------------------------------------------ 

end 

return 
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%============================================================ 

% [f1,f2,hc,sigma,asi,dt,ait,rc] = siwm(oi,inoise,nb,sbx,sby,ns,pn,Show) 

% Function description: By the Sub Image Wiener Method 

% Blurrs the original 2D image 'oi' and adds 'noise' to it by; 

%   h = b(*)f + noise 

% Deconvolves color f from blurred and noisy (ns ~= 0), h.  

% Resulting 2D image is returned as 'f'. 

%   oi    = The original image 

%   inoise= Input noise matrix 

%   f1 =f = Calculated original image based on estimated sigma 

%   f2    = Calculated original image based on actual sigma 

%   hc    = The blurred image 

%   b     = Blurring funct, impulse response (Point Spread Function) 

%   ns    = Indicates if h contains noise, ns = 1. 

%   Show  = 1, Original, Contaminated, Restored SIIWM, 

%           Restored with actual noise sigma, PSNR, RMSE and sigma. 

% EFS 

% © 2006 

%============================================================ 

function [f1,f2,hc,sigma,asi,dt,ait,rc] = siwm(oi,inoise,nb,sbx,sby,ns,pn,Show) 

  

% Create the PSF. 

b = gaussmtx(nb,nb,sbx,sby,1,0); 

[row2,col2] = size(b); 

[hc,noise] = cblur(oi,inoise,b,ns,0);  % Blur the given image. 

dt(1) = cputime; 

[r,c,z1] = size(hc); 

%Nsi = rows * cols;  % Calc the number of sub-images. 

if ns ~= 0, 

   sigma(3) = std(reshape(noise,1,r*c));   % Actual noise sigma(3). 

else 

   sigma(3) = 0; 

end 

% Partition the image into sub-images of (rows, cols), and determine 

% the asi of the h2 of the image data. Each image color contains the 

% same amount of noise, only 1 color is needed. Arbitrarily red is used. 

[ha,asi,uniform,rc(1),rc(2)] = calc_asi(hc(:,:,1),b,pn,Show); 

%-------------------------------------------------------------------- 

  

% Calculate the estimated noise std and number of Morrison iterations 

% for sub-image ha. 

%-------------------------------------------------------------------- 

[hr,hs,sigma(1),sigma(2),ait] = sigest(ha,b,100); % <== More sub-images saves time here! 

if uniform == 0, 

  fprintf(1,'Noise is uniform.\n'); 

else 
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  fprintf(1,'Noise is not uniform.\n'); 

end 

fprintf(1,'M(%d), sigma act = %.4f, est = %.4f, one = %.4f\n',... 

    ait,sigma(3),sigma(2),sigma(1)); 

%-------------------------------------------------------------------- 

  

% Determine if the PSF is narrow (wf == 1) or not (wf ~= 1). 

%-------------------------------------------------------------------- 

[wf,Na] = nmw(b); 

  

% Restore the image using the the est one sigma(1), by the Wiener Method. 

%------------------------------------------------------------------- 

for rgb =1:1:3, 

    f1(:,:,rgb) = dwiener2(hc(:,:,rgb),b,sigma(2)*0.9); 

end 

dt(1) = cputime -dt(1); 

%------------------------------------------------------------------- 

  

% Restore the image using the the actual sigma(3), by the Wiener Method. 

%------------------------------------------------------------------- 

dt(2) = cputime; 

for rgb =1:1:3, 

    f2(:,:,rgb) = dwiener2(hc(:,:,rgb),b,sigma(3));       

end 

dt(2) = cputime -dt(2); 

  

%------------------------------------------------------------------- 

% Resize h, f1 and f2 to be the same size as the original image 'oi'. 

% Size(h) =  Size(oi) + Size(b) -1. 

%------------------------------------------------------------------- 

for rgb =1:1:3, 

    hc1(:,:,rgb) = xtract(oi(:,:,rgb),hc(:,:,rgb),0); 

   f11(:,:,rgb) = xtract(oi(:,:,rgb),f1(:,:,rgb),1); 

   f21(:,:,rgb) = xtract(oi(:,:,rgb),f2(:,:,rgb),1); 

end 

hc = hc1;   f1 = f11;   f2 = f21; 

fprintf(1,'---------------- Image Restoration Done ----------------\n\n'); 
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