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Abstract 

This thesis attempts to cluster some leukemia patients described by gene 

expression data, and discover the most discriminating a few genes that are 

responsible for the clustering. A combined approach of Principal Direction 

Divisive Partitioning and bisect K-means algorithms is applied to the clustering 

of the selected leukemia dataset, and both unsupervised and supervised methods 

are considered in order to get the optimal results. As shown by the experimental 

results and the predefined reference, the combination of PDDP and bisect 

K-means successfully clusters the leukemia patients, and efficiently discovers 

some significant genes that can serve as the discriminator of the clustering. The 

combined approach works well on the automatic clustering of leukemia patients 

depending merely on the gene expression information, and it has great potential 

on solving similar problems. The discovered a few genes may provide very 

important information for the diagnosis of the disease of leukemia.
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Chapter 1. Introduction 

The rapid development of the DNA micro-array technology is making it 

more and more convenient to obtain various gene expression datasets with 

abundant information that can be very helpful for many meaningful biomedical 

applications such as prediction, prevention, diagnosis and treatment of diseases, 

development of new drugs, patient-tailored therapy, and so on. However, these 

datasets are usually very large and unbalanced, with the number of genes 

(thousands upon thousands) being much greater than the number of patients 

(generally from tens to hundreds). Consequently, how to analyze effectively this 

kind of large datasets with few samples and numerous attributes, for example, 

how to classify according to their gene expression profile the patients suffering 

from certain disease, or how to determine from thousands of genes the most 

discriminating ones that are responsible for the corresponding disease, should be 

viewed as an important issue.  

Recently there have been many exciting research results (1-11) in the area 

of DNA micro-array data mining on the basis of gene expression data analysis. 

For instances, depending solely on gene expression monitoring to micro-array 

datasets, Golub et al (1999) classified sample patients of acute leukemia as two 

sub types, ALL (Acute Lymphoblastic Leukemia) and AML (Acute Myeloid 

Leukemia), and predicted the sub types of new leukemia cases according to the 

expression values of the most decisive genes that were discovered during the 

classification of sample cases; Scott et al (2002) discovered a new sub type of 

acute leukemia, MLL (Mixed Lineage Leukemia), which was claimed as distinct 

enough to be separated from ALL or AML; In a hierarchical point of view, Loris 

et al (2004) classified patients of advanced ovarian cancer and extracted 

significant genes which characterized each level in the hierarchies; On the basis 
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of gene expression profile analysis van’t Veer et al (2002) predicted the clinical 

outcome (relapse / non-relapse) of breast cancer and Pomeroy et al (2002) 

predicted the outcome (survivor / failure) of embryonal tumor of central nervous 

system; Alon et al (1999) clustered correlated gene families about colon tissues 

and separated cancerous from non cancerous tissues; Dinesh et al (2002) 

performed the tumor versus normal classification of prostate cancer and predicted 

the clinical outcome of prostatectomy; Eng-Juh et al (2002) classified the sub 

types and predicted the outcome of pediatric acute lymphoblastic leukemia; Gavin 

et al (2002) separated malignant pleural mesothelioma (MPM), which is not a 

lung cancer, from adenocarcinoma (ADCA) of the lung; Alizadeh et al (2000) 

identified two distinct types of diffuse large B-cell lymphoma (DLBCL), the 

germinal centre B-like DLBCL and the activated B-like DLBCL. 

The technologies applied in the analysis of gene expression data are 

various. In (1) a method of neighborhood analysis is used to select out the most 

informative genes that are related to the classification of patients, a class 

predictor is designed by using the sum of the weighted votes from these genes to 

determine the wining class, and a cross-validation method is adopted to test the 

accuracy of the predictor. To classify the leukemia patients, a technology of 

self-organizing maps is applied to obtain two classes. In (3) an unsupervised 

method is used to cluster both genes and tumors, and a supervised alternative is 

adopted to identify the outcome of the tumors and extract the most significant 

genes that are related to the outcome. In (4) Principal Component Analysis (PCA) 

is applied to determine different types of tumors and the related genes. In (5) a 

deterministic-annealing algorithm is used to organize both genes and sample 

tissues into binary trees so that they can be clustered hierarchically. In (9) gene 

expression ratios are calculated and thresholds are selected to distinguish between 
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cancer and non-cancer tissues.  

 In this thesis, an approach based on the collaboration of three algorithms, 

Principal Component Analysis (PCA), Principal Direction Divisive Partitioning 

(PDDP), and bisect K-means, is applied to cluster the sample patients from a 

public leukemia dataset (see 11) which consists of 72 leukemia samples (24 acute 

lymphoblastic leukemia (ALL), 20 mixed-lineage leukemia (MLL) and 28 acute 

myeloid leukemia (AML)) with each sample represented by 12,582 gene 

expression values. In the mean time, a few significant genes that are strongly 

related to the result of the clustering are discovered. All the algorithms are 

implemented and the dataset imported using MATLAB, and the experimental 

results on the clustering of the patients and the discovering of the significant 

genes are discussed. 

The remaining content of the thesis is organized as follows: 

Chapter 2 is about the description and the pre-processing of the leukemia 

dataset that is used in the experiments, chapter 3 describes in detail the clustering 

algorithms, chapter 4 illustrates the experimental results of the clustering of the 

leukemia dataset by applying the MATLAB coded algorithms, and chapter 5 is the 

discussion and conclusion about the results. 
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Chapter 2. Dataset Description and Pre-processing 

2.1 Description of the Dataset 

The dataset analyzed in this thesis is the combination of two leukemia 

datasets processed in (11), where 57 samples (20 ALL, 17 MLL and 20 AML) are 

used for the training and 15 (4 ALL, 3 MLL and 8 AML) for the test of the 

clustering of leukemia patients. The original datasets can be found at 

http://research.dfci.harvard.edu/korsmeyer/MLL.htm or 

http://sdmc.lit.org.sg/GEDatasets/Data/MLL_Leukemia.zip. Table 2.1 describes 

the combined dataset with 72 patients (57 training followed by 15 test, with the 

same order in the original datasets) as rows and 12,582 genes as columns. The 

class column shows the sub types of the patients which are used as a reference 

result to compare with the clustering result obtained in this thesis. 

Table 2.1 The Leukemia Patient Dataset 

Patient 

No. 

Gene 

1 

Gene 

2 

Gene

3 
…

Gene 

12,582
Class

Original

Dataset 

Patient No. 

in Original 

Dataset 

1 -161.8 34.8 -34.4 … 1,115.5 ALL Training 1 

… … … … … … … … … 

20 -170 -98 -48 … 739 ALL Training 20 

21 -76 -54 4 … 1,432 MLL Training 21 

… … … … … … … … … 

37 -273 -105 59 … 1,972 MLL Training 37 

38 -336 -49 4 … 1,027 AML Training 38 

… … … … … … … … … 

57 -71 6 122 … 832 AML Training 57 

58 -163 -199 -7 … 716 ALL Test 1 
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… … … … … … … … … 

61 -130 225 64 … 458 ALL Test 4 

62 -144 36 39 … 760 MLL Test 5 

… … … … … … … … … 

64 -333 -15 7 … 2,408 MLL Test 7 

65 -53 -7 4 … 1,009 AML Test 8 

… … … … … … … … … 

72 -109 166 28 … 791 AML Test 15 

(Table 2.1 Continued) 

In Table 2.1, each patient is represented as one row. Column 1 is the patient 

number in the combined dataset, columns 2 to 6 denote the gene expression 

values corresponding to each patient, column 7 indicates the type of cancer (ALL, 

MLL or AML) that each patient is classified as in (11), column 8 specifies the 

original dataset (training or test) that each patient belonged to, and column 9 is 

the number of each patient in its original dataset. Each patient is determined by a 

sequence of 12,582 real numbers, each measuring the relative expression of the 

corresponding gene. See Figure 2.1 for the gene expression plotting of a sample 

patient. 



 6

Figure 2.1 Gene Expression Plotting of a Sample Patient 

 

By exploiting the gene expression values in Table 2.1, the data set can be 

viewed as 72 points in a 12,582-dimensional Euclidean space. A simple measure 

of the genomic difference between two patients can be obtained by resorting to 

the Euclidean distance of two points. 

In order to ease the algebraic manipulations of data, the dataset can also be 

represented as a real 2-D matrix S of size 72×12,582; the entry sij of S measures 

the expression of the j th gene of the ith patient. 

2.2 Pre-processing of the Dataset 

The leukaemia dataset is a very large matrix with more than ten thousand 

genes as its columns, while a great portion of them, with small changes of values 

between different patients, provides much less information related to the patient 

clustering than the rest small portion, in which large differences of values can be 

found between different patients or patient types. Figure 2.2 plots a 
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non-decreasing curve of the importance of each gene in the dataset in terms of the 

standard deviation value which is used here as a measurement of the degree of 

difference within a gene column. There are two common definitions for the 

standard deviation s of a data vector X=(x1, x2, …, xn): 

 (1) 
2
1

1

2)(
1

1
⎟
⎠

⎞
⎜
⎝

⎛
−

−
= ∑

=

n

i
i xx

n
s , 

(2) 
2
1

1

2)(1
⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

n

i
i xx

n
s , 

where ∑
=

=
n

i
ix

n
x

1

1  is the mean value of X and n is the number of elements in X. 

The two equations differ only in n-1 versus n in the divisor. In this thesis the 

standard deviation values are calculated by using equation (1). 

Figure 2.2 Standard Deviation Plotting of the Dataset 

 
In Figure 2.1 the genes are sorted according to an ascending order of their 

corresponding standard deviation values. It can be observed that a very large 
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portion of genes has relatively small standard deviation values, although the 

values vary from 0 to 15,000. For example, at least 10,000 values are less than 

1,200, as #10,000 is with value 1183.1. Therefore, prior to the patient clustering, 

it is possible to apply a filter to remove those genes of little importance. On the 

other hand, in order to analyze such a huge dataset without any filters, a very high 

complexity of time and storage is inevitable, and a large amount of computational 

resources is required as well. The removing of less important genes can help 

decrease the complexity of analysis and the requirement of computational 

resources. Furthermore, the removing of those genes may also reduce the 

interference caused by noise. 

By taking all these factors into account, a pre-processing of the dataset is 

applied first to remove those genes with small standard deviation values. A 

threshold 400 is used to filter out the genes with standard deviation values less 

than it. The dataset after this pre-processing becomes a 72×6,611 matrix with the 

removing of 5,971 gene columns. The reason for using 400 as the threshold is that 

it keeps a large portion (more than a half) of the data, so that the important 

information will not be ignored, and at the same time removes another large 

portion of data to speed up the clustering procedures. In the following chapters, 

unless otherwise specified, all the analysis is based on the 72×6,611 dataset after 

the pre-processing with threshold th = 400. 
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Chapter 3. Description of Algorithms 

The clustering analysis of the leukemia dataset is based on three steps. 

First, with the principal component analysis, all the genes in the dataset are sorted 

according to their significance to the patient clustering. Then, the dataset is 

clustered using a modified bisect K-means algorithm which is essentially the 

combination of the principal direction divisive partitioning and the K-means. 

Finally, by referring to a predefined clustering result, the minimum set of genes 

that can produce a result with the least clustering errors is discovered. This gene 

set consists of a few necessary and sufficient genes in the sense of the clustering 

approach applied in this thesis, and the discovered genes may provide very useful 

information for the diagnosis of the corresponding sub types of leukemia. 

3.1 Principal Component Analysis (PCA) 

It is well known that the PCA method (12-14) works very well on 

measuring the contribution of attributes to the clustering of samples, when the 

dataset can be partitioned linearly. The extraction of principal components is 

briefly described as follows: 

Given a p×N dataset S where p and N are respectively the numbers of 

samples and attributes. If dataset S is an unbiased matrix where each column (i.e. 

attribute) of S has zero mean value, then the first principal component of S should 

be the eigenvector corresponding to the largest eigenvalue of the covariance 

matrix of S, namely STS, the second principal component of S should be the 

eigenvector corresponding to the second largest eigenvalue of STS, and so on. A 

simple proof is given out in (12). 

The principal components can be obtained from the singular value 

decomposition (SVD) (14) of S, with which matrix S is decomposed as the 

product of three special matrices: the orthonormal unitary square matrix UP×P (i.e. 



 10

U-1=UT), the diagonal matrix ΣP×N, and the orthonormal unitary square matrix 

VN×N (i.e. V-1=VT). Any non-zero diagonal element of matrix Σ is called a 

singular value of matrix S (i.e. the square root of an eigenvalue of matrix STS), 

and the columns of matrix V (i.e. the eigenvectors of STS) corresponding to the 

largest singular values are in turn the principal components of S. 

When a principal component, generally the one corresponding to the largest 

singular value, is selected out, the degree of contribution of the attributes to the 

clustering of samples can be quantified by comparing the absolute values of the 

elements in the principal component vector. The positions of the largest absolute 

values point out the most discriminating attributes for the sample clustering. 

When the dataset matrix S is biased, with the mean values of some 

attributes being non-zeros, the SVD should be performed on the unbiased form of 

S so as to equally weight the contribution from each attribute. 

3.2 Principal Direction Divisive Partitioning (PDDP) 

3.2.1 The PDDP algorithm 

The PDDP algorithm is proposed by Boley (15) in 1998. It has the following 

steps: 

(1) For the matrix S (in general S is not unbiased) in section 3.1, first 

calculate the mean value vector w=[w1, w2, …, wN] for all the samples. The mean 

value vector is the centroid of the samples, where wj= ∑
=

p

i
ijs

p 1

1  (1≤j≤N) and sij is 

the element in the ith row and jth column of S. 

(2) Calculate matrix S0, the unbiased form of S, as S0 = S - ew and e = 

484 76
Λ

p

T]1,,1,1[ . Then, by the PCA analysis described in section 3.1, decompose S0 as S0 

= UΣV. 
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(3) Select an appropriate principal component v = [v1,v2,…,vN]T for S0，

where vector v is determined manually or automatically by the method described 

in section 3.3. 

(4) Write matrix S as [S1,S2,…,Sp]T. If (Si-w)v≤0， then Si SL，otherwise 

Si SR，where 1≤i≤p. 

3.2.2 A PDDP example 

A simple example is given here to make all the steps clear. 

Let dataset S=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4321
4521
4321

. Intuitively, since the first and third samples 

(rows) of S are identical, they should be clustered into the same class, and the 

second sample (row) of S should be clustered into another class. By applying 

PDDP, matrix S is first converted to its unbiased form 

S0=S-ew=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4321
4521
4321

-
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
1

×[1+1+1 2+2+2 3+5+3 4+4+4]/3 

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

06667.000
03333.100
06667.000

. 

Then, by the singular value decomposition, 

S0=UΣV=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1000
0001
0010
0100

0000
0000
0001.6330

0.88160.23670.4082-
0.23670.52660.8165
0.4082-0.81650.4082-

. 

Since matrix S0 has only one singular value 1.6330 which is the first 
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diagonal element of Σ, its corresponding vector v1=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
1
0
0

, the first column of V, is 

selected as the principal component. 

Finally, by calculating S0v1=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

06667.000
03333.100
06667.000

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
1
0
0

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

6667.0
3333.1
6667.0

, where the 

first and third elements of vector 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

6667.0
3333.1
6667.0

 are less than zero while the second 

one is larger than zero, the first and third rows of S are clustered into 

SL= ⎥
⎦

⎤
⎢
⎣

⎡
4321
4321

, and the second row into SR= [ ]4521 . The result is exactly 

the same with what is discussed before the clustering. Furthermore, by comparing 

the absolute values of the elements in vector v1, we know that the third attribute 

(column) of dataset S, corresponding to the third elements in v1 with the largest 

absolute value, is the most discriminating attribute in the sense of the sample 

clustering. This conclusion is consistent with what we observe directly from S. In 

dataset S attributes (columns) 1, 2, and 4 have identical values, thus have no 

ability to discriminate different samples, but attribute 3 works well.  

3.2.3 The geometric interpretation of PDDP 

The theory of PDDP can be interpreted geometrically. The p×N dataset is 

first transformed to an N-dimensional coordinates system which takes the centroid 

of the dataset as its origin and all the N component vectors (principal or not) as N 

coordinates. Suppose a principal component is selected to do PDDP, then the data 
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points are separated as two clusters by an (N-1)-dimensional hyperplane which 

passes through the origin and is perpendicular to this principal component vector. 

Generally speaking, some distance based methods such as the minimum distance 

and the average distance between two different clusters can be used to measure the 

difference between them. 

Figure 3.1 shows the projection of a dataset to the 2-D plane formed by its 

first two principal components, v1 and v2. In Figure 3.1, the PDDP clustering is 

performed on the basis of v1, and v2 is a reference principal component that is used 

only for the illustration purpose. All the data points on the left side of the dashed 

line, which is actually the projection of the hyperplane passing through the origin 

(i.e. the centeroid of the dataset) and perpendicular to the direction of v1, are 

clustered into SL, and all those on the right side are clustered into SR. 

Figure 3.1 The Geometrical Illustration of PDDP 

 

It should be pointed out that PDDP can be applied repeatedly to any cluster 
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to get two sub clusters; therefore any number of clusters can be obtained by using 

this algorithm. Savaresi et al. (16) have proposed a method to tell which one of 

two given clusters is more suitable to split further, and Kruengkrai et al. (17) have 

described in their paper how to determine if a cluster can be split again or not. 

3.3 The Selection of Principal Components 

3.3.1 A problem of principal component selection 

The selection of an appropriate principal component is the prerequisite of 

the success of PDDP clustering. In general, the first principal component is 

appropriate because it represents the primary direction of the dataset and the 

direction itself is the very foundation of the PDDP algorithm. However, the first 

principal component may not always be a good choice, for example when a 

dataset is similar to the one in Figure 3.2. In this case the primary direction of the 

data points is still indicated by the first principal component (shown as v1), but 

obviously another principal component (shown as v2) splits the dataset much 

better, therefore this principal component, even though not being the first one, 

should be selected as the input of the PDDP algorithm. 

Figure 3.2 A Special Case of Principal Component Selection 
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3.3.2 The automatic selection of principal components 

The selection of a principal component is easy for the supervised PDDP 

clustering, because we can simply find out from a set of given candidates, for 

example, the first three principal components, the best one that produces the 

result closest to the reference. However, when an unsupervised PDDP clustering 

algorithm is applied, the selection of an appropriate principal component should 

be on the automatic other than the manual basis. In (16) a method that is 

originally used for selecting clusters to split is also helpful for selecting principal 

components, just after slight modification. Following is the description of the 

modified algorithm. 

Suppose the matrices S0 and V have been worked out from section 3.2, and 

a candidate principal component set P = {v1, v2, …, vq} (usually P = { v1, v2, v3}) 

has been given out. 

(1) Write matrix S0 as [S0,1,S0,2,…,S0,p]T. For each principal component vj 

in the given set P, calculate scalar ki,j = S0,i·vj (1 ≤ i ≤ p, 1 ≤ j ≤ q). If ki,j ≤ 0，then 

ki,j Kj,L，otherwise ki,j Kj,R. Write Kj,L and Kj,R as two row vectors Kj,L = [kj,L,1, 

kj,L,2, …, kj,L,l] and Kj,R = [kj,R,1, kj,R,2, …, kj,R,r]. 

(2) Let Kj,L = Kj,L / min (Kj,L) and Kj,R = Kj,R / max (Kj,R). This normalizes 

Kj,L and Kj,R so that all their absolute values range from 0 to 1. 

(3) Let scalars wj,Land wj,R be the mean values of Kj,L and Kj,R, respectively, 

and w’j,L and w’j,R be the mean values of [(kj,L,1-wj,L)2, (kj,L,2-wj,L)2, …, 

(kj,L,l-wj,L)2] and [(kj,R,1-wj,R)2, (kj,R,2-wj,R)2, …, (kj,R,r-wj,R)2], respectively. 

Calculate ratio Rj = 2
,

2
,

,, ''

RjLj

RjLj

ww
ww

+

+
. 

(4) Select the principal component with the minimum ratio R. 

Other tentative methods for automatically finding out the best principal 
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component are presented in the appendix. See section A.2 for the MATLAB 

implementation of five methods including the one described above. 

3.4 K-means and Bisect K-means 

3.4.1 The basic K-means algorithm 

K-means (18-19) is a famous iterative clustering method. The clustering is 

based on some randomly selected “center points”. The number of random points is 

predefined and determines the number of clusters that the algorithm will output. 

The basic principle of K-means is as follows: 

(1) Randomly select k points (c1, c2, …, ck) from a dataset S=[S1,S2,…,Sp]T 

in which Si (1≤i≤p) denotes the ith sample. These k random points are viewed as 

the initial “center points” of k clusters and refined later. 

(2) For each sample Si (1≤i≤p), find out a number m, so that for any j≠m 

(1≤m, j≤k), ||Si-cm|| ≤ ||Si-cj||, then Si Cm, where ||Si-cm|| and ||Si-cj|| are 

respectively the distances, for example the Euclidean distances, from Si to cm and 

cj, and Cm denotes the mth cluster. 

(3) Calculate the new center points i.e. the mean values w1, w2, …, wk for 

the clusters C1, C2, …, Ck. 

(4) If for each cluster j (1≤j≤k), cj=wj, then stop; otherwise let cj=wj for 

each j, and go to step (2). 

K-means algorithm is iteratively convergent, and, if the initial “center 

points” are selected well, that is to say, they are close to the true center points, 

then K-means will converge more rapidly, and the clustering result will be more 

accurate. However, it may not be easy to select good initial center points if one 

does not know in advance what the distribution of the data points is. This is the 

reason why to take random points as the initial centers. On the other hand, to 
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apply K-means, the total number of clusters must be determined prior to the 

clustering. 

3.4.2 The bisect K-means algorithm 

One kind of K-means, which can be repeatedly applied to form multiple 

clusters by separating one cluster at a time to get two sub clusters, is called bisect 

K-means. Similarly, bisect K-means algorithm has the following steps: 

(1) Randomly select two “center points”, c1 and c2, from the dataset 

S=[S1,S2,…,Sp]T. 

(2) If ||Si-c1||≤||Si-c2||, then Si C1; otherwise Si C2, (1≤i≤p), where ||Si-c1|| 

and ||Si-c2|| are the distances, for example the Euclidean distances, from Si to c1 

and c2, respectively, and C1 and C2 denote the two sub clusters. 

(3) Calculates the new center points w1 and w2 for the two sub clusters C1 

and C2. 

(4) If c1=w1 and c2=w2, then stop; otherwise let c1=w1 and c2=w2, and go to 

step (2). 

To get more sub clusters, one can select a cluster, replace dataset S with it, 

and simply repeat the above steps. Such a procedure can be repeated until a 

desired number of clusters is obtained. 

3.5 Combining PDDP with Bisect K-means 

3.5.1 The weakness of K-means 

K-means algorithm performs well when the distance information between 

data points is important to the clustering. However, K-means has an intrinsic 

disadvantage. The clustering result depends greatly on the selection of initial 

“center points”. Cited from (18), Figures 3.4 and 3.5 show the different results of 
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applying K-means on the same dataset (see Figure 3.3) but with different choices 

of initial “center points”. 

Figure 3.3 The Dataset of the K-means Example 

 

Figure 3.4 K-means Result from Initial “Center Point” Set 1 
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Figure 3.5 K-means Result from Initial “Center Point” Set 2 

 

In Figure 3.3, the original dataset consists of three distinct clusters colored 

as red, green, and blue, respectively. In iteration 1 of Figure 3.4, where three 

initial center points are assigned and represented as three crosses, each data point 

is clustered according to the closet center point, and the data points that so far 

belong to the same cluster are rendered the same color. Iterations 2 to 6 illustrate 

the changing of center points and clusters, and, finally in iteration 6, neither the 

center points nor the clusters change any more. Similar iterations are illustrated in 

Figure 3.5, except that the selection of initial center points is different. Comparing 

iteration 6 of Figure 3.4 with iteration 5 of Figure 3.5, we see that the former 

converges to an excellent clustering result which is consistent with the one 

expected in the original dataset, while the latter does not produce a good result by 

cutting the green cluster in Figure 3.3 into two parts and merging the red and the 

blue into one. The great difference of final results in Figures 3.4 and 3.5 is merely 

caused by the selection of different initial center points. 
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3.5.2 The weakness of PDDP 

PDDP has its own weakness, too. Since the partition of PDDP is only on the 

basis of the projection from the data points to a selected principal direction, the 

distance information between these data points is ignored. Figure 3.6 shows an 

example of such neglect. 

Figure 3.6 Neglect of PDDP to the Distance Information 

 
In Figure 3.6, suppose the line with an arrow indicates the selected principal 

direction, the dashed line is the projection of the hyperplane passing through the 

origin and perpendicular to the principal direction, and a, b, c, and d are four data 

points. By applying PDDP, points a, c are clustered into the left class, and points b, 

d into the right class. However, one may notice that, when the distances between 

points are considered, a result which clusters a, b into one class and c, d into 

another class also makes sense, since b is much closer to a than c is, and similarly, 

c is much closer to d than b is. 
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3.5.3 The merit of PDDP + bisect K-means 

In spite of the fact that in many cases neither PDDP nor K-means alone is 

good enough for deriving desirable clustering results, according to the theory of 

Savaresi and Boley etc. (20-22), the combination of PDDP and bisect K-means 

keeps the merits of both algorithms, and usually performs better than either single 

one does. PDDP, although is weak at taking advantage of distance information, can 

provide bisect K-means good initial center points that are close to true ones, 

therefore the accuracy of bisect K-means clustering can be improved. The 

difference between the combined method and the traditional bisect K-means lies in 

the selection of the initial center points, c1 and c2. With the combined method, the 

two center points of bisect k-means are not selected randomly but according to the 

clustering result of PDDP, that is to say, c1 and c2 should be the sample mean 

values of the PDDP clusters SL and SR, respectively. The combination of PDDP 

and bisect K-means makes the selection of c1 and c2 more reasonable by reducing 

the risk caused by a random selection. See Figure 3.7 (a-d) for an example. The 

data of this example come from another leukemia dataset (1, 23) with 72 patients 

and two sub types of leukemia, ALL and AML. The detailed analysis of this 

dataset can be found in (23). 
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Figure 3.7 The Merit of PDDP + Bisect K-means 

Figure 3.7 (a) 

 

Figure 3.7 (b) 

 

ALL 

AML 
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Figure 3.7 (c) 

 
Figure 3.7 (d) 
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3.5.4 An illustration of PDDP + bisect K-means 

Figure 3.8 is a 2-D illustration of the PDDP plus bisect K-means algorithm. 

In the figure, suppose a 2-D dataset is clustered using the combined method, the 

data points are represented as blue dots, and their origin is the green dot with 

coordinates (0, 0). First, by PCA analysis, the origin is moved to the centroid of 

the dataset (shown as a red dot) along the direction indicated by the dashed arrow, 

and a principal component is selected with its direction indicated by the black 

arrow which passes through the new origin and two orange dots. Then, by PDDP, 

the dataset is separated by another black arrow which passes through the new 

origin and is perpendicular to the principal direction. The two black arrows 

actually compose the two coordinates of the new coordinates system. Finally, after 

PDDP, the centroids of both clusters (shown as two orange dots) are selected as 

the initial center points of bisect K-means, and the dataset is clustered based on 

this selection. 

Figure 3.8 A 2-D Illustration of PDDP + Bisect K-means 
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3.6 The Extraction of Significant Attributes 

As having been mentioned at the beginning of this thesis, the extraction of 

the significant attributes that are strongly related to clustering is also a very 

important issue, besides the clustering itself. To achieve this, one should first 

know the degree of significance of each attribute. Fortunately, principal 

component analysis itself can also provide quantitative information to measure the 

significance. Following is a method of extracting the most significant attributes 

based on PCA analysis: 

(1) Suppose vector vj=[v1j,v2j,…,vNj]T is the j-th principal component of S0 

(i.e. column j of V where S0=U∑V) and vj is selected to do PDDP. Sort vector vj in 

a descending order of |vij| (1≤i≤N) and write it as v’j =[v’1j,v’2j,…,v’Nj]T. Since the 

significance of each attribute is reflected by the absolute value of the 

corresponding element in the principal component, now v’1j is the significance 

coefficient of the most important attribute,v’2j is that of the second most attribute, 

and so on. 

(2) Redo the PDDP + bisect K-means clustering using the reduced principal 

component um =
T

mN

mjjj vvv ]0,...,0,0,,...,,[ ''
2

'
1

876 −

((1≤m≤N), and find out the minimum value 

of m that outputs the best clustering result that is the closest to a reference result, 

then the m corresponding attributes are the solution. 

For example, if we have a principal component v = [2.5 -3.0 1.2 4.1]T, then  

after the sorting, v’ = [4.1 -3.0 2.5 1.2]T. Now we try to use u1 = [4.1 0 0 0]T, u2 = 

[4.1 -3.0 0 0]T, u3 = [4.1 -3.0 2.5 0]T, and u4 = v’ = [4.1 -3.0 2.5 1.2]T to do PDDP, 

respectively, and compare the results with a reference. Suppose u3 and u4 get 

exactly the same result with the reference, while u2 gets one error and u1 gets two, 

then u3 with m = 3 is selected, and attributes 4, 2, and 1, which correspond to the 

three largest absolute values of coefficients, 4.1, 3.0, and 2.5, should be the 
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minimum attribute set in the sense of clustering. 

3.7 Supervised and Unsupervised Clustering 

With a supervised clustering approach, some a priori knowledge such as a 

pre-defined reference result and the number of clusters can be used to guide the 

process of clustering. However, such a priori knowledge is not always available 

before clustering; they may be known only when the clustering is successfully 

completed. In this case, an unsupervised alternative can be considered when 

applicable. The PDDP + bisect K-means algorithm is capable of dividing data 

points into two clusters in either supervised or unsupervised way, as described in 

the following procedures: 

3.7.1 Procedure PCA 

Procedure PCA 

Input: p×N data matrix S. 

Output: sorted principal component vector v and index vector x. 

Begin 

Calculate the unbiased matrix S0 of S; 

Do singular value decomposition with S0 and get the principal 

components; 

Select a principal component manually or automatically; 

Sort its elements in the descending order of their absolute values, and 

get the index of each attribute corresponding to the order; 

Return v (the sorted principal component vector) and x (the index 

vector); 

End 
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3.7.2 Procedure PDDP_Bisect_K-means_Unsupervised 

Procedure PDDP_Bisect_K-means_Unsupervised 

Input: matrix S, vector v (output of procedure PCA), and vector x (output of 

procedure PCA). 

Output: two clusters SL and SR and the significant attribute set A 

Begin 

Use matrix S and vector v to do PDDP + Bisect K-means clustering, and 

get two clusters SL and SR; 

For (i <- 1 to N-1) 

vi <- v; 

Set the last N-i elements in vi to 0; 

Use S and vi to do PDDP + Bisect K-means, and get two clusters 

SLi and SRi; 

If ((SLi=SL) and (SRi=SR)) 

Break; 

End If 

End For 

A <- the first i indices in x; 

Return SL, SR, and A; 

End 

3.7.3 Procedure PDDP_Bisect_K-means_Supervised 

Procedure PDDP_Bisect_K-means_Supervised 

Input: matrix S, vector v (output of procedure PCA), vector x (output of 

procedure PCA), and vector c as the reference result of clustering. 

Output: two clusters SL and SR and the significant attribute set A. 
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Begin 

Get two clusters SLc and SRc from matrix S and reference result c; 

err <- p; 

m <- 0; 

For (i <- 1 to N) 

vi <- v; 

Set the last N-i elements in vi to 0; 

Use S and vi to do PDDP + Bisect K-means, get two clusters SLi 

and SRi and the clustering result ci; 

Calculate erri, the number of differences between c and ci; 

If (erri < err) 

err <- erri; 

m <- i; 

End If 

End For 

SL <- SLm; 

SR <- SRm; 

A <- the first m indices in x; 

Return SL, SR, and A; 

End 
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Chapter 4. Experimental Results 

This chapter is focused on some experimental results about the clustering of 

the leukemia gene expression dataset described previously. The original dataset S 

consists of 72 samples (24 ALL, 20 MLL and 28 AML patients) and each sample is 

represented by 12,582 gene expression values. Dataset S is stored as a 72×12,583 

matrix, because there is an extra column, column 12,583, which represents the 

clustering result presented in (11). In this column, classes ALL, MLL, and AML 

are represented as 0, 1, and 2, respectively. This column serves as the reference 

result of all the following experiments. In other words, the experiment results are 

compared with the reference, and any different clustering cases are reported as 

“errors” and analyzed later. Before any experiments, a threshold th = 400 is 

applied to remove those genes with standard deviation values less than 400, since 

they are with little possibility to be significant attributes. To verify the 

effectiveness of the threshold, every experiment is then repeated with th = 0 i.e. all 

the genes included. The exactly same results and much less execution time show 

that the threshold applied is reasonable and effective. All the experiments are 

based on the MATLAB implementation of the algorithms described in chapter 3. 

See the appendix for the MATLAB source code. 

4.1 The Unsupervised Clustering of Dataset S 

With threshold th = 400, the input dataset S becomes a 72×6,611 matrix. 

See Figure 2.2 for the standard deviation plotting of all the 12,582 genes. With the 

first principal component and all the 6,611 genes, a clustering result is shown in 

Figure 4.1. According to the reference result (see Figure 4.2), 21 “errors” are 

shown in Figure 4.1 as points with patient numbers, and in Table 4.1 as cells with 

gray shadings. Note that almost all the 21 “errors” (except #3) are classified as 

MLL in Figure 4.2, implying that the PDDP + Bisect K-means approach correctly 
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identified 23 of 24 ALL and 28 of 28 AML patients. 

Figure 4.1 The Unsupervised Clustering Result of Dataset S 

 

Figure 4.2 The Reference Result of Dataset S 
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Table 4.1 The Unsupervised Clustering Result of Dataset S 

 Patient Numbers 

SL 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SR 3 22 24 26 27 29 31 38 39 40 41 42 43 44 45 46 47 48 49 50

 Patient Numbers 

SL 23 25 28 30 32 33 34 35 36 37 58 59 60 61 62 63 64  

SR 51 52 53 54 55 56 57 65 66 67 68 69 70 71 72  

The minimum gene set that produces the above result consists of only two 

genes: #28 (the index in the original 12,582-attribute dataset) with the name 

AFFX-HUMGAPDH/M33197_5_at and #12,430 with the name 256_s_at. Table 4.2 

gives out the significance coefficient information about these two genes. The 

significance coefficients are obtained by taking the absolute values of the 

corresponding elements in the first principal component, the average coefficient is 

the mean of the absolute values of all the 6,611 coefficients, and the normalized 

coefficients, which are used as the contribution indicator of the genes to the 

clustering, are the quotients of the significance coefficients and the average 

coefficient. 

Table 4.2 The Significant Genes for the Clustering of Dataset S 

Gene 

# 

Gene 

Name 

Significance 

Coefficient 

Average 

Coefficient 

Normalized 

Coefficient 

28 AFFX-HUMGAPDH/M33197_5_at 0.1113 15.2466 

12,430 256_s_at 0.0984 
0.0073 

13.4795 

From Figures 4.3 and 4.4, the plotting of the 72 expression values of these 

two genes, we can visually separate SL (with relatively low expression values) and 

SR (with relatively high expression values) to a certain extent, although a few 
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exceptional cases exist. The rationale of the extraction of these two genes is thus 

illustrated in such a manner. 

Figure 4.3 The Expression Values of Gene #28 

 

Figure 4.4 The Expression Values of Gene #12,430 

 

It is natural that the initial clustering does not give out any useful 

information about the MLL samples, because the PDDP based approach only 

produces two clusters after a single application. For this reason, further clustering 

is needed to hopefully reveal the aspect of the MLL part. 
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4.2 The Unsupervised Clustering of Sub Dataset SL 

According to the result of the initial clustering, 37 samples are classified as 

SL; among them 23 are actually ALL samples and 14 are MLL. In order to see if 

the PDDP based approach can successfully identify these ALL samples from the 

non ALL ones (i.e. the MLL ones, according to the reference result), the clustering 

of the subclass SL is continued. With the first principal component, 5,962 genes 

(threshold th = 400), and two significant genes, a result that is exactly the same 

with the reference is obtained, as shown in Figures 4.5 and 4.6. Table 4.3 lists the 

patient numbers and the subclasses that they belong to, where SLL and SLR are 

actually ALL and a part of MLL, respectively. Table 4.4 gives out the two 

significant genes and quantifies their contribution to the clustering. Figures 4.7 

and 4.8 plot the 37 expression values of these two genes. 

Figure 4.5 The Unsupervised Clustering Result of Sub Dataset SL 
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Figure 4.6 The Reference Result of Sub Dataset SL 

 

Table 4.3 The Unsupervised Clustering Result of Sub Dataset SL 

 Patient Numbers 

SLL 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 58

SLR 21 23 25 28 30 32 33 34 35 36 37 62 63 64  

 Patient Numbers 

SLL 59 60 61  

SLR  

Table 4.4 The Significant Genes for the Clustering of Sub Dataset SL 

Gene 

# 

Gene 

Name 

Significance 

Coefficient 

Average 

Coefficient

Normalized 

Coefficient 

7,754 33412_at 0.1533 21.2917 

11,924 769_s_at 0.1083 
0.0072 

15.0472 
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Figure 4.7 The Expression Values of Gene #7,754 

 

Figure 4.8 The Expression Values of Gene #11,924 

 

4.3 The Unsupervised Clustering of Sub Dataset SR 

Since the initial clustering of dataset S is not adequate for identifying the 

MLL samples, a similar clustering of the subclass SR is then performed to see if 

those MLL samples can be separated successfully. 

According to the result of the initial clustering, 35 samples are classified as 

SR. Among them are 28 AML, 6 MLL, and one misclassified ALL. With the first 
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principal component and 6,191 genes (threshold th = 400), the result is shown in 

Figure 4.9. See Figure 4.10 for the reference result. The minimum gene set with 

the clustering result in Figure 4.9 consists of 219 genes; they are not reported here. 

The clustering seems not to be successful, with many AML samples and all the 

MLL samples clustered together into SRL. However, an interesting observation is 

that no MLL sample is clustered into SRR. Table 4.4 lists the patient numbers with 

their sub clusters, where the MLL patients are shown with grey shadings. 

Figure 4.9 The Unsupervised Clustering Result of Sub Dataset SR 
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Figure 4.10 The Reference Result of Sub Dataset SR 

 

Table 4.5 The Unsupervised Clustering Result of Sub Dataset SR 

 Patient Numbers 

SRL 3 22 24 26 27 29 31 42 43 47 48 50 52 55 68 70 72  

SRR 38 39 40 41 44 45 46 49 51 53 54 56 57 65 66 67 69 71

4.4 The Supervised Clustering of Sub Dataset SRL 

Because all the 6 MLL samples are classified as SRL in section 4.3, it may 

be interesting to continue clustering the sub cluster SRL. With the first principal 

component and 5,877 genes (threshold th = 400), an unsupervised result with two 

errors is obtained and shown in Figure 4.11. Figure 4.12 is the reference result. 

The minimum gene set of the result in Figure 4.11 consists of 103 genes which are 

not reported here. However, when the clustering is performed under the 

supervision of the reference result, a better clustering result is obtained with only 

one error at patient #3, as shown in Figure 4.13. Table 4.6 lists the patient numbers 
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and their sub clusters according to this supervised clustering, where the MLL 

patients are shown with gray shadings. The minimum gene set for this result 

consists of 9 genes. They are listed in Table 4.7. 

Figure 4.11 The Unsupervised Clustering Result of Sub Dataset SRL 

 

Figure 4.12 The Reference Result of Sub Dataset SRL 
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Figure 4.13 The Supervised Clustering Result of Sub Dataset SRL 

 

Table 4.6 The Supervised Clustering Result of Sub Dataset SRL 

 Patient Numbers 

SRLL 3 22 24 26 27 29 31  

SRLR 42 43 47 48 50 52 55 68 70 72

Table 4.7 The Significant Genes for the Clustering of Sub Dataset SRL 

Gene 

# 

Gene 

Name 

Significance 

Coefficient 

Average 

Coefficient 

Normalized 

Coefficient 

12,357 319_g_at 0.1106 13.8250 

31 AFFX-HSAC07/X00351_5_at 0.1106 13.8250 

32 AFFX-HSAC07/X00351_M_at 0.0995 12.4375 

7,754 33412_at 0.0993 12.4125 

1,904 33516_at 0.0989 12.3625 

28 AFFX-HUMGAPDH/M33197_5_at 0.0985 12.3125 

1,316 35083_at 0.0950 11.8750 

8,428 36122_at 0.0940 11.7500 

3,634 39318_at 0.0933 

0.0080 

11.6625 
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Chapter 5. Discussion and Conclusion 
5.1 Discussion about the Experimental Results 

5.1.1 Discussion about the clustering results 

According to the clustering results in chapter 4, the leukemia dataset S can 

be clustered to the following hierarchy: 

Figure 5.1 The Hierarchy of the Leukemia Dataset 

 

In Figure 5.1, if we name cluster SLL is as ALL, clusters SLR and SRLL 

together as MLL, and clusters SRLR and SRR together as MLL, then there is only 

one error occurs with such a name conversion. By Table 4.3, almost all the 24 ALL 

patients are identified in cluster SLL, except that patient #3 is eventually 

misclassified into cluster SRLL; this is the only error that occurs. By tables 4.3 and 

4.6, 14 MLL patients are identified in cluster SLR and other 6 are identified in SRLL; 

these two clusters include all the MLL patients with on error. By tables 4.5 and 4.6, 

18 AML patients are identified in cluster SRR and other 10 are identified in cluster 

SRLR; these two clusters include all the AML patients with no error. 

It should be noted from the hierarchy that, except ALL, both MLL and AML 
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patients are divided into two sub clusters. This implies that there might exist other 

sub types for MLL and AML, although in (1) only two sub types of leukemia (ALL 

and AML) and in (11) three sub types (ALL, MLL, and AML) are proposed. 

5.1.2 Discussion about the significant genes 

First, by reviewing the gene extraction results in chapter 4, we see that the 

different levels of expression values of gene #28 (AFFX-HUMGAPDH/M33197_5_at) 

and #12,430 (256_s_at) separate well ALL and AML patients. Second, in the initial 

clustering of the dataset, most MLL patients are classified into the ALL part; this 

means that MLL and ALL share similarity to a great extent. The difference 

between ALL and MLL is discovered very well by gene #7,754 (33412_at) and 

#11,924 (769_s_at). On the other hand, a small portion of MLL patients are 

classified into the AML part, showing that some MLL and AML cases have 

common characteristics. The size of the minimum set of genes which separates 

MLL from AML is very large, implying that the clinical diagnosis of AML-like 

MLL patients may be more difficult than that of the ALL-like MLL patients. 

Finally, the contribution of genes to the corresponding clustering results is 

quantified so that the significance of them can be compared quantitatively. For 

examples, gene #28 (normalized significance coefficient (NSC) = 15.2466) and 

#12,430 (NSC = 13.4795) have basically equal significance to the discrimination 

between ALL and AML, gene #7,754 (NSC = 21.2917) has greater significance 

than #11,924 (NSC = 15.0472) to the discrimination between MLL and ALL, and 

so on. 

5.2 Conclusion 

With the combined approach of PDDP and bisect K-means, the 72 leukemia 

patients are successfully clustered as ALL, MLL and AML, respectively. Among 

all the 12,582 genes, the most discriminating a few ones that are responsible for 
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the clustering are efficiently discovered at the same time. Furthermore, both the 

clustering of the patients and the discovering of the significant genes are 

performed automatically to a great extent, and depend merely on the gene 

expression data which can be obtained conveniently by using the popular DNA 

micro array technology. 

In conclusion, the combination of PDDP and bisect K-means is an efficient 

approach for the clustering of the leukemia patient dataset described in this thesis, 

and hopefully also efficient for other similar problems. Moreover, the significant 

genes discovered among tens of thousands of genes may provide very important 

information for the diagnosis of the disease of leukemia.  
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Appendix: MATLAB Implementation of the Algorithms 

A.1 MATLAB Code for PCA 

File name: PCA.m 

% The Principal Component Analysis based on the Singular Value 

Decomposition. 

% 

% Usage: [X, INDEX1, U, Z, V]=PCA (s, th); 

% Input 

% s: the original dataset (each row is a sample and each column is an 

attribute.) 

% th: the threshold. Some “unimportant” attributes will be removed by 

applying the threshold. If th is 0, no threshold will be applied, and all the 

attributes kept. 

% Output 

% X: the dataset after the threshold (columns with standard deviation values 

less than th have been removed). 

% INDEX1: the positions of the columns in s with standard deviation values 

>= th. 

%U, Z, and V: the result matrices of the singular value decomposition of X. 

function [X, INDEX1, U, Z, V] = PCA(s, th) 

global S OBJ_NUM VAR_NUM X INDEX1 V TH % Declaration of global 

variables. 

OBJ_NUM=size(s,1); % OBJ_NUM <- number of samples 

VAR_NUM=size(s,2); % VAR_NUM <- number of attributes 

S=s; clear s; % S <- s 

TH=th; % TH <- th 
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INDEX1=find(std(S)>=TH); % INDEX1 <- positions of the columns with 

standard deviation values >= TH 

X=[S(:,INDEX1)]; % X <- columns of S with their indices in INDEX1  

X=X-ones(size(X,1),1)*mean(X); % X <- the unbiased form of X 

[U,Z,V]=svd(X); % Uses the Singular Value Decomposition to decompose X 

as the product of U, Z, and V. 

A.2 MATLAB Code for Find_PC 

File name: Find_PC.m 

% On the basis of the specified method, automatically find out a principal 

component from the first Num ones. 

% 

% Usage: pc = Find_PC(Num, Method); 

% Input 

% Num: the Number of principal components that will be checked. For 

example, if Num is 3, then p.c.1 to p.c. 3 will be checked. 

% Method: the method that will be used. Five methods are available. 

% Output 

% pc: the found principal component. For example, if pc = 1, then the first 

principal component is found out. 

function pc = Find_PC (Num, Method) 

global X V % Declaration of global variables. 

switch (Method) 

    case 1 % Method 1: the recommended method. See section 3.3. 

        pc=0; temp=inf; 

        for i=1:Num 

            K=X*V(:,i); KL=K(K<=0); KR=K(K>0); 
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            KL=KL/min(KL); KR=KR/max(KR); 

            wL=mean(KL); wR=mean(KR); 

            r=(mean((KL-wL).^2)+mean((KR-wR).^2))/(wL^2+wR^2); 

            if (temp > r) 

                pc=i; temp=r; 

            end 

        end 

    case 2 % Method 2. 

        pc=0; temp=inf; 

        for i=1:Num 

            K=X*V(:,i); KL=X(K<=0,:); KR=X(K>0,:); 

            cL=mean(KL); cR=mean(KR); 

            rL=mean(sum((KL-ones(size(KL,1),1)*cL).^2,2)); 

rR=mean(sum((KR-ones(size(KR,1),1)*cR).^2,2)); 

            r=sqrt((rL+rR))/norm(cL-cR); 

            if (temp > r) 

                pc=i; temp=r; 

            end 

        end 

    case 3 % Method 3. 

        pc=0; temp=inf; 

        for i=1:Num 

            K=X*V(:,i); KL=K(K<=0); KR=K(K>0); 

            KL=KL/min(KL); KR=KR/max(KR); 

            wL=mean(KL); wR=mean(KR); 

r=(mean(abs(KL-wL))/abs(wL)+mean(abs(KR-wR)))/abs(wR); 
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            if (temp > r) 

                pc=i; temp=r; 

            end 

        end 

    case 4 % Method 4. 

        pc=0; temp=0; 

        for i=1:Num 

            K=X*V(:,i); 

            cL=mean(K(K<=0)); cR=mean(K(K>0)); 

            r=cR-cL; 

            if (temp < r) 

                pc=i; temp=r; 

            end 

        end 

    case 5 % Method 5. 

        pc=0; temp=0; 

        for i=1:Num 

            K=X*V(:,i); 

            r=min(K(K>0))-max(K(K<=0)); 

            if (temp < r) 

                pc=i; temp=r; 

            end 

        end 

end 

A.3 MATLAB Code for PDDP 

File name: PDDP.m 
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% The Principal Direction Divisive Partitioning based on the Principal 

Component Analysis. 

% 

% Usage: [PC, COEFF, INDEX2, K, CLS_PDDP, XL, XR, wL, wR] = PDDP 

(pc, i); 

% Input 

% pc: the position of a specific principal component. If pc is 1, the first 

principal component will be used for PDDP; if pc is 2, the second will be used, 

and so on. If pc is 0, a principal component will be automatically selected. 

% i: the amount of attributes that will be used by PDDP. For example, if i is 

5, then the first 5 significant attributes (according to the selected p.c.) will be used. 

If i is 0, all the attributes will be used. 

% Output 

% PC: the position of the principal component used for PDDP. 

% COEFF: the significance coefficients of the selected attributes. 

% INDEX2: the positions of the significant attributes. 

% K: the projection vector of the samples against the principal direction. 

% CLS_PDDP: the clustering result of PDDP. 

% XL and XR: the sub datasets after the PDDP clustering. 

% wL and wR: the center points of XL and XR, respectively. 

function [PC, COEFF, INDEX2, K, CLS_PDDP, XL, XR, wL, wR] = PDDP 

(pc, i) 

global S X V INDEX2 PC I wL wR % Declaration of global variables. 

if (pc>0) 

    PC=pc;  % PC <- the specified principal component. 

else 
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    PC=Find_PC(3, 1); % PC <- the automatically selected principal 

component from the first three ones. Method 1 is used for Find_PC (). 

end 

if i==0 

    i=size(X,2); % If i is 0, then i <- the number of all the attributes in X. 

end 

I=i; % I <- i. 

[COEFF,INDEX2]=sort(abs(V(:,PC))); % Sorts the absolute values of the 

PC-th column of V in an ascending order. COEFF <- the result of sorting, and 

INDEX2 <- the corresponding positions of the elements in COEFF. 

COEFF=V(:,PC); % COEFF <- the PC-th column of V. 

COEFF(INDEX2(1:size(X,2)-I))=0; % The significance coefficients of the 

unimportant attributes <- 0. 

K=X*COEFF; % K <- the projection vector of the samples against the 

selected principal component. 

CLS_PDDP=zeros(1,size(X,1)); %Initializes the clustering result vector. 

CLS_PDDP(find(K>0))=1; % Clusters the samples with the PDDP method. 

The elements in CLS_PDDP with K > 0 are set to 1. 

XL=[X(find(~CLS_PDDP),:)]; XR=[X(find(CLS_PDDP),:)]; % Separates 

the samples into two sub datasets, XL and XR. 

wL=mean(XL); wR=mean(XR); % Calculates the center points of XL and 

XR. 

A.4 MATLAB Code for Bisect K-means 

File name: K_Means.m 

% The Bisect K-means clustering 

% 
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% Usage: [CLS_KM,XL,XR,wL,wR]=K_Means() 

% Input 

% None. 

% Output 

% CLS_KM: the clustering result of K-means. 

% XL and XR: the sub datasets after the K-means clustering. 

% wL and wR: the center points of XL and XR, respectively. 

function [CLS_KM, XL, XR, wL, wR] = K_Means () 

global X CLS_KM wL wR % Declaration of global variables. 

cL=wL*2; cR=wR*2; % Initializes cL and cR. 

while (~isequal(cL,wL)) & (~isequal(cR,wR)) % Looping  

   cL=wL; cR=wR; 

a=sum((X-ones(size(X,1),1)*wL).^2-(X-ones(size(X,1),1)*wR).^2,2); 

   XL=[X(find(a<=0),:)]; XR=[X(find(a>0),:)]; 

   wL=mean(XL); wR=mean(XR); 

end 

CLS_KM=zeros(size(X,1),1); 

CLS_KM(find(a>0))=1; 

A.5 MATLAB Code for PDDP + Bisect K-means 

A.5.1 MATLAB code for unsupervised PDDP + bisect K-means 

% The main procedure of the unsupervised PDDP + bisect K-means 

clustering. 

% Data and parameters 

% S0: a dataset with samples as rows and attributes as columns. 

% th: the threshold. 
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% 

PCA(S0,th); 

pc=PDDP(0,0); 

cluster =K_Means; 

for i=1:size(S0,2)-1 

    PDDP(pc,i); 

    cls_temp=K_Means; 

    if isequal(cls_temp,cluster) 

        break; 

    end 

end 

A.5.2 MATLAB Code for supervised PDDP + bisect K-means 

% The main procedure of the supervised PDDP + bisect K-means clustering. 

% Data and parameters 

% S0: a dataset with samples as rows and attributes as columns. 

% th: the threshold. 

% pc: the specified principal component. 

% cluster: the clustering result of reference. 

% 

PCA(S0,th); 

n=inf; g=0; 

for i=1:size(S0,2) 

     PDDP(pc,i); 

     cls_temp=K_Means; 

     err =sum(xor(cluster,cls_temp)); 



 54

     if (err<n) 

         g=i; 

         n=err; 

     end 

end 

PDDP(pc,g); 

K_Means; 



 55

Vita 

Zhiyu Zhao was born in Jingzhou, a small historic city in Hubei, China. In 

1997 she graduated with a Bachelor’s Degree of Engineering in Computer Science 

and Engineering, and a Bachelor’s Degree of Law in Economic Laws from the 

Huazhong University of Science and Technology (HUST), China. In 2000 she 

received her Master’s Degree of Engineering in Computer Science and 

Engineering from HUST. She worked for the College of Computer Science and 

Technology of HUST as an instructor and researcher for three years, and then she 

studied at the Polytechnic Institute of Milan, Italy for two semesters as a visiting 

researcher, before she came to New Orleans. In the fall 2005 semester, she studied 

at the Louisiana State University as a visiting student. She will study for a 

doctorate degree in the Department of Computer Science at the University of New 

Orleans. 


	Clustering of Leukemia Patients via Gene Expression Data Analysis
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1. Introduction
	Chapter 2. Dataset Description and Pre-processing
	Chapter 3. Description of Algorithms
	Chapter 4. Experimental Results
	Chapter 5. Discussion and Conclusion
	References

