
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-20-2009

Automation of the Client Side of Web Services Using PHP Automation of the Client Side of Web Services Using PHP

Menad Medjkane
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Medjkane, Menad, "Automation of the Client Side of Web Services Using PHP" (2009). University of New
Orleans Theses and Dissertations. 1096.
https://scholarworks.uno.edu/td/1096

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1096?utm_source=scholarworks.uno.edu%2Ftd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Automation of the Client Side of Web Services Using PHP

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

In partial fulfillment of the

Requirements for the degree of

Master of Science

in

Computer Science

by

Menad Medjkane

B.S. University of Sciences and Technologies of Oran (Algeria), 1995

December, 2009

ii

Acknowledgment

I would like to express my deep gratitude toward everyone who has helped me during my

graduate study at the University of New Orleans. Especially, I am truly grateful for my advisor,

Dr. Shengru Tu, for his constant guidance and continued support that go far above and beyond

the call of duty. I thank Dr. Mahdi Abdelguerfi and Dr. Adlai DePano for their encouragement

and help during the course of my degree curriculum.

Finally, I wish to thank my parents for sacrificing so much for me to have a better life.

Most importantly, I wish to thank my wife and my children for their patience, their

understanding, and for always standing by me.

iii

Table of Contents

List of Figures ...v

Abstract .. vii

Chapter 1 Introduction ..1

Chapter 2 Background and Related Work ..3

2.1 XML ..3

2.2 Web Service ..4

2.3 WSDL ..5

2.4 SOAP ...6

2.5 DOM ...7

2.6 XPATH ...9

2.7 AJAX ...9

Chapter 3 Structure and System Design ..10

3.1 Web Service ...12

3.2 Front end ..17

3.3 WS-PHP Middleware component ..18

3.3.1 WSDL elements ...19

3.3.2 Service operations ..21

3.3.3 Automating the process that enables PHP to call Web Services 23

3.3.3.1 Existing PHP-WS interactions approaches ..23

3.3.3 .2 The procedures for PHP to call Web Services operations ...25

3.3.4 The structure of the WS-PHP middleware ..26

Chapter 4 Implementation ..31

4.1 Client Implementation ..32

4.2 Class WSDL _Element ..37

4.3 Implementation of WS-PHP Middleware component ...47

4.3.1 Call Without Parameters ...47

4.3.2 Call With Parameters ..50

4.4 Web Service Operation Selector ..58

Chapter 5 Experiments ..63

5.1 The Car sales application ...65

5.2 The House sales application ...71

iv

Chapter 6 Conclusion ..74

References ..75

Vita ...76

v

List of Figures

Figure 2.1: XML ... 3

Figure 2.2: Web Service ... 4

Figure 2.3:WSDL Structure .. 6

Figure 2.4:System Architecture .. 7

Figure 2.5: book Store Dom Tree ... 8

Figure 3.1: System View ... 11

Figure 3.2: Class Store Diagram ... 12

Figure 3.3: Specification of operations in WSDL ... 13

Figure 3.4: Class Car Diagram .. 15

Figure 3.5: Class CarArg Diagram .. 16

Figure 3.6: Ajax Call ... 18

Figure 3.7: Operation element in WSDL .. 19

Figure 3.8: message element of WSDL .. 19

Figure 3.9: message response element of WSDL ... 19

Figure 3.10: element of type WSDL ... 20

Figure 3.11: operation that has all WSDL elements ... 21

Figure 3.12: operation with no parameter ... 22

Figure 3.13: operation without return value .. 23

Figure 3.14: System Details .. 27

Figure 3.15:Sequence Diagram HandleParameters... 28

Figure 3.16: Sequence Diagram for HandleRequest_WP.php ... 29

Figure 3.17: Sequence Diagram HandleRequest_NP ... 30

Figure 4.1: System View ... 31

Figure 4.2: Function getHTTPObject() ... 32

Figure 4.3 : Event handler using GET .. 33

Figure 4.4: Client functions which process the php response results.. 34

Figure 4.5: Client functions which process the php response results.. 35

Figure 4.6: Event Handler for POST method ... 35

Figure 4.7: Client function returning element of a form ... 36

Figure 4.8: Static form showing the event handler ... 36

Figure 4.9: Constructor of the Wsdl_Element class.. 37

Figure 4.10: Class diagram ... 38

Figure 4.11: Method which parse the operation in wsdl document .. 39

Figure 4.12: Result of the getOperation method ... 40

Figure 4.13: element types in wsdl document .. 41

Figure 4.14: Method getType .. 42

Figure 4.15: types of getCar operation.. 43

Figure 4.16: Signature of the getCar Web Service method .. 43

Figure 4.17: operation with complex type .. 44

file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430612
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430614
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430615
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430617
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430618
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430619
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430620
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430621
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430622
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430623
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430624
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430625
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430626
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430630
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430631
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430632
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430633
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430634
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430637
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430638
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430639
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430641
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430642
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430643
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430647
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430650

vi

Figure 4.18: Signature of the getStore web service method ... 44

Figure 4.19: Definition of the complex object CarArg ... 45

Figure 4.20 :getAttributes method .. 46

Figure 4.21: MyClient Class ... 47

Figure 4.22:Function parse_result... 49

Figure 4.23:Function HandleRequest_NP .. 50

Figure 4.24: Function HandleParameters .. 51

Figure 4.25:data posted transformed in simple case ... 52

Figure 4.26:data posted transformed in complex case .. 52

Figure 4.27:the second parameter used in SOAP call .. 53

Figure 4.28:Soap request in simple case ... 53

Figure 4.29:SOAP request in complex case .. 54

Figure 4.30:Soap response of getCar .. 55

Figure 4.31:Function Handle Request_WP .. 57

Figure 4.32:multidimensional array returned by Handle2 .. 58

Figure 4.33:HTML form displayed at the end user... 59

Figure 4.34: Function handle1 .. 60

Figure 4.35:Sequence Diagram for Handle1 ... 61

Figure 4.36: System Details .. 62

5.1 index page ... 64

5.2: Set of operations in the car Web Service ... 65

5.3: IT set the operations to be published to the user .. 66

5.4: user page interface ... 67

5.5: request and response for getCar operation ... 68

5.6: error message for invalid data .. 69

5.7:No result found for the user request .. 70

5.8: operation add_House , no return .. 71

5.9:Request for find_House operation .. 72

5.10:request for search_House operation .. 73

file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430651
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430652
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430653
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430654
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430655
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430656
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430657
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430658
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430659
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430660
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430661
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430662
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430663
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430664
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430665
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430666
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430667
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430668
file:///C:/Thesis/MenadMasterThesis.docx%23_Toc246430669

vii

Abstract

Web Services have been the dominant technology in business integration and

implementation of service oriented architectures. PHP is a server-side language popular for

development of applications. A significant advantage of PHP is its light weight development for

feature-rich web applications. Typically, PHP is used for making good-looking front end user

interfaces; Java or other programming languages are used to develop the back end application. A

secure and robust way for PHP programs to call back-end services is by Web Services.

However, when the Web Service operations have complex interfaces, writing PHP client code

can be difficult and error-prone.

This thesis research seeks to develop a Web service-PHP program middleware that

automatically handles the client-side Web Service calls. Two Web Services are developed, as

well as two Web applications that consume the two Web Services, and experiments that

demonstrate the usage of the WS-PHP middleware component are conducted.

Keywords: Web Services, PHP, DOM, XPATH, WSDL, SOAP, Ajax, Client Program,

 Automation.

1

Chapter 1. Introduction

Web Services have been the dominant technology in business integration and

implementation of service-oriented architectures. Web Services do not dictate any restrictions in

language or platforms; it is based on the widely accepted data exchange language XML and the

W3C protocol SOAP. Typically, SOAP-based web services are for heavy duty server-side

computation or business transactions. It is a common choice for enterprise applications. The

client can directly process the SOAP message in any programming language such as PHP.

PHP is a server-side language, particularly popular in the development of Web

applications. PHP is a member of the most significant open source LAMP collection (Linux,

Apache, MySQL, PHP). An important advantage of PHP is its light-weight development for

feature-rich Web applications. PHP has received attention from all the leading software vendors

such as IBM and ORACLE. They have provided a number of ways to support PHP. Using PHP

as a client of Web Services has become the mainstream practice for integrating complex server-

side computations into feature-rich PHP Web applications. A native support for consuming Web

Services has been added to PHP version 5.

However, writing PHP client code can be complex and error-prone, when the Web

Service operations require multiple arguments and/or return objects of composite types.

Developing a PHP client program for a given service requires the programmer to convert any

type of objects that is delivered from or needed by the Web service operation to various nested

array structures. Even though this goes through a repeated routine, the complexity of the objects

can add significant burden to the programmer and often cause a high possibility of mistakes.

2

The work that culminates in this thesis seeks to develop a WS-PHP middleware

component that facilitates automation for the client-side PHP programs that call Web Services.

The development of the WS-PHP middleware was based on the experience obtained by studying

numerous Web Services and implementing a number of the client PHP programs for various

Web Service. In doing so, the common processes were singled out in the PHP client

programming. The solution is not just to handle a specific given cases but also to figure out a

means to handle different, possible, unknown cases.

The usage of the WS-PHP middleware component is illustrated in two Web applications

that consume two Web Services – a car service and a house service. It has been illustrated that

the WS-PHP middleware component is capable of automatically handling different types of

operations with complex parameter objects and return values.

3

Chapter 2. Background and Related Work

In this chapter, a number of key concepts are reviewed: Web Service technology

including the SOAP and the WSDL standards, as well as other XML technologies such as the

DOM model, the XPATH language, and the Ajax technique.

2.1 XML

XML, which stands for eXtensible Markup Language, is a specification, defined by the

W3C [W3C], which provides syntax to structurally represent data using markups. XML,

however, usually refers to the entire family of related-technologies. The W3C recommends not

abbreviating XML elements and attribute names. For example, the following listing shows how

a student record might be marked up using XML (Fig. 2.1):

A well-formed XML definition must also adhere to certain requirements such as the start

tag and end tag having to be the same, no overlapping tags, and element and attribute names

being surrounded by quotes.

In other words, XML documents have a structure format that allows data to be sent across

networks in an inter-operable manner. Naturally, XML has widespread support and has become

the messaging standard.

<book>
 <Author>Giada De Laurentis</Author>
 <Title>Every Day Italian</Title>
 <Price>35.00</Price>
 <Year>2005</Year>
 </book>

Figure 2.1: XML

4

2.2 Web Services

According to IBM, Web Services are a technology that allows applications to

communicate with each other in a way that is independent of which platform or which

programming language is being used. A Web Service is a software interface that describes a

collection of operations that can be accessed over the network through standardized XML

messaging. It uses protocols based on the XML language to describe an operation to execute or

data to exchange.

The Web Services model follows the publish, find and bind paradigm: a service provider

publishes a Web Service in a registry called UDDI; the client searches in a registry the service

which meet the requirements; and, after the result of the search, the client downloads the service

description and binds with that to invoke and use the service.

Figure 2.2: Web Service

5

2.3 WSDL

The Web Services Description Language (WSDL) is an XML language for describing

Web Services as a set of network endpoints that operate on messages.

A WSDL service description contains an abstract definition for a set of operations and

messages, a concrete protocol binding for these operations and messages, and a network

endpoint specification for the binding. A WSDL document describes a web service using the

following major elements:

 type: data type definition used to describe the messages exchanged

 message: represents an abstract definition of the data being transmitted; a message

consists of logical parts, each of which is associated with the definition within some type

system

 portType: a set of operations, each of which refers to an input message and an output

message

 binding: specifies a concrete protocol and data format specifications for the operations

and messages defined by a particular portType.

 port: specifies an address for a binding, thus defining a single communication endpoint

 service: used to aggregate a set of related ports

6

2.4 SOAP

Originally defined as Simple Object Access Protocol, SOAP is a protocol specification

for exchanging structured information in the implementation of Web Services in computer

networks. It relies on Extensible Markup Language (XML) as its message format, and usually

relies on other Application Layer protocols (most notably Remote Procedure Call (RPC and

HTTP).

A SOAP message could be sent to a Web Service enabled web site (for example, a house

price database) with the parameters needed for a search. The site would then return an XML-

formatted document with the resulting data (prices, location, features, etc). Because the data is

<definitions>
 <types>
 ……

</types>
 <message>
 ……
 </message>
 <portType>
 ……
 </portType>
 <binding>
 ……
 </binding>
 <service>

……
 </service>
 </definitions>

Figure 2.3:WSDL Structure

7

returned in a standardized machine-parse-able format, it could then be integrated directly into a

third-party site.

A SOAP message consists of an envelope containing an optional header and a required

body. The header contains blocks of information relevant to how the message is to be processed.

This includes delivery settings, authentication or authorization assertions, and transactions

contexts. The body contains the actual message to be delivered and processed. Anything that

can be expressed in XML syntax can go in the body of a message.

2.5 Document Object Model (DOM)

The Document Object Model (DOM) is an object model for XML documents that can be

used to access parts of an XML document directly. In DOM, the document is modeled as a tree,

SOAP envelope

SOAP body

SOAP Header

Header Block

Header Block

Message body

Figure 2.4:System Architecture

8

where each component of the XML syntax (such as an element or text content) is represented by

a node. DOM is an API that allows you to navigate this tree, moving from parent to child node,

to siblings, and more, taking advantage of special properties of certain types of nodes (for

instance, elements can have attributes, while text nodes have text data). DOM is designed to be

language-neutral.

DOM is generally much easier to master than Simple API for XML (SAX) because it

does not involve callbacks and sophisticated state management. However, DOM

implementations generally keep all XML nodes in memory, which can be inefficient for larger

documents.

Figure 2.5: book Store Dom Tree

Root Element

<bookstore>

Element:

<book>

Attribute:

“category”

Attribute

“Lang”

Element:

<year>

Element:

<price>

Element:

<author>

Element:

<title>

Text:

35.00

Text:

2005

Text:

Giada De Laurentis

Text:

Everyday Italian

Child Parent

 Sibling

9

2.6 XPath

XPath is a query language for selecting nodes from an XML document. In addition,

XPath may be used to compute values (e.g., strings, numbers, or Boolean values) from the

content of an XML document. XPath was defined by the World Wide Web Consortium (W3C).

The XPath language is based on a tree representation of the XML document, and

provides the ability to navigate around the tree, selecting nodes by a variety of criteria. In

popular use (though not in the official specification), an XPath expression is often referred to

simply as an XPath.

2.7 Ajax

Asynchronous JavaScript and XML (or Ajax for short) is a method of building interactive

applications for the Web that processes user requests immediately. Ajax combines several

programming tools including JavaScript, dynamic HTML (DHTML), Extensible Markup

Language (XML), cascading style sheets (CSS), the Document Object Model (DOM), and the

Microsoft object, XMLHttp Request. Ajax allows content on Web pages to update immediately

when a user performs an action, unlike an HTTP request, during which users must wait for a

whole new page to load. For example, a weather forecasting site could display local conditions

on one side of the page without delay after a user types in a zip code.

10

Chapter 3. Structure and System Design

The technical goal of this research project is to realize business Web applications, in a

multi-tier architecture, which includes the presentation tier (the Web browsers), the Web tier

(Web server), the middle application tier and the persistent tier (the database). System view of

such architecture is given on the left-hand side of Figure 3.1. It is worth emphasizing that the

PHP Web Server performs both the tasks of the presentation tier and the application; not only do

the PHP programs produce high quality Web pages, they can implement business rules.

Typically, these implementations of business rules are encapsulated in PHP functions.

Therefore, the “PHP Web Server” is divided into “presentation” and application “service” as

shown in Figure 3.1. In complex systems, some business logic or information resource is given

as a Web Service and the PHP programs need to interact with Web Services. The Web Service

could be chosen due to many reasons such as interoperability and security among others. As the

Web Service has become the de facto technology integration software. “our special situation”

will become more and more common.

A number of methods exist for PHP programs to interact with Web Services, which will

be discussed in Section 3. What we will have achieved is not only to choose the best method for

PHP-WS interaction, but also to automate the process for PHP program to call Web Services.

The capabilities of doing so are encapsulated in WS-PHP middleware components shown at the

upper right corner of “PHP Web server” in Figure 3.1.

11

Web Application PHP-Web Service enabler

PHP Application Assemble

 Internet

WS operation

Selector

 Middleware

Application

Presentation

presentation

Business Logic

Web Services

Database

End users

P
H
P

W
e
b

S
e
r
v
e
r

B

a

c

k

E

n

d

S

e

v

e

r

e

r

Figure 3.1: System View

12

3.1 Web Services

A Web Service usually presents a number of operations. These operations are the contact

points between the back-end logic (often complex and proprietary) and the external clients. The

service and the client exchange SOAP messages. The strength of Web Service is that the

service‟s operations are formally specified in an industrial standard.

The Web Service Description Language (WSDL) can be processed programmatically.

Thus along with each Web Service, there is always a WSDL document.

For example, in one of the experimental implementations, the Car service has four

operations:

 Car [] getDefault().

 Car [] getCar(String make, String model, int year).

 Store [] getStore(CarArg car).

 Car [] getSelectedCar(String make, String model, int year, String

year_from, String year_to, String price_from, String price_to).

These four operations are specified in the WSDL document as four operation elements as

shown in Figure 3.2.

 Figure 3.2: Class Store Diagram

Store

+name: String

+address: String

+city: String

+State: String

+Zip: String

+store_id: int

+getName():String

+setName():void

etc..

13

 wsdl:portType name="MyCarServicePortType">

- <wsdl:operation name="getDefault">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="axis2:getDefaultMessage" wsaw:Action="urn:getDefault" />

<wsdl:output message="axis2:getDefaultResponse" />

</wsdl:operation>

- <wsdl:operation name="getCar">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="axis2:getCarMessage" wsaw:Action="urn:getCar" />

<wsdl:output message="axis2:getCarResponse" />

</wsdl:operation>

- <wsdl:operation name="getStore">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="axis2:getStoreMessage" wsaw:Action="urn:getStore" />

<wsdl:output message="axis2:getStoreResponse" />

</wsdl:operation>

- <wsdl:operation name="getSelectedCar">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="axis2:getSelectedCarMessage" wsaw:Action="urn:getSelectedCar" />

<wsdl:output message="axis2:getSelectedCarResponse" />

</wsdl:operation>

</wsdl:portType>

Figure 3.3: Specification of operations in WSDL

http://localhost:8080/CarWebTest2/services/MyCarService?wsdl
http://localhost:8080/CarWebTest2/services/MyCarService?wsdl
http://localhost:8080/CarWebTest2/services/MyCarService?wsdl
http://localhost:8080/CarWebTest2/services/MyCarService?wsdl

14

It should be noted that the operation getDefault has no parameters. The operations

getCar, getStore and getSelectedCar have parameters.

The operation getCar has three parameters: make, model as String and year as int. It

will fetch the database for the tuples satisfying the condition of the three parameters and return

an array of object Car .Operation getDefault queries the database for the six cheapest cars and

returns an array of Car data type. Operation getStore retrieves the stores satisfying the

characteristics of the car entered in the parameters. It takes as a parameter an object of type

CarArg. Operation getSelected also fetches the cars satisfying certain parameters, with more

options, returning an array of Car objects, taking in seven parameters, including year_from,

year_to, price_from and price_to, which are defined as String because they are used in the

SQL statement.

Some of the parameters and return values have complex object structures. For example,

the Car data type is an object, and one of its instance variables is a Shape object, which in turn

has, as one of its instance variables, another object of the Dimension class. On the other hand,

the Store object is a simple one with all its instances variables being simple types. For the

arguments, a very complex type that is three levels deep as the Car data type are used, the

structure of this object is illustrated in class diagram.

15

Car

-id: int

-make: String

-model: String

-image: String

-price: double

-Sh: Shape

-year: int

+getId(): int

+setId(int id):void

+getMake:string

+getShape():Shape

+setShape(Shape sh):void

Etc…

Shape

-color:String

-dim:Dimension

-mile:double

+getColor():String

+setColor(String color):void

+getDim():Dimension

+setDim(Dimension dim):void

Etc..

Dimension

-type:String

+getType():String

+setType(String type):void

Figure 3.4: Class Car Diagram

16

CarArg

-make: String

-model: String

-price: double

-Sh: Shape

-year: int

+getMake:string

+getShape():Shape

+setShape(Shape sh):void

Etc…

ShapeArg

-color:String

-dim:Dimension

-mile:double

+getColor():String

+setColor(String color):void

+getDim():Dimension

+setDim(Dimension dim):void

Etc..

Dimension

-type: String

+getType():String

+setType(String type):void

Figure 3.5: Class CarArg Diagram

17

3.2 Front End

The front end for the system consists of Web pages interacting with the users. For the

end users, one static HTML page only is used. All the following displays and data entry forms

are dynamically created by JavaScript programming. The communications (requests and

responses) between the front end and the PHP engine on the Web server are handled by Ajax

technology, which allows for the user‟s inputs and server‟s responding data to not cause Web

pages to be reloaded. Figure 3.6 illustrates the calling relationship between the front end and the

Web server.

Additionally, there is one Web page for the company management to select which

services should be exposed to the end users (customers). Upon receipt of this choice, a set of

front end templates are used to form suitable user interfaces.

When the end user‟s requests require triggering the Web Services at the back end, a

bridge component in the PHP server is needed. This is the WS-PHP middleware component

described in the next section.

18

3.3 The WS-PHP Middleware component

The WS-PHP middleware component has many responsibilities such as formulation of

request, validation of data, calling the Web Service, and formatting the results from the Web

Service for the client. The middleware component is to form the call to the operations and parse

the result of the call solely based on the WSDL.

Before any further actions, recognizing the important elements in WSDL document,

namely the portTypes, messages and the types, need to be done.

Figure 3.6: Ajax Call

Browser Client

 JavaScript HTML

 Call Data

Server Side System

 XMLHttpRequest

XMLHttpRequest

Callback

User Interface

Web Server
2

3

4

5

1

19

3.3.1 WSDL elements

 Element Operations

These are the operations in the Web Service, located in the portType element, of the

WSDL belonging to the namespace “wsdl”. This element has attribute name of value

„getCar‟. This operation has two Child elements, input and output, which has attribute

message as shown in Figure 3.7.

 Element message

This constitutes the request and the response and belongs to “wsdl” namespace and is an

element of definitions element. Each message element might have as attributes name and

child part, which has attribute element. In Figure 3.8, element has a value ns0:getCar.

<wsdl:operation name="getCar">
 <wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="axis2:getCarMessage" wsaw:Action="urn:getCar" />
 <wsdl:output message="axis2:getCarResponse" />

</wsdl:operation>

 <wsdl:message name="getCarMessage">
 <wsdl:part name="part1" element="ns0:getCar" />

 </wsdl:message>

<wsdl:message name="getCarResponse">

 <wsdl:part name="part1" element="ns0:getCarResponse" />

</wsdl:message>

Figure 3.7: Operation element in WSDL

Figure 3.8: message element of WSDL

Figure 3.9: message response element of WSDL

20

 Element types

This concerns the description part of the data type used in the messages, the value of

the attribute element in the element part of message must be one of the descendants of

element types.

<xs:element name="getCar">

- <xs:complexType>

- <xs:sequence>

 <xs:element name="make" nillable="true" type="xs:string" />

 <xs:element name="model" nillable="true" type="xs:string" />

 <xs:element name="year" nillable="true" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Figure 3.10: element of type WSDL

http://localhost:8080/CarWebTest2/services/MyCarService?wsdl
http://localhost:8080/CarWebTest2/services/MyCarService?wsdl

21

3.3.2 Services operations

In this study, three kinds of operations appear in WSDL documents:

1. Operations with parameters and return value

In this case, all the attributes and children nodes will be present as shown in Figure 3.11:

Figure 3.11: operation that has all WSDL elements

22

2.The operations that have no parameters but have a return value

In this case, the message input has no child node:

Figure 3.12: operation with no parameter

23

3.The operations that have parameters but have no return value

In this case the output message does not exist:

Figure 3.13: operation without return value

3.3.3 Automating the Process that enables PHP to call Web Services

3.3.3.1 Existing PHP-WS interactions approaches

There are a number of approaches to PHP-WS interactions, namely:

1. Pear:SOAP: The Pear package has a number of modules. SOAP is one of them. To use

Pear:SOAP, the programmer must include this module in his application, and needs to be

installed, separately.

2. NuSOAP: This is a library used to convert PHP data types to proper XML Schema

types. It had enjoyed huge attention in the previous PHP version (version 4) when there

24

was not many options for PHP-WS interaction. However, its latest version (0.7.3)

supports neither SOAP 1.2 nor any WS-* specification [NuSOAP].

3. WSO2’s WSF/PHP: This is an external extension of PHP that could be used to provide

and consume Web Services [WSF/PHP]. This extension could be used in providing and

consuming Web Services in PHP. WSO2 WSF/PHP is a complete solution for building

and deploying Web Services and is the only PHP extension with most extensive

implementations for the widest range of WS-* specification. Its key features include

secure services and clients with WS-Security support, binary attachments with MTOM,

automatic WSDL generation (code first model), WSDL mode for both services and

clients (contract first model) and interoperability with .NET and J2EE (WSO2.org).

However, this external extension is often not feasible to apply because an external shared

hosting environment will not allow recompile and reconfigure the Web server.

4. PHP’s native SOAP extension (PHP SOAP): This is available if the SOAP option is

turned on. That is, the PHP installation is configured with “ --enable-soap” (for

example, ./configure --with-xml --with-mysqli --enable-soap). This PHP native

solution can be used to write SOAP server and client. Fortunately, most shared hosting

environments that support PHP5 conventionally have this SOAP feature enabled. After

the evaluation of the existing PHP-WS interaction approaches, the PHP‟s native SOAP

extension approach is chosen.

25

3.3.3.2 The Procedures for PHP to call Web Service operations

The task of the PHP-WS middleware component is to make the call to the Web Services

operations based on three kinds of operations. The procedures for making calls to these three

kinds of operations are specified:

List1: Calling operation that has no parameters but has return value

This is the simplest case in which only two steps are needed.

Step1: Make Request to the Web Service

Step2: Parse the results, format them to be sent to the placeholder “content” in the user

interface.

List: 2. calling operation with parameters but without return value (the void operations)

Step 1: Parse the type of element of message input.

Step 2: Format the result of the parsing and display an HTML form with elements the

parameters of the operation in the placeholder “menu” in the user interface.

Step3: In the client browser, the user enters his data.

Step4: If the data are valid

Step5: Make Request to the Web Service.

Step6: Display a message that the data been updated in the content in the user interface.

Step7: If not, display the errors, in the content div, repeat 3.

List: 3. calling operation with parameters and return value

Step1: Parse the type of element of message input.

Step2: Format the result of the parsing and display an HTML form with elements the

parameters of the operation in the placeholder “menu” in the user interface.

Step 3: In the client browser, the user enters his data.

26

Step4: If the data are valid

Step5: Make Request to the Web Service.

Step6: Parse the result, format them to be sent to the placeholder “content “in the user

interface.

Step 7: If not, display the errors, in the content div, repeat 3.

3.3.4 The Structure of the WS-PHP middleware

Corresponding to the three kinds of Web Service calls, three PHP functions are

implemented:

 HandleRequest_WP: This functions handles the request to a Web Service

operation that has parameters in the call. This also handles the void operation.

 HandleRequest_NP: This function handles the request to Web Service operation

that does not have parameters.

 HandleParameters: This intermediate function seeks to complete the request to the

Web Service operation that has parameters.

27

The role of PHP functions in the system is depicted in Figure 3.14. When the front end

makes an Ajax request to the PHP server and this request eventually leads to a call to the Web

Service, one of the above PHP functions will be called depending on the type of the Web Service

operation. In Figure 3.14 “Handle1” is another PHP function that can fetch the WSDL document

of the Web Service from the back end server and help the management to select an operation.

The use of this will be shown later.

The tasks of HandleRequest_WP are to fulfill the steps listed in List 3 of Section

3.3.3.2. Its sequence diagram is shown in Figure 3.16.

Figure 3.14: System Details

Car Web Service House Web

service

Handle

1

HandleRequest_

WP

HandleRequest_

NP_
HandleParamet

ers

Data

Base

XMLHttpRequest

User Interface

 wsdl

XMLHttpRequest

Callback

28

User HandleParameters :Wsdl_Element

click on getCar B

getTypes()

:Template

Display_Parameters()

Figure 3.15:Sequence Diagram HandleParameters

29

User HnadleRequest_WP :Wsdl_Element

:Data_Parsed

:Template

:Helper :MyClient

Click Go

getTypes()

Transform()

New MyClient()

Call()

parse_result()

dispalay_Content()

Formatted data

Car Service

Figure 3.16: Sequence Diagram for

HandleRequest_WP.php

30

The tasks of HandleRequest_NP is to fulfill the steps listed in List 1 of Section 3.3.3.2. Its

sequence diagram is given in Figure 3.17:

Car Service

User HandleRequest_NP :Wsdl_Element

:MyClient

:Data_Parsed

:Template

Click getD B

New Wsdl_Element()

New MyClient()

call

Parse_result()

Display_Conyent()

Figure 3.17: Sequence Diagram HandleRequest_NP

31

Chapter 4. Implementation

According to the system design described in Chapter 3, the WS-PHP middleware is the

component that automates the process for a PHP program to call a Web Service. Using this

component, two Web applications, Car Sales and House Sales are implemented. Each program

relies on back end Web Services Car Service and House Service respectively. This is illustrated

in Figure 4.1.

 Soap request Soap request

 Soap response

 User request

 Formatted data

House Service Car Service

Web Application

 Server

Use

Figure 4.1: System View

32

4.1 Client implementation

In the first page of the Web application, a set of JavaScript functions handle the events.

The Ajax technology uses the XMLHttpObject which has to be instantiated. It communicates

directly with the PHP server. All modern browsers such as “chrome, IE7, Firefox, Opera,

Safari” have XMLHttpObject built-in. Too, JavaScript IE5 and IE6 use ActiveXObject.

Figure 4.2: Function getHTTPObject()

Two kinds of requests are made by the client, namely methods GET and POST. The

open() and the send() are the methods of the XMLHttpObject to send off the request to the

server. onreadystatechange() is a property that stores the function that will process the

response from the server. The event handler makeRequestGet(url,val,x), shown in Figure

4.3, uses GET, sends the value x and sets the Placeholder or div of id=‟val‟ for the output of

the results. This function calls three other functions, respectively: setOutputRes,

function getHTTPObject(){

if(window.ActiveXObject) return new ActiveXObject("Microsoft.XMLHTTP");

else if(window.XMLHttpRequest) return new XMLHttpRequest();

else{

 alert("the Browser doesn't support AJAX");

 return null;

 }

}

33

setOutputRes1 and setOutputRes2 depending on the value of a parameter val: “res , menu,

content”.

Figure 4.3 : Event handler using GET

The functions setOutputRes, setOutputRes1, setOutputRes2 and alertContents have the

same structure. They differ only in where to place the output coming from the PHP server.

alertContents is used in the makeRequestPost function. The code for function

setOutputRes is shown in Figure 4.4.

function makeRequestGet(url,val,x){
s1=document.getElementById("res");
 s2=document.getElementById("menu");
s3=document.getElementById("content");
s2.innerHTML='';
 s3.innerHTML='';
var str5=x;
httpObject=getHTTPObject();
if(httpObject !=null){
str=url+'?data='+str5;
httpObject.open("GET",str,true);
httpObject.send(null);
if(val=='res'){

httpObject.onreadystatechange=setOutputRes;
 }

if(val=='menu')
httpObject.onreadystatechange=setOutputRes1;
if(val=='content')
httpObject.onreadystatechange=setOutputRes2;
}
}

34

The function makeRequestPost(url, parameters) uses the POST method, and sends the

input values of the HTML form. The difference between makeRequestPost and

makeRequestGet is that the former is a statement in the event handler show(formid, filep)

function setOutputRes() {

 if (httpObject.readyState == 4) {

 if (httpObject.status == 200) {

 result = httpObject.responseText;

 document.getElementById('res').innerHTML = result;

 }

else {

 alert('There was a problem with the request.');

 }

 }

 }

 function alertContents() {

 if (httpObject.readyState == 4) {

 if (httpObject.status == 200) {

 result = httpObject.responseText;

 document.getElementById('content').innerHTML = result;

 }

else {

 alert('There was a problem with the request.');

 }

 }

 }

Figure 4.4: Client functions which process the php response results

35

but the latter is itself an event handler. In addition, POST request has to set some parameters in

the HTTP header. This function is shown in Figure 4.5.

The function show is a handler that has two arguments: the id of an HTML form, and the

processing program formid, filep as shown in Figure 4.6. The function createQuery shown in

Figure 4.7 returns an array an HTML form elements.

function makeRequestPost(url,parameters){

httpObject=getHTTPObject();

if(httpObject!=null){

 httpObject.onreadystatechange = alertContents;

 httpObject.open('POST', url, true);

 httpObject.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

 httpObject.setRequestHeader("Content-length", parameters.length);

 httpObject.setRequestHeader("Connection", "close");

 httpObject.send(parameters);

}

}

function show(formid,filep) {

 var poststr = createQuery(document.getElementById(formid));

 makeRequestPost(filep, poststr);

 }

Figure 4.5: Client functions which process the php response results

Figure 4.6: Event Handler for POST method

36

Figure 4.7: Client function returning element of a form

The client event handlers appear in the HTML forms. First, a call for handler is made at

the static form as shown in Figure 4.8. Then the rest of the calls appear in the dynamic form

results.

function createQuery(form){

 var elements = form.elements;

 var pairs = new Array();

 for (var i = 0; i < elements.length; i++) {

 if ((name = elements[i].name) && (value = elements[i].value))

 pairs.push(name + "=" + encodeURIComponent(value));

 }

 return pairs.join("&");

 }

Figure 4.8: Static form showing the event handler

<form id="services1">

<table id="table1" width=90% align="center">

<tr>

<td>Car services :<input type="radio" name="service" value='0'
onClick="makeRequestGet('Handle1.php','res',this.value);"></td>

<td>House Service:<input type="radio" name="service" value='1'
onClick="makeRequestGet('handle1.php','res',this.value);"></td>

</tr>

</table>

</form>

37

4.2 Class Wsdl_Element

The core of this application resides in the class Wsdl_Element, which extracts the

different elements from the WSDL document. This class has an instance variable dom, a

DOMDocument object, for use by the API DOM, and an instance xpath of an XPATH object

for querying the document. The constructor function of Wsdl_Element is shown in Figure 4.9.

 public function __construct($wsdl){

 self::$dom=new DOMDocument();

 self::$dom->load($wsdl);

 self::$xpath=new DOMXPath(self::$dom);

 self::$xpath->registerNamespace("wsdl","http://schemas.xmlsoap.org/wsdl/");

 self::$xpath->registerNamespace("xs","http://www.w3.org/2001/XMLSchema");

 }

Figure 4.9: Constructor of the Wsdl_Element class

38

 has has

Wsdl_Elements

dom:DOMDOcument

xpath:XPATH

-operations:array()

-types:array()

+getOperations()

+ getMessages()

+ getElements()

+ getTypes()

+ getComplexElement()

+ getQuery()

+ setTypes()

+ getAttributes()

+getQuery1()

DOMDocument

getElementById()

getElementByTag()

XPATH

+query()

+evaluate()

 SoapClient

+__getType()

+__getFunctions()

+__getLastRequest()

+__getLastResponse()

+__soapCall

 MyClient

+call($name,$parameters)

Figure 4.10: Class diagram

39

The function getMessages returns an array of the messages of an operation. The

function getElements returns an array of elements for a certain message of the WSDL

document. The function getOperations retrieves all the operations “Web Service operations”

of the document as shown in Figure 4.11. The parsing of the portType element of WSDL

produces an array of all the operations provided by the Web Service. For example, from the Car

Service application, the array shown in Figure 4.12 is returned .

Figure 4.11: Method which parse the operation in wsdl document

public static function getOperations(){

 $tmp=array();

 $nodes=self::$xpath->query("wsdl:portType/wsdl:operation");

 if($nodes){

 foreach($nodes as $node){

 if($node->hasAttributes()){

 $att=self::$xpath->query("@name",$node);

 $tmp[]= $att->item(0)->nodeValue;

 }

 }

 }

return $tmp;

}

40

Figure 4.12: Result of the getOperation method

Array (

[0] => getDefault

 [1] => getCar

[2] => getStore

[3] => getSelectedCar

)

41

Figure 4.13: element types in wsdl document

<wsdl:types>

<xs:schema xmlns:ns="http://pack/xsd" attributeFormDefault="qualified"

 elementFormDefault="qualified" targetNamespace="http://pack/xsd">

<xs:element name="getCar">

<xs:complexType>

<xs:sequence>

<xs:element name="make" nillable="true" type="xs:string"/>

<xs:element name="model" nillable="true" type="xs:string"/>

<xs:element name="year" nillable="true" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="getCarResponse">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" name="return" nillable="true" type="ns0:Car"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Car" type="ns0:Car"/>

<xs:complexType name="Car">

<xs:sequence>

<xs:element name="id" type="xs:int"/>

<xs:element name="image" nillable="true" type="xs:string"/>

<xs:element name="make" nillable="true" type="xs:string"/>

<xs:element name="model" nillable="true" type="xs:string"/>

<xs:element name="price" type="xs:double"/>

<xs:element name="sh" nillable="true" type="ns0:Shape"/>

<xs:element name="year" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:element name="getSelectedCar">

<xs:complexType>

<xs:sequence>

<xs:element name="make" nillable="true" type="xs:string"/>

<xs:element name="model" nillable="true" type="xs:string"/>

<xs:element name="year_from" nillable="true" type="xs:string"/>

<xs:element name="year_to" nillable="true" type="xs:string"/>

<xs:element name="price_fom" nillable="true" type="xs:string"/>

<xs:element name="price_to" nillable="true" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="getSelectedCarResponse">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" name="return" nillable="true" type="ns0:Car"/>

</xs:sequence>

</xs:complexType>

</xs:element>

42

The types used in the WSDL might be simple or complex such as the fragment of WSDL

in Figure 4.13. The method getTypes has one argument called elements which is the elements

of the message, return a simple associative array in case of simple type, the key is the name of

the parameter and the value is the type of the parameter. In case of complex types, recursive

calls are used, an associative array of associative arrays is returned which reflects in the types

used in the operations. The code of function getTypes is shown in Figure 4.14.

public function getTypes($elements){
$res=array();$val ="";
foreach($elements as $elt){
 $attributes=$elt->attributes;
 foreach($attributes as $atr){
 switch($atr->name){
 case "name" :
 $val=$atr->value;
 break;
 case "type" :
 $num=strpos($atr->value,':');
 if ($num !=0){
 $str=substr($atr->value,0,$num);
 if($str=="xs"){
 $res[$val]=substr($atr->value,$num+1);
 }
 else{
 $t=self::getComplexElement(substr($atr->value,$num+1));
 $res[$val]=$this->getTypes($t);
 }
 break;
 }
 }
 }
return $res;
}

Figure 4.14: Method getType

43

For example, in the Car Service application, if the management user clicks on the element of list

getCar, the types carried by this operation are shown in Figure 4.15. They are the same as the

types of the Web Service operation.

Figure 4.15: types of getCar operation

In the back-end server, the types corresponding to the WSDL, shown in the Java interface

of the method getCar (cf. Figure 4.16). So the element of the getTypes is the parameters in the

getCar method running in the back-end service.

Figure 4.16: Signature of the getCar Web Service method

Array (

 [make] => string

[model] => string

 [year] => int

)

public Car[] getCar(String make,String model, int year)

44

If it is a complex type, such as those in operation getStore, PHP has to use an array of arrays to

represent object graphs.

For example, the back-end Java method getStore carries an object of CarArg as shown

in Figure 4.18. Type CarArg contains ShapeArg type which in turn contains class Dimension

as shown in Figure 4.19. In PHP, such a composite object will be represented as three arrays

shown in Figure 4.17. The conversion from the operation‟s composite types to PHP array

representations is not from Java to the PHP, but from the type element in the WSDL document

to PHP because the back-end program has been wrapped as Web Services.

Array (

 [car] => Array ([make] => string [model] => string [price] => double

[sh] => Array ([color] => string

[dim] => Array ([type] => string)) [year] => int))

public Store[] getStore(CarArg car)

Figure 4.17: operation with complex type

Figure 4.18: Signature of the getStore web service method

45

So, in the elements of the types of WSDL, each time the program finds an object, a

recursive call is made and another array is created inside the precedent.

The getAttrributes method returns an associative array with key the name of attribute

and its value the value of the attribute as shown in Figure 4.20.

public class CarArg {

 private String make;

 private String model;

 private int year;

 private ShapeArg sh;

 private double price;

}

public class ShapeArg {

 private String color;

 private Dimension dim;

}

public class Dimension {

private String type;

}

Figure 4.19: Definition of the complex object CarArg

46

All the functions of class Wsdl_Element listed above serve to prepare the proper

parameters for making a SOAP call. PHP5 has its built-in class SOAP Client, as shown in Fig.

4.10. The function __soapCall($name, array($parameters)), is a built-in function for PHP

applications to call. The class MyClient extends the class SoapClient, and is a class PHP

applications can instantiate as a SOAPClient. The sole function of MyClient, namely

call($name, $parameters) delegates the call to __soapCall($name,

array($parameters)) as shown in Figure 4.21. The precondition for this function is to have

the structure (array structure) of “$parameters” match with the types obtained from getTypes

of the operation with “$name”.

public function getAttributes($op){

$tmp=array();if($tmp1=$this->getQuery($op)){

 if($tmp1->item(0)->hasAttributes()){

 $values=$tmp1->item(0)->attributes;

 foreach($values as $val)

 $tmp[$val->nodeName]=$val->nodeValue;

 }

}

return $tmp;

}

Figure 4.20 :getAttributes method

47

4.3 Implementation of WS-PHP Middleware component

The possible complexity for PHP programs to call Web Services has been explained in

Section 3.3.4. This section presents the actual code. In Section 3.3.3 , the steps for each kind of

call that the WS-PHP has to carry out are enumerated.

4.3.1 Call Without Parameters

The HandleRequest_NP.php is a parameter in the event handler in the form generated

dynamically. It handles only the operation with no parameters; the call is made with null

parameters to the Web Service call($name, null). This call returns the SOAP message

response as object, since the types of the results are unknown, referring to the WSDL to

determine the types returned. The function parse_result returns an array of objects; it will

organize the data in a structure that is easy to be displayed, and has three parameters: the

object returned by the SOAP call, the instance of object Wsdl_Element and the name of the

operation as shown in Figure 4.22. For example, the getDefault function returns an array of

class MyClient extends SoapClient{

 public function __construct($wsdl){

 parent::__construct($wsdl);

 }

 public function call($name,$parameters){

 return $this->__soapCall($name,array($parameters));

 }

}

Figure 4.21: MyClient Class

48

Car type. This object will have two properties: image and an array called data. The

image property carries the image if there is image to return and the array data carries the

other data of primitive type. Therefore, if the array of objects “the SOAP response parsed”

has images, then each object is displayed in a div. If there are no images then the result is an

array of simple data types and they are displayed in an HTML table like for the case of the

operation getStore. The HandleRequest PHP function is shown in Fig. 4.23.

(continued)

public static function parse_result($vem1,$a,$str2){
$final=array(); $data=array();
$a1=null;
$mes=$a->getMessages($str2);
$element=$a->getElements($mes[1]);
$attributes=$a->getAttributes($element[0]);
if(count(Helper::getArray_FromObject($vem1))==0)

print "<h2> No Results match this Request </h2>";
else

if(array_key_exists('maxOccurs',$attributes)){
 $results=$vem1->$attributes['name'];

 if(is_array($results)){
 $res1=Helper::getArray_FromObject($results);
 $res=$res1;
 }
 else{
 $res1=Helper::getArray_FromObject($results);
 $res[0]=$res1;
 }

49

(continued)

if(count($results)!=0){
 if(substr($attributes['type'],0,strpos($attributes['type'],':'))!='xs'){
 $str=substr($attributes['type'],strpos($attributes['type'],':')+1);
 $typeElement=$a->getTypes($a->getQuery1($str));
 for($i=0;$i< count($res);$i++){
 $obj=new stdClass();
 foreach($t=Helper::change_ToSimpleArray($res[$i],&$a1) as
$key=>$value){
 if(self::getType_Value($key,$typeElement)=='string'){

if(((substr($t[$key],strlen($t[$key])-3))=='jpg')
||((substr($t[$key],strlen($t[$key])-3))=='gif')){

 $obj->image=$value;
 }
 else{ $data[$key]=$value;
 }
 }
 else { $data[$key]=$value; }
 }
 $obj->data=$data;
 $final[]=$obj;
 $obj=null;
 }
 }
 else
 return " No results found for this request";
}
else
{
}
 }
return $final;
 }

Figure 4.22:Function parse_result

50

4.3.2 Call with Parameters

As shown in Section 3.3.3, calling a Web Service operation with parameter is much more

complicated because the values of the arguments of the call have to be collected and packed

properly. In the implementation, the middleware component automatically displays a form

according to the parameters specified in the WSDL document and prompts the end user to give

the input. This is done by the function HandleParameters as shown in Fig. 4.24. Each time,

the operation name and the corresponding WSDL file name are needed, they can be extracted

from the $_GET variable. The data sent by the client browser is a string of structure

“operation_name:WSDL_file name”. For instance, “getCar:car.wsdl” has the operation name

getCar and the holding WSDL file car.wsdl. To reduce traffic between the PHP server and

<?php

include 'Parse_Wsdl.php';

include 'soapclient.php';

include 'Templates.php';

include 'Data.php';

if($val=$_GET[data]){

 $data_get=explode(':',$val);

 $wsdl = $data_get[1];

 $object_wsdl=new Wsdl_Elements($wsdl);

 $para1=null;

 $cliente=new MyClient($wsdl);

 $vem1=$cliente->call($data_get[0], $para1);

 $x= Data_Parsed::parse_result($vem1,$object_wsdl,$data_get[0]);

 Template::display_Content($x);

}

?>

Figure 4.23:Function HandleRequest_NP

51

the back end server hosting the Web Service, WSDL document is saved on the PHP server as a

file.

When the end user fills in values into the form created by the function

HandleParameter and clicks on the “Go” button, a call to a Web Service‟s operation is

processed by PHP function Handle_Request_WP. First, it checks the validity of the inputs

posted by the user. It then makes sure that all the texts are not empty and the types of their

values are correct. After the validation, an object is created having the structure as specified by

the type element of the WSDL and populated with the user inputs. If the type of every parameter

<?php

include 'Parse_Wsdl.php';

include 'Templates.php';

if($val=$_GET[data]){

 $data_get=explode(':',$val);

 $object_wsdl=new Wsdl_Elements($data_get[1]);

 $mes=$object_wsdl->getMessages($data_get[0]);

 $myTypes=$object_wsdl->getTypes($object_wsdl->getQuery($data_get[0]));

 Template::head_Form();

 Template::display_Parameters($myTypes);

 $x=strpos($data_get[1],'.');

 $y=substr($data_get[1],0,$x);

 $k=$data_get[0].':'.$y;

 Template::end_Form($k);

}

?>

Figure 4.24: Function HandleParameters

52

is simple (simple), such as in operation getCar, an array as shown in Figure 4.25 will be given

to the PHP built-in function __soapCall as the second parameter.

If some composite types are involved in a parameter such as operation getStore an array similar

to the one shown in Figure 4.26 will be fed to __soapCall as the second parameter.

The SOAP call can be made either by using the array returned by the function

Transform_toWSDLarray or by using an object which can be obtained by calling the function

Array (

 [make] => Toyota

 [model] => camry

[year] => 2003

)

Figure 4.25:data posted transformed in simple case

Array (

 [car] => Array (

 [make] => toyota [model] => camry [price] => 10000 [sh] => Array (

 [color] => grey [dim] => Array (

 [type] => car)) [year] => 2003))

Figure 4.26:data posted transformed in complex case

53

getObject_FromArray, will be the second parameter of the method

call($name, $parameters) the Fig. 4.27 shown the object used to call a Web Service.

Upon receiving the proper array argument and the WSDL document name, PHP5 built-in

function soapCall will generate the a complete SOAP request and sends it to the Web Service.

The SOAP request message calling operation getCar corresponding to the array shown in Fig.

4.25 is illustrated in Fig. 4.28.

stdClass Object ([car] => stdClass Object ([make] => toyota [model]

=> camry [price] => 10000 [sh] => stdClass Object ([color] => grey

[dim] => stdClass Object ([type] => car)) [year] => 2003))

Figure 4.27:the second parameter used in SOAP call

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="http://pack/xsd"><SOAP-ENV:Body>

<ns1:getCar>

<ns1:make>toyota</ns1:make>

<ns1:model>camry

</ns1:model><ns1:year>2003

</ns1:year>

</ns1:getCar>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 4.28:Soap request in simple case

54

The SOAP message request calling operation getStore produced based on the data array

shown in Fig. 4.26 is listed in Fig. 4.29.

The result received in the SOAP response is the return of the SOAP call already cited.

The Web Service returns a response message to each call. The result of calling getCar is a

SOAP Response message as listed in Fig. 4.30.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="http://pack/xsd">

<SOAP-ENV:Body>

<ns1:getStore>

 <ns1:car>

 <ns1:make>toyota</ns1:make>

 <ns1:model>camry</ns1:model>

 <ns1:price>60000</ns1:price>

 <ns1:sh>

 <ns1:color>red</ns1:color>

 <ns1:dim>

 <ns1:type>car</ns1:type>

 </ns1:dim>

 </ns1:sh>

 <ns1:year>2003</ns1:year>

 </ns1:car>

</ns1:getStore>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 4.29:SOAP request in complex case

55

<?xml version='1.0' encoding='utf-8'?><soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body><ns:getCarResponse xmlns:ns="http://pack/xsd"><ns:return><id

xmlns="http://pack/xsd">1</id><image xmlns="http://pack/xsd">http://localhost/toyota-

camry2003.jpg</image><make xmlns="http://pack/xsd">toyota</make><model

xmlns="http://pack/xsd">camry</model><price xmlns="http://pack/xsd">10000.0</price><sh

xmlns="http://pack/xsd"><color>grey</color><dim><type>car</type></dim><mile>2000.0</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">5</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/2003_toyota_camry_side.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">11345.87</price><sh

xmlns="http://pack/xsd"><color>blue</color><dim><type>car</type></dim><mile>67234.0</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">6</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/toyota-2camry2003.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">12345.75</price><sh

xmlns="http://pack/xsd"><color>silver</color><dim><type>car</type></dim><mile>54008.45</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">7</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/toyota-3camry2003.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">10345.5</price><sh

xmlns="http://pack/xsd"><color>beige</color><dim><type>car</type></dim><mile>87123.6</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">8</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/toyota-4camry2003.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">8764.51</price><sh

xmlns="http://pack/xsd"><color>silver</color><dim><type>car</type></dim><mile>88765.76</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">9</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/toyota-6camry2003.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">13456.87</price><sh

xmlns="http://pack/xsd"><color>red</color><dim><type>car</type></dim><mile>34213.33</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return><ns:return><id xmlns="http://pack/xsd">10</id><image

xmlns="http://pack/xsd">http://localhost/image_projet/toyota/toyota-5camry2003.jpg</image><make

xmlns="http://pack/xsd">toyota</make><model xmlns="http://pack/xsd">camry</model><price

xmlns="http://pack/xsd">14577.99</price><sh

xmlns="http://pack/xsd"><color>black</color><dim><type>car</type></dim><mile>45321.66</mile></sh><year

xmlns="http://pack/xsd">2003</year></ns:return></ns:getCarResponse></soapenv:Body></soapenv:Envelope>

Figure 4.30:Soap response of getCar

56

Finally, the entire process in function HandleRequest_WP as shown in Fig. 4.31.

(continued)

<?php
include 'Parse_Wsdl.php';
include 'soapclient.php';
 include 'Help.php';
include 'Templates.php';
include 'Data.php';
$v=$_POST; $val=''; $n=count($v); $i=0;
foreach($v as $key=>$value){

if($n-1==$i){
$val=$key;
break;

}
$i=$i+1;

}
$pop=array_pop($v);
$data_get=explode(':',$val);
$wsdl = $data_get[1].'.wsdl';
$object_wsdl=new Wsdl_Elements($wsdl);
$mes=$object_wsdl->getMessages($data_get[0]);
$myTypes=$object_wsdl->getTypes($object_wsdl->getQuery($data_get[0]));
if(!is_null($p=Data_Parsed::valid(&$v,&$myTypes))){

Template::dispaly_errors($p);
}

57

(continued)

else{
if(count($mes)<=1){
Helper::transforme_ToWSDLArray($v,$myTypes);
$cliente = new MyClient($wsdl);
$para1=Helper::getObject_FromArray($myTypes);
$vem1=$cliente->1($data_get[0],$para1);
print "<h2>Data are updated</h2>";

}
else{

Helper::transforme_ToWSDLArray($v,$myTypes);
$cliente = new MyClient($wsdl);
$para1=Helper::getObject_FromArray($myTypes);
$vem1=$cliente->call($data_get[0],$para1);
echo ($cliente->__getLastResponse());
$vem2=Helper::getArray_FromObject($vem1);
$t=Data_Parsed::parse_result($vem1,$object_wsdl,$data_get[0]);
Template:: display_Content($t);
}

}
?>

Figure 4.31:Function Handle Request_WP

58

4.4 Web Service Operation Selector

In the automation of WS-PHP interactions, the WS-PHP needs to know specifically

which operation(s) the PHP application wants to call among the operations offered by the

service. This is the duty of the WS operation selector as shown in Fig. 3.1 and implemented in

the PHP function Handle1. An HTML form is generated based on the WSDL of the Web

Service. In the experimental project, Handle1 is the first to take the choice between the Car

Service and House Service applications, and then a Wsdl_Element object is created. By calling

the function getFormElement, all the operations of the Web Service are retrieved and are

output in an HTML form of check boxes to let the management, select the ones that will be

published to the customers.

The function Handle2 basically parses the operations sent by the management. This

function calls getFormElement1 and then determines the nature of operation. If the operation

has parameters, these will be handled first by „HandleParameters.php‟, and the output of the

parameters will be in the div of id=‟menu‟. If the operation doesn‟t have any parameters, it will

be handled by „HandleRequset_NP.php‟ and the output of the soap messages formatted

displayed in the div of id=‟content‟. The function getFormElement1 returns a

multidimensional array as shown in Fig. 4.32 if the selected operations are getDefault and

getStore

array[$op][0]=‟HandleRequset_NP.php‟ array[$op][1]=‟content‟

array[$op][0]=‟HandleParameters.php‟ array[$op][1]=‟menu‟

Figure 4.32:multidimensional array returned by Handle2

59

The method display_Operations1 displays those results in an HTML form embedded

in the event handler. Fig. 4.33 illustrates this form.

The function of Handle1 is given in Fig. 4.34. Its work flow is illustrated in the

sequence diagram in Fig. 4.35. The relationship between the five main PHP functions described

in the current Chapter is summarized in Fig. 4.36.

<li onClick=”MakeRequestGet(‟HandleRequset_NP.php‟,‟content‟,‟getDefault:car.wsdl‟)”>

<li onClick=”MakeRequestGet(‟HandleRequset_NP.php‟,‟menu‟,‟getStore:car.wsdl‟)”>>

Figure 4.33:HTML form displayed at the end user

60

<?php
include 'Parse_Wsdl.php';
include 'Templates1.php';
include 'Data.php';
session_start();
$v=$_GET[data];
$b=null;
$vals=array();
$file_array=array("http://localhost:8080/CarWebTest2/services/MyCarService?wsdl",
"http://localhost:8080/HouseWebTest1/services/MyHouseService?wsdl",);
$file_name=array("car.wsdl","house.wsdl");
if(isset($v)){
 if(!$_SESSION['vals'][$v]){
 if(file_exists($file_name[$v])){
 unlink($file_name[$v]);
 }
 $object_wsdl=new Wsdl_Elements($file_array[$v]);
 Wsdl_Elements::$dom->save($file_name[$v]);
 $_SESSION['vals'][$v]=true;
 $b=$file_name[$v];
 $x=$object_wsdl;
 }
 else{

 $b=$file_name[$v];
 $x=new Wsdl_Elements($file_name[$v]);
 }
 Template::display_Operations(Data_Parsed::getFormElement($x),$b);
 $object_wsdl=null;
 }
else
echo "no value is avilable ";
?>

Figure 4.34: Function handle1

61

Car web

service
User handle1 :Wsdl_Element

:Data_Parsed

:Template

Car service

New Wsdl_Element($file)

Wsdl_Element::$dom->save($file)

Template::display_Operations($X)

Figure 4.35:Sequence Diagram for Handle1

62

Figure 4.36: System Details

SoapClient

House Service

 wsdl

Car Service

 wsdl

HandleRequest_NP.php HandleRequest_WP.php

Handle1.php

HandleRequest_WP.php

Handle2.php

63

Chapter 5. Experiments

The Car Service and the House Service applications are developed using the Eclipse Web

tool (WTP). Both are created in bottom-up manner. That is, the back-end Java program of each

service is written first, then the Eclipse WTP tool is employed to generate all the Web Service

components and the WSDL specification document of each service.

In the back-end program, the Java program queries a MySql database. Each Web Service

has its own database tables and connections. Tables store_table and car_table are for the Car

Service. Table house is for the House Service.

STORE_TABLE

STORE_ID

INT

NAME

VARCHAR(15)

ADRESS

VARCHAR(60)

CITY

VARCHAR(20)

ZIP

CHAR(5)

STATE

CHAR(2)

CAR_ID

INT

HOUSE

NUM_BEDROOM

INT

PRICE

DOUBLE

ADRESSE

VARCHAR(100)

CITY

VARCHAR(30)

ZIP

CHAR(5)

STATE

CHAR(2)

IMAGE

VARCHAR(100)

CAR_TABLE_2

CAR_ID

INT

MAKE

VARCHAR(15)

MODEL

VARCHAR(15)

YEAR

INT

TYPE

VARCHAR(5)

COLOR

VARCHAR(15)

PRICE

DOUBLE

MILE

DOUBLE

IMAGE

VARCHAR(10)

Since we have used the XAMPP (Apache Web server, MySql Database, interpreters PHP

and Perl) open source package, the root directory of the server is under the httdocs of the xampp

64

directory. The PHP server runs under Apache Web server. All the files of the application are in

the service directory. The back-end services runs in a TOMCAT Web Server. The WS-PHP

middleware components are in files HandleRequest_NP.php, HandleRequest_WP.php,

Handle1.php, Handle2.php and HandleParameters.php which processes the call to the

Web Services applications. Files help.php, data.php, Templates.php, soapclient.php and

Wsdl_Element.php carry the supporting PHP classes. Fig. 5.1 shows the initial Web page

promoting the IT worker to choose.

5.1 index page

65

5.1 The Car Sales application

Upon the user‟s selection, the page produced by Handle1.php is shown in Fig. 5.2. If

the user chooses the Car Service, in the page shown in Fig. 5.3, all the operations of the Car

Service are listed. Suppose that the user selected the two operations getCar and getStore; the

WS-PHP middleware will produce a page as shown in Fig. 5.4. This page is for the end user, the

potential car buyer.

5.2: Set of operations in the car Web Service

66

5.3: IT set the operations to be published to the user

67

5.4: user page interface

When a user clicks on an operation getCar, a form appears in the left side in the div

id=‟menu‟, then enters the inputs in text inputs, then the button Go is hit, and the formatted

results are displayed in the div id=‟content‟.

68

5.5: request and response for getCar operation

69

In case the user leaves some blanks or enters invalid inputs, the system warns him and

lists the errors registered.

5.6: error message for invalid data

70

If there is no match to the request of the user, a message to that effect is displayed in the

next view.

5.7:No result found for the user request

71

5.2 The House sales application

If the operation selected by the user is something like add_House which has parameters

but returns no value (i.e., void), then a message shows that the data are updated.

5.8: operation add_House , no return

72

5.9:Request for find_House operation

73

5.10:request for search_House operation

74

Chapter 6. Conclusion

Web Service is the mainstream technology in server-side development. PHP is a very

popular programming language for applications. The WS-PHP middleware component

facilitates PHP programs to call Web Services even when complicated object structures are

involved. The WS-PHP middleware takes all the information from one single source – the

WSDL document – and then generates the elements necessary to consume the Web Services,

In this project, it‟s been shown the practicality of creating the client side of the

application that utilizes a Web service according to the WSDL document of the Web service

only. Typically, a service includes multiple operations. A user interface is generated

automatically, where the user makes the choice of the operations. The results of the SOAP call

might be a collection of complex data. Still, they can be displayed. Using the WS-PHP

middleware component, two Web applications were generated. They are the Car Sale and House

Sale based on two Web services, Car Service or House Service respectively.

The significant different styles of the back-end programming language and the front-end

programming may potentially cause some problems. For example, the modern Java version

(Java 6) has a number of classes serving collections such as ArrayList as well as Java‟s old-

style Vector class. However, these kinds of collection types would be specified as being of

“Any” type. This ambiguity would make conversion to PHP impossible. PHP is a weak typed

language; it does not have any matching classes for ArrayList and Vector. Thus, avoiding

using the ambiguous types in the interface of Web Services is required.

75

References

[DOM] Pro PHP XML and Web Services

[AJAX] AJAX and PHP

[NuSOAP] NuSOAP http://sourceforge.net/projects/nusoap/

[PHP] PHP: Hypertext Preprocessor http://php.net/

[PHP] Learning PHP 5

[Pear:SOAP] Pear:SOAP http://pear.php.net/package/SOAP

[PARSING] XML for PHP developers

 http://www.ibm.com/developerworks/library/x-xmlphp2.html

[SOAP ClIENT] PHP SOAP Extension

http://www.herongyang.com/PHP/php_soap_server.html

[SOAP] W3C Recommendation, “SOAP version 1.2”, Apr 27, 2007.

http://www.w3.org/TR/soap12-part1/

[PHP ClIENT] PHP Client for Java-based Web Service

http://oleksiy.wordpress.com/2007/08/22/php-client-for-java-based-

webservice

[WSDL]

Which Style of WSDL Should I use

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

[W3C] The World Wide Web Consortium http://www.w3.org/

[WEB SERVICE]

Generate Web Service With Eclipse to Access a Database

http://www.farmbio.uu.se/upload/avd2/eclipse-usecase/usecase_ws.html

[WSDL] W3C Note, “Web Service Description Language”, Mar 15, 2001.

http://www.w3.org/TR/wsdl

[RECURSION] Resursion in PHP

Recursion In PHP: Tapping Unharnessed Power

[WSF/PHP] WS02 OxygenTank‟s Web Service Framework for PHP,

http://wso2.org/projects/wsf/php

[AJAX] Ajax PHP Tutorial

Ajax PHP tutorial - PHP code and the complete AJAX example

[Xpath] W3C Recommendation, “XML Path Language”, Nov 16, 1999.

http://www.w3.org/TR/xpath

http://sourceforge.net/projects/nusoap/
http://php.net/
http://pear.php.net/package/SOAP
http://www.ibm.com/developerworks/library/x-xmlphp2.html
http://www.herongyang.com/PHP/php_soap_server.html
http://www.w3.org/TR/soap12-part1/
http://oleksiy.wordpress.com/2007/08/22/php-client-for-java-based-webservice
http://oleksiy.wordpress.com/2007/08/22/php-client-for-java-based-webservice
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.w3.org/
http://www.farmbio.uu.se/upload/avd2/eclipse-usecase/usecase_ws.html
http://www.w3.org/TR/wsdl
http://devzone.zend.com/node/view/id/1235
http://wso2.org/projects/wsf/php
http://www.ajaxf1.com/tutorial/ajax-php.html?page=3
http://www.w3.org/TR/xpath

76

VITA

 Menad Medjkane was born in Algeria. In 1995, he received a Bachelor degree in

Computer Science from the University of Sciences and Technologies of Oran (Algeria) and

started the Master program in Computer Science at The University of New Orleans in The fall of

2004.

	Automation of the Client Side of Web Services Using PHP
	Recommended Citation

	Automation of the Client Side of Web Services Using PHP

