
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-20-2009

Fast Algorithm for Modeling of Rain Events in Weather Radar Fast Algorithm for Modeling of Rain Events in Weather Radar

Imagery Imagery

Anirudh Paduru
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Paduru, Anirudh, "Fast Algorithm for Modeling of Rain Events in Weather Radar Imagery" (2009).
University of New Orleans Theses and Dissertations. 1097.
https://scholarworks.uno.edu/td/1097

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1097?utm_source=scholarworks.uno.edu%2Ftd%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Fast Algorithm for Modeling of Rain Events in Weather Radar Imagery

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

In partial fulfillment of the

requirements for the degree of

Master of Science

in

Engineering

by

Anirudh Mohan Paduru

B.S. Jawaharlal Nehru Technological University, 2007

M.S. University of New Orleans, 2009

December 2009

 ii

Table of Contents

List of Illustrations………………………………………………………………………………..iii

Abstract…………………………………………………………………………………………...iv

Chapter 1: Introduction……………………………………………………………………………1

Chapter 2: Background and Literature Review…………………………………………………...5

 Chapter 2.1: Introduction to the Radial Basis Function Neural Network………….…5

 Chapter 2.2: Previous Work……………………………………………………..……9

Chapter 3: Proposed Work……………………………………………………………………….16

 Chapter 3.1: Selection of Pixels for the training of RBFNN………………………..17

 Chapter 3.2: Forecasting using coarse image resolution …………………………...20

Chapter 4: Experimental Results………………………………………………………………...23

Chapter 5: Conclusion and future work …………………………………………………………32

References………………………………………………………………………………………..36

Vita………………………………………………………………………………………………………...38

 iii

List of Illustrations

Figure 1: General Structure of Radial Basis Function Neural Network…………………..6

Figure 2: The RBFNN used in previous work [3]…………………………………………11

Figure 3: Different approximation approaches……………………………………………16

 Figure 3(a): Approximation without using zero-valued pixels……………….16

 Figure 3(b): Approximation using zero-valued pixels………………………..16

Figure 4: Sample Figures…………………………………………………………………..18

 Figure 4(a): The down-sampled image of figure 4(c)………………………………18

 Figure 4(b): Image after smoothing the down-sampled image in figure 4(a)………18

 Figure 4(c): Original image…………………………………………………………18

Figure 5: Results obtained from previous method………………………………………...24

Figure 6: Images depicting the identified prototypes and ellipses…………………………25

Figure 7: Results obtained from proposed method…...27

Figure 8: Results obtained from proposed method…...28

Figure 9: Illustration of building of 3D slice/grid/data representation…………………….34

Table 1: Values of parameters and constants used in previous method……………………23

Table 2: Time comparisons for proposed and stages of previous work……………………29

Table 3: MSE comparisons for proposed, previous and persistence method………………30

Table 4: MSE comparisons for proposed and stages of previous work…………………….30

 iv

Abstract:

Weather radar imagery is important for several remote sensing applications including tracking of

storm fronts and radar echo classification. In particular, tracking of precipitation events is useful

for both forecasting and classification of rain/non-rain events since non-rain events usually

appear to be static compared to rain events.

Recent weather radar imaging-based forecasting approaches [3] consider that precipitation events

can be modeled as a combination of localized functions using Radial Basis Function Neural

Networks (RBFNNs). Tracking of rain events can be performed by tracking the parameters of

these localized functions. The RBFNN-based techniques used in forecasting are not only

computationally expensive, but also moderately effective in modeling small size precipitation

events.

In this thesis, an existing RBFNN technique [3] was implemented to verify its computational

efficiency and forecasting effectiveness. The feasibility of modeling precipitation events using

RBFNN effectively was evaluated, and several modifications to the existing technique have been

proposed.

Keywords:

Radial Basis Function Neural Network, Forecasting, Nowcasting, Tracking, Rain Events, Non-

Rain Events, Gaussian Functions, Mahalanobis Distance, Pyramidal Synthesis, Cascade

Synthesis, Coarse Resolution, 3D Elevations

 1

Chapter 1: Introduction

Employment of radars in the field of meteorology can be dated back to early 1940’s (World War

II) [2]. As a result of advancements in fields such as remote sensing and image processing, it

became apparent that conventional radars were particularly useful for tracking and detection of

cyclones and other weather related applications. Owing to the introduction of fast and highly

efficient computers in 1970’s, the processing of large amount of radar data for the purpose of

quality control and forecasting became possible.

Currently, dedicated weather radar are designed to detect precipitation (rain events) in the

atmosphere. Several countries adopted weather radar networks in order to be able to predict

flooding, to provide flood warnings, and to perform water management. Remote sensing using

radars is capable of providing adequate coverage and to collect comparatively large amounts of

data. Weather radars are capable of covering 200-250 miles from their position. In this work,

data from the WSR-88D radar located in Melbourne, Florida has been used. It is important to

note that there are numerous challenges involved in using weather radar data. While weather

radars are designed to detect precipitation in the atmosphere, there are often echoes resulted from

unwanted sources such as birds, earth surface formations, aircrafts and other man-made

structures. Moreover, ground clutter also poses a significant problem in radar image data. Most

often, all non-rain related echoes should be eliminated prior to data processing.

Tracking of storm fronts presents several challenges. For example, there is a necessity of great

computational power, since huge volumes of data need to be processed. Each radar image

contains several events, some of which being rain and some of which being non- rain events.

Following echo classification and elimination of non-rain events, the remaining precipitation

 2

events need to be processed. It can be considered that these rain events are evolving in time in

terms of position, size, shape and, intensity. Moreover, new echoes may emerge in the radar

images as newly formed precipitation events or events that enter the radar range, while other

events may be merged or even fade away from the image, all within a short duration of time.

Hence, association of precipitation of rain events in consecutive images is not a trivial problem.

On the other hand, tracking of storm fronts can be successful to certain extent. With help of

tracking, quite a few key weather-related applications can be addressed [1], including

forecasting. Although forecasting techniques cannot perfectly predict future rain maps,

reasonable estimation of certain precipitation characteristics, including the location of rain

events, is achievable. In addition, nowcasting

[6], i.e., the prediction of the rain events, few or

several minutes ahead, can be relatively successful. Based on precious work

[3], applications of

nowcasting include point-to-point communication in poor weather conditions. For example,

accurate prediction of the motion of heavy storms can assist in determining the path attenuation

due to precipitation.

[1]

As mentioned earlier, separation of rain and non-rain events, such as clutter, is an important

application of weather radar imagery. Tracking may be one of the important components used in

this application. Separation of precipitation and non-precipitation events (clutter) may in general

be considered to be a simpler process compared to forecasting of events. For separation, the

paths of the events only need to be tracked and analyzed rather than tracked, analyzed, and

predicted. Nevertheless, the association of events from one image to next is non-trivial.

However, assuming that there is a solution to the association problem, the paths can assist in

determining if the tracked events are static or moving. Non-rain events, such as clutter, are

 3

usually static compared to rain events. Techniques used in past to separate rain from clutter [9]

do not always take advantage of the temporal characteristics of precipitation events.

There are several ways of tracking rain fields, one of them being tracking of localized functions

generated based on modeling of rain fields. Modeling of rain fields is one of the significant

components of the overall storm tracking process. Different techniques have been presented in

the past for tracking precipitation events [2], [3]. In general, precipitation events can be

considered as an assortment of different deformable objects. Out of the different possible ways to

track these objects, one technique may attempt to match the outlines between temporally

successive images. Alternatively, these objects can be approximated by means of 2D localized

Gaussian function. Consequently, every object in the image can be approximated by one or more

Gaussian functions. Furthermore, tracking of these localized Gaussian parameters will lead to

tracking of the actual events. It is essential to note that localized functions, characterized by a set

of parameters, may be used to model deformable events. The measure of deformation can be

represented by alteration in these parameters. In the recent past, RBFNN [7], [8] have been used

2D as Gaussian envelopes in order to model precipitation events by determining the envelope’s

parameters [2], [3]. It was concluded that the usage of RBFNN is computationally expensive,

while they appear to be only moderately effective in modeling small precipitation events in

weather radar imagery [1]. In order to emphasize the importance of computational efficiency in

nowcasting applications, it should be mentioned that if, for instance, a nowcasting technique

requires 5 or more minutes to forecast the precipitation paths 5 minutes in the future,

employment of this nowcasting technique is meaningless.

In this thesis, we implemented an existing technique, with the all specified conditions, and verify

the computational efficiency and modeling accuracy of the algorithm. Changes to certain

 4

parameters are also applied to the existing algorithm [3], to acquire appropriate results.

Thereafter, modifications are made to improve computational efficiency. Moreover, we evaluate

the feasibility of modeling rain events using RBFNN-based approach in an efficient manner.

The proposed modifications primarily deal with two aspects of the RBFNN-based modeling.

Firstly, some points on the radar imagery are pre-selected using a simple algorithm, rather than a

cold start selection of points, as mentioned in the previous work [3]. These points are used as

initial points for training the RBFNN on the radar imagery. Secondly, tracking and prediction are

performed only at the coarse image resolution without extrapolating to higher resolution at

anytime. In other words, training of RBFNN is performed completely at the coarse image

resolution. Nevertheless, it will be shown that full scale resolution images can be obtained

directly from the coarse resolution images. It was observed that this modification increased the

computational efficiency significantly. In the previous work [3], the final training and prediction

are done at full resolution, which results in a computationally expensive algorithm. Furthermore,

in order to model precipitation events efficiently at a coarse image resolution, the model

parameter initialization should be done considering the existence of small scale events. In

particular, small scale events, which are undesirably condensed in size at coarse resolution

images, need to be properly handled for precise training and prediction.

The rest of the thesis is organized as follows. Chapter 2 presents details about RBFNNs and

previous RBFNN-based forecasting algorithms. Chapter 3 introduces the proposed algorithm and

presents a discussion regarding the modifications performed to the existing algorithm. Chapter 4

shows experimental results on actual radar data sequences in order to evaluate the proposed

algorithm and compare it with the existing technique. Finally, chapter 5 concludes the thesis,

highlighting a potential future evolution of the work.

 5

Chapter 2: Background and Literature Review

2.1 Introduction to the Radial Basis Function Neural Network

As mentioned in the previous section, in the past, RBFNNs have been used to model

precipitation events. This section mainly focuses on different types of RBFNNs used for

modeling rather than classification. However, it is worth mentioning at this point that RBFNNs

are also well-suited for non-linear time-series prediction [10]-[15], which can also be part of a

forecasting application. More specifically, RBFNNs have an acceptable prediction performance

for stationary time-series, but a poor performance for non-stationary signals. Since real world

signals are often highly non-linear and non-stationary, modified versions of RBFNNs may need

to be employed [15].

In general, the RBFNN is single hidden layer neural network. The operation of each of the

hidden layer nodes is defined by a function characterized by a set of parameters. The input

vectors presented to the network are modified by the hidden layer nodes, and the hidden layer

node outputs are combined, via a set of weights, in order to produce the network outputs or

responses. The response produced by the RBFNN should ideally be equal to a desired response.

The difference (error) between the produced and desire responses is used to adopt the network

weights and hidden layer node parameters. Next, some more detailed background information

regarding the basic RBFNN-based technique for modeling precipitation events is presented.

Details regarding the usage of RBFNNs in previous work [3] for the purpose of forecasting are

presented in section 2.2.

 6

In general, RBFNNs are used for data classification and function approximation. As mentioned

in the previous section, the goal is to approximate the rain events using localized functions,

namely 2D Gaussian envelopes. The basic structure of RBFNNs is depicted in Figure 1:

An RBFNN consists of 2 layers, a hidden layer and an output layer as shown in Figure 1. The

input data to each hidden layer node is presented in the form of input vectors. Moreover, each

hidden layer node operates as a non-linear function and one response per node is obtained.

Outputs from each hidden layer node are multiplied with certain weights and then fed as inputs

to the output layer. All the inputs to the output layer are combined accordingly to produce the

Input Vectors

Output

Layer

Hidden Layer

Nodes

O

u

t

p

u

t

Figure 1: General Structure of Radial Basis Function Neural Network

 7

overall desired output which can be either a scalar or vector. The RBFNN is trained iteratively,

attempting to reduce the difference in the desired output and the actual output, thus reducing the

output error. For this simple RBFNN, the network parameters involved are hidden-to-output

layer weights, and different parameters according to the functions used in each hidden layer

node.

As mentioned earlier, RBFNN can be used as function approximator. It has been proposed in the

past [2], [3] that RBFNN can be used to model precipitation events as combination of localized

functions. Thereafter, the function parameters can be tracked to identify the prediction paths of

precipitation events. In the case of rain-map modeling, the i
th

 input vector 𝑥𝑖 consists of i
th

 pixel

coordinates, i.e. 𝑥𝑖 = 𝑥𝑖 , 𝑦𝑖 , i = 1,2,…,N, where N represents the total number of pixels. All N

vectors are used to train the network. The function that represents the output of the j
th

 hidden

layer node when the i
th
 input,𝑥𝑖 , is presented to the network is defined as follows :

 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 = 𝑒𝑥𝑝 −𝑑𝑗 𝑥𝑖 , 𝑦𝑖 /2 (1)

where 𝑑𝑗 𝑥𝑖 , 𝑦𝑖 is the squared distance between the i
th

 input and the prototype associated to the

j
th

 node. The j
th

 prototype in this case is defined as the vector representing the center point,

𝑝𝑗 = (𝑝𝑗
 𝑥

, 𝑝𝑗
 𝑦

), of the Gaussian envelope 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 . If 𝑑𝑗 𝑥𝑖 , 𝑦𝑖 is considered as the square of

the Euclidean distance between the input vector 𝑥𝑖 = 𝑥𝑖 , 𝑦𝑖 and the prototype 𝑝𝑗 = (𝑝𝑗
 𝑥

, 𝑝𝑗
 𝑦

),

then the function in equation (1) represents an isotropic Gaussian function. This Gaussian

function has a standard deviation of unity, and is centered at 𝑝𝑗 . The squared Euclidean distance

𝑑𝑗 𝑥𝑖 , 𝑦𝑖 can be represented as 𝑑𝑗 𝑥𝑖 , 𝑦𝑖 = (𝑥𝑖 − 𝑝𝑗
(𝑥)

)2 + (𝑦𝑖 − 𝑝𝑗
(𝑦)

)2. In order to make the

RBFNN model more flexible (while simultaneously more complex) for modeling the rain events,

 8

the widths of the Gaussian function can be made independent along each direction. This is

achieved by replacing the Euclidean with the Mahalanobis distance. By using Mahalanobis

distance instead of Euclidean distance in equation (1), the isotropic Gaussians are replaced by

directional Gaussians. The square of the Mahalanobis distance is defined as :

 𝑑𝑗 𝑥𝑖 , 𝑦𝑖 = (𝑥𝑖 − 𝑝𝑗)
𝑇 𝐾 (𝑥𝑖 − 𝑝𝑗) (2)

where K represents the inverse covariance matrix. As mentioned earlier, the overall output,

𝑓𝑖 𝑥𝑖 , 𝑦𝑖 , for the i
th

 input should ideally be equal to the actual value of the pixel, 𝑓 𝑥𝑖 , 𝑦𝑖 , at

location 𝑥𝑖 , 𝑦𝑖 . The overall output of the system is obtained as a linear combination of each

hidden layer node output multiplied by its corresponding weight, 𝑤𝑗 . Thus, the overall output

𝑓𝑖 𝑥𝑖 , 𝑦𝑖 for the i
th

input is defined as

 𝑓𝑗 𝑥𝑖 , 𝑦𝑖 = 𝑤𝑗
𝑁𝑗

𝑗
 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 + 𝜃𝑗 , (3)

 where Nj is the total number of prototypes and 𝜃𝑗 is a bias term associated to the j
th

hidden node.

Hence, from the above discussion, the training parameters required for precipitation modeling

are the weights 𝑤𝑗 , the inverse covariance matrix K, the prototypes 𝑝𝑗 = (𝑝𝑗
 𝑥

, 𝑝𝑗
 𝑦

) and the bias

term 𝜃𝑗 . The training of parameters is performed in an iterative manner. The difference between

the obtained output 𝑓𝑖 𝑥𝑖 , 𝑦𝑖 and the desired output 𝑓 𝑥𝑖 , 𝑦𝑖 is fed back into the network in

order to adopt the network parameters and eventually reduce the error.

As discussed earlier, the RBFNN approximates the precipitation events as mixture of Gaussians.

This technique is discussed in detail in section 2.2. In general, network parameters are initialized

prior to training. Training is performed in a constructive manner, in the sense that hidden nodes

are added and deleted in order to best approximate the rain fields. The initialization criteria, the

 9

methodology for training the parameters, and the addition/deletion criteria depend on the

objective to be achieved.

It should be mentioned at this point that, in general, the pixel values in weather radar imagery

represent reflectivity values, Z. Reflectivity values can be converted to precipitation (rain rate),

R, by using a relationship commonly known as Z-R. For example one such relationship is

𝑍 = 𝑎𝑅𝑏 , where a and b are constants. A popular Z-R relationship is the Marshal-Palmer law,

which is defined as 𝑍 = 200 𝑅1.6 [19].

2.2 Previous work

This section mainly highlights the algorithm and methodology of previous work regarding linear

forecasting using RBFNNs. More specifically, parameter adaptation, pyramidal synthesis,

cascade synthesis, and finally linear forecasting are discussed.

As a reminder from section 2.1, the i
th

 input vector presented to the network is defined as 𝑥𝑖 , and

consists of the i
th

 pixel coordinates, i.e. 𝑥𝑖 = 𝑥𝑖 , 𝑦𝑖 , i = 1,2,…,N. The output produced by the

RBFNN is the rain rate at that point. Accordingly, the algorithm will provide the rain rate at

every pixel of the radar image, for every input vector 𝑥𝑖 by using 2D mixture of Gaussian

functions. Eventually, the difference of the obtained output and desired output is applied to the

network, in order to minimize the error. For this purpose, the Mean Square Error (MSE) can be

used. Based on the RBFNN output, namely 𝑓 𝑗 𝑥𝑖 , 𝑦𝑖 = 𝑤𝑗
𝑁
𝑗 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 + 𝜃𝑗 , defined in

equation (3), the mean square error is defined as follows [3]:

 10

 𝜖 =
1

𝑁𝑥𝑁𝑦
 (𝑓 𝑥𝑖 , 𝑦𝑖 − 𝑓 𝑥𝑖 , 𝑦𝑖)2

𝑥,𝑦 (4)

It should be mentioned at this point that the MSE definition presented in previous work [3] is not

accurate. The network mainly aims to minimize the MSE, by using a competitive algorithm

proposed in [2]. Some changes to the original technique in [2] were incorporated in [3]. The

technique presented in [3] proposed a modification to the output function of the RBFNN

presented in equation (3). More specifically, the output in [3] is defined as:

 𝑓 𝑗 𝑥𝑖 , 𝑦𝑖 = 𝑚𝑎𝑥𝑗 (𝑤𝑗 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 + 𝜃𝑗) (5)

In other words, only the output from the hidden node which gives the maximum response for that

particular point in the radar image is activated and trained. The selected node is the one that

gives the best match between the obtained and desired output. It is important to mention that the

parameter, 𝜃𝑗 , was determined to be unnecessary and hence was removed from the training

process [3]. By suppressing this parameter, the computational efficiency of the algorithm was

improved although its effect on the output was negligible. Hence the output was finally defined

to be as follows:

 𝑓 𝑗 𝑥𝑖 , 𝑦𝑖 = 𝑚𝑎𝑥𝑗 (𝑤𝑗 𝑔𝑗 𝑥𝑖 , 𝑦𝑖) (6)

From the above discussion, the RBFNN can be represented as shown in Figure 2.

 11

The competitive algorithm used to train the parameters is adopted from [2]. It will be noteworthy

to provide some discussion about the Mahalanobis distance before proceeding to the actual

parameter learning/updating stage. Mahalanobis distance is defined as mentioned in equation (2),

where K represents the inverse covariance matrix. The (m,n)
th

 element of the inverse covariance

matrix, K, can be expressed using the marginal standard deviations 𝜎𝑚 and 𝜎𝑛 and the

correlation coefficient 𝑕𝑚,𝑛 as follows [2]:

max

Hidden Layer

Nodes

Figure 2: The RBFNN used in previous work [3]. The inputs are the pixel coordinates and the

output layer is the max function.

 12

 𝑘𝑚,𝑛 =
𝑕𝑚 ,𝑛

𝜎𝑚 𝜎𝑛 (7)

Where 𝜎𝑚 > 0 and 𝜎𝑛 > 0, 𝑕𝑚,𝑛 = 1 if m=n, else 𝑕𝑚,𝑛 ≤ 1. Also, 𝑕𝑚,𝑛 = 𝑕𝑛,𝑚 for all m and

n. Hence, as an update to what was discussed earlier, the learning parameters are the weights 𝑤𝑗 ,

the prototype centers 𝑝𝑗 = (𝑝𝑗
 𝑥

, 𝑝𝑗
 𝑦

) , the standard deviations 𝜎𝑚 and 𝜎𝑛 ,and the correlation

coefficient 𝑕𝑚,𝑛 . A quadratic error function is used to train the network in supervised mode, by

applying a gradient-decent method [2]. The quadratic error function is defined as

𝐸𝑗 =
1

2
(𝑓𝑗 𝑥𝑖 , 𝑦𝑖 −𝑓 𝑗 𝑥𝑖 , 𝑦𝑖)2. All the parameters are updated using a set of equations presented

in [2]. These equations are presented here as well for completeness :

 Δ𝑤𝑗 = −𝜂
𝜕𝐸𝑗

𝜕𝑤 𝑗
= 𝜂 (𝑓𝑗 𝑥𝑖 , 𝑦𝑖 − 𝑓𝑗 𝑥𝑖 , 𝑦𝑖) 𝑔𝑗 𝑥𝑖 , 𝑦𝑖 (8)

 Δ𝑝𝑗
𝑚 = −𝜂

𝜕𝐸𝑗

𝜕𝑝𝑗
𝑚 = Δ𝑤𝑗 𝑤𝑗 𝑘𝑗

𝑚 ,𝑙 𝑥𝑖
𝑙 − 𝑝𝑗

𝑙 𝑙 (9)

 Δ𝜎𝑗
𝑚 = −𝜂

𝜕𝐸𝑗

𝜕𝜎𝑗
𝑚 = Δ𝑤𝑗 𝑤𝑗 𝑘𝑗

𝑚 ,𝑙 𝑥𝑖
𝑚−𝑝𝑗

𝑚 𝑥𝑖
𝑙−𝑝𝑗

𝑙

𝜎𝑗
𝑚𝑙 (10)

 Δ𝑕𝑗
𝑚,𝑛 = −𝜂

𝜕𝐸𝑗

𝜕𝑕𝑗
𝑚 ,𝑛 = − Δ𝑤𝑗 𝑤𝑗

 𝑥𝑖
𝑚 −𝑝𝑗

𝑚 𝑥𝑖
𝑛−𝑝𝑗

𝑛

𝜎𝑗
𝑚 𝜎𝑗

𝑛 (11)

where η is the learning step constant. The values for η are defined at a later stage.

As mentioned earlier, for each pixel of the radar image (input), only the hidden node giving the

best match between the desired output and the obtained output is activated and trained using the

above equations (8-11). If none of the hidden layer nodes give a good match, i.e., if the

difference between the obtained and desired output is greater than a minimum threshold, maxerr

and the minimum Euclidian distance of the point to any nearest node is larger than a threshold

 13

distance, mindist, a new node is created at that point [3]. Hidden layer nodes which are not

activated by minimum number of input vectors for a given number of iterations are deleted. The

minimum number of activations required is defined as a parameter escape. The deletion

condition occurs only after examining all possible input vectors from the radar image. This

process is repeated until the MSE, , drops below a fixed value, maxmse, or until a number of

iterations, maxepoch, is reached [3].

Once any one of the above conditions is achieved, i.e.,  ≤ maxmse or maxepoch is reached, the

output image will contain the modeled rain events. These events are characterized/modeled using

the localized parameters derived from the input vectors obtained from the original image. By

tracking the localized parameters in the modeled image, the rain event paths can be predicted.It

is important to emphasize that the values of the above mentioned constants: η, maxmse,

maxepoch, maxerr, mindist, etc., have been adopted from [2] and [3].

In general, the size of the original radar image is large, thus the training process may be

considerably time consuming. In order to improve computational efficiency and optimize the

modeling parameters, a pyramidal synthesis technique is used. In pyramidal synthesis, the

modeling of events is done at the coarse resolution image. The number of input vectors and

hidden layer nodes are considerably reduced using coarse image resolution, which reduces the

computational time while achieving the same MSE. Initially, the RBFNN approximation is

applied on the coarse image resolution. In order to obtain a coarse resolution image the original

image is down-sampled using the following equation:

 𝑓𝑘 𝑖, 𝑗 =
1

22𝑘
 𝑓(𝑚, 𝑛)𝑚.𝑛𝜖Ω (12)

where Ω is a 2𝑘 x 2𝑘 squared region around pixel (i,j) [3] .

 14

The parameters obtained at lower resolutions are extrapolated to higher resolutions in a step-wise

manner. Hence, whenever a new training is started on an intermediate resolution image, the

parameters from the previously modeled, lower image resolution are considered as a starting

point. Thus, as the image gets more detailed at higher resolutions, some more nodes may be

added and sometimes deleted.

It is an important observation that higher image resolution just adds small, finer details and

allows the network to adjust itself to higher spatial frequency components of the original image.

Thus, initially, pyramidal synthesis is applied to the first frame of the sequence, until the highest

desired resolution is reached. Cascade synthesis is applied for all subsequent frames after the

first frame.

The adaptation of network is performed by training on a sequence of frames which are similar to

their next frame. A cold start synthesis on the next frame is computationally expensive.

However, since the successive frames are similar to the preceding frame, parameters from the

preceding frame can be used as a starting point to train the next frame. Using cascade synthesis,

the number of iterations in training a new frame is reduced considerably, thus leading to less

computational time. Also the advantage of cascade synthesis is that the same nodes are trained

on the subsequent rain maps, and correspondence between nodes is retained [3]. In summary,,

training is performed initially by pyramidal synthesis on the first frame, and thereafter by

cascade synthesis on the successive frames. Different forecasting techniques have been presented

in previous work [3]. In this thesis, a simple linear forecasting approach has been used.

The linear forecasting method is one of the simplest forecasting methods for predicting the

parameter values. In this method, the future values are predicted using a simple linear

 15

extrapolation of parameter values based on latest two values. For instance, if pk is the value of

the parameter at frame k, and pk-1 is the value of the same parameter at the immediately

preceding frame, the forecasted value fk+n at frame k+n is given by :

 𝑓𝑘+𝑛 = 𝑝𝑘 + 𝑛 . 𝑝𝑘 − 𝑝𝑘−1 (13)

An alternative to the linear forecasting method is the steady state method. In general, in the

steady state method, the rain events are assumed to undergo change in position but not change in

size, orientation or intensity. However, RBFNNs are capable of modeling precipitation as a

combination of scaled and oriented Gaussian envelopes. Therefore, the available forecasted

parameter values include orientation and scaling of precipitation events.

 16

Chapter 3: Proposed work – Fast Algorithm

In the previous work [3], even after using pyramidal synthesis and cascade synthesis, the authors

[3] identified that the training process is still relatively time consuming. In general, the radar

image contains precipitation events and blank events (no events). The precipitation events are

represented by non-zero valued pixels. The regions without the precipitation events are

represented by zero-value pixels. In the previous work [3], all pixels are used for training

purposes. If the zero-valued pixels are not considered in the training process, arbitrary values are

assumed in place of zero values by the Gaussian envelope which approximated that particular

event. A Gaussian envelope tries to approximate an event to the best possible approximation.

However, if there are no restrictions for the size or width of the Gaussian envelope, it may

assume some arbitrary values beyond the event boundaries. On the other hand, if there are

certain restrictions for the width of the Gaussian envelope, it may approximate the event without

crossing the event boundaries significantly. For example, some zero-valued pixels can be used

around the event’s boundaries. This is illustrated in the following picture.

Gaussian envelop assumes arbitrary values beyond

the rain event, because zero pixels were not used

Zero- valued pixels around the event’s boundaries

restrict the Gaussian envelope

Extent of precipitation

event

Extent of precipitation

event
Zero-valued

pixels used

Zero-valued

pixels used

Figure 3: (a) Figure depicting the elongation of the Gaussian envelope beyond the rain event. Thus,
assuming arbitrary values in place of zero-valued pixels. (b) The this line indicates the zone of zero

values pixels around the boundaries of the rain event. Gaussian envelope is restricted by the zero-valued

pixels. Thus very few or no arbitrary values.

 17

If only non-zero valued pixels are, during the training process a divergence of the training

parameters has been observed. This is discussed in detail in section 3.1.

As mentioned in the previous section, different forecasting techniques can be used to track the

network parameters. Some of these methods were also discussed in the previous work [3]. More

specifically, for the sake of simplicity, a linear prediction technique is used in this thesis. In the

previous works [2], [3], focus was laid on modeling of the events and predicting them. However,

there has been some problems with the previous [3] modeling techniques. This thesis mainly

focuses on efficient modeling of the rain fields. As described in equation (13), the future

parameters are predicted using the parameters from the current frame and the immediately

previous frame. In the following sub-sections, we propose two modifications of the algorithm

proposed in [3], to overcome the above mentioned problems.

3.1 Selection of Pixels for the training of RBFNN

As proposed earlier [3], it may be computationally advantageous to use only non-zero valued

pixels for training purposes. However, to solve the problem regarding the divergence of

parameters during the training process, as discussed in section 3, a modification in the algorithm

is introduced in thesis. All non-zero valued pixels, as well as zones of zero-valued pixels around

precipitation events, are used for the training purpose. The following figures illustrate this

modification in detail:

 18

 (a) (b)

 (c)

By applying a moving average filter on the downsampled image, selecting the non-zero valued

pixels in the smoothed image, and excluding the non-zero valued pixels in the non-smoothed

image, a zone of zero valued pixels is obtained. More specifically, when a moving average is

applied on the precipitation events (non-zero pixels), it blurs the events beyond their borders.

Using this technique, all zero-valued pixels required for the training purpose are selected. This

ensures that only strategically selected zero-value pixels as well as all the non-zero values pixels

Figure 4: (a) The downsampled image of figure 4(c). White regions are the non zero pixels.
 (b) Image after smoothing the downsampled image in figure 4(a). In this image, white

regions are non-zero pixels and zone of zero pixels around them. (c) Original image

 19

are selected for training. This way of pixel selection keeps the number of input vectors presented

to the network low. As mentioned earlier, the zone of zero value pixels restricts the Gaussian

envelope represented by each hidden layer node mostly within the zone limits (as illustrated in

figure 3). Hence, the parameter divergence problem is overcome during the training process.

The localized parameters that are used during the training process namely weight, inverse

covariance matrix and its elements, and prototype vectors are adapted as follows as the model

evolves from (𝑖𝑡 − 1)𝑡𝑕 to (𝑖𝑡)𝑡𝑕 iteration:

 𝑞𝑖𝑡 = 𝑞𝑖𝑡−1 + 𝑚𝑥𝛼Δ𝑞 (14)

where q represents any of the parameters, α is a positive learning parameter, and Δq represents

the amount by which the parameter is modified during the training from (it-1)
th
 to it

th
 iteration. It

is important to mention that, in this thesis, the new parameter, 𝑚𝑥 , is proposed to represent the

multiplicity of the particular input vector. Since only a zone of zero value pixels are used in order

to ensure that the Gaussian envelope do not overflow beyond the zone limits, the modeling may

be biased in favor of the precipitation pixels (non-zero valued pixels). To avoid such situations,

different values of 𝑚𝑥 are chosen for zero-valued pixels and non-zero value pixels in the training

process. More specifically, to emphasize the zero-value pixels, large values of 𝑚𝑥 is chosen. As

mentioned earlier, choosing the multiplicity of the input vector 𝑚𝑥 , greater than 1 is equivalent

to assuming that the same pixel is presented 𝑚𝑥 times to the network. More specifically, in this

thesis, 𝑚𝑥 = 1 is used for non-zero pixels and 𝑚𝑥 = 10 for zero-value pixels.

 20

3.2 Forecasting of image using coarse image resolution

The previous sub-section discussed the approached used regarding the selection of pixels prior to

the training process and the conditions for training the parameters. In this sub-section, a method

used for increasing the computational efficiency by using coarse image resolution for forecasting

is discussed. In general, the characteristic of several events, especially large events, are retained

when the image is downsampled to coarse resolution. In this thesis, the network is trained using

past and present coarse resolution images in order to predict the future full resolution images.

This is in contract to the techniques used in [3], which predicts the future full resolution image

from past and present full resolution image. By introduction of this modification, a significant

increase in the computational efficiency is achieved. The coarse resolution image is obtained in

two steps. First, a low pass filter is applied on the original image for smoothing purposes.

Second, the smoothed image is downsampled to the required level. However, it has been

observed that most of the small scale events may disappear in the low-resolution image.

Therefore, they are more complicated to track and even more difficult to predict than large scale

events. More specifically, it has been noticed that some of the isolated small-scale events are not

easily distinguishable at coarse resolution.

In coarse resolution image, the peaks (local maximum pixels) within the large scale events may

correspond to the points where the Gaussian envelopes (function) one supposed to be centered.

In order to determine the peaks within the events, a 3x3 window is used. The pixel with

coordinates, 𝑥 𝑙𝑚 , is a peak if it has the largest value within the 3x3 window centered at 𝑥 𝑙𝑚 . The

initial positions of the prototypes for the training purpose are set at 𝑥 𝑙𝑚 . Next, the procedure for

the proposed work in this thesis is discussed.

 21

 As mentioned earlier, this thesis work mainly focuses on precipitation modeling. Assume, for

simplicity that, at this point, the parameters for the next image frames have already been

estimated. Assume that inverse covariance matrices K for the current and future frame, 𝐾𝑡 and

𝐾𝑡+1, respectively, are also available. The inverse covariance matrix is used in the Mahalanobis

distance in equation (1). Similarly, assume the other training parameters i.e. the prototype

locations for the current and future frame, 𝑝 𝑡and 𝑝 𝑡+1, respectively, are also available. The

standard deviations 𝜎𝑚 and 𝜎𝑛 , and the correlation coefficient 𝑕𝑚,𝑛 are directly associated

with K, therefore they are not included in this discussion. In order to simplify the discussion,

although several prototypes, and thus, covariance matrices are needed to represent the

precipitation events included in the rain map, only a single prototype is considered here.

Moreover, it is assumed these inverse covariance matrices and prototypes correspond to the exact

same event that has evolved from one time instance to the next. The two main characteristics of

the Gaussian envelope are the center of Gaussian, and the rotation and scaling parameters. More

specifically, the prototypes define the centers and thus are used for determining the translation

parameters and, the inverse covariance matrix or the squared inverse covariance matrix defines

the rotational and scaling parameters. The following equation defines the association between the

future pixel location 𝑥 𝑖
𝑡+1 = 𝑥𝑖

𝑡+1, 𝑦𝑖
𝑡+1 in the image at time instance t+1 and the

corresponding current pixel location 𝑥 𝑖
𝑡 = 𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 at time t in the current image:

 𝑥 𝑖
𝑡 = (𝐾1

𝑡)−1 𝐾1
𝑡+1 𝑥 𝑖

𝑡+1 − 𝑝 𝑡+1 + 𝑝 𝑡 (15)

Where 𝐾1 is the square root of inverse covariance matrix i.e. 𝐾1. 𝐾1 = 𝐾.

Using the above equation (15), the association between the pixel position in future coarse image

and current coarse image can be obtained. Although the above equation was evaluated for a

 22

single prototype and a single pixel, it can be extended to all prototypes and all pixels in the

coarse resolution image. It is noteworthy to mention that the correspondence between the future

and coarse resolution images can be transferred to the full resolution images. In other words, the

future full resolution image can be obtained by the same equation. To obtain this, the prototype

location should be multiplied with the downsampling factor. As mentioned earlier, the above

equation is used to obtain the forecasted image once the future parameters have been predicted.

With introduction of the two modifications discussed in sections 4.1 and 4.2, and with the

proposed procedure, the modeling of the events is performed with high computational efficiency

compared to the work presented in [3]. The illustrations and comparisons between the proposed

work and previous work [3] are discussed in detail in the next section.

 23

Chapter 4: Experimental Results

By using the modification proposed in chapter 3, modeling of rain events is performed on a

sequence of frames. Also, modeling of rain events is performed using the previous method [3]

for the same sequence of frames in order to compare the two algorithms. The central scheme of

the algorithm and the values of the parameters are chosen from [2], [3]. After performing the

modeling using the appropriate values and conditions for the previous method [3], the results

obtained were not satisfactory based on what was expected from the results presented in [3].

Hence, some modifications to the values of the parameters had to be introduced. These

parameters are mentioned in the following table. Also, all pixels in the image are used for

training purpose and the initial prototype centers are defined randomly at non-zero valued pixels.

Two different learning rates were set for prototype centers and all other parameters. They are

defined as no and nc respectively.

Figures 5 (a), 5(b), and 5(c) show the original images (160 x 160) at time instance 1, 2 and 3,

respectively. Figures 5(d)-5(f) are the approximation images for pyramidal synthesis at stages 1,

2, and 3, for time instance 1. Figure 5(g) is the approximated cascade image at time instance 2 at

resolution 160 x 160. Figure 5(h) is the predicted image (160 x 160) at time instance 3 using the

Resolution escape
mindist

(pixels)

mindist

used

(pixels)

maxsse
maxsee

used
nc no nc used

no

used

40 x 40 3 16 16 0.02 1 0.05 0.01 0.0005 0.0001

80 x 80 5 30 30 0.02 2.5 0.05 0.01 0.0005 0.0001

160 x 160 8 50 50 0.02 3.5 0.05 0.01 0.0005 0.0001

Table 1: Values of escape, mindist, maxsee and learning constants (no and nc) used in previous

algorithm [3]. Modified values of the mindist, massee and learning constants (no and nc).

 24

images from figure 5(f) and 5(h). Figures 5(d) and 5(e) are obtained by downsampling the image

in Figure 5(a) by a factor of 4 and 2 respectively.

Figure 5: Results obtained using previous algorithm

(a)-(c) are the original images (160 x 160) at time instance 1, 2 and 3.

(d) Pyramidal Stage 1 (40 x 40). (e) Pyramidal Stage 2 (80 x 80). (f) Pyramidal Stage 3 (160 x 160).

(g) Cascade image (160 x 160). (h) forecasted image (160 x 160) using (f) and(g).

(a) (b) (c)

(d) (e) (f)

(g) (h)

 25

In Figures 6(a)-6(d) the prototype centers are shown. These ellipses are used to illustrate the size

and orientation of the Gaussians used to approximate the rain fields in Figures 5(d)-5(g). The

size of these ellipses is of course not equal to the extent of the Gaussian envelopes, which is

theoretically infinite.

(a) (b)

(c)
(d)

Figure 6: Images depicting the identified prototypes and ellipses representing the gaussian envelop

for images in Figure 5 (d)-(g)

(a) Pyramidal Stage 1 (40 x 40). (b) Pyramidal Stage 2 (80 x 80).

(c) Pyramidal Stage 3 (160 x 160). (d) Cascade image (160 x 160).

 26

Using the same sequence of frames, the modeling of rain events is performed using the proposed

method. The new algorithm is different from the previous one in several aspects. The input

pixels for the training purposes and the initial centers of the prototypes are strategically selected.

Also the prediction is done at a coarse image resolution unlike the previous method where

prediction is done on full image resolution. Also the parameters values and conditions used for

training are different.

For the same sequence of images used in Figure 5(a)-5(c), the following images are obtained.

Figures 7(a)-7(c) are the same images (160 x 160) as in Figures 5(a)-5(c). Figures 7(d)-7(e) are

the approximation images of 7(a) and 7(b) respectively. These are of size 40 x 40, since the

proposed algorithm performs the modeling and prediction at coarse resolution. Figure 7(f) is the

predicted image at full resolution (160 x 160). This prediction is directly obtain from the

immediately previous coarse resolution images i.e. Figure 7(d)-7(e). The proposed algorithm

does not involve as many steps as in the previous technique [3]. Moreover, the predicted images

Figure 5(h) and 7(f) can be compared with the original image in Figure 5(c) or 7(c). It can be

noted that, the predicted image in Figure 7(f) looks as a better match than predicted image in

Figure 5(h). Also, Figures 7(g)-7(h) provide the prototype information using the ellipses for

images in Figures 7(d)-7(e). Additionally, by observing Figures 7(b) and 7(e), it can be

concluded that most of the isolated small-scale events, which are not parts of large scale events

have a prototype associated with them.

Figure 8 depicts another example. Figure 8(a) is the original image and Figure 8(b) is the

approximated image of Figure 8(a). Figure 8(c) is the approximated image in which the

prototypes and the oriented ellipses are shown. Figure 8(d) depicts the forecasted image.

 27

Figure 7: Results obtained using proposed algorithm

(a)-(c) are the original images (160 x 160) at time instance 1, 2 and 3.

(d) approximated image of (a) (40 x 40). (e) approximated image of (b) (40 x 40). (f) forecasted image

(160 x 160) using (d) and(e).

(g) and (h) are the images depicting the identified prototypes and ellipses representing the gaussian

envelop for images(d) and (e)

(a) (b) (c)

(d) (e) (f)

(g) (h)

 28

Time and mean square error calculations have been performed for a sequence of frames using the

previous algorithm [3] and the proposed algorithm. The average time for each stage of pyramidal

synthesis, and cascade synthesis has been calculated using the previous algorithm. Moreover, the

Figure 8: Results obtained using proposed algorithm

(a) is the original images (160 x 160) (d) approximated image of (a) (40 x 40).

(c) is the image depicting the identified prototypes and ellipses representing the gaussian envelop for

image (b). (d) forecasted image (160 x 160) using (d) and(e).

(a) (b)

(c) (d)

 29

total time required for the proposed method is calculated. Since there is a single stage in the

proposed algorithm timings are only obtained for this single stage, and therefore correspond to

the total timings. The modeling is performed on the first two frames at coarse resolution and the

prediction is obtained directly at the original full resolution. These details of the time need for

computation is provided in the following table:

Time

comparisons

Average

Proposed

Method

Pyramidal

40 x 40

Resolution

Pyramidal

80 x 80

Resolution

Pyramidal

160 x 160

Resolution

Pyramidal

Synthesis

Total

Time

Cascade

Total

Time for

Previous

Method

Seconds 20.67 119.2 330.03 477.53 947.43 282.81 1209.57

Minutes 0.3445 1.98 5.5 7.95 15.7745 4.71 20.14

From Table 2, it can be observed that the total time required for the previous algorithm [3] is

greater compared to the proposed algorithm. Although cascade synthesis takes less time than

pyramidal decomposition, still the proposed technique appears to be more computationally

efficient.

The prediction mean square error (mse) for the previous and the proposed work are obtained for

a sequence of frames. These mse values are compared with the persistence method mse values.

This acts as a reference to evaluate the performance of both previous and proposed algorithms. It

can be observed from Table 3 that the mse for the proposed algorithm is smaller in all frames

compared to the previous algorithm. Also, the difference in mse between the persistence method

and previous method is not significant. However, the proposed method mse is in good standing

Table 2: Average time comparisons in seconds and minutes for the previous algorithm and the

proposed algorithm. The detailed timings of the each stage of the pyramidal and cascade synthesis are

shown. The total time for the proposed algorithm is also shown.

 30

with the persistence method mse. As mentioned in earlier chapters, this algorithm focuses on

better approximation of the rain events. However, the linear prediction technique used in

proposed method acts a comparison for evaluating the performances of the two algorithms. Also

for information purpose and better understanding, the mse at each stage of the pyramidal

synthesis and cascade synthesis for the same sequence is provided in Table 4.

MSE Error /

S. No

Previous

Method

Proposed

Method

Persistence

Method

1 6.4386 5.8145 7.3891

2 7.482 6.6214 7.3338

3 12.2844 8.6632 14.2472

4 11.4507 10.1242 14.4324

From Tables 2 and 3, it can be observed that the proposed method take very less computational

time compared to the previous method and also the mse is less. This is achieved due to the

modifications discussed in chapter 3. The decrease in mse is due to strategically selected zero-

value input pixels used for the training purpose. Moreover, with a better method for selection of

initial positions of the prototype centers and less number input vectors to the RBFNN, the

MSE Error /

S. No

Pyramidal

40 x 40

Resolution

Pyramidal

80 x 80

Resolution

Pyramidal

160 x 160

Resolution

Cascade
Proposed

Method

1 0.8689 8.3376 2.4748 3.2994 5.8145

2 2.0398 6.2066 2.2944 3.3466 6.6214

3 0.5151 3.0556 2.425 3.4942 8.6632

4 0.4791 2.3515 2.3612 4.9598 10.1242

Table 3: Comparisons of MSE between previous method, proposed method and persistence method for a

sequence of frames.

Table 4: Detailed mse for all stages of pyramidal decomposition, cascade synthesis of the previous

method with proposed method for the same sequence of frames used in Table 3

 31

computational time for the proposed method has been considerably reduced. Also, working on

the coarse resolution image for prediction purpose, helped in achieving less computational time.

 32

Chapter 5: Conclusion and Future Work

In this thesis, modifications to the existing technique have been proposed and implemented. The

focus of the thesis was to improve the quality but mostly the computational efficiency of the

precipitation modeling technique. Modeling of rain events, in general, requires more

computational time in the overall process of forecasting. However, with the introduction of the

modifications presented in this thesis, the computational time has been considerably reduced.

More specifically, methods for speeding up RBFNN-based rain field modeling have been

proposed. Usage of strategically selected zero-valued pixels for training purpose resulted in a

stable approach and less number of input vectors. Also, examples were illustrated to support this

stable approach. Moreover, initial selection of prototype centers also helped in better modeling

of the rain events. By using the proposed equation (15), it was shown that it is possible to

directly obtain a high-resolution forecasted image from downsampled present and past images,

without performing the training using any full-resolution images. It is also important to mention

that the predicted image is obtained by using the original pixels from the image at time instance

2 and equation (15). These pixel values are extracted by using the predicted localized parameters

in equation (15). In the previous method [3], the modeled pixel values are used to obtain the full

resolution predicted image. Using the proposed method, to predict a rain map from immediately

previous two rain maps it takes approximately 21 seconds, which is less compared to 15 minutes

for pyramidal synthesis itself in the previous technique [3]. Hence a greater computational

efficiency has been achieved using the proposed technique.

Future work can be lead in many directions. Efficient directional smoothing [16], [17], [18] may

be investigated in order to bring out more precipitation characteristics that can assist in the

 33

forecasting process. However, the usage of 3D elevation radar map constructed from the regular

elevations of the radar is explored. Brief information about the 3D elevation radar map is

discussed next.

In general, a single volume scan of radar contains information/images from several elevations.

However, the data/pixel-value corresponding to each elevation are obtained at an angle and

hence at different height with respect to the ground. More specifically, the pixel value near the

radar in the same elevation is at a different height from the pixel value at the farthest position.

The technique in [1] and this thesis uses only the first elevation to perform the modeling and

prediction, since radar beams associated to higher elevations scans are at a significant height

from the ground which is not the area of interest. However, higher radar elevations could be

useful for areas located close to the radar.

 Future work involves using the techniques presented in [4]. Prior to the modeling and

prediction, a 3D volume representation of the elevation is obtained. This 3D volume is used as

the input rather than the first elevation for modeling of the rain events. This 3D slice consists of

information from the first five elevations of the radar scan. This 3D volume slice is represented

as S(x, y, z), where (x, y) are the coordinates of the pixel and z is the height with respect to

ground. All the pixels in this 3D slice are considered to be at same height with respect to ground.

The procedure for the construction of this 3D volume slice is described next.

First, height 𝑧0 at which the slice is to be build is chosen. The radar rain data is not covered in

3D around the radar, and rain rate values at height 𝑧0 is required to fill the empty grid/slice.

Hence, the data from the two elevations which is closest to the (𝑥, 𝑦, 𝑧0) position are used. A

weighted reflectivity average of the data from the two closest elevations is used to fill the data at

 34

position (𝑥, 𝑦, 𝑧0). It is important to mention that the center of the 3D slice/grid is radar location.

An imaginary line is considered which is perpendicular to the ground and passing through (x,y),

virtually intercepting all the elevations. The point where this imaginary line intercepts the i-th

elevation is given by (𝑥, 𝑦, 𝑧𝑖). The two closest elevations j and k are considered to be the ones

for which the distances 𝑑𝑗 = 𝑧0 − 𝑧𝑗 and 𝑑𝑘 = 𝑧0 − 𝑧𝑘 are the two smaller ones, namely

𝑑𝑗 < 𝑑𝑖 and 𝑑𝑘 < 𝑑𝑖 , where 𝑖 ≠ 𝑗, 𝑘. Then, the weighted average is computed by [4]:

 𝑆 𝑥, 𝑦, 𝑧 =

1

 𝑑𝑗 +𝛿
𝑟𝑗 +

1

 𝑑𝑘+𝛿
𝑟𝑘

1

 𝑑𝑗 +𝛿
+

1

 𝑑𝑘+𝛿

 (16)

where 𝑟𝑗 and 𝑟𝑘 are respectively the values of the j-th and k-th elevations at horizontal location

(x,y). When the distance 𝑑𝑗 or 𝑑𝑘equals zero, the constant δ eliminates the problem. Hence by

using this method, all the pixels in the 3D slice are at approximately same height with respect to

ground.

Figure 9: Illustration of building of 3D slice/grid/data representation

 35

The process described above is illustrated in Figure 9. The bold parts of the lines represent the

closest regions used by the weighted average for building the corresponding part of the 3D slice.

These lines represent the elevations of the radar scan. As it can be noted from Figure 8, pixels

from the two closest elevations contribute for building every section/region of the 3D slice.

However, it can also be observed that for the region near the radar, the fifth elevation is

considered directly. Using this technique, 3D elevations at different heights are obtained as

shown in the Figure 8. The pixel coordinates associated to the 3D elevations can be used as the

input to the RBFNN rather than the regular elevation. Since the data is a mixture from five

different elevations, radar maps are relatively independent with respect to the distance from the

radar.

 36

References:

[1] Charalampidis, D., and Paduru, A., “Tracking of storm fronts in weather radar imagery,”

Proc. SPIE, Vol. 7317, 73170C (2009)

[2] Denoeux, T., and Rizand, P., “Analysis of radar images for rainfall forecasting using

neural networks,” Neural Computing and Applications, 3, 50-61 (1995).

[3] Dell’Acqua, F., and Gampa, P., “Pyramidal rain field decomposition using radial basis

function neural networks for tracking and forecasting purposes,” IEEE Trans. Geoscience

and Remote Sensing, 41(4), 853-862 (2003).

[4] A. Paduru, D. Charalampidis, “Separation of Rain and Non-Rain events in Radar Imaging

using Multiple Elevations and Texture Analysis,” 40th Southeastern Symposium on

System Theory, New Orleans, 17- 18 May 2008.

[5] Charalampidis, D., and Paduru, A., “Filtering of weather radar imagery using steerable

Gaussian smoothers,” Proc. SPIE, Vol. 7308, 730811 (2009)

[6] Li, L., Schmid, W., and Joss, J., “Nowcasting of motion and growth of precipitation with

radar over a complex orography,” J. Applied Meteorology, 34, 1286-1300 (1995).

[7] Chang, E. S., Chen, S., and Mulgrew, B., “Gradient radial basis function networks for

nonlinear and nonstationary time series prediction,” IEEE Trans. Neural Networks, 7,

190-194 (1996).

[8] Guang-Bin Huang, Saratchandran, P., and Sundararajan, N., “A generalized growing and

pruning RBF (GGAP-RBF) neural network for function approximation,” IEEE Trans.

Neural Networks 16(1), 57-67 (2005)

[9] Charalampidis, D., Kasparis, T., and Jones, L., “Removal of nonprecipitation echoes in

weather radar using multifractals and intensity,” IEEE Trans. Geoscience and Remote

Sensing, 40(5), 1121-1131 (2002).

[10] M. A. S. Potts and D. S. Broomhead, “Time series prediction with a radial basis function

neural network,” SPIE Adaptive Signal Processing, Vol. 1565, pp. 225-266, 1991.

[11] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm

for radial basis functions networks,” IEEE Trans. Neural Networks, vol. 2, pp. 302-309,

1991

[12] M. Casdali, “Nonlinear prediction of chaotic time-series,” Physica D, vol. 35, pp. 335-

356, 1989

 37

[13] D. S. Broomhead and D. Lowe, “ Mutlivariable functional interpolation and adaptive

networks,” Complex Syst., vol. 2, pp. 321-355, 1988

[14] E. Levin, “Hidden control neural architecture modeling of nonlinear time varying

systems and its applications.” IEEE Trans. Neural Networks, vol. 4, pp. 109-116, 1993

[15] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and control, Okland,

CA: Holden-Day, 1976

[16] Lakshmanan, V., “A Separable Filter for Directional Smoothing,” IEEE Geoscience and

Remote Sensing Letters, 1(3), 192-195 (2004).

[17] Lakshmanan, V., “Speeding up a large scale filter,” Journal of Atmospheric and Oceanic

Technology, 17, 468-473 (2000).

[18] Charalampidis, D., “Efficient Directional Gaussian Smoothers,” IEEE Geoscience and

Remote Sensing Letters, 6(3), 383-387 (2009).

[19] Smith, J.A. and Krajewski, W.F., 1993. “A modeling study of rainfall rate – reflectivity

relationships.” Water Resour. Res., 29, 2505–2514.

 38

Vita:

Anirudh Paduru was born in Hyderabad, India. He received his undergraduate degree in

Electronics and Communication Engineering from J.N.T University, India in May 2007. From

Fall-2007 to Fall-2009 he was with Electrical Engineering Department at UNO where he pursued

his M.S. in Electrical Engineer and worked with Dr. Dimitrios Charalampidis as Research

Assistant. His research interests include Digital Image Processing and Remote Sensing.

	Fast Algorithm for Modeling of Rain Events in Weather Radar Imagery
	Recommended Citation

	tmp.1317234294.pdf.HNWs6

