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Abstract: 
 

Weather radar imagery is important for several remote sensing applications including tracking of 

storm fronts and radar echo classification. In particular, tracking of precipitation events is useful 

for both forecasting and classification of rain/non-rain events since non-rain events usually 

appear to be static compared to rain events.  

Recent weather radar imaging-based forecasting approaches [3] consider that precipitation events 

can be modeled as a combination of localized functions using Radial Basis Function Neural 

Networks (RBFNNs). Tracking of rain events can be performed by tracking the parameters of 

these localized functions. The RBFNN-based techniques used in forecasting are not only 

computationally expensive, but also moderately effective in modeling small size precipitation 

events.  

In this thesis, an existing RBFNN technique [3] was implemented to verify its computational 

efficiency and forecasting effectiveness. The feasibility of modeling precipitation events using 

RBFNN effectively was evaluated, and several modifications to the existing technique have been 

proposed.  

 

Keywords:  

Radial Basis Function Neural Network, Forecasting, Nowcasting, Tracking, Rain Events, Non-

Rain Events, Gaussian Functions, Mahalanobis Distance, Pyramidal Synthesis, Cascade 

Synthesis, Coarse Resolution, 3D Elevations
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Chapter 1: Introduction 
 

Employment of radars in the field of meteorology can be dated back to early 1940’s (World War 

II) [2]. As a result of advancements in fields such as remote sensing and image processing, it 

became apparent that conventional radars were particularly useful for tracking and detection of 

cyclones and other weather related applications. Owing to the introduction of fast and highly 

efficient computers in 1970’s, the processing of large amount of radar data for the purpose of 

quality control and forecasting became possible.  

Currently, dedicated weather radar are designed to detect precipitation (rain events) in the 

atmosphere. Several countries adopted weather radar networks in order to be able to predict 

flooding, to provide flood warnings, and to perform water management. Remote sensing using 

radars is capable of providing adequate coverage and to collect comparatively large amounts of 

data. Weather radars are capable of covering 200-250 miles from their position. In this work, 

data from the WSR-88D radar located in Melbourne, Florida has been used. It is important to 

note that there are numerous challenges involved in using weather radar data. While weather 

radars are designed to detect precipitation in the atmosphere, there are often echoes resulted from 

unwanted sources such as birds, earth surface formations, aircrafts and other man-made 

structures. Moreover, ground clutter also poses a significant problem in radar image data. Most 

often, all non-rain related echoes should be eliminated prior to data processing.  

Tracking of storm fronts presents several challenges. For example, there is a necessity of great 

computational power, since huge volumes of data need to be processed. Each radar image 

contains several events, some of which being rain and some of which being non- rain events. 

Following echo classification and elimination of non-rain events, the remaining precipitation 



  2  

 

events need to be processed. It can be considered that these rain events are evolving in time in 

terms of position, size, shape and, intensity. Moreover, new echoes may emerge in the radar 

images as newly formed precipitation events or events that enter the radar range, while other 

events may be merged or even fade away from the image, all within a short duration of time. 

Hence, association of precipitation of rain events in consecutive images is not a trivial problem.  

On the other hand, tracking of storm fronts can be successful to certain extent. With help of 

tracking, quite a few key weather-related applications can be addressed [1], including 

forecasting. Although forecasting techniques cannot perfectly predict future rain maps, 

reasonable estimation of certain precipitation characteristics, including the location of rain 

events, is achievable. In addition, nowcasting
 
[6], i.e., the prediction of the rain events, few or 

several minutes ahead, can be relatively successful. Based on precious work
 
[3], applications of 

nowcasting include point-to-point communication in poor weather conditions. For example, 

accurate prediction of the motion of heavy storms can assist in determining the path attenuation 

due to precipitation.
 
[1]

 

As mentioned earlier, separation of rain and non-rain events, such as clutter, is an important 

application of weather radar imagery. Tracking may be one of the important components used in 

this application. Separation of precipitation and non-precipitation events (clutter) may in general 

be considered to be a simpler process compared to forecasting of events. For separation, the 

paths of the events only need to be tracked and analyzed rather than tracked, analyzed, and 

predicted. Nevertheless, the association of events from one image to next is non-trivial. 

However, assuming that there is a solution to the association problem, the paths can assist in 

determining if the tracked events are static or moving. Non-rain events, such as clutter, are 
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usually static compared to rain events. Techniques used in past to separate rain from clutter [9] 

do not always take advantage of the temporal characteristics of precipitation events. 

There are several ways of tracking rain fields, one of them being tracking of localized functions 

generated based on modeling of rain fields. Modeling of rain fields is one of the significant 

components of the overall storm tracking process. Different techniques have been presented in 

the past for tracking precipitation events [2], [3]. In general, precipitation events can be 

considered as an assortment of different deformable objects. Out of the different possible ways to 

track these objects, one technique may attempt to match the outlines between temporally 

successive images. Alternatively, these objects can be approximated by means of 2D localized 

Gaussian function. Consequently, every object in the image can be approximated by one or more 

Gaussian functions. Furthermore, tracking of these localized Gaussian parameters will lead to 

tracking of the actual events. It is essential to note that localized functions, characterized by a set 

of parameters, may be used to model deformable events. The measure of deformation can be 

represented by alteration in these parameters. In the recent past, RBFNN [7], [8] have been used 

2D as Gaussian envelopes in order to model precipitation events by determining the envelope’s 

parameters [2], [3]. It was concluded that the usage of RBFNN is computationally expensive, 

while they appear to be only moderately effective in modeling small precipitation events in 

weather radar imagery [1]. In order to emphasize the importance of computational efficiency in 

nowcasting applications, it should be mentioned that if, for instance, a nowcasting technique 

requires 5 or more minutes to forecast the precipitation paths 5 minutes in the future, 

employment of this nowcasting technique is meaningless.  

In this thesis, we implemented an existing technique, with the all specified conditions, and verify 

the computational efficiency and modeling accuracy of the algorithm. Changes to certain 
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parameters are also applied to the existing algorithm [3], to acquire appropriate results. 

Thereafter, modifications are made to improve computational efficiency. Moreover, we evaluate 

the feasibility of modeling rain events using RBFNN-based approach in an efficient manner. 

The proposed modifications primarily deal with two aspects of the RBFNN-based modeling. 

Firstly, some points on the radar imagery are pre-selected using a simple algorithm, rather than a 

cold start selection of points, as mentioned in the previous work [3]. These points are used as 

initial points for training the RBFNN on the radar imagery. Secondly, tracking and prediction are 

performed only at the coarse image resolution without extrapolating to higher resolution at 

anytime. In other words, training of RBFNN is performed completely at the coarse image 

resolution. Nevertheless, it will be shown that full scale resolution images can be obtained 

directly from the coarse resolution images. It was observed that this modification increased the 

computational efficiency significantly. In the previous work [3], the final training and prediction 

are done at full resolution, which results in a computationally expensive algorithm. Furthermore, 

in order to model precipitation events efficiently at a coarse image resolution, the model 

parameter initialization should be done considering the existence of small scale events. In 

particular, small scale events, which are undesirably condensed in size at coarse resolution 

images, need to be properly handled for precise training and prediction.  

The rest of the thesis is organized as follows. Chapter 2 presents details about RBFNNs and 

previous RBFNN-based forecasting algorithms. Chapter 3 introduces the proposed algorithm and 

presents a discussion regarding the modifications performed to the existing algorithm. Chapter 4 

shows experimental results on actual radar data sequences in order to evaluate the proposed 

algorithm and compare it with the existing technique. Finally, chapter 5 concludes the thesis, 

highlighting a potential future evolution of the work. 
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Chapter 2: Background and Literature Review 

2.1 Introduction to the Radial Basis Function Neural Network 

 

As mentioned in the previous section, in the past, RBFNNs have been used to model 

precipitation events. This section mainly focuses on different types of RBFNNs used for 

modeling rather than classification. However, it is worth mentioning at this point that RBFNNs 

are also well-suited for non-linear time-series prediction [10]-[15], which can also be part of a 

forecasting application. More specifically, RBFNNs have an acceptable prediction performance 

for stationary time-series, but a poor performance for non-stationary signals. Since real world 

signals are often highly non-linear and non-stationary, modified versions of RBFNNs may need 

to be employed [15]. 

In general, the RBFNN is single hidden layer neural network. The operation of each of the 

hidden layer nodes is defined by a function characterized by a set of parameters. The input 

vectors presented to the network are modified by the hidden layer nodes, and the hidden layer 

node outputs are combined, via a set of weights, in order to produce the network outputs or 

responses. The response produced by the RBFNN should ideally be equal to a desired response. 

The difference (error) between the produced and desire responses is used to adopt the network 

weights and hidden layer node parameters. Next, some more detailed background information 

regarding the basic RBFNN-based technique for modeling precipitation events is presented. 

Details regarding the usage of RBFNNs in previous work [3] for the purpose of forecasting are 

presented in section 2.2.  
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In general, RBFNNs are used for data classification and function approximation. As mentioned 

in the previous section, the goal is to approximate the rain events using localized functions, 

namely 2D Gaussian envelopes. The basic structure of RBFNNs is depicted in Figure 1: 

 

 

 

  

 

 

 

 

 

 

 

An RBFNN consists of 2 layers, a hidden layer and an output layer as shown in Figure 1. The 

input data to each hidden layer node is presented in the form of input vectors. Moreover, each 

hidden layer node operates as a non-linear function and one response per node is obtained. 

Outputs from each hidden layer node are multiplied with certain weights and then fed as inputs 

to the output layer. All the inputs to the output layer are combined accordingly to produce the 
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Figure 1: General Structure of Radial Basis Function Neural Network 
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overall desired output which can be either a scalar or vector. The RBFNN is trained iteratively, 

attempting to reduce the difference in the desired output and the actual output, thus reducing the 

output error. For this simple RBFNN, the network parameters involved are hidden-to-output 

layer weights, and different parameters according to the functions used in each hidden layer 

node.  

As mentioned earlier, RBFNN can be used as function approximator. It has been proposed in the 

past [2], [3] that RBFNN can be used to model precipitation events as combination of localized 

functions.  Thereafter, the function parameters can be tracked to identify the prediction paths of 

precipitation events. In the case of rain-map modeling, the i
th

 input vector 𝑥𝑖     consists of i
th

 pixel 

coordinates, i.e. 𝑥𝑖    =  𝑥𝑖 , 𝑦𝑖 , i = 1,2,…,N,  where N represents the total number of pixels. All N 

vectors are used to train the network. The function that represents the output of the j
th

 hidden 

layer node when the i
th
 input,𝑥𝑖     , is presented to the network is defined as follows : 

  𝑔𝑗  𝑥𝑖 , 𝑦𝑖 = 𝑒𝑥𝑝 −𝑑𝑗  𝑥𝑖 , 𝑦𝑖 /2                        (1) 

where 𝑑𝑗  𝑥𝑖 , 𝑦𝑖  is the squared distance between the i
th

 input and the prototype associated to the 

j
th

 node. The j
th

 prototype in this case is defined as the vector representing the center point, 

𝑝𝑗    = (𝑝𝑗
 𝑥 

, 𝑝𝑗
 𝑦 

), of the Gaussian envelope 𝑔𝑗  𝑥𝑖 , 𝑦𝑖 . If 𝑑𝑗  𝑥𝑖 , 𝑦𝑖  is considered as the square of 

the Euclidean distance between the input vector 𝑥𝑖    =  𝑥𝑖 , 𝑦𝑖  and the prototype 𝑝𝑗    = (𝑝𝑗
 𝑥 

, 𝑝𝑗
 𝑦 

), 

then the function in equation (1) represents an isotropic Gaussian function. This Gaussian 

function has a standard deviation of unity, and is centered at 𝑝𝑗    . The squared Euclidean distance 

𝑑𝑗  𝑥𝑖 , 𝑦𝑖   can be represented as 𝑑𝑗  𝑥𝑖 , 𝑦𝑖 = (𝑥𝑖 − 𝑝𝑗
(𝑥)

)2 +  (𝑦𝑖 − 𝑝𝑗
(𝑦)

)2. In order to make the 

RBFNN model more flexible (while simultaneously more complex) for modeling the rain events, 
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the widths of the Gaussian function can be made independent along each direction. This is 

achieved by replacing the Euclidean with the Mahalanobis distance. By using Mahalanobis 

distance instead of Euclidean distance in equation (1), the isotropic Gaussians are replaced by 

directional Gaussians. The square of the  Mahalanobis distance is defined as : 

    𝑑𝑗  𝑥𝑖 , 𝑦𝑖 = (𝑥𝑖    − 𝑝𝑗    )
𝑇  𝐾  (𝑥𝑖    − 𝑝𝑗    )                                             (2) 

where K represents the inverse covariance matrix. As mentioned earlier, the overall output, 

𝑓𝑖  𝑥𝑖 , 𝑦𝑖  , for the i
th

 input should ideally be equal to the actual value of the pixel, 𝑓 𝑥𝑖 , 𝑦𝑖 ,  at 

location  𝑥𝑖 , 𝑦𝑖 . The overall output of the system is obtained as a linear combination of each 

hidden layer node output multiplied by its corresponding weight, 𝑤𝑗 . Thus, the overall output 

𝑓𝑖  𝑥𝑖 , 𝑦𝑖  for the i
th 

input is defined as     

                                          𝑓𝑗  𝑥𝑖 , 𝑦𝑖 =  𝑤𝑗
𝑁𝑗

𝑗
 𝑔𝑗  𝑥𝑖 , 𝑦𝑖 +  𝜃𝑗 ,                      (3) 

 where Nj is the total number of prototypes and 𝜃𝑗  is a bias term associated to the j
th 

hidden node. 

Hence, from the above discussion, the training parameters required for precipitation modeling 

are the weights 𝑤𝑗 , the inverse covariance matrix K, the prototypes 𝑝𝑗    = (𝑝𝑗
 𝑥 

, 𝑝𝑗
 𝑦 

) and the bias 

term  𝜃𝑗 . The training of parameters is performed in an iterative manner. The difference between 

the obtained output 𝑓𝑖  𝑥𝑖 , 𝑦𝑖  and the desired output 𝑓 𝑥𝑖 , 𝑦𝑖  is fed back into the network in 

order to adopt the network parameters and eventually reduce the error.  

As discussed earlier, the RBFNN approximates the precipitation events as mixture of Gaussians. 

This technique is discussed in detail in section 2.2. In general, network parameters are initialized 

prior to training. Training is performed in a constructive manner, in the sense that hidden nodes 

are added and deleted in order to best approximate the rain fields. The initialization criteria, the 
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methodology for training the parameters, and the addition/deletion criteria depend on the 

objective to be achieved.  

It should be mentioned at this point that, in general, the pixel values in weather radar imagery 

represent reflectivity values, Z. Reflectivity values can be converted to precipitation (rain rate), 

R, by using a relationship commonly known as Z-R. For example one such relationship is  

𝑍 = 𝑎𝑅𝑏 , where a and b are constants. A popular Z-R relationship is the Marshal-Palmer law, 

which is defined as 𝑍 = 200 𝑅1.6 [19]. 

 

2.2 Previous work 

 

This section mainly highlights the algorithm and methodology of previous work regarding linear 

forecasting using RBFNNs. More specifically, parameter adaptation, pyramidal synthesis, 

cascade synthesis, and finally linear forecasting are discussed. 

As a reminder from section 2.1, the i
th

 input vector presented to the network is defined as 𝑥𝑖    , and 

consists of the i
th

 pixel coordinates, i.e. 𝑥𝑖    =  𝑥𝑖 , 𝑦𝑖 , i = 1,2,…,N. The output produced by the 

RBFNN is the rain rate at that point. Accordingly, the algorithm will provide the rain rate at 

every pixel of the radar image, for every input vector 𝑥𝑖     by using 2D mixture of Gaussian 

functions. Eventually, the difference of the obtained output and desired output is applied to the 

network, in order to minimize the error. For this purpose, the Mean Square Error (MSE) can be 

used. Based on the RBFNN output, namely 𝑓 𝑗  𝑥𝑖 , 𝑦𝑖 =  𝑤𝑗
𝑁
𝑗  𝑔𝑗  𝑥𝑖 , 𝑦𝑖 +  𝜃𝑗 , defined in 

equation (3), the mean square error is defined as follows [3]: 
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    𝜖 =
1

𝑁𝑥𝑁𝑦
 (𝑓 𝑥𝑖 , 𝑦𝑖 − 𝑓  𝑥𝑖 , 𝑦𝑖 )2

𝑥,𝑦                       (4) 

It should be mentioned at this point that the MSE definition presented in previous work [3] is not 

accurate. The network mainly aims to minimize the MSE, by using a competitive algorithm 

proposed in [2]. Some changes to the original technique in [2] were incorporated in [3]. The 

technique presented in [3] proposed a modification to the output function of the RBFNN 

presented in equation (3). More specifically, the output in [3] is defined as:  

    𝑓 𝑗  𝑥𝑖 , 𝑦𝑖 = 𝑚𝑎𝑥𝑗 (𝑤𝑗  𝑔𝑗  𝑥𝑖 , 𝑦𝑖  +  𝜃𝑗  )                                        (5) 

In other words, only the output from the hidden node which gives the maximum response for that 

particular point in the radar image is activated and trained. The selected node is the one that 

gives the best match between the obtained and desired output. It is important to mention that the 

parameter, 𝜃𝑗  , was determined to be unnecessary and hence was removed from the training 

process [3]. By suppressing this parameter, the computational efficiency of the algorithm was 

improved although its effect on the output was negligible. Hence the output was finally defined 

to be as follows: 

                                        𝑓 𝑗  𝑥𝑖 , 𝑦𝑖 = 𝑚𝑎𝑥𝑗 (𝑤𝑗  𝑔𝑗  𝑥𝑖 , 𝑦𝑖 )                                               (6) 

From the above discussion, the RBFNN can be represented as shown in Figure 2. 
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The competitive algorithm used to train the parameters is adopted from [2]. It will be noteworthy 

to provide some discussion about the Mahalanobis distance before proceeding to the actual 

parameter learning/updating stage. Mahalanobis distance is defined as mentioned in equation (2), 

where K represents the inverse covariance matrix. The (m,n)
th

 element of the inverse covariance 

matrix, K, can be expressed using the marginal standard deviations 𝜎𝑚  and 𝜎𝑛  and the 

correlation coefficient  𝑕𝑚,𝑛  as follows [2]: 

 

max 

Hidden Layer 

Nodes 

 

 

 
 

 

Figure 2: The RBFNN used in previous work [3]. The inputs are the pixel coordinates and the 

output layer is the max function. 

 



  12  

 

          𝑘𝑚,𝑛 =
𝑕𝑚 ,𝑛

𝜎𝑚 𝜎𝑛                                  (7) 

Where 𝜎𝑚 > 0 and  𝜎𝑛 > 0, 𝑕𝑚,𝑛 = 1  if m=n, else  𝑕𝑚,𝑛  ≤ 1. Also, 𝑕𝑚,𝑛 = 𝑕𝑛,𝑚 for all m and 

n. Hence, as an update to what was discussed earlier, the learning parameters are the weights 𝑤𝑗 , 

the prototype centers 𝑝𝑗    = (𝑝𝑗
 𝑥 

, 𝑝𝑗
 𝑦 

) , the standard deviations  𝜎𝑚  and 𝜎𝑛  ,and the correlation 

coefficient  𝑕𝑚,𝑛 . A quadratic error function is used to train the network in supervised mode, by 

applying a gradient-decent method [2]. The quadratic error function is defined as  

𝐸𝑗 =
1

2
(𝑓𝑗  𝑥𝑖 , 𝑦𝑖 −𝑓 𝑗  𝑥𝑖 , 𝑦𝑖 )2. All the parameters are updated using a set of equations presented 

in [2]. These equations are presented here as well for completeness : 

  Δ𝑤𝑗 = −𝜂
𝜕𝐸𝑗

𝜕𝑤 𝑗
=  𝜂   (𝑓𝑗  𝑥𝑖 , 𝑦𝑖 − 𝑓𝑗  𝑥𝑖 , 𝑦𝑖 )   𝑔𝑗  𝑥𝑖 , 𝑦𝑖                                       (8) 

  Δ𝑝𝑗
𝑚 = −𝜂

𝜕𝐸𝑗

𝜕𝑝𝑗
𝑚 =  Δ𝑤𝑗   𝑤𝑗   𝑘𝑗

𝑚 ,𝑙 𝑥𝑖
𝑙 − 𝑝𝑗

𝑙 𝑙                                                      (9) 

  Δ𝜎𝑗
𝑚 = −𝜂

𝜕𝐸𝑗

𝜕𝜎𝑗
𝑚 =  Δ𝑤𝑗    𝑤𝑗    𝑘𝑗

𝑚 ,𝑙  𝑥𝑖
𝑚−𝑝𝑗

𝑚   𝑥𝑖
𝑙−𝑝𝑗

𝑙  

𝜎𝑗
𝑚𝑙          (10) 

  Δ𝑕𝑗
𝑚,𝑛 = −𝜂

𝜕𝐸𝑗

𝜕𝑕𝑗
𝑚 ,𝑛 = −  Δ𝑤𝑗    𝑤𝑗   

 𝑥𝑖
𝑚 −𝑝𝑗

𝑚   𝑥𝑖
𝑛−𝑝𝑗

𝑛  

𝜎𝑗
𝑚 𝜎𝑗

𝑛                                            (11) 

where η is the learning step constant. The values for η are defined at a later stage. 

As mentioned earlier, for each pixel of the radar image (input), only the hidden node giving the 

best match between the desired output and the obtained output is activated and trained using the 

above equations (8-11). If none of the hidden layer nodes give a good match, i.e., if the 

difference between the obtained and desired output is greater than a minimum threshold, maxerr 

and the minimum Euclidian distance of the point to any nearest node is larger than a threshold 
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distance, mindist, a new node is created at that point [3]. Hidden layer nodes which are not 

activated by minimum number of input vectors for a given number of iterations are deleted. The 

minimum number of activations required is defined as a parameter escape. The deletion 

condition occurs only after examining all possible input vectors from the radar image. This 

process is repeated until the MSE, , drops below a fixed value, maxmse, or until a number of 

iterations, maxepoch, is reached [3]. 

Once any one of the above conditions is achieved, i.e.,  ≤ maxmse or maxepoch is reached, the 

output image will contain the modeled rain events. These events are characterized/modeled using 

the localized parameters derived from the input vectors obtained from the original image. By 

tracking the localized parameters in the modeled image, the rain event paths can be predicted.It 

is important to emphasize that the values of the above mentioned constants: η, maxmse, 

maxepoch, maxerr, mindist, etc., have been adopted from [2] and [3].  

In general, the size of the original radar image is large, thus the training process may be 

considerably time consuming. In order to improve computational efficiency and optimize the 

modeling parameters, a pyramidal synthesis technique is used. In pyramidal synthesis, the 

modeling of events is done at the coarse resolution image. The number of input vectors and 

hidden layer nodes are considerably reduced using coarse image resolution, which reduces the 

computational time while achieving the same MSE. Initially, the RBFNN approximation is 

applied on the coarse image resolution. In order to obtain a coarse resolution image the original 

image is down-sampled using the following equation: 

     𝑓𝑘 𝑖, 𝑗 =  
1

22𝑘
 𝑓(𝑚, 𝑛)𝑚.𝑛𝜖Ω                                          (12) 

where Ω is a 2𝑘  x 2𝑘  squared region around pixel (i,j) [3] . 
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The parameters obtained at lower resolutions are extrapolated to higher resolutions in a step-wise 

manner. Hence, whenever a new training is started on an intermediate resolution image, the 

parameters from the previously modeled, lower image resolution are considered as a starting 

point. Thus, as the image gets more detailed at higher resolutions, some more nodes may be 

added and sometimes deleted.  

It is an important observation that higher image resolution just adds small, finer details and 

allows the network to adjust itself to higher spatial frequency components of the original image. 

Thus, initially, pyramidal synthesis is applied to the first frame of the sequence, until the highest 

desired resolution is reached. Cascade synthesis is applied for all subsequent frames after the 

first frame.  

The adaptation of network is performed by training on a sequence of frames which are similar to 

their next frame. A cold start synthesis on the next frame is computationally expensive. 

However, since the successive frames are similar to the preceding frame, parameters from the 

preceding frame can be used as a starting point to train the next frame. Using cascade synthesis, 

the number of iterations in training a new frame is reduced considerably, thus leading to less 

computational time. Also the advantage of cascade synthesis is that the same nodes are trained 

on the subsequent rain maps, and correspondence between nodes is retained [3]. In summary,, 

training is performed initially by pyramidal synthesis on the first frame, and thereafter by 

cascade synthesis on the successive frames. Different forecasting techniques have been presented 

in previous work [3]. In this thesis, a simple linear forecasting approach has been used. 

The linear forecasting method is one of the simplest forecasting methods for predicting the 

parameter values. In this method, the future values are predicted using a simple linear 
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extrapolation of parameter values based on latest two values. For instance, if pk  is the value of 

the parameter at frame k, and pk-1 is the value of the same parameter at the immediately 

preceding frame, the forecasted value fk+n at frame k+n is given by : 

                                         𝑓𝑘+𝑛 =  𝑝𝑘 +  𝑛 .  𝑝𝑘 − 𝑝𝑘−1              (13) 

An alternative to the linear forecasting method is the steady state method. In general, in the 

steady state method, the rain events are assumed to undergo change in position but not change in 

size, orientation or intensity. However, RBFNNs are capable of modeling precipitation as a 

combination of scaled and oriented Gaussian envelopes. Therefore, the available forecasted 

parameter values include orientation and scaling of precipitation events.  
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Chapter 3: Proposed work – Fast Algorithm 
 

In the previous work [3], even after using pyramidal synthesis and cascade synthesis, the authors 

[3] identified that the training process is still relatively time consuming. In general, the radar 

image contains precipitation events and blank events (no events). The precipitation events are 

represented by non-zero valued pixels. The regions without the precipitation events are 

represented by zero-value pixels. In the previous work [3], all pixels are used for training 

purposes. If the zero-valued pixels are not considered in the training process, arbitrary values are 

assumed in place of zero values by the Gaussian envelope which approximated that particular 

event. A Gaussian envelope tries to approximate an event to the best possible approximation. 

However, if there are no restrictions for the size or width of the Gaussian envelope, it may 

assume some arbitrary values beyond the event boundaries. On the other hand, if there are 

certain restrictions for the width of the Gaussian envelope, it may approximate the event without 

crossing the event boundaries significantly. For example, some zero-valued pixels can be used 

around the event’s boundaries. This is illustrated in the following picture. 

 

 

 

 

 

 

Gaussian envelop assumes arbitrary values beyond 

the rain event, because zero pixels were not used 

Zero- valued pixels around the event’s boundaries 

restrict the Gaussian envelope 

Extent of precipitation 

event 

Extent of precipitation 

event 
Zero-valued 

pixels used 

Zero-valued 

pixels used 

Figure 3: (a) Figure depicting the elongation of the Gaussian envelope beyond the rain event. Thus, 
assuming arbitrary values in place of zero-valued pixels. (b) The this line indicates the zone of zero 

values pixels around the boundaries of the rain event. Gaussian envelope is restricted by the zero-valued 

pixels. Thus very few or no arbitrary values. 
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If only non-zero valued pixels are, during the training process a divergence of the training 

parameters has been observed. This is discussed in detail in section 3.1. 

 

As mentioned in the previous section, different forecasting techniques can be used to track the 

network parameters. Some of these methods were also discussed in the previous work [3]. More 

specifically, for the sake of simplicity, a linear prediction technique is used in this thesis. In the 

previous works [2], [3], focus was laid on modeling of the events and predicting them. However, 

there has been some problems with the previous [3] modeling techniques. This thesis mainly 

focuses on efficient modeling of the rain fields.  As described in equation (13), the future 

parameters are predicted using the parameters from the current frame and the immediately 

previous frame. In the following sub-sections, we propose two modifications of the algorithm 

proposed in [3], to overcome the above mentioned problems.  

3.1 Selection of Pixels for the training of RBFNN 

 

As proposed earlier [3], it may be computationally advantageous to use only non-zero valued 

pixels for training purposes. However, to solve the problem regarding the divergence of 

parameters during the training process, as discussed in section 3, a modification in the algorithm 

is introduced in thesis. All non-zero valued pixels, as well as zones of zero-valued pixels around 

precipitation events, are used for the training purpose. The following figures illustrate this 

modification in detail: 
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  (a)             (b) 

      

    (c) 

 

By applying a moving average filter on the downsampled image, selecting the non-zero valued 

pixels in the smoothed image, and excluding the non-zero valued pixels in the non-smoothed 

image, a zone of zero valued pixels is obtained. More specifically, when a moving average is 

applied on the precipitation events (non-zero pixels), it blurs the events beyond their borders. 

Using this technique, all zero-valued pixels required for the training purpose are selected. This 

ensures that only strategically selected zero-value pixels as well as all the non-zero values pixels 

Figure 4: (a) The downsampled image of figure 4(c). White regions are the non zero pixels. 
  (b) Image after smoothing the downsampled image in figure 4(a). In this image, white 

regions are   non-zero pixels and zone of zero pixels around them. (c) Original image 
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are selected for training. This way of pixel selection keeps the number of input vectors presented 

to the network low. As mentioned earlier, the zone of zero value pixels restricts the Gaussian 

envelope represented by each hidden layer node mostly within the zone limits (as illustrated in 

figure 3). Hence, the parameter divergence problem is overcome during the training process. 

The localized parameters that are used during the training process namely weight, inverse 

covariance matrix and its elements, and prototype vectors are adapted as follows as the model 

evolves from (𝑖𝑡 − 1)𝑡𝑕 to (𝑖𝑡)𝑡𝑕   iteration: 

                                                          𝑞𝑖𝑡 =  𝑞𝑖𝑡−1 + 𝑚𝑥𝛼Δ𝑞                              (14) 

where q represents any of the parameters, α is a positive learning parameter, and Δq represents 

the amount by which the parameter is modified during the training from (it-1)
th
 to it

th
  iteration. It 

is important to mention that, in this thesis, the new parameter, 𝑚𝑥 , is proposed to represent the 

multiplicity of the particular input vector. Since only a zone of zero value pixels are used in order 

to ensure that the Gaussian envelope do not overflow beyond the zone limits, the modeling may 

be biased in favor of the precipitation pixels (non-zero valued pixels). To avoid such situations, 

different values of 𝑚𝑥  are chosen for zero-valued pixels and non-zero value pixels in the training 

process. More specifically, to emphasize the zero-value pixels, large values of 𝑚𝑥  is chosen. As 

mentioned earlier, choosing the multiplicity of the input vector 𝑚𝑥 ,  greater than 1 is equivalent 

to assuming that the same pixel is presented 𝑚𝑥  times to the network. More specifically, in this 

thesis, 𝑚𝑥 = 1 is used for non-zero pixels and 𝑚𝑥 = 10 for zero-value pixels. 
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3.2 Forecasting of image using coarse image resolution 

 

The previous sub-section discussed the approached used regarding the selection of pixels prior to 

the training process and the conditions for training the parameters. In this sub-section, a method 

used for increasing the computational efficiency by using coarse image resolution for forecasting 

is discussed. In general, the characteristic of several events, especially large events, are retained 

when the image is downsampled to coarse resolution. In this thesis, the network is trained using 

past and present coarse resolution images in order to predict the future full resolution images. 

This is in contract to the techniques used in [3], which predicts the future full resolution image 

from past and present full resolution image. By introduction of this modification, a significant 

increase in the computational efficiency is achieved. The coarse resolution image is obtained in 

two steps. First, a low pass filter is applied on the original image for smoothing purposes. 

Second, the smoothed image is downsampled to the required level. However, it has been 

observed that most of the small scale events may disappear in the low-resolution image. 

Therefore, they are more complicated to track and even more difficult to predict than large scale 

events. More specifically, it has been noticed that some of the isolated small-scale events are not 

easily distinguishable at coarse resolution. 

In coarse resolution image, the peaks (local maximum pixels) within the large scale events may 

correspond to the points where the Gaussian envelopes (function) one supposed to be centered. 

In order to determine the peaks within the events, a 3x3 window is used. The pixel with 

coordinates, 𝑥 𝑙𝑚  , is a peak if it has the largest value within the 3x3 window centered at 𝑥 𝑙𝑚 . The 

initial positions of the prototypes for the training purpose are set at 𝑥 𝑙𝑚 . Next, the procedure for 

the proposed work in this thesis is discussed. 
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 As mentioned earlier, this thesis work mainly focuses on precipitation modeling. Assume, for 

simplicity that, at this point, the parameters for the next image frames have already been 

estimated. Assume that inverse covariance matrices K for the current and future frame, 𝐾𝑡  and 

𝐾𝑡+1, respectively, are also available. The inverse covariance matrix is used in the Mahalanobis 

distance in equation (1). Similarly, assume the other training parameters i.e. the prototype 

locations for the current and future frame, 𝑝 𝑡and 𝑝 𝑡+1, respectively, are also available. The 

standard deviations  𝜎𝑚  and   𝜎𝑛 , and the correlation coefficient  𝑕𝑚,𝑛  are directly associated 

with K, therefore they are not included in this discussion. In order to simplify the discussion, 

although several prototypes, and thus, covariance matrices are needed to represent the 

precipitation events included in the rain map, only a single prototype is considered here. 

Moreover, it is assumed these inverse covariance matrices and prototypes correspond to the exact 

same event that has evolved from one time instance to the next. The two main characteristics of 

the Gaussian envelope are the center of Gaussian, and the rotation and scaling parameters. More 

specifically, the prototypes define the centers and thus are used for determining the translation 

parameters and, the inverse covariance matrix or the squared inverse covariance matrix defines 

the rotational and scaling parameters. The following equation defines the association between the 

future pixel location 𝑥 𝑖
𝑡+1 =  𝑥𝑖

𝑡+1, 𝑦𝑖
𝑡+1  in the image at time instance t+1 and the 

corresponding current pixel location 𝑥 𝑖
𝑡 =  𝑥𝑖

𝑡 , 𝑦𝑖
𝑡  at time t in the current image: 

    𝑥 𝑖
𝑡 = (𝐾1

𝑡)−1 𝐾1
𝑡+1   𝑥 𝑖

𝑡+1 − 𝑝 𝑡+1 + 𝑝 𝑡                                      (15) 

Where 𝐾1 is the square root of inverse covariance matrix i.e. 𝐾1. 𝐾1 = 𝐾.  

Using the above equation (15), the association between the pixel position in future coarse image 

and current coarse image can be obtained. Although the above equation was evaluated for a 
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single prototype and a single pixel, it can be extended to all prototypes and all pixels in the 

coarse resolution image. It is noteworthy to mention that the correspondence between the future 

and coarse resolution images can be transferred to the full resolution images. In other words, the 

future full resolution image can be obtained by the same equation. To obtain this, the prototype 

location should be multiplied with the downsampling factor. As mentioned earlier, the above 

equation is used to obtain the forecasted image once the future parameters have been predicted. 

With introduction of the two modifications discussed in sections 4.1 and 4.2, and with the 

proposed procedure, the modeling of the events is performed with high computational efficiency 

compared to the work presented in [3]. The illustrations and comparisons between the proposed 

work and previous work [3] are discussed in detail in the next section.  
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Chapter 4: Experimental Results 
 

By using the modification proposed in chapter 3, modeling of rain events is performed on a 

sequence of frames. Also, modeling of rain events is performed using the previous method [3] 

for the same sequence of frames in order to compare the two algorithms. The central scheme of 

the algorithm and the values of the parameters are chosen from [2], [3]. After performing the 

modeling using the appropriate values and conditions for the previous method [3], the results 

obtained were not satisfactory based on what was expected from the results presented in [3]. 

Hence, some modifications to the values of the parameters had to be introduced. These 

parameters are mentioned in the following table. Also, all pixels in the image are used for 

training purpose and the initial prototype centers are defined randomly at non-zero valued pixels. 

Two different learning rates were set for prototype centers and all other parameters. They are 

defined as no and nc respectively. 

 

 

Figures 5 (a), 5(b), and 5(c) show the original images (160 x 160) at time instance 1, 2 and 3, 

respectively. Figures 5(d)-5(f) are the approximation images for pyramidal synthesis at stages 1, 

2, and 3, for time instance 1. Figure 5(g) is the approximated cascade image at time instance 2 at 

resolution 160 x 160. Figure 5(h) is the predicted image (160 x 160) at time instance 3 using the 

Resolution escape 
mindist 

(pixels) 

mindist 

used 

(pixels) 

maxsse 
maxsee 

used 
nc no nc used 

no 

used 

40 x 40 3 16 16 0.02 1 0.05 0.01 0.0005 0.0001 

80 x 80 5 30 30 0.02 2.5 0.05 0.01 0.0005 0.0001 

160 x 160 8 50 50 0.02 3.5 0.05 0.01 0.0005 0.0001 

Table 1: Values of escape, mindist, maxsee and learning constants (no and nc) used in previous 

algorithm [3].  Modified values of the mindist, massee and learning constants (no and nc). 
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images from figure 5(f) and 5(h). Figures 5(d) and 5(e) are obtained by downsampling the image 

in Figure 5(a) by a factor of 4 and 2 respectively. 

    

    

   

 

 

 

Figure 5: Results obtained using previous algorithm 

(a)-(c) are the original images (160 x 160) at time instance 1, 2 and 3.   

(d) Pyramidal Stage 1 (40 x 40).  (e) Pyramidal Stage 2 (80 x 80).  (f) Pyramidal Stage 3 (160 x 160).  

(g) Cascade image (160 x 160). (h) forecasted image (160 x 160) using (f) and(g).   

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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In Figures 6(a)-6(d) the prototype centers are shown. These ellipses are used to illustrate the size 

and orientation of the Gaussians used to approximate the rain fields in Figures 5(d)-5(g). The 

size of these ellipses is of course not equal to the extent of the Gaussian envelopes, which is 

theoretically infinite.  

      

    

 

 

 

 

(a) (b) 

(c) 
(d) 

Figure 6: Images depicting the identified prototypes and ellipses representing the gaussian envelop 

for images in Figure 5 (d)-(g) 

(a) Pyramidal Stage 1 (40 x 40).  (b) Pyramidal Stage 2 (80 x 80).   

(c) Pyramidal Stage 3 (160 x 160).  (d) Cascade image (160 x 160). 



  26  

 

Using the same sequence of frames, the modeling of rain events is performed using the proposed 

method. The new algorithm is different from the previous one in several aspects. The input 

pixels for the training purposes and the initial centers of the prototypes are strategically selected. 

Also the prediction is done at a coarse image resolution unlike the previous method where 

prediction is done on full image resolution. Also the parameters values and conditions used for 

training are different. 

For the same sequence of images used in Figure 5(a)-5(c), the following images are obtained. 

Figures 7(a)-7(c) are the same images (160 x 160) as in Figures 5(a)-5(c). Figures 7(d)-7(e) are 

the approximation images of 7(a) and 7(b) respectively. These are of size 40 x 40, since the 

proposed algorithm performs the modeling and prediction at coarse resolution.  Figure 7(f) is the 

predicted image at full resolution (160 x 160). This prediction is directly obtain from the 

immediately previous coarse resolution images i.e. Figure 7(d)-7(e). The proposed algorithm 

does not involve as many steps as in the previous technique [3]. Moreover, the predicted images 

Figure 5(h) and 7(f) can be compared with the original image in Figure 5(c) or 7(c). It can be 

noted that, the predicted image in Figure 7(f) looks as a better match than predicted image in 

Figure 5(h). Also, Figures 7(g)-7(h) provide the prototype information using the ellipses for 

images in Figures 7(d)-7(e). Additionally, by observing Figures 7(b) and 7(e), it can be 

concluded that most of the isolated small-scale events, which are not parts of large scale events 

have a prototype associated with them. 

Figure 8 depicts another example. Figure 8(a) is the original image and Figure 8(b) is the 

approximated image of Figure 8(a). Figure 8(c) is the approximated image in which the 

prototypes and the oriented ellipses are shown. Figure 8(d) depicts the forecasted image. 
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Figure 7: Results obtained using proposed algorithm 

(a)-(c) are the original images (160 x 160) at time instance 1, 2 and 3.   

(d) approximated image of (a) (40 x 40).  (e) approximated image of (b) (40 x 40). (f) forecasted image 

(160 x 160) using (d) and(e).   

(g) and (h) are the images depicting the identified prototypes and ellipses representing the gaussian 

envelop for images(d) and (e) 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Time and mean square error calculations have been performed for a sequence of frames using the 

previous algorithm [3] and the proposed algorithm. The average time for each stage of pyramidal 

synthesis, and cascade synthesis has been calculated using the previous algorithm. Moreover, the 

Figure 8: Results obtained using proposed algorithm 

(a) is the original images (160 x 160) (d) approximated image of (a) (40 x 40).  

(c) is the image depicting the identified prototypes and ellipses representing the gaussian envelop for 

image (b).  (d) forecasted image (160 x 160) using (d) and(e).   

 

(a) (b) 

(c) (d) 
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total time required for the proposed method is calculated. Since there is a single stage in the 

proposed algorithm timings are only obtained for this single stage, and therefore correspond to 

the total timings. The modeling is performed on the first two frames at coarse resolution and the 

prediction is obtained directly at the original full resolution. These details of the time need for 

computation is provided in the following table: 

 

Time 

comparisons 

Average 

Proposed 

Method 

Pyramidal 

40 x 40 

Resolution 

Pyramidal 

80 x 80 

Resolution 

Pyramidal 

160 x 160 

Resolution 

Pyramidal 

Synthesis 

Total 

Time 

Cascade 

Total 

Time for 

Previous 

Method 

Seconds 20.67 119.2 330.03 477.53 947.43 282.81 1209.57 

Minutes 0.3445 1.98 5.5 7.95 15.7745 4.71 20.14 

 

 
 

From Table 2, it can be observed that the total time required for the previous algorithm [3] is 

greater compared to the proposed algorithm. Although cascade synthesis takes less time than 

pyramidal decomposition, still the proposed technique appears to be more computationally 

efficient.  

The prediction mean square error (mse) for the previous and the proposed work are obtained for 

a sequence of frames. These mse values are compared with the persistence method mse values. 

This acts as a reference to evaluate the performance of both previous and proposed algorithms. It 

can be observed from Table 3 that the mse for the proposed algorithm is smaller in all frames 

compared to the previous algorithm. Also, the difference in mse between the persistence method 

and previous method is not significant. However, the proposed method mse is in good standing 

Table 2: Average time comparisons in seconds and minutes for the previous algorithm and the 

proposed algorithm. The detailed timings of the each stage of the pyramidal and cascade synthesis are 

shown. The total time for the proposed algorithm is also shown.  
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with the persistence method mse. As mentioned in earlier chapters, this algorithm focuses on 

better approximation of the rain events. However, the linear prediction technique used in 

proposed method acts a comparison for evaluating the performances of the two algorithms. Also 

for information purpose and better understanding, the mse at each stage of the pyramidal 

synthesis and cascade synthesis for the same sequence is provided in Table 4.  

MSE Error / 

S. No 

Previous 

Method 

Proposed 

Method 

Persistence 

Method 

1 6.4386 5.8145 7.3891 

2 7.482 6.6214 7.3338 

3 12.2844 8.6632 14.2472 

4 11.4507 10.1242 14.4324 

 

 

 

 

 

 

 

From Tables 2 and 3, it can be observed that the proposed method take very less computational 

time compared to the previous method and also the mse is less. This is achieved due to the 

modifications discussed in chapter 3. The decrease in mse is due to strategically selected zero-

value input pixels used for the training purpose. Moreover, with a better method for selection of 

initial positions of the prototype centers and less number input vectors to the RBFNN, the 

MSE Error / 

S. No 

Pyramidal 

40 x 40 

Resolution 

Pyramidal 

80 x 80 

Resolution 

Pyramidal 

160 x 160 

Resolution 

Cascade 
Proposed 

Method 

1 0.8689 8.3376 2.4748 3.2994 5.8145 

2 2.0398 6.2066 2.2944 3.3466 6.6214 

3 0.5151 3.0556 2.425 3.4942 8.6632 

4 0.4791 2.3515 2.3612 4.9598 10.1242 

Table 3: Comparisons of MSE between previous method, proposed method and persistence method for a 

sequence of frames. 

Table 4: Detailed mse for all stages of pyramidal decomposition, cascade synthesis of the previous 

method with proposed method for the same sequence of frames used in Table 3 
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computational time for the proposed method has been considerably reduced. Also, working on 

the coarse resolution image for prediction purpose, helped in achieving less computational time. 
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Chapter 5: Conclusion and Future Work 
 

In this thesis, modifications to the existing technique have been proposed and implemented. The 

focus of the thesis was to improve the quality but mostly the computational efficiency of the 

precipitation modeling technique. Modeling of rain events, in general, requires more 

computational time in the overall process of forecasting. However, with the introduction of the 

modifications presented in this thesis, the computational time has been considerably reduced. 

More specifically, methods for speeding up RBFNN-based rain field modeling have been 

proposed. Usage of strategically selected zero-valued pixels for training purpose resulted in a 

stable approach and less number of input vectors. Also, examples were illustrated to support this 

stable approach. Moreover, initial selection of prototype centers also helped in better modeling 

of the rain events. By using the proposed equation (15), it was shown that it is possible to 

directly obtain a high-resolution forecasted image from downsampled present and past images, 

without performing the training using any full-resolution images. It is also important to mention 

that the predicted image is obtained by using the original pixels from the image at time instance 

2 and equation (15). These pixel values are extracted by using the predicted localized parameters 

in equation (15). In the previous method [3], the modeled pixel values are used to obtain the full 

resolution predicted image. Using the proposed method, to predict a rain map from immediately 

previous two rain maps it takes approximately 21 seconds, which is less compared to 15 minutes 

for pyramidal synthesis itself in the previous technique [3]. Hence a greater computational 

efficiency has been achieved using the proposed technique.  

Future work can be lead in many directions. Efficient directional smoothing [16], [17], [18] may 

be investigated in order to bring out more precipitation characteristics that can assist in the 



  33  

 

forecasting process. However, the usage of 3D elevation radar map constructed from the regular 

elevations of the radar is explored.  Brief information about the 3D elevation radar map is 

discussed next. 

In general, a single volume scan of radar contains information/images from several elevations. 

However, the data/pixel-value corresponding to each elevation are obtained at an angle and 

hence at different height with respect to the ground. More specifically, the pixel value near the 

radar in the same elevation is at a different height from the pixel value at the farthest position. 

The technique in [1] and this thesis uses only the first elevation to perform the modeling and 

prediction, since radar beams associated to higher elevations scans are at a significant height 

from the ground which is not the area of interest. However, higher radar elevations could be 

useful for areas located close to the radar.  

 Future work involves using the techniques presented in [4]. Prior to the modeling and 

prediction, a 3D volume representation of the elevation is obtained. This 3D volume is used as 

the input rather than the first elevation for modeling of the rain events. This 3D slice consists of 

information from the first five elevations of the radar scan. This 3D volume slice is represented 

as S(x, y, z), where (x, y) are the coordinates of the pixel and z is the height with respect to 

ground. All the pixels in this 3D slice are considered to be at same height with respect to ground. 

The procedure for the construction of this 3D volume slice is described next. 

First, height 𝑧0 at which the slice is to be build is chosen. The radar rain data is not covered in 

3D around the radar, and rain rate values at height 𝑧0 is required to fill the empty grid/slice. 

Hence, the data from the two elevations which is closest to the (𝑥, 𝑦, 𝑧0) position are used. A 

weighted reflectivity average of the data from the two closest elevations is used to fill the data at 
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position (𝑥, 𝑦, 𝑧0). It is important to mention that the center of the 3D slice/grid is radar location. 

An imaginary line is considered which is perpendicular to the ground and passing through (x,y), 

virtually intercepting all the elevations. The point where this imaginary line intercepts the i-th 

elevation is given by (𝑥, 𝑦, 𝑧𝑖). The two closest elevations j and k are considered to be the ones 

for which the distances 𝑑𝑗 =  𝑧0 − 𝑧𝑗   and 𝑑𝑘 =  𝑧0 − 𝑧𝑘  are the two smaller ones, namely 

𝑑𝑗 < 𝑑𝑖  and 𝑑𝑘 < 𝑑𝑖  , where    𝑖 ≠ 𝑗, 𝑘. Then, the weighted average is computed by [4]: 

 

    𝑆 𝑥, 𝑦, 𝑧 =
 

1

 𝑑𝑗 +𝛿 
𝑟𝑗 + 

1

 𝑑𝑘+𝛿 
𝑟𝑘 

 
1

 𝑑𝑗 +𝛿 
+ 

1

 𝑑𝑘+𝛿 
 

                                                    (16) 

 

where 𝑟𝑗  and 𝑟𝑘  are respectively the values of the j-th and k-th elevations at horizontal location 

(x,y). When the distance 𝑑𝑗  or  𝑑𝑘equals zero, the constant δ eliminates the problem. Hence by 

using this method, all the pixels in the 3D slice are at approximately same height with respect to 

ground. 

Figure 9: Illustration of building of 3D slice/grid/data representation 
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The process described above is illustrated in Figure 9. The bold parts of the lines represent the 

closest regions used by the weighted average for building the corresponding part of the 3D slice. 

These lines represent the elevations of the radar scan. As it can be noted from Figure 8, pixels 

from the two closest elevations contribute for building every section/region of the 3D slice. 

However, it can also be observed that for the region near the radar, the fifth elevation is 

considered directly. Using this technique, 3D elevations at different heights are obtained as 

shown in the Figure 8. The pixel coordinates associated to the 3D elevations can be used as the 

input to the RBFNN rather than the regular elevation. Since the data is a mixture from five 

different elevations, radar maps are relatively independent with respect to the distance from the 

radar. 
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