
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-20-2009

Reliable Multicast in Mobile Ad Hoc Wireless Networks Reliable Multicast in Mobile Ad Hoc Wireless Networks

Lawrence Klos
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Klos, Lawrence, "Reliable Multicast in Mobile Ad Hoc Wireless Networks" (2009). University of New
Orleans Theses and Dissertations. 1101.
https://scholarworks.uno.edu/td/1101

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1101?utm_source=scholarworks.uno.edu%2Ftd%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Reliable Multicast in Mobile Ad Hoc Wireless Networks

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
In partial fulfillment of the

Requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Sciences

By

Lawrence Klos

B.S. Mathematics, University of Oregon, 1984
Master of Architecture, Harvard University, 1991

M.S. Computer Science, University of New Orleans 1999

December, 2009

Acknowledgements
 I would like to thank Dr. Golden G. Richard III for initially accepting me as a

research assistant, for his ongoing support and encouragement throughout my

academic work at the University of New Orleans, and finally for his patience and

encouragement in my dissertation research and projects. I would also like to thank

Dr. Bourgeois, Dr. Abdelguerfi, Dr, Tu, and Dr. Jensen for their willingness to be on

my committee and their patience.

 I would also like to thank my wife Debbie, for her extreme fortitude, patience,

understanding and love throughout the time of my dissertation research work. And

finally, thanks to Robin, Alexandra and Daniel, for reminding me how magical it

truly is that machines can talk to one another.

 ii

Table of Contents
LIST OF FIGURES ..VI

ABSTRACT... IX

1 INTRODUCTION... 1
1.1 BACKGROUND AND MOTIVATION .. 1

1.1.1 Mobile Wireless Ad Hoc Networks ... 1
1.1.2 Reliability Issues in Multicast Routing Protocols................................. 2

1.2 DISSERTATION CONTRIBUTIONS .. 2
1.3 RELATED WORK .. 3

1.3.1 MANET Multicast Protocols... 3
1.3.2 MANET Reliable Multicast Protocols .. 4

1.4 DISSERTATION ORGANIZATION.. 5

2 REVIEW OF RELATED MANET MULTICAST PROTOCOLS................ 6
2.1 INTRODUCTION .. 6
2.2 MULTICAST PROTOCOL CATEGORY DESCRIPTIONS 8
2.3 MULTICAST PROTOCOL RELATED WORK... 10

2.3.1 ODMRP... 10
2.3.2 Flooding.. 12
2.3.3 Hyper Flooding... 13
2.3.4 AMRIS... 13
2.3.5 CAMP.. 15
2.3.6 MAODV... 16
2.3.7 FGMP-RA ... 18

2.4 MULTICAST PROTOCOL PERFORMANCE COMPARISONS 18
2.4.1 Protocol Performance Modeling .. 18
2.4.2 Evaluation Metrics.. 20
2.4.3 Simulations and Results .. 22

2.5 MULTICAST ROUTING STRATEGY DISCUSSION .. 33

3 R-ODMRP: A RELIABLE ENHANCEMENT TO ODMRP 36

3.1 OVERVIEW ... 36
3.1.1 Packet Storage .. 36
3.1.2 Packet Retransmission .. 38
3.1.3 Data Structures ... 38

3.2 NEIGHBORHOOD CREATION ... 40
3.2.1 Overview of Neighborhood Building .. 40
3.2.2 Neighborhood Building Parameters ... 40
3.2.3 Neighborhood Building Algorithm ... 41

 iii

3.2.4 Example of Neighborhood Building.. 42
3.3 PROTOCOL PERFORMANCE EVALUATION... 45

3.3.1 Simulation Details... 45
3.3.2 Initial Simulation Experiments ... 46
3.3.3 Simulation Results... 46
3.3.4 Protocol Results by Phase .. 50

3.4 CONCLUSIONS FOR R-ODMRP.. 51

4 REVIEW OF RELATED RELIABLE MULTICAST PROTOCOLS........ 52
4.1 INTRODUCTION .. 52
4.2 RELIABLE MULTICAST PROTOCOL CATEGORY DESCRIPTIONS..................... 52
4.3 RELIABLE MULTICAST PROTOCOL RELATED WORK 53

4.3.1 RMA .. 53
4.3.2 RALM .. 54
4.3.3 ReACT... 55
4.3.4 Scribble ... 56
4.3.5 Anonymous Gossip.. 57
4.3.6 RDG .. 58
4.3.7 RAPID... 59
4.3.8 EraMobile ... 60

4.4 RELIABLE MULTICAST PERFORMANCE COMPARISONS 61
4.4.1 Reliability Protocol Performance Modeling....................................... 61
4.4.2 Reliability Evaluation Metrics .. 64
4.4.3 Reliability Simulations and Results .. 65

4.4.3.1 RMA ... 65
4.4.3.2 RALM and ReACT... 68
4.4.3.3 Scribble ... 72
4.4.3.4 AG... 74
4.4.3.5 RDG .. 75
4.4.3.6 RAPID... 76
4.4.3.7 EraMobile ... 78

4.5 NEW RELIABLE MULTICAST ROUTING STRATEGY 81
4.5.1 Goal... 81
4.5.2 Categorization of Existing Approaches .. 82
4.5.3 Performance of Existing Approaches ... 83

4.5.3.1 First Building Block – Packet Dissemination..................................... 83
4.5.3.2 Second Building Block – Missed Packet Recovery............................ 94

4.5.4 Design Strategy for a New Protocol ... 97

5 REYES: RELIABLE MULTICAST WITH NEIGHBORHOOD SETS... 103
5.1 PROTOCOL DESIGN GOALS .. 103
5.2 INITIAL DESIGN IDEAS ... 103

 iv

5.2.1 Fully Distributed Workload .. 104
5.2.2 Minimizing Latency and Control Overhead 104
5.2.3 Global Topology Based Path Creation Mechanism 105
5.2.4 Secondary Missed packet Request Mechanism................................. 112

5.3 REYES PROTOCOL OVERVIEW.. 114
5.4 REYES DATA STRUCTURES .. 117
5.5 REYES NEIGHBORHOOD SET CONSTRUCTION .. 121

5.5.1 Network Establishment ... 121
5.5.2 Neighborhood Formation ... 122
5.5.3 Neighborhood Confirmation... 125

5.6 REYES DATA REQUEST MECHANISMS ... 128
5.6.1 Packet Header Request Mechanism.. 128
5.6.2 Resend Request Mechanism.. 129
5.6.3 Beacon Request Mechanism ... 130

5.7 PROTOCOL DISCUSSION ... 131
5.8 PERFORMANCE EVALUATION... 133

5.8.1 Simulation Environment ... 133
5.8.2 Performance Metrics .. 134
5.8.3 Sparse Medium Mobility Network Results.. 135
5.8.4 Sparse High Mobility Network Results ... 137
5.8.5 Dense Medium Mobility Network Results... 139
5.8.6 Dense High Mobility Network Results.. 142
5.8.7 Mobility Results .. 143
5.8.8 Traffic Rate Results... 146

5.9 CONCLUSIONS FOR REYES ... 149

6 GENERAL CONCLUSIONS AND FUTURE WORK 150

REFERENCES.. 153

VITA... 160

 v

List of Figures
2.1 Packet Delivery Ratio as a function of Mobility Speed 24

2.2 Number of Data Packets Transmitted per Data Packet Delivered.. 25

2.3 Number of Control Bytes Transmitted per Data Byte Delivered 26

2.4 Number of Total Packets Transmitted per Data Packet Delivered 27

2.5 Packet Delivery Ratio as a function of Number of Senders 28

2.6 Number of Control Bytes Transmitted per Data Byte Delivered 28

2.7 Packet Delivery Ratio as a function of Multicast Group Size 29

2.8 Packet Delivery Ratio vs. Traffic Load with no Mobility 30

3.1 Example Ad Hoc Network. 43

3.2 Example Network Datapath Tables - R3, 2 and R1 43

3.3 The Source’s full Network Datapath table 43

3.4 Network Datapath Table Remainders 44

3.5 Node Packet Storage Responsibility Table 45

3.6 Packet Delivery Ratio 47

3.7 Packet Overhead Ratio of Data+Control Pkts per Delivered Data Pkt 47

3.8 Forwarding Efficiency 48

3.9 Normalized Packet counts for ODMRP 50

3.10 Normalized Packet counts for ODMRP, R-ODMRP 51

4.1 Packet delivery ratio vs Speed at 10s rest time using Lifetime metric 65

4.2 Data Overhead vs Speed at 10 sec rest time using lifetime metric 66

4.3 Control Overhead vs Speed at 10 sec rest time using lifetime metric 66

4.4 Reliability 69

4.5 Overhead 69

4.6 Latency 69

4.7 Source data rate 69

4.8 Congestion Pkt Dlvry Ratio 70

 vi

4.9 Congestion Goodput 70

4.10 Transmission Overhead 71

4.11 Congestion Control 71

4.12 Mobility Pkt Dlvry Ratio 71

4.13 Mobility Goodput 71

4.14 Mobility Overhead And Pkt Delivery Ratio 72

4.15 Mobility Latency 72

4.16 Radio Range Overhead And Pkt Delivery Ratio 73

4.17 Radio Range Latency 73

4.18 Pkt Dlvry Ratio with transmit range variation 75

4.19 Pkt Dlvry Ratio with max speed variation 75

4.20 Packet Delivery Ratio 77

4.21 Network Load 77

4.22 Latency 77

4.23 Packet Delivery Ratio 79

4.24 Network Load varying density 79

4.25 Throughput 80

4.26 Reliable Throughput 80

4.27 Overhead 80

4.28 Throughput 80

4.29 Reliable Throughput 80

4.30 Overhead 80

4.31 Throughput 81

4.32 Reliable Throughput 81

4.33 Overhead 81

5.1 ODMRP Constructed Data Paths Around Area of Spot Density 108

5.2 Experimentally Constructed Paths Through Area of Spot Density 109

5.3 Example Established Network 122

 vii

5.4 Example Network Neighborhood Sets 123

5.5 Nbr Reply Tables for Level 1 Nodes 124

5.6 Nbr Reply Tables for Level 0 Node 125

5.7 Packet Sequences for Path Discovery, Neighborhood Formation 125

5.8 Level 0, 1 Neighbor Confirm Tables 127

5.9 Level 2 Neighbor Confirm Tables 127

5.10 Network Neighborhood Partitioning 128

5.11 Packet Request Mechanisms 129

5.12 Sparse Medium Mobility Network Reliability 135

5.13 Sparse Medium Mobility Network Control 136

5.14 Sparse Medium Mobility Network Latency 137

5.15 Sparse High Mobility Network Reliability 138

5.16 Sparse High Mobility Control Overhead 138

5.17 Sparse High Mobility Network Latency 139

5.18 Dense Medium Mobility Network Reliability 139

5.19 Dense Medium Mobility Network Control Overhead 140

5.20 Dense Medium Mobility Network Latency 141

5.21 Dense High Mobility Network Reliability 142

5.22 Dense High Mobility Control Overhead 142

5.23 Dense High Mobility Network Latency 143

5.24 Mobility Reliability 144

5.25 Mobility Control Overhead 145

5.26 Mobility Latency 146

5.27 Traffic Rate Reliability 147

5.28 Traffic Rate Control Overhead 147

5.29 Traffic Rate Latency 148

 viii

Abstract
A mobile wireless ad hoc network (MANET) consists of a group of mobile nodes

communicating wirelessly with no fixed infrastructure. Each node acts as source or

receiver, and all play a role in path discovery and packet routing. MANETs are

growing in popularity due to multiple usage models, ease of deployment and recent

advances in hardware with which to implement them. MANETs are a natural

environment for multicasting, or group communication, where one source transmits

data packets through the network to multiple receivers. Proposed applications for

MANET group communication ranges from personal network apps, impromptu small

scale business meetings and gatherings, to conference, academic or sports complex

presentations for large crowds reflect the wide range of conditions such a protocol

must handle. Other applications such as covert military operations, search and rescue,

disaster recovery and emergency response operations reflect the “mission critical”

nature of many ad hoc applications. Reliable data delivery is important for all

categories, but vital for this last one. It is a feature that a MANET group

communication protocol must provide.

 Routing protocols for MANETs are challenged with establishing and maintaining

data routes through the network in the face of mobility, bandwidth constraints and

power limitations. Multicast communication presents additional challenges to

protocols. In this dissertation we study reliability in multicast MANET routing

protocols. Several on-demand multicast protocols are discussed and their performance

compared. Then a new reliability protocol, R-ODMRP is presented that runs on top of

ODMRP, a well documented “best effort” protocol with high reliability. This protocol

is evaluated against ODMRP in a standard network simulator, ns-2.

 Next, reliable multicast MANET protocols are discussed and compared. We then

present a second new protocol, Reyes, also a reliable on-demand multicast

communication protocol. Reyes is implemented in the ns-2 simulator and compared

 ix

against the current standards for reliability, flooding and ODMRP. R-ODMRP is used

as a comparison point as well. Performance results are comprehensively described for

latency, bandwidth and reliable data delivery. The simulations show Reyes to greatly

outperform the other protocols in terms of reliability, while also outperforming R-

ODMRP in terms of latency and bandwidth overhead.

Keywords:
Ad hoc networks, reliable multicast, mobile networking, routing algorithm, transport
protocol.

 x

1 Introduction

1.1 Background and Motivation

1.1.1 Mobile Wireless Ad Hoc Networks
A mobile wireless ad hoc network (MANET) consists of a group of mobile nodes

communicating wirelessly without the benefit of any fixed infrastructure. This type of

communication is not like cellular, or even wireless LAN networks, which rely on a fixed

infrastructure of centralized base stations or wired routers with antennas. In MANETs,

nodes that spontaneously move to be within wireless transmit range of each other can

begin to communicate by wirelessly transmitting packets back and forth, becoming

‘networked’ in an ad hoc manner. Each node can act as a data source or receiver at any

time. Since mobile nodes have a limited wireless transmit range, data packets sent from a

source often will travel hop by hop, forwarded by intermediate nodes within the range of

each other along the paths to distant receivers. In MANET communication protocols,

some or all nodes in the paths between sources and receivers usually play a role in both

data path discovery and the ongoing routing of data packets through the network to

receivers.

Initial MANET communication protocols focused on unicast communication, where a

single node establishes a packet routing path to another single node, and the two nodes

communicate. Later, one-to-many “multicast” communication protocols became a topic

of research. In fact, due to the broadcast-type transmission that occurs in the wireless

medium, MANETs are a natural environment for multicast applications. Currently

proposed MANET multicast applications range from personal network apps, impromptu

small scale gatherings and business meetings, to academic, conference and sports

complex presentations involving large crowds. This range of applications reflects the

wide range of conditions that an ad hoc multicast, or “group” communication protocol

must be able to handle. Other proposed applications such as search and rescue team

communications, covert military operations, disaster recovery and emergency response

operations reflect the “mission critical” nature of many ad hoc group applications.

 1

1.1.2 Reliability Issues in Multicast Routing Protocols
As opposed to wired networks, wireless nodes in an ad hoc network can dynamically

join and leave a network at any time, either by choice or not. Since each node is

potentially moving all the time, protocols must account for ongoing link breaks, as well

as temporary formation of new links. The network topology is reconfigured frequently

and constantly, and routing information can become stale quickly. Many MANET

mission critical multicast applications operate in “sparse network” scenarios where a

small number of nodes form the network, and network partitioning is frequent and

potentially long lasting. Many factors can affect reliability in other application scenarios,

however, such as physical conditions with a high level of natural interference, networks

consisting of nodes with high mobility, nodes sending high traffic loads, or many nodes

creating dense networks in small spaces, to name a few. Each of these scenarios exerts a

different type of stress on reliable communication protocols, such as broken or ephemeral

links, links overloaded with contention, or constantly changing network topologies

requiring ongoing frequent protocol topology reconfiguration.

The ability of a reliable group communication protocol to deal with all these forces

within a MANET is further complicated by the fact that multiple factors can be

constantly in play concurrently across a network. A dense network could have spot

conditions of sparseness and partitioning, networks with high mobility could have regions

where nodes are stopped. In all networks, nodes may be out of range of all network

communication for indeterminate and potentially long periods. For these reasons there is

an ongoing need for general reliable multicast protocols that perform well in any network

environment.

1.2 Dissertation Contributions

This dissertation focuses on the topic of reliability in MANET group

communication protocol design. First we examine various existing “best effort” multicast

routing protocols, in terms of the reliability they provide. Experimental protocol

comparisons are presented along with a discussion of how overall protocol design

 2

topologies affect reliability. A new reliable multicast routing protocol is introduced, with

a performance evaluation comparing it to the top performing “best effort” protocol.

Following this, newer reliable multicast routing protocols are examined, along with

a discussion of design issues involved in providing reliability. A second reliable multicast

routing protocol is presented, along with a comprehensive performance analysis

comparing it to the two existing protocols with documented best performance and the

previously mentioned new reliable multicast protocol, under a wide range of network

scenarios. Protocol comparisons are performed using a detailed network simulator which

provides common ground for evaluating many aspects of the routing strategies, with

repeatable results.

1.3 Related Work

1.3.1 MANET Multicast Protocols

Routing protocols designed specifically for mobile ad hoc wireless multicast

communication first began to appear around 1999. Many protocols were proposed

between 1999 and the early 2000’s, and could be generally classified by the mechanisms

they used to perform common tasks. First, all protocols usually defined some type of

topology in order to construct packet routing paths. Common topologies and protocol

classifications were shared tree (AMRoute [LTMB99], MAODV [RP99] and AMRIS

[WT99]), source tree MCEDAR [SSB99], BEMRP [OKS99], MZRP [DSS01], ABAM

[TGB00], DDM [JC01], WBM [DMM02b] and PLBM [SMM02]), mesh (ODMRP

[LGC99], DCMP [DMM02a], FGMP-RA [CGZ98], NSMP [LK00] and CAMP [GM99])

or no topology (flooding and hyperflooding [OTV01]). Another common task protocols

had to carry out was protocol initialization. Protocols could be classified according to this

task as source initiated (MZRP, ABAM, AMRIS, ODMRP, DCMP and NSMP), or

receiver initiated (BEMRP, DDM, WBM, PLBM, FGMP-RA and CAMP). A third

common task was ongoing topology maintenance. Protocol classifications for this task

were hard state, with routes continuously updated to repair newly broken links (BEMRP,

ABAM, WBM, PLBM, AMRIS and CAMP), or soft state, with periodically refreshed

 3

routes, with no repair mechanism operating between refreshes (MZRP, DDM, ODMRP,

DCMP, FGMP-RA and NSMP). Other more specialized protocol classifications focus on

specific protocol features. This group includes protocols that depend on physical

locations of individual nodes, energy efficient protocols, protocols with quality of service

guarantees, and protocols dependent on specific applications. There tended to be very few

protocols in these categories, as most efforts went to developing more generic

communication protocols.

Design of new generic multicast communication protocols slowed in the mid to

later 2000’s. Protocols developed during this time included AQM [KC05], a quality of

service protocol, ExOR [BM05], a source initiated soft state protocol with no topology,

PUMA [RG04], a receiver initiated, soft state, shared mesh protocol with core nodes, and

SPBM [TFWME04], a physical location based protocol, and OBAMP [DB08], a shared

tree, application specific protocol.

1.3.2 MANET Reliable Multicast Protocols

Recent years have also seen the creation of MANET multicast protocols that have

focused on reliability as a topic of research. These protocols can generally be classified as

deterministic, where an attempt is made to guarantee fully reliable data delivery (RMA

[GSPS02], RALM [TOLG02], ReACT [ROLTG03] and Scribble [VE04]), or

probabilistic, where the attempt is to provide a certain probability of reliability (AG

[CRB01], RAPID [DFKS06], EraMobile [GO07], RDG [LEH03]). Several of these

protocols are actually hybrids.

Another method of categorizing reliable MANET multicast protocols relates to the

mechanism used to recognize missing packets. In Sender Initiated reliable multicast

protocols, the source is responsible for detecting packet losses among receivers. Here,

receivers are responsible for sending the ACKs for each packet, ,so if the source doesn’t

receive an ACK, it knows to initiate a resend (RMA). In Receiver Initiated reliable

protocols, receiver nodes are responsible for detecting missed packets and notifying the

sender or other nodes with some form of NACK message. Several reliable protocols use a

 4

combination of the two techniques (RALM, ReACT), so this categorization is not as

useful for reliable multicast protocols.

1.4 Dissertation Organization

 Chapter 2 provides a review of previous work in MANET multicast protocol design,

and chapter 3 introduces R-ODMRP, a reliable MANET multicast protocol implemented

in the ns-2 network simulator. This chapter contains a performance evaluation of R-

ODMRP, comparing it with ODMRP, a well known “best effort” protocol with

documented top performance, in terms of packet delivery ratio, network bandwidth

overhead and forwarding efficiency.

 Chapter 4 presents a review of related work in reliable multicast protocol design for

MANETS, and presents a discussion of design issues for reliable ad hoc multicast

protocols. Chapter 5 presents Reyes, a new reliable ad hoc multicast protocol also

implemented in the ns-2 simulator. This chapter includes an in depth performance

evaluation, comparing Reyes to flooding, ODMRP and R-ODMRP in a wide variety of

scenarios, including sparse, dense, high mobility and high data rate networks.. For each

scenario, metrics are presented for reliability, overhead and delivery latency. Finally,

chapter 6 discusses conclusions and future work.

 5

2 Review of Related MANET Multicast Protocols

2.1 Introduction

 Multicasting is a natural method of communication in ad hoc networks, given the

broadcast nature of the wireless medium. Multicast communication in ad hoc networks has

been a topic of research for over a decade, with some current protocols providing

relatively high packet delivery ratios under various network conditions. Since ad hoc

network communication is based on multihop packet transmits, each node must be able to

act as a router, packet forwarder, potential source and potential receiver. In this

environment battery power, bandwidth congestion and packet collisions are ongoing

problems, and a common goal for these protocols is a reduction of the bandwidth required

for ongoing communication in order to reduce congestion and achieve the highest packet

delivery ratio possible. Bandwidth is consumed both by the overall percentage of network

nodes needed to forward data packets, and by a protocol’s operational requirements for

various types of control packets.

The earliest ad hoc multicast protocols were not designed specifically for MANETs, but

were adapted to them by modifying the existing wired internet multicast protocols DSDV

[PB94], WRP [MG96], STAR [GS99]. These protocols were classified as Proactive, or

Table Driven, in that current topology data was maintained in the form of tables at every

node all the time. This topological information was kept current even when no sources

were communicating, so that routes to destination nodes were always available to all

nodes. Early studies showed that these protocols, often based on establishment of a routing

tree reaching all receivers, did not perform well in mobile ad hoc wireless environments

Maintaining connections in the face of ongoing random changes in topology required a

large amount of control packets, which consumed much of the available bandwidth in the

network. The fact that large amounts of bandwidth were consumed even when no

communication was occurring made this early category of protocols impractical.

By the late 1990’s and early 2000’s ad hoc multicast communication became an area of

active research. A new category of protocols, classified as Reactive or On Demand, were

 6

designed specifically for MANETs. These protocols were designed so that no routing

information was needed until the point when a source needed to communicate, removing a

large amount of network overhead. When a source needed to communicate, a route

discovery process would be initiated, and communication would begin once routes were

learned. Flexible multicast group operations (group join and group leave mechanisms)

were important factors in dealing with the unpredictable nature of link lifetimes.

Topologies for these early On Demand protocols were either tree based, mesh based or

had no defined topology (Flooding based). Network simulation comparison studies

[LSHGB00], [BMJHJ98], soon showed the advantages of mesh based over tree based On

Demand protocols. While not as efficient in terms of network overhead, the presence of

alternate routes to receivers that the mesh topologies provided were an antidote to node

mobility, greatly increasing the overall network packet delivery ratio under many

conditions.

Most protocols designed recently can be generally categorized based on the algorithms

they use to implement common operations. For example, as mentioned previously,

protocols often depend on establishing a specific topology for nodes in the network, in

order to define routing channels to reduce network bandwidth requirements. Also, the

algorithm controlling which node carries responsibilities for initiation of the protocol, for

data resend requests, etc.. can be used to classify protocols. Next, the algorithm used to

maintain the constructed topology can be used to classify protocols. For example ODMRP

[LGC99], a robust multicast protocol with a relatively high packet delivery ratio, is a

Mesh Based Source Initiated Soft State protocol.

While these categories can be used to describe the majority of ad hoc multicast protocol

approaches today, many hybrid protocols exist. Attempts are made to capture the

advantages of multiple categories, or remove the innate disadvantages of one category or

the other. Also, there have been a number other approaches to protocol design.

Approaches such as packet fragmentation, duplication and forward error correction,

location assisted multicasting, and multicast protocols that are dependent on a specific

application, protocol feature or underlying unicast protocol have been developed and

 7

published. The bulk of research, however, has focused on the previously mentioned

categories with the goal of developing generic protocols that can provide communication

services for multiple applications, and that can be easily utilized by common hardware

devices currently existing, or soon coming to market.

Reliability as a feature in these multicast protocols usually consisted of attempts to

deliver packets initially sent by the source to the greatest number of receivers. In other

words, reliability equated to the highest possible “initial delivery” count of receivers per

packet. These protocols are often termed “best effort”. Later, as ad hoc multicast routing

issues became more clearly understood, work on reliable data delivery moved beyond

“best effort” operations to various methods of storing and resending missed packets, with

attempts to provide fully reliable packet delivery to all receivers. Work on these later

protocols is described in chapter four.

2.2 Multicast Protocol Category Descriptions

Proactive or Table Driven protocols maintain routes continuously, even when the

source has no packets to multicast. Examples of table driven protocols are DSDV [PB94],

WRP [MG96], STAR [GS99]. Reactive, or On Demand, protocols on the other hand,

typically invoke a path discovery / path reply mechanism only when a source has data to

multicast, rather than continuously maintaining paths throughout the lifetime of a

network. Usually the path discovery portion of the mechanism requires a packet to be

flooded throughout the network, with the replies often unicast back along the same path.

Paths are either stored at each node in the form of previous/next hop, or accumulated and

cached at the source. Examples of On Demand protocols are ODMRP [LGC99],

AmRoute [LTMB99], CAMP [GM99], AMRIS [WT99] and MAODV [RP99].

The Soft State category refers to protocols where full route refreshes occur periodically

via the flooding of control packets through the network, while the Hard State category

refers to protocols where routes are not refreshed, but rather the initially defined topology

is maintained and updated in an ongoing manner. This maintenance usually takes the

form of control packet transmissions when a link is discovered to be broken. The soft

state approach usually requires more control packet overhead, but the result is often a

 8

greater packet delivery ratio. The reverse is usually the case for the hard state approach.

Examples of soft state protocols are MZRP [DSS01], DDM [JC01], ODMRP [LGC99],

DCMP [DMM02a], FGMP-RA [CGZ98] and NSMP [LK00]. Examples of hard state

protocols are (ref nbrs and initials) BEMRP [OKS99], ABAM [TGB00], WBM

[DMM02b], PLBM [SMM02], AMRIS [WT99] and CAMP [GM99].

Tree based topologies work to maintain a tree structure, with a single linked list of

nodes connecting any given source/receiver pair. The tree topology could be instantiated

per individual source, or a single “shared tree” topology shared by several sources, often

based on a core node coordinator. Simulation comparisons [LSHGB00] have shown tree

topologies are generally more fragile than meshes, with a correspondingly lower packet

delivery ratio. Examples of on demand shared tree based protocols are AMRoute

[LTMB99], AMRIS [WT99] and MAODV [RP99]. Examples of on demand source tree

based protocols are MCEDAR [SSB99], BEMRP [OKS99], MZRP [DSS01], ABAM

[TGB00], DDM [JC01], WBM [DMM02b] and PLBM [SMM02].

Mesh based topologies work to provide multiple paths to all receivers from the source,

with the goal being a higher packet delivery rate at the cost of a greater amount of

network overhead. This topology is a better fit for mobile ad hoc wireless environments

where individual links are prone to breaking. When one path breaks in the middle of

transmission other paths will still provide data to endpoint receivers. Examples of on

demand mesh based protocols are ODMRP [LGC99], DCMP [DMM02a] FGMP-RA

[CGZ98], NSMP [LK00], SRMP [ML02] and CAMP [GM99].

The third topological configuration, No Topology or Flooding based protocols are

designed to require no underlying data delivery path topology, completely removing the

need for the overhead control packets needed to create and maintain a given topology.

Some simple mechanism must be introduced to flooding based protocols in order to

prevent broadcast storms, a condition where a given data packet is rebroadcast multiple

times unnecessarily by nodes in a given area. This conserves the bandwidth that would

have been used for this, allowing the ongoing data transmissions more bandwidth. The

tradeoff is that since no data delivery routes are established, a greater amount of

 9

bandwidth is often consumed with duplicate packet sends. Examples of on demand

flooding based protocols are basic flooding and Hyperflooding [OTV01].

In a multicast protocol, when formation of the multicast group and ongoing

communication, topology updates and missed data requests can only be initiated by the

source, the protocol can be categorized as Source based. If it can only be initiated by the

group receivers, it is categorized as Receiver based. Examples of source based protocols

are MZRP [DSS01], ABAM [TGB00], AMRIS [WT99], ODMRP [LGC99], DCMP

[DMM02a] and NSMP [LK00]. Examples of receiver based protocols are BEMRP

[OKS99], DDM [JC01], WBM [DMM02b], PLBM [SMM02], FGMP-RA [CGZ98] and

CAMP [GM99].

2.3 Multicast Protocol Related Work

2.3.1 ODMRP

ODMRP [LGC99] is an on demand, mesh-based, source initiated soft state ad hoc

multicast protocol. It performs scoped flooding of data packets to all group members by

establishing a ‘forwarding group’ of network nodes between a source and all group

members. Route refreshes update the broken links arising from node mobility or resource

changes. The route setup and ongoing periodic route refresh operations each consist of

two phases: Request and Reply.

Mesh Establishment

 When a source has multicast data to send but no knowledge of receivers, it builds a

“Join Query” packet, adds its IP address, and broadcasts it. Each downstream node

receiving the Join Query will store the source IP address and packet ID, add the IP

addresses of the upstream node and originating source to its routing table, add its own IP

address into the last hop IP address field, and rebroadcast it downstream. The Join Query

packet floods the network, eventually reaching all receivers.

A group member, upon receiving a Join Query, completes the processing described

above for the Join Query, then initiates a “Join Reply” packet once the upstream multicast

route is selected. The receiver node adds the source and next upstream hop IP address for

 10

the group from its routing table, adds its own IP address into the previous hop field, and

broadcasts the Join Reply packet upstream. Each neighbor node receiving this packet

checks the next hop IP address. If the next hop IP address matches the neighbor node’s

own, the node is on the forwarding path between source and receiver, and is part of the

forwarding group. The node sets its Forwarding Group flag, looks into its own routing

table entries for the group ID and next upstream hop node id, and builds its own Join

Reply packet to broadcast upstream if it has not already done so. Once Join Reply packets

have propagated back to the source, the mesh of forwarding group nodes is established

and packets can be delivered to all receiver nodes.

Ongoing Mesh Maintenance and Data Forwarding

When a node receives a multicast data packet, it first checks to see if the packet is a

duplicate, then checks its Forwarding Group flag. If the packet is not a duplicate, and the

node’s forwarding flag is set, the node is a forwarding group member, and rebroadcasts

the packet to its neighbors.

Periodically, the source will refresh routes with another Join Query. All forwarding

group members will then be reset according to the new network topology. Nodes no

longer on a datapath to receivers due to a topology change will soon have their forwarding

flag turned off via a timeout. Group membership is preserved in a soft state at each node.

Once a source has no data to multicast, it stops sending periodic Join Query packets. All

forwarding nodes will then eventually timeout and revert to non-forwarding status for that

source. If a receiver wants to leave the group it stops sending Join Reply packets.

Unicast Functionality

Using the same Join Query/Join Reply protocol with a unicast IP address as the

destination, a unicast sender can discover a route to a unicast receiver. Since duplicate

Join Query packets are dropped (based on source IP address and data packet sequence

number), the route created by unicast operation is a single path.

Data Structures

Following are the standard data structures of ODMRP.

 11

• Message Cache: When a node receives a Join Request or data, it stores the source ID,

sequence number and group address of the packet in this cache to detect duplicates.

This cache is timed out in Round Robin fashion.

• Member Table: This table holds the multicast address and source node address

identifying combination for each source data stream that the current node is a receiver

or forwarder for. An expiration time variable is in the table in order to expire stale

entries.

• Forwarding Group Table: This table holds the multicast addresses and expiration time

for each multicast group for which the current node is a forwarding group member of.

• Routing Table: This table holds the multicast and source addresses for all multicast

senders the current node is a receiver for, along with the next hop (upstream) address

on the path to the source. This next hop address is used as the destination for Join Reply

packets from the current node.

Protocol Advantages and Disadvantages

 An advantage of ODMRP is that it has a very high packet delivery ratio, partially due to

its soft state approach, with all routes periodically refreshed through control packets, and

partially to its mesh based topology, which increases the chances that a given packet will

eventually reach a given receiver. Both the control packet overhead and the multiple data

paths per receiver however, contribute to an increased network bandwidth overhead,

increasing the possibility of link contention.

2.3.2 Flooding

 The standard flooding protocol is a simple and effective approach to multicast

communication. When a node receives a packet, if it is receiving it for the first time, it

will broadcast the packet. In order to recognize previously received packets each node

must keep a cache of recently received packet sequence numbers.

Protocol Advantages and Disadvantages

 The downside of this approach is that since each packet is re-broadcast as many times

as there are nodes in the network, a large amount of network overhead is consumed for

 12

operation throughout the lifetime of each communication session. However, the upside of

this approach is the extremely high packet delivery ratio that flooding can provide.

Generic flooding is a current standard to beat for new reliable multicast protocols,

because it has one of the highest delivery ratios of protocols compared in current

research. This topology is the extreme form of a mesh topology, where every potential

data path in the network is enabled, and if one or several links break, receivers will still

often receive packets over any remaining existing data paths.

2.3.3 Hyper Flooding

Hyper flooding [OTV01] is designed for high mobility environments where the main

goal is reliability. The tradeoff in order to gain the added reliability is a greater amount of

network overhead. In Hyperflooding, nodes record neighbors by listening to, and sending,

hello messages with neighbor lists. Received data packets are rebroadcast and stored.

Another rebroadcast of these stored data packets will occur when a packet is received from

a node that is not on the neighbor list, or when a hello message is received from a new

node. If one of these two events occurs all packets in the node’s data packet cache are

retransmitted. The intent of these rebroadcasts is to ensure that new nodes that might

possibly not have received the cached packets will now be able to receive them.

Protocol Advantages and Disadvantages

Although node caches are periodically purged to limit this resending overhead, the

downside of this approach is a far greater amount of network overhead used for the packet

retransmissions, and the large amount of storage required at each node, while the upside is

the added reliability gained by the ongoing packet retransmissions.

2.3.4 AMRIS

AMRIS [WT99] is an on demand shared tree source initiated hard state protocol. The

central mechanism in the protocol is that each node in the shared tree obtains a multicast

session member identifier (MSM-ID) that defines its logical height in the tree. The MSM-

ID mechanism provides the protocol with a way to repair broken links locally, and avoid

packet routing loops.

 13

Tree Establishment

 When a source wishes to initiate communication, it broadcasts a New Session message,

which contains it’s MSM-ID, a multicast session ID and parameters for routing. All nodes

receive this message, and store the data in a table for a timeout period and create their own

MSM-ID with a value greater than the received one. A built-in gap in identifier numbers

allows space for open id numbers for ongoing local repairs. Each node also keeps a

current neighbor status table, listing existing neighbors and their MSM-ID’s. This is built

from incoming beacon messages all nodes are required to broadcast periodically.

 If a receiver node not already in the multicast group wants to join, it sends a JoinReq

control packet to one of the neighbor nodes listed in its neighbor status table that has a

lower MSM-ID. If the receiver of this control packet is not a member, it will send the

packet further upstream. Once a group member node is reached, the node contacting it will

initiate a JoinAck control packet, sending it back along the downstream path to the

original initiating receiver, to establish the new data path.

Ongoing Tree Maintenance

 After formation, ongoing tree maintenance operations are started to repair broken links.

Each node sends “beacon” packets once per second. If a broken link cuts off a node from

the group, noticed after 3 “beacon” packets are not received, the node will attempt to

rejoin by selecting a new neighbor and sending a JoinReq control packet, with the same

operation as described above. If the node has no current listing of a possible neighbor

node, or it receives a JoinNack back from its neighbor instead of a JoinAck and has no

other neighbors to attempt a connection with, it attempts a second operation where it

floods a new JoinReq packet with a TTL value attached. It will receive JoinAck packets

back from all receivers and will then select a route by sending a JoinConf packet to the

targeted receiver.

Protocol Advantages and Disadvantages

 AMRIS has one advantage in that its hard state local link repair mechanisms reduce the

amount of control overhead needed network wide. Data path loop formations are avoided

by the MSM-ID mechanism. The ongoing requirement for beacon packets from all nodes

 14

consumes a large amount of network bandwidth however, and the large amount of time

required for the link repair mechanisms to operate increases packet delivery delay, and

reduces the delivery ratio. Also the link repair mechanisms can lead to unnecessarily long

data paths, contributing to packet delivery delay. The tree topology, being more fragile

than a mesh, also reduces the packet delivery ratio.

2.3.5 CAMP

 The Core Assisted Mesh Protocol (CAMP) [GM99] is a mesh based, receiver initiated,

hard state ad hoc multicast protocol. Rather than using flooding of a control packet to

establish routes, with the associated cost in bandwidth overhead, CAMP defines certain

mesh nodes as core nodes, and uses a core node based mechanism to establish routes.

CAMP requires an underlying unicast protocol for operation. WRP was used for this in the

documented study. This unicast protocol must have a mechanism to provide a node with

“next node ID on the path to the core node” information.

Mesh Establishment

 To begin the protocol, every node establishes a Core to group Address Map (CAM)

table, containing the group’s core node ID. When a node wants to join the group, it

unicasts a JoinRequest packet to the group core node, addressed to the next node on the

path to the core node. When this JoinRequest packet is forwarded to a node directly linked

to the core node, that node will send an ACK back along the path taken by the

JoinRequest, establishing the path. New receiver nodes directly linked to the core node

have no need to send JoinRequest packets.

 CAMP allows data source nodes to join an established network in “sender only” mode,

if they will not receive data from other sources in the group. Nodes directly linked to

sender only nodes will not forward packets received from other sources in this case, unless

they have current links to other group receiver nodes downstream from the other source.

 Once a new source joins the mesh, receivers note the number of hops taken for packet

delivery from this source. Receivers periodically send HeartBeat messages that record

hopcount to neighbors via the underlying unicast protocol, which are forwarded to mesh

node members. When mesh node members receive such HeartBeat messages, they will

 15

potentially enable the data paths if they are shorter, ensuring that shortest path nodes are

actively made part of the mesh of forwarding nodes.

Ongoing Mesh Maintenence

 With the mesh topology, multiple links to receivers can still provide data delivery when

any given link is broken due to node movement. Also, the shortest path discovery

mechanism works to build new, more optimal links for receivers with broken links. If the

mesh is partitioned, each partition works to define its own core node. Partitions are

repaired by each core node sending CoreExplicitJoin packets to cores in other partitions.

When a core in one partition receives such a packet from another core, it will reply with an

ACK packet and repair the partition.

Protocol Advantages and Disadvantages

 CAMP relies on a core node for topology construction and repair, and so has no flooded

topology construction packets. Due to this its control overhead is less than many mesh

based protocols. One downside to the core node approach however, is that core nodes

become single points of failure, and when they fail it significantly impacts packet delivery

ratio. The requirement for a secondary unicast routing protocol is another downside to the

protocol, making it less generalized.

2.3.6 MAODV

MAODV [RP99] grew out of AODV, a unicast ad hoc communication protocol. MAODV

utilizes flooding for its periodic topology construction control packets. MAODV is a

shared tree, receiver based hard state protocol.

Tree Establishment

 MAODV operates by means of a group leader node, which is usually the first node to

join the group. This group leader periodically broadcasts group hello packets, with a

continuously updated sequence number. Nodes that want to join the group after it has been

established do so by either unicasting a route request packet to the group leader, if they

have its address, or by broadcasting a route request packet if not. This packet includes the

receiver’s last known group sequence number. If broadcast, the route request packet is

rebroadcast by non member nodes until it reaches a member node. Member nodes with a

 16

group sequence number greater than or equal to the new receivers sequence number will

unicast a route reply packet back along the same data path. This reply packet contains the

distance of the replying node from the group leader, and the current sequence number of

the multicast group. If the new receiver attempting to join receives several replies, it

selects the one with the greatest sequence number first, and the shortest path second, and

unicasts a multicast activation packet back to the sender of the route reply. As this

multicast activation packet traverses the data path, nodes on the path are activated to

become new members of the data forwarding tree.

Ongoing Tree Maintenance

 Ongoing maintenance works by means of the same route request, route reply, multicast

activiation series of packets. When a receiver is partitioned from the group, its route

request will contain the last sequence number it was aware of, and its last known hopcount

from the group leader. This route request will be answered by nodes with a group

sequence number greater than the requesting node, and a lesser hop distance to the group

leader. This guarantees that a partitioned node’s route reply will not be answered by nodes

downstream from it that are also partitioned. Receiver nodes at the far end of the datapath

that wish to leave the group will send a prune packet upstream. This packet propagates

upstream through nodes that are only on the datapath in order to supply the leaving node

with packets, and all such nodes will halt the forwarding of packets.

 If the network is in a partitioned state, it is possible that each partition will have its own

leader. Any node receiving group hello messages from more than one group leader will

start a group leader election mechanism, which will reduce the number of group leaders to

one, and heal the partitions where new links are formed.

Protocol Advantages and Disadvantages

 Since MAODV has a shared tree topology, one advantage it has is relatively low data

forwarding overhead. This shared tree topology, however, leads to fragile data paths with

relatively lower packet delivery ratios compared to some other protocols. Also, the group

leader represents a single point of failure, and failure or partitioning of this node has

negative consequences for packet delivery ratios of all existing sessions.

 17

2.3.7 FGMP-RA

 The Forwarding Group Multicast Protocol, based on Receiver Advertising (FGMP-RA)

[CGZ98] is an on demand mesh based, receiver initiated soft state protocol.

Mesh Establishment

 The protocol begins by all receivers flooding a join request control packet, which is

forwarded to the sources. As the sources receive the join request packets, they update their

internal member tables with ID’s of all receivers in the group. After receiving all join

request packets, each source creates a forwarding table, containing next hop information to

all receivers. The forwarding tables are then sent back to all receivers along reverse

shortest paths, activating data paths along the way to each receiver. As each intermediate

node receives the data packet with the forwarding table it will recognize that it is on the

path from source to receiver, builds its own forwarding table, and send it downstream.

Ongoing Mesh Maintenance

 Maintenance is achieved via the soft state approach, by receivers periodically flooding

join request packets through the network. When a receiver’s link to the source is broken it

will send the source a join request packet. The source will then send a forwarding table

packet back along the same path, establishing a new route to the receiver with a broken

link.

Protocol Advantages and Disadvantages

 Given FGMP-RA’s mesh topology, it has a higher packet delivery ratio when compared

to tree based protocols, since in general there are more data paths to receivers in the

network. The soft state approach increases the control overhead compared to a hard state

approach, however.

2.4 Multicast Protocol Performance Comparisons

2.4.1 Protocol Performance Modeling

 In the pre-2000 timeline of mobile ad hoc multicast protocol development, research

papers describing new protocols either did not evaluate their performance, evaluated

performance by means of mathematical modeling (using formulas to determine, for

 18

example, relative communication complexity or time complexity of various protocol

operations such as membership join/leave operations or initial topology setup, where the

variables were the average number of network nodes, theoretical number of links,

theoretical number of receivers affected by a topological change, theoretical hop count of

the farthest route length, etc…), evaluated it by using limited home-grown network

simulators, or simply discussed the pros and cons of the categories the protocol

mechanisms fell into. With these methods of evaluation it was impossible to truly

evaluate protocols against each other in order to definitively state the superiority of one

over another in terms of most common metrics such as reliable data delivery or latency.

 As protocol development grew more sophisticated, researchers turned to standardized

network simulators to more fully evaluate the performance of their protocols, and to

provide the common ground necessary to compare performance between different

protocols. Initially some relatively simple simulators were developed by individual

research groups. Eventually, the research community as a whole settled on what are now

a handful of well known and commonly used network simulators. Standardization on a

few widely used simulators currently allows researchers to replicate the work and results

of others, as well as allowing individuals to implement their protocol designs and fairly

evaluate what works and what doesn’t. The network simulators commonly used for ad

hoc multicast research currently are ns-2, GloMoSim and QualNet.

• Ns-2 [FV02] is a discrete event network simulator. It was originally developed as

ns, a wired network simulator, at Lawrence Berkeley National Laboratory. It was

extended to version 2 as part of the VINT project with USC/ISI, Xerox PARC,

LBNL and UC Berkeley to support mobile wireless environments. The CMU

Monarch group’s extensions allow ns-2 to simulate Mobile Ad Hoc networks

[C99] as well. Ns-2 is the most commonly used simulator for implementing and

studying ad hoc communication protocols. The source code is split between C for

its core engine, and OTcl for simulation execution code.

• GloMoSim [ZBG98] is a discrete event wireless network simulator developed at

UCLA’s wireless networking lab. PARSEC [BM98], a C based parallel

 19

simulation language, is the language used for its implementation. GloMoSim can

run in sequential or parallel mode, and is the second most commonly used

simulator.

• QualNet [SN] is another discrete event simulation environment. It is the

commercial successor to GloMoSim. It is not as commonly used as ns-2 or

GloMoSim, due to the cost of the simulator.

OpNet is another high quality detailed simulator used in research, but as it is a more

expensive commercial product, it is not as commonly used as those listed above. In

current research, Ns-2 is the simulator most commonly used by the community, because

it is high quality, freely available and well documented. It is a robust tool with several

protocols already implemented for ad hoc networking both at the MAC level and at the

routing level, making protocol comparisons easier to implement. At least one research

project [OTV01] implemented a protocol on two of these three simulators (ns-2 and

GloMoSim), and discussed comparison of results. They found a high degree of

correlation between the two, with minor differences being explained by implementation

details such as the node mobility model, or the specific MAC layer protocol used. In

general, the simulator parameters commonly set for protocol modeling are: Total

simulated time, number of nodes in the network, number of receivers in the network,

mobility model, average node speed, field size, wireless channel transmission range,

wireless channel capacity, dddata packet size, data packet rate and MAC protocol.

2.4.2 Evaluation Metrics

 There are many metrics by which a protocol’s performance can be measured. The goal

of this work is, of course, to maximize reliable data delivery, which is usually measured

in terms of packet delivery ratio, which is the number of packets received by all receivers

over the total number possible to receive (i.e., the number of packets sent by the source

multiplied by number of receivers).

 Other metrics that are critical for reliable ad hoc performance comparisons are the data

and control overhead a protocol requires to operate, and average packet delivery latency.

 20

Data and control overhead is a critical factor because mobile ad hoc networks generally

have highly constrained bandwidth, which data packets and control packets actively

consume. Data and control overhead is often measured as the ratio of data and control

packets or bytes transmitted per data packet or byte delivered. It is the count of every

single transmission of each packet type for every node over the network. This includes

packets that are eventually dropped prior to final delivery, along with all packet original

sends and retransmissions by all intermediate nodes. This metric reflects the efficiency of

channel access. It is important because the maximum bandwidth only exists when nodes

are close enough to each other to establish a link, and due to the inherent broadcast nature

of the wireless medium, when links are established there is often contention occurring

between nodes. For mobile ad hoc reliability, packet delivery latency is also a critical

factor, since reliability protocols often will either utilize a NACK request mechanism that

takes some amount of time to fulfill, thus delaying data delivery, or will implement a

unique data delivery mechanism that could introduce latencies at every hop along each

data path. It is usually the case that these three parameters are closely linked and

optimizing one will come at the expense of the other two.

 Following is a listing of metrics less commonly used by researchers to study protocol

performance:

• Node Storage, Processing Power, Battery Life Requirements – the amount of

storage, processing power or battery life receiver nodes must have for the protocol

to operate effectively. These metrics are seldom used, since advances in

technology are continually changing the thresholds of acceptability.

• Packet Reliable Delivery Ratio – Of the packets delivered to network receivers,

this metric represents the fraction that were delivered to all receivers.

• Reliable Goodput – this is the throughput obtained for reliably delivered packets

only. (i.e., throughput measurement of only the packets that all receivers have

received).

• Normalized Overhead – a metric using the total number of packets sent by each

node as measured at the MAC layer. Normalized Overhead is the ratio of total

 21

packets sent at the MAC layer to total data packets delivered to all members. It

measures the total number of packets actually transmitted to successfully deliver

one data packet to all members.

• Multiple variations for measuring control overhead – percent of control packets,

percent of control bytes, percent of control and data bytes transmitted vs data

bytes delivered, and other variations.

2.4.3 Simulations and Results
As mentioned, many ad hoc multicast protocols were designed and evaluated by other

means before researchers turned to using network simulators for fair, repeatable

performance evaluations and comparisons. An initial study, documented in 1999 by J.J.

Garcia-Luna-Aceves and E.L. Madruga, titled “The Core-Assisted Mesh

Protocol”[GM99], compared ODMRP to CAMP, with results showing that CAMP data

delivery had lower latency than ODMRP, with a smaller percentage of control packets

used, and roughly equivalent reliability. The results were later viewed as somewhat

flawed, since the authors used a very simple simulator they had developed a few years

earlier that assumed perfect communication channels, did not take into account radio

propagation or differing data packet size and used an old MAC protocol, FAMA, instead

of the emerging standard of 802.11 for wireless networks. Also, the study simulated

movement for only a small portion of the network nodes, with the protocol-critical nodes

(i.e. source and core nodes) stationary, and all nodes in the network were modeled as

multicast receivers, rather than only a fraction of them.

The first generally accepted protocol comparison study was presented at InfoCOM in

2000 by S. J. Lee, W. Su, J. Hsu, M. Gerla and R. Bagrodia, titled “A Performance

Comparison Study of Ad Hoc Wireless Multicast Protocols” [LSHGB00]. This study

evaluated 5 current protocols, AMRoute, ODMRP, AMRIS, CAMP and flooding, using

the GloMoSim network simulator, a well known and commonly accepted detailed

simulator. All of the protocols simulated have been described previously with the

exception of AMRoute, a shared tree based protocol with a logical “core” node per group,

that relies on an underlying unicast protocol for group member links. AMRoute does not

 22

guard against temporary routing loops, and so has limited performance. All the protocols

rely on “best effort” delivery, where there is no means to make up for a data packet that is

not received from the initial source send. In this study, different scenario tests varied

node speed, source count, multicast group member size and traffic load in order to

evaluate the relative strengths and weaknesses of the protocols under various network

conditions within the common framework of the simulator. All simulations used a

network of 50 nodes in a 1000 by 1000 meter area for 600 seconds. Radio propagation

was 250 meters, channel bandwidth was 2 Mbps, data packet size was 512 bytes and the

MAC protocol used was IEEE 802.11. The metrics used for evaluation were:

• Packet Delivery Ratio

• Number of Data Packets Transmitted per Data Packet Received

• Number of Control Bytes Transmitted per Data Byte Delivered.

• Number of Control and Data (Total) Packets Transmitted per Data Packet

Delivered

These metrics were studied for four different scenarios, first, increasing average node

speed, next, increasing number of senders, third, increasing multicast group size and

finally increasing network data traffic load. The increasing node speed scenario had 5

senders sending 2 pkts/sec with 20 group members in the 50 nodes. Nodes moved from 0

km/h to 72 km/h. The increasing senders scenario has senders varying from 1 to 20, with

1 m/sec constant node speed, a consistent 10 pkts/sec traffic rate from all senders

combined, and 20 group members. The increasing group size scenario had 5 senders,

mobility at 1 m/sec, network traffic at 10 pkts/sec, and group size varying from 5 to 40

members out of the 50 nodes. The increasing data traffic scenario had 5 senders with a

consistent group member count of 20 nodes, 0 m/sec node speed, and data traffic varying

from 1 to 50 pkts/sec.

Increasing Node Speed Scenario:

Figure 2.1 shows results for packet delivery ratio, or reliability, as a function of node

speed, which varied from 0 up to 72 km/hr, or 20 meters per second. The three mesh

 23

based protocols, flooding, ODMRP and CAMP, had far better reliability than the two tree

based protocols, as node speed was increased across the simulations. Between the mesh

based protocols, flooding enabled every possible mesh link all the time, and ended up

with the highest reliability of the three, given the data path redundancy. CAMP’s

reliability suffered from the fact that protocol operations often required nodes to send

packets to specific remote router (core) nodes located on the edges of the network, that

had fewer redundant paths to them than nodes centered in the mesh, so the packets had a

higher likelihood of encountering a link break with no redundant path to allow eventual

delivery.

Figure 2.1: Packet Delivery Ratio as a function of Mobility Speed [LSHGB00]

Between the tree based protocols, AMRIS always relied on a single data path between

group nodes, so if any given link in the set between a source and receiver breaks,

encounters packet collision, or congestion, the receiver will not receive the data packet.

Since nodes send beacons every second in AMRIS, and neighbors are not considered to

be out of range until 3 beacons are missed, a link break is not accounted for by tree

reconfiguration until 3 seconds have passed, during which time many packets can be lost.

Interestingly, unlike the other protocols, at 0 mobility, AMRIS showed only a 60%

 24

packet delivery ratio. With every node sending a beacon packet every second, beacon and

data packet collisions occurred frequently due to link contention, severely impacting data

delivery for a network of stationary nodes. AMRoute suffered severely from both the

existence of loops, and the formation of trees with excessively high hop counts (double

the number of hop counts in the other protocols). Data path loops formed during tree

reconstruction when some nodes were forwarding per stale tree paths while others

forwarded per new tree paths.

The other metrics charted for the mobility scenario reflected the network bandwidth

costs of each protocol’s reliability. The Number of Data Packets Transmitted per Data

Packet Received in Figure 2.2 showed a very high number for AMRoute, due to the

existence of data loops in the protocol operations. Flooding, ODMRP and CAMP were

all in a similar mid-range, while AMRIS was at the low end of the five protocols. Clearly

the tree structure of AMRIS conserves network bandwidth, and while flooding, ODMRP

and CAMP all rely on a mesh topology, the more redundant paths enabled, the higher the

number for this metric, with flooding being the highest since every path is enabled.

ODMRP typically enables more paths than CAMP, and so had a higher metric.

Figure 2.2: Number of Data Packets Transmitted per Data Packet Delivered

[LSHGB00]

 25

The Number of Control Bytes Transmitted per Data Byte Delivered in Figure 2.3

showed a very high number for AMRoute, as expected, since packets can be caught in

routing loops or unusually long data paths. ODMRP held consistent across all node

speeds, since mobility has no effect on the periodicity of its JoinQuery/JoinReply control

packets. CAMP started off low, crossing to be higher than ODMRP at about 20 km/h and

continually rising, while AMRIS was consistently low, and flooding was even lower.

Control bytes for flooding consisted of the packet header only, and did not change with

mobility. AMRIS overhead was low due to the high number of data packets dropped

from the network. CAMP’s overhead increased over time since its underlying unicast

protocol, WRP, sent more update packets when triggered more often by higher mobility.

Figure 2.3: Number of Control Bytes Transmitted per Data Byte Delivered

[LSHGB00]

 Finally, the Number of Total Packets Transmitted per Data Packet Delivered in

Figure 2.4 also showed a very high number for AMRoute as expected, but the number for

CAMP and AMRIS were lower than the others. AMRIS was lower due to its tree

topology, and CAMP was lower due to its reliance on fewer redundant paths. ODMRP

 26

and flooding were almost equal. This result is somewhat surprising, since though

ODMRP generates redundant paths, it should have fewer redundant paths than flooding,

with a correspondingly greater efficiency in bandwidth utilization, while still delivering

packets to the same number of receivers. Likely the receiver count did not place a

sufficient stress on communication to where this became apparent.

Figure 2.4: Number of Total Packets Transmitted per Data Packet Delivered

[LSHGB00]

Increasing Number of Senders Scenario:

The second scenario holds node mobility constant at 1 m/s, but has the number of

multicast senders increasing from 1 source to 20. Packet delivery ratio in Figure 2.5

shows similar relative results to the mobility scenario, but one difference is that though

flooding shows slightly better reliability than ODMRP initially, at 10 senders and above

ODMRP is a few percentage points better than flooding. This is where the overly

redundant data paths of flooding work against its reliability, and flooding begins to suffer

due to congestion and link contention. CAMP also shows a rising metric, though less than

ODMRP, due to the increasing number of core nodes required.

 27

Figure 2.5: Packet Delivery Ratio as a function of Number of Senders [LSHGB00]

Figure 2.6: Number of Control Bytes Transmitted per Data Byte Delivered

[LSHGB00]

 For Number of Control Bytes Transmitted per Data Byte Delivered, results in Figure

2.6 are also similar to mobility results except ODMRP’s: instead of holding flat,

 28

ODMRP’s metric rises steadily, while CAMP’s metric remains consistent. CAMP creates

a shared mesh, while ODMRP constructs per-source meshes, resulting in a greater

amount of control overhead as the source count increases.

Increasing Multicast Group Size Scenario:

As the multicast group size increased from 5 to 40 members, flooding and ODMRP had

similar reliability results to previous scenarios, as shown in Figure 2.7. CAMP, however,

showed a great increase as the group size increased. In CAMP, as the delivery mesh grew

to include more members, a greater number of redundant paths were formed, improving

packet delivery metrics. AMRIS showed a lesser improvement, since its tree structure

naturally inhibits redundant paths. AMRoute reliability declined due to the costs of data

loops and unnecessarily long data paths.

 Figure 2.7: Packet Delivery Ratio as a function of Multicast Group Size [LSHGB00]

Increasing Network Traffic Load Scenario:

For the increasing network traffic load simulation, after a certain point ODMRP

reliability crosses over to be better than flooding, remaining slightly above flooding when

more than ten packets per second were sent, as shown in Figure 2.8. CAMP, also a core

 29

based mesh topology protocol, did have significantly better reliability than the two other

tree based protocols.

In terms of the other three metrics, all protocols were within range of each other with

the exception of AMRoute. Since it has no guard against temporary data packet routing

loops, its numbers were much higher than the other protocols for the three metrics.

Figure 2.8: Packet Delivery Ratio vs. Traffic Load with no Mobility [LSHGB00]

Another definitive study was presented at the 21st International Conference on

Distributed Computing Systems in 2001 by K. Obraczka, G. Tsudik and K. Viswanath

titled “Pushing the Limits of Multicast in Ad Hoc Networks” [OTV01]. It compared

flooding with ODMRP and MAODV (all described previously), using both the

GloMoSim and ns-2 simulators. Part two of this study also investigated two types of

modifications to the basic flooding protocol, scoped flooding and hyper flooding, that

were designed to take advantage of flooding’s strengths or minimize its weaknesses, in

terms of reliability.

Part One: Flooding vs ODMRP vs MAODV

One result of the first part of this study was the confirmation that, with a balanced

ratio between senders and receivers, the redundant packet delivery provided by a mesh

 30

topology made for better reliability. Also, the mesh topology caused reliability to be less

impacted by increased mobility. At higher mobility, the tree based MAODV had more

frequent link changes requiring tree reconfigurations. This generated a greater amount of

control traffic, and higher packet loss from link contention. In the scenarios tested,

flooding had higher reliability than ODMRP and MAODV, due to its extreme amount of

redundant packet delivery, with the gap growing as mobility grew. This is natural, since

no topology needs to be maintained for flooding and every data path is constantly

enabled, so increased mobility does not affect its reliability as much. Generally, flooding

had the highest control overhead (control overhead for flooding being restricted to the IP

header portion of each packet) given that many more packets are sent in the network, and

MAODV the least, except for corner conditions that could be due to protocol parameter

settings, a natural result since flooding has the most redundant packet delivery and

MAODV the least, due to its tree structure. The network traffic load scenario tested

showed flooding with the highest reliability and MAODV with the lowest, except for

corner cases, however the simulated packets per second load did not reach the threshold

where the reliability of flooding could drop due to link contention from overly redundant

delivery in any of the scenarios. The latency scenario showed flooding to have the lowest

latency of all protocols, again, a natural result, because since each data path is enabled the

shortest path is always available. MAODV has the highest, since it consistently has the

fewest data paths enabled.

Part Two: Scoped Flooding and Hyper Flooding

The second part of the study compared basic flooding with two schemes that attempt

to reduce the amount of redundant packet delivery with the goal of reducing network

overhead, classified as scoped flooding, and two that provide an even greater amount of

redundant delivery with the goal of increasing reliability, classified as hyper flooding.

The first scoped flooding scheme was based on received power. In this scheme packet

transmission power is fixed for all nodes. A node receiving a packet compares the power

detected in receiving a packet to a certain fixed threshold, rebroadcasting only if power is

 31

less than the threshold value. The higher the received power, the closer the transmitting

node must be to the receiver, and the greater the overlapped area would be if the receiver

node were to rebroadcast the packet, with less chance of increasing network reliability.

The second scoped flooding scheme was based on neighbor discovery. In this scheme

each node periodically sends a hello message containing a list of known neighbors. A

node receiving a hello message will update its neighbor list with the received list and the

sender. When a node receives a broadcast data packet, it compares the attached neighbor

list with its own neighbor list. If the receiving node’s neighbor list is a subset of the

transmitting node’s neighbor list, the receiver does not rebroadcast the packet.

The first hyper flooding scheme was based on neighbor discovery. Here, each node

also periodically sends hello messages. When a neighbor gets a hello message, it adds the

node to its list of neighbors. When a node receives a packet for the first time it

rebroadcasts the packet in a flooding manner. When the node receives the packet a

second time it will queue it in a packet cache. Then, if the node receives either a data

packet from a node not in its neighbor list, or a hello message from a new node, a

rebroadcast of all packets stored in the cache is triggered. Nodes periodically purge their

cache to prevent excessive reflooding. The second hyper flooding scheme was based on

received power. Here, when a node receives a packet for the second time it checks the

power of the received packet. If the power is above a threshold, the packet is discarded,

since it is likely there is a large amount of overlap in coverage region. If the power is

below a threshold, the packet is rebroadcast with likely greater coverage, higher

reliability and higher overhead.

Simulations were run comparing basic flooding to the two scoped flooding schemes

and the two hyper flooding schemes. Results for 20 senders, 20 packets per second, were

typical, showing that both hyper flooding schemes had higher reliability compared to

basic flooding across all node speeds, and both scoped flooding schemes had lower

reliability compared to basic flooding across all node speeds. This result showed that the

increased delivery redundancy of hyper flooding did in fact help reliability at the cost of

greater network overhead, and the reduced redundancy of scoped flooding hurt it, with

 32

the benefit of lower network overhead, though the scoped flooding schemes lowered the

network overhead by only a small amount. For both hyper flooding and scoped flooding,

the neighbor discovery scheme showed higher reliability than the received power scheme.

This illustrates the benefits of actions taken based on known neighbors, even at the cost

of greater overhead in network wide learning the neighbors, versus actions taken based

on theoretical broadcast coverage. Delay results showed basic flooding to have the least

delay, which was expected. Basic flooding had more data paths enabled than scoped

flooding, and while hyper flooding had higher reliability, the added packets received

were due to later resends, increasing delay on those packets, specifically, and average

packet reception overall. Scoped flooding operated with fewer data paths than basic

flooding, leading to a higher average delay in reception since packets reached receivers

along non-optimal paths.

2.5 Multicast Routing Strategy Discussion
 From the S. J. Lee study [LSHGB00], discounting the flawed AMRoute protocol, it was

clear that for a variety of different network conditions, the basic flooding protocol had the

highest reliability for the greatest number of scenarios, the exceptions being the specific

scenarios of high sender count, and high traffic load. Since flooding generates an extreme

amount of redundant data delivery, these two conditions where the problems of link

contention are magnified illustrated the weakness of flooding. Much more bandwidth was

consumed by redundant data delivery in flooding than in either mesh based or tree based

protocols, and network scenarios where limits of bandwidth overhead are reached will

show the weaknesses of flooding.

 Mesh based protocols had the next best reliability, and used the next largest amount of

network overhead, and tree based protocols came in third in both categories. The

downsides of tree based protocols were more fragile topologies, with links more easily

broken due to mobility, and this was made clear in the scenario tests. The benefits of

redundant, alternate routes in mesh based protocols, allowing for greater data delivery

even when some intermediate links were broken, were also made clear.

 33

 Looking specifically at comparisons between the two mesh based protocols ODMRP

and CAMP, it became clear that ODMRP has better reliability across a range of network

scenarios, while also consuming more network bandwidth. ODMRP was fully distributed

with a greater number of redundant data paths, while CAMP relied on individual core

nodes. These core nodes could easily be located near the edges of ad hoc networks with

fewer redundant paths to them, and so for CAMP, these core nodes became single points

of failure. With the smaller number of redundant data paths, if a core node could not

receive a packet, reliable delivery to multiple nodes was affected. Also, CAMP’s preferred

underlying unicast protocol, WRP, required a period of time to handle link breaks,

impacting reliability, since delivery was best effort. Another implicit advantage for

ODMRP was that previous comparison studies of ad hoc unicast routing protocols

[BMJHJ98] showed that “soft state” protocols ultimately required less control overhead to

maintain routing state, specifically in the face of increasing mobility, than “hard state”

protocols. It is possible that if CAMP adopted a soft state approach similar to ODMRP its

performance under increasing mobility would improve.

 Results of the Obraczka study generally confirmed the overall Lee findings that, when

comparing best effort flooding based, mesh based and tree based protocols, the more data

paths enabled, the higher the overall reliability of the protocol and the higher the overall

bandwidth consumed. Scenarios where the issue of link contention was magnified were

not focused on, so flooding always won out in terms of reliability. Also confirmed in this

study was the fact that the more data paths enabled, the lower the delay for protocol packet

delivery.

 In fact, confirmation of the benefits of more enabled data paths held true even for the

variations of flooding tested in the second part of the paper. Hyper flooding, which

augmented flooding with packet resends at a later point in time, had better reliability than

flooding with more consumed bandwidth, and scoped flooding, which restricted specific

data paths from basic flooding had worse reliability and less overhead than flooding. Both

variations increased average delivery delay, hyper flooding since packet resends occurred

 34

later in time, and scoped flooding because packet delivery paths were not the shortest

possible that basic flooding would have used.

 With these conclusions, a good approach to building a reliable ad hoc multicast protocol

could consist of taking an existing ‘best effort’ protocol that had the best performance in

terms of reliability without the down sides of flooding, and augmenting it in ways to

improve reliability to be better than “best effort”, while impacting packet delivery latency

and bandwidth overhead utilization to the minimum degree possible. This then, became

the goal of my protocol R-ODMRP, described in the next section.

 35

3 R-ODMRP: A Reliable Enhancement to ODMRP
 This R-ODMRP [KR05] project represents an attempt to design such a protocol as was

described in the previous section. The idea was to take mesh based ODMRP and add

mechanisms to increase reliability. These reliability mechanisms consist of store and

resend capabilities added to group receiver nodes in the network. Given the discussion in

the previous section, the issue was to develop request / retransmit mechanisms that would

cause a minimum of contention with ongoing packet delivery, and increase packet

reception across all receivers in the network. In this section, first an overview of R-

ODMRP will be presented, \ followed by an in depth look at its reliability mechanisms.

Finally, a protocol evaluation will be presented.

3.1 Overview

 R-ODMRP was designed to provide each source with a means to work with the two

parameters of reliability and overhead cost, moving the reliability ratio up or down

dynamically, over a single multicast session, if desired.

 In R-ODMRP the responsibility for data storage and retransmit is assigned to all

receivers of the multicast group, with the source of each data stream coordinating

responsibilities. All group members are divided up by the source into sets of local

neighborhoods. The source sets the number of nodes per neighborhood, with the option

of determining the node’s storage overhead. With each neighborhood member storing a

portion of the data packets, each local neighborhood stores a distributed “sliding

window” of all transmitted data packets. Nodes Nacking missing packets will be

answered by nearby neighbors sending replies.

3.1.1 Packet Storage

 In R-ODMRP, when a source initially sends out a Join Query, it becomes a Reliable

Join Query (RJQuery) packet. The RJQuery packet has a timeout value attached. Once

the RJQuery packet is sent, each node receiving it (whether a receiver node or not) will

decrement this timer value by a preconfigured “two hop time” before sending the

 36

RJQuery downstream. After the RJQuery timer expires at each node, each receiver node

will send a Reliable Join Reply (RJReply) back upstream. If a node with an expiring

timer is not a receiver, it will send an RJReply only if it receives other RJReplies from

downstream.

 Each RJReply contains a 2D table, known as the Network Datapath table. When a

node (receiver node or not) receives RJReplies from downstream nodes, it stores their

Network Datapath table as a block in its own table sorted relative to other received blocks

with the topmost block having the longest datapath. On timer expiration, just before the

table is sent upstream in an RJReply, each table entry is shifted such that entry (x, y)

becomes entry (x, y + 1), emptying the leftmost column, column 0. The node stores an

entry for itself in entry (0,0) containing its id, branch count (the number of RJReplies

received from downstream), and receiver status, and then forwards the table upstream in

its own RJReply.

 The end result of the RJQuery/RJReply phase is that the source obtains a full

positional listing of all receivers and forwarding group members in the network.

RJQuery/Reply operations occur periodically, but at a lower frequency than the standard

Join Query/Reply operation.

 The source will then set a number for the “nodes per neighborhood” count, and, with

the Network Datapath table as input, partition all receiver nodes into local neighborhoods

using its “Source Neighborhood” Algorithm. The source then assigns data packet storage

responsibilities such that the set of nodes within any given neighborhood will store the

full set of data packets in sliding window fashion.

On the next multicast data packet after a Reliable Join Query, the source piggybacks a

table defining the range of packet sequence numbers each receiver in each neighborhood

is responsible for storing. Each receiver then begins storing its share of data packets. This

recovery scheme does not depend on which node stores the packets, only that they are

stored somewhere in each neighborhood.

 As nodes leave the group, their storage responsibilities are reassigned on new

RJQuery/Reply rounds. However, as more and more nodes join over time, more

 37

neighborhoods are created and duplicate storage responsibilities will be assigned. The

individual neighborhoods storing the duplicate packets will become smaller and smaller,

relative to the overall network. Additionally, the source can reassign neighborhood size

and data packet storage responsibilities on any RJQuery/RJReply round, dynamically

adjusting reliability versus overhead over the course of a multicast.

3.1.2 Packet Retransmission

The second responsibility, data packet retransmission, will be initiated by a receiver node

noticing a gap in data packets. It will broadcast a Resend Request packet to its local

neighborhood, with a local time-to-live scope, listing all packets needed by sequence

number. The requestor will give its ID for unicast replies. Upon receiving the packet,

neighbor nodes will check their storage for the requested sequence numbers and unicast

found data packets back along a single path. If the requesting node receives an incomplete

reply or no reply at all, it will retain all needed packet sequence numbers, sending them

out in its next Resend Request.

3.1.3 Data Structures

These structures are in packets sent to other nodes:

• Network Datapath Table: This table holds the current node’s network positional

information (node id, branch count and receiver status), accumulated from nodes on all

downstream datapaths. This table is inserted into an RJReply packet, just before

sending. The bandwidth requirements for a single node entry in the 2D Network

Datapath Table in this implementation is 2 ½ bytes, based on a 15 bit node id, a 4 bit

branch count (holding a maximum of 15 branches from a node), and a 1 bit boolean

receiver status. A single 64k data packet will hold data describing approximately 26,200

nodes. As yet, it is unclear what the maximum feasible size of ad hoc networks will be,

but one line of thinking holds them to be smaller than this, such as an informal gathering

of conference attendees, or a lone group of rescuers.

 38

• Data Packet Gap List: This list contains sequence numbers of all data packets that have

not been received by the local node. The bandwidth requirements used in this

implementation are 2 bytes per packet id number.

• Storage Responsibility Table: This table holds data packet storage responsibilities for

all receiver nodes in the network. It is multicast out by the source to all receivers after

the source neighborhood algorithm completes. The bandwidth requirements for a single

receiver node entry in the 2D Storage Responsibility Table in this implementation is (2 +

1/n) bytes, 2 bytes per node and 1 byte for the neighborhood, with n being the ‘nodes per

neighborhood’ count. For a ‘nodes per neighborhood’ count of 3, a Storage

Responsibility Table handling the node count of 26,200 described above will fit into a

64k data packet for the worst case, where every network node is a receiver.

These structures are needed for a node’s internal processing:

• ResendRequestReply Cache: This table holds data packets a node is responsible for

storing. Additionally, it holds snooped data packets carried in resend replies forwarded

by a node. To identify each data packet, the group address, id of the source node,

address of the request originator and previous hop forwarder, originators sequence

number of the request, and the id of the replier are all stored. Entries are aged out in

Round Robin fashion. All replies are stored so that if any nearby receiver node sends a

request for the packet in the future, it can be answered locally. The sending of resend

requests for different nodes are staggered by a random time, in order to make this likely

to happen. If a local group of nodes all miss a data packet but get the next one in

sequence, one node will send out a request for a data packet while others wait. By the

time others begin to initiate a request for the same packet, they will likely find it stored

in their cache already and stop the send process.

• Data Packet Sequencer: This list holds recently received data packet sequence numbers

along with their received time, for a given source. When a sequence number is received

causing a gap, and over two seconds has elapsed since its reception, the missing number

is listed as a gap in the received sequence. The data packet sequencer list is added to

 39

from the tail, and the head is periodically trimmed. Trimming occurs either periodically

when received data packets are all in sequence, or when gaps have been identified and

loaded to the gaps list.

3.2 Neighborhood Creation

3.2.1 Overview of Neighborhood Building

As the group of receivers grows in size, neighborhood partitions and node data storage

responsibilities are dynamically reallocated by the source, allowing partitioned

neighborhoods to be composed of a diminishing percentage of network receiver nodes

that are more closely grouped. As the number of receiver nodes and neighborhoods grow

in an ad hoc network, Resend Requests and replies will travel fewer hops, reducing

overall network traffic. Scalability is built in to the data storage and retransmit process.

3.2.2 Neighborhood Building Parameters

 A set of parameters govern R-ODMRP Neighborhood Building operations. Some

variables are simply inputs to the Neighborhood Building algorithm, while others are

configured by the source. They are described below:

• Size of a node’s data packet storage buffer (NodSiz):It is assumed that all nodes in the

network will be homogeneous, and all will have the same fixed amount of storage

space to devote to reliable communication.

• Amount of network data produced per sec (AmtSec): Fixed based on a single source

generating a set number of fixed size packets per second.

• Number of seconds of data to store (NbrSec): Set to a value greater than the average

time a node going out of range stays disconnected from the network.

• Total storage capacity for a neighborhood(TotStg):

Set by the formula: TotStg = AmtSec * NbrSec

• Number of nodes per neighborhood (NbrNod):

Set by the formula: NbrNod = TotStg / NodSiz

 40

Following are R-ODMRP timing parameters:

• Source timeout after RJQuery, before processing RJReplies (SrcTimOut): Set based

on the maximum simulation time for the first RJQuery to travel to the farthest receiver,

and the RJReply to return to the source.

• Time for a packet to travel one hop and back (TwoHopTim):Used to set timers for

Resend Requests, and to determine the amount to subtract from the SrcTimOut

remainder at each downstream node.

3.2.3 Neighborhood Building Algorithm

 The algorithm takes as input the Network Datapath Table and uses the NbrNod

variable to partition the network into neighborhoods. Then it builds a table assigning each

neighborhood node packet storage responsibilities, and a maximum hop count between

nodes for each neighborhood. It inserts this table into the next JQuery packet before

broadcasting it. The algorithm works as follows:

1. First, a pass is done through the Network Datapath Table, identifying the number of

receiver nodes in each row (data path), summing to find the total number of receivers.

The total number of receivers divided by NbrNod will give the number of

neighborhoods the receivers will be partitioned into, as well as a remainder. The source

keeps track of both the NbrNbrhds variable and the RmdrNbrhds variable.

2. Next, construction of the Storage Responsibility Table begins. Starting with the

receiver at the far right end of the top row in the array, processing moves left, the

hopcount is tracked, and receivers are added until a neighborhood is completed or a

branch node is reached. Once a full neighborhood of receivers is identified, the source

loads a row in its Storage Responsibility Table and records the maximum spanning hop

count.

3. Upon reaching a branch node, if a full neighborhood is not yet built, the algorithm

loads the branch node position on a stack, and steps down to the end of the next row. It

continues to build the current neighborhood from the furthest node from the source

forward, tracking hop count. Similarly, if a branch node is reached in this row,

 41

processing steps down another row, but never moving outside a block. Once processing

again reaches the node originally stepped down to on a given row, the stack node is

popped and processing continues with it.

4. Once the first block is complete, the algorithm moves on to the next. The algorithm

continues on in this manner until all receiver nodes within each block are either

partitioned into a neighborhood or the count of remaining receiver nodes within each

block is less than NbrNod.

5. Remaining receivers in all blocks are closest to the source. They are partitioned in the

following way:

• Unpartitioned nodes are sorted from bottom to top, with associated hopcount to

source retained.

• Selection of nodes for a new neighborhood begins at the bottom, and works

sequentially to the top.

• Hopcount per neighborhood is the sum of the two greatest numbers from either of

the following two sets of hopcounts:

o The hopcount to the source from each receiver in the nbrhd

o The hopcount between any two receivers in one block in the neighborhood

This algorithm will result in a table of partitioned neighborhoods, each with a spanning

hopcount. Storage responsibilities are assigned by assigning a data packet sequence

number range to each column in the table. This table is then put into the next JQuery

packet and broadcast out to all receivers. Each receiver, upon receiving this packet, will

learn its storage responsibilities and begin storing packets in a circular buffer.

3.2.4 Example of Neighborhood Building

 Figure 3.1 shows a diagram of an example ad hoc network. The bold outlined node is

the source, dotted outlined nodes are forwarding nodes and solid outlined nodes are

receivers.

 42

S

R15

16 14

R17

R18
R13

R9

R10

86

R4

R7

R5

R3

2

R1

R12

11

 Figure 3.1: Example Ad Hoc Network.

 Figure 3.2 shows example node network datapath tables, sent from the listed nodes to

those upstream. Eventually the source will receive four RJReply Network Datapath

Tables, sort them by block, and build a Network Datapath Table representing the

composition of the overall ad hoc network.

R3 R4 2 R3 R4 R1 6 R7 8 R9
R5 R10

2 R3 R4
R5

 Figure 3.2: Example Network Datapath Tables (R3, 2 and R1)

 Each entry in this Network Datapath Table is a structure with three elements: NodeID:

the node’s individual id, Branch_Count: the number of downstream branches (table

rows) extending from the node, and Receiver_Status: a Boolean indicating

receiver/forwarder status. The Network Datapath Table constructed by the source is

shown in Figure 3.3. This table has four blocks, built from four RJReplies.

S F R1 R 6 F R7 R 8 F R9 R
4 2 1 1 2

R10 R
0

2 F R3 R R4 R
2 1 0

R5 R
0

14 F 16 F R17 R
2 2 0

R18 R
0

R15 R
0

11 F R12 R
1 0 Key:

R13 R Node Id Rcvr/Fwdr
0 Branch Ct

0

 Figure 3.3: The Source’s full Network Datapath table.

 43

The source then begins the task of partitioning this table into neighborhoods. If the

node count per neighborhood (NbrNod) is three, for example, the partitioning would

happen in the following manner:

• R9 is selected for the first neighborhood. Node 8, a branch node, is placed on the stack,

and R10 is added. Node 8 is popped, and R7 completes the neighborhood. The

neighborhood’s max hop count is set to 2.

• R1 is reached and added to neighborhood 2. R1 is seen as a branch, placed on the

stack, and nodes R4 and R3 are added to neighborhood 2. The max hop count is set to

3, and R5 is a block remainder.

• Next, R17 is selected as the first node of neighborhood 3. 16 is placed on the stack and

R18 is added to the neighborhood. Then node 14 is placed on the stack and R15 is

added to the neighborhood, which is set to have a max hop count of 3.

• Now the algorithm shifts to phase two. The resorted array of remainder nodes is shown

in Figure 3.4. R1 has already been partitioned into a neighborhood, so a flag is set for

the entry to indicate this.

S F R1 R 2 F R5 R
11 F R12 R

R13 R
 Figure 3.4: Network Datapath Table Remainders

• Starting with shortest hopcount to the source first, this array is traversed bottom up.

First, the algorithm selects R13 for neighborhood 4. Next, R12 is selected for the

neighborhood, and finally R5 is selected. The max hopcount is 5.

• The algorithm completes with the Storage Responsibility Table shown in Figure 3.5.

For every 100 data packets sent from the source, nodes in the first column will store

packets 1-33, nodes in the second will store packets 34-66 and nodes in the third will

store packets 67-100.

 44

Pkts 1-33 Pkts 34-66 Pkts 67-100 Nbrhd Hopct
R8 R10 R7 2
R1 R4 R3 3

R17 R18 R15 3
R13 R12 R5 5

 Figure 3.5: Node Packet Storage Responsibility Table.

3.3 Protocol Performance Evaluation

R-ODMRP was implemented in the ns-2 network simulator [FV02], developed by the

University of California, Berkeley, and the VINT project, with Carnegie Mellon’s

Monarch Project mobile and wireless ns-2 extensions [C99] incorporated. The ns-2

simulator is commonly used in networking research. [FV02] provides a full description of

the software layers and the IEEE 802.11 MAC protocol used in these simulations. The

USC/ISI ns-2 implementation of ODMRP [UC01] was also used.

3.3.1 Simulation Details

The ODMRP and R-ODMRP simulations all executed with identical randomly

generated baselines of network traffic and node movement files to more accurately

compare performance. This baseline consisted of five node movement scenarios and six

traffic pattern scenarios. All scenarios established fifty mobile nodes with a single node

as multicast source within a 1000m x 1000m area. The radio propagation range for each

node was 250 meters, and the channel capacity was 2 Mbits/sec. Each simulation

executed for 600 seconds of simulated time. Once all nodes joined the group the

multicast source began transmission of 512 byte packets with a constant bit rate of 3

packets per second. The traffic pattern scenarios had 25, 30, 35, 40, 45 and 49 receiver

nodes respectively.

30 simulation runs were executed each for ODMRP and R-ODMRP. A total of 60

simulations were performed. This baseline was chosen because simulations [LSHGB00]

have shown that ODMRP performs best in conditions of relatively good network

connectivity and low network traffic load and speed, and any protocol with the goal of

increasing its reliability would have to outperform standard ODMRP under these

 45

conditions. The reliability technique proposed in this paper likely has its greatest

advantages in sparse networks with frequent longer partitions, however.

For ODMRP and R-ODMRP, parameters were set to 3 seconds for the Join Query flood

interval and 9 seconds for the forwarding state timout, the values used by ODMRP’s

creators in their simulation studies. R-ODMRP sets a flag in every fourth Join Query

packet, turning it into a Reliable Join Query packet. The node count per neighborhood

for R-ODMRP was set at 3, and all nodes were preset to store a maximum of 500 data

packets, in Round Robin fashion.

3.3.2 Initial Simulation Experiments

Beginning experiments lead to some modifications to the basic protocol of R-ODMRP

that produced better end results. Originally, the time-to-live hopcount for a resend

request packet was set to the maximum distance between nodes within a given

neighborhood, but this produced relatively poor results. Data packets that would have

been correctly delivered under ODMRP were dropped due to network traffic contention

with the Resend Requests, causing the R-ODMRP portion of the protocol to work that

much harder to try to fill the gaps, leading to further network contention. In the end, for

these simulations of high network connectivity, a TTL of 1 gave best results for Resend

Request packets. A consequence of this was that data packets that were undelivered to a

group of receiver nodes tended to “bubble” across nodes over many cycles, increasing

latency for those packets.

3.3.3 Simulation Results

 Initial results for Total Data Packets vs. Delivered Data Packets (Packet Delivery

Ratio) were encouraging. Figure 3.6 shows that when ODMRP ran alone, the Packet

Delivery Ratio varied between 92.8% and 93.8% for the thirty simulations, given the

same number of network nodes and an increasing percentage of receivers.

 46

Pkt Delivery Ratio - ODMRP + RODMRP Protocols,
ODMRP Alone

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Pe
rc

en
t D

el
iv

er
y

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

 Figure 3.6: Packet Delivery Ratio

 When R-ODMRP ran, the ODMRP portion operated between 1% and 1 ½% worse

than its standalone counterpart, due to the added network contention, but the reliability

portion increased Packet Delivery Ratio by approximately 4% overall, to between 97.1%

and 97.7%.

Packet Overhead - ODMRP + RODMRP Protocols,
ODMRP Alone

0

0.5

1

1.5

2

2.5

3

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Tx
 P

kt
s

/ R
x

D
at

a
Pk

ts

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

 Figure 3.7: Packet Overhead Ratio of Data+Control Pkts per Delivered Data Pkt.

Other metrics showed the tradeoff for this increased reliability, however. The Ratio of

Data and Control Packets vs. Delivered Data Packet (Control Overhead), shown in

figure 3.7 reflects a consistent and unavoidable increase for R-ODMRP. The higher

 47

number represents greater channel contention, working against the basic goal of reliable

data delivery. The number here for R-ODMRP must be greater than that for ODMRP,

since R-ODMRP uses additional control packets. On the positive side, the increase

shown for R-ODMRP scales similarly to that of ODMRP, rising a similar percentage as

the number of receivers in the 50 node network declines.

Data Packets Forwarded vs. Data Packets Delivered (Forwarding Overhead), shown in

Figure 3.8 also shows an unavoidable increase for R-ODMRP. The differential in this

metric also represents greater channel contention, working against the basic goal of

reliable data delivery. An increase here must exist, given the store and retransmit

mechanism, but the differential between ODMRP and R-ODMRP increases with an

increase in receiver count. The mechanism used for Resend Request/Reply will be

modified to increase scalability of this portion of R-ODMRP.

Forwarding Efficiency - ODMRP + RODMRP
Protocols, ODMRP Alone

0

5

10

15

20

25

30

35

40

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Tx
 P

kt
s

/ R
x

D
at

a
Pk

ts

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

 Figure 3.8: Forwarding Efficiency

The data delivery latency of the two protocols shows the greatest differential, however.

While the average latency of ODMRP, and the ODMRP portion of R-ODMRP averaged

about 10ms across all receiver counts, the extra packets delivered by the Resend

Request/Reply portion tended to have a latency of seconds, due to several factors. One is

the fact that two seconds elapse after a gap is noticed and a Resend Reply packet is sent.

Another is that a random delay before sending was added to allow snooping of other

 48

node’s Replies before sending a request. A third is the mechanism used to trigger

requests, which causes data to “bubble” across nodes.

The competing metrics involved in enhancing reliability for ODMRP have been

clarified as a result of this work. Four central factors balance against each other: Packet

Delivery Ratio (“Reliability”), Ratio of Data and Control Packets per Delivered Data

Packet (“Control Overhead”), Forwarding Efficiency (“Forwarding Overhead”) and Data

Packet Delivery Latency to all Receivers (“Latency”). Comparing the basic ad hoc

multicast protocol of ODMRP to R-ODMRP, overall latency tends to be lower, reliability

is based on the basic protocol’s best-effort delivery technique, and network traffic

overhead is lower. When the store and retransmit reliability components are added to

ODMRP, reliability increases, overall latency increases and network traffic overhead

increases, due to the control and forwarding mechanisms. A successful reliability

component will, under various network conditions, always increase reliability (by a

varying amount, depending on the scenario and the strength of the reliability component),

increase overhead by an ‘acceptable’ amount (acceptable meaning low enough so that the

extra overhead causes minimal additional network contention resulting in minimal

additional dropped data packets), and increase data packet latency as little as possible. Of

the three competing factors, the two overhead metrics are more tightly linked to increased

reliability, and latency is the least linked metric.

In most multicast ad hoc protocols, reliable packet delivery falls off sharply as network

node density becomes more sparse, with fewer links between nodes. It is expected that

the sparser the network, the more successful a store and retransmit reliability component

such as R-ODMRP will be in achieving its goals. In sparse networks increased network

traffic overhead required by the reliability component will have a lesser negative effect,

since contention is less of an issue. It is expected that latency will be affected to a greater

degree, since packets that would have been undelivered will be delivered much later,

when a link is finally obtained, but latency will be due to the unavailability of a link

rather than the mechanisms of the reliability component.

 49

3.3.4 Protocol Results by Phase

Statistics were gathered for the normalized packet counts for each phase of the ODMRP

portion and the reliability portion of R-ODMRP. Figure 3.9 reflects the normalized

packet counts for all phases of ODMRP. Here it can be seen that the number of

forwarded JQuery packets holds flat across the 6 scenarios, while the forwarded data

packet count rises gradually. This makes sense, because as more receivers are added, data

packets will at times be forwarded to further endpoints, given the same network. The

JReply packet count shows a sharper increase, however. This portion of ODMRP would

be the first to investigate in order to raise ODMRP’s overall efficiency.

Normalized Packet Counts - ODMRP Alone

0

10000

20000

30000
40000

50000

60000

70000

80000

50
n2

5r

50
n3

0r

50
n3

5r

50
n4

0r

50
n4

5r

50
n4

9r

Network Density

Pa
ck

et
 C

ou
nt

fw d jqueries

fw d jreplies

fw d data pkts

 Figure 3.9: Normalized Packet counts for ODMRP.

 Figure 3.10 shows the corresponding normalized packet counts for the phases of R-

ODMRP added in over the baseline series of runs. Here it can be seen that the number of

RJQueries holds flat. This is expected, since the ODMRP protocol is reused for this

component. The count of RJReplies rises very gradually, almost holding flat, as the

number of senders is increased. This count reflects the new timeout mechanism for

gathering all downstream RJReplies before initiating one upstream. This metric shows

that ODMRP’s network contention due to JReply traffic can be reduced by adopting the

R-ODMRP mechanism. This would increase ODMRP’s scalability and efficiency by

reducing control overhead. The R-ODMRP counts for Resend Requests and Resend

 50

Replies rise at a similar steep pace relative to the other protocol components, however.

The Resend Request/Reply mechanism would be the first to look at in terms of increasing

the efficiency of the overall R-ODMRP protocol. A technique to unicast out a Resend

Request should help reduce this packet count. This will have the secondary effect of

reducing the Resend Reply count.

Normalized Packet Counts - ODMRP & RODMRP
Protocols

0
10000
20000
30000
40000
50000
60000
70000
80000

50
n2

5r

50
n3

0r

50
n3

5r

50
n4

0r

50
n4

5r

50
n4

9r

Network Density

Pa
ck

et
 C

ou
nt fw d jqueries

fw d jreplies

fw d rjqueries

fw d rjreplies

fw d resend reqs

fw d resend replies

fw d data pkts

 Figure 3.10: Normalized Packet counts for ODMRP, R-ODMRP

3.4 Conclusions for R-ODMRP

 This section described R-ODMRP, a reliability protocol added to ODMRP. R-

ODMRP consists of reliability mechanisms that store and retransmit sequenced data

packets between receiver nodes, with overall coordination by the source. R-ODMRP has

been implemented in ns-2 and run against a baseline of a light density network with

increasing receiver count, ideal conditions for the base ODMRP protocol, the current

standard for reliability among ‘best effort’ protocols. . Results show that R-ODMRP

does outperform ODMRP under these conditions in terms of reliability, at an acceptable

cost of an increase in routing efficiency and forwarding efficiency bandwidth overhead.

The data delivery latency metric can be improved with fine tuning on the Resend Request

/Reply protocol phases.

 51

4 Review of Related Reliable Multicast Protocols

4.1 Introduction

By 2001 a large amount of research had yielded a substantial number of “best effort”

unicast and multicast MANET communication protocols. Between 2001 and 2003 some

research papers were published that focused specifically on the issue of multicast

reliability in MANETs (e.g. AG [CRB01], RDG [LEH03], RALM [TOLG02], ReACT

[ROLTG03],).These protocols were implemented either by means of taking a known “best

effort” protocol that was well documented with high initial reliability, and adding

reliability mechanisms to increase the packet delivery ratio, or by creating standalone

mechanisms that could be added to other “best effort” multicast protocols to enhance their

reliability.

From 2002, papers on multicast reliability began to appear describing new protocols

specifically designed for high reliability, with RMA [GSPS02], Scribble [VE04], RAPID

[DFKS06] and EraMobile [GO07]. As with the more general multicast MANET protocols,

these protocols can be categorized by the central mechanism used to provide reliability.

4.2 Reliable Multicast Protocol Category Descriptions

Recent reliable multicast protocols can generally be classified as deterministic protocols

(RMA [GSPS02], RALM [TOLG02], ReACT [ROLTG03], Scribble [VE04]), which

attempt to guarantee fully reliable data delivery, or probabilistic protocols (RDG

[LEH03], AG [CRB01], EraMobile [GO07], RAPID [DFKS06]) which try to guarantee a

certain probability of reliability.

Deterministic protocols usually attempt to guarantee fully reliable data delivery by

requiring individual group member nodes to detect their own missing packets and make

their needs known by negative or positive acknowledgements (N/ACKS). These ack

messages are transmitted to the source or to another group member, who then has the

responsibility of retransmitting the missing packets.

 52

Probabilistic protocols do not attempt to guarantee fully reliable data delivery, but

rather are designed to provide a certain data delivery probability. They are currently being

investigated as a means to deal with what appears to be the essentially non-deterministic

nature of MANETs. The hope is that in relaxing the requirement for full reliability,

operational overhead can be reduced and the scalability and inherent reliability of

protocols enhanced. The fact that no reliable packet delivery guarantees can be provided

by probabilistic protocols is a clear downside to this approach however, as is the potential

for larger latencies associated with the packet dissemination and recovery mechanisms.

4.3 Reliable Multicast Protocol Related Work

4.3.1 RMA

RMA [GSPS02] is a sender initiated reliable ad hoc multicast protocol that assumes

sources know the ids of all receivers in the network. This source knowledge is enforced

through the lifetime of a network by JOIN and LEAVE messages, transmitted by

receivers. The topology utilized by RMA is not strictly tree or mesh based, but rather

based on an undirected graph, created dynamically, that can take the form of a tree or

mesh.

RMA operates with two phases: initial multicast then retransmission. During the

multicast phase a source transmits MKNOWN messages, which are unicast to receivers on

routes known by the source (learned through JOIN or ACK messages), and

MUNKNOWN messages that are broadcast to aggregated receivers on unknown routes.

Sources choose best routes to a destination based on link lifetime, rather than shortest hop.

Source route choices are also influenced by routes aggregating more receivers rather than

fewer. After waiting a period of time, if the source is not able to gather acknowledgements

(MACKs) from all group members, it begins the retransmission phase, sending an

MUNKNOWN message with a RETRANSMIT flag. This is repeated until the source gets

ACKs from all receivers for all packets. If a receiver senses a return path is not valid, it

will send a broadcast MACK (BMACK) back to the source. All network nodes will

refresh their routing tables with reception of JOIN, MACK or BMACK messages. JOIN

 53

messages are broadcast by all receiving nodes. Network connectivity is maintained with

neighbor HELLO messages, to publicize neighborhood changes. No state information is

propagated network wide, instead, each node keeps only next hop routing information for

other next hop nodes. When a next hop node moves out of range of a networked node, the

networked node removes routes with that node listed as next hop.

A downside of this approach is the necessity for all receiver ACKs to travel back to the

source. This makes scalability of the protocol problematic, due to ACK implosions. This

ongoing requirement for multiple receivers to interact with the source directly conflicts

with network stresses imposed by dense networks, high data rate and high mobility

scenarios, where high degrees of link contention and link breaks occur.

4.3.2 RALM

RALM [TOLG02] is a reliability protocol that achieves a higher data delivery ratio by

enforcing a congestion control mechanism similar to TCP. It is a precursor to ReACT,

developed by many of the same researchers. Reliable data delivery is guaranteed to one

group member at a time, in round-robin fashion. RALM begins with an assumption that

the source knows the full group membership. The source selects one receiver at a time, in

round robin fashion, to transmit a window of data to. The selected receiver will unicast a

reply to the last packet with either a positive ACK, showing the window of data was

successfully received, or a negative NACK, requesting retransmission of missing data, on

a per packet basis. This per packet retransmission forces the source to slow its data rate

until the specified receiver has achieved full reliable reception for the window of data.

The selection of a single receiver negates the possibility of N/ACK implosions at the

source, since no other receivers other than the selected one may reply. This feedback

from the receiver is also used to adjust the source window size. The window initially

increases exponentially until a “slow start threshold” is reached, then linearly. If losses

begin to occur the window is halved. The downside of this approach is that decreased

throughput is the tradeoff for increased reliability. Another downside is that even with

congestion control, dropped packets are resent from the source rather than locally,

creating greater network overhead from both the receiver NACK and the source

 54

retransmit packets. High mobility has a good potential to unnecessarily shrink the

sending window. Instead of network congestion causing a receiver to miss packets,

broken links due to mobility would be the cause, and the congestion control mechanism

would be unable to differentiate. This mechanism is different from TCP in that one

source window of data is used for all network receivers, and only the last packet of the

window requires a receiver generated ACK.

4.3.3 ReACT

ReACT [ROLTG03] combines receiver based, local recovery with RALM’s source

based congestion control mechanism. For the congestion control, the source in ReACT

initially probes the network to deduce a packet send rate, then multicasts data at the

configured rate until hearing a NACK from any receiver experiencing congestion. As in

RALM, on source reception of a NACK, loss recovery is begun, during which the source

collects more NACKs from other receivers. In loss recovery, the source cycles through its

list of NACKing receivers, selecting one at a time to communicate with and discover

missing packets from, replying with one packet at a time, multicast, since other receivers

may also be missing it. As the source does this, the selected receiver unicasts individual

packet ACKs back specifying sequence numbers of a packet still missing. The goal of this

single packet transmission is to slow the source data rate until congestion is relieved.

There is still no ACK implosion issue, since the only node sending ACKs is the individual

receiver working with the source at any given time. If the source receives no reply from a

given receiver after three send attempts, it removes the receiver from its list. When the

source’s list of receivers needing resends is empty, the source reverts to its original data

send rate.

ReACT adds a local recovery mechanism in an attempt to alleviate unnecessary

slowing of source sends. The mechanism works by each receiver node maintaining a

current ‘reliability’ metric for itself, calculated by a sliding window formula using the

numbers of packets it received and packets it should have received, and sending this

metric, a congestion indicator and its node id downstream in the ip portion of the data

packet header. Downstream nodes store constantly updated tables of this information

 55

along with reception timestamps, used to timeout old entries. When a node initiates local

recovery, it selects a recent ‘upstream’ node id from its table with the highest reliability

metric and no congestion indicator, and unicasts a request to it. If all upstream nodes show

congestion, the node reverts to the congestion control mechanism. If the number of

packets requested is below a set threshold, the node receiving the request checks its store

for the requested packets, forwarding them back if found, forwarding a rejection if not. A

requesting node receiving a rejection will attempt local recovery two more times with

different nodes before reverting to source based recovery. If the number of packets needed

by a requestor is over a set threshold, the request is forwarded to the source for source

based recovery. Receiver nodes only store a small number of data packets, 20 in the

simulations published.

4.3.4 Scribble

Scribble [VE04] provides a deterministic guarantee that at least K receiver nodes will

receive a given packet. In Scribble, data packet dissemination responsibility begins with

the source but is later passed to other nodes on a per-packet basis, deemed to be in better

positions to disseminate than the currently responsible node, with lower overhead. Data

dissemination does not require a routing protocol or any knowledge of network topology.

If a node becomes responsible for delivery of packet m, it must transmit m every x

seconds, with x a specified protocol parameter. A counter mechanism controls transfer of

dissemination responsibility.

Dissemination Responsibility: A node Nn receiving m for the first time sets its new

logical clock Ln(m) to 0. If the node becomes responsible for transmission of m it

increments Ln(m) by 1, stamping m with the value of Ln(m) prior to sending it. If another

node Nj not responsible for m receives this packet, it becomes responsible for sending it if

its timestamp Lj(m) is less than or equal to that in the packet and if Nj has not received m

in the past (beta – sigma) seconds. If these occur, Nj sets Lj(m) to equal the timestamp in

the received packet m, and selects a random delay time, after which if a second packet m

is not received, Nj then becomes responsible for sending packet m. If a responsible node

 56

Nj receives a packet m with time greater than or equal to its Lj(m), it relinquishes

responsibility for m and cancels pending transmissions of it.

Realization: Each node responsible for transmitting m will append a list of signatures of

nodes known to have received it to the packet header. A node receiving m that does not

see its own signature in the header and decides not to transmit is still responsible for

transmitting a small ack packet one hop back to the sender. A node N will realize m when

its header contains K signatures of other nodes. On realization or on receiving m later, the

node will transmit a realization packet containing the id of m. Other nodes receiving the

realization packet will also realize m, without necessarily sending out their realization

packets for m.

Termination: Network conditions that are extremely “adversarial” (in the author’s

words) will require extreme measures to ensure reliability to K receivers. The extreme

measure implemented in Scribble allows all receiver nodes in the network to eventually

become responsible for transmission of m after a period of time in which it appears packet

m is not being realized. Here, each node Nn has a parameter Theta such that if the logical

clock in the newly received packet m.l is greater than Theta (where it is clear the packet

has spent over the threshold period of time in an unrealized state), then node Nn becomes

responsible for transmitting m as well. In this way, eventually all nodes in the network

will be added to the set of nodes transmitting m until realization is eventually reached. The

more nodes in this state, the higher the transmission overhead, but the authors state that in

adversarial network conditions this may be the only remedy to the provision of reliability.

Also, the authors suggest that a high value be selected for Theta, since potentially

prolonged partitions are common in ad hoc networks, and can easily be mis-read as

“adversarial” network behavior when they are not.

4.3.5 Anonymous Gossip

Anonymous Gossip [CRB01] is a reliability mechanism that operates on top of any

multicast protocol. It does not require group membership information. It allows for

randomly selected pairs of group nodes to exchange information on received and lost

packets by operating in two phases. First, a source node multicasts data packets using the

 57

underlying best effort multicast protocol. Secondly the recovery phase operates. In this

phase, a group member missing packets will periodically send a gossip request, containing

data on lost packets, sequence number of next expected packet and source and group

address, along with a list of received packets, to a pseudo randomly selected neighbor

node. If the neighbor node is a group member, there is a certain probability that it unicasts

requested data packets back to the initiator with its own request for its missing packets

known to be received by the remote requestor. If the neighbor node is not a group member

or if the probability of replying is not enforced, the receiver randomly selects a neighbor

to forward the message to. The multicast protocol in use must provide nodes with

hopcounts to their nearest neighbors, to accomplish this. Requests are answered by nearer

neighbors with a higher probability than farther neighbors to reduce network overhead.

The interaction with farther neighbors, though at lower probability, attempts to solve the

issue where an entire region of the network has failed to receive a given packet. An

unavoidable downside of this approach is that the increased network traffic created by the

protocol negatively impacts the data loss the protocol attempts to correct. Also, given that

requests/replies occur between random nodes, this is a probabilistic technique.

4.3.6 RDG

RDG (Route Driven Gossip) [LEH03] is built on top of a MANET unicast routing

protocol, such as AODV or DSR. It uses a pure gossip based mechanism both for initial

multicast packet transmission and for missing packet recovery. Unlike RMA, RALM and

ReACT, the source is not required to have full group membership knowledge, only

partial knowledge. In RDG, nodes can join groups through JOIN sessions, where a node

announces itself, and other group members probabilistically reply, so the joining node has

a partial view of the group on joining. Each group member then periodically gossips,

sending a packet containing new received packet id’s, missing packet id’s, new group

members and leaving group members to a subset of nodes in its partial group member list

via the routes reported by the underlying unicast routing protocol. In this way the gossip

messages are “route driven” rather than being “view driven”. No overall source oriented

group membership view driven mechanism exists. A group member receiving such a

 58

gossip message examines the lists, sending back packets it has received that are on the

gossiper’s missing list, requesting packets it is missing that are on the gossiper’s newly

received list. This eliminates the need for source nodes to participate in missed packet

retransmits, putting the burden for retransmission on all group members. The receiving

group member will also remove obsolete members from and add new members to its

partial group member view. A node will leave the group by announcing its departure

through such a gossip message. RDG operates entirely probabilistically, with no

mechanism for complete delivery of all packets to all group members.

4.3.7 RAPID

The Reliable Probabilistic Dissemination protocol (RAPID) [DFKS06] utilizes

probabilistic packet forwarding with deterministic recovery mechanisms to achieve high

reliability. Design of the protocol is based on the conclusions that: 1) a node’s forwarding

probability should be inversely proportional to the number of nodes in its one-hop

neighborhood at a given time, and 2) the forwarding probability should be kept to a

relatively low value, based on formal analysis of an optimal number that is low but

ensures “good” reliability.

The designers state two assumptions in their paper that would seem unrealistic regarding

ad hoc wireless networks: 1) ad hoc networks are continuously connected, and 2) in

wireless networks most message losses are caused by packet collisions. Assumption 1 is

unrealistic since in very sparse and even moderate density networks, network partitioning

is an ongoing issue to deal with. Assumption 2 is also false due to the network links lost to

partitioning.

This initial probabilistic packet dissemination scheme works by nodes, on receiving a

packet, probabilistically determining if they will broadcast it or not. This mechanism is

then deterministically assisted with timer based corrections, to either cause a node about to

forward a packet to not forward after a timeout if it receives the packet from a second

node during the timeout, or to cause a node not forwarding to decide to forward after a

timeout if it does not receiver the packet from a second node during the timeout.

 59

A deterministic mechanism is also used for packet recovery. Every node is required to

gossip with all nearest neighbors via broadcast, sending received packet headers, and

allowing nearest nodes to request missed packets. This mechanism is deterministic in that

all 1 hop neighbors are included, and all could possibly reply with requests, though the

same two timer based corrections are in operation for packet resends. In packet resends, a

node deciding to resend a requested packet will not if it overhears a neighbor’s resend, and

a node deciding not to resend will change its actions if it doesn’t overhear a neighbor node

resending. No two hop neighborhood information is used in RAPID. Nodes purge

received messages via timeouts, in order to avoid unbounded required memory problems

during protocol operations.

4.3.8 EraMobile

EraMobile [GO07] is a gossip based multicast protocol that does not require the

maintenance of any tree or mesh type structure, nor a global or partial view of the

network, nor any neighbor node or group member information, or even a formal routing

protocol for data dissemination. EraMobile disseminates data packets purely through a

gossip mechanism, yet has the goal of providing fully reliable data delivery. Once the

source has sent a data packet, dissemination occurs purely through nodes periodically

gossiping with nearest neighbors only. The gossip packets contain the digest of the

sender’s stored data packets. A nearest neighbor receiving the gossip packets can reply

with a packet requesting data it is missing, and on receiving this, the gossiping node will

send the packets back. With this technique data delivery latency is greatly increased, but

the authors state that the protocol is not intended for low latency applications, and in

addition to the benefits of reliability, control overhead is very low. The number of packets

requested, as well as the number of requested packets sent, is limited in any given round in

order to not congest the network with the resent packets. Due to this it could take several

rounds for a requestor to send out all its requests, spreading the control and network

bandwidth overhead over time. A receiver queues received packets in FIFO order,

delivering them to an upper layer when no gap exists, or when missing packets are

declared lost.

 60

EraMobile has a data dissemination unit that distributes packets through gossip

messages with no multicast or unicast protocol. Each gossip message carries the digest of

the sender’s data buffer contents. The rate of gossip broadcasts is controlled by a

parameter. A receiver, on getting a gossip message, examines the contents then sends back

a request packet with a listing of packet sequence numbers needed, with the list count

limited by a parameter, to keep the packet small. Single packets are then forwarded to the

requestor. Sequence numbers are aged out of gossip message inclusion over time.

EraMobile has a buffer management unit that maintains protocol buffers at a node,

performing data delivery in FIFO order. It also has an adaptivity unit that listens for gossip

and request messages to determine the number of one hop neighbors. In low density areas

nodes send out gossip messages more frequently to take advantage of more ephemeral

links, while in high density areas the rate is decreased in order to not waste limited

bandwidth.

Given the basic probabilistic mechanism EraMobile uses to make decisions on packet

forwarding at each link, a large increase in latency is unavoidable, and must be accepted.

The tradeoff is the low amount of control overhead, also a direct result of the probabilistic

mechanism for packet forwarding.

4.4 Reliable Multicast Performance Comparisons

4.4.1 Reliability Protocol Performance Modeling

 Without exception, the 2001 and later research papers presenting multicast MANET

protocols that focused on reliability as the primary feature include a performance

evaluation section where the authors implement their protocol in a MANET network

simulator to study its reliability and other performance properties. The three network

simulators mentioned in section 2.4.1 are the most commonly used, though two of the

reliable multicast protocols discussed here use other network simulators. These two

relatively new simulators are RELSIM and JIST/SWANS.

• RELSIM [TG01] – A distributed mobile ad hoc network simulator developed

in 2001 to test reliability properties of routing algorithms in MANETs. The

 61

simulator is developed in Java with CORBA providing the infrastructure, and

uses multithreading to simulate actions of individual nodes. This simulator

was developed by the creators of the RMA protocol.

• JIST/SWANS [CU] – this simulator was developed in 2004 by Cornell

University. JIST (Java in Simulation Time) is a discrete event simulation

engine that runs over a standard Java virtual machine, while SWANS

(Scalable Wireless Ad hoc Network Simulator) is built on top of the JIST

platform, designed specifically for large scale network simulations.

Typically the new reliable protocols are compared to one or, at most two, other ‘best

effort’ protocols, usually selected because they are well documented and known to have

high reliability. The most commonly selected protocols used for comparison are

flooding, ODMRP and MAODV.

• Flooding – this basic protocol is commonly known to have one of the highest

broadcast reliability metrics of any best effort protocol. This fact first came to

light in the research comparisons described in section 2.4.3, and since then has

been commonly used as a standard of comparison for MANET multicast

reliability protocols.

• ODMRP – this multicast mesh based MANET protocol has been well

documented, simulated in multiple studies, and shown to have one of the best

reliability metrics of existing multicast ‘best effort’ protocols. Furthermore,

mesh based topologies have been shown to provide higher reliability in

general, given the redundant packet delivery inherent in the topology.

• MAODV – this multicast tree based MANET protocol is also well

documented and simulated in multiple studies. While it is generally accepted

that tree based multicast protocols do not provide as high reliability as mesh

based protocols in many scenarios given the relatively fragile nature of the

tree topology, there are specific scenarios where multicast tree based protocols

can have higher reliability.

 62

While several multicast MANET protocols featuring reliability have been developed and

documented since 2001, to date there has not yet been a paper presentation that has

compared any against each other, like the two comparisons described in section 2.4.3

have done for ‘best effort’ multicast MANET protocols. I believe this is partially

because the reliable multicast protocols developed to date tend to be more complex and

so new as to be not yet available to public access, and because efforts are still ongoing in

developing new techniques for reliability, so no one has yet taken a step back and taken

the time to implement any of these protocols strictly for purposes of comparison.

 Below is a listing of the reliable multicast MANET protocols discussed in the next

section, showing the simulators used for implementation and comparisons, along with the

protocols selected for comparison. Also listed is a note about whether the protocol was

designed as a standalone multicast communication protocol, or as a reliability mechanism

to be used on top of another MANET protocol.

• RMA – implemented in the RELSIM simulator
o Designed as a standalone multicast protocol
o Compares performance to MAODV
o Unique feature: “link lifetime” metric used for routing.

• RALM – implemented in the QualNet simulator
o Can run on top of other multicast protocols, ODMRP, AODV.
o Uses source constriction, source based resend.
o Compares performance to UDP and SRM (both on top of ODMRP and

AODV)

• ReACT – implemented in the QualNet simulator
o Enhancement of RALM, extends it with a ‘local recovery’ feature, still

running on top of ODMRP and AODV.
o Compares performance to RALM only

• Scribble – implemented in the GloMoSim network simulator
o Designed as a standalone multicast protocol
o Compares performance to ODMRP

• AG – implemented in the GloMoSim network simulator

o Runs on top of any multicast protocol
o Compares performance to MAODV

 63

• RDG – implemented in the ns-2 network simulator

o Runs on top of the DSR unicast protocol
o Compares performance to AG

• RAPID – implemented in the JIST/SWANS network simulator

o Designed as a standalone multicast protocol
o Compares performance to flooding and GOSSIP3 (though only a few

charts compare performance to flooding)

• EraMobile – implemented in the ns-2 network simulator
o Designed as a standalone epidemic-based multicast protocol
o Compares performance to flooding for reliability and MAODV for

overhead consumption

4.4.2 Reliability Evaluation Metrics

 The same 3 core evaluation metrics listed in section 2.4.2 used to evaluate multicast

MANET protocol performance are used to evaluate reliable multicast MANET protocol

performance. The three are:

1. packet delivery ratio – the number of packets received by all receivers over the

total number possible to receive (a.k.a reliability).

2. data and control overhead – the amount of data bytes and control bytes sent over

the network over data bytes delivered, in order for the protocol to operate.

3. data delivery latency – the amount of time in between a source sending a packet

and a receiver receiving it, averaged over all receivers, averaged over all packets

sent.

 In general, ongoing research reflects that these three metrics are interdependent, and

tightly linked in protocol operations. Usually, when a protocol is designed to enforce

stricter reliability, either overhead consumed, or latency, or both will suffer. Though

there have been several methods designed to strengthen reliability to date, all have come

with some cost associated with these other two metrics.

 64

4.4.3 Reliability Simulations and Results

4.4.3.1 RMA
RMA was implemented in the RELSIM simulator, and compared to MAODV, a

multicast version of the AODV protocol. Three metrics were used to compare

performance between the two protocols, packet delivery ratio, data overhead (total count

of data packets in the system vs the number of data packets delivered) and control

overhead (count of control bytes vs the count of data packets delivered). Simulations

were performed with an environment of 50 nodes in a 1000m x 1000m area, each with

200m broadcast range, with a random waypoint motion model. No mention was made as

to the length of time the simulations ran, or the number of senders and receivers among

the 50 nodes. Fixed resting times of 10 seconds and 50 seconds were used. Since both

numbers are relatively high for resting times, only the 10 second resting time charts will

be discussed here. Even a 10 second resting time tends to make for a fairly static network.

In Figure 4.1 shown below, RMA has a packet delivery ratio near 100%. This is

compared to MAODV which starts, at low speeds, at over 95%, but drops steadily as

node speeds rise. Finally at 50 m/sec MAODV has ~63% reliability at 10 seconds of

motion time per 10 seconds of resting time, and ~55% reliability at 10 seconds of motion

time per 50 seconds of resting time. Results were also shown where the hopcount metric

is used for RMA path selection instead of Link Lifetime metric, but results are similar, so

only Link Lifetime results will be discussed here.

Figure 4.1: Packet delivery ratio vs Speed at 10s rest time using Lifetime metric

 65

Figure 4.2: Data Overhead vs Speed at 10 sec rest time using lifetime metric

Data Overhead results shown in Figure 4.2 also showed advantages for RMA over

MAODV. As node speeds rose, RMA overhead ramped at a low but steady rate, while

MAODV overhead rose at a much faster rate.

Figure 4.3 shows that control overhead also rising slowly for RMA as node speed

rises, while it rises at a much faster pace for MAODV with higher node speeds.

Figure 4.3: Control Overhead vs Speed at 10 sec rest time using lifetime metric

Several factors account for the differences in performance of the two protocols, and

the overall results shown for RMA. The major distinction between the protocols is that

RMA is designed for reliability, relying on missed packet retransmissions to increase

 66

packet delivery ratio. MAODV is best effort, and packets missed from initial delivery

cannot be made up for.

Next, as mentioned previously, 10 seconds pause time is significant for overall node

motion definition. For the 10 second mobility time, this means half the scenario time all

nodes are essentially static. Intuitively, since RMA relies on retransmissions for

reliability, a very stable network provides breathing space that could account for a

tremendous boost to overall reliability. Since MAODV is best effort, it can only benefit

partially from this periodic stability.

The authors mention that they combine data and control information together, with

only a few standalone control packets, namely MACKs and BMACKs. Further, these

standalone packets are much smaller than the standalone control packets in MAODV,

namely RREQ’s, RREP’s and MACT’s. Since higher mobility requires more control

packets for both protocols to account for a greater number of broken links, this difference

becomes more significant with rising node speeds. The new “link lifetime” metric does

not seem to perform appreciably better in the side by side performance comparisons with

scenarios where the hopcount metric is used instead.

RMA’s routing path creation algorithm would appear to construct graphs similar to

the meshes created in ODMRP, since broadcast is used to reach all receivers with

unknown routes. This broadcast mechanism has been shown to provide high reliability in

scenarios such as this one, 50 nodes in a 1000 x 1000 meter area. It is likely that if the

node count were increased to form dense scenarios, the negative effects of broadcasting,

both for source retransmitted data packets and for receiver sent BMACK

acknowledgements, would result in decreased reliability.

Another factor that the performance scenarios were not able to draw out was the

known issue of the necessity of receiver node interactions with the source resulting in

decreased reliability. In this case, all nodes are required to send ACK packets back to the

source, an interaction that severely impacts scalability, resulting in decreased reliability

as scenarios include either much larger networks or more dense networks. The scenario

details also did not include how many packets per second were transmitted. The

 67

broadcasting would have little to no impact at very low data rates, but would have a

potentially large negative impact at high data rates.

4.4.3.2 RALM and ReACT
ReACT is an extension of RALM, so performance of both will be discussed in this

section. Initially, RALM was created as a transport layer protocol running on top of any

multicast protocol. RALM’s contribution is twofold. On the one hand, it provides a

congestion control mechanism to increase reliability by reducing the source’s packet send

rate when packet loss occurs in the network, and on the other hand it provides a source

based packet retransmit mechanism for receiver nodes that have missed reception of

packets during the initial send process.

RALM was compared to UDP (unreliable packet send) and SRM [FJMLZ97], all

running on top of ODMRP. The UDP comparison was used as a basic multicast protocol

with no reliability guarantees, and SRM was used as a basic error control oriented

reliable multicast protocol. The QualNet simulator was used for the comparisons, in

scenarios with 50 nodes in a 1500 x 1500 meter area (a density of ~22 nodes in a 1000 x

1000 meter area). 512 byte packets were sent over channels with 2Mb/second capacity by

nodes with a maximum radio range of 375 meters. MAC 802.11b DCF was the MAC

protocol used, and random waypoint was used for the mobility model, where mobility

was added. Packet delivery ratio, control overhead and packet delivery latency were

examined for the scenarios.

Three scenarios were tested: varying network traffic rate, varying the number of

sources and varying the node mobility speed. First, in the varying traffic rate scenario,

nodes were stationary. There were 5 senders and 10 receivers. Packets were sent at rates

varying from 2 packets/second to 10 packets/second. Figure 4.4 below shows RALM

achieving full reliability, and outperforming UDP and SRM in terms of control overhead

and latency, shown in Figures 4.5 and 4.6.

 68

Figure 4.4: Figure 4.5: Figure 4.6: Figure 4.7:

Reliability Overhead Latency Source data rate

While RALM appears to perform well in terms of reliability, overhead and latency, it

must be kept in mind that the central feature of the protocol by necessity results in a

slowing of the source data rate. RALM assumes packet loss to be the result of congestion,

which is not necessarily the case for many scenarios, including sparse networks or

networks with high node mobility. Figure 4.7 shows the true source data rate for RALM

in the test point to the far right, where the unconstrained source data rate at a packet

interdeparture rate of 100ms was 10 packets/second, RALM’s source data rate was

restricted to ~ 2/5 of this, or about 4 packets/second. At this rate, UDP results are very

similar to RALM’s across all three metrics. Results here are questionable, however. In

the traffic rate scenarios all nodes were kept stationary, a condition favorable to RALM

since non-congestion factors for missed packets (i.e. missing, broken or ephemeral links)

are greatly reduced, and congestion is in fact generated over time as the source packet

send rates increase.

A second scenario of increasing number of sources is also presented, where both the

multicast source count and the receiver count increase from 10 to 40. Here the source

send rate is held constant at 2 packets/second, for an unknown length of time. Again,

nodes are kept stationary throughout all test points in this scenario, so this scenario also

exhibits a condition favorable to RALM, since congestion is increased over time with

non-congestion factors for missed packets minimized. In this scenario packet delivery

ratio only is shown, with no results for overhead or latency, or the reduction of source

data rate. In the delivery ratio chart, RALM outperforms UDP and SRM to a greater

degree as source count increases.

 69

A third scenario of increasing mobility is presented, where node speed is varied from

0 meters/second to 50 meters/second, using the random waypoint model with 5 multicast

sources and 10 receivers. No indication is made as to the node pause time between

directional movements, or overall simulation time. While nodes are allowed to move in

this scenario, results are shown for packet delivery ratio only, not for overhead or latency.

Here RALM slightly outperforms UDP and SRM, since all three protocols have fairly

high reliability over all the test points. The cost of RALM’s high reliability, in terms of

the constriction of the source data rate, is not shown either.

ReACT’s implementation of source constriction changes some details of RALM’s but

has basically the same effect, however ReACT introduces a relatively weak local

recovery scheme. Its published simulation data reflect the consequences of this. When

compared to RALM, ReACT showed a significant decrease in source data rate

constriction, and resulting increase in source ‘goodput’, defined as throughput of packets

that were reliably received by all receivers. ReACT was also compared to ODMRP in a

‘congestion’ scenario, with increasing traffic rate. In this scenario nodes were again kept

stationary, and only packet delivery ratio, goodput, overhead and packet dropped counts

were measured. ReACT has a much higher reliability metric for increasing data traffic,

but a lower ‘goodput’ metric than ODMRP. In other words, of the packets the source sent

in both protocols, a greater percentage were reliably delivered in ReACT, but in ODMRP

since the source had no transmission rate constriction and sent far more data packets, the

result was a greater number of packets reliably delivered to all receivers, as shown in

Figures 4.8, 4.9 and 4.11.

Figure 4.8: Congestion Pkt Dlvry Ratio Figure 4.9: Congestion Goodput

 70

Figure 4.10: Transmission Overhead Figure 4.11: Congestion Control

Figure 4.10 shows the total number of packets exchanged. Here, it is apparent that

ReACT’s source congestion comes at a cost of much greater packet sent overhead

through the network, both for local recovery and source based constriction.

ReACT was also tested in a mobility scenario, with results described below. A

random waypoint mobility model was used, with node speed varying from 20m/sec to

100m/sec, with a 10 second pause time. No mention was made as to the packet rate. Here,

the packet delivery ratio for ReACT is significantly higher than for UDP over ODMRP,

but source rate constriction due to broken links is reflected in the ‘goodput’ metric, where

UDP on ODMRP has a significantly higher packet delivery ratio than ReACT. No

mention was made as to overhead or latency metrics either.

Figure 4.12: Mobility Pkt Dlvry Ratio Figure 4.13: Mobility Goodput

 71

The authors did not test very sparse network or dense network scenarios at all. The

network stresses related to sparse networks could interact with ReACT’s source based

congestion control to severely restrict the amount of data sent, since multiple ongoing

network partitions are common occurrences, with many nodes missing many packets.

ReACT’s local recovery scheme always looks for a node to recover packets from an

upstream neighbor. It does not account for the fact that in mobile networks all nodes move

in random ways: chances are good that one node upstream from another may move to a

downstream position, or both may move sideways to totally new relationships with new

nodes. In reality, at any instant, given a pair of nodes, its quite possible the downstream

node has a recent history of greater reliability than the upstream node.

4.4.3.3 Scribble

Scribble was compared to the best effort multicast protocol ODMRP using GloMoSim

for k = n (i.e. all nodes in the network, deterministically reliable multicast). The

simulation environment was 50 nodes, 1 sender and 50 receivers, in a 1000 x 1000 meter

area, and ran for 3000 seconds. Node movement used the Random Waypoint mobility

model, with a pause time of 0 seconds, discarding the first 1000 seconds worth of data.

Data rate was set to 1 512 byte packet / second for the first 500 seconds, a very light load.

Two scenarios were executed, one with increasing mobility (from 1 to 35 meters/second)

and one with increasing wireless radio range (from 150 to 350 meters). Three metrics were

presented, packet delivery ratio, latency and transmission overhead.

Figure 4.14: Mobility Overhead Figure 4.15: Mobility Latency

 And Pkt Delivery Ratio

 72

In the increasing node mobility scenario, Figure 4.14 shows Scribble to have fully

reliable packet delivery at this low data rate, while ODMRP varies from ~97% to ~92%,

dropping as mobility increases. Scribble’s overhead is nearly double that of ODMRP’s at

low speeds, dropping to be just above ODMRP’s at the higher speeds. The author states

that this is due to the fact that at lower speeds nodes remain in a partitioned state longer,

requiring a greater amount of overhead to eventually deliver all packets to all receivers.

Figure 4.15 shows that Scribble’s latency is higher than ODMRP’s. The authors state that

this is due to the longer time Scribble takes to deliver to previously unreachable nodes that

ODMRP fails to deliver to altogether.

In the decreasing radio transmission range scenario, decreasing radio range leads

directly to a rise in overhead and latency for Scribble, though it retains full packet delivery

ratio. ODMRP’s packet delivery ratio drops to ~50% at the lowest radio range. Its latency

and overhead metrics are deceiving, because they are collected only from packets that

were delivered to receivers, likely the majority of which were located much closer to the

source in the scenario. At high radio range, transmission overhead drops to equal

ODMRP’s, likely because of less partitioning, and all packets being successfully received

as a result of the first send for nodes within range.

Figure 4.16: Radio Range Overhead Figure 4.17: Radio Range Latency

 And Pkt Delivery Ratio

It would be interesting to see metrics as the data traffic load was increased, and as true

network density increased. In the simulations, radio range increases approximated

increasing network density, but true network density may have different effects on

 73

reliability, latency and overhead. Also, the ‘push’ model utilized by Scribble likely

consumes more overhead than other receiver based ‘pull’ models, especially, as shown,

for low radio range (sparse) and low mobility networks. Also, extremely sparse networks

would likely cause the overhead and latency to greatly increase, since ‘pushing’ data

under those circumstances would be resource intensive. Finally, Scribble assumes that

some level of ‘group membership’ is known, even if only the number of group receivers.

4.4.3.4 AG

Anonymous Gossip was implemented in the GloMoSim network simulator on top of

MAODV, and compared to basic MAODV. A 200 x 200 meter area was used, and the

random waypoint mobility model was selected, with pause times uniformly distributed

between 0 and 80 seconds. Simulations were run for 600 seconds. The MAC layer

protocol used was 802.11b with 2Mb/sec channels. Each receiver could send at most one

gossip request per second, requesting at most 10 messages at a time. Each receiver could

store up to 200 missed packet id’s, and up to 100 received packets. The source sent 64

byte packets at the rate of 5 pkts/sec, starting at 120 seconds (allowing MAODV time for

topology formation) and ending at 560 seconds.

There were three scenarios run. One varied transmission range, one varied node max

speed and one varied the number of nodes in the network. Figure 4.18 shows packet

delivery ratios for transmission range variations from 45 to 85 meters where nodes move

at a maximum speed of 2 meters/second, a relatively slow rate. Figure 4.19 shows packet

delivery ratios for node speed variations, where nodes move at speeds ranging from 1 to

10 meters/second, still quite slow. No metrics were reported either for control overhead

or for latency. From the packet delivery ratios reported, it is clear that, while Anonymous

Gossip has higher reliability than MAODV, its reliability is weaker than deterministic

protocols. Since it operates with a probabilistic mechanism, and since the gossip routes

are guided by the topology established by MAODV, reliability is unpredictable, and

cannot be guaranteed. Being probabilistic, the expectation is that control overhead would

be less than a deterministic protocol while latency would be greater.

 74

Figure 4.18: Pkt Dlvry Ratio with transmit range variation

Figure 4.19: Pkt Dlvry Ratio with max speed variation

4.4.3.5 RDG

RDG was implemented on the ns-2 network simulator, using a 1000 x 1000 meter

area populated with 100 to 200 nodes with 250 meter transmit ranges. A random

 75

waypoint mobility model was used with a maximum speed varying from 2 to 20

meters/second, and average pause time of 40 seconds. 64 byte packets were sent at the

rate of 5 packets per second, for 280 seconds. RDG was compared to AG in a very

limited simulation. In this simulation, the large transmit range, relatively long pause time

and relatively low node speed all call into question the protocol’s true performance

characteristics, especially under specific network scenario stresses such as high node

speeds, dense networks or high traffic rates. For the scenario presented, at a speed of up

to 10 meters/second, RDG achieved a slightly higher packet delivery ratio than AG. No

results were presented for control overhead or delivery latency. A second simulation

where node speeds were increased to 20 meters/second showed RDG with a packet

delivery ratio of ~88% at the 20 m/s data point.

4.4.3.6 RAPID

Initial packet delivery latency is an issue for RAPID, since each node along each data

path uses the timeout delay mechanism to decide whether or not to forward the packet. Of

course the gossip mechanism adds latency on top of this for packets that are initially

missed and must be resent. Sparse networks are another problematic area for RAPID, with

results showing a 69% delivery ratio for a sparse simulation. In sparse networks, the

frequent and ongoing network partitions disrupt both the initial probabilistic packet sends

and the gossip request mechanism. This issue is magnified with the gossip mechanism

limited to a single round in the simulations. Both the gossip mechanism and the

requirement for nodes to broadcast heartbeat messages to neighbors, as input to all node’s

neighbor count based probabilistic calculation to send new packets contribute to the

protocol’s control overhead consumption of network bandwidth.

RAPID was compared to GOSSIP-3, a probabilistic dissemination protocol with no

means to recover missing packets, in simulations using the JiST/SWANS simulator. The

Random Waypoint mobility model was used for node movement, with a pause time of 0

seconds and the first 1000 seconds of simulation data discarded. Number of broadcasting

nodes ranged from 1 to 200, sending ten 512 byte packets followed by a cooldown period

before simulation termination. Gossip rounds were limited to one per packet.

 76

The results are difficult to evaluate, since each simulation had from 1 to 200 senders

sending a total of 10 messages each, followed by the ‘cool down’ period for the gossip

request mechanism to operate before simulation termination. Ongoing initial data delivery,

and the gossip request/delivery mechanism metrics may change substantially if allowed to

operate over an extended period.

 Figure 4.20: Packet Delivery Ratio Figure 4.21: Network Load

 Figure 4.22: Latency

Figures 4.20, 4.21 and 4.22 are for a simulation where a network of 1000 nodes

broadcasted to each other with a transmit range of 200 meters in a 3500 x 3500 meter area.

This represents a medium density of nodes, the equivalent of about 80 nodes in a 1000 x

1000 meter area, corresponding to about 10 neighbors per node. Packet delivery ratio for

RAPID was 99.9%, just under the 100% of flooding, with overhead less than that of

 77

flooding. Figures A and B represent simulations where nodes are static. Figure C showed

latency specifically with 50 broadcasting mobile nodes. Here, Gossip-3 is significantly

faster than RAPID, but does not deliver to 100% of all nodes, since it has no retransmit

mechanism.

There was a simulation varying mobility, but only two speeds were modeled: static

nodes, and nodes moving between 1 and 5 meters per second. This was not a good

selection that would give meaningful results about the effects of mobility on RAPID

packet delivery.

Network density changes were modeled by changing the number of nodes from 1000

to 200 in a 2500 x 2500 meter area, about 4 nodes per neighborhood or about the

equivalent of 31 nodes in a 1000 x 1000 meter area, RAPID’s reliability goes down to

about 69% with 50 broadcasting nodes, compared to GOSSIP-3’s packet delivery ratio of

51%. Results for this set of simulations are shown in Figures 4.23 and 4.24. The authors

state the decrease in reliability is due to the poor network connectivity. Further, they state

that at this node density “no protocol can achieve high delivery ratios”, though this is

disputable. RAPID’s packet delivery and retransmission mechanisms have a true

weakness in sparse networks.

Figure 4.23: Packet Delivery Ratio Figure 4.24: Network Load varying density

4.4.3.7 EraMobile

EraMobile was compared to flooding and MAODV. Flooding was selected due to its

acceptance as one of the most reliable protocols, and MAODV was chosen due to its low

 78

overhead requirements. Ns-2 was selected as the network simulator, using the IEEE

802.11 MAC protocol with 2Mbps node throughput and a range of 250m. The random

waypoint mobility model was used. Total simulation time was set at 1000 seconds, with a

single sender starting to send after 20 seconds, sending continuously through 870 seconds.

The final 110 seconds were used to disseminate packets through the gossip mechanism.

Traffic rate was 2 packets of 512 bytes per second. Area size was not stated.

Three metrics were measured: throughput (packet delivery ratio), reliable throughput

(fraction of packets that were received by all receivers) and receive overhead (ratio of

bytes belonging to control packets and duplicate data packets received by a node to the

bytes of data it delivered, i.e., all bytes received except the bytes of data packets received

for the first time, are counted as receive overhead). Not measured in this work was

delivery latency.

The authors state that poor latency is a known issue with EraMobile, and a tradeoff for

increased reliability. EraMobile is not intended for delay sensitive applications. Several

factors tradeoff EraMobile latency in order to enhance the other performance metrics, for

example, the basic gossip transmission mechanism delays packet delivery at each node.

Further, for missed packets, gossip based requests not only increase latency, but are

limited to a fixed maximum number per round in order not to congest the local network.

Multiple rounds may be required for a node to receive all packets missed from initial

delivery, greatly increasing the latency for eventual delivery.

Mobility Results: the mobility scenarios ranged from 1 to 30 m/s, not a very high

speed. The network was made up of 50 nodes in a single group. EraMobile was fully

reliable, with flooding following closely in second place. MAODV suffered in terms of

reliability as node speed increased, due to the fragile tree topology MAODV implements.

EraMobile showed extremely low overhead compared to both flooding and MAODV,

since packets are transferred solely through the gossip mechanism, consuming very little

network bandwidth. Flooding showed the worst overhead, due to its highly redundant data

paths.

 79

Figure 4.25: Throughput Figure 4.26: Reliable Throughput Figure 4.27: Overhead

Group Size Results: group size scenarios ranged from 10 to 50 nodes. For these

scenarios EraMobile shows near fully reliable delivery for almost all scenarios, while

flooding and MAODV show a substantial drop as the scenarios become more sparse at 20

node and 10 node networks. Overhead drops for these two protocols at the more sparse

networks also, though for EraMobile it remains very low, just a fraction of the other two.

As density rises EraMobile overhead increases, but by a negligible amount.

Figure 4.28: Throughput Figure 4.29: Reliable Throughput Figure 4.30: Overhead

Group Number Results: group number scenarios ranged from 1 to 5 groups, with one

sender for each group. Node count was fixed at 60, with 5m/s node speed. Due to this

increasing number of packets in flight across the network, flooding showed a noticeable

drop in throughput as the group count went up. Receive overhead for flooding rose sharply

as well, with flooding’s nodes relaying many data packets that end up being not delivered.

In EraMobile the increasing number of groups had a lesser effect, in that nodes receiving

packets from other groups will just drop them, reducing the overall impact to receive

overhead, but still showing some effect.

 80

Figure 4.31: Throughput Figure 4.32: Reliable Throughput Figure 4.33: Overhead

4.5 New Reliable Multicast Routing Strategy

4.5.1 Goal
From the performance results described in section 4.4, it is apparent that in general,

protocol design approaches tend to sacrifice performance in one key metric in order to

strengthen another. The designers of EraMobile, for example, declare that the reliability

of their protocol comes with a known cost of a long latency in packet delivery. Though

there have not yet been a large number of ad hoc multicast protocols developed that focus

on reliability, enough have been developed to both allow for an initial categorization of

design approaches, described in the next subsection 4.5.2, and to support initial

conclusions about how these design approaches, and the mechanisms making them up,

translate into performance tradeoffs between the three key interdependent performance

metrics of reliability, network overhead and delivery latency, described in the following

subsection 4.5.3. Since the related reliable multicast protocol descriptions and evaluations

left many unanswered questions as to true performance across a wide variety of scenarios

(with measurements not taken at all, taken from ideal scenarios or taken from scenarios

with only one type of stress to communication) some of what follows in the conclusions

section 4.5.3 is conjecture. In order to get a complete picture of protocol performance,

testing needs to occur across a variety of network stresses.

The overall goal for this dissertation then, is to enhance reliable multicast in ad hoc

wireless networks using the following two guidelines:

1. The protocol must balance the requirement for reliability with a desire to

minimize both network overhead and packet delivery latency (i.e. not

 81

sacrifice performance in one key metric to strengthen another any more

than is necessary).

2. The protocol must perform well under all types of network communication

stresses: links overloaded with contention in dense and high traffic rate

networks, broken and ephemeral links in high mobility networks and

ongoing network partitioning in sparse networks.

An initial approach for development of this protocol is discussed in the final

subsection of this chapter. This initial approach forms the basis for the resulting protocol,

Reyes, which is fully described in chapter 5.

4.5.2 Categorization of Existing Approaches
In general, existing reliable multicast protocol designs can be broken down into two

building blocks. The first building block is the mechanism for system wide initial

dissemination of source generated data packets, and the second is the mechanism for

individual receivers that missed specific packets during initial dissemination to recover

those missed packets. Some reliable protocol designs, such as Scribble, consist only of

the first building block, requiring the initial dissemination mechanism to provide reliable

delivery to all receivers, but most have a secondary mechanism for packet recovery.

For the first building block there are several categories that the reliable multicast

protocols discussed in section 4 can be grouped into. These include:

• Flooding based Packet Dissemination – has some drawbacks, but some

advantages as well.

• Topology based Deterministic Global Packet Dissemination – this broad

category encompasses the initial dissemination mechanisms for RMA, R-

ODMRP and most tree, mesh or dynamic graph based data path creation

techniques. Dissemination of source packets occurs along data paths

periodically defined by a path creation mechanism utilizing flooding or some

other means of network path creation.

• Non-topology based Deterministic Local Packet Dissemination – This

category represents unique strategies for disseminating packets that are

 82

designed to guarantee delivery to all receivers. In this category data paths are

not predefined according to any topological creation mechanism. Scribble and

EraMobile fall into this category, with no specific topology used for data

dissemination. Both these protocols have no secondary mechanism for missed

packet recovery, relying instead on the initial packet dissemination

mechanism to provide reliability.

• Probabilistic Packet Dissemination – RDG and AG fall into this category

using probabilistic mechanisms for initial packet dissemination.

• Congestion Control – RALM and ReACT fall into this category, which

represents a way of modifying initial packet dissemination to optimize

reliability.

For the second building block, missed packet recovery, there are several categories

that the reliable multicast protocols discussed in chapter 4 can be grouped into, including:

• Source Based Deterministic Recovery – RMA, RALM and ReACT’s strong

source mechanism all fall into this category. Though R-ODMRP does not

have source based recovery, it utilizes a source based neighborhood building

algorithm that carries similar costs.

• Local Deterministic Recovery – R-ODMRP’s strong local mechanism and

ReACT’s weak local mechanism fall into this category, as does RAPID’s

recovery mechanism.

• Local Probabilistic Recovery –AG and RDG’s gossip based mechanisms fall

into this category.

4.5.3 Performance of Existing Approaches

4.5.3.1 First Building Block – Packet Dissemination
Flooding based Packet Dissemination – In the basic strategy every network node

receiving a new data packet for the first time will broadcast it out. This essentially utilizes

every available data path for dissemination of every packet, from both the source and all

network nodes, all the time. The basic flooding protocol has no secondary mechanism for

 83

packet recovery, but protocols could easily be developed with flooding as the packet

dissemination mechanism followed by a secondary mechanism for packet recovery.

• Reliability – Flooding has been proven to have high reliability in specific

scenarios where the conditions are ideal. It has also been proven to have

severely degraded reliability in scenarios where those ideal conditions

deteriorate, and the central mechanism of using all available data paths all the

time works against packet delivery due to growing link contention. These

scenarios include increasing network density and increasing data traffic rate.

• Network Bandwidth Overhead – The flooding mechanism itself requires no

extra overhead for control data beyond the standard overhead of an IP data

packet header. However, the overall network overhead, or utilized portion of

available bandwidth required by using all data paths all the time can be large

in the previously mentioned scenarios where link contention becomes high. In

these scenarios link contention quickly results in greater numbers of packets

dropped, and decreasing reliability. In flooding, network overhead is

sacrificed for the sake of reliability. This is a known tradeoff with this design

approach.

• Packet Delivery Latency – Protocols implementing flooding can achieve low

delivery latency in those scenarios where networks are neither too dense nor

too sparse, and where the data rate is not high. Since packets are instantly

broadcast out on first reception, those delivered from initial sends usually

have low latency, comparable to or beating other protocol delivery

mechanisms. However, in dense or high traffic networks it is very difficult for

a secondary mechanism to enable missed packet recovery, since little to no

bandwidth is left over to allow the secondary mechanism to operate. It is

likely that if a secondary mechanism were to operate in these circumstances,

the latency in missed packet recovery would be very high, given the adverse

circumstances within which it would be operating.

• Specific factors for a flooding mechanism:

 84

o State and Control overhead - Flooding mechanisms are often stateless,

with no special packet types or initiation mechanisms. When a

secondary mechanism for recovery is added, it usually comes with

some amount of required node state and control overhead. For reliable

protocols there must be at least a minimal state stored at each node,

and control bytes of some type to allow the packet reception

information from targeted receivers to find its way back to the source.

o Packet Delivery Latency – If flooding involves a secondary

mechanism for recovery, then if the source is involved, its data rate is

halted or changed periodically. In this case, packet delivery latency as

a metric loses meaning when compared to another protocol where the

source continually sends data at a constant rate. However, it is a net

negative for a protocol to deliver packets with the same reliability but

an overall lower data rate when compared to another protocol.

o Centralized Operation – a flooding based protocol can get around the

negative impact of required interactions with the source for resend

requests by explicitly limiting such interaction to one receiver at a

time. With this limitation there is no chance of packet implosions in

the region of the source. The negative factor of consumption of

network overhead is also averted, since the source must stop sending

new data packets when notified of a receiver node’s packet requests,

so bandwidth can be completely devoted to these requests. The

negative factor of a potentially longer latency in packet recovery still

holds however, due to either a broken or a long data path between the

source and a remote requesting node. Flooding based mechanisms that

do not have centralized operations would have an advantage in

throughput.

Topology based Deterministic Global Packet Dissemination - This strategy for data path

establishment, used by many tree and mesh based protocols, has several advantages that

 85

account for its popularity among ad hoc group communication protocols. Typically, the

source will flood some type of control packet that is recognized by all nodes in the

network. This packet causes all network nodes to flood it after receiving it as well. There

is usually a response mechanism for receivers to identify themselves with control

information that is then propagated node by node upstream back to the source, with all

nodes along these paths turning on data forwarding flags for some period of time to

establish a restricted set of data paths from the source to all network receivers, rather than

the “all data paths all the time” approach of basic flooding. This restriction of the number

of data paths often works to limit overall network bandwidth overhead, allowing for

better packet delivery ratios in scenarios where bandwidth overhead is a limiting factor,

such as high density or high traffic rate scenarios. Periodic operation of this basic data

path establishment mechanism within a path expiration time is used to refresh routes as

node movement makes old data paths obsolete. This flooding based data path creation

mechanism is used as the initial packet dissemination mechanism for RMA, R-ODMRP

and most tree, mesh or dynamic graph based protocols.

• Reliability – as an initial packet delivery mechanism, this technique has

relatively high reliability. Several protocols have been shown to give good

results when combining this technique with a secondary packet recovery

mechanism. Though the basic mechanism has been proven to have worse

reliability than flooding in scenarios where conditions are ideal for flooding,

as conditions worsen (growing density or data traffic rate) intuitively, this

basic mechanism can outperform basic flooding.

• Network Bandwidth Overhead – Several of the protocols developed with this

mechanism to date have a significant amount of overhead required for

operation, but much of this overhead may not be truly necessary for correct

operation. This method always requires an increased amount of network

overhead for the periodic network flood of the special discovery packet, but

has reduced overhead when compared to pure flooding. Investigating ways to

 86

reduce this overhead to an absolute minimum is an area that deserves

exploration.

• Packet Delivery Latency – Once data paths are established by this mechanism,

delivery latency is usually very low, with no operations interfering with the

initial source sent packet traversing all data paths to reach all receivers.

Depending on the scenario, latency for this mechanism could be better or

worse than basic flooding. For example, if the restricted set of data paths were

established with this mechanism such that they were not optimal, it is possible

that the “all data paths” approach of flooding would naturally utilize a shorter

data path to reach some set of receivers, resulting in lower latency. On the

other hand, in a very dense or high traffic network it is quite possible that

nodes trying to send a newly received packet out would sense other node’s

send attempts and backoff sending for a random period of time before

attempting a resend. This could occur multiple times for a node’s initial send

of a given packet, resulting in a longer overall latency for flooding.

• Factors specific to R-ODMRP:

o Centralized Operations – the R-ODMRP protocol’s neighborhood

building algorithm is a centralized operation. The source broadcasts a

discovery packet that causes nodes at increasing distances from the

source to set timers with decreasing timeouts. Eventually the farthest

node’s timer goes off first, causing it to forward a control packet to its

upstream neighbor that identifies itself as a receiver. This information

is grouped with the upstream neighbor’s other downstream neighbor

replies to build a table describing the upstream receiver and all

downstream receivers relative locations along datapaths. This

gathering and grouping occurs at all receiver nodes along all reverse

data paths going back to the source. Eventually the source receives all

tables and is able to build a full picture of the overall network of

receivers. The downside of this approach is that first it relies on data

 87

paths not being broken at any point along the chain due to node

movement, or to link contention. Also it relies on overhead packets

relayed from node to node upstream that are of ever increasing size. If

an ad hoc network were to continuously grow in size, eventually it is

likely that these control packets will fail to reach the source, resulting

in periods where areas of nodes have no means to request missed

packets.

Non-Topology Based Deterministic Local Packet Dissemination – This category is used

to group the unique non-flooding based, non-data path predefined packet dissemination

strategies designed to guarantee delivery to all receivers. No topological model is utilized

to create fixed data paths here, but rather the dissemination mechanism itself is used to

create temporary individual links along which data packets are transmitted. Scribble and

EraMobile are examples of protocols that fall into this category, relying solely on their

dissemination mechanism to provide reliability with no secondary mechanism to handle

missed packets.

• Reliability – since protocols falling into this category use unique mechanisms

specifically designed for high reliability in ad hoc networks, it is likely this

metric will be high for future protocols as it is for the current ones, Scribble

and EraMobile, at least in the simulation results presented.

• Network Bandwidth Overhead – protocols falling into this category often

utilize mechanisms that operate at the level of interactions between

neighboring nodes in order to make a determination of sending a data packet

or not. Often this mechanism is optimized for a general “good condition”

network scenario (the network of receiver nodes of reasonable density, data

traffic at a reasonable rate, and other favorable conditions) and performs well

in such environments. Intuitively though, specific “bad condtion” scenarios

could generate poor performance in terms of overhead or latency or both.

Also, since reliability is often seen as a more important metric to maximize,

the cost is often made up for with tradeoffs in overhead and latency.

 88

• Packet Delivery Latency – individual calculations made to determine whether

or not to transmit packets often depend on random delays during the send

process at a node, during which neighbor sends are listened for. If overheard,

one general strategy is to set the overhearing node to not perform the packet

send, in order to reduce data paths and network overhead from pure flooding.

Higher latency is often a tradeoff in this category, especially when compared

to the previous category of transmitted packets traversing data paths that have

been previously reduced in number by a path defining protocol mechanism.

• Factors specific to Scribble: comments on the performance metrics of

Scribble below are based on the published protocol description and simulation

results. One danger with Scribble’s approach is that it’s protocol mechanisms

operate until the desired reliability is reached, so the longer network nodes

remain out of range, for example in sparse networks, the more the protocol’s

overhead and latency metrics will suffer, eventually impacting reliability itself

if a sufficient data traffic load is modeled. The published simulations modeled

sending 1 packet per second for 500 seconds, followed by a 1500 second

“cool down” period, far removed from standard network communication

conditions.

o Sender “push” oriented – Scribble doesn’t rely on out of range

receivers moving into range advertizing themselves in a “data pull”

mechanism, rather it relies on senders continually sending until

packets are received by all. Sparse network scenarios could cause a

high degree of overhead with nodes continually attempting to deliver

packets to receivers that remain out of range.

o Necessity for sender to have group membership knowledge – this

requirement could be seen as unrealistic for many situations. Also, the

description for Scribble assumes the source has prior knowledge, not

accounting for a realistic situation where the source must build this

knowledge through some mechanism involving consumption of

 89

network resources, and a delay in transmissions until the knowledge

could be obtained.

o Reliability – Since the mechanism does not terminate until the

reliability metric is reached, reliability is prioritized in Scribble. The

published simulations show it to have higher reliability than ODMRP,

however, the danger is that under a normal network data load, in the

attempt to achieve the desired reliability, latency and overhead will

become unreasonably large, causing the desired reliability to be

ultimately unattainable.

o Packet Delivery Latency – Since a given network node adds a random

delay to overhear neighbor packet sends before sending its packet, the

published simulations show Scribble to have a higher latency than

ODMRP. This is a clear downside to the protocol.

o Network Bandwidth Overhead – Again taking the scenario of sparse

networks, if a packet is unrealized, more and more nodes will initiate

sending it until all nodes in the network are sending it. A second

downside to this approach is that as a packet travels farther from the

source, the header portion containing the node signatures becomes

larger and larger, consuming more overhead.

• Factors specific to EraMobile: the network scenarios and conditions within

which EraMobile was tested were somewhat more adverse than those for

Scribble, but still far from realistic. The data rate never varied from 2 packets

per second, and after source sends stopped, 110 seconds were provided to

allow for full dissemination of data packets in flight. Given the 3 step pure

gossip based mechanism used to advertize / request / send packets

downstream at each hop, an increasing data rate would likely have a severe

impact on packet dissemination and resulting reliability.

o Packet Delivery Latency - the 3 step mechanism used to advertize new

packets to downstream nodes adds a large amount of latency to initial

 90

sends of packets. Since a limit exists to the number of packets

advertized in each gossip round, more latency is added to packets

transferred as a result of subsequent gossip rounds. This protocol was

designed to trade latency off for reliability, and this impact to overall

performance is acknowledged by the authors, who state that EraMobile

is not intended for low latency applications.

o Network Bandwidth Overhead – EraMobile shows very good results

for this metric. Though data packets are transferred as a result of a 3

step process for each link, they only travel one hop at a time, and are

only transferred when proven to be needed. This metric showed very

good results across the three scenarios tested: increasing mobility,

group size and number of groups.

o Reliability – The scenarios tested in the paper play to the strengths of

EraMobile. In them, reliability was shown to be higher than MAODV

and flooding, though coming at a known cost in large latency.

Scenarios targeted to the weaknesses in EraMobile however, would be

interesting to study, especially an increasing data rate scenario. Here, a

threshold may be crossed, ultimately causing reliability to drop below

that of flooding or MAODV, given the amount of time the 3 step

process of packet transfer requires at each node.

Probabilistic Packet Dissemination – Generic probabilistic packet forwarding is an

alternative strategy to reduce the large number of data paths along which packets travel to

reach receivers during flooding, and thereby reduce network overhead. The basic strategy

is to provide each node with a certain probability of forwarding received packets

downstream. For each packet received, each node then makes a determination based on

this probability as to whether or not to forward the packet. Different protocols modify

this determination in various ways, usually to increase probability in the presence of

fewer neighbors, and decrease probability in the presence of more neighbors, in order to

 91

provide adequate coverage. Reliable protocols using this basic strategy often have a

secondary probabilistic or deterministic mechanism for missed packet recovery. RDG

and RAPID are examples of this category, using probabilistic mechanisms for initial

packet dissemination.

• Reliability – since packet delivery is based on probabilities of nodes sending

packets and probabilities of downstream nodes receiving packets, reliability

guarantees are weaker than those of deterministic protocols. Typically

reliability is a weak point for probabilistic protocols.

• Network Bandwidth Overhead – since probabilistic mechanisms effectively

cut the number of active data paths with no associated overhead consumed for

transfer of control data, bandwidth is conserved. Bandwidth conservation is a

strong point for probabilistic protocols.

• Packet Delivery Latency – probabilistic forwarding by itself does not add

latency to packet delivery for nodes receiving packets on the initial source

send. Missed packet resend latency is then dependent on the secondary

mechanisms used. If probabilistic forwarding is combined with randomized

wait times, for example to overhear the packet sends of neighboring nodes,

then the latency metric will suffer.

• Factors specific to RDG:

o Reliability - since RDG operates purely probabilistically for both

initial packet sends and missing packet resends, reliability is not as

high as for many deterministic reliability protocols. One of the studies

in the research described a scenario where node speeds were increased

to 20 meters per second, and RDG’s reliability metric dropped to 88%,

a relatively poor number.

o Network Bandwidth Overhead – The effect of the probabilistic

mechanisms on bandwidth conservation for packet dissemination and

missed packet recovery are unknown, since the few scenarios tested in

the research did not measure overhead. Conservation of bandwidth is

 92

typically a positive aspect for probabilistic mechanisms, and so could

be a strong point in favor of RDG.

o Packet Delivery Latency – RDG does not include random pause times

as part of its mechanisms, so scenarios could possibly show relatively

low delivery latency. The authors did not measure this metric as part

of their simulations however.

• Factors specific to RAPID: RAPID’s probabilistic dissemination mechanism

operates similarly to the deterministic dissemination mechanism in Scribble,

given the way it is implemented. Regardless of the probabilistic decision of a

node to send or not send a packet, the deterministic corrections to that

decision will cause nodes not overhearing neighbors sending a packet during

the pause time to send it, and will cause nodes overhearing a neighbor sending

a packet during the pause time to not send it.

o Reliability – the scenarios used to test RAPID were not extensive or

comprehensive, but they did illustrate a critical weak point in the

protocol, that it has low reliability in sparse networks. Modeling of

mobility and other factors were not sufficient to establish protocol

performance in those scenarios.

o Network Bandwidth Overhead – given the missing packet request

mechanism a node uses, i.e., broadcasting a gossip advertisement

packet to nearest neighbors and potentially receiving multiple requests

back, overhead could be minimized greatly from the existing protocol.

o Packet Delivery Latency – long latency is a downside to RAPID, for

both initial packet delivery, given both the pause time before broadcast

and the three step advertisement / request / reply process for initial

sends, and the same pause and three step process for missed packet

request fulfillment.

Congestion Control – This category represents a mechanism that is usually overlaid on

another packet dissemination protocol. This mechanism is designed to optimize reliability

 93

by modifying the rate of a source’s initial packet dissemination as a response to current

network conditions. RALM and ReACT have mechanisms that fall into this category.

• Reliability – In the case of RALM and ReACT, reliability is enhanced by

congestion control, but at the cost of a constriction in data rate. Some

applications would find this artificial rate constriction unacceptable, especially

when compared to potentially higher data rates possible with reliability

optimized through receiver based mechanisms.

• Network Bandwidth Overhead – source data rate constriction mechanisms

must come with a cost in consumed network overhead for the control data

passed back to the source. If the rate constriction is acceptable to the

networked receivers, the cost in overhead is likely to be small compared to the

resulting increase in reliable delivery, since it takes only a minimal amount of

control data to cause the source to recognize a signal to slow the data rate.

• Packet Delivery Latency – this metric is a difficult one to measure in a

situation where the source’s data rate is constricted. Is the latency measured as

the actual difference between when a given data packet leaves the source and

arrives at a receiver, or the difference between when the packet would have

left the source had there been no rate constriction, and arrives at a receiver? If

the latter, then latency is a huge negative for source data rate constriction.

4.5.3.2 Second Building Block – Missed Packet Recovery
Source Based Deterministic Recovery – RMA, RALM and ReACT’s strong source based

recovery mechanisms all fall into this category.

• Reliability – Comparing source based recovery to local recovery, source based

recovery will almost always have a higher cost in terms of the related metrics

of network overhead and latency, since requests and missed packet replies

have farther to travel over the network, consuming more bandwidth and

taking longer to fulfill. Also, source based recovery has weaknesses in terms

of reliability when applied to specific scenarios. In sparse networks for

example, there may be situations where a unified linked path between

 94

requesting receiver and source will never exist. In networks with a high data

rate, there may be situations where a linked path without link contention at

some point between requesting receiver and source will never exist.

• Network Bandwidth Overhead – one downside of source based recovery is the

relatively larger amount of overhead required for each node to interact with

the source to recover missed packets as opposed to a networked receiver at

some midpoint between the requesting node and the source. Another

downside is the potential for N/Ack implosions as the network scales as

exhibited in RMA, where the requirement for all networked receiver nodes to

interact with the source can eventually congest the network in the region of

the source. RALM and ReACT get around this downside by specifying that

the source can interact with only one receiver at a time for packet recovery,

though packet multicasts are made to the group as a whole. In RALM and

ReACT the cost associated with this is a greater latency for all receivers due

to the source temporarily suspending new packet transmissions in order to

handle resend requests. One advantage of source based recovery is that it

removes the requirement for networked receivers to store data packets after

consuming them.

• Packet Delivery Latency – as mentioned under the two bullets above, there are

several ways in which increased latency could be a direct result of the source

based recovery mechanism. The requirement for source interaction, by itself,

will directly increase latency, and source interaction that may be a long time

in coming, for example in sparse networks, could hugely increase latency for

recovered packets.

Local Deterministic Recovery – R-ODMRP’s mechanism and ReACT’s weak local

recovery mechanism fall into this category, as does RAPID’s recovery mechanism.

• Reliability – local recovery can improve reliability, but whether or not it does

depends on the implementation and the scenario. For example, RAPID and R-

 95

ODMRP’s local recovery mechanism requires a broadcast of a packet request

from a receiver node to all nearest neighbor nodes. All can then reply, though

this is modified by a replier node overhearing packet resends and changing its

decision to perform the send. This localized “flooding” of requests and

potential replies could quickly congest local areas of the network ultimately

degrading reliable delivery of packets sent from the source at the same time.

• Network Bandwidth Overhead – there are scenarios where local recovery

could increase overhead when compared to source based recovery, and

ReACT exhibits this. Specifically, when a node tries to recover missed

packets from local receivers, but no local receivers have obtained the packet

to begin with. In this case the node will make several attempts consuming a

relatively large amount of network overhead before reverting back to source

based recovery and consuming even more overhead before finally obtaining

the missing packets.

• Packet Delivery Latency – the same scenario in ReACT where local recovery

increases overhead when compared to source based recovery would cause it to

increase latency also.

Local Probabilistic Recovery –AG and RDG’s gossip based mechanisms fall into this

category. The secondary mechanism of probabilistic recovery has similar implications to

the primary mechanism of probabilistic dissemination of packets originally sent from the

source.

• Reliability – since packet recovery is based on probabilities of nodes receiving

and responding to missed packet requests, reliability guarantees are weaker

than those of deterministic protocols. Typically reliability is a weak point for

probabilistic recovery mechanisms.

• Network Bandwidth Overhead – since probabilistic mechanisms effectively

cut the number of active data paths, overhead is conserved. Minimizing the

 96

costs of recovery in terms of overhead is a strong point for probabilistic

mechanisms.

• Packet Delivery Latency – probabilistic resend requests could add latency to

reception of missed packets if the relaxed guarantees mean that several

requests must be made in order for a node to successfully receive missed

packets. If a probabilistic resend mechanism is combined with randomized

wait times at intermediate nodes then latency will suffer as well.

4.5.4 Design Strategy for a New Protocol
An overall goal for this dissertation is the development of reliable multicast protocol

mechanisms that balance the requirement for reliability with a desire to minimize

network overhead and packet delivery latency. The protocol must perform well under all

types of stresses to network communication, including overloaded links in dense and high

traffic networks, broken and ephemeral links in high mobility networks and ongoing

network partitioning in sparse networks.

From reviewing the research done to date for reliable multicast MANET protocols,

there are at least two promising directions that can be pursued, each with its own

advantages and disadvantages that must be answered in the design of the protocol. One is

to design a new topology-based deterministic global packet dissemination protocol, the

other is to design a new non-topological deterministic packet dissemination protocol.

Based on simulation results, these two avenues seem to hold more promise than the

others discussed.

Develop a Topology-based Deterministic Global Dissemination Protocol:

This category is an all encompassing one containing all new packet dissemination

mechanisms that are designed to operate with a defined topology. This category contains

the highest number of existing protocols due to the fact that topology based approaches

have many advantages over other categories.

Advantages:

 97

The examples mentioned in the categorization above generally had the natural

advantage that once the paths through the network were defined, initial packet delivery

latency and overhead was very low, since packets were forwarded along predefined paths

with as minimal latency and overhead as possible. A key to minimizing these metrics will

be development of a route discovery process that will create optimal routes using a

minimal amount of overhead. Non-optimal routes will add to both network overhead and

delivery latency, and the route creation mechanism itself could consume a large amount

of network bandwidth. Many protocols in this category utilize network flooding of an

initial packet with control data in order to guarantee that each receiver node in the

network is reached and has a data path constructed for packet delivery. This flooding of a

packet is a potential downside of many path creation mechanisms in dense or high traffic

networks, and must be examined closely in protocol development.

Disadvantages:

The overhead required by the path creation mechanism could be a big disadvantage

depending on the amount of overhead used by passing control data over the network,

especially in specific scenarios such as the previously mentioned dense or high traffic

situations. Possibly the path creation mechanism could be designed to adapt itself to these

specific conditions to answer this disadvantage.

Another disadvantage is that if the path creation mechanism creates sub-optimal data

paths, each delivered packet will require a higher cost in terms of network overhead and

delivery latency. Also, given that network topologies are dynamic and potentially fluid

with rapidly moving nodes, a topology that may be optimal in one moment might be sub-

optimal or even completely broken in the next. Mesh networks tend to minimize this

disadvantage by taking advantage of multiple paths, but mesh networks likely turn at

least partly into trees in sparse networks, for example. Frequent path discovery may be

required to keep highly optimal paths, but will come at the cost of extra network

overhead. Experimentation with networks of all types in a simulator will be informative

as to what works and what doesn’t.

 98

Another disadvantage of this approach is that predefined data path delivery

mechanisms often require a secondary mechanism for receiver nodes to recover packets

missed in the initial delivery attempt. Operation of this secondary mechanism is generally

pure overhead in terms of network bandwidth, working against ongoing initial delivery in

high traffic networks for example, and could be the cause of a large amount of latency for

the packets recovered.

Discussion:

One consideration in developing a robust reliable topology based protocol is to

minimize the overhead of the periodic path creation mechanism to the point where it can

occur very frequently in order to keep paths optimal. Optimal paths that deliver packets

to as many receivers as possible will minimize the work required by any secondary

packet recovery mechanism.

Another point to consider is to design a path creation mechanism that will maximize

the effectiveness of each data path created in specific scenarios. Fewer paths that each

deliver to a greater number of receivers will be preferable in dense networks for example,

to minimize bandwidth overhead consumed, in a scenario where bandwidth overhead is

in short supply. On the other hand, more data paths delivering to potentially difficult to

reach receivers will be preferable in sparse networks.

A secondary packet recovery mechanism will need to be designed very carefully in

order to minimize the bandwidth overhead it requires for operation, since network

overhead is a potentially large negative factor for topology based protocols. Interactions

with the source, and any required broadcasts or multicasts should be minimized for this

reason. Broadcasts and multicasts create local congestion that will directly compete with

initial packet delivery. Requiring receiver nodes to interact with the source will work

against protocol scalability and cause increased latency, as well as competing with initial

packet delivery.

 99

Develop a Non-Topology Based Local Deterministic Protocol:

This category essentially contains all new dissemination mechanisms that operate

via nodes making non-probabilistic individual decisions on packet forwarding based on

conditions local to a node.

Advantages:

The examples in this categorization have the natural advantage that since they do not

require any network topology to be defined in order to operate, the relatively large

amount of pure overhead required to create a topology is not needed. With no network

topology to predefine the set of network links, individual links are established as needed

between individual nodes according to some other criteria. Another advantage is that,

depending on protocol design, there may be no need for a secondary missed packet

recovery mechanism. Scribble’s single dissemination mechanism, though it is adaptive, is

used throughout the dissemination process with no secondary mechanism as backup in

case of missed packets.

Disadvantages:

One disadvantage of the protocols currently falling into this category is that since

links are not predefined, time and bandwidth must be spent between each pair of

individual nodes in order to make the decision on whether or not to send a packet.

Sometimes the time required is high, for example where each node is required to pause

for a random timeout to overhear neighbor nodes sending the packet before making a

final decision on whether or not to send for itself. This can result in a high latency

between the original transimssion by the source and the final reception by nodes at the

edges of a network. Sometimes the bandwidth required can be high, for example where

the protocol requires a three step [advertise / request / send] process between neighboring

nodes in order to transfer packets downstream. Some of these costs can be mitigated by

the design of the transmission mechanism however.

One potential issue with protocols in this category is that if the protocol is ‘push’

oriented such as Scribble, then senders of a given packet are required to have global

knowledge of both the overall list of group members, and the overall packet reception

 100

percentage in order to verify the dissemination operation can be completed. In a realistic

scenario this knowledge would require a relatively large amount of overhead to build in

to the protocol operations, especially if group membership is dynamic.

Discussion:

One consideration in developing a robust reliable non-topology based protocol is to

find ways to minimize the time and bandwidth required between individual nodes for the

upstream node to make its decision on whether or not to send a given packet, while

keeping the natural advantage of saving the bandwidth required by a topology defining

mechanism. The key is to create a mechanism allowing for full dissemination across all

reachable receivers on a node to node basis with as few packet transmissions from as few

receivers as possible, while allowing partitioned nodes moving back within range to learn

about and receive missed packets as quickly as possible, with a minimum cost in

bandwidth.

The issue of global knowledge must be dealt with in some form, especially for

packets initially missed due to receivers being partitioned, either by defining a receiver

based pull-type mechanism, or by providing a realistic means for nodes to gain global

knowledge of the group receiver list and percent received for a given packet. A push

mechanism for this will have a larger amount of bandwidth required in order to provide

receiver nodes on one side of the network with knowledge of reception statistics for

receiver nodes on the other side of the network, in order to terminate the send process for

a given packet. On the other hand, a pull mechanism would require receivers to know

what to pull, leading to the three step process of [advertise / request / resend] utilized by

the eraMobile protocol, with its associated additional overhead and latency.

New Protocol Design:

Given the advantages and disadvantages of the previously mentioned design

categories with the highest potential for success, this author felt intuitively that the

topology based deterministic protocol category offers the richest potential for

development of a successful reliable multicast protocol. Success here can be measured as

“better performance than the current benchmark protocols in terms of reliability, cost in

 101

bandwidth and latency, when evaluated across a wide variety of realistic ad hoc network

scenarios”. This rich potential lies both in the natural advantages of the design category,

and in the possibility of solutions to its inherent disadvantages.

Once this decision was made, collateral from previous development of the R-ODMRP

protocol turned out to be invaluable. The R-ODMRP code implemented in the Ns-2

network simulator became a testbed in which new ideas for packet dissemination and

reliability mechanisms could be implemented, tested and verified for their overall effects

on reliability, latency and required bandwidth. Mechanisms were tested in combination

with each other to see their sum effects, discarding what didn’t work and combining and

enhancing what did. The end result of this work, the Reyes protocol, is described in the

next chapter.

 102

5 Reyes: Reliable Multicast with Neighborhood Sets

5.1 Protocol Design Goals

The central design goal for Reyes, the topology based deterministic protocol

described here, is to achieve a balance in dealing with all competing stresses and

constraints imposed upon reliable group communication while providing the best

performance possible in terms of reliability, latency and overhead under all network

scenarios. In order to do this, the protocol must do two things: first, it must create optimal

data paths that will provide for the best initial packet delivery. Second, it must provide

mechanisms for nodes to obtain missing packets with minimal costs in terms of latency,

bandwidth and control overhead, for all conditions.

For initial data delivery, some amount of redundant data delivery (for example, mesh

based vs. tree based paths) is beneficial, though redundant delivery works against

reliability as traffic load or network density is increased. Early experimentation with an

initial dissemination mechanism that will work well in different network scenarios such

as dense, sparse, high traffic and high mobility networks will be required. The goal is for

Reyes to balance the benefits of redundant data delivery with the need to minimize

consumed network bandwidth.

For data request mechanisms, the goal for Reyes is to provide a variety of receiver

based mechanisms that don‘t require interaction with the source, are fully distributed, and

require a minimum amount of bandwidth overhead and recovery latency. The

mechanisms should instantly adapt to network conditions surrounding an individual

requestor node.

5.2 Initial Design Ideas

Reyes is designed to be a fully distributed protocol, where each group member node

shares as much work as possible in contributing to overall reliability. The source takes on

no extra tasks, and there is no dynamic constriction of the source data rate. Reyes is

 103

designed for high reliability, low protocol overhead and low delivery latency from the

beginning.

The global path creation portion of the protocol was designed in several steps: first,

four realistic network scenarios were implemented in ns-2 to simulate dense sparse, high

traffic and high mobility networks. These scenarios were used as testbeds for path creation

design ideas. Next, the path creation mechanisms for ODMRP and R-ODMRP were

exercised in these scenarios with all operations captured at the lowest level of detail in a

log file, such as locations of all nodes, and the details on a per node basis of a node

attempting to send (i.e. MAC level status), a node sending and a node receiving individual

packets. Strategies for improved mechanisms were then developed, implemented and run

using the same scenarios, and analyzed for performance at the same level of detail. Ideas

proven to work well were kept, and used to build the final path creation portion of the

protocol.

The same process was used to design the packet recovery portion of the protocol. First

ODMRP [LGC99] and R-ODMRP [KR05] were analyzed at the lowest level of detail in

multiple network scenarios, in terms of packet recovery efficiency. Strategies for

improved mechanisms were then developed, implemented and analyzed for performance

at the same level of detail, with proven ideas used to construct the final packet recovery

portion of the protocol.

5.2.1 Fully Distributed Workload
Mechanisms relying on individual receiver node interactions with the data source often

create congestion, data rate slowdown or other issues in the area of the source. With

Reyes, the source is not responsible for specialized protocol tasks. There are no special

tasks or duties the source handles that are not also required of all group member nodes,

including data rate constriction. In fact, the source typically handles fewer tasks in

providing reliability than a typical group member node.

5.2.2 Minimizing Latency and Control Overhead
A large part of minimizing latency and overhead is the implementation of a robust

initial delivery scheme, requiring less work from the protocol later to make up for missed

 104

packets. Previous research has shown the benefits of mesh based mechanisms for

reliability [LSHGB00], so Reyes implements a mesh mechanism developed with details

designed to provide high data delivery to more nodes with fewer data paths in dense

networks, and to enhance sparse network edge delivery, two areas that experimentation

proved to have high impacts on reliability.

To handle missed packets, the approach for Reyes is to develop resend mechanisms

targeted to respond to the specific causes for the missed packets. These mechanisms were

developed to minimize latency and control overhead for specific conditions, in addition

to providing reliability. Three such mechanisms have been developed in Reyes, to

respond to missed packets due to link contention in dense and high traffic networks,

broken or missing links in highly mobile and sparse networks, and full network partitions

in sparse networks.

Another idea to minimize latency and control overhead was to implement a means to

periodically take a ‘snapshot’ of the network, where all nodes are logically partitioned

into small groups that will be enabled with local ‘neighborhood’ knowledge and work

together to provide for the reliability needs of each other. There were two thoughts

behind this idea. The first is that if packet requests are responded to locally, latency and

control overhead will be minimized, with only a few hops needed for the request and the

reply. Scalability also benefits, since the same costs are incurred regardless of the size of

the overall network. Second, if receiver nodes have local ‘neighborhood’ knowledge both

of nearby nodes assigned to store needed packets, and of routing paths to them, then

requests and replies can be unicast, minimizing the toll taken by reliability operations on

overall network bandwidth.

5.2.3 Global Topology Based Path Creation Mechanism
Previous research ([LSHGB00], [OTV01]) has shown the benefits of mesh based

topologies compared to other topologies in terms of reliability for MANETs. Generally,

mesh based global path creation mechanisms are source or receiver based:

• the source periodically floods a control or data packet throughout the network

guaranteeing that all receivers that can possibly be reached are reached, then

 105

forwarding paths are constructed according to the protocol’s path construction

mechanism.

• receivers flood a request to join (or re-join) an existing network, either

constructing new links or repairing broken links.

Previous work [LSHGB00], [ROLTG03] has also shown the benefits of source based

data path construction as well, for reducing the overhead required for path construction.

Reyes design began by first building example scenarios for the ns-2 simulator to model

four different extreme network conditions for reliable group communication, dense

networks, sparse networks, high traffic networks and high mobility networks. These four

scenarios were used to test different ideas for initial data path creation. The mechanisms

used by ODMRP and R-ODMRP were studied initially, then various experiments were

run using different approaches to gain an understanding of the resulting data paths they

generated. Reading through the resulting log files of each experiment, which showed the

bottom level details of the packet dispatches and receptions on an individual node basis

gave a clearer insight into the overall impacts of both the path creation mechanisms and

the resulting data path patterns.

In the course of this examination it also became very clear that any categorized

scenario had elements of other scenarios embedded within it, and developing a protocol

to work well in all scenarios was necessary in order to successfully handle any one

scenario. For example, a close examination of a typical sparse network revealed areas of

dense accumulations of nodes surrounded by areas of relative sparseness. If a protocol

didn’t handle dense networks well, it would fail in the denser areas of the sparse network

scenarios.

In the course of experimentation it was observed that the resulting data path patterns

for ODMRP were different when comparing results in sparse networks with dense

networks. In the denser areas of network scenarios, data paths tended to circle the areas

of density instead of going through them. This resulted overall in a greater number of

data paths being created that skirted around the sides of the area of density, and the nodes

 106

in between these paths in the dense area ultimately receiving a greater number of

duplicates for each source generated data packet. The resulting data paths were also

longer than optimal, since they circled areas of density instead of bisecting them. Once

this was noticed, it was also seen to a lesser degree in sparse networks where spot areas

of momentarily greater density would cause a similar effect, and in high traffic networks

as well.

Debugging and examining the MAC layer of the protocol’s stack during live execution,

the reasons for this became clear. A given node trying to send a packet in a momentarily

dense and/or high traffic area frequently would test the wireless medium prior to sending

the packet with the Collision Sense Multiple Avoidance mechanism, notice a conflict

caused by another node sending a packet, backoff the send process for a random timeout,

then retry sending. ODMRP exacerbated this congestion / backoff effect by requiring a

node receiving a new data packet to actually send two packets out as a result, one a JReq

packet intended to travel further downstream, and the other a JReply packet intended for

the upstream receiver. With this ‘doubling’ of network traffic per each node, areas of

high density and high traffic caused the protocol to consume large amounts of network

bandwidth at the very time when it was most needed in order to establish an optimal data

path that ensured delivery to the highest number of nodes over the course of operations

until the next route refresh. Each node attempting to send out two packets had the effect

of creating multiple backoffs and retries per multiple nodes in the direction of high node

density, significantly delaying sends from all nodes in the area Packet forwarding

progress in other directions of lesser node density did not have this obstacle of

constrained bandwidth to deal with. Since the data path creation mechanism establishes

the node sending the packet that is the first one received by downstream nodes as a

“forwarding node” in constructing the data paths, the final paths tended to be built around

both sides of high density areas, instead of through their center. Figure 5.1 shows a

typical small network with a spot area of density that has data paths constructed around it

by the ODMRP protocol.

 107

Figure 5.1 – ODMRP Constructed Data Paths Around Area of Spot Density.

In Figure 5.1, it can be seen that an area of spot node density exists at cols 4-5, rows

E-F. ODMRP’s resulting data paths end up circling this area. Experimentation showed

that if it was in fact necessary to send two different sets of information out, one to an

upstream node and one to multiple downstream nodes, adding both sets into a resulting

slightly larger packet that was then sent out only once essentially solved the problem,

allowing the more optimal data paths to be constructed with the global path construction

mechanism. Paths constructed tended to be more optimal, bisecting areas of density,

resulting in much less link contention, fewer paths constructed, with more receivers

linked to each path and receivers generally receiving fewer duplicate packets. The

resulting data paths also delivered data with less latency and with less bandwidth

consumed. Figure 5.2 shows the same small network with its spot area of density that has

more optimal data paths constructed through it by the experimental mechanism.

 108

Figure 5.2 – Experimentally Constructed Paths Through Area of Spot Density

In the Figure it can be seen that in the same area of spot node density shown in the

previous Figure, the experimental resulting data paths end up bisecting the dense area and

creating more optimal data paths for the dense condition.

After implementing this new scheme in a communication protocol and executing 600

second performance runs with direct comparisons between it and ODMRP, the

expectation was that since the new scheme required less bandwidth overhead for data

delivery to the same number of receiver nodes (due to fewer data paths, fewer hops along

the optimized shorter data paths, and fewer forwarding nodes sending fewer packets

reaching the same number of receivers with fewer duplicates received) in the specific

network conditions where bandwidth overhead was scarce, the overall packet delivery

ratio would be better than ODMRP, with fewer packets dropped due to link contention.

The result did not match the expectation however. Reliability was consistently a few

percentage points lower with the new scheme than with ODMRP. Another close analysis

in the log files of hop by hop packet dissemination across the network using the same

 109

scenario for the same time period studying differences between ODMRP and the new

scheme revealed the reason. Since ODMRP tended to skirt areas of density, more data

paths tended to be created, and the paths created were more likely to be located away

from the centers of the networks, closer to the edges. Since the new scheme tended to

bisect areas of density, it tended to create fewer data paths, and the paths created were

more likely to be located nearer the centers of networks, instead of along the edges.

Initially, after completion of the global path creation mechanism in the new scheme, all

reachable network nodes were supplied by data paths, but nodes on the edges of the

network moved out of range quicker, since they tended to be supplied by fewer redundant

data paths. These nodes on the periphery were in fact the nodes receiving fewer data

packets, dropping the overall network reliability consistently by a few percentage points.

So the new scheme minimized latency and bandwidth in areas of spot density within a

typical network, but the new problem to solve was then how to deliver data to areas of

spot sparseness in a typical network, on and beyond the edges of the connected

networked nodes. In areas of density, bandwidth was constrained, but on the edges of

networks there was no such constraint, since very little of the available bandwidth was

used, due to the optimized data paths. Link contention was not a constraint in this local

condition of sparseness. The approach to this new issue then was to find a means to

discover which nodes were at the peripheries of the connected network, and turn more of

them into forwarding nodes, in order to allow nodes moving beyond the edge of the

connected network to still receive the data packets, and hopefully even to allow further

out nodes already beyond the edge in a partitioned state to begin receiving data packets

again from these newly enabled forwarding nodes.

After some experimentation, looking for a way to identify those nodes located on the

edges of networks and about to move beyond reach of the network, an observation was

made that they shared a common condition. Almost universally, nodes within the

reception area but moving toward the edge of a network in any direction began by

receiving a typical number of redundant packets for each data packet, usually between

three and five. As they moved to the boundary, redundant packet reception would drop by

 110

single packets, for example a node would receive one original packet with a given

sequence number closely followed by three duplicates for a packet or a couple packets in

a row, then one original packet followed by two duplicates for a packet or two, then one

original packet with one duplicate for a packet or two, then finally only one original

packet with no duplicates as the node reached the connected network boundary. When the

node moved beyond the connected network boundary it would receive no packets at all.

The solution then, was to allow nodes to notice their own drops in reception of duplicate

(not original) packets, and when a node identified that it entered a condition where it

received an original packet only, with no duplicates, it would turn on its packet

forwarding flag. One would think that this would have little effect, since the node would

only forward a few packets before finally moving out of range, but what actually

happened is that a couple nodes moving out of range in approximately the same direction

would near simultaneously begin forwarding received packets, and if one did move out of

range it could continue receiving packets forwarded by the other. This mechanism caused

the forwarding mesh to be extended out into what was previously a partitioned area,

allowing disconnected nodes to begin receiving new packets again. In this way, delivery

to all edges of the network was “beefed up”, making good use of the relatively larger

amount of available network bandwidth in those areas. These new forwarding nodes had

the same timeouts to disable their forwarding flags as nodes along data paths created by

the global data path creation mechanism.

When these two mechanisms were combined into a new data path creation scheme,

the total effect was very positive. Essentially, they worked hand in hand to enable

optimized data paths. On the one hand, these data paths minimized the overhead of

redundant transmissions resulting from unnecessarily long data paths in specific network

conditions where bandwidth was constrained. At the same time, they maximized

necessary redundant sends specifically in sparse areas of constrained packet delivery

where bandwidth was more freely available. When this new combined scheme was

implemented and compared to ODMRP, it greatly outperformed ODMRP in reliability,

even without a secondary packet recovery mechanism. It was also compared to basic

 111

flooding with very good results. It performed nearly as well as flooding, with just a

slightly reduced reliability ratio, but with far less bandwidth required.

5.2.4 Secondary Missed packet Request Mechanism
To begin with, the concept of the “local neighborhood reply” approach initiated in R-

ODMRP seemed very promising and open to exploration, from the results obtained in the

R-ODMRP performance study. In the situations where local nodes were capable of

supplying the requesting nodes with missing packets, this solution greatly minimized

bandwidth overhead and latency for packet recovery. Situations where nodes local to the

requestor could not supply the requesting node with missing packets would have to be

instantly recognized and efficiently handled though.

In closely examining operations of R-ODMRP, and reading the published

performance results of other reliable group communication MANET protocols, a few

observations became clear. First, any required interactions between receiver nodes and

the source had negative impacts on one or several of the linked metrics of reliability,

bandwidth overhead and delivery latency. This can be observed in RALM, where the

secondary request mechanism requiring responses from the source causes both a latency

in the response, and an increasing bandwidth requirement since the request and the reply

must travel from each receiver all the way to the source and back, and a latency in

reception of new data packets, since the source must stop transmitting new packets in

order to handle the resend request. In R-ODMRP the required interaction with the source

occurred in the form of neighborhood control data travelling back to the source in order

to supply the neighborhood partitioning algorithm with needed neighborhood

information, then the control data with defined partitions travelling back to each receiver

throughout the network. This relatively large amount of control data travelling from each

receiver to the source node then back out to each receiver consumed a great amount of

network resources. Also, the required source interaction for network definition caused

other problems, depending on the particular scenario. In sparse or high mobility

networks, the paths could easily become severed, with neighborhood control information

never reaching some neighborhoods, and being lost for the entire round. In this case

 112

packet recovery would be delayed for entire regions of receiver nodes. This source

interaction also crippled network scalability, since as the networks grew larger the

negative effects would be more pronounced. One goal for the Reyes secondary recovery

mechanism then, is for the bulk of vital neighborhood control information to be

constrained to travelling the length of a single neighborhood in both directions, with no

need for this control information to be transmitted back to the source, or from the source

to individual neighborhoods.

A second observation was that all recovery operations that involved sending a packet

were essentially occurring in direct competition with ongoing new packet dissemination,

consuming network resources. For this reason, request / reply packets constrained to the

width of a neighborhood had less negative impact on ongoing data transmission than did

packets travelling to and from the source. Also, unicasts had less negative impact than

broadcasts. Experiments with R-ODMRP showed that broadcast requests with multiple

receivers replying tended to create a momentary congested area in the immediate location

of the requestor, directly causing new data packets to be dropped due to link contention.

Some of the reliable group communication MANET protocols that relied on broadcasts

showed suspicious performance data that seemed to uphold this observation as well. For

example, the broadcast packet requests being answered by all nodes receiving the

broadcast in the RAPID protocol simulation results could have been the reason the

authors chose to publish only the results for scenarios where the source is initiating new

packet sends at the rate of one packet per second, a very low data traffic rate. This rate is

far less likely to be negatively affected by local areas of network congestion occurring

throughout the network. The goal for Reyes in this area of the secondary packet request

mechanism is to first, restrict most packet requests and resends to local neighborhoods

only, except for situations where local nodes cannot supply the requestor; second, to send

packet requests only in unicast rather than broadcast form; and third, to allow replies to

be unicast back from a single receiver to the requestor as well, further conserving

network bandwidth. In situations where the requestor cannot find a single receiver node

responsible for storage of the requested packets with a good likelihood of fulfilling its

 113

request, it is better that the request is simply not made until more favorable circumstances

were available.

A third observation in the course of experimentation was that there was more than

one cause for a node to have missed receiving a packet from the source’s initial send. A

recovery mechanism would work more optimally, in terms of minimization of bandwidth

overhead, minimization of latency and chances of successful packet recovery, if targeted

to respond directly to the cause of the packet being missed. Some packets were missed

due to momentary or ongoing link contention, and the upstream node still had the packet

available for a quick resend. Other packets were missed due to an existing link being

severed either by node mobility or a sparse condition where links between nodes were

ephemeral and easily severed. Still other packets were missed due to receiver nodes

being out of range of the network, in a momentary or ongoing partitioned state, and

unable to receive packets. The goal for Reyes in this area was to develop a suite of

mechanisms that could recognize and instantly respond to the causes of missing packets

given the condtions local to the requesting node, designed to minimize bandwidth

overhead and latency while maximizing reliability.

5.3 Reyes Protocol Overview

In Reyes the source has no knowledge of group membership. Initially all network

receivers have a unique id and a specific data storage responsibility based on id, on

protocol startup. The protocol frequently takes a snapshot, grouping all network receivers

into local neighborhoods of a small number of receivers each, based on proximity. This

grouping is triggered by a single data packet traversing the network. On receiving this

data packet, all receiver nodes have knowledge of the id’s of other receivers in their

neighborhood, their data storage responsibilities and both the hop count and next hop

node id to each, as well as which neighbor is currently operating as the node’s upsteam

hop. Each node can then immediately send targeted unicast data requests that will travel a

few hops at most, and are likely to be successful. Simulations have shown this to be

successful across a wide variety of scenarios including high traffic, high mobility, dense

and sparse networks.

 114

To accomplish this a key initial design idea for Reyes was to create a small packet

header added to every data packet. This header allows a node, in a single packet send, to

transfer protocol control data to both a single upstream and multiple downstream nodes,

while simultaneously transmitting a new data packet downstream, negating the need for

dedicated control packets. With a small header packet transmit time is increased only

minimally, with little real impact. Most protocol control data in Reyes is transferred only

within a small area of the overall network, so scalability is not impacted.

Reyes has three mechanisms a node can use to request data packets, each with a

different cost in terms of network overhead and delivery latency. They are triggered by

network conditions in the immediate vicinity of a requesting node. They are Packet

Header Requests, Resend Requests and Beacon Requests. Resend Requests require

neighborhood knowledge, provided by the neighborhood building algorithm, but the other

two are independent, and can be triggered at any time. High level functional operations of

network nodes are shown in the “Network Node” pseudocode below. The “Source”

pseudocode shown below reflects the fact that the source plays no part in these three types

of request mechanisms, other than performing the standard actions of a network node

when a request is obtained. The Reyes neighborhood building algorithm has three phases:

Network Establishment, Neighborhood Formation and Neighborhood Confirmation. For

purposes of description, nodes that are part of the group of multicast receivers will be

called receiver nodes, while non-receiver nodes configured to forward packets will be

called forwarder nodes.

During Reyes operation, each receiver is responsible for reliably storing a portion of all

data packets for a period of time, with an upper limit on required storage of 500 packets. A

responsibility number of 0 means a node stores packets with sequence numbers ending in

0 to 33, 1 means storage of packets ending in 34 to 66, and 2 means storage of packets

ending in 67 to 99.

=====================================
Source Psuedocode .
start discovery_confirm timer
while (packets to send)
 add updated discovery_confirm data to packet

 115

 send packet
Discovery_Confirm_Timer()
 if (current phase is path discovery)
 update neighbor_confirm seq_number
 else
 update path_discovery seq_number
 Set discovery_confirm timer
=====================================

=====================================
Network Node Psuedocode .
Receive_Packet ()
 if ((hdr_request) & (im upstream hop))
 check store, send back found requested packets
 if ((hdr_reply)) & (im missing pkt))
 receive packet

 if ((rsndreq pkt) & (im next hop to rsndreq target))
 forward packet
 store requestor, prev hop id in routing table
 if ((rsndreq pkt) & (im rsndreq target))
 check store, send found requested packets
 if ((rsndreq reply) & (im next hop to reply target))
 forward packet
 if ((rsndreq reply pkt) & (im missing pkt))
 receive missed packet

 if ((beacon req pkt) & (im group member))
 send found requested packets
 if ((beacon req pkt) & (im connected group mbr))
 turn on packet forwarding flag if not on
 if ((beacon req pkt) & (im non-receiver))
 broadcast beacon request
 if ((beacon reply pkt) & (im next hop))
 forward reply packets
 turn on packet forwarding flag if not on
 if ((beacon reply pkt) & (im missing pkt))
 receive packet

 if (new data packet)
 update gaps list, received list, reliable storage
 if (gaps found)
 add hdr_request to packet
 if (path discover packet)
 load path reply info to header
 set neighbor_reply timer
 if (path reply packet) & (im upstream hop)
 turn on packet forwarding flag

 116

 if (neighbor reply packet) & (im upstream hop)
 add info to internal neighbor table
 if (neighbor confirm packet) & (from upstream hop)
 set randomized timer to send rsndreq packet
 zero out old nbr confirm table entries, add new ones
 if (new packet) & (forwarding flag on)
 if neighbor_reply timer expired, add nbr table to pkt
 send packet
=====================================

5.4 Reyes Data Structures
There are two standard data store types needed for Reyes operations. One type is

contained in the data packet header, and is the means by which Reyes allows each node

to communicate protocol control information to both upstream and downstream nodes on

an ongoing basis. This ‘Reyes header’ is added to each data packet sent out, and the use

of this mechanism negates the need for most types of dedicated protocol control packets,

although dedicated control packets still exist for two types of data resend requests. The

Reyes header contains id numbers and sequence numbers that enable nodes to identify

the current protocol phase, and obtain needed control information from neighborning

nodes.

The second data store type is a local store inside each node, where the node tracks the

current state of protocol operations and control information in a series of structures.

Reyes Header Type Structures

All Reyes packet header types add between 13 and 25 bytes to the standard data packet

header. This is in addition to the 20 bytes of control data added by the standard IP header

used by all ad hoc routing protocols, including flooding. This does not include the two

types of request packets, which require a dedicated packet. The Reyes Header portion of

network data packets contains the following:

• ‘packet type’ - numerical field that allows other nodes receiving a packet to

easily identify packet type. Packet types align to all protocol phases (described

later), header gap request packets, resend request packets, resent data packets,

and beacon request packets.

 117

• Packet sender specific information needed by neighboring nodes:

o Previous hop sender id

o upstream node id - to identify previous hop on data path

o recorded hopcount field (holds hopcount for different purposes,

depending on phase: hopcount to downstream previous receiver on this

path, to upstream next receiver, etc..).

• Standard source originated Data Packets have the following fields in addition

to those above:

o Protocol phase specific information:

 wait time to initiate reply,

 node level number - used to define neighborhood

boundaries, explained later

 sequence numbers per phase - path discovery, path reply,

reply table and path confirm

o Header gap information:

 requestor id

 gap start packet sequence number

 gap end packet sequence number

o Reply table packets and path confirm packets also have small

associated data tables added to the header for protocol control

information. Both these tables contain, with one entry per receiver

node:

 Neighborhood lead id and neighborhood number - to

uniquely identify each neighborhood in the network, used

to allow nodes to identify their neighborhood, and all nodes

in related neighborhoods the current node is on a data path

in between.

 Receiver id – identifies the actual neighbor node sending a

reply.

 118

 Id of next downstream hop to receiver – to provide data

path information for routing requests.

 Receiver’s storage responsibility number (explained later).

 Hopcount to receiver – incremented at each hop, so nodes

know all members of their neighborhood and the path

hopcounts to each.

o also, the path confirm data table has an additional field:

 Id of next upstream hop to receiver – to provide data path

information for routing requests.

• Data packets retransmitted in response to a data request have the following

fields:

o Packet type – to id the packet.

o Resend request data sender id – identifies node originating the data

packet reply to the requestor.

o Hopcount – from requestor to current sender.

o Resend requestor id – node originating data request.

o next hop to resend requestor id – reverse path next hop to forward data

packet back to requestor.

The dedicated control packet header for resend requests covers both resend requests and

beacon requests. Fields for this packet header include:

• ‘packet type’ field – to id the packet.

• Sender id for this particular packet, and upstream hop node id its being sent to,

for resend requests

• Requestor id of node originating this request.

• Storage responsibility table for needed packets (explained later).

• Number of gaps stored in packet, gap list and sequence number of last packet

received.

• Beacon packet id number.

 119

Reyes Local Node Internal Store

Local storage required in each node consists of a series of lists, a set of timers and a

node protocol state table:

• Reliable Packet Store – storage for a maximum of 500 data packets. The

packets for each receiver group member to store are determined by the node’s

‘storage responsibility number’ – a storage responsibility number of 1 requires

storage of packets with sequence numbers ending in 1 – 33, 2 requires storage

of packets with sequence numbers ending in 34 – 66, and 3 requires storage of

packets with sequence numbers ending in 67 – 00.

• Data Store Cache – a list of sequence numbers for packets recently received,

used to check for duplicates received.

• Gap List – storage for the list of sequence numbers for packets sent from the

source but not yet received.

• Resend Request Routing Table – a table with an entry for each data packet

resend request where a node is on the path between requestor and local

provider. Each entry contains the id number and next hop to the requestor,

and the id number and next hop to the provider.

• Timers and scheduling flags for:

o Path_Discover-Neighbor_Confirm – timer used to change protocol

phases.

o Load_Reply_Neighbor_Table – timer used to determine when to load

and send the reply neighbor table upsteam.

o Receiver_Beacon – timer to control periodic sending of beacon

packets for partitioned nodes.

o Various purge timers – to purge forwarding group node status, reliable

packet store (to verify the 500 packet maximum is not exceeded) and

entries in the routing table.

 120

• The internal state table has entries for:

o Node type identifier – identifies each node as source, receiver, new

node or forwarding group member.

o Node storage responsibility number.

o Path Discovery phase variables – flag, current sequence number,

hopcount from source, reply wait time, timeout time. Nodes per

neighborhood count, node level number.

o Path Reply phase variables – flag, sequence number and forwarding

group timeout time.

o Reply Table phase variables – flag, send and receive reply table

sequence numbers, internal temporary neighbor table used for storing

and processing received neighbor tables.

o Path Confirm phase variables – flag, last received time, received and

sent confirm sequence numbers, internal path confirm neighbor table

used to store and process a received path confirm neighbor table.

o Most recent data packet received – sequence number and time.

o Current upstream hop node id.

o Timeout values for path discovery, path reply,

o Set of flags, activated by phase so current node knows the protocol

phase its in.

5.5 Reyes Neighborhood Set Construction

5.5.1 Network Establishment
The Network Establishment phase is initiated by the source node incrementing the path

discovery parameter value in the Reyes packet header to match the current data packet’s

sequence number before sending the packet. The first packet with this newly incremented

value is called a path discovery packet. Each node receiving this path discovery packet

will broadcast it. If a node receiving the packet is a receiver node, it will compare its

internal path discovery parameter value to the one in the packet, and recognize the

 121

initiation of a new path discovery phase of the protocol by seeing that the value in the

packet is greater than its internal value. The receiver node sets the Reyes packet header

path reply sequence number to match the path discovery sequence number and fills in the

packet header upstream hop id field with the id of the node it received the path discovery

packet from, storing this node’s id internally as its current upstream hop id. When this

receiver node multicasts the path discovery packet downstream, its upstream hop receives

it and the node identifies itself as the target of a path reply packet, since the packet’s path

reply sequence number is greater than the upstream hop node’s internally stored number,

and it recognizes its id in the upstream hop parameter. This upsteam hop node turns on its

data forwarding flag, sets a timer, multicasting all new data packets. On expiration of the

timer, if another path discovery packet is not received, the node stops forwarding data

packets.

By the time the single path discovery packet propagates through the network, all

datapaths are established. Figure 5.3 depicts an example with established data paths after

the path discovery packet has propagated through the network. This example will be used

as the context for figures through this paper

 Figure 5.3: Example Established Network

5.5.2 Neighborhood Formation
Neighborhood Formation also begins with the path discovery packet. Initially, the

source sends path discovery packets with 0 for the level parameter in the Reyes header.

Use of the level parameter will be explained here.

Each node one hop from the source sets its internal level number to 0, sets a neighbor

reply timeout value, increments the header’s level parameter to 1, and forwards the path

 122

discovery packet. A node receiving this packet sets its internal level number to 1, sets its

neighbor reply timer with a shorter timeout value, increments the header level parameter

to 2 and multicasts it. The next nodes in the data path set their level number to 2, entering

0 in the header’s level parameter before sending it. Level 2 nodes have no need to set a

neighbor reply timeout value, as will be explained.

 Figure 5.4: Example Network Neighborhood Sets

After learning its level number, a node knows where it resides within its neighborhood

set. Figure 5.4 depicts the network shown in Figure 5.3 with node level numbers shown in

parentheses. Neighborhood sets are partitioned based on level 0 nodes. In this example,

nodes 2, 11, 23 and 24 are level 0 nodes, and define the boundaries between the four

neighborhood sets composing the overall network. Level 2 data receivers are at the outer

boundary of their neighborhood sets, hence on receiving a path discovery packet can

immediately load their id as both receiver and next hop to receiver, along with their

storage responsibility number and their upstream hop’s id to the neighbor reply portion of

the Reyes packet header in the corresponding outgoing path discovery packet. When this

packet is forwarded downstream, the upstream hop node also receives it and recognizes it

as both a path reply and a neighbor reply packet.

A level 1 node’s neighbor reply timeout value is set to allow reception of all

downstream level 2 node’s neighbor reply packets. Each received neighbor reply packet

causes the level 1 node to create a corresponding entry in its internal neighbor reply table,

adding the hopcount to the level 2 node. Once the level 1 node’s timer expires, it

processes all received level 2 neighbor reply entries before forming its own neighbor

 123

reply packet to be broadcast. Processing consists of the level 1 node first creating an entry

for itself in the table, then grouping all neighbor reply table entries into sets of 3, and

determining remainders. For each set of 3, the level 1 node lists itself as neighborhood

lead and assigns a neighborhood number. This neighborhood lead / neighborhood number

pair uniquely identifies all neighborhoods in the overall network. Remainder nodes not

grouped (at most two per level 1 node) will be put in the neighbor reply portion in the

Reyes packet header of the next data packet multicast out, which will be received by the

node’s upstream level 0 node.

 Figure 5.5: Nbr Reply Tables for Level 1 Nodes

Figure 5.5 shows the internal tables of level 1 nodes in the center neighborhood set

after processing all received level 2 node’s neighbor reply data. The rows in gray

represent remainder entries to be sent upstream to level 0 receivers on the neighbor reply

timeout. Level 0 nodes, with a longer wait until neighbor reply timeout, will receive all

downstream level 1 neighbor reply tables, increment hopcounts, then group entries into

neighborhoods, with one difference: remainder ungrouped nodes are added to the

neighborhoods grouped by the level 0 node rather than forwarded upstream. Figure 5.6

shows the internal table of the level 0 node in the center neighborhood set after

processing level 1 neighbor replies.

 124

 Figure 5.6: Nbr Reply Tables for Level 0 Node

Figure 5.7 shows the packet sequences for path discovery, path reply, neighbor reply

and neighbor confirm packets for a neighborhood of receiver nodes shown in Figure 5.3.

After the neighbor confirm data packet, no more packets with specialized flags about

neighborhood formation are sent until the next path discovery data packet. During this

time packet request mechanisms are free to operate.

Figure 5.7: Packet Sequences for Path Discovery, Neighborhood Formation

5.5.3 Neighborhood Confirmation
The Neighborhood Confirm phase is initiated by the source incrementing a

neighborhood confirm sequence number in its packet header and broadcasting the

neighbor confirm packet out. Each level 0 node receiving this data packet will first add an

entry for its upstream hop to its Reply Neighbor Table, then shift its finished Reply

 125

Neighbor Table into its Confirm Neighbor Table. Next, the level 0 node will load its

Confirm Neighbor Table into its neighbor confirm packet, and multicast it downstream.

Level 1 nodes receiving a neighbor confirm packet from their upstream level 0 node

must determine the entries in the table that apply to them, to store in their own confirm

neighbor table. If an entry identifies the node receiving the packet as both the receiver

and the next hop, the node stores the entry with a hopcount of 0 and a signifier that the

upstream and downstream hops are not applicable (since it is the node itself). If the entry

identifies the node as the next downstream hop but not the receiver, it stores the entry

with a signifier that the upstream hop is not applicable, a hopcount of [table entry

hopcount – 1] since it is one hop closer to the receiver, and does a lookup based on

receiver in its own reply neighbor table to find the next downstream hop.

In both cases, if the level 1 node is either a member of or on the path between members

of a unique neighborhood, the node records the level 0 neighborhood lead node id and

neighborhood number uniquely identifying the neighborhood, then adds all other entries

from the received confirm table for that unique neighborhood to its own confirm table.

The node will also load all entries matching that unique neighborhood to its neighbor

confirm packet, so the downstream level 2 neighbor has a full picture of the

neighborhood it is part of.

If a received neighbor confirm table entry for a neighborhood that a node knows it is

either a member of, or on a path of, does not show the node as the next downstream hop

(i.e. the neighbor must reside on another up or downstream branch off its upstream node),

the node records its unique upstream hop as next upstream hop and sets hopcount to the

receiver to [table entry hopcount + 1], as it is one hop down from its upstream neighbor.

Figure 5.8 shows the center neighborhood set’s level 0 and 1 node’s internal Confirm

Neighbor Tables after processing neighbor confirm packets. After processing its received

neighbor confirm table, a level 1 node adds all neighbor reply table entries that it has

processed, grouped and is lead for. This internal neighbor confirm table is then

compressed and sent out in the neighbor confirm packet header to downstream level 2

nodes. On reception, a level 2 node processing this neighbor confirm table has no internal

 126

neighbor reply table to draw from, since it is at the outer boundary of its neighborhood. It

simply determines the neighborhood it is a member of, recording all entries for that

neighborhood in its internal confirm neighbor table.

 Figure 5.8: Level 0, 1 Neighbor Confirm Tables

 Figure 5.9: Level 2 Neighbor Confirm Tables

After processing its received neighbor confirm table, a level 1 node adds all neighbor

reply table entries that it has processed, grouped and is lead for, inserting a ‘not

applicable’ signifier for upstream hop, since all those nodes will be downstream of the

level 1 node. This internal neighbor confirm table is then sent out in the neighbor confirm

packet header to downstream level 2 nodes. On reception, a level 2 node processing this

 127

neighbor confirm table has no internal neighbor reply table to draw from, since it is at the

outer boundary of its neighborhood. It will simply determine the neighborhood it is a

member of, recording all entries for that neighborhood in its internal confirm neighbor

table. Figure 5.9 shows the center neighborhood set level 2 node’s Confirm Neighbor

Tables after processing.

Figure 5.10 depicts the neighborhood partitioning of the network shown in Figure 2

after the neighbor confirm packet has propagated through the network.

 Figure 5.10: Network Neighborhood Partitioning

5.6 Reyes Data Request Mechanisms

5.6.1 Packet Header Request Mechanism
For a node’s packet loss due to link contention, a clear answer is to simply request the

upstream hop to resend the missing data immediately. Given the dissemination rate of a

packet broadcast by the source, it would be a rare condition that original packets arrive at

a given node out of sequence. Hence the mechanism is to have a node, upon receiving a

data packet, check for a gap between its sequence number and that of the previously

received data packet. A gap found indicates a resend is required. If the network is

congested in the local area, the lowest overhead way for the node to request resends from

its upstream node is to add the first and last sequence numbers of the noticed gap to the

header request portion of the data packet causing the node to have noticed the gap. Since

every outgoing data packet from the node contains the current upstream node’s id

(required for other parts of the protocol), the upstream node identifies the request by the

 128

listed gaps with itself as the upstream node, and resends the requested packets. This

mechanism has the lowest overhead and latency of the Reyes resend request mechanisms.

This mechanism can be used any time, even upon receiving a path discovery packet from

a brand new upstream node. Packet sequences for header requests are shown in Figure

5.11.

 Figure 5.11: Packet Request Mechanisms

5.6.2 Resend Request Mechanism
A stronger request mechanism with a higher overhead cost was developed for packets

lost due to missing links. This mechanism requires a node to have knowledge of local

neighborhood receivers, their storage responsibilities and their up or downstream next

hop paths. It is triggered by a node’s reception of a neighbor confirm packet. After

processing a new neighbor confirm packet all network data paths are established and each

node has freshly learned local neighborhood knowledge that is likely to last for a brief

period of relative stability until the next path discovery packet is received.

In this mechanism, a node first examines its list of missing packets and determines all

storage responsibility buckets they fall into. For each bucket, the node does a lookup in

its neighbor confirm table, loading a found receiver node id and next hop into a resend

request packet. If a receiver is not found for the storage bucket, the node will load the id

of its upstream hop into the packet, with no receiver id, signifying that the upstream hop

must check its own neighbor confirm table to locate a receiver with the needed storage

responsibility number. If the upstream hop can’t locate such a receiver, it forwards the

 129

request to its upstream hop, until one is found. The requesting node loads its list of gaps

into the packet, sending it out to nodes on the next hop list. Nodes receiving this packet

that identify themselves as next hops but not targets will lookup in their neighbor confirm

table to find the next hop from their position, forwarding the resend request packet on.

They will also store the previous hop id in an internal routing table to forward reply

packets.

The goal of the resend request mechanism is that when a node is missing packets, for

each bucket of missing packets it needs, at most one single responsible receiver node that

is located as close as possible will be found and will unicast back the data packets, on

fresh data paths. This is intended to reduce the network overhead of resend requests as

much as possible, while giving them a high likelihood of succeeding. An example of

resend request packet sequences is shown in Figure 9.

5.6.3 Beacon Request Mechanism
This third data request mechanism in Reyes has the highest network bandwidth costs and

latency. It is intended to handle network partitions where bandwidth costs are not the most

important consideration.

In Reyes the Beacon Request process begins with a beacon timer initially configured to

expire relatively infrequently. On expiration, a node checks to see if any data packets have

been received in the last cycle. If none were the node goes into beacon mode, creating and

sending out a Beacon Request packet that is very similar to the Resend Request packet,

with a few exceptions. No upstream hop id is listed, all next hops and storage

responsibility nodes are set as “needed but unknown”, and a “last packet received”

sequence number is added. A node in beacon mode initiates Beacon Requests more

frequently, since overhead is not an issue.

If the recipient of a beacon packet is a receiver or the source, it will send back all listed

missing packets found in its reliable storage, including packets with sequence numbers

greater than the requestor’s “last packet received”. If the recipient is actively receiving

new packets, it will turn on its forwarding flag, if not already enabled. If the recipient is a

non-receiver, with or without its forwarding flag on, it enters the requestor as a previous

 130

hop into its internal routing table and forwards the beacon request on. If the request

ultimately reaches a receiver node, resent data packets will have a fresh path to return to

the requestor on, and nodes along the path will turn on their forwarding flag if the receiver

is actively receiving. If the recipient is another receiver in beacon mode, the packet is

dropped and no further action is taken.

5.7 Protocol Discussion
In protocol design an initial priority was placed on each receiver node’s storage

responsibilities being permanently assigned. A node makes every effort to obtain and

place in long term reliable storage each packet it is responsible for storing. This makes a

unicast data request to the storing node a meaningful event likely to be successfully

fulfilled. The network neighborhoods dynamically formed during Reyes’ operations do

not always include nodes with all storage responsibilities of 0, 1 and 2. In fact it often

happens that neighborhoods have no coverage for one or two storage responsibilities at

any point in time. When this occurs, and a node needs packets but has no neighbors

assigned to store them, the request is unicast to the upstream node, where another search

is made for a node with the required storage responsibility. This is necessary in order to

guarantee that resend requests and data resends will always be unicast, in order to not

congest regions of the network with multiple same data resends from different senders.

Initial experimentation proved the importance of this temporary regional congestion

issue in another aspect of Reyes operations. Since the first path discovery packet of a new

cycle is always flooded, a large amount of link contention exists during an upstream level

1 node’s reception of a downstream level 2 node’s path reply/neighbor reply packet that

acts as its path discovery packet downstream, when other nodes are nearby. A generous

time allocation of 0.6 seconds was set to allow upstream level 1 nodes another chance to

receive downstream level 2 node’s neighbor reply packets, after the temporary

congestion caused by the flooding of the initial path discovery packet had cleared away.

Level 0 nodes receive downstream neighbor reply packets well after this congestion has

passed, and forwarding paths are established, and so do not require as much time.

 131

Experimentation also showed that within a neighborhood set it was important to require

that each node obtain its neighbor confirm packet from the same node it received its path

discovery packet from in the current cycle, in order to enforce correct operation of the

neighborhood building algorithm, and have all nodes correctly record receiver neighbors

and up/downstream next hop links. This requirement however was shown not to be

necessary between neighborhood sets. In other words, a level 0 node’s neighborhood

confirmation phase could be triggered by receipt of the correct neighborhood

confirmation packet from any node, not just its recorded upstream hop. In this way,

neighborhood confirmation recognition problems arising from link issues between nodes

in one neighborhood set during transmission of a particular neighborhood confirmation

packet were not propagated to downstream neighborhood sets.

In experimentation, it was interesting to compare the data paths established by Reyes

with those established by ODMRP, using the same scenario files. Reyes data paths

tended to drive straight through areas of greater network congestion, where ODMRP

paths tended to skirt around these congested areas. This was due to the fact that in Reyes

data paths are established by a node receiving a path discovery packet and broadcasting it

out, with a flag in the header to signal the upstream node to set its forwarding flag and

timer. In ODMRP the process is for a node to send a Join Reply packet to its upstream

node and a Join Query packet to its downstream nodes. In denser areas of the network the

consequence of sending two packets back to back is multiple send collisions between

nodes, backoffs and resends, greatly slowing data path establishment. In ODMRP paths

skirting areas of greater density are established faster, and tend to win out.

Consequently, the data paths in Reyes tend to be more ‘backbone’ oriented, resulting in

fewer data forwarder nodes over the network. During normal operations the network

tends to be less loaded with duplicate packets at any one node, and conditions are easier

for Resend Request operations after data path establishment. With this configuration

however, it is also easier for receiver nodes at the edge of the mesh to move out of range.

Trial runs showed that this condition could be easily identified and solved in Reyes

operations, with little harmful effect. As nodes headed out of the mesh reception area

 132

they would receive fewer and fewer duplicate packets for a given packet sequence

number. Just before leaving the mesh they would receive their final packets from a single

forwarder with no duplicates at all. A mechanism was established to notice this condition.

Duplicate packet reception was counted on the fly on an ongoing basis, and when the

count dropped to one for a given data packet, the receiver turned on its data forwarding

flag. The consequence of this was that network areas on the borders of the mesh that had

light data delivery or were momentarily partitioned would suddenly have a strong

delivery mesh extended into them. Other areas inside the mesh were unaffected, since

nodes always received at least one duplicate packet in these areas, so increased link

contention was not an issue.

5.8 Performance Evaluation

5.8.1 Simulation Environment
Reyes was implemented in the ns-2 network simulator [FV02], developed by the

University of California, Berkeley, and the VINT project, along with Carnegie Mellon’s

Monarch Project mobile and wireless ns-2 extensions [C99]. Ns-2 was used to compare

Reyes with ODMRP [LSG00], Flooding and R-ODMRP. ODMRP was selected because

it is a well documented high reliability protocol, and flooding is currently a standard for

reliability in MANETs. R-ODMRP was used as a reliability protocol comparison point.

The Reyes, ODMRP and Flooding simulations all executed with the same randomly

generated network traffic and node movement files. All node movement files utilized

random waypoint, and were generated with the Colorado School of Mine’s “Mobgen-ss”

application [NCB04a], which implements a method to guarantee a random waypoint

simulation begins in a steady-state distribution, documented in [NCB04]. All movement

scenario files establish a varying number of mobile nodes moving within a 1000m x

1000m area at varying speeds with a delta of 10m/sec, and 0 seconds pause time. The

radio range for each node was 250 meters, and channel capacity was 2 Mb/sec. All

simulations ran for 600 seconds. Node speeds for the traffic rate and sparse network

scenarios were 20m/sec, while the mobility scenarios varied node speeds from 20m to

 133

70m/sec. Multiple runs were executed for each data point in all scenarios, with the

results averaged.

The number of nodes was set at 50 nodes per network with 25 receivers for the mobility

and traffic rate scenarios, while the sparse network scenarios varied the number of nodes

from 45 nodes with 23 receivers, down to 5 nodes with 3 receivers. Data rate was set at

three 512 byte packets per second for the mobility and sparse network scenarios, while it

moved from 3 to 24 packets per second in the traffic rate scenarios. In the simulations,

parameters for ODMRP were set to 3 seconds for the Join Query interval and 9 seconds

for the forwarding state timeout. Parameters for Reyes set a level 1 node reply table

timeout to 0.6 seconds, and a level 0 reply table timeout to 1.0 seconds, with the Reyes

source period set to 1.25 seconds from path discovery to neighbor confirm packet, then

1.25 seconds from neighbor confirm to path discovery packet. Typically packets in a

node’s storage responsibility are stored until the storage threshold is reached. A node will

store all other packets as well for 25 seconds or until purge, in order to fulfill packet

header requests, excepting sparse network scenarios, where the storage time is 250

seconds. Since nodes are in multiple ongoing partitioned states in sparse networks, the

threshold is reached less often. In all Reyes scenarios, if more packets need to be purged

than have expired, the oldest non-responsibility packets are purged first, and the newest

responsibility packets are purged last. These metrics hold for all scenarios except data

rate, where Reyes reply timeouts, cycle periods and data storage capacity are all scaled to

match the data rate change.

5.8.2 Performance Metrics

Three metrics were used to evaluate performance of the three protocols in the various

scenarios:

1. Reliabililty Percentage – the number of packets actually received by all receivers

compared to the total number of packets that could have been received.

2. Control Overhead – the number of control bytes sent by all network nodes

compared to the number of data bytes delivered to all receivers.

 134

3. Data Delivery Latency – the difference between the time when the source sends a

data packet and a receiver receives it, averaged across all network receivers for

reception of all data packets.

5.8.3 Sparse Medium Mobility Network Results

In the Sparse Network Figures, 5n_3r denotes a network of 5 nodes, with 3 being

receivers. Sparse networks are where the strengths of Reyes have the most impact. In

Figure 5.12, in the sparsest network with five nodes, Reyes greatly outperforms flooding,

ODMRP and R-ODMRP in reliability.

 Figure 5.12: Sparse Medium Mobility Network Reliability

Reyes retains full reliability across the sparse scenarios shown. R-ODMRP delivery

drops off even more sharply than the best effort protocols. Once the network becomes

sparse enough it provides no advantage in terms of reliable delivery. Its centralized

mechanisms are more fragile, and the control overhead turns from a benefit to a liability,

dropping delivery to below that of best effort protocols.

Here it is likely that if Reyes continued to operate after the source halts packet sends at

600 seconds, 100 percent packet delivery would be obtained even for the sparsest

 135

networks, since nodes would continue moving around the network exchanging missing

packets with each other through beacon requests.

 Figure 5.13: Sparse Medium Mobility Network Control Overhead

As the scenarios become sparser, Figure 5.13 shows Reyes control overhead rising

gradually, since many more data packets are missed in the initial delivery due to missing

links, and more work must be done to handle this. The number of data packets received

due to packet header requests, resend requests and beacon requests all show significant

increases as the network becomes sparser. Flooding shows control overhead holding

steady in the sparsest network scenarios due to the steep dropoff in packets that reach

receivers (note: flooding’s control overhead consists of the bytes of the IP header, which

are also counted as part of the overhead in the other protocols). ODMRP shows a similar

holding steady in control overhead, being best effort.

The control overhead metric for Reyes shown in Figure 5.13 is a bit misleading. The

increasing frequency and number of partitions triggers Reye’s mechanism for creating

datapaths at the edges of networks, enhancing reliable delivery across what would have

been partitions. R-ODMRP, with its less targeted operations, generates a far greater and

more steeply increasing amount of control overhead, interfering with the increasingly

difficult task of packet delivery, with fewer links and more partitions. R-ODMRP must

 136

work harder to overcome the negative effects of the overhead, resulting in increasing

latency as the network becomes more sparse.

 Figure 5.14: Sparse Medium Mobility Network Latency

Figure 5.14 shows latency for Reyes rising as expected, since the amount and length of

network partitioning increases as the network becomes sparser and nodes must reconnect

to receive missed packets. However, it increases far less than R-ODMRP, with much

better results for reliable delivery. It not only delivers more packets than R-ODMRP, it

delivers them faster on average as well. Latency for the best effort protocols is expected

to be low here, since fewer packets are delivered, and those delivered are strictly a result

of the initial source send. For Reyes, not only does the count of packets received for all

three request types show a steep increase here, but the average latency per packet for each

request type shows a steep increase as well. In sparse networks high latency seems

unavoidable for Reyes. Sparse networks are a weak point for R-ODMRP, since its

operations generate high overhead which works directly against reliable delivery.

5.8.4 Sparse High Mobility Network Results
In the Sparse High mobility Network Figures, 5n_70ms denotes a network of 5 nodes,

3 receivers, moving at 70 m/sec.

 137

 Figure 5.15: Sparse High Mobility Network Reliability

 Figure 5.16: Sparse High Mobility Control Overhead

Figures 5.15, 5.16 and 5.17, show that increasing mobility increases reliability for

Reyes in sparse networks, while decreasing reliability across the board for flooding.

Another advantage for Reyes with high mobility, latency decreases significantly in the

sparsest networks when compared to medium mobility.

 138

 Figure 5.17: Sparse High Mobility Network Latency

5.8.5 Dense Medium Mobility Network Results

In the Dense Network Figures, 450n_225r denotes a network of 450 nodes, with 225 of

them being receivers. As Figure 5.18 shows, Reyes performs very well in dense

networks in terms of reliability, outperforming both flooding and ODMRP.

 Figure 5.18: Dense Medium Mobility Network Reliability

 139

In the worst test run of the set for Reyes, only 48 packets were not yet delivered to

receivers. This could be due to the last packet not yet propagating through the network, or

to recent missed packets. In either case, this score would likely rise to 100% if the

protocol were allowed to operate, via beacon requests for a few seconds after the source

stops sending at 600 seconds.

ODMRP and flooding also perform well, ODMRP’s restricted set of data paths provide

for better reliable delivery than flooding, where every data path is active all the time. In

terms of reliable delivery, R-ODMRP has a restricted set of data paths similar to

ODMRP, but unfortunately the large amount of overhead required for control operations

only increases with network density, causing reliable delivery to drop off at a steeper rate

than the best effort protocols as the network becomes denser. As the network grows

denser, ODMRP experiences a gradual decline in reliability, due to a greater amount of

link contention, while flooding shows a more significant drop off due to link contention

operating at a much higher degree, since no data paths are ever disabled.

 Figure 5.19: Dense Medium Mobility Network Control Overhead

As the scenarios become denser, Figure 5.19 shows Reyes and ODMRP control

overhead actually dropping below that of flooding. Dense networks are a weak point for

flooding. While more datapaths are enabled and the total control bytes sent increases

across the Reyes experiments, the number of data bytes delivered per datapath due to an

 140

increasing receiver count grows at an even faster pace, so the overall overhead metric

decreases.

Since Reyes has more overhead than ODMRP, given its reliability mechanisms, dense

networks could have been a weak point for Reyes reliable delivery, but its increased

overhead is very targeted and controlled, to impact reliable delivery as minimally as

possible. The downside of the slight overhead increase is outweighed by the increase in

reliability. The flooding metric shows an almost imperceptably slight increase across the

experiments, since its control bytes sent number is growing very slightly faster than its

data bytes delivered number. R-ODMRP shows control overhead increasing with

increased network density, in turn causing a steeper dropoff in reliable delivery compared

to the best effort protocols.

Reyes and the two best effort protocols show similar low metrics for delivery latency,

even though Reyes delivers more packets through resends, though none attributable to

beacon packets. Dense networks are a strong point for Reyes. On the other hand, R-

ODMRP’s metric shows how hard the protocol actually has to work in dense networks.

As the network becomes more dense R-ODMRP control overhead increases and latency

sharply increases. While the reliable resend mechanism works harder, more packets are

dropped due to increasing contention, so more resend requests must be sent.

 Figure 5.20: Dense Medium Mobility Network Latency

 141

5.8.6 Dense High Mobility Network Results
In the Dense High Mobility Figures, 50n_70ms denotes a network with 50 nodes, 25

receivers, moving at 70 m/sec.

 Figure 5.21: Dense High Mobility Network Reliability

 Figure 5.22: Dense High Mobility Control Overhead

Figure 5.21 shows Reyes retaining its high reliability, ODMRP losing reliability

in the less dense and more dense data points, and flooding with slightly less reliability

across all data points when compared with medium mobility reliability. Figure 5.22

shows flooding and Reyes to have similar control overhead, but ODMRP to have slightly

 142

higher control overhead in the less dense data points when compared with the dense

medium mobility scenario. For Reyes, the real difference in high mobility versus medium

mobility dense networks is the increase in latency, seen in Figure 5.23. More resend

requests were dropped due to contention, delaying eventual redelivery. No increase was

seen for ODMRP and flooding.

 Figure 5.23: Dense High Mobility Network Latency

5.8.7 Mobility Results

In the Mobility Figures, 50n25r_70s denotes the entry for 50 nodes, 25 being receivers,

moving at 70 meters per second.

Figure 5.24 shows reliability was excellent across all mobility scenarios for Reyes, with

the worst case being 32 packets not yet received (.999601% reliability) at the 599.95

second mark. This is a number expected under any network conditions, since source

sends are stopped after the metrics are taken, at 600 seconds. Usually packets have not

yet propagated to all nodes, and recently missing packets have either not yet been

requested or received. Higher mobility provides each node a greater chance of being

neighbors with other nodes storing needed packets. Flooding shows good reliability

 143

across all mobility tests, dropping only slightly at the highest mobility. ODMRP results

show reliability decreasing as node speed increases, due to links broken more often with

no means to make up for missed packets. This scenario is ideal for R-ODMRP, allowing

its reliability mechanism to operate well, providing enhanced reliability when compared

to ODMRP. The network is of light density, and the traffic rate is relatively low.

 Figure 5.24: Mobility Reliability

Figure 5.25 shows control overhead metrics that are consistent for all three protocols.

Though Reyes had a greater number of control bytes used than ODMRP or flooding, its

higher packet delivery metric decreased its control bytes sent per data byte delivered

metric to be close to both flooding and ODMRP. Since ODMRP is best effort, there are

no protocol changes triggered by increased mobility. Link breaks due to mobility tend to

reduce the number of control bytes sent as mobility increases, since the packets with the

control bytes are more likely to be dropped. Flooding control overhead is relegated to the

IP portion of the packet header, with no control overhead added for increased mobility.

ODMRP control overhead is consistently less than flooding, because of the reduced

amount of data packets sent due to fewer operational data paths. Figures 23 and 24

together show the effects of both R-ODMRP’s source based centralized algorithm, and its

 144

non-targeted data request operations as increased mobility puts greater stress on

communication. As mobility increases the links carrying control information for both

these operations are broken more frequently, delaying reception of initially missed

packets and causing the gradually increasing overhead and more sharply increasing

latency seen.

 Figure 5.25: Mobility Control Overhead

Surprisingly, Reyes also shows consistent control overhead as mobility increases. The

expectation was that as mobility rose, Reyes would have to use more control overhead to

make up for more missing packets. What actually happened was that though packets

received from the initial send decreased slightly as mobility rose, resent packets sent in

response to packet header requests and resend requests rose slightly to account for this.

Both mechanisms create very little additional overhead: resend request packets just had

more gap sequence numbers in packets that would have been sent anyway, and the flag

bytes used for packet header requests were counted as control bytes whether or not they

were used. The very slight increase in Reyes control overhead was mostly generated from

the resent data packets.

 145

In Figure 5.26, Reye’s gradual but increasing latency as mobility rose reflects the

greater amount of work it performed due to the rising number of packets eventually

received from resend requests. If a node is missing packets, but is a connected member of

a neighborhood, it must wait for the stability phase to request packets. Then, if its first

unicast request is unanswered, it must wait for the next stability phase. Beacon requests

would be answered faster with other nodes in range, but in a connected state the impact

of multicast beacon requests and multiple replies on network bandwidth would be

unacceptable, impacting all metrics. Latency for Flooding and ODMRP are very low,

since they operate on ‘best effort’ delivery.

 Figure 5.26: Mobility Latency

5.8.8 Traffic Rate Results

In the Traffic Rate Figures, 50n25r_24ps denotes a network of 50 nodes, 25 of them

receivers, with packets sent from the source at a rate of 24 packets per second. In these

scenarios network link contention became an increasingly difficult factor to deal with.

Figure 5.27 shows flooding was the worst performer in terms of reliability as the traffic

rate rose. In low traffic rate scenarios flooding’s overly redundant packet delivery adds

reliability, but as the data rate rises and links become congested this becomes a liability.

ODMRP, with its restricted number of data paths, is less affected by traffic rate, but still

 146

gradually deteriorates with rising data rates. Reyes maintained its reliability for higher

data rates, but eventually declined as well. A “cool down” period after the source halts

sending at 600 seconds could bring reliability up to 100% even for high traffic scenarios.

 Figure 5.27: Traffic Rate Reliability

 Figure 5.28: Traffic Rate Control Overhead

Figure 5.28 shows that Reyes reliability here comes at a much greater overall cost.

Since the mechanisms of the protocol all consume some amount of network bandwidth,

 147

they act in direct competition with the increasing load of ongoing data delivery. Reyes

must work proportionately harder to overcome link contention and missing packets as

data rates rise. As expected, control overhead rises at an increasing rate as traffic rates

rise, even though Reyes maintains a greater delivery ratio.

 Figure 5.29: Traffic Rate Latency

Figure 5.29 shows a sharp rise in latency as traffic rate increases for Reyes. This is

mostly due to an ongoing increase not only of the percentage of received packets due to

resend requests, but also to the increase in time for these packets to reach the requestor.

As link contention increases, a much greater percentage of these unicast requests and

replies do not reach the intended recipient. It is likely that this increasing delay in

reception of requested packets accounts for the lower reliability metric for Reyes at

higher data rates, and that if the protocol were allowed to operate after the last packet is

sent at 600 seconds, reliability would reach one hundred percent even at the highest data

rate scenarios.

 148

5.9 Conclusions for Reyes

 This section introduced Reyes, a reliable multicast routing protocol for MANETs.

Reyes is a low overhead, scalable protocol that allows a node missing packets three

mechanisms for requesting them, based on network conditions local to the node. These

mechanisms are each targeted to the specific causes of missed packets in ad hoc multicast

communications, broken and missing links in sparse networks, temporary and ephemeral

links in high mobility networks and links overloaded with contention in dense and high

traffic networks.

There are several ad hoc reliable multicast protocols that have been developed in recent

years. Of these, only a few have been evaluated in a standard detailed simulator with

reproducible results. For these, the scenarios tested have either been unrealistic (e.g., 1

packet per second for 500 seconds, with 1500 seconds ‘cleanup time’), or only partial

results were shown, or the authors knowingly traded off one performance metric for

another (e.g., reliability is kept high by consciously sacrificing latency).

While Reyes is developed to provide high reliability, its reliability mechanisms were

designed specifically to also provide low latency and low bandwidth consumption. Reyes

has been extensively evaluated across a wide variety of common network scenarios,

including increasing mobility and increasing data traffic rate scenarios, and both

increasingly sparse and increasingly dense networks, under both medium and high

mobility conditions. Performance evaluations of Reyes show it to perform very well under

all these scenarios, achieving close to 100% reliable packet delivery to all receivers in

most scenarios using the ns-2 network simulator. Reyes reliability is higher than the

current standards of flooding and ODMRP across all scenarios, and higher than R-

ODMRP as well. Its control overhead and latency are within range of flooding and

ODMRP, and better than R-ODMRP, except in the extremely stressful scenarios of very

high data rates and very sparse and dense networks.

 149

6 General Conclusions and Future Work

The majority of current research in reliable ad hoc multicast communication protocols to

date appears to fall into three distinct categories: Probabilistic Protocols, Deterministic

Topological Protocols based on global store and resend techniques, and Deterministic

Non-Topological Protocols based on local store, link determination and send/resend

techniques.

From current research, results indicate that Probabilistic protocols can increase

reliability with lower associated overhead, but ultimately have great difficulty providing

fully reliable packet delivery under multiple scenarios. High latency is also a difficult

issue for Probabilistic protocols to deal with, given the basic premise of link

determination. In these protocols, it is often the case that the probabilistic mechanisms

defined to determine packet transmit status are modified by a series of patches needed to

overcome the issues caused by the basic probabilistic technique itself.

The second category of Deterministic Topology-Based Protocols based on global

store and resend techniques has been proven to have a much greater potential for fully

successful reliable packet delivery as a result of the protocols developed and described in

this dissertation, R-ODMRP and Reyes. R-ODMRP proved that a global store and resend

technique could result in measurably increased reliable packet delivery when compared to

the most reliable “best effort” protocols available. Once implemented, it became a very

successful testbed from which to run many experiments designed to discover impediments

to reliable packet delivery, and to develop techniques to overcome them in ad hoc

networks. These experiments resulted in a design from scratch of the protocol Reyes,

which was specifically targeted to maximize reliable delivery while minimizing associated

latency and overhead. With these goals in mind from the very beginning, Reyes turned out

to be very successful across the metrics of reliability, overhead and latency, and across the

scenarios of dense networks, sparse networks, highly mobile networks and high data

traffic networks. At the start of this work it appeared counterintuitive that a multicast

communication protocol could successfully work to increase reliability specifically under

 150

the scenarios where the negative impacts of its added control overhead would have their

greatest effect, namely dense networks and high traffic networks, but the techniques in

Reyes accomplish this by specific targeting to minimize not only the control overhead but

also the network overhead associated with multiple data paths. Essentially, Reyes proved

the potential of this area of research to realize the goal of full reliability across all feasible

mobile ad hoc network scenarios.

After developing Reyes, it is clear that this category of research still has many

possibilities for maximizing reliability and minimizing the costs in terms of latency and

overhead. Reyes operations essentially take time to set a network state where nodes have

the local (and extended) knowledge needed to enhance reliable reception, then take

advantage of that state with a period of time during which receiver nodes make use of the

ability to request and receive missed packets. An enhanced approach could be that a much

smaller portion of packet bytes in every packet header let both upstream and downstream

nodes know about nearby receiver nodes and their responsibilities on an ongoing fluid

basis, with no requirement for the periodic operations that potentially increase latency and

control overhead such as those implemented by Reyes. This information could be

transmitted in a much smaller header, with a limited number of hops after which the

information is dropped. Resend requests could operate in a similarly fluid basis, sent

locally to receivers most recently learned, with a greatly minimized amount of data in the

header of a standard data packet that travels no more than a few hops before being purged.

This type of operation would work within the bounds of normal data packet dissemination,

with very little need for additional protocol control data. The global packet dissemination

method itself could be examined in much greater detail through experimentation, to find

optimal techniques for data path creation for every type of network scenario, along the

lines of the experiments used to design Reyes’ data path creation techniques, which

worked to minimize data paths in dense networks and maximize data paths in sparse

networks. The goals here would be a greater amount of optimization of data paths,

specifically looking at ways to do this with little, or even no, control overhead.

 151

The third category of Deterministic Non-Topological Protocols based on local store,

link determination and send / resend techniques also seems to be rich with possibilities

for maximizing reliability while minimizing latency and overhead. This area of

investigation is one of the least explored in terms of current research. One central problem

here is global determination of fully reliable delivery on a per packet basis. This problem

is dealt with in different ways by the Scribble and EraMobile protocols. This problem is a

difficult one to solve, since the protocols in this category use mechanisms that operate

locally at the level of an individual node, and aligning a global view with this is

counterintuitive.

Local link determination on a per node basis is a key issue for this category as well,

being a very important factor in both the degree of reliable delivery, and the amount of

network overhead used. Link determination also plays a big part in the latency metric,

since links that could have been established but are not could eventually result in the

triggering of some sort of request/resend mechanisms that will always increase latency

above that of reception of original source sent packets. Storage and resend mechanism

development would require a whole new approach for this category than for deterministic

protocols based on global techniques, as the requirements for mechanisms will be very

different.

In summary, there are many avenues to explore on the path to developing a mobile ad

hoc multicast protocol with fully reliable delivery that minimizes latency and network

overhead in every network scenario, but the work done in the research for this dissertation

has shown concrete results along this path.

 152

References
[BM05] Biswas, S., Morris, R., ExOR, Wireless Network Protocol, with

standard 802.11 radios. Commercially available from Meraki, start-up
company founded by the authors. 2005.
ExOR, Opportunistic Multi-Hop Routing for Wireless Networks.

[B91] Birman, K. “Building Secure and Reliable Network Applications”,

Manning Publishing Company, Greenwich, CT, and Prentice Hall. 1991.

[BMJHJ98] Broch, J., Maltz, D., Johnson, D., Hu, Y., Jetcheva, J. “A

Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols”, Proc. of the Fourth Annual ACM/IEEE

 International Conference on Mobile Computing And Networking,
Dallas, TX., October, 1998.

[BM98] Bagrodia, R., Meyer, R., et al, ”PARSEC: A Parallel Simulation

Environment for Complex Systems”, Computer Magazine, 1998.

[CRB01] Chandra, R., Ramasubramanian, V, Birman, K. “Anonymous Gossip:

Improving Multicast Reliability in Mobile Ad-Hoc Networks”, Proc. of
the 21st Int’l Conference on Distributed Computing Systems, Phoenix,
Arizona. April, 2001.

[CGZ98] Chiang, C.C., Gerla, M., Zhang, L. "Forwarding Group Multicast

Protocol (FGMP) for Multihop, Mobile Wireless Networks", ACM-
Baltzer Journal of Cluster Computing: Special Issue on Mobile
Computing, vol. 1, no. 2, pages 187 – 196. December, 1998.
FGMP - Forwarding Group Multicast Protocol.

[C99] CMU Monarch Project “The CMU Monarch Projects wireless and

mobility extensions to ns”, The CMU Monarch Project, August 1999.
Available at http://www.monarch.cs.cmu.edu/.

[CU] Cornell University, JiST/SWANS Java in Simulation Time / Scalable

Wireless Ad Hoc Network Simulator. Available at:
http://jist.ece.cornell.edu/.

[DB08] Detti, A., Blefari-Melazzi, N. OBAMP, “Overlay, Boruvka-based, Ad-

hoc multicast Protocol: description and performance analysis",
Wireless Communications and Mobile Computing, Wiley, 2008
Available from:
http://netgroup.uniroma2.it/Andrea_Detti/obamp/index.html

 153

http://en.wikipedia.org/wiki/802.11
http://en.wikipedia.org/w/index.php?title=FGMP&action=edit&redlink=1
http://www.monarch.cs.cmu.edu/
http://netgroup.uniroma2.it/Andrea_Detti/obamp/index.html

[DMM02] Das, S.K., Manoj, B.S., Murthy, C.S.R. "A Dynamic Core Based

Multicast Routing Protocol for Ad hoc Wireless Networks", In Proc.
of the 3rd ACM International Symposium on Mobile and Ad-hoc
Networking & Computing (MobiHOC), pages 24 - 35, Lausanne,
Switzerland. June, 2002.
DCMP - Dynamic Core Based Multicast Routing Protocol.

[DMM02b] Das, S.K., Manoj, B.S., Murthy, C.S.R. "Weight Based Multicast

Routing Protocol for Ad hoc Wireless Networks", In Proc.
of IEEE GlobeCom 2002, vol. 1, page 17-21. November, 2002.
WBM -

[DSS01] Devarapalli, V., Selcuk, A.A., Sidhu, D. "MZR: A Multicast Protocol

for Mobile Ad Hoc Networks", In Proc. of the IEEE International
Conference on Communications (ICC), pages 886 - 891, Helsinki,
Finland. June, 2001.
MZR - Multicast Zone Routing.

[DFKS06] Drabkin, V., Friedman, R., Kliot, G. Segal, M. ”RAPID: Reliable

Probabilistic Dissemination in Wireless Ad-Hoc Networks”, Technical
Report CS-2006-19, Department of Computer Science, The Technion,
December, 2006.

FJMLZ97 Floyd, S., Jacobson, V., McCanne, S., Liu, C., Zhang, L., “ A reliable

multicast framework for light-weight sessions and application-level
Framing”, IEEE/ACM Transactions on Networking, vol. 5, no. 6,
December 1997, pages 784-803.

[FV02] Fall, K, Varadhan, K,. Editors “The ns Manual”, The VINT Project,

UC Berkeley, LBL, USC/ISI, and XEROX PARC. April, 2002.
Available at http://www-isi.edu/nsnam/ns/.

[GM99] Garcia-Luna-Aceves, J.J., Madruga, E.L. "The Core Assisted Mesh

Protocol", IEEE Journal on Selected Areas in Communications,
Special Issue on Ad-Hoc Networks, vol. 17, no. 8, pages 1380 – 1394.
August, 1999.
CAMP - Core-Assisted Mesh Protocol.

[GO07] Genc, Z., Ozkasap, O. “EraMobile: Epidemic-based Reliable and

Adaptive Multicast for MANETs”, Proc. of the Wireless
Communications and Networking Conference (WCNC), Hong Kong,
China. March, 2007.
Available from:

 154

http://en.wikipedia.org/w/index.php?title=Dynamic_Core_Based_Multicast_Routing_Protocol&action=edit&redlink=1
http://en.wikipedia.org/wiki/MZR
http://en.wikipedia.org/w/index.php?title=Core-Assisted_Mesh_Protocol&action=edit&redlink=1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4224245&arnumber=
4225046&count=810&index=800

[GS99] Garcia-Luna-Aceves, J.J., Spohn, M., “Source-Tree Routing in

Wireless Networks”, Proceedings of IEEE ICNP 1999, page 273-282,
October 1999.

[GSPS02] Gopalsamy, T., Singhal, M., Panda, D., Sadayappen, P. “A Reliable

Multicast Algorithm for Mobile Ad Hoc Networks”, Proc. of the
Distributed Computing Systems Workshops, pp. 563-570, Vienna,
Austria. July, 2002.

[HK09] Hsiu, P.C., Kuo, T.W. "A Maximum-Residual Multicast Protocol for
Large-Scale Mobile Ad Hoc Networks", IEEE Transactions on Mobile
Computing, 2009.
MRMP – Maximum-Residual Multicast Protocol.
Available from:
http://ieeexplore.ieee.org/xpls/pre_abs_all.jsp?isnumber=4358975&arnum
ber=4796204

[JHMJ01] Jetcheva, J.G., Hu, Y., Maltz, D., Johnson, D. "A Simple Protocol for
Multicast and Broadcast in Mobile Ad Hoc Networks", Internet Draft
draft-ietf-manet-simple-mbcast-01.txt. July, 2001.
DSR-MB - Simple Protocol for Multicast and Broadcast using DSR.

[JJ01] Jetcheva, J.G., Johnson, D. "Adaptive Demand-Driven Multicast

Routing in Multi-Hop Wireless Ad Hoc Networks", In Proc. of the 2nd
ACM International Symposium on Mobile and Ad-hoc Networking &
Computing (MobiHOC), pages 33 - 44, Long Beach, CA. October,
2001.
ADMR - Adaptive Demand-Driven Multicast Routing.

[JC98] Ji, L., Corson, M.S. "A Lightweight Adaptive Multicast Algorithm", In

Proc. of the IEEE Global Telecommunications Conference
(Globecom), pages 1036 - 1042, Sydney, Australia. November, 1998.
LAM - Lightweight Adaptive Multicast.

[JC01] Ji, L., Corson, M.S. "Differential Destination Multicast-A MANET

Multicast Routing Protocol for Small Groups", In Proc. of the 20th
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 1192 - 1202, Anchorage, AK. April,
2001.
DDM (Differential Destination Multicast)

 155

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4224245&arnumber=4225046&count=810&index=800
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4224245&arnumber=4225046&count=810&index=800
http://en.wikipedia.org/wiki/MRMP
http://ieeexplore.ieee.org/xpls/pre_abs_all.jsp?isnumber=4358975&arnumber=4796204
http://ieeexplore.ieee.org/xpls/pre_abs_all.jsp?isnumber=4358975&arnumber=4796204
http://en.wikipedia.org/w/index.php?title=DSR-MB&action=edit&redlink=1
http://en.wikipedia.org/wiki/ADMR
http://en.wikipedia.org/w/index.php?title=Lightweight_Adaptive_Multicast&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Differential_Destination_Multicast&action=edit&redlink=1

[KC05] Kaan, B.; Cem, E., AQM, “Ad Hoc Quality of Service Multicast
Routing", Elsevier Science Computer Comms., vol. 29, no. 1, pg 136 –
148. December, 2005.

[KR05] Klos, L., Richard III, G.G., “ Reliable Ad Hoc Group Communication

using Local Neighborhoods”, Proceedings of the IEEE International
Conference on Wireless and Mobile Computing, Networking and
Communications, 2005.

[LJMVCA03] Laouiti, A.; Jacquet, P.; Minet, P.; Viennot, L. ; Clausen, T.; Adjih, C.

"Multicast Optimized Link State Routing", INRIA research report,RR-
4721. February, 2003.
MOLSR (Multicast Optimized Link State Routing)
(http://www.inria.fr/rrrt/rr-4721.html).

[LGC99] Lee, S.J., Gerla, M., Chiang, C.C. "On-Demand Multicast Routing

Protocol", In Proc. of the Wireless Communications and Networking
Conference (WCNC), pages 1298 - 1302, New Orleans, L.A.
September, 1999.
avail:http://www.cs.ucla.edu/NRL/wireless/PAPER/odmrp-wcnc99.ps.gz
ODMRP - On-Demand Multicast Routing Protocol.

[LK00] Lee, S., Kim, C., “Neighbor Supporting Ad Hoc Multicast Routing

Protocol”, Proceedings of ACM MOBIHOC 2000, Page 37-50,
August, 2000.

[LSG00] Lee, S.J., Su, W., Gerla, M. Internet Draft, “On-Demand Multicast

Routing Protocol(ODMRP) for Ad Hoc Networks”, draft-ietf-manet-
odmrp02.txt. January, 2000.

[LSHGB00] Lee, S. J., Su, W., Hsu, J., Gerla, M., Bagrodia, R. “A Performance
Comparison Study of Ad Hoc Wireless Multicast Protocols”, Proc. of
IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

[LTMB99] Liu, M., Talpade, R.R., McAuley, A., Bommaiah, E. "AMRoute:

Adhoc Multicast Routing Protocol", University of Maryland CSHCN
Technical Report 1999-1, College Park, MD.
AMRoute - Adhoc Multicast Routing Protocol.

[LEH03] Luo, J., Eugster, P.T., Hubaux, J.P. “Route Driven Gossip: Probabilistic

Reliable Multicast in Ad Hoc Networks”, INFOCOM, San Francisco,
CA. March, 2003.
Mobgen-ss app. at: http://toilers.mines.edu/Public

 156

http://en.wikipedia.org/w/index.php?title=MOLSR&action=edit&redlink=1
http://www.inria.fr/rrrt/rr-4721.html
http://www.cs.ucla.edu/NRL/wireless/PAPER/odmrp-wcnc99.ps.gz
http://en.wikipedia.org/wiki/ODMRP
http://en.wikipedia.org/w/index.php?title=AMRoute&action=edit&redlink=1
http://toilers.mines.edu/Public

[M09] Macker, J., editor, SMF Design Team, SMF, "Simplified Multicast
Forwarding for MANET", work in progress, 2009.
Available from http://www.ietf.org/id/draft-ietf-manet-smf-09.txt.

[ML02] Moustafa, H., Labiod, H., "SRMP: A Mesh-based Protocol for
Multicast Communication in ad hoc networks", In Proc. of the 2002
Intn’l Conf. on Third Generation Wireless and Beyond, pg 43 - 48, San
Francisco, CA. May, 2002.
SRMP (Source Routing-based Multicast Protocol)

[NCB04] Navidi, W., Camp, T., Bauer, N. “Improving the Accuracy of Random

Waypoint Simulations Through Steady-State Initialization”, Proc. of
the 15th Int’l Conf. on Modeling and Simulation, pp. 319 – 326. March,
2004.

[NCB04a] Navidi, W., Camp, T., Bauer, N. Mobgen-ss app at:
 http://toilers.mines.edu/Public

[OTV01] Obraczka, K., Tsudik, G., Viswanath, K. “Pushing the Limits of

Multicast in Ad Hoc Networks”, Proc. of the 21st International
Conference on Distributed Computing Systems, Phoenix, Arizona,
April, 2001.

[OKS99] Ozaki, T., Kim, J.B., Suda, T. "Bandwidth-efficient multicast routing
protocol for ad-hoc networks", In Computer Communications and
Networks, Conf. Proceedings, pages 10-17, Boston, MA. September,
1999.
BEMRP - Bandwidth-Efficient Multicast Routing Protocol.

[PB94] Perkins, C.E., Bhagwat, P., “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers”,
Proceedings of ACM SIG-COMM 1994, page 234-244, August
1994.

 [ROLTG03] Rajendran, V., Yi, Y., Obraczka, K., Lee, S.J., Tang, K., Gerla, M.

 “Reliable, Adaptive Congestion Controlled Ad Hoc Multicast
Transport Protocol: Combining Source Based and Local Recovery”,
UCSC Tech. Report. University of California, 2003.

[RG04] Ravindra, V., Garcia-Luna-Aceves, J.J. "Efficient and Robust

Multicast Routing in Mobile Ad Hoc Networks", In 2004 IEEE
International Conference on Mobile Ad-hoc and Sensor Systems,
pages 304- 313, Fort Lauderdale, FL. October, 2004.

 PUMA - Protocol for Unified Multicasting Through Announcements.

 157

http://www.ietf.org/id/draft-ietf-manet-smf-09.txt
http://en.wikipedia.org/w/index.php?title=SRMP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=BEMRP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Protocol_for_Unified_Multicasting_Through_Announcements&action=edit&redlink=1

Available from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1392169. A NS-2
implementation by Sidney Doria is available in: <http://puma-
adhoc.cvs.sourceforge.net/puma-adhoc/Puma/.

[RP99] Royer, E.M., Perkins, C.E. "Multicast Operation of the Ad-hoc On-

Demand Distance Vector Routing Protocol", In Proc. of the 5th annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), pages 207 - 218, Seattle, WA. August, 1999.
MAODV - Multicast Ad-hoc On-Demand Distance Vector routing.

[SMM02] Sisodia, R. S., Manoj, B. S., Murthy, S. R., “A Preferred Link-Based

Multicast Protocol for Wireless Mobile Ad Hoc Networks”, Journal
of Communications and Networks, vol. 4, no. 1, page 14 – 21, March
2002.

[SN] Scalable Networks: http://www.scalable-solutions.com

[SP02] Shu, L., Poppe, D. “Assuring Message Delivery in Mobile Ad Hoc

Networks with Packet Erasure Recovery”, Proc. of the Distributed
Computing Sys. Workshops, pp 14-19, Vienna, Austria. July, 2002.

[SSB99] Sinha, P., Sivakumar, R., Bharghavan, V. "MCEDAR: Multicast Core-

Extraction Distributed Ad hoc Routing", In Proc. of the Wireless
Communications and Networking Conference (WCNC), pages 1313 –
1317, New Orleans, LA. September, 1999.
MCEDAR - Multicast Core-Extraction Distributed Ad hoc Routing.

[TOLG02] Tang, K., Obraczka, K., Lee, S.J., Gerla, M., “A Reliable Congestion-

Controlled Multicast Transport Protocol in Multimedia Multi-hop
Networks”, The 5th International Symposium on Wireless Personal
Multimedia Communications, pp 252-256, Honolulu, USA. October,
2002.

[TGB00] Toh, C.K., Guichal, G., Bunchua, S. "On-demand associativity-based
multicast routing for ad hoc mobile networks (ABAM)", In Proc. of
the 52nd IEEE VTS Vehicular Technology Conference (VTC) 2000
Fall, vol. 3, pages 987- 993, Boston, MA. September, 2000.
ABAM - On-Demand Associativity-Based Multicast.

[TFWME04] Transier, M.; Füßler, H.; Widmer, J.; Mauve, M.; Effelsberg, W.

"Scalable Position-Based Multicast for Mobile Ad-hoc Networks", In
Proc. of the 1st International Workshop on Broadband Wireless
Multimedia: Algorithms, Architectures and Applications (BroadWim),

 158

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1392169
mailto:sidney@dsc.ufcg.edu.br
http://puma-adhoc.cvs.sourceforge.net/puma-adhoc/Puma/
http://puma-adhoc.cvs.sourceforge.net/puma-adhoc/Puma/
http://en.wikipedia.org/w/index.php?title=MAODV&action=edit&redlink=1
http://www.scalable-solutions.com/
http://en.wikipedia.org/w/index.php?title=MCEDAR&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=ABAM&action=edit&redlink=1

San José, CA. October, 2004.
SPBM (Scalable Position-Based Multicast)
Available from: http://www.informatik.uni-mannheim.de/pi4/publications/Transier2004c.pdf. A NS-
2 implementation available from:http://www.informatik.uni-
mannheim.de/pi4/projects/pbm/kernel.html

[TG01] Gopalsamy, T. B., “Multicasting in Mobile Ad Hoc Networks”,

Technical Report, 2001.

[UC01] University of California website: The USC/ISI ns-2 version of

ODMRP,. Supported by NSF’s NGE Program and the IMAHN Project.
Copyright 1991-1997, Regents of the University of California. 2001.

[VE04] Vollset, E., Ezhilchelvan, P. “Scribble: an Efficient Reliable Manycast
 Protocol for Ad-hoc Networks”, The 1st IEEE Int’l Conference on
 Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, Florida, USA.
 October, 2004.

[MG96] Murthy, S., Garcia-Luna-Aceves, J.J., “An Efficient Routing Protocol
 for Wireless Networks”, ACM Mobile Networks and Applications
 Journal, Special Issue on Routing in Mobile Communication
 Networks, Vol. 1, no. 2, page 183-197, October 1996.

[WT99] Wu, C.W., Tay, Y.C., "AMRIS: A Multicast Protocol for Ad Hoc

Wireless Networks", In Proc. of the IEEE Military Communications
Conference (MILCOM), pages 25 - 29, Atlantic City, N.J. November,
1999.
AMRIS - Ad hoc Mcast Routing protocol utilizing Incrsg id-numberS.

[ZS00] Zhou, Hl, Singh, S., "Content based multicast (CBM) in ad hoc

networks", In Proc. of the 1st ACM International Symposium on
Mobile and Ad-hoc Networking & Computing (MobiHOC), pages 51 –
60, Boston, MA. August, 2000.
CBM - Content Based Multicast.

[ZBG98] Zeng, X., Bagrodia, R., Gerla, M. “GloMoSim: a Library for the Parallel

Siulation of Large-scale Wireless Networks”, PADS, 1998.

 159

http://en.wikipedia.org/w/index.php?title=SPBM&action=edit&redlink=1
http://www.informatik.uni-mannheim.de/pi4/publications/Transier2004c.pdf
http://www.informatik.uni-mannheim.de/pi4/projects/pbm/kernel.html
http://www.informatik.uni-mannheim.de/pi4/projects/pbm/kernel.html
http://en.wikipedia.org/w/index.php?title=AMRIS&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Content_Based_Multicast&action=edit&redlink=1

 Vita
Lawrence Klos was born in Vacaville, California, and raised in Klamath Falls,

Oregon. He attended the University of Oregon, receiving a B.S. in Mathematics in 1984,
then worked for a time in the Information Technology field in Portland, Oregon.

Following that, he attended Harvard University, receiving a Master of Architecture
degree in 1991, then worked for a time with architecture firms in both Washington D.C.
and New Orleans.

After this, he attended the University of New Orleans, receiving an M.S. degree in
Computer Science in 1999. On completing this degree, he entered the DENAS Ph.D.
program at the University of New Orleans, finishing his coursework and comprehensive
exam while in attendance locally. Moving to Sacramento, California, he joined Intel as a
senior software engineer, while working on his dissertation research. He finally
completed all requirements for his Ph.D., including defense, in the fall semester of 2009.

 160

	Reliable Multicast in Mobile Ad Hoc Wireless Networks
	Recommended Citation

	List of Figures
	Abstract
	Introduction
	Background and Motivation
	Mobile Wireless Ad Hoc Networks
	Reliability Issues in Multicast Routing Protocols

	Dissertation Contributions
	Related Work
	MANET Multicast Protocols
	MANET Reliable Multicast Protocols

	Dissertation Organization

	Review of Related MANET Multicast Protocols
	Introduction
	Multicast Protocol Category Descriptions
	Multicast Protocol Related Work
	ODMRP
	Flooding
	Hyper Flooding
	AMRIS
	CAMP
	MAODV
	FGMP-RA

	Multicast Protocol Performance Comparisons
	Protocol Performance Modeling
	Evaluation Metrics
	Simulations and Results

	Multicast Routing Strategy Discussion

	R-ODMRP: A Reliable Enhancement to ODMRP
	Overview
	Packet Storage
	Packet Retransmission
	Data Structures

	Neighborhood Creation
	Overview of Neighborhood Building
	Neighborhood Building Parameters
	Neighborhood Building Algorithm
	Example of Neighborhood Building

	Protocol Performance Evaluation
	Simulation Details
	Initial Simulation Experiments
	Simulation Results
	Protocol Results by Phase

	Conclusions for R-ODMRP

	Review of Related Reliable Multicast Protocols
	Introduction
	Reliable Multicast Protocol Category Descriptions
	Reliable Multicast Protocol Related Work
	RMA
	RALM
	ReACT
	Scribble
	Anonymous Gossip
	RDG
	RAPID
	EraMobile

	Reliable Multicast Performance Comparisons
	Reliability Protocol Performance Modeling
	Reliability Evaluation Metrics
	Reliability Simulations and Results
	RMA
	RALM and ReACT
	Scribble
	AG
	RDG
	RAPID
	EraMobile

	New Reliable Multicast Routing Strategy
	Goal
	Categorization of Existing Approaches
	Performance of Existing Approaches
	First Building Block – Packet Dissemination
	Second Building Block – Missed Packet Recovery

	Design Strategy for a New Protocol

	Reyes: Reliable Multicast with Neighborhood Sets
	Protocol Design Goals
	Initial Design Ideas
	Fully Distributed Workload
	Minimizing Latency and Control Overhead
	Global Topology Based Path Creation Mechanism
	Secondary Missed packet Request Mechanism

	Reyes Protocol Overview
	Reyes Data Structures
	Reyes Neighborhood Set Construction
	Network Establishment
	Neighborhood Formation
	Neighborhood Confirmation

	Reyes Data Request Mechanisms
	Packet Header Request Mechanism
	Resend Request Mechanism
	Beacon Request Mechanism

	Protocol Discussion
	Performance Evaluation
	Simulation Environment
	Performance Metrics
	Sparse Medium Mobility Network Results
	Sparse High Mobility Network Results
	Dense Medium Mobility Network Results
	Dense High Mobility Network Results
	Mobility Results
	Traffic Rate Results

	Conclusions for Reyes

	General Conclusions and Future Work
	References
	Vita

