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ABSTRACT 

 
The purpose of this study is to inform instruction by increasing the body of knowledge 

regarding the relationship between college physics students’ knowledge about models in science 

and their conceptual understanding with regard to electricity and magnetism.  The data for this 

study was obtained through the administration of two instruments:  Conceptual Survey of 

Electricity and Magnetism, a multiple choice assessment, and Student Understanding of Models 

in Science, a Likert-scale survey.  Both traditional statistics and an innovative technique called 

Model Analysis were used to analyze the data. 

Analysis of the data revealed that there is a relationship between student understanding of 

models in science and conceptual understanding of electricity and magnetism topics.  However, 

the results of this study also suggest that without specific instruction on models in science, 

overall understanding of models in science does not improve after a traditional electricity and 

magnetism course.  Additionally, this study demonstrated that not only does student conceptual 

understanding of electricity and magnetism topics improve after a traditionally taught electricity 

and magnetism course, but also, students demonstrate more sophistication in their understanding 

of some electricity and magnetism topics.  In the latter case, students showed improvement in 

their application of the expert rather than the naïve or null model of electricity and magnetism 

topics.   

 

 

 

Keywords:   Conceptual Understanding, Education, Electricity, Magnetism, Model Analysis,  

Models, Physics, Science
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CHAPTER 1 – STUDY OVERVIEW 

Introduction 

Beginning in the late 1970s and early 1980s, physics-education researchers uncovered 

two startling trends.  First, despite the best efforts of their predecessors to improve instruction by 

improving traditional teaching methods (improving textbooks, demonstrations and lectures), 

little progress was made in improving student understanding of the fundamental concepts in 

physics (Arons, 1997). Second, with similar efforts to improve student understanding of the 

nature of science, results indicated that little improvement occurred (Lederman, Abd-El-Khalick, 

Bell, & Schwartz, 2002; Treagust, Chittleborough, & Mamiala, 2002).   

In addition, the studies indicated a major problem hampering student success at 

developing a real understanding of physics topics: students possessed robust, difficult to change 

ideas about the topics.  Also, researchers found that the correct knowledge they did possess was 

often fragmented.  Terms used to describe this phenomenon are:   naive ideas, alternative 

conceptions, pre-conceptions, or misconceptions.  Furthermore, these studies pointed out that 

traditional instruction did little to change student views (Caramazza, McCloskey, & Green, 1981; 

Chi, Feltovich, & Glaser, 1981; Clement, 1982; diSessa, 1982; French, 1988; Goldberg & 

McDermott, 1986; Gunstone, 1987; Halloun & Hestenes, 1985a, 1985b; McCloskey, 1983; 

McCloskey, Caramazza, & Green, 1980; Schwartz, B. B., 1990; Thacker, Kim, Trefz, & Lea, 

1994; Tobias & Hake, 1988; Trowbridge & McDermott, 1980a, 1980b; White, 1983).   

At the same time, researchers in various fields of education and cognitive science began 

to realize that in order to improve science education, the purpose and focus of science education 

had to change.  The push to move away from memorization and toward improved conceptual 

understanding began.  Scientists and educators wanted the purpose of science education to 
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become much more than memorizing a series of facts and solving pages of problems.  They 

wanted science education to be about gaining an understanding of scientific conceptual 

knowledge (Hodson, 1992) and an “understanding what the conduct of science involves, that is, 

taking part in the activities that contribute to the development of skills with which to obtain 

reliable scientific knowledge” (Justi & Gilbert, 1999).  In short, more attention was focused on 

teaching students the nature of science. Thus, the goal of science education was to teach students 

to “do science” as scientists do.  

In spite of small pockets of successful reforms, most introductory physics courses are still 

taught traditionally (using textbooks, lecture and demonstration) with the intent that students 

would “understand” the topics instead of just solving problems.  The reform programs and the 

few traditional physics courses that demonstrate some improved conceptual understanding by 

students have a common constructivist theme:  student learning is enhanced and their conceptual 

understanding increases when they are actively engaged in constructing their own knowledge 

(Halloun, 1984; Laws, 1991; Mazur, 1997; Thorton & Sokoloff, 1990, 1998; Wells, 1987; Wells, 

Hestenes, & Swackhamer, 1995).   One thing that many of these successful programs have in 

common was that they attempted to help students use models (mathematical, mental, physical, 

etc.) to construct and reconstruct their understanding. 

In summary, in order to help students truly learn physics and abandon their 

misunderstandings of major physics topics, the goal of physics education is changing in two 

ways.  First, there is a push away from students solving pages of problems and toward students 

developing a conceptual understanding of physics topics.  Second, in order to help students make 

that shift, educators began focusing on the nature of science because they wanted students to “do 

science” as a scientist does.  As noted above, research indicates that although traditional 
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instruction is not the best method to meet those goals and often does not make significant 

headway in changing student misconceptions about physics phenomena; it is the most common 

method of instruction.  Furthermore, research has shown that when learning about the nature of 

science becomes a theme in physics courses, students show significant gains in understanding the 

nature of science without declines in content acquisition (Fishwild, 2005). 

Thesis Statement 

This dissertation details efforts to uncover and probe the relationship between changes in 

student conceptual understanding of electricity and magnetism topics (E&M) and their 

knowledge about models in science. 

Purpose of the Study 

The purpose of this study is to inform instruction by increasing the body of knowledge 

regarding the relationship between student knowledge about models in science and their 

conceptual understanding with regard to electricity and magnetism (E&M).  The study is unique 

because previous studies on conceptual understanding in electricity and magnetism focused on 

non-traditional physics instruction and failed to examine how student views of the models in 

science and the learning of science are related to their improvements in conceptual understanding 

(Ding, Chabay, Sherwood, & Beichner, 2006; Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 

2001).  Clement and Steinberg (2002) studied student model evolution or the incremental growth 

of student models over time and found that such growth is important to conceptual learning.  

Others (Gutwill, Frederiksen, & Ranney, 1992) noted that the “flexible use of models held 

simultaneously was important to the development of expertise in the area of electric circuits.”  

While previous studies have examined conceptual change with regards to E&M content during 

traditionally taught physics courses (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001) and 
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others have detailed changes in students views about models and modeling in traditional physics 

courses (Treagust, Chittleborough, & Mamiala, 2002), none have examined the relationship 

between students views of models in science and changes in conceptual understanding in a 

traditionally taught physics course. 

Theoretical Framework 

The theoretical framework for this study is cognitive constructivism.  The cognitive 

constructivist notion that students construct knowledge for themselves is critical to understand 

how students learn physics.  Piaget’s (1952) notion that individuals do not assimilate what they 

are given or passively store information, but actively construct it by acting on and operating on 

ideas is one of the basic premises of using models to teach science and to enhance conceptual 

understanding. In addition, cognitive constructivists, in particular those who follow Piaget, 

believe that when students encounter new knowledge that conflicts with existing knowledge, the 

student is forced to adjust his/her frame of reference to accommodate the new information.   

In physics, students enter the course with ideas or mental models of how “things work” 

often called pre-conceptions.  However, in most cases, these pre-conceptions differ from the 

correct or expert view.  In fact, Halloun and Hestenes (1985a) note that through cognitive 

research, it has been established “that the perceptions of people untutored in physics are naturally 

inconsistent with classical mechanics in almost every detail.” One goal of physics education is to 

help them overcome or change these views (Clement, 1982; Dykstra, Boyle, & Monarch, 1992; 

Halloun & Hestenes, 1985a, 1985b; Hammer, 1996b; McCloskey, 1983; Strike & Posner, 1985).  

Throughout the physics course, as students encounter the correct physical concepts, they must 

reconstruct their pre-conceived ideas or mental models to account for the new information.  This 

construction-reconstruction of models is what scientists do as they pursue scientific knowledge.  
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Hence, the use of models in pursuit of science is constructivist in nature because models, 

whether they are mathematical, physical, or mental, are altered as new knowledge emerges or to 

fit a specific situation.   

In summary, how students reason or perform in a physics course may be affected by both 

their prior understanding or their alternative conceptions (cognitive constructivist point of view) 

and it may be related to whether or not they view the physics course as a place to see, examine, 

discuss, alter, and evaluate multiple points of view.  For example, “it is routine among physicists 

. . . to [create models that] suppose ideal, unattainable conditions . . . [but] to non-physicists, 

including students, it may be difficult to understand this practice and how it should be invoked 

(Hammer, 1996b).  This study examines how student understanding of the nature of science, in 

particular the use of models to learn and do science, is related to changes in their conceptual 

understanding of E&M topics. 

Statement of the Problem 

It is well documented that students in teacher-centered, traditional-lecture introductory 

physics classes do not demonstrate as high a level of conceptual understanding on basic concepts 

as instructors would hope (Hake, 1998; Halloun & Hestenes, 1985a, 1985b; Hilborn, 1997; 

Laws, 1991; McDermott, 1991; McDermott, 1993; McDermott & Schaffer, 1992; McDermott, 

Schaffer, & Somers, 1994; Schaffer & McDermott, 1992; Thacker, Kim, Trefz, & Lea, 1994; 

Thorton & Sokoloff, 1998; VanHeuvelen, 1991b).   In particular, students show very little gains 

in problem-solving skills that allow them to apply physics in real-world situations and critical 

thinking skills that aid them in understanding the world around them (Hilborn, 1997). More 

importantly, students taught using the traditional learning method typically leave the course with 

the same misconceptions about science that they had when they entered the course (Elby, 2001; 
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Hake, 1998; Lising & Elby, 2005; Redish, 1994b).  For example, students can solve electric 

current and magnetic field problems but do not grasp the connection between magnetism and 

electric current.   It has also been shown that students can solve 1000 traditional physics 

problems without overcoming their conceptual difficulties in understanding the topic (Kim & 

Pak, 2002).  In other words, students can solve the paper and pencil problems but cannot explain 

why or how the physics “works” and cannot apply the physics concepts to real-world situations. 

In addition, Hestenes (1995) provided another perspective on the inadequacies of 

traditional physics instruction when he notes student poor performance on graduate oral 

examinations, in particular, when they are asked to apply knowledge or demonstrate their 

conceptual understanding of a particular topic.  He states that this poor performance is an 

indicator that traditional instructional techniques do not adequately develop student abilities in 

qualitative modeling and analysis.  Redish (1999) also notes that “traditional lecture-based 

instruction demonstrates that a reasonably good understanding of science can be taught to only a 

select 5% of the population” and that constructivist methods or particular attention to conceptual 

development show significantly better results.   

More recently, studies have shown that student ability to produce, use, and understand 

models in the learning and doing of science is particularly weak, and that students demonstrate a 

“limited understanding of the nature of science and how scientists conduct their business” (Coll, 

France, & Taylor, 2005; Gobert, 2000; Justi & Gilbert, 1999; Lederman, Abd-El-Khalick, Bell, 

& Schwartz, 2002; Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001).  However, there is a 

lack of studies that link the relationship between student-held views of models and the use of 

models in science with any corresponding expert understanding of E&M topics. 
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Research Questions 

One goal of science education is for students to learn “to do” and understand science like a 

scientist conducts his business, not just to solve science problems at the end of the chapter 

(Dunbar, 2000) .  With that in mind, this study documents student views on models in science 

and in learning science in order to gain a deeper understanding about how those views relate to 

the development and changes in their conceptual understanding of electricity and magnetism 

topics.  In particular, this study will explore to what degree student understanding of the nature 

of models in science impacts their conceptual understanding of electricity and magnetism.  The 

research questions that are answered in this study are: 

• How does traditional physics instruction in E&M alter student views about models in 

science? 

• To what extent does traditional physics instruction in E&M alter student conceptual 

understanding of E&M topics?  

• What is the relationship between student understanding of models in learning and doing 

science and conceptual understanding of E&M? 

Method of Investigation 

This study reports on a semester-long study of college students enrolled in the second 

course of a two-semester sequence of introductory physics courses.  The students had previously 

completed the first-semester course which covered Newtonian physics and were enrolled in the 

second-semester course which covered electricity, magnetism, light, sound, and 

thermodynamics.  The students received traditional physics instruction with no additional 

attention to the nature of science and the use of models in doing and learning science.  The 
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students were administered the Conceptual Survey in Electricity and Magnetism (CSEM) 

(Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001) and Student Understanding of Models in 

Science (SUMS) (Treagust, Chittleborough, & Mamiala, 2002) as a pre- and post-test.   

�eed for the Study 

Since the early 1980s, the goal of science education has become more than having 

students memorize a series of facts and solve a list of problems.  There is a push to create critical 

citizens with an overall understanding of science and the nature of science so they can compete 

in a global economy and function in a new and different world (AAAS, 1990; Freidman, 2005; 

Justi & Gilbert, 1999). Justi and Gilbert (1999) also note that in order to produce critical citizens, 

it is important that students learn more than just scientific knowledge, they need to learn the 

process of science.  The problem with science education, physics in particular, is that it is failing 

to meet this emerging need.  It is estimated that 96% of students who take introductory physics 

courses never take another physics course.  In addition, “most will say that fewer than 15% of 

the students ‘get it’ in the calculus-based introductory physics course.  The fraction is even 

smaller in the algebra-based class” (Redish, 2000). 

Although there are efforts to reform introductory physics instruction, these reform 

methods continue to impact only a small number of students at select universities (Chabay & 

Sherwood, 2007a; Halloun, 1984) and traditional instructional courses continue to outnumber the 

reform courses.  As previously noted, introductory physics courses taught using the traditional 

lecture method (1) do not meet the needs of the students, (2) fail to develop student conceptual 

understanding, (3) do not remove misconceptions about physics, and (4) do not increase student 

understanding of the nature of science.  The result is that most students who take introductory 
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physics in college are failing to attain what many would consider to be a primary goal for such 

courses: a scientific understanding of phenomena that utilizes the perspective of physics.  

Since one of the keys to learning science is the use of models (Chapman, 2000) and that 

the growth and sophistication of student models is important to developing expert knowledge 

(Clement & Steinberg, 2002), it is important to analyze the topics together using data from the 

predominant method of instruction in college physics courses today.  In this study, models are 

internal constructs used to explain and make predictions.  A more detailed definition is included 

in the glossary below and in Chapter 2.  To date, there is a significant lack of literature that 

documents the relationship between student views of models in science and the development of 

conceptual understanding on abstract topics such as electricity and magnetism.  This study will 

inform physics instruction by documenting specific views of the nature of science, in particular 

models in science, that relate to improved conceptual understanding in electricity and 

magnetism. 

Significance of the Study 

There is a plethora of studies examining conceptual development in Newtonian physics 

(Chi, Feltovich, & Glaser, 1981; Clement, 1982; Dykstra, Boyle, & Monarch, 1992; Gunstone, 

1987; Halloun, 1984; Halloun & Hestenes, 1985a, 1985b; Hammer, 1996b; Hestenes & Wells, 

1992; Hestenes, Wells, & Swackhamer, 1992; Kim & Pak, 2002; Maloney, 1984; McCloskey, 

Caramazza, & Green, 1980; Otero, Johnson, & Goldberg, 1999; Ploetzner & VanLehn, 1997; 

Thorton & Sokoloff, 1990, 1998; Trowbridge & McDermott, 1980a, 1980b; White, 1983) with 

an overwhelming consensus that an understanding of models in science is important to improved 

conceptual understanding (Hake, 1998; Hestenes, 1996; Laws, 1991; Lehrer & Schauble, 2000; 

Lesh & Doerr, 2003; Schober, 2006; Taylor, Barker, & Jones, 2003; Thacker, Kim, Trefz, & 
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Lea, 1994; Vensenka, Beach, Munoz, Judd, & Key, 2002; Wells, 1987; Wells, Hestenes, & 

Swackhamer, 1995).  However, there is a serious lack of studies for other topics in physics such 

as E&M.  It seems that there is a general assumption is that if it works with Newtonian concepts, 

it must work across the board.  While that assumption may be true, it still leaves a gap in the 

knowledge that informs instruction on E&M.   

It has been established that conceptual change is difficult to achieve (Arons, 1997; Carey, 

2000; Kuhn, 1970), that students enter science courses with misconceptions (diSessa, 1993; 

Hammer, 1996a; Smith, J. P., diSessa, & Roschelle, 1993) and that misconceptions in Newtonian 

physics are especially difficult to overcome (Clement, 1982; Clement, Brown, & Zeitsman, 

1989; Halloun & Hestenes, 1985a, 1985b; Hammer, 1996b).  Since students do not have first-

hand experience with E&M topics in the same way as they do with motion, it is hard to assume 

that their misconceptions are as difficult to change as they are in Newtonian physics.  For 

example, students live with and experience motion every day and make assumptions about how 

it works through these everyday experiences.  Research indicates that even after a course in 

Newtonian physics, most students possess the same misconceptions they started with (Hestenes 

& Wells, 1992; Hestenes, Wells, & Swackhamer, 1992). However, their experience with E&M is 

limited in that they do not “see” what happens the same way.  Flipping a light switch and 

noticing the light come on does not provide the same sensory and physical experience that 

gravity and other Newtonian concepts might. Thus, it is reasonable to assume there is still much 

to learn about how students learn E&M concepts and how this experience is different from 

learning Newtonian physics.  In addition, analyzing the E&M data through the lens of what 

students know and understand about models in science is unique.  There have been no studies 

that examine the connection between student understanding about models in science and their 
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conceptual development in E&M.  This is significant because so much of the conceptual 

understanding in E&M requires the use of models.   

Definition of Terms 

Electricity & Magnetism (E&M) – topics included in a course on E&M include:  DC circuits, 

charge, electric fields and potential, magnetic fields and forces, electrostatics, 

electromotive force and current, and capacitance 

Expert view (consensus model) – the commonly accepted view/model of the scientific 

community 

Misconceptions (alternative conceptions or naive conceptions) – a preconception that is 

contrary to the expert view or what is commonly accepted as fact 

Models – constructs used to explain and make predictions about phenomena, observations, and 

data.  The two categories of models are: mental and expressed models.  A more detailed 

explanation can be found in Chapter 2.   

Mental Models – internal representation of external reality (In this study, the term model refers 

to mental model unless otherwise stated.)  A more detailed explanation can be found in 

Chapter 2. 

Model Analysis – A data analysis technique that uses “qualitative research results to provide a 

framework for analyzing and interpreting the meaning of students’ incorrect responses on 

a well-designed research-based multiple-choice test” (Bao & Redish, 2001) 

�ovice/�aïve view – the ideas or models held by individuals that differ from the expert view 

Preconception – an idea or model possessed by individuals prior to instruction 

Science – a system or process for acquiring knowledge  
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Limitations 

The findings from this study are limited to conceptual development in electricity and 

magnetism and may not generalize to other physics topics such as optics, thermodynamics, and 

quantum physics.  Also, since understanding of topics in electricity and magnetism requires 

student knowledge in energy, and Newtonian physics areas such as force and motion (Maloney, 

O'Kuma, Hieggelke, & VanHeuvelen, 2001), this study does not attempt to determine how 

student performance on previous physics topics affects performance on this assessment.  For 

example, calculating electric fields and gravitational forces require similar vector operations 

(Chabay & Sherwood, 2008) yet this study does not address how student ability to apply vector 

operations in a physics context affects their performance on E&M tasks.   

In addition, the population studied was college students at one university enrolled in 

introductory physics (where high school physics is not a pre-requisite for admission to the 

university). This may prevent the findings to be generalized to include students at other 

universities with varying ability levels and pre-college physics background.  Finally, science 

reform efforts at the elementary and secondary level may prove successful in deepening student 

knowledge of the nature of science and thus, the use of models in science and in the learning of 

science.  As a result, upcoming students may have a more sophisticated view of the use of 

models and any inferences drawn from this study might not apply to the new population.  

Although at this time, there are no data to support or refute this assertion; further study is needed 

to determine if this is indeed happening. 

Summary and Overview of the Study 

Traditional physics instruction is the norm for most introductory physics courses across 

the nation.  Efforts have been underway to improve student conceptual understanding of physics 
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and to improve their views of the nature of science.  Many reform programs have proven 

effective but are limited in implementation sites.  This study will build upon the knowledge base 

of physics education reform by providing insight into methods to enrich traditional instruction.  

It will examine the correlation between student views of the nature of science (in particular, their 

understanding of models and the use of models in science) and changes in student conceptual 

understanding in electricity and magnetism.  Two established assessment instruments will be 

used to collect the relevant data.  The Conceptual Survey of Electricity and Magnetism (CSEM) 

will be used to determine what misconceptions students present at the beginning of instruction 

and which are changed at the conclusion of instruction.  The second assessment instrument, 

Student Understanding of Models in Science (SUMS) will examine student views of models in 

science.  
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CHAPTER 2 – LITERATURE REVIEW 

Introduction 

The literature review for this dissertation examines how student views of models in 

science affects conceptual understanding of electricity and magnetism (E&M).  In order to do so, 

the results are correlated from two established assessments (Student Understanding of Models in 

Science or SUMS and the Conceptual Survey of Electricity and Magnetism or CSEM) discussed 

in detail later in this chapter.  In addition, a relatively new data-analysis technique called Model 

Analysis (MA) was also used.  This chapter gives an overview of MA, then a review of the 

literature related to student learning necessary to understand the findings of the study.  The 

review will include student misconceptions as they relate to problem solving and learning.  Also, 

details about the assessments that were used in this study are included.  

Model Analysis 

Model Analysis (MA), was developed to quantitatively examine the qualitative reasoning 

of a group of students on a particular concept.  It relies on the cognitive constructivist framework 

that students possess mental models of physical concepts and that students apply those models 

inconsistently when solving problems (Bao & Redish, 2001).  MA, assumes that just as light 

behaves both as a particle and a wave, a student may employ more than one model to solve a 

problem.  It is particularly appropriate for this study because the progression of, or the increase 

in the sophistication of, student models is important to understanding science learning.  

Additionally, Clement and Steinberg (2002) found that “flexible use of multiple models held 

simultaneously was important to” student learning about electric circuits. 
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MODEL ANALYSIS AND COGNITIVE LEARNING THEORY 

It has been established that students may hold contradictory views or elements of a 

mental model in their mind without being aware of it (Redish, 1994a) and that they often employ 

these inconsistent models alone, or in combination, to solve problems.  When students use a 

combination of models to solve problems, they are said to be mixing models.  Researchers have 

found that students mix models because they tend to confuse similar elements of different 

models, apply portions of fragmented models or lack a set of coherent rules as to when to apply 

each model. (Bao, Hogg, & Zollman, 2002; Bao & Redish, 2001; Driver, 1989; Hestenes, 1987; 

Redish, 1994b). 

As students learn, these models are adapted to incorporate new knowledge or reinforced 

with new experiences.  Thorton and Sololoff (1998) and others (Bao, Hogg, & Zollman, 2002; 

Bao & Redish, 2001) found that not only do students have and use these coexisting conflicting 

views, but also that during the learning process they move from the incorrect view through a 

mixed-use state toward the correct view.  Although a new data analysis tool, MA has been 

accepted by many in physics education research after Bao and others (Bao, Hogg, & Zollman, 

2002; Bao & Redish, 2001) demonstrated its effectiveness through an examination of the results 

of the Force Concept Inventory and later, Newton’s third law.  In this study, MA is used to 

present a detailed description of the states of student understanding on several E&M topics. 

PURPOSE OF MODEL ANALYSIS 

Model Analysis is used in this study because it gives more information than just whether 

or not the students answered correctly or are able to apply the correct/expert model to solve 

physics problems.  MA indicates whether the student is likely to use a particular model on other 

problems related to the concept.  This allows researchers to build a picture of the particular 
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contexts within which it is difficult for students to apply the correct model, and specific features 

or contexts that affect student learning (Bao, Hogg, & Zollman, 2002).  By accepting Redish’s 

(1994a) statement that the “goal of physics teaching is to have students build the proper mental 

models for doing physics” then students should be able to qualitatively reason about physical 

processes by organizing content into easily accessible mental models so they can think and work 

like a physicist.  MA allows instructors to analyze the models students are using and determine 

the effectiveness of instruction through feedback based on the probability a student will use a 

particular model to solve similar problems.  Instructors can then provide specific learning 

situations to help change student misconceptions and build upon their mental models to attain a 

more expert conceptual understanding of the topics.   

QUANTUM THEORY AND MODEL ANALYSIS 

Classical physics is characterized by the accurate measurement of position and 

momentum of objects.  However, inherent in quantum physics is uncertainty in the relationship 

between position and momentum.   Model Analysis applies this quantum notion to how students 

apply mental models to solve problems.  Bao (1999) makes the analogy of a particle to the way 

students use models to solve problems.  There is uncertainty in the way students apply the expert 

and naïve models just as there is uncertainty in the position and momentum of a particle.  In 

quantum physics, information about the state of a particle is described as a wave function.  In 

Model Analysis, models are analogous to a particle and thus can also be described by a wave 

function.  This analogy makes sense because both a particle and model use can exhibit behavior 

which seems to contradict each other.  A particle can behave as a particle or as a wave and 

students can employ the contradictory expert and naïve models to solve problems.  Therefore, the 

mathematics that describes a particle and its behavior applies to student model use.  The MA 
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sections in Chapter 4 will explain the mathematics used in quantum physics as it applies to 

Model Analysis. 

 In quantum physics, a wave function gives a particle’s amplitude and by definition, the 

square of the wave function gives the particles intensity (Serway, Moses, & Moyer, 2005).  The 

key is that the intensity of a wave is equal to the probability that the particle will be at a 

particular position at a particular time.  This connection between the wave function and 

probability was first proposed by Max Born in 1925 and is still the currently accepted expert 

view (Serway, Moses, & Moyer, 2005).  Similarly, in MA the student model use is represented 

as a wave function and thus, the square of the wave function gives the probability that the student 

will use a particular model at a particular time.   

At this point, it is important to emphasize the difference between statistical probability 

and probability (or the probability function) in the quantum world.  In traditional statistics, 

probability represents the degree of knowledge of an actual situation.  For example, there is a one 

in six chance of rolling a three on a six sided die.  However in quantum mechanics, the 

probability function represents the tendency for something to occur.  The quantum probability 

function represents a tendency for events and our knowledge or lack of knowledge of those 

events (Heisenberg, 1999). 

 Heisenberg (1999) describes a theoretical interpretation of an experiment in quantum 

physics as having three phases.  The first is the translation of the initial experiment into a 

probability function.  The second phase is more abstract.  It is the change to the system over time 

and cannot be described in classical contexts.  Finally, the third phase involves taking a new 

measurement of the system and using the probability function to calculate the result.  Heisenberg 

(1999) gives the following example: The position of an electron is measured in phase 1 and again 
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in phase 3.  Since there is no way to observe the orbit of the electron around the nucleus, there is 

no way to tell where the electron was between the observations (phase 2).  In classical physics, it 

would make sense to say the electron was on a path between the phase 1 and phase 2 positions. 

The idea that the electron is on a path is the idea of continuous change; the electron moves from 

one place to the other in a predictable, continuous way.  However, in quantum physics this is not 

an appropriate conclusion.  Quantum physics is characterized by an instantaneous and 

discontinuous change or the notion that the electron is “here” and then “there” and “everywhere” 

(Heisenberg, 1999; Polkinghorne, 2002).  MA follows the same pattern.  Student model use is 

observed during the pre-test (phase 1) and again at the post-test (phase 3).  Just as in quantum 

physics, researchers may never know precisely what occurs during the discontinuous process in 

phase 2.  However education researchers can look for clues to better understand how students 

learn in phase 2.  This study takes the measurements at phase 1 and phase 3 in order to identify 

areas of further study.  The changes or lack of changes between phase 1 and phase 3 

measurements are identified and discussed.  

�ature of Science 

 As discussed in Chapter 1, the focus of science education has shifted to include teaching 

students about the nature of science.  One of the purposes of science education is to teach 

students to “do” science like a scientist.  This implies that students must become proficient at the 

process of scientific inquiry.  Models and the use of models is an essential part of the nature of 

science, in particular scientific inquiry (Giere, 1988; Gilbert, J. K. & Boulter, 2000); therefore, a 

discussion of the nature of science is included in this literature review. 

Researchers (Coll, France, & Taylor, 2005; Fishwild, 2005; Lederman, Abd-El-Khalick, 

Bell, & Schwartz, 2002; Moss, Abrams, & Robb, 2001; Schwartz, R. S. & Lederman, 2002; 
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Smith, C. L., 2000; Smith, M. U. & Scharmann, 1999) have found a great discrepancy in how 

scientists and novices (including students and the general public) view the nature of science.  

Scientists believe that science is an ongoing process that requires repeated observations to be 

legitimate.  They also know that it is subjective, fallible, and continuously changing.  The same 

researchers also document novice understanding of the nature of science.  They found that 

novices see science as entirely objective with a set of unchanging facts, laws, procedures, and 

rules.  Novices also do not believe scientists are creative in their work (Halloun & Hestenes, 

1998). 

As a result, there has been a movement in science education to provide students with a 

more legitimate, authentic view of science.  The goal is to provide a better understanding of what 

scientists “do,” how they “do it.”  Essentially, the focus of science education shifts from 

memorizing facts to learning a process to make sense of the world (AAAS, 1990).    

One such effort to improve student understanding of the nature of science is through an 

increased emphasis on models and the use of models in science (Franco, Barros, Colinvaux, 

Krapas, Queiroz, & Alves, 1999; Greca & Moreira, 2000).  Gilbert (2004) and others (Coll, 

France, & Taylor, 2005; Ogborn & Martins, 1996) argue that because models play such an 

essential role in the practice of science, attention to models and modeling should take a more 

prominent role in order to make science education more closely resemble the pursuit of scientific 

discovery.  Similarly, others (Dagher, 1994; Gilbert, S. W., 1991; Tomasi, 1988; Treagust, 1993) 

note that models are essential to research along with the production, dissemination, and 

acceptance, of scientific knowledge.  Hodson (1992) remarks that “learning to do science” is one 

of the most important purposes of science education.  Learning to do science requires that 

students learn to create, test, and communicate their own models (Greca & Moreira, 2000; Justi 
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& Gilbert, 2002).  Fishwild (2005) found that students who received instruction specific to the 

nature of science and consequently less time on content showed greater understanding of the 

nature of science and did not score significantly lower than those who did not on the Force 

Concept Inventory, a test of conceptual understanding on Newtonian physics topics.     

Models 

A general definition of a model is a representation of something.  It can be a theoretical 

or hypothetical description, a plan, something to be imitated or copied, or a visual replica.  It can 

be an internal construct or an external representation.  The next section describes, in detail, the 

different types of models used in science. 

TYPES OF MODELS 

The most common models used in science are mental models and expressed models.  

Mental models and expressed models are defined and explained below.  

Mental Models 

A mental model refers to the abstract representation that aids in understanding, 

explaining, communicating, or visualizing a process, phenomenon, property, or other occurrence.  

It is an individual’s internal or cognitive representation of an idea, object, theory, process or 

phenomenon.  For example, the parts of a cell compared to the parts of a city is a model used by 

students to understand how the parts of a cell function.  It is not a scale model, a sample for 

examination (such as a model airplane), or a visual replica (such as an architectural model of a 

building.)  A mental model is a cognitive construction or internal schema used to describe and 

explain phenomena that cannot be experienced directly (Coll, France, & Taylor, 2005; Ritchie, 

Tobin, & Hook, 1997; Smitt & Finegold, 1995).  In addition, mental models are dynamic in that 

they are expected to change as students encounter new information (Vosniadou, 1994).  They are 
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not necessarily correct or complete, and are unique to each individual, since each person 

constructs his own.  They are the “the collection of mental patterns people build to organize their 

experiences related to a particular topic” (Redish, 1994a).  There are three types of mental 

models:  working models, analog models, and thought experiments.  The three types of mental 

models are described in Table 1 (Karplus, 2003) below and a discussion of each follows the 

table.   

Table 1 – Types of Mental Models 
Type of 
Model 

Definition Examples Limitations Advantages 

Working 
Models 

Simplified mental 
images for physical 
systems that are 
idealized and 
abstractions from 
reality 

– Sphere model of the 
earth 
– Particle model for 
the sun and planets 
 

Simplified or 
idealized 
representation 
where many 
complexities are 
ignored (such as the 
topography of the 
earth in the sphere 
model) 

Make the unfamiliar 
familiar and allow for 
easier manipulation by 
separating the extraneous 
information in order to 
focus on the questions at 
hand 

Analog 
Models 

Relates a system to 
another system that 
is more familiar or 
to a system that is 
easier to conduct 
experiments on 

– the propagation of 
waves of radio waves 
analogous to the 
waves created on the 
surface  
when a rock is 
dropped into a still 
pond 
– the human 
circulatory system 
analogous to the hot 
water system in a 
residence 

Limitations of the 
analogous system 
can lead to 
erroneous 
conclusions 

The analogous system is 
more familiar so it can call 
attention to overlooked 
features of the original 
system, suggest similar 
relationships in the 
original system, and 
predictions about the 
original system can be 
made from known 
properties of the 
analogous system 

Thought 
Experiments 

The mental 
manipulation of a 
model so as the 
consequences of its 
operation are 
deduced from the 
properties of the 
model. Often called 
devices of 
imagination or 
Gedanken 
Experiments 

– Einstein’s Chasing 
Light Beams 
– Schrödinger's  Cat 
– Taxation as Theft 
– Survival Lottery 
– Trolley Problem 

Often challenging to 
learn something 
new without new 
empirical data and 
should not be 
substituted for a real 
experiment 
whenever possible 

Enable scientists to make 
deductions from a working 
model, theory, or “mystery 
system” that can then be 
compared with 
observations – they may 
be used either to illustrate 
the validity or non-validity 
of a model and often help 
scientists to re-
conceptualize the world in 
a different way 
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WORKI�G MODELS 

The first type of model used frequently is a working model.  Working models are 

simplified mental images for a physical system.  Working models are idealized representations 

therefore many of the complexities of the system are overlooked.  This simplification allows for 

better manipulation of the model in order to isolate and draw conclusions about the 

characteristics studied.  However, the simplification can lead to misinterpretation and erroneous 

conclusions.  For example, the spherical model of the earth ignores the topography of the surface 

of the earth (Karplus, 2003) and can lead to the invalid conclusion that the surface earth is 

completely smooth.  

A�ALOG MODELS 

Analog models are simply analogies used to relate an unfamiliar system to something 

more familiar in order to call attention to subtle features of the unfamiliar system, suggest 

relationships, or make predictions about the new system based on characteristics of the familiar 

system.  Although radio waves propagate in all directions, the process can be considered 

analogous to the surface waves created when a rock is dropped in a still pond.   

THOUGHT EXPERIME�TS (GEDA�KE� EXPERIME�TS) 

Another controversial yet powerful type of model employed by scientists and in modeling 

instruction is thought experiments or Gedanken experiments.  Einstein made thought 

experiments famous by using them to help him develop and explain quantum theory.  

Essentially, a thought experiment (TE) is a mental exercise that manipulates a model according 

to known laws and restrictions.  It is controversial because it is not based on new empirical data.  

Others (Velentzas, Halkia, & Skordoulis, 2005) have noted that “TEs have played an important 

role in the development of science because they were used by leading scientists for the 
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formulation of innovative theories, the establishment of contradictions in already existing 

theories, the modification of the old theories according the new findings, or even for their 

replacement with a new paradigm.”   

Thomas Kuhn states in his work: A Function for Thought Experiments that “a well-

conceived thought experiment can bring on a crisis or at least create an anomaly in the reigning 

theory and so contribute to paradigm change. Thought experiments can teach us something new 

about the world, even though we have no new empirical data, by helping us to re-conceptualize 

the world in a better way” (Kuhn, 2007).   TEs employed under the correct circumstances do not 

need new empirical data because scientists are not trying to discover new knowledge but better 

understand the information at hand.  

Thought experiements are also very effective at communicating complex science to non-

scientists.  TEs can be used both as constructive tools for clarification or innovation or as 

destructive tools by destroying or highlighting serious problems with a theory or model (Brown, 

1991).  Velentzas, Halkia, & Skordoulis (2005) note that TEs are important tools in the 

classroom because they focus on conceptual understanding, inquiry, communication in a 

scientific environment, and the role of collaboration in science.  In addition, Velentzas, Halkia, 

& Skordoulis (2005) also note that early research shows the “narrative techniques used in 

popular science books to present TEs proved to be very attractive to students.”  TEs are also used 

by researchers to provoke subjects to think about ethical issues such as the Trolley Problem (a 

trolley with five people going down a track out of control and the subject can flip a switch to 

save the lives of the five people on the trolley but it will kill one person on the other track) or the 

Survival Lottery (since organ donation can save more lives than the one it kills, individuals are 

asked to give their life to save many by donating their organs.)  Anarchists even use TEs to 
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promote taxation as theft (the assumption that the government is violating personal property 

rights by collecting taxes.)  

Expressed Models 

Mental models can be represented externally for others to examine.  When mental models 

are represented externally, they are called expressed models (Coll, France, & Taylor, 2005).  The 

most common expressed models are mathematical, physical and computer models.  Once the 

model is built, scientists examine its inadequacies in order to gain new understandings and 

develop even more robust models (Karplus, 2003) so the process may repeat and more 

informative or appropriate models may be constructed in order to deepen the understanding 

about a phenomenon.  As the community of scientists refine and test expressed models, one or 

more models will gain acceptance and will come to be known as the expert or consensus model 

(Coll, France, & Taylor, 2005).  Table 2 contains a description of the expressed scientific models 

(Chabay & Sherwood, 2007a, 2007b; Karplus, 2003).  A discussion of each follows the table. 
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Table 2 – Expressed Scientific Models 
Type of 
Model 

Definition Examples Limitations Advantages 

Physical 
Models 

A representation 
using objects 

– scale model such as 
an architectural model 
– mold such as one 
used to make dentures 

All functions and 
conditions are not 
represented in the model 
and expensive/difficult 
to build/manipulate 

Allows researchers to 
monitor and measure 
the effects of 
manipulation in a 
contained 
environment 

Mathematical 
Models 

A mathematical 
way of describing 
a relationship or 
the behavior of a 
system 

– Ohm’s Law 
V

I
R

=  

– Population Growth 
Curves 
 

Not an exact 
reproduction or 
representation of what is 
actually occurring – 
accuracy depends on the 
amount of a priori 
information available, 
and the reliability of the 
measured quantities 

Usually easy to apply 
and allows for 
examination of the 
effects of changes on 
one or more variables 

Computer 
Models 

An algorithm that 
predicts the 
results of a 
process or 
simulates how a 
given set of 
conditions will 
change over time 
or under certain 
constraints 

– weather models such 
as hurricane tracking 
models 
– numerical 
calculations based on 
the Momentum 
Principle to watch the 
dynamic evolution of 
the behavior of a 
system 

Created from data or 
based on working 
models, thought 
experiments or 
mathematical models – it 
is only as accurate as the 
data or models from 
which it was created 

Makes it possible to 
analyze complex 
systems which 
otherwise would 
require very 
sophisticated 
mathematics or which 
could not be analyzed 
at all without a 
computer 

 

PHYSICAL MODELS 

 Physical models play an important role in the pursuit of scientific understanding.  

Scientists build physical models in order to monitor and measure the effects of their 

manipulation in a controlled environment.  For example, civil engineers and architects build 

models of buildings and cities only to use them in a simulation to determine how they will 

withstand the forces of an earthquake.  Coastal engineers use physical models to determine how 

the rate of coastal erosion is affected by mitigation efforts. 

MATHEMATICAL MODELS 

Mathematical models are important in drawing conclusions, describing behavior, and 

analyzing relationships.  They can be as simple as the linear relationship of Newton’s second law 

of motion (F = ma) or as complex as the differential equations used to model the motion of 
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particles.  Experimental mathematical models are heavily dependent on a priori information but 

allow for easy manipulation of one or more variable.  Mathematical models are commonplace in 

all aspects of physics courses, including electricity and magnetism, as seen by the vast array of 

formulas.  In fact, just about all physics theories or laws are expressed as mathematical models. 

COMPUTER MODELS 

Finally, computer models are used as a critical means for testing complex problems that 

may not normally be calculated by hand.  They are usually based on mathematical models or on 

a combination of numerous mathematical models.  Population curves, the complex models used 

to predict the weather and the path of hurricanes, and physics principles applied to engineering 

problems, are a few examples.  The great advantage to computer models is the speed at which 

simulations may be run and variables may be changed.  Chabay and Sherwood (2007b) note in 

their modeling instruction textbook covering electric and magnetic interactions that “real time 

3D animations are generated as a side effect of student computations, and these animations 

provide powerfully motivating and instructive visualization of fields and motions.”  The danger 

of computer models is best expressed by Pierre Gallois (2007) when he wrote: “If you put 

tomfoolery into a computer, nothing comes out of it but tomfoolery. But this tomfoolery, having 

passed through a very expensive machine, is somehow ennobled and no-one dares criticize it.”  

There is some recent research on using computer simulations in physics courses (Chabay & 

Sherwood, 2008; Chonacky & Winch, 2008; Cook, 2008; Rebbi, 2008); however, computer 

modeling is not used in courses described in this study. 

Use of Models in Science 

Researchers (Coll, France, & Taylor, 2005; Penner, Giles, Lehrer, & Schauble, 1997) 

note that the work of professional scientists is dominated by the building, and testing of models.  
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Working Model 

Mathematical Model 

Thought 
Experiment 

In addition, these researchers propose that understanding the role of models “is the link between 

the two worlds” of science and science education.  For example, as scientists build a scientific 

theory, they combine the various types of models above to create a working or analog model.  

Then, they often conduct thought experiments in an attempt to verify or “poke holes” in the 

model.  As they become more confident in their theory, mathematical and/or physical models are 

developed.  In complex situations, computer models may be developed as well.  It is important to 

note that all “physical theories have limitations imposed by the inadequacies of the models and 

the conditions of the thought experiments” (Karplus, 2003).  Often, the term theory and model 

are used interchangeably.  Manfred Eigan (2000) sums up the difference between the two:  “A 

theory has only the alternative of being right or wrong. A model has a third possibility; it may be 

right, but irrelevant.”  In reality, theories are built on models (working models, analog models, 

mathematical models, and computer models are the components of a theory) but more complex 

models may be built on existing theories and the process continues.  The diagram below 

illustrates the building of a simple theory.  See Figure 1. 

 

 

 

 

 

Figure 1 – Building a Simple Theory 
(Karplus, 2003) 

 
 Coll, France and Taylor (2005) note that “in order to successfully develop a conceptual 

understanding in science, learners need to be able to reflect on and discuss their understanding of 

scientific concepts” and the models they are learning.  Students who are able to construct their 
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own models and then critique them show the greatest gains in conceptual understanding 

(Hestenes, 1987; Wells, 1987; Wells, Hestenes, & Swackhamer, 1995) as opposed to students 

who do not have a grasp of the nature of science often believe that models are facts and are 

unable to critique and revise their models (Fishwild, 2005; Halloun & Hestenes, 1998).  

Misconceptions 

As detailed in chapter 1, students enter physics courses with a host of difficult to change, 

preconceptions about how the world works.  When they are inconsistent with the expert or 

accepted view, they are referred to as misconceptions.  These conceptions are mental models the 

student has constructed to explain how the world works.  Student mental models are often 

incomplete, inconsistent, and contradictory.  They have also been shown to be very difficult to 

alter.  In addition, student-constructed rules and procedures for applying them may not provide a 

correct or coherent framework for when and how they are to be used.  (Chi, 2005; Driver, 1989; 

Hestenes, 1987; Redish, 1994a; VanHeuvelen, 1991a; Wittmann, Steinberg, & Redish, 2002).  

In order to be successful, students need to be able to distinguish between sometimes 

contradictory models (Wittmann, Steinberg, & Redish, 2002) and put the “pieces” of knowledge 

they hold into a coherent knowledge structure (Scherr, 2007) that enables them to solve complex 

and/or qualitative problems.  Clement, Brown and Zeitsman (1989) point out that “not all 

preconceptions are misconceptions” and that students learn best when instructors provide the 

opportunities and experiences students need to build on those preconceptions that are consistent 

with consensus views. 

There are several alternative views of misconceptions.  diSessa (1993) considers the 

fragmented notion of misconceptions and believed that misconceptions are “a set of loosely 

connected ideas” called p-prims and students combine these p-prims when attempting to solve 
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problems.  Conversely, others (Clement, Brown, & Zeitsman, 1989) see misconceptions as 

alternative explanations students develop based on their experiences and they can be built upon 

or changed.  In both cases, experts agree that student knowledge may or may not be correct.  Chi 

(2005) holds that the views of misconceptions described by diSessa (1993) and Clement, Brown, 

and Zeitsman (1989) are not mutually exclusive.  Scherr (2007) confirmed Chi’s findings with 

her work in special relativity.  She noted that students hold misconceptions and in addition, 

employ what she called “pieces models” to solve problems.  She called it “pieces models” 

because she found that student knowledge is incomplete and they apply a combination of their 

coherent naïve theories and pieces of knowledge when solving problems.   

It is also important to note that students solve problems differently from experts.  In 

addition, researchers (Grosslight, Unger, & Jay, 1991; Treagust, Chittleborough, & Mamiala, 

2002) have established that students have different views about the nature and purpose of 

models.  As students solve problems, conflict arises when the information they have is 

inconsistent with their mental models.  This study examines the proposal that how they view the 

nature of models, the model’s correctness, and their view of the ability to change or adapt the 

model affects their ability to change those mental models to solve the problems.  Since this study 

examines how those different methods and views affect their ability to apply their mental models 

when solving E&M problems, a discussion of expert and novice problem solving and student 

views about the use of models follows.  In this study, the researcher takes the position that 

students have both fragmented and coherent mental models, that they apply them in various 

combinations to help them solve problems, and that they do not consistently apply their mental 

models when solving problems that for experts appear similar.  Model Analysis (MA) is used to 
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determine what models the students use, and the contexts that affect their ability to consistently 

apply the correct model to solve physics problems.   

EXPERT vs. NOVICE 

Researchers have found that the two major differences between experts and novices in 

physics problem-solving are their knowledge organization and problem-solving approach.  

Experts organize their knowledge around basic physical principles and can see relationships, 

similarities, and differences among the distinct pieces of information (VanHeuvelen, 1991a).  

Novices on the other hand, possess a poorly organized set of facts and formulas with few 

connections and a lack of understanding to see relationships. (VanHeuvelen, 1991a).  This 

isolation of knowledge may prove effective in solving problems that deal with a single concept 

but is detrimental when students are required to make connections to solve more complex 

problems or to link their “qualitative understanding to qualitative problem solving” (Sabella & 

Redish, 2007). 

“Experts often apply qualitative representations such as pictures, graphs and diagrams to 

help themselves understand problems before they use equations to solve them quantitatively.  In 

contrast, novices use formula-centered methods to solve problems.  Studies in physics education 

have found that student problem-solving achievement improves when greater emphasis is placed 

on qualitative representations of physical processes” (Heller, Keith, & Anderson, 1992; 

Hestenes, 1987; Hestenes & Wells, 1992; Reif & Heller, 1982; VanHeuvelen, 1991a, 1991b; 

VanHeuvelen & Zou, 2001) 

“Students attempt to solve problems by matching quantities listed in the problem 

statement to special equations that have been used to solve similar problems.  Students move 

between words and equations, which are very abstract representations of the world, with no 
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attempt to connect either representation to more qualitative representations that improve 

understanding and intuition” (VanHeuvelen & Zou, 2001). VanHeuvelen and Zou (2001) also 

note classroom strategies are very important because as novice students acquire a more 

sophisticated understanding and skill at qualitative reasoning, the qualitative representations take 

hold as robust mental models.  In addition to the less sophisticated problem-solving techniques 

and lack of a framework to organize knowledge, experts have a more sophisticated view of 

models and the use of models in science.  

Implications for Instruction 

Redish (1994a) notes that it is very difficult to change student established mental models 

and others (Grosslight, Unger, & Jay, 1991; Ingham & Gilbert, 1991; Treagust, Chittleborough, 

& Mamiala, 2002) have found that often students do not see models in science as things that can 

or should change and furthermore, they do not understand that models can be used to test or 

develop new scientific theories.  Hammer (2000) notes that it is important to focus on the 

productive aspects of student knowledge and that there are “two distinct needs for the 

development of scientific understanding (1) the formation of intellectual resources and (2) the 

(re) organization and application of these resources to align with scientific knowledge and 

practices.” In response, one question this study attempts to answer is whether or not student 

views of the use of models in science affects their ability to (re) organize their mental models as 

they learn. 

Elby (1999) found that students perceive “trying to understand physics well” and “trying 

to do well in the course” as two distinctly different enterprises.  VanHeuvelen (1991b) 

summarizes some key points to a successful introductory physics course.  He notes, based on 

numerous studies that to improve student learning, college courses should not assume student 
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knowledge, background, or experiences.  Students should be allowed to “confront the 

misconceptions that they bring to class while at the same time helping them formulate a 

qualitative understanding of currently accepted physics concepts” or expert views.   He also 

notes that students need to be active participants as they construct their knowledge into a 

coherent global framework based around broad physical principals.  In addition, they should be 

given experiences that help them learn the problem-solving techniques that expert physicists use 

to solve complex problems.  This study contributes to the body of knowledge on improving 

physics instruction because it sheds light on the relationship between student views of models 

and improvements in student achievement. 

Student Understanding of Models in Science (SUMS) Assessment 

SUMS is a 27-item Likert  scale assessment designed to measure student understanding 

of scientific models.  Specifically, it examines student understanding of what models are and 

how and why they are used in science (Treagust, Chittleborough, & Mamiala, 2002).  It is 

documented that student views about models are naïve in that models are exact copies to explain 

not abstract representations that are used to develop or test scientific theories (Grosslight, Unger, 

& Jay, 1991; Ingham & Gilbert, 1991; Treagust, Chittleborough, & Mamiala, 2002) and that 

student knowledge of the nature of science (of which the use of models is a part) affects their 

ability to learn science (Songer & Linn, 1991). Although traditional instruction requires students 

to use some form of models, it does not make reference to the nature of models and how 

scientists conduct their business.  The use of models is one way experts organize and apply their 

knowledge and novices do not. This study documents how student views about models change 

during a semester of physics instruction in E&M and how that change affects their conceptual 

development on the abstract topics in E&M.  
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THEMES EXAMINED BY SUMS 

Previous research (Treagust, Chittleborough, & Mamiala, 2002) identified the five 

themes present in the SUMS assessment all of which examine the naïve student beliefs about 

models.  The five themes or scales are indicated below in Table 3. 

Table 3 – Themes Examined by SUMS 
Theme Description 

Scientific models as multiple 
representations (MR) 

Indicates whether or not students understand that a 
model has many representations and that each 
representation has a unique perspective 

Models as exact replicas (ER) 
Indicates to what extent students view models as exact 
copies or abstract representations 

Models as explanatory tools 
(ET) 

Indicates to what extent students view models as 
visual or mental tools to make the abstract more 
concrete or the unfamiliar familiar 

How scientific models are 
used (USM) 

Indicates whether or not students view models as tools 
when developing or testing scientific ideas 

The changing nature of 
scientific models (CNM) 

Indicates student understanding of the changing nature 
of models and the conditions under which they may or 
may not change 

(Treagust, Chittleborough, & Mamiala, 2002) 

STATISTICAL ANALYSIS OF SUMS AS AN ASSESSMENT INSTRUMENT 

The developers of the SUMS assessment instrument determined that the test was both 

valid and reliable.   An instrument is said to be valid if it measures what it says it measures and 

not some other topic.  In this case, the SUMS instrument was found to be valid; it measures 

student understanding of the use of models in science.  An instrument is said to be reliable if the 

results are consistent over numerous administrations of the test.  The developers of the SUMS 

assessment determined that the instrument was reliable after numerous administrations 

(Treagust, Chittleborough, & Mamiala, 2002).  A more detailed discussion of SUMS is presented 

in Chapter 3. 
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Conceptual Survey of Electricity and Magnetism (CSEM) Assessment 

The CSEM is a 32-question multiple-choice test that was intended to be used for both 

pre- and post- instruction assessment.  It is primarily a qualitative assessment of student 

knowledge and is designed to provide an overview of student understanding across a broad range 

of E&M topics (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001). While the research on 

student misconceptions and pre-instructional ideas in E&M is less documented than in other 

areas such as Newtonian physics, the test developers were attentive to choose distractors that are 

indicative of current knowledge of student alternative conceptions.  As a result, questions from 

the CSEM are candidates for MA since MA requires that alternative conceptions be mapped to 

multiple choice questions for analysis.  Another well respected evaluation instrument for 

electricity and magnetism topics was developed prior to CSEM.  The Brief Electricity and 

Magnetism Assessment (BEMA) is a 30-question multiple choice test and is also designed as a 

broad assessment of student learning but it is not appropriate for this study because it does not 

probe any particular concept in detail (Ding, Chabay, Sherwood, & Beichner, 2006).   

TOPICS EXAMINED BY CSEM 

The CSEM surveys student conceptual understanding in eleven important areas identified 

by previous research (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001).  Table 4 (below) 

lists the topics covered by CSEM. 
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Table 4 – Topics Examined by CSEM 
 Conceptual Topic 

Topic  1 Charge Distribution on Conductors/Insulators 
Topic  2 Coulomb’s Force Law 
Topic  3 Electric Force and Field Superposition 
Topic  4 Force Caused by an Electric Field 
Topic  5 Work, Electric Potential, Field & Force 
Topic  6 Induced Charge and Electric Field 
Topic  7 Magnetic Force 
Topic  8 Magnetic Field Caused by a Current 
Topic  9 Magnetic Field Superposition 
Topic 10 Faraday’s Law 
Topic 11 Newton’s Third Law 

(Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001) 
 

STATISTICAL ANALYSIS OF CSEM 

The developers of the CSEM assessment instrument determined that the test was both 

valid and reliable.   It measures student conceptual understanding of electricity and magnetism 

topics (valid) and student performance on the assessment is consistent over numerous 

administrations of the test (reliable).  They indicate that in most cases, student responses on the 

pre-test are usually relatively close to random guessing but post-test data yielded more consistent 

information.  The post-test data was analyzed for validity, reliability, and discrimination.  The 

difficulty level for all items was determined to be acceptable because it ranged between 0.10 and 

0.80 (0.50 is considered ideal).  In previous administrations, the discrimination of the assessment 

ranged between –1.0 and +1.0.   (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001).  A 

detailed discussion of the validity and reliability of the CSEM is presented in Chapter 3. 

Electricity & Magnetism Research 

Studies of student difficulties in E&M have been mostly confined to DC circuits (Cohen, 

Eylon, & Ganeil, 1983; McDermott, Schaffer, & Somers, 1994; Peters, 1984; Schaffer & 

McDermott, 1992; Shipstone, 1988), how batteries discharge (Saslow, 2008) and the electric 

field (Rainson, Transtromer, & Viennot, 1994; Tornkvist, Pettersson, & Transtromer, 1993; 
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Viennot & Rainson, 1992) with little attention to other aspects of E&M (Bagno & Eylon, 1997; 

Bagno, Eylon, & Ganiel, 2000; Galili, 1995; Planinic, 2006).  For example, it is well known that 

students believe that current is used up by the bulbs in a DC circuit, the battery is a constant 

current source, and the order and placement of the bulbs or other elements in a circuit affect the 

brightness of the bulbs (McDermott, 1993; McDermott & Schaffer, 1992).  In addition, 

McDermott (1993) found that students, even after instruction, lack a sufficient model for a 

simple circuit.  Cohen, Eylon and Ganiel (1983) determined that student models of simple 

circuits are not sufficient with regards to resistance and potential difference as the cause of 

current flow.  This study will further the knowledge of student learning, misconceptions, and 

pre-instructional conceptions in E&M.    

E&M MISCONCEPTIONS FOR THE TOPICS EXAMINED ON THE CSEM 

The overriding issues that affect student understanding of E&M topics considered in this 

study are detailed below.  Knowledge of these common misconceptions, allowed the researcher 

to determine which possible distractors were indicative of applying a misconception (naïve 

model) and which were the result of using generally incorrect or unrelated models to solve the 

problems.   

Researchers (Allbaugh, 2004; Arons, 1997; Aubrecht & Raduta, 2004; Bagno & Eylon, 

1997; Bagno, Eylon, & Ganiel, 2000; Guth, 1995; Rainson, Transtromer, & Viennot, 1994; 

Tornkvist, Pettersson, & Transtromer, 1993; Viennot & Rainson, 1992) have found that students 

have both conceptual and mathematical issues that hinder understanding of E&M topics.  The 

conceptual difficulties are discussed first followed by the mathematical issues.  

Conceptually, students show difficulty understanding the interactions of magnetic fields 

and electric charges.  They see magnetic poles as “charged” and calculate magnetic fields 
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whether or not the charge is moving (Maloney, 1985).  In general, students confuse the 

properties, rules, laws and formulas of magnetic and electric fields and often use them 

interchangeably.  As a result, students confuse the right hand rule (magnetic field and Lorentz 

Force Law) and the left hand rule (magnetic field and the force exerted on an electron.)  Arons, 

(1997) proposes that textbooks compound this problem because the problems included for 

students to solve usually have charged particles with an initial direction that is perpendicular to 

the direction of the magnetic field.  Thus, they believe the two are always perpendicular and that 

a particle’s path in a magnetic field is circular.   

Bagno and others (Bagno & Eylon, 1997; Bagno, Eylon, & Ganiel, 2000) determined that 

less than 5% students surveyed could verbalize that a changing electric field produces a magnetic 

field.  She and others (Arons, 1997; Raduta, 2001) found that students do not understand 

potential difference and as a result, cannot determine if the statement “at the point where the 

electric field is zero, the electric potential is also zero” is true or false.  In addition, Adrian and 

Fuller (1997) determined that students had a great deal of difficulty verbalizing the difference 

between force, field, force field, potential and potential difference and there was overall 

confusion about the cause and effects of the concepts.  They also found that after instruction, 

students present an even more robust misconception:  a potential difference is a source for 

electric fields with or without current. 

Another major conceptual difficulty is that students fail to understand field lines.  They 

believe that if a charge is not on a field line, it feels no force (Arons, 1997; Maloney, O'Kuma, 

Hieggelke, & VanHeuvelen, 2001).  This is related to the conceptual problems associated with 

Newton’s Third Law.  Students have difficulty understanding force at a distance.  They believe 

that Newton’s Third Law only applies to contact forces and thus does not apply to E&M since 
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the charges are not in contact with each other.  Similarly, students need to see motion to accept 

the existence of a field and believe motion implies force.  If there is no motion there is no force 

and vice versa (Allbaugh, 2004; Arons, 1997; Eylon & Ganiel, 1990; Maloney, 1985; Maloney, 

O'Kuma, Hieggelke, & VanHeuvelen, 2001; Raduta, 2001).  Researchers (Aubrecht & Raduta, 

2004; Raduta, 2001; Rainson, Transtromer, & Viennot, 1994) call this “field if mobility” or 

“cause if motion” and tie this misconception to the mathematical issue related to interpreting 

formulas as discussed below.  Moreover, students think field lines are 2-dimensional, finite, and 

are paths of a charge’s motion; and that field lines can begin and end anywhere but “go” from 

positive to negative or left to right (Rainson, Transtromer, & Viennot, 1994).  Also, Allbaugh 

(2004) documented that student believe that the “motion of an object will slow, even stop, if the 

force on it decreased based upon its distance.”   

Finally, students have conceptual difficulties explaining what a field is.  Researchers 

(Adrian & Fuller, 1997) have found that even after instruction, students still describe an electric 

field as an area, a group of charges or cloud of charges whose job it is to impart force. 

Mathematically, students struggle with vectors.  Not only do they often confuse force 

vectors and velocity vectors, they do not distinguish between scalar and vector quantities 

(Aubrecht & Raduta, 2004).  It has been proposed, (Raduta, 2001) that another reason students 

believe the velocity and magnetic field are always perpendicular to each other in the Lorentz 

force law is that students do not understand vector products.  Additionally, they “interpret 

formulas as if the quantities mentioned to the right of the equal sign were the cause of those 

mentioned to the left” (Rainson, Transtromer, & Viennot, 1994).  One specific example of this 

mathematical issue contributing to a conceptual understanding problem is the misconception 
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“cause if motion” noted above.  Students also exhibit a very basic mathematical misconception; 

they assume that negative means “no”.  In this case, negative means “no” charge (Raduta, 2001). 

Although the questions on the CSEM are all conceptual and do not require the use of any 

formulas, some of the mathematical difficulties students exhibit may add to the confusion in the 

minds of the students and contribute to the use of the naïve model instead of the expert model. 

NAÏVE MODELS IDENTIFIED BY CSEM TOPIC 

 The topics listed below were chosen for further examination in this study because the 

multiple choice options for each question match the common misconceptions that students 

possess.  The naïve models most likely used by students are listed for each question.  Topics 1, 6, 

7 and 10 were not examined because the common misconceptions did not readily map to the 

multiple choice options on the CSEM assessment. 

Topic 2 – Coulomb’s Law (Questions 3, 4 and 5) 

Question 3 – Students believe that the larger the magnitude of charge, the larger force it exerts. 

Question 4 – Same as Question 3 above. 

Question 5 – Students confuse magnitude of charge and distance of separation. 

Topic 3 – Electric Force and Field Superposition (Questions 6, 8, and 9) 

Viennot and Rainson (1992) and Arons (1997) determined that students have great 

difficulty with the concept of superposition and in particular its application to electric fields.  In 

addition, Arons (1997) notes that textbooks do a particularly poor job in addressing the concept 

of superposition.  He found that students do not realize that the superposition principle only 

applies to the final arranged state and that the insertion of additional charged particles will lead 

to the rearrangement of charge distribution.  Adrian and Fuller (1997) determined that one reason 

students have problems with the concept of superposition is that they have a poor understanding 
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of the concept of electric field.  They do not understand that electric charges create electric fields 

and thus they cannot visualize the fields produced.   Their study determined that students “drew 

vectors pointing in the wrong direction, equipotentials rather than field lines or field vectors, or a 

sketched a cloud of charges near the charged objects” (Adrian & Fuller, 1997).    

Question 6 – Students have difficulty with vector addition and believe that negative means “no” 

charge. 

Question 8 – Students believe that an inserted charge does not affect the field and students 

believe that the larger object (in this case larger magnitude of charge), the larger force it exerts. 

Question 9 – Same as Question 8 above. 

Topic 4 – Force Caused By an Electric Field (Questions 10, 11, 12, 15, 19, and 20) 

Question 10 – Students assume that if a particle is moving at a constant velocity then there is a 

constant force acting on the particle.  In addition, they believe if there is motion, there must be a 

force causing the motion and vice versa.   

Question 11 – Students confuse the properties of magnetic and electric fields and they 

believe that motion implies force as stated in Question 10. 

Question 12 – Students believe that if there is motion then there must be a force causing 

the motion as stated in Question 10.   

Question 15 – Students believe that the electric field is always perpendicular to motion 

and that the charge “feels” no force because it is not on a field line. 

Question 19 – Same as Question 12. 

Question 20 – Students believe that the larger the object (in this case, the larger the 

magnitude of charge), the larger the force it exerts and motion implies force as stated in 

Question 10 above.  
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Topic 5 – Work, Electric Potential, Field & Force (Questions 11, 16, 17, 18, 19, and 20) 

See above for details on questions 11, 19 and 20. 

Question 16 – Students assume that the electric field “goes” from left to right. 

Question 17 – Students believe that the larger distances between equipotential lines, the stronger 

the field.  This is analogous to larger the size of an object or magnitude of charge, the larger the 

force it exerts as stated in Question 10. 

Question 18 – Students confuse equipotential lines and field lines.   

Topics 8 – Magnetic Field Caused by a Current (Questions 23, 24, 26, and 28) and Topic 9 – 

Magnetic Field Superposition (Questions 23 and 28) 

Question 23 – Students confuse the properties of electric and magnetic fields. 

Question 24 – Students believe that the larger the current (in the wire), the larger the force it 

exerts (on the other wire.)  This is analogous to the larger the size of an object or magnitude of 

charge, the larger the force associated with it as stated in Question 10. 

Question 26 – Same as Question 23 above. 

Question 28 – Same as Question 23 above. 

Topic 11 – �ewton’s Third Law of Motion (Questions 4, 5, 7, and 24) 

Question 4 – See description of Question 4 under Topic 2. 

Question 5 – See description of Question 5 under Topic 2. 

Question 7 – Students believe that the larger the magnitude of charge, the larger the force it 

exerts. 

Question 24 – See description of Question 24 under Topics 8 and 9. 
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CHAPTER 3 - METHODS 

Introduction 

The purpose of this study was to examine the relationship between student views of 

models in science and the quality of student conceptual understanding of electricity and 

magnetism (E&M).  

Sample 

This was a quasi-experimental study because students were not randomly assigned to 

groups.  A convenience group of general physics classes at one university was selected.  Two 

different levels of physics classes were examined.  One group (n = 44) consists of students 

enrolled in the algebra-based course and a second group consists of the students in the calculus-

based course (n = 62). 

Population 

One population of students participated in this study:  introductory physics students in the 

second of a two-semester physics sequence.  The students were required to complete the first 

course, covering Newtonian topics prior to enrolling in the second course which covers light, 

sound, thermodynamics, electricity and magnetism.  The course was taught using traditional, 

lecture and demonstration.   

When a study contains students enrolled in both algebra-based and calculus-based 

courses, researchers often divide the population into the two subgroups for the purpose of 

discussing the results and drawing conclusions (Laws, 1991; Maloney, O'Kuma, Hieggelke, & 

VanHeuvelen, 2001; Redish, 2000).  In general, students in the calculus-based course are 

pursuing degrees in sciences or engineering while those in the algebra-based course are pursuing 

degrees in non-technical fields and areas outside of the sciences.  Therefore, the calculus-based 
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students usually have more experience in science and mathematical courses and a higher level of 

interest in science.  Additionally, Halloun and Hestenes (1985b) showed that mathematical 

knowledge and experience affect performance on conceptual understanding of physics 

assessments.  This was further confirmed by Dixon and Moore (1996) when they verified that 

there is a relationship between more developed intuitive understanding of physics topics and the 

type of formal, mathematical strategies used to analyze physics topics.  Therefore, when 

appropriate, the results from this study will be presented using the two sub-groups:  algebra-

based (AB) and calculus-based (CB).   

Sampling Method 

The population for this study was a convenience sample of students from one university.  

A convenience sample is a sample that is chosen based on logistical issues.  In this study, the 

participants were accessible to the researcher.  The students were selected to participate based on 

their enrollment in the traditional physics courses that cover electricity and magnetism topics. 

Selection Criteria 

Since this study examines conceptual development of electricity and magnetism topics, 

students enrolled in the physics courses covering those topics were chosen.  Participation was 

optional.  Students were not compensated for their participation but were informed that their 

cooperation would inform physics instruction in the future.  Approximately 85% of the students 

who were enrolled in the courses at the end of the semester participated in the study.  They were 

encouraged to give their best effort by the researcher, the chair of the physics department, and 

the course instructors.  Since performance on the assessments did not count toward the students’ 

final grade in the course, overall effort and scores may not be as high as it would have been had 

the test scores affected students’ final grades.   



  44

Instrumentation 

Two previously developed and proven instruments were used in this study:  Conceptual 

Survey of Electricity and Magnetism (CSEM) and Students’ Understanding of Models in Science 

(SUMS).   

CONCEPTUAL SURVEY OF ELECTRICITY AND MAGNETISM 

The 32-item multiple choice Conceptual Survey of Electricity and Magnetism (CSEM) 

was used to measure conceptual understanding on a variety of electricity and magnetism topics.  

It is a broad survey instrument that has been given to over 5000 introductory physics students.  

“Typical pre-test results are that students in calculus-based courses get 31% of the questions 

correct and students in the algebra-based courses average 25% correct.  Post-test correct results 

only rise to 47% and 44% respectively” (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001).  

The CSEM uses technical language and physics situations and as such, demands that successful 

students demonstrate specific physics knowledge.  Creators of the CSEM have documented the 

difficulty level of the questions on the assessment to be between 0.10 and 0.80 (Maloney, 

O'Kuma, Hieggelke, & VanHeuvelen, 2001) which is in the acceptable range with only seven 

items having a difficulty level greater than 0.60.  Difficulty level is the percentage of students 

who got the item correct.  Ideally, items on assessments such as the CSEM which are designed to 

compare student performance should have a difficulty level of 0.50.  This indicates that 50% of 

the students answered the item correctly and 50% answered incorrectly.   

Test items with acceptable discrimination indicate that students who scored well on the 

assessment answered that particular question correct more often than those who scored poorly.  

Discrimination is calculated by dividing the difference of the number of students in the low 

performing group (lowest 1/3 of the test takers) who get the item correct from the number of 
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students in the high performing group (highest 1/3 of the test takers) who get the item correct by 

the number in one group. A moderately discriminating item is one whose score is between 100% 

correct and the score that would be attained by guessing.  Since the CSEM has five possible 

answers for each question, there is a 20% chance of guessing correctly.  Therefore, the ideal 

discrimination for each item is 0.60.  The CSEM items have discrimination scores between 0.10 

and 0.55. Test creators attribute the lower than expected discrimination scores to the variety in 

the difficulty scores.  They do note that all but four of the items had values greater than the 

generally acceptable lower limit of 0.20 or the chance of guessing correctly (Maloney, O'Kuma, 

Hieggelke, & VanHeuvelen, 2001).   

STUDENTS’ UNDERSTANDING OF SCIENTIFIC MODELS 

The Students’ Understanding of Scientific Models (SUMS) is a 27-item Likert scale 

assessment that is based on Grosslight’s (1991) work on models in science education.  A Likert 

scale is used when measuring respondents’ feelings, attitudes, or beliefs.  Respondents indicate 

how closely their opinions match that in the statement by choosing from the following list:  

strongly agree, agree, neutral, disagree and strongly disagree. Developed by Treagust (2002), 

SUMS measures students’ views of models in science.  Based on their responses to the items on 

the SUMS assessment, student thinking about models can be classified into five themes.  They 

are:  models as multiple representations (MR), models as exact replicas (ER), models as 

explanatory tools (ET), use of scientific models (USM), and the changing nature of scientific 

models (CNM).  

“The reliability score [for the SUMS assessment] ranged from 0.71 to 0.84 indicating that 

the instrument has high internal consistency for each [theme]” (Treagust, Chittleborough, & 

Mamiala, 2002).  A test is considered reliable if it measures what it says it measures. A reliability 
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score of 0.70 is considered acceptable.  It is also important to determine that student responses 

are related and consistent.  Treagust (2002), indicates that “a bi-variate correlation of the five 

[themes] shows that student responses to each are related and consistent” (Treagust, 

Chittleborough, & Mamiala, 2002).   

Procedures for Conduction of the Study 

The researcher administered the Likert-scale SUMS instrument and the multiple choice 

CSEM instrument to all subjects.  Those enrolled in the algebra-based physics course completed 

the surveys during their laboratory course.  The pre-test was given on the first meeting of the 

semester and the post-test was administered on the last meting of the semester.  The calculus-

based physics students completed the pre-test during either the first or second meeting of the 

semester and the post-test in the second-to-last meeting of the semester.   

Data Analysis and Procedure 

Traditional descriptive statistics such as mean and standard deviation were calculated for 

both SUMS and CSEM.  Reliability statistics (discrimination and difficulty levels) for each item 

on the CSEM post-test were calculated. CSEM pre- and post-test results were compared to 

determine if the post-test scores show a significant difference at the α = 0.05 level.   

Descriptive statistics such as mean and standard deviation for the individual SUMS items 

were calculated.  In addition, similar descriptive statistics were calculated for the five themes 

identified.  A bi-variate correlation of the five scales was conducted to determine the extent to 

which student responses are related and consistent.  Pre- and post-test data for each of the five 

themes was compared to determine if there is a significant difference in scores from the pre- and 

post-test at the α = 0.05 level. 
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Post-test data for the SUMS themes and post-test data from the CSEM was examined to 

determine the correlation between the individual themes identified in SUMS and conceptual 

understanding indicated by CSEM. 

Finally, Model Analysis (MA) (described in detail in Chapters 2 and 4) was used to 

further examine specific changes in conceptual understanding on E&M topics.  Specifically, MA 

was used to find incremental growth and sophistication of student models and to determine 

where students use multiple models to solve E&M problems.   

Research Issues 

 A general discussion of the reliability and validity of both SUMS and the CSEM can be 

found in Chapter 2.  A test is considered reliable if the results are consistent over numerous 

administrations of the assessment.  A test is considered valid if it measures what it says it 

measures, not some other concept.  Both tests were determined to be reliable and valid.   

RELIABILITY AND VALIDITY 

Student Understanding of Models in Science 

The developers of the SUMS instrument found the instrument has a high internal 

consistency for each of the five themes as indicated by reliability ratings between 0.71 and 0.84.  

In addition, the assessment is considered valid because students’ responses to each scale are 

related and consistent as indicated by a high level of correlation discovered through a bi-varaiate 

correlation of the five themes (Treagust, Chittleborough, & Mamiala, 2002).    

Conceptual Survey of Electricity & Magnetism 

The CSEM was deemed reliable through the use of the Kuder Richardson-20 formula.  

The reliability index for the CSEM was found to be around 0.75 for each administration of the 
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test.  Values between 0.7 and 0.8 are considered appropriate for well-made cognitive tests 

(Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001). 

The validity of the test was determined by college physics professors who, based on their 

experience, determined that the test items did assess student conceptual understanding of E&M 

topics.  In addition, they determined that all items were reasonable and appropriate for college-

level physics students (Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001). 

Research Questions 

The following three questions were addressed in this study: 

• How does traditional physics instruction in E&M alter students’ views about models in 

science? 

• To what extent does traditional physics instruction in E&M alter students’ conceptual 

understanding of E&M topics? 

• What is the relationship between students’ understanding of models in learning and doing 

science and conceptual understanding of E&M? 

RESEARCH HYPOTHESES 

In order to answer the research questions above, six research hypotheses are addressed in 

this study.  A brief summary of the research detailed in Chapter 2 is included behind each 

hypothesis in order to clarify the reason the research hypothesis is stated as it is and to show how 

this study expands on the current research on the topic. 

Hypothesis 1:   Student understanding of models in science would not increase after a 

traditionally taught physics course covering electricity and magnetism topics. (Research 

Question 1)   
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Previous research detailed in Chapter 2 indicates that without instruction in the nature of 

science, students show no improvement in understanding the nature of science.  This study 

expands on previous research because it focuses on one aspect of the nature of science (models) 

and examines how a course in E&M which is heavily dependent on models affects student 

understanding of models in science. 

Hypothesis 2:  After traditional instruction, students enrolled in the calculus-based course will 

show a more sophisticated understanding of models in science (measured by SUMS) than those 

enrolled in the algebra-based course. (Research Question 1)   

Previous research detailed in Chapter 2 indicates that students enrolled in calculus-based 

courses perform better that those enrolled in algebra-based courses on conceptual tests of physics 

understanding.  In addition, they are science majors and have more experience and interest in 

science.  This study expands on previous research by examining the difference between science 

majors (calculus-based) and non-science majors (algebra-based) students’ understanding of 

models in science. 

Hypothesis 3:   Students’ conceptual understanding of E&M topics would improve after a 

traditionally taught physics course covering electricity and magnetism.  (Research Question 2) 

 Previous research detailed in Chapter 2 indicates that students do show improvement in 

conceptual understanding as measured by physics multiple choice tests of conceptual 

understanding after instruction.  This study expands on previous research by examining 

individual E&M topics in detail, as opposed to overall performance. 

Hypothesis 4:  After traditional instruction, students enrolled in the calculus-based course will 

have a greater conceptual understanding of E&M topics (measured by CSEM) as compared to 

those in the algebra-based course. (Research Question 2) 
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 Previous research detailed in Chapter 2 indicates that calculus-based students do 

outperform algebra-based students on tests of physics conceptual understanding.  This study 

expands on previous research by examining student performance on specific E&M topics. 

Hypothesis 5:   Students show a growth in their use and application of the expert model as 

opposed to, the naïve model on E&M topics after traditional instruction. (Research Question 2) 

 Previous research detailed in Chapter 2 indicates that on students show a growth in their 

use and application of the expert model after instruction on tests covering Newtonian topics.  

This study expands on previous research because it examines student model use on E&M topics. 

Hypothesis 6:   There is a relationship between student understanding about models in science 

and conceptual understanding of E&M topics. (Research Question 3) 

 Previous research as detailed in Chapter 2 indicates that understanding of the nature of 

science and models in particular, are important to doing and learning science.  This study 

expands on previous research by examining the link between understanding of models (a specific 

area of the nature of science) and changes in conceptual understanding of E&M topics. 

Summary 

This quasi-experimental study examines the change in students’ views of models in 

science and the change in performance on a conceptual understanding test on electricity and 

magnetism topics after a semester-long physics course covering E&M.  Both traditional data 

analysis and an innovative technique called model analysis is used to gain a more detailed 

picture of how student views about models are related to greater conceptual understanding on 

E&M topics. 
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CHAPTER 4 – RESULTS A�D DATA A�ALYSIS 

 

Introduction 

 
 The data collected in this study was quantitative.  Two instruments were used to collect 

the data.  One was a 27-item Likert Scale assessment.  It assessed Student Understanding of the 

Use of Models in Science (SUMS).  The other was a 32-item multiple-choice test designed to 

gauge the students’ conceptual understanding of a variety of electricity and magnetism topics 

(CSEM).  A copy of these instruments can be found in Appendix A (SUMS) and Appendix B 

(CSEM).  The researcher administered each assessment as both a pre and a post test.  The pre-

test was given during the first week of the semester; the post test was administered during the 

second to last week of the semester. 

The research questions and data for this study yielded a 2x2 mixed factorial design.  A 

mixed factorial design is a study with both between-groups and within-subjects independent 

variables.  The between-groups design comes from the Course independent variable because 

each participant is enrolled in only one of the two courses.  The two courses are Algebra-based 

(AB) and Calculus-based (CB).  The within-subjects design is a result of the Time independent 

variable.  The time independent variable is the “time of measurement” or pre- and post-tests.  

Each subject in the course experiences the same instruction (no experimental and/or control 

groups); however, their performance on the assessments (the dependent variable or DV) is 

compared before and after instruction.   

Both the CSEM and SUMS were found to be reliable tests by the test developers 

(Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001; Treagust, Chittleborough, & Mamiala, 

2002) and this researcher through the use of Cronbach’s Alpha.  A reliable test means that the 

items have reasonable internal consistency and measure what they purport to measure. 
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Cronbach’s Alpha measures this internal consistency by measuring the degree to which a set of 

items are interrelated or correlated to each other.   Table 5 (below) shows the Cronbach’s Alpha 

for each test.  In addition, Cronbach’s Alpha is reported for the tests as a whole and for the 

grouped topics in the CSEM and the themes in SUMS.  An α greater than 0.70 is generally 

considered reasonable; however, a test is considered adequately reliable provided that α is 

between 0.60 and 0.69.  

Table 5 – Reliability Test 
  Cronbach’s 

Alpha 

CSEM 
Complete Test 0.687 

by Topics 0.738 

SUMS 
Complete Test 0.825 

by Theme 0.621 
 

Research Questions 

This dissertation attempts to answer the following three research questions: 

1. How does traditional physics instruction in E&M alter students’ views of models in 

science? 

2. To what extent does traditional physics instruction in E&M alter students’ conceptual 

understanding of E&M topics?  

3. What is the relationship between students’ understanding of models in learning and doing 

science, and conceptual understanding of E&M? 

RESEARCH HYPOTHESES 

 In order to answer the three research questions above, six research hypotheses were 

examined.  They are:  

1. Student understanding of models in science would not increase after a traditionally taught 

physics course covering electricity and magnetism topics. (Research Question 1) 
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2. After traditional instruction, students enrolled in the calculus-based course will possess a 

greater understanding of models in science than those students enrolled in the algebra-

based course.  (Research Question 1) 

3. Students’ conceptual understanding of E&M topics would improve after a traditionally 

taught physics course covering electricity and magnetism. (Research Question 2) 

4. After traditional instruction, students enrolled in the calculus-based course will have a 

greater conceptual understanding of E&M topics than those enrolled in the algebra-based 

course. (Research Question 2) 

5. Students show a growth in their use and application of the expert model as opposed to the 

naïve model on E&M topics after instruction. (Research Question 2) 

6. There is a relationship between student understanding of models in science and 

conceptual understanding of E&M topics. (Research Question 3) 

Research Question 1 

Research Question 1 was answered by comparing student pre- and post- test performance 

on each of the five themes assessed on SUMS.   

RESEARCH HYPOTHESIS 1 

The first research hypothesis was that student understanding of models in science would 

not increase after a traditionally taught physics course covering electricity and magnetism 

topics.  The results of the pre- and post- test are summarized in Table 6 below. 
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TABLE 6 – Combined SUMS results (n = 106) 
 Pre-test Post-test 

Mean Std Dev Mean Std Dev 
Models as Multiple 
Representations (MR) 

4.079 0.402 3.995 0.468 

Models as Exact Replicas 
(ER) 

3.412 0.636 3.338 0.767 

Models as Explanatory 
Tools  (ET) 

4.298 0.414 4.296 0.445 

How Scientific Models 
are Used (USM) 

3.780 0.802 3.969 0.620 

The Changing Nature of 
Scientific Models (CNM) 

4.327 0.631 4.261 0.649 

 

Both the algebra-based and calculus-based scores were considered together and a paired-

samples t-test was run to compare the mean of the student responses on the five themes identified 

in the SUMS assessment.  The paired-samples t-test was chosen because the one independent 

variable (time) has two categories (pre and post-test).  Time of measurement is the within-

subjects independent variable.  The samples are paired because the same students took both the 

pre- and post-test.  The only significant difference in pre- and post-test scores at the α = 0.05 

level for the SUMS assessment was the USM theme.  Alpha (α) measures the probability of Type 

I error or determining that a conclusion is false (rejecting the null hypothesis) when it is in fact 

true.  A significant difference at the α = 0.05 level means that there is only a 5% chance of 

erroneously determining that students showed a significant gain in understanding the use of 

scientific models because of the instruction. Table 7 below contains the results. 
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TABLE 7 – SUMS Paired Samples Test 
 Sig 

(2-tailed) 
MRpre – MRpost 0.170 
ERpre – ERpost  0.323 
ETpre – ETpost 0.974 
USMpre – USMpost* 0.024 
CNMpre – CNMpost  0.395 

*significant at α = 0.05 
  
 

RESEARCH HYPOTHESIS 2 

In order to address the second research hypothesis, calculus-based (CB) students possess 

a greater understanding of models in science than those students enrolled in the algebra-based 

(AB) course, the SUMS results were also analyzed based on the course (AB or CB).  Table 8 

contains those results. 

TABLE 8 – SUMS Results by Course 
 Algebra-Based (n = 44) Calculus-Based (n = 62) 

Pre-test Post-test Pre-test Post-test 
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

MR 4.094 0.406 3.884 0.438 4.068 0.402 4.075 0.477 
ER 3.498 0.643 3.472 0.769 3.351 0.629 3.244 0.757 
ET 4.386 0.432 4.286 0.461 4.235 0.393 4.303 0.437 
USM 3.803 0.955 4.023 0.748 3.763 0.681 3.930 0.513 
CNM 4.455 0.631 4.348 0.593 4.237 0.620 4.199 0.684 
TOTAL 3.979 0.350 3.903 0.429 3.870 0.310 3.869 0.344 

 

An independent-samples t-test was conducted to determine if the calculus-based students 

performed significantly better than the algebra-based students.  The independent samples test 

was chosen because it is the appropriate test when examining the between-groups variable.  

(Course, algebra-based and calculus-based, is the between-groups variable.)  Each subject is in 

only one group, either the algebra-based course or the calculus-based course.  The results are 

summarized in Table 9 (below).  Normally, when multiple t-tests are used on the same set of 

data, an analysis of variance must be done to avoid inflated type 1 error.  However, since there is 
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no overlap among questions assessing each theme on SUMS, the t-test on each individual theme 

is on a discrete set of data and the chance of inflated type 1 error is not an issue. 

Levene’s test for Equality of Variance was used to determine whether or not the variance 

in the groups was due to chance.  If Levene’s test is not significant (sig is not less than α or 0.05) 

then the variances are considered equal or homogenous.  However, if Levene’s test determines 

that the variances are significantly different (at the α = 0.05 level) then the difference in the 

performance of the groups as identified by the t-test could be by chance.  Therefore, a more 

stringent criterion must be used in order to determine if the results of the t-test really indicate that 

the difference is due to the conditions of the study.  In this case, it is appropriate to use the equal 

variances not assumed t-test where the degrees of freedom are adjusted downward to take into 

account the lack of homogeneity of variances.   The less homogeneity of variance, the more the 

degrees of freedom is adjusted.  If the difference in the groups is significant even after the 

variances are assumed not to be equal, then the difference is most likely due to the conditions of 

the study. 

The only significant difference in student performance (at the α = 0.05 level) between the 

algebra-based and calculus-based groups was found in the Models as Multiple Representations 

(MR) theme (sig = 0.038).  A sig value of 0.038 for a t-test of Equality of means there is only a 

3.8% chance of the difference in the algebra-based and calculus-based student performance 

being due to chance.  In this case, Levene’s test for Equality of Variance is not significant (sig = 

0.287, 0.287 is not less than alpha or 0.05) and indicates that the variability in the two groups is 

not significantly different.  The results of the independent t-test shows that overall, the calculus-

based students did not perform significantly better than the algebra-based students.  They did not 

show a significantly better understanding of models in science.  The one exception to this was 
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the MR theme.  Students in the calculus-based course showed a significantly greater 

understanding of models as multiple representations than those in the algebra-based course. 

Table 9 – SUMS Independent Samples Test 

 Levene's Test 
for Equality of 

Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 

MRpost Equal variances assumed 1.146 .287 -2.103 104 .038 

Equal variances not assumed   -2.134 97.288 .035 

ERpost Equal variances assumed .017 .898 1.516 104 .133 

Equal variances not assumed   1.512 91.907 .134 

ETpost Equal variances assumed .049 .826 -.191 104 .849 

Equal variances not assumed   -.189 89.617 .850 

USMpost Equal variances assumed 4.683 .033 .757 104 .451 

Equal variances not assumed   .711 70.861 .479 

CNMpost Equal variances assumed .041 .839 1.171 104 .244 

Equal variances not assumed   1.200 99.842 .233 

 

Research Question 2 

 Research Question 2 was answered by comparing student pre- and post-test performance 

on the CSEM.  In order to answer Research Question 2, three research hypotheses were 

examined (Research Hypotheses 3, 4 and 5.) The first two used traditional data analysis while 

the third used Model Analysis (MA) to examine, in detail, the changes in student conceptual 

understanding of particular E&M topics.   

RESEARCH HYPOTHESIS 3  

The third research hypothesis was that student conceptual understanding of E&M topics 

would improve after a traditionally taught physics course covering electricity and magnetism.  

The results of the pre- and post-test are summarized in Table 10 (below). 
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TABLE 10 – Overall CSEM Results (n = 106) 
 Pre-test Post-test 

Mean Std Dev Mean Std Dev 
Topic 01 (3) 0.248 0.276 0.314 0.290 
Topic 02 (3) 0.384 0.229 0.450 0.284 
Topic 03 (3) 0.365 0.330 0.528 0.362 
Topic 04 (5) 0.264 0.200 0.302 0.205 
Topic 05 (5) 0.269 0.173 0.327 0.204 
Topic 06 (2) 0.118 0.235 0.094 0.219 
Topic 07 (5) 0.166 0.180 0.200 0.193 
Topic 08 (4) 0.123 0.199 0.340 0.279 
Topic 09 (2) 0.151 0.277 0.425 0.364 
Topic 10 (4) 0.182 0.160 0.224 0.195 
Topic 11 (4) 0.182 0.203 0.245 0.246 
TOTAL (32) 0.244 0.099 0.319 0.133 

Number of questions for each topic in parenthesis 
 

As indicated for the SUMS assessment, both the CSEM algebra-based and calculus-based 

scores were considered together and a paired-samples t-test was run to compare performance on 

the overall mean and the mean of the eleven topics identified in the CSEM assessment.  The 

paired-samples t-test was chosen because the one independent variable (time) has two categories 

(pre and post-test).  Time of measurement is the within-subjects independent variable.  The 

samples are paired because the same students took both the pre- and post-test.  A significant 

difference performance at the α = 0.05 level in was found for the overall CSEM performance and 

on the following seven topics:  Topics 1, 2, 3, 5, 8, 9, and 11. Table 11 (below) contains the 

results.  (See Table 4 in Chapter 2 for a list of topics.) 

 The results of the paired sample t-test indicated that students did show a significant gain 

in conceptual understanding of electricity and magnetism topics after instruction.  In particular, 

the gains were significant for the following topics:  Charge Distribution on 

Conductors/Insulators (Topic 1); Coulomb’s Force Law (Topic 2); Force Caused by an Electric 

Field (Topic 4); Work, Electric Potential, Field and Force (Topic 5); Magnetic Field Caused by 
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a Current (Topic 8); Magnetic Field Superposition (Topic 9); and �ewton’s Third Law (Topic 

11).  

TABLE 11 – CSEM Paired-Samples t-test results 
 Sig 

(2-tailed) 
MEANpre – MEANpost* 0.000 
T01pre – T01post* 0.050 
T02pre – T02post* 0.038 
T03pre – T03post* 0.000 
T04pre – T04post 0.173 
T05pre – T05post* 0.023 
T06pre – T06post  0.387 
T07pre – T07post 0.176 
T08pre – T08post* 0.000 
T09pre – T09post* 0.000 
T10pre – T10post 0.072 
T11pre – T11post* 0.029 

*significant at α = 0.05 
 

RESEARCH HYPOTHESIS 4 

In order to examine the fourth research hypothesis, the calculus-based students would 

show greater conceptual understanding on E&M topics than the algebra-based students, the 

CSEM results were also analyzed based on the course (algebra-based or calculus-based).  Table 

12 (below) contains those results. 
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TABLE 12 – CSEM Results by Topics 
 Algebra-Based (n = 44) Calculus-Based (n = 62) 
 Pre-test Post-test Pre-test Post-test 
 Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

Topic 01 (3) 0.523 0.731 0.909 0.802 0.903 0.863 0.968 0.923 
Topic 02 (3) 1.091 0.676 1.227 0.711 1.194 0.698 1.436 0.934 
Topic 03 (3) 0.909 0.936 1.296 1.091 1.226 1.015 1.790 1.042 
Topic 04 (5) 1.523 1.110 1.682 1.006 1.629 1.271 1.903 1.364 
Topic 05 (5) 1.500 1.131 1.705 1.025 1.694 0.968 2.145 1.329 
Topic 06 (2) 0.182 0.390 0.114 .0321 0.274 0.518 0.242 0.502 
Topic 07 (5) 0.849 0.805 0.864 0.878 0.823 0.967 1.097 1.020 
Topic 08 (4) 0.341 0.526 1.091 0.984 0.597 0.931 1.548 1.169 
Topic 09 (2) 0.159 0.370 0.727 0.660 0.403 0.639 0.936 0.765 
Topic 10 (4) 0.659 0.568 1.023 0.849 0.774 0.688 0.807 0.721 
Topic 11 (4) 0.682 0.708 0.773 0.912 0.758 0.881 0.855 1.143 

TOTAL (32) 6.89 2.264 9.07 3.372 8.44 3.565 11.02 4.661 
Number of questions for each topic in parenthesis 

 
An independent-samples t-test was conducted to determine if the calculus-based students 

performed significantly better than the algebra-based students.  The independent samples test 

was chosen because the between-groups design was tested.  Each subject is in only one group, 

either the algebra-based course or the calculus-based course.  See Table 13 (below). 

The independent-samples t-test indicated that overall, students in the calculus-based 

course performed significantly better (at the α = 0.05 level) than students in the algebra-based 

course (sig = 0.014).  The test also indicated that students in the calculus-based course scored 

significantly better (at the at α = 0.05 level) for both CSEM Topic 3, Electric Force and Field 

Superposition, (sig = 0.020) and Topic 8, Magnetic Field Caused by a Current (sig = 0.032).  

For Topic 3, Levene’s test of equality of variance (sig = 0.807, 0.807 is not less than α or 0.05) 

indicated that the variability in the two courses is not significantly different.  For the overall 

mean and Topic 8, Levene’s test of equality of means was significant (The mean sig = 0.010 and 

the Topic 8 sig = 0.030.  In these two cases, the value for significance is less than α or 0.05.)  A 

significant result from Levene’s test indicated that the scores from the calculus-based course and 
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the algebra-based course were significantly different and this difference could be by chance.  A 

more stringent criterion, equal variances not assumed, must be used to determine if the difference 

was by chance or due to the treatment.  However, even using this more stringent test, the 

calculus-based students significantly out-performed the algebra-based students both overall (sig 

= 0.014) and on Topic 8, (sig = 0.032).  Students in the calculus-based course significantly 

outperformed students in the algebra-based course on their overall understanding of electricity 

and magnetism and on two specific topics, Magnetic Field Caused by a Current (Topic 8) and 

Electric Force and Field Superposition (Topic 3). 
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Table 13 – CSEM Independent Samples Test 

 Levene's Test 
for Equality of 

Variances 
t-test for Equality of 

Means 

F Sig. t df 
Sig.  

(2-tailed) 

MEANpost Equal variances assumed 6.801 .010 -2.366 104 .020 

Equal variances not assumed   -2.497 103.948 .014 

T01post Equal variances assumed .881 .350 -.340 104 .734 

Equal variances not assumed   -.348 99.724 .728 

T02post Equal variances assumed 7.319 .008 -1.244 104 .216 

Equal variances not assumed   -1.302 103.453 .196 

T03post Equal variances assumed .060 .807 -2.363 104 .020 

Equal variances not assumed   -2.344 90.114 .021 

T04post Equal variances assumed 4.297 .041 -.914 104 .363 

Equal variances not assumed   -.962 103.816 .338 

T05post Equal variances assumed 4.978 .028 -1.844 104 .068 

Equal variances not assumed   -1.926 103.230 .057 

T06post Equal variances assumed 9.793 .002 -1.492 104 .139 

Equal variances not assumed   -1.603 103.028 .112 

T07post Equal variances assumed .815 .369 -1.227 104 .223 

Equal variances not assumed   -1.259 100.058 .211 

T08post Equal variances assumed 4.834 .030 -2.117 104 .037 

Equal variances not assumed   -2.180 100.911 .032 

T09post Equal variances assumed .257 .613 -1.460 104 .147 

Equal variances not assumed   -1.497 100.030 .138 

T10post Equal variances assumed .005 .943 1.414 104 .160 

Equal variances not assumed   1.375 82.946 .173 

T11post Equal variances assumed .900 .345 -1.855 104 .066 

Equal variances not assumed   -1.890 98.355 .062 

 

RESEARCH HYPOTHESIS 5 

The fifth research hypothesis was that students will show a growth in their use and 

application of the expert model as opposed to the naïve model on E&M topics after instruction.  

Eight of the eleven themes studied to answer this question were chosen because the expert, naïve 
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and null models could be easily identified and mapped to the multiple choice answers on the 

CSEM.  The topics are:   

• Coulomb’s Law (Topic 2) 

• Electric Force and Field Superposition (Topic 3) 

• Force Caused by an Electric Field (Topic 4) 

• Work, Electric Potential, Field and Force (Topic 5) 

• Induced Charge and Electric Field (Topic 6) 

• Magnetic Field Caused by a Current (Topic 8) 

• Magnetic Field Superposition (Topic 9) 

• Newton’s Third Law (Topic 11) 

Model Analysis 

The fifth research hypothesis was answered using a new data analysis technique called 

Model Analysis (MA).  MA uses quantum physics ideas and mathematics to analyze student 

thinking.  It assumes that just as two seemingly contradictory states coexist in the quantum world 

(light behaves as a particle and a wave in quantum physics), students can possess seemingly 

contradictory models of physical processes.  The analogy between student model use and the 

behavior of a particle is explained in more detail Chapter 2.  MA assumes that students possess 

competing, contradictory mental models and they often apply them inconsistently.  MA also 

gives researchers information about the level of confusion present in students 

(CadwalladerOlsker, 2009).   

Developed by Lei Bao for his doctoral thesis, MA was offered as an alternative to factor 

analysis because factor analysis is based on scores, not the models students use.  Factor analysis 

only evaluates the consistency of student answers and does not take into account the fact that 
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students are not consistent in their application of mental models while solving physics problems.  

Factor analysis is designed to discover relationships among many variables by reducing the large 

number of (observed) variables to a smaller number of underlying or unobserved “factors.”  It 

estimates the strength of the influence each factor has on the dependent variables.  If the goal of 

the study is to determine which factors have more or less influence or the amount of influence a 

set of factors might have, factor analysis is the tool.  However, it does not provide information on 

the type of incorrect responses a student may choose as does MA.   Just as with other statistical 

methods, with MA it is important to have a large population; in general, as the size of the 

population increases, the uncertainty in the results decreases (Bao, 1999; Bao, Hogg, & Zollman, 

2002; Bao & Redish, 2001). 

Briefly, the models students use are identified, mapped to the choices on the CSEM, and 

combined through the process explained below to produce the class density matrix.  Eigenvalue 

decomposition of the class density matrix is used to reveal the class model state.  Below is a list 

of the important terms, and their definitions, used in model analysis:   

Class Model Density Matrix (or Class Density Matrix) – A matrix that is obtained by 

combining the student model state vectors; it contains information about the models that 

the class is using to solve a set of questions on a particular topic.  

Consistent Model State – The students consistently use one of the common models 

(expert, naïve or null) in answering all the questions on a particular topic.  

Density Matrix – In quantum physics, a matrix that contains the probability that a particle 

will occupy a certain state.  In MA, a matrix that contains the probability that a student 

will use a certain model to solve a set of questions on a particular topic. 
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Inconsistent Model State (Mixed Model State) – The students use different models to 

solve questions on a particular topic. 

Model Plot – A two-dimensional graph used to represent student usage of the two 

dominant models (expert and naïve) (Bao, 1999). 

Model Space – A mathematical representation of the probability that a student will use a 

particular model. 

Model State – The term used to describe what models a student is using to solve 

problems. 

Operator – A mathematical instruction to do “something” to the function that follows.  

Probability Amplitude – The square root of the probability that a particle will occupy a 

certain state.  Probability amplitudes instead of the actual probabilities are combined 

during mathematical operations in quantum mechanics. 

Probability Vector – A single column matrix that contains the student model state (the 

probability that a student will use a particular model to answer questions on a particular 

topic.) 

State Vector – In quantum physics, a vector that gives the probability amplitude that 

particles will be in their various possible states.  In MA, a vector that gives the 

probability amplitude that students will use particular models to solve problems. 

Student Model Density Matrix – A matrix that contains information about the models that 

a student is using to solve a set of questions on a particular topic. 

Student Model State Vector (Student Model State) – Analogous to the wave function, it is 

the vector that represent how a student responds (the models they use) to answer a set of 
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questions on a particular topic.  The elements of the Student Model State Vector are the 

probability amplitudes associated with the student’s responses.   

Vector – A mathematical construct with both magnitude and direction.  In quantum 

physics, the elements of a vector represent the state of a particle.  In mathematics, vectors 

are represented as A
ur

 or B
ur

.  In quantum physics, vectors are functions and are 

represented in Dirac notation by ku  or ψ called “kets.”   

Wave Function – In quantum physics, a function that describes the state (amplitude) of a 

particle.  It contains all the information that can be known about the particle. When 

squared, it represents the intensity of the particle which is the probability that a particle 

will be in a particular region at a particular time.  In model analysis, a function that 

describes student model use and when squared, gives the probability that the student will 

use a particular model at a particular time. 

The Process of Model Analysis 

 This section will take the reader through the process of model analysis step-by-step by 

analyzing student results on the CSEM for Newton’s Third Law of Motion.  The next sub-section 

contains a table (Table 14) that details the notations used for the equations in the model analysis.  
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Table 14 – Symbols Used in Model Analysis 
Symbol Description 

k Student index 
N Total number of students 
m Total number of questions in the topic/concept group 
w Total number of models (expert, novice, null) 
  

kr  Student response vector for the kth student 

ku  Student model response vector for the kth student 

Pηµ  An element of D 

kD  Student model density matrix for the kth student 

D Class model density matrix (sum of kD ) 

V Student model vector matrix – Eigenvector matrix of D 

µλ  The thµ eigenvalue of D 

vµη  An element of V 

 

IDE�TIFICATIO� A�D MAPPI�G OF STUDE�T MODELS 

 The first step is to identify the most common models used by students.  The naïve models 

most likely used by students are identified through an examination of physics education research 

and are identified in Chapter 2.  For Newton’s Third Law, the models are also detailed below: 

Expert Model:  two different (equal but opposite) forces act on two different bodies 

whether they are in contact or at a distance.  (The Expert model is referred to as Model 1 

for clarity in the mathematical operations and representations.)    

Naïve Model:  two opposite forces acting on the same body whose magnitudes are 

influenced by the size or charge of the bodies. (The Naïve model is referred to as Model 2 

for clarity in the mathematical operations and representations.)  

Null Model:   incorrect or other irrelevant ideas.  (The Null model is referred to as Model 

3 for clarity in the mathematical operations and representations.) 
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These models are then mapped to the multiple choice response options (A – E) for the 

corresponding questions on the CSEM.  Newton’s Third Law is addressed in questions 4, 5, 7 

and 24.  Table 15 (below) details the response options and the corresponding models most likely 

used by students choosing those options. 

Table 15 – Misconceptions for Newton’s Third Law 
 Question 4 Question 5 Question 7 Question 24 

Model 1 (Expert) B C B C 
Model 2 (Naïve) A & D D A & C B & D 
Model 3 (Null) C & E A, B, & E D & E A & E 

 

Computing the Student Model Density Matrix 

Next, using the information above, each student’s responses for the questions were 

mapped to vectors.  Vectors are used because student model use is analogous with a particle in 

quantum theory and vectors “are the vehicles of choice for quantum theory” (Polkinghorne, 

2002).  For example, student k responded to questions 4, 5, 7 and 24, with D, C, E, and D 

respectively.  That is, the student used the naïve model for questions 4 and 24, the correct model 

for question 5, and a null model for question 7.  The responses produce four vectors (0, 1, 0)T, (1, 

0, 0)T, (0, 0, 1)T and (0, 1, 0)T.  These vectors are summed to get an overall model response 

vector for the student which is (1, 2, 1)T.  It is written using equation 1 as follows where the 

subscript numbers 1, 2 and 3 are the corresponding models (expert, novice and null): 

1

2

3

k

k k

k

n

r n

n

 
 =  
 
 

         Equation 1    

For student k, the student response vector is:  

1

2

1
kr

 
 =  
 
 

. 
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Equation 2 is used to compute the probability amplitude and normalize the student 

response vector ( )kr  to produce the student model vector ( )ku .  The student response vector is 

normalized in order to account for the number of questions; thus ensuring that the probabilities 

will add up to one.   

11

2 2

3 3

1
kk

k k k k

k k

nu

u u n u
m

u n

     = = =          

     Equation 2 

Where m = number of questions for the topic or concept group. 

For the kth student, the student model vector is:  

1 1
1 1

2 2
24

11

ku

   
   

= =   
       

. 

The next step is to calculate the student model density matrix for the kth student using matrix 

multiplication.  The student model density matrix is a matrix that contains information about the 

models students use to solve problems.  The student model vector is analogous to the wave 

function.  In quantum physics, the wave function gives the probability amplitude of a particle.  

By definition, squaring the wave function yields the particle’s intensity and the particle’s 

intensity is equivalent to the probability that a particle will be in a particular place at a particular 

time (Serway, Moses, & Moyer, 2005).  Similarly, when the student model vector is squared, the 

result is the student model density matrix which gives the probability that a student will use a 

particular model at a particular time.  See Equation 3:  

1 1 2 1 3

2 1 2 2 3

3 1 3 2 3

1
k k k k k

k k k k k k k k

k k k k k

n n n n n

D u u n n n n n
m

n n n n n

 
 

= =  
 
  

  Equation 3 



  70

For the kth student, the student model density matrix is:  

1 2 1
1

2 2 2
4

1 2 1

kD

 
 

=  
 
 
 

. 

Table 16 (below) is a list of several student model density matrices.  The data are taken 

from the CSEM post-test.  The topic is Newton’s Third Law of Motion and the students were 

chosen randomly.  There were four questions per topic (m = 4) and there are three possible 

models, expert, naïve and null (w = 3). 

Table 16 – Samples of Student Model Density Matrices 

Student Model 
Responses 

Student 
Response 

Vector ( )kr  

Student Model 
Vector (Uk) 

Student Model 
Density Matrix (Dk) 

(121) 

1

2

1

 
 
 
 
 

 

1
1

2
2

1

 
 
 
 
 

 

1 2 1
1

2 2 2
4

1 2 1

 
 
 
 
 
 

 

(400) 

4

0

0

 
 
 
 
 

 

2
1

0
2

0

 
 
 
 
 

 

4 0 0
1

0 0 0
4

0 0 0

 
 
 
 
 

 

(103) 

1

0

3

 
 
 
 
 

 

1
1

0
2

3

 
 
 
 
 

 

1 0 3
1

0 0 0
4

3 0 3

 
 
 
 
 

 

 

COMPUTI�G THE CLASS MODEL DE�SITY MATRIX 

 The class model density matrix gives detailed information about the models students use 

to solve problems.  “In general, the diagonal elements ( 11P , 22P , 33P  from Equation 4 below) give 

the distribution of the probability of students using the different physical models, while the off-

diagonal elements ( 12P , 13P , 23P , etc. from Equation 4 below) indicate consistency of the students’ 

using their models” (Bao, 1999).    
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11 12 13

21 22 23

31 32 33

P P P

D P P P

P P P

 
 =  
  

      Equation 4 

Another way to think about it is that the “diagonal elements are the probabilities of 

correct matches between responses and student model-states while the off-diagonal elements 

represent the “cross talk” [or noise] from mismatched model-states and responses” (Bao, 1999).  

Note that the off-diagonal elements are not probabilities but “one way of expressing correlations 

between probabilities” (Bao & Redish, 2004).  This means that larger diagonal elements imply a 

more consistent use of the three models while larger off-diagonal elements represent more 

confusion or inconsistencies in student thinking.  In quantum theory, “the superposition principle 

permits the mixing together of states that classically would be immiscible” (Polkinghorne, 2002).  

As a result, probabilities cannot just be added as they would in traditional statistics because 

“things that were mutually distinct possibilities are entangled with each other quantum 

mechanically” (Polkinghorne, 2002).  The calculation of the off-diagonal elements (essentially 

the non-communitive property of row by column matrix multiplication) takes this “mixing” into 

account.   

It is important to note that Bao (1999) used several techniques to verify the accuracy and 

reliability of the data.  He found that in a vast majority of the cases, the uncertainty associated 

with student guessing does not “significantly degrade the results.” He determined that as long as 

the number of students is significantly larger than the number of models (N >> w), the 

probability of error due to guessing is minimized to the point that it does not affect the results of 

the calculations.  In this study, the N of 106 is significantly larger than the number of models 

which in this case is three. 
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THE MEA�I�G OF THE CLASS MODEL DE�SITY MATRIX 

 As stated earlier, the purpose of MA is to analyze data that cannot be examined using 

traditional statistics.  Factor analysis and other data analysis techniques look at the consistency of 

student results and not the implications of the students’ wrong answers.  The class model density 

matrix stores information about student choices for the topic or concept group.  It was named the 

Density Matrix because in quantum physics, the density matrix describes the statistical state of a 

quantum system.  As noted previously, the way students use models when solving physics 

problems can be thought of as a quantum system.  The diagonal elements of the Class Model 

Density Matrix ( 11P , 22P , 33P  from Equation 4 above) are the probabilities of how the class uses 

the different models.  Since they are the probabilities of the use of the three models, and the 

students use only one of the three models (expert, naïve, null), they add to one.  The off-diagonal 

elements ( 12P , 13P , 23P , etc. from Equation 4 above) are not probabilities, but rather represent the 

correlation between the probabilities.  They are the cross-talk or noise that represents the 

confusion in student application of the models.  Table 17 (below) gives examples of the three 

“typical model conditions for a class of students” (Bao, 1999).   

Table 17 – Samples of Class Model Density Matrices  

1 0 0

0 0 0

0 0 0

 
 
 
 
 

 

0.5 0 0

0 0.3 0

0 0 0.2

 
 
 
 
 

 

0.5 0.2 0.1

0.2 0.3 0.1

0.1 0.1 0.2

 
 
 
 
 

 

A 
Consistent 
One-Model 

B 
Consistent 

Three-Model 

C 
Inconsistent 
Three-Model 

(Bao, 1999) 

 Sample A is a case where all students have the same physical model.  In this situation, 

they all have and apply the expert model (Model 1) on a set of questions covering a particular 

topic.  They do not use any other models and thus there is no “noise” or confusion as to how they 
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apply the expert model.  Sample B shows that the class uses all three models but applies them 

consistently, without confusion (no “noise”) when answering a set of questions on a particular 

topic.  If this model presents itself, the researcher can assume that the students possess all three 

models (expert, naïve, and null) but applies them consistently in given situations.  Sample C is 

the most common situation and the one that is overwhelmingly prevalent in this study.  Here, 

students inconsistently apply all three physical models.  Situations B and C have the same 

diagonal elements but different off-diagonal ( 12P , 13P , 23P  etc.) elements.  This implies that just 

looking at the diagonal elements does not give enough information about how the students apply 

the models they have (Bao, 1999).  It does not tell the researcher if the students are using the 

models consistently or inconsistently.  The next section addresses that issue. 

EVALUATI�G THE CLASS MODEL DE�SITY MATRIX 

 Because analyzing the diagonal elements does not provide enough information, 

eigenvalues and eigenvectors of the matrices are used.  In order to understand the role of 

eigenvalues and eigenvectors, it is important to understand what an operator is as it relates to 

quantum physics.  In very general terms, an operator is something that transforms one state into 

another state.  Recall that a state is in very simple terms, the description of the situation.  In MA, 

the state is the description of student responses.  The class density matrix is the description or 

state that contains the probabilities of using models 1, 2 and 3 on the diagonals and some 

numbers (off-diagonal entries) that represent the confusion students’ exhibit as they apply those 

models to solve problems.  In order to make sense of the class density matrix, the confusion must 

be taken into account along with the probability of applying a certain model.  In other words, it is 

important to know how much the confusion of the models affects the probability of applying 

each model.  An eigenvalue is an operator that transforms the state of the class density matrix 
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into a state, described as the eigenvector that combines the probability of applying a certain 

model with the amount of confusion that exists.   

The eigenvalues and eigenvectors of the class density matrix are calculated by eigenvalue 

decomposition.  Eigenvalue decomposition is just the mathematical process of re-writing or 

“breaking down” the original matrix into eigenvalues and their associated eigenvectors.  The 

eigenvalues and eigenvectors give information about the level of confusion that exists in the 

class and the similarity of the models used by students.  If a majority of students have the same 

model state, one large, primary eigenvalue will be obtained and the associated eigenvector will 

be indicative of the model state of the majority of the class.  An eigenvalue is considered large if 

it is greater than 0.80.   If the primary eigenvalue is small (less than 0.65) it indicates that the 

student model states are mixed and that class of students has and uses a wide variety of models.  

An eigenvalue below 0.40 indicates that there is no dominant student model.  The next section 

contains the eigenvalue and eigenvector decomposition for the study.   

CALCULATI�G THE STUDE�T MODEL STATES 

 Tables 18 and 19 are the results of the eigenvalue and eigenvector decomposition from 

Class Model Density Matrix on the CSEM for Topic 11, Newton’s Third Law of Motion.  This 

data is used to create the model plots.  Table 18 contains the overall results for Topic 11 and 

Table 19 consists of the data divided by course, algebra-based and calculus-based.  The data for 

the other topics can be found later in this chapter. 

 
Table 18 – Overall CSEM Results for Newton’s Third Law of Motion (Topic 11) 

 Density 

Matrix 

Eigen 

value 

Eigen vector 

v1          v2          v3 

Topic 11 

Pre 
0.18  0.20  0.09 
0.20  0.50  0.28 
0.09  0.28  0.31 

0.78 
0.06 
0.15 

0.34 
0.78 
0.53 

0.70 
-0.59 
0.42 

0.63 
0.23 
-0.74 

Post 
0.20  0.17  0.06 
0.17  0.49  0.27 
0.06  0.27  0.30 

0.18 
0.74 
0.08 

-0.78 
-0.11 
0.62 

-0.31 
-0.79 
-0.53 

0.55 
-0.60 
0.58 
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Table 19 – By Course CSEM for Newton’s Third Law of Motion (Topic 11) 

 
Algebra-Based Calculus-Based 

Density 

Matrix 

Eigen 

value 

Eigen vector 

v1        v2        v3 

Density 

Matrix 

Eigen 

value 

Eigen vector 

v1        v2         v3 

Topic 11 

Pre 
0.17  0.20  0.10 
0.20  0.50  0.31 
0.10  0.31  0.32 

0.81 
0.13 
0.05 

0.33 
0.77 
0.55 

-0.70 
-0.20 
0.69 

0.64 
-0.61 
0.47 

0.19  0.20  0.08 
0.20  0.51  0.27 
0.08  0.27  0.29 

0.77 
0.07 
0.15 

0.34 
0.79 
0.50 

0.65 
-0.59 
0.48 

0.68 
0.16 
-0.72 

Post 
0.19  0.19  0.08 
0.19  0.53  0.23 
0.08  0.23  0.26 

0.74 
0.10 
0.15 

-0.35 
-0.82 
-0.45 

-0.76 
0.53 
-0.38 

0.55 
0.21 
-0.81 

0.21  0.16  0.05 
0.16  0.46  0.30 
0.05  0.30  0.33 

0.20 
0.06 
0.75 

-0.84 
-0.10 
0.53 

-0.46 
0.64 
-0.61 

-0.28 
-0.76 
-0.58 

 

In the case of Newton’s Third Law of Motion, the primary eigenvalue for the data as a 

whole, and by course, are between the upper and lower limits described above (between 0.80 and 

0.65) so the eigenvalue decomposition will give a good picture of the class’s model use.  The 

data are plotted in the next section. 

MODEL PLOTS 

 As noted earlier, students usually have two dominant models that they use to solve 

problems.  Those are the expert model and the naïve model.  In order to visually represent those 

models, a two-dimensional plot called a model plot, is constructed.  The model plot allows 

researchers to graphically represent student model use including the types of models students 

use, the consistency which they use them, and the probabilities for students and the class to use 

the different models (Bao & Redish, 2004).  When pre- and post-test results are plotted on the 

same graph, changes or the lack of changes in student model use are obvious.  Figure 2 is a 

model plot with the important regions labeled.  A description of the each region follows.  After 

the regions are explained, the data from Newton’s Third Law are plotted.  An explanation of 

what the plots show is included. 
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Figure 2 – Regions on a Model Plot  

As noted above, the model plot is a two-dimensional graph that visually illustrates the 

models used by students to solve questions covering a specific topic.  The horizontal axis is the 

probability of using model 2 (the naïve model) while the vertical axis is the probability of using 

model 1 (the expert model.)  Since the graph is of the probabilities of using a certain model and 

probabilities do not exceed one, the x and y maxima are both one.  As a result, the line 1x y+ =  

between the points (1,0) and (0,1) is the uppermost boundary of the plot.  A class model state 

with a large eigenvalue (a dominant model used) will be close to that line.  Whereas, a class with 

a small eigenvalue (no dominant model used) will be close to the origin. 

 The graph is also divided into four regions.  They are:  Consistent Model 1 (bounded by 

the vertical axis and the lines 3y x= , 0.4x y+ =  and 1x y+ = ), Consistent Model 2 (bounded by 

the horizontal axis and the lines 
1

3
y x= , 0.4x y+ =  and 1x y+ = ), Mixed Model (bounded by 

the lines 3y x= , 
1

3
y x= , 1x y+ =  and 0.4x y+ = ), and Small Eigenvalue (bounded by the 

horizontal and vertical axis but below the line 0.4x y+ = .)  When the point representing the 
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class model state is located in the Consistent Model 1 (or Consistent Model 2) region, it means 

that the students in the class have a similar and consistent model state and a high probability of 

applying Model 1 (or Model 2).  When the point is located in the Mixed Model region, it 

indicates that although students have a dominant model, they are inconsistent in applying the 

models to solve problems.  If the point is above the line y x= , then the students apply model 1 

more frequently and if it is below the line y x= , the students tend toward model 2.  Finally, if the 

point is located in the Small Eigenvalue region, it indicates that there is no dominant model and 

students are inconsistent in the application of the models.  This can be considered the pre-naïve 

state of model use. 

 The class model state is plotted on the graph; it is Point B on Figure 1, above.  The point 

represents the probability that a student in the class will use the corresponding models when 

answering questions on a specific topic.  The vertical component (y-coordinate) of the point is 

2
1 1P vµ µλ=  and the horizontal component (x-coordinate) is 2

2 2P vµ µλ= .  The coordinates of B are 

2 1( , )P P  or ( 2
2vµ µλ , 2

1vµ µλ ).  These coordinates for all topics can be found in Appendix C, Table 

23. 

  �ewton’s Third Law of Motion data are used to further explain the model plots.  Figure 

3, below, is a model plot of the pre- and post-test class model density matrices for overall 

(algebra-based and calculus-based data combined) student performance.  Figures 4 and 5 are the 

model plots for �ewton’s Third Law separated by course, algebra-based (AB) or calculus based 

(CB).  In all plots “1” is the pre-test point, “2” is the post-test point, and the arrow indicates the 

magnitude and direction of the change in student model use.  A discussion of what the plots 

indicate follows the graphs. 
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Figure 3 – �ewton’s Third Law of Motion Overall Student Performance Model Plot 

 

Figure 4 – �ewton’s Third Law of Motion CB Student Performance Model Plot 

 



  79

 

Figure 5 – �ewton’s Third Law of Motion AB Student Performance Model Plot 

 In all three cases above (CB, AB, and AB/CB combined) there is little or no changes in 

the models students use to solve Newton’s Third Law problems.  In all three cases, the students 

are predominantly using the expert model both before and after instruction.  

Data for CSEM Topics 

The data for the topics chosen to investigate Research Hypothesis five, students will show 

growth in their use and application of the expert model as opposed to the naïve model on E&M 

topics after instruction, are included in Tables 20 and 21.  They are listed overall and separated 

by course.  The data are plotted in the next section. 
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Table 20 – Overall CSEM Results 

 Density 

Matrix 

Eigen 

value 

Eigen vector 

v1          v2          v3 

Topic 2 

Pre 
0.38  0.18  0.26 
0.18  0.22  0.12 
0.26  0.12  0.39 

0.73 
0.09 
0.17 

-0.67 
-0.38 
-0.64 

-0.70 
0.63 
0.35 

-0.27 
-0.68 
0.69 

Post 
0.44  0.14  0.26 
0.14  0.18  0.10 
0.26  0.10  0.38 

0.73 
0.12 
0.16 

0.72 
0.30 
0.63 

-0.52 
0.84 
0.19 

0.47 
0.46 
-0.75 

Topic 3 

Pre 
0.36  0.09  0.20 
0.09  0.21  0.15 
 0.20  0.15  0.42 

0.66 
0.20 
0.13 

-0.59 
-0.36 
-0.72 

0.80 
-0.40 
-0.45 

0.13 
0.84 
-0.52 

Post 
0.53  0.11  0.16 
0.11  0.16  0.09 
0.16  0.09  0.31 

0.65 
0.23 
0.11 

0.84 
0.27 
0.46 

-0.52 
0.22 
0.82 

-0.12 
0.94 
-0.33 

Topic 4 

Pre 
0.26  0.22  0.25 
0.22  0.31  0.31 
0.25  0.31  0.42 

0.86 
0.08 
0.05 

0.48 
0.57 
0.67 

-0.85 
0.12 
0.52 

-0.22 
0.82 
-0.54 

Post 
0.31  0.21  0.27 
0.21  0.26  0.25 
0.27  0.25  0.41 

0.82 
0.09 
0.07 

0.55 
0.50 
0.66 

-0.74 
-0.08 
0.67 

-0.39 
0.86 
-0.32 

Topic 5 

Pre 
0.27  0.24  0.25 
0.24  0.34  0.30 
0.25  0.30  0.37 

0.86 
0.07 
0.05 

0.51 
0.59 
0.63 

-0.86 
0.26 
0.45 

-0.10 
0.76 
-0.64 

Post 
0.32  0.26  0.25 
0.26  0.31  0.27 
0.25  0.27  0.35 

0.85 
0.08 
0.05 

0.56 
0.57 
0.59 

-0.69 
-0.07 
0.72 

0.46 
-0.82 
0.35 

Topic 8 

Pre 
0.12  0.12  0.06 
0.12  0.65  0.23 
0.06  0.23  0.23 

0.09 
0.78 
0.13 

-0.97 
0.11 
0.23 

-0.20 
-0.90 
-0.40 

0.17 
-0.43 
0.89 

Post 
0.34  0.25  0.13 
0.25  0.45  0.20 
0.13  0.20  0.21 

0.75 
0.15 
0.10 

0.56 
0.72 
0.40 

-0.81 
0.41 
0.41 

0.13 
-0.56 
0.82 

Topic 9 

Pre 
0.15  0.07  0.03 
0.07  0.62  0.13 
0.03  0.13  0.22 

0.14 
0.67 
0.18 

-0.97 
0.08 
0.23 

-0.14 
-0.95 
-0.28 

0.19 
-0.31 
0.93 

Post 
0.42  0.15  0.07 
0.15  0.38  0.09 
0.07  0.09  0.20 

0.58 
0.25 
0.16 

0.71 
0.65 
0.28 

-0.70 
0.68 
0.22 

-0.05 
-0.35 
0.93 
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Table 21 – CSEM Results by Topic and Course 

 
Algebra-Based Calculus-Based 

Density 

Matrix 

Eigen 

value 

Eigen vector 

v1        v2        v3 

Density 

Matrix 

Eigen 

value 

Eigen vector 

v1        v2         v3 

Topic 2 

Pre 
0.36  0.19  0.23 
0.19  0.27  0.09 
0.23  0.09  0.36 

0.69 
0.08 
0.22 

0.67 
0.44 
0.60 

-0.73 
0.53 
0.43 

0.13 
0.72 
-0.68 

0.40  0.17  0.29 
0.17  0.19  0.14 
0.29  0.14  0.41 

0.78 
0.09 
0.13 

0.67 
0.35 
0.66 

0.65 
-0.71 
-0.27 

-0.37 
-0.61 
0.70 

Post 
0.41  0.20  0.25 
0.20  0.25  0.13 
0.25  0.13  0.33 

0.74 
0.10 
0.16 

0.70 
0.44 
0.57 

-0.71 
0.53 
0.46 

0.10 
0.73 
-0.68 

0.46  0.09  0.26 
0.09  0.13  0.07 
0.26  0.07  0.41 

0.72 
0.17 
0.11 

0.73 
0.19 
0.66 

-0.65 
-0.12 
0.75 

-0.22 
0.97 
-0.03 

Topic 3 

Pre 
0.30  0.11  0.17 
0.11  0.27  0.21 
0.17  0.21  0.42 

0.68 
0.19 
0.12 

-0.47 
-0.50 
-072 

0.88 
-0.35 
-0.33 

0.09 
0.79 
-0.61 

0.41  0.07  0.22 
0.07  0.17  0.11 
0.22  0.11  0.42 

0.67 
0.20 
0.13 

0.67 
0.25 
0.70 

-0.74 
0.34 
0.58 

0.10 
0.91 
-0.41 

Post 
0.43  0.12  0.15 
0.12  0.22  0.12 
0.15  0.12  0.35 

0.62 
0.24 
0.14 

0.72 
0.39 
0.58 

-0.68 
0.19 
0.71 

-0.17 
0.90 
-0.40 

0.60  0.11  0.17 
0.11  0.12  0.07 
0.17  0.07  0.27 

0.70 
0.20 
0.09 

0.90 
0.22 
0.39 

-0.43 
0.18 
0.89 

-0.12 
0.96 
-0.25 

Topic 4 

Pre 
0.25  0.21  0.25 
0.21  0.34  0.30 
0.25  0.30  0.41 

0.85 
0.08 
0.07 

0.48 
0.58 
0.66 

0.63 
-0.75 
0.20 

-0.61 
-0.32 
0.72 

0.27  0.22  0.24 
0.22  0.30  0.31 
0.24  0.31  0.42 

0.86 
0.09 
0.04 

0.49 
0.56 
0.67 

-0.84 
0.08 
0.54 

-0.25 
0.82 
0.51 

Post 
0.28  0.22  0.30 
0.22  0.28  0.28 
0.30  0.28  0.44 

0.88 
0.05 
0.07 

0.53 
0.51 
0.68 

0.83 
-0.14 
-0.54 

0.18 
-0.85 
-050 

0.33  0.21  0.25 
0.21  0.25  0.23 
0.25  0.23  0.40 

0.80 
0.11 
0.07 

0.57 
0.50 
0.65 

-0.69 
-0.13 
0.71 

-0.44 
0.86 
-0.27 

Topic 5 

Pre 
0.25  0.23  0.22 
0.23  0.36  0.32 
0.22  0.32  0.37 

0.85 
0.08 
0.04 

0.47 
0.62 
0.63 

-0.86 
0.17 
0.47 

0.19 
-0.76 
0.62 

0.28  0.25  0.27 
0.25  0.32  0.29 
0.27  0.29  0.38 

0.87 
0.05 
0.06 

0.53 
0.57 
0.63 

0.78 
-0.62 
-0.09 

-0.34 
-0.54 
0.77 

Post 
0.28  0.26  0.27 
0.26  0.31  0.31 
0.27  0.31  0.38 

0.89 
0.06 
0.03 

0.53 
0.57 
0.63 

-0.75 
-0.04 
-0.66 

-0.40 
0.82 
-0.41 

0.34  0.26  0.24 
0.26  0.30  0.24 
0.24  0.24  0.32 

0.81 
0.09 
0.06 

0.60 
0.57 
0.57 

0.61 
0.13 
-0.78 

-0.51 
0.81 
-0.28 

Topic 8 

Pre 
0.09  0.11  0.06 
0.11  0.68  0.25 
0.06  0.25  0.24 

0.07 
0.81 
0.13 

-0.97 
0.09 
0.21 

-0.17 
-0.90 
-0.41 

0.15 
-0.43 
 0.89 

0.15  0.13  0.06 
0.13  0.63  0.21 
0.06  0.21  0.22 

0.75 
0.11 
0.13 

0.23 
0.90 
0.38 

-0.94 
0.10 
0.33 

0.26 
-0.43 
0.86 

Post 
0.27  0.23  0.12 
0.23  0.51  0.22 
0.12  0.22  0.22 

0.76 
0.13 
0.10 

0.46 
0.78 
0.42 

-0.88 
0.37 
0.30 

0.08 
-0.51 
0.86 

0.38  0.26  0.14 
0.26  0.41  0.18 
0.14  0.18  0.20 

0.75 
0.14 
0.10 

0.62 
0.68 
0.38 

-0.77 
0.47 
0.42 

0.11 
-0.56 
0.82 

Topic 9 

Pre 
0.08  0.05  0.03 
0.05  0.67  0.15 
0.03  0.15  0.25 

0.07 
0.72 
0.20 

0.99 
-0.05 
-0.12 

0.09 
0.95 
0.31 

0.10 
-0.31 
0.94 

0.20  0.09  0.03 
0.09  0.59  0.12 
0.03  0.12  0.20 

0.64 
0.18 
0.16 

0.21 
0.94 
0.27 

-0.94 
0.27 
-0.21 

-0.27 
-0.21 
0.94 

Post 
0.36  0.17  0.08 
0.17  0.42  0.07 
0.08  0.07  0.22 

0.59 
0.22 
0.18 

0.63 
0.73 
0.27 

-0.62 
0.68 
-0.40 

-0.48 
0.08 
0.88 

0.45  0.13  0.06 
0.13  0.35  0.11 
0.06  0.11  0.19 

0.59 
0.30 
0.10 

-0.72 
-0.63 
-0.28 

0.69 
-0.66 
-0.29 

0.11 
-0.65 
0.76 

 

Model Plots of CSEM Data 

The fifth research hypothesis was that students would show a growth in their use and 

application of the expert model as opposed to the naïve model on E&M topics after instruction.  

Model Plots are used to address this research hypothesis.  Again, the results of this study are 

mixed.  The model plot is designed to show the class’s primary model state.  When the pre- and 

post-test are plotted on the same graph, changes (or lack of changes) in the class’s model state 

are evident.  As seen above, on the whole the classes are using the expert model when solving 

�ewton’s Third Law of Motion problems (Topic 11).   
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Topic 2 (Coulomb’s Law) 

The model plots for Topic 2 (Coulomb’s Law) show little or no change in student model 

use after instruction.  Figure 6 is the plot for overall student performance.  The plots for the 

calculus-based and algebra-based courses are very similar and can be found in Appendix C, 

Figures 13 and 14.  The plot shows that students remain in the naïve region but border the mixed 

and low eigenvalue region.  This means that there is no dominant model used by the majority of 

the class to solve Coulomb’s Law problems.   

1.0

Probability of using Model 1

Probability of using Model 2

0.4

0.4

0

0.5

0.8

0.5 0.8

1
2

 

Figure 6 – Topic 2 (Coulomb’s Law) Overall Student Performance Model Plot 

Topic 3 (Electric Force and Field Superposition) 

The model plots for Topic 3 (Electric Force and Field Superposition) indicate that there 

is no dominant model used by the class prior to instruction, but after instruction students in both 

classes use the naïve model to solve electric force and field superposition problems.  Figure 7 is 

the model plot for overall student performance.  The plots for the calculus-based and algebra- 

based course are very similar and can be found in Appendix C, Figures 15 and 16. 
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Figure 7 – Topic 3 (Electric Force and Field Superposition) 
Overall Student Performance Model Plot 

 

Topic 4 (Force Caused by an Electric Field) & Topic 5 (Work, Electric Potential, Field 

& Force) 
 

The model plots for Topic 4 (Force Caused by an Electric Field) and Topic 5 (Work, 

Electric Potential, Field & Force) are very similar.  Both show that the class uses mixed models 

to solve problems from these categories both before and after instruction.   Figure 8 is the model 

plot for overall student performance for Topic 4 and Figure 9 is the model plot of overall student 

performance for Topic 5.  The plots for the calculus-based and algebra-based course for both 

topics are very similar and can be found in Appendix C, Figures 17 – 20. 
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Figure 8 – Topic 4 (Force Caused by an Electric Field) 
Overall Student Performance Model Plot 

 

Figure 9 – Topic 5 (Work, Electric Potential, Field & Force) 
Overall Student Performance Model Plot 

 

Topic 8 (Magnetic Field Caused by a Current) & Topic 9 (Magnetic Field Superposition) 
 
The model plots for Topic 8 (Magnetic Field Caused by a Current) and Topic 9 

(Magnetic Field Superposition) show more dramatic results.  Figure 10 is the model plot for 

overall student performance for Topic 8 and Figure 11 is the model plot of overall student 

performance for Topic 9.  A description follows the plots.  The plots for the calculus-based and 

algebra-based course for both topics are very similar and can be found in Appendix C, Figures 

21 – 24. 
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Figure 10 – Topic 8 (Magnetic Field Caused by a Current) 
Overall Student Performance Model Plot 

 

Figure 11 – Topic 9 (Magnetic Field Superposition) 
Overall Student Performance Model Plot 

 

In all six cases for topics 8 and 9, the students’ model usage moved from the naïve model 

region to the mixed model region.  In addition, the post-test data indicates that the students are in 

the upper region of the mixed model region, above the line y = x. This means that after 

instruction, students are beginning to abandon the naïve model and are beginning to apply the 

expert model to solve problems related to magnetic field caused by a current and magnetic field 

superposition.  Students are now mixing the expert and naïve model to solve the problems; 

whereas, before instruction, students were almost exclusively using the naïve model.   
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Research Question 3 

 Research Question 3 was answered by examining post-test results from both SUMS and 

CSEM.  One research hypothesis was examined.   

RESEARCH HYPOTHESIS 6 

The sixth research hypothesis was that there is a relationship between student 

understanding of models in science and conceptual understanding of E&M topics.  The eleven 

topics covered in the CSEM and the CSEM mean were correlated with the five themes surveyed 

in SUMS.  A significant relationship was determined at the α = 0.05 level.  The nine pairs 

identified in Table 22 (below) demonstrated a significant relationship.   

Models as Exact Replicas (ER) was significantly correlated with the most topics in 

CSEM.  The only other significant correlation was Models as Multiple Representations (MR) 

and CSEM Topic 6:  Induced Charge and Electric Field. 

TABLE 22 – Correlation of CSEM and SUMS 
 

SUMS ER 
(models as Exact Replicas) 

SUMS MR 
(models as Multiple 

Representations) 

CSEM mean 
r -0.372 

Sig (2-tailed) 0.000 
 

 
 
 

CSEM topic 2 
(Coulomb’s Force Law) 

r -0.245 
Sig (2-tailed) 0.011 

 

 

CSEM topic 3 
(Electric Force and Field 

Superposition) 

r -0.240 
Sig (2-tailed) 0.013 

 

 

CSEM topic 4 
(Force caused by an Electric 

Field) 

r -0.230 
Sig (2-tailed) 0.018 

 

 

CSEM topic 5 
(Work, Electric Potential, 

Field and Force) 

r -0.251 
Sig (2-tailed) 0.009 

 

 

CSEM topic 6 
(Induced Charge and Electric 

Field) 

r -0.238 
Sig (2-tailed) 0.014 

 

r 0.213 
Sig (2-tailed) 0.028 

 

CSEM topic 8 
(Magnetic Field Caused by a 
Current) 

r -0.221 
Sig (2-tailed) 0.023 

 

 

CSEM topic 9 
(Magnetic Field Superposition) 

r -0.230 
Sig (2-tailed) 0.018 

 

 
 
 

 

 The implications of all of these results are discussed in the next chapter, Chapter 5.
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CHAPTER 5 – DISCUSSIO� A�D CO�CLUSIO�S 

Introduction 

 The purpose of this study is to examine changes in student knowledge about models in 

science, and changes in their conceptual understanding of electricity and magnetism (E&M).  

This chapter discusses the results of the examination of three research questions.  It also includes 

a discussion of the results with regard to instruction, as well as questions for further study. 

Summary of the Study 

 The results of this study indicate that without instruction about models in science, 

students do not show significant improvement in their understanding of scientific models. This 

occurs even after studying E&M, which requires the extensive use of models.  The results also 

show that student conceptual understanding of E&M topics does significantly improve after a 

course in E&M, and after such a course, students show increased sophistication in how they 

solve some E&M conceptual questions.  Finally, the results indicate that there is a relationship 

between student conceptual understanding on selected E&M topics and student understanding of 

models in science. 

 The results are discussed in detail in the next sections. 

Research Question 1 

Research Question 1, how does traditional physics instruction in E&M alter students’ 

views of models in science, was answered by the examination of two research hypotheses.  The 

data were obtained using the Likert-scale survey instrument, Student Understanding of Models in 

Science (SUMS).   
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RESEARCH HYPOTHESIS 1 

The first research hypothesis was that student understanding of models in science would 

not increase after a traditionally taught physics course covering E&M topics.  It was supported 

by this research with one exception.  Overall, student understanding of models in science did not 

significantly change.  This was expected because previous research shows that if there is no 

instruction in the nature of science, student understanding of the nature of science does not 

improve (Fishwild, 2005).  Previous research did not specifically address student understanding 

of models in science.  Therefore, this study offers more specificity by providing evidence that 

traditional instruction does not impact student views of models in science. 

However, when the five themes (Models as Multiple Representations, Models as Exact 

Replicas, Models as Explanatory Tools, The Use of Scientific Models, and The Changing �ature 

of Models) are considered individually, students showed a statistically significant increase (α = 

0.05) in understanding in one theme:  the Use of Scientific Models (USM).  No previous study 

identified this growth in student understanding.  A probable explanation is that E&M is a very 

abstract part of physics.  Arons (1997), points out that physicists construct abstract models that 

rationalize the observed effects of “non-contact interactions that involve energy transfers through 

acceleration of objects, through deflections against opposing forces, or through thermal effects.”  

He goes on to say that conceptual understanding is even further beyond reach because the 

understanding of concepts such as potential difference, electric current, Lorentz force, field 

strength, and more is built on top of the abstract models.  Teachers refer to, and use these models 

extensively to help students grasp the abstract concepts and gain some understanding of E&M 

topics. 
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RESEARCH HYPOTHESIS 2 

The second research hypothesis was that calculus-based students would show a greater 

understanding of models in science.  The data did not support this hypothesis with one exception.  

The one theme where calculus-based student understanding was significantly higher than 

algebra-based students was for the Models as Multiple Representations (MR) theme.  The 

difference was statistically significant at the α = 0.05 level.  This indicates that, in general, 

calculus-based student views of models in science are not any more advanced than those in the 

algebra-based course.   

The fact that the calculus-based students did not show a more sophisticated understanding 

of models in science than the algebra-based students in all themes is surprising in that the 

calculus-based students are in the calculus-based course because they are majoring in science or 

engineering fields while the algebra-based students are not.  However, a detailed examination of 

the SUMS MR questions provides an explanation as to why the calculus-based students 

outperformed the algebra-based students in the MR theme.  Science majors (in this case the 

calculus-based students) historically have stronger mathematical skills and higher science 

achievement on science conceptual assessments (Ding, Chabay, Sherwood, & Beichner, 2006; 

Halloun & Hestenes, 1985; Hestenes & Wells, 1992; Hestenes, Wells, & Swackhamer, 1992; 

Laws, 1991; Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001) and three of the MR 

questions lean toward an understanding of mathematical models.  Since the calculus-based 

students have higher mathematical skills, it is not surprising that they demonstrate more 

sophisticated thinking about mathematical models.  For example, question three states “models 

can show the relationship of ideas clearly.”  Simple equations show relationships clearly and 

those with better mathematical skills are more likely to see these relationships in the formulas.  



  90

As noted previously, no previous studies documented the correlation or lack of correlation 

between student conceptual understanding of physics concepts and their understanding of 

models.  This relationship is explored in Research Question Three, (what is the relationship 

between students’ understanding of models in science and their conceptual understanding of 

E&M) later in this chapter. 

Research Question 2 

 Research Question 2, to what extent does traditional physics instruction in E&M alter 

students’ conceptual understanding of E&M topics, was answered by the examination of three 

research hypotheses.  The data were obtained from the Conceptual Survey of Electricity and 

Magnetism (CSEM), a multiple choice assessment.  

RESEARCH HYPOTHESIS 3 

The third research hypothesis was that student conceptual understanding of E&M topics 

would improve after a traditionally taught course covering E&M topics.  While this seems 

obvious for overall test performance, there remained some doubt about how students would 

perform on individual concept groups or topics.  The data confirmed that as expected, students’ 

overall scores were significantly improved at the α = 0.05 level from the pre-test to the post-test.  

In addition, they showed statistically significant gains on most of the individual topics examined.  

Those topics are: 

• Charge Distribution on Conductors/Insulators (Topic 1) 

• Coulomb’s Force Law (Topic 2) 

• Electric Force and Field Superposition (Topic 3) 

• Work, Electric Potential, Field & Force (Topic 5) 

• Magnetic Field Caused by a Current (Topic 8) 
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• Magnetic Field Superposition (Topic 9) 

• Newton’s Third Law (Topic 11) 

However, their scores did not significantly improve on four of the eleven topics.  Those topics 

are: 

• Force Caused by an Electric Field (Topic 4) 

• Induced Charge & Electric Field (Topic 6) 

• Magnetic Force (Topic 7) 

• Faraday’s Law (Topic 10) 

The research on student learning of these topics is thin.  Much of the research refers to the 

basic topics and how students learn those topics.  For example, Topics 2, 3, 5 and 11 are related 

to concepts students either learn in first physics course that covers Newtonian concepts or have 

everyday experiences with.  Specifically, they require knowledge of force, work, and simple 

vector operations. Topic 1 is concerned with the definitions and simple questions concerning 

conductors and insulators.  Finally, students have some prior experience with magnetic fields 

from elementary and middle school science.  Misconceptions and details about these topics are 

addressed in Chapter Two of this dissertation.   

What is not addressed in the research is how students apply and combine these ideas to solve 

more complex problems.  The four topics where students did not show significant improvement 

are the most abstract topics.  They require a much deeper understanding of the models and how 

to mentally manipulate them (Seab, 2009).  For example, Topic 3 (Electric Force and Field 

Superposition) covers two charges and their interaction, while Topic 4 (Force Caused by an 

Electric Field) requires an understanding of electric force, field and vector operations.  Student 

difficulties with vector operations were noted in Chapter 2.  In Topic 4, there is only one charge 
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and the elusive “field” is causing the force, a much more abstract situation.  Topic 3 is more 

concrete; there are two charges acting on each other.  The issue is further complicated by the 

misconception that objects at a distance cannot exert a force on each other.  Here, another 

“object” does not exist; the “entity” exerting the force is the field.   

This study indicated that Faraday’s Law (Topic 10) is another concept where students did 

not show significant improvement after a course in E&M.  In this case, there is some research 

that might explain this finding.  Allain (2001), documented that students show a poor 

understanding of the concept of rate of change with regards to electric potential.  In addition, it is 

well documented that, in general, students struggle with the concept of rate of change and in 

particular, those concepts that require an understanding of and application of the mathematical 

concept of rate of change (Meredith, 2008; Thompson, 1994; Yerushalmy, 1997). To answer 

Faraday’s Law questions correctly, students must understand the rate of change of magnetic flux 

because the induced electric field depends on the change of the magnetic flux. 

Again, research on why student failed to show improvement on Topic 6 (Induced Charge 

and Electric Field) is limited.  One possible explanation is that unlike early physics textbooks, 

modern textbooks (and thus physics instructors) pay minimum attention to the topic of induced 

charge (Seab, 2009). 

Finally, Topic 7 (Magnetic Force) also presented a problem for students even after 

instruction.  This study documented that students demonstrated no significant improvement in 

understanding the topic.  The possible reasons for this are a bit harder to pin down given the data 

from this study.  More research is needed to determine why students showed significant 

improvement in their understanding of Topics 3, 8 and 9 (Electric Force and Field 

Superposition, Magnetic Field Caused by a Current, and Magnetic Field Superposition) and not 
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Topic 7 (Magnetic Force).  One possible reason is that students still possess lingering confusion 

between electric and magnetic properties or retain persistent misconceptions of force from their 

Newtonian course.  Another possible explanation is related to mathematics and vector 

operations.  Students struggle with the right hand rule and cross products.  In fact, algebra-based 

students do not usually encounter this in their mathematics courses prior to taking physics (Seab, 

2009). 

RESEARCH HYPOTHESIS 4 

 The fourth research hypothesis was that after traditional instruction, calculus-based 

students would out-perform algebra-based students on the CSEM.  Here again, the results are 

mixed.  The data indicate that as expected, the calculus-based students did score significantly 

better than the algebra-based students on the CSEM.  However, when the individual concept 

groups are examined separately, the calculus-based students only significantly (α = 0.05) level 

outperformed the algebra-based students on two topics.  The topics are: 

• Electric Force and Field Superposition (Topic 3) 

• Magnetic Field Caused by a Current (Topic 8)  

In general, this study confirms the previous research that indicates calculus-based students 

significantly outperform algebra-based students on tests of conceptual development on various 

physics topics (Force Concept Inventory, Mechanics Baseline Test, Brief Electricity & 

Magnetism Assessment, CSEM).  However, it is interesting that when each topic is examined 

separately, calculus-based students only show significant gains over the algebra-based students 

in two topics listed above.  The CSEM questions covering the topics were conceptual and did not 

require the use of mathematics so mathematical skill appears not to be the underlying reason.  

One potential area of exploration is the correlation between each of these topics and the SUMS 
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theme, Models as Exact Replicas (ER).    The correlation of CSEM topics and SUMS themes is 

addressed in Research Question 3. 

RESEARCH HYPOTHESIS 5 

 The fifth research hypothesis was that students show a growth in their use and 

application of the expert model as opposed to the naïve model on E&M topics.  This study 

documented that with regard to some CSEM topics, students did show an increase in 

sophistication of their model use.  Each topic will be addressed below.   

Topic 2 (Coulomb’s Law) 

The model plots for Topic 2 indicate that prior to instruction the students as a whole do 

not use a dominant model to solve Coulomb’s Law problems.  They seem to be in the pre-naïve 

state when it comes to model use. Bao and Redish (2004) define the pre-naïve state as having no 

model or conception of the concept.  This is to be expected since students receive little or no 

instruction in Coulomb’s Law prior to the E&M course.  However, after instruction, there is little 

or no change in student model use.  The very slight change in model use is toward the naïve 

model but both the pre- and post-test model points are clustered together near the intersection of 

the low eigenvalue, naïve, and mixed region.  When viewed in conjunction with the paired 

samples t-test results, a contradiction is evident.  Although the students showed significant 

improvement (at the α = 0.05 level) on Coulomb’s Law questions from the pre-test to the post-

test, they did not show growth in their conceptual understanding of the topic.  In other words, 

they can solve the problems more effectively, but do not demonstrate growth toward using or 

attaining the expert model. 
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Topic 3 (Electric Force and Field Superposition) 

The model plots for Topic 3 indicate that prior to instruction the students as a whole do 

not use a dominant model to solve problems covering electric force and field superposition.  

Again, this is to be expected since students receive little or no instruction in electric force and 

field superposition prior to the E&M course.  In this case, the post-test results show a more 

pronounced movement from the pre-naïve state toward the class’s use of the naïve model than 

Coulomb’s Law problems.  Again, students showed significant improvement in problem-solving 

ability (at the α = 0.05 level) from the pre- to the post-test but did not demonstrate movement 

toward the acquisition of the expert model. 

Topic 4 (Force Caused by an Electric Field) 

 The model plots for Topic 4 show that both the pre- and post-test class model states are 

clustered close together near the middle of the mixed model region.  This means that the 

dominant model-state for the class is the mixed model-state.   After instruction, students showed 

virtually no change in the use of the expert model.  They continued to use mixed models to solve 

force caused by an electric field problems.  Interestingly, the pre- and post-test correlation was 

not significant at the α = 0.05 level which indicates that students did not show significant 

improvement in correct answers to Topic 4 questions either.  One possible explanation is that 

students enter the course with some knowledge of force, hence the mixed model use.  However, 

the concept of electric fields, which is new, is difficult for students.  Little or no change in model 

use seems to indicate that they failed to incorporate the new knowledge adequately.  

Topic 5 (Work, Electric Potential, Field & Force) 

The model plots for Topic 5 show that the subjects are employing mixed models to solve 

work, electric potential, field and force problems both before and after instruction.  Little or no 
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growth in model use occurred after instruction.  Since both work and force are topics the students 

have experience with from a previous course, it is not unexpected that they would demonstrate 

some expert reasoning when solving those problems.  However, more research is necessary to 

determine if this is the case.  As noted in Chapter 2, electric potential is a difficult topic 

conceptually for students and this model plot indicates that students do not show growth in the 

use of the expert model after instruction even though they show a significant increase (at the α = 

0.05 level) in correct answers to Topic 5 questions. 

Topic 8 (Magnetic Field Caused by a Current) & Topic 9 (Magnetic Field Superposition) 
 
 The model plots for Topic 8 and Topic 9 show the most growth in student conceptual 

development from pre-test to post-test.  It should be noted that the improvement from pre- to 

post-test was also found to be significant at the α = 0.05 level.  For both topics, the class model 

state was in the naïve region prior to instruction and after instruction, the student model state 

improved through the mixed region.  This is an obvious growth in sophistication of student 

model use.  In Chapter 2, the misconceptions students possess about magnetism were noted.  

Misconceptions include confusing magnetic properties with electrical properties and difficulty 

understanding field lines.  With these topics, traditional instruction was very effective in 

developing student conceptual understanding.  It is obvious that students entered the course with 

robust misconceptions, and left the course with a better understanding of the topic.  Although 

they are not using the expert model exclusively, and are still using mixed models to solve 

problems, they do show that they know the expert model and apply it often.  The challenge for 

instructors is to determine the contexts which trigger the use of the expert and naïve models and 

help students apply the expert model in all circumstances. 
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Topic 11 (�ewton’s Third Law of Motion) 

 The final topic examined using Model Analysis was Topic 11.  The model plots for Topic 

11 indicate that the classes’ dominate model used for solving �ewton’s Third Law problems was 

the expert model.  This is contrary to what Bao (1999) found when he used model analysis on 

traditional instruction covering Newtonian physics.  Bao and Redish (2004) noted that in 

traditionally taught courses, student model use moved from the naïve region to the mixed model 

region.  They did not find that the students ended the course with an expert view of Newton’s 

Third Law as this study would suggest.  A possible reason for the discrepancy is that the 

�ewton’s Third Law problems as they apply to E&M were more straightforward applications of 

the Law when compared to the questions on the Force Concept Inventory (Hestenes, Wells, & 

Swackhamer, 1992) which was used in Bao’s study.  It is important to note that even though the 

class model state showed little change and was in the expert region both before and after 

instruction, there was a significant improvement (at the α = 0.05 level) in student scores on Topic 

11 questions from the pre-test to the post-test.  This indicates that students were using the expert 

model both before and after instruction and showed better scores on the assessment items (solved 

physics problems better) after instruction. 

Research Question 3 

 Research Question 3, what is the relationship between students’ understanding of models 

in science and their conceptual understanding of E&M, was answered by the examination of one 

research hypothesis.  The data were obtained from both the Conceptual Survey of Electricity and 

Magnetism (CSEM), a multiple choice assessment and the Student Understanding of Models in 

Science, a Likert-scale assessment. 
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RESEARCH HYPOTHESIS 6 

The final research hypothesis was that there is a relationship between student 

understanding of models in science, and student conceptual understanding of E&M topics.   This 

study pointed out numerous correlations that were significant at the α = 0.05 level.  Although 

correlation does not establish causal connection, future exploration of these relationships may be 

a valuable tool in improving both conceptual understanding in physics and student views of 

models in science.  This study showed a significant relationship between one SUMS theme 

(Models as Exact Replicas), and seven CSEM topics (Coulomb’s Force Law, Electric Force and 

Field Superposition, Force caused by an Electric Field, Work, Electric Potential, Field and 

Force, Induced Charge and Electric Field, Magnetic Field caused by a Current, and Magnetic 

Field Superposition) The same SUMS theme, Models as Exact Replicas, is also correlated with 

the overall student performance on the CSEM (CSEM mean score).  This indicates that the 

extent to which students view models as exact replicas of reality is important and is related to 

their conceptual understanding of E&M topics.   In other words, the less students view models as 

exact replicas of reality, the better perform on the conceptual assessment of E&M topics.  This is 

consistent with the scientists’ view of models as dynamic constructs that are not necessarily 

exact or complete but contain the characteristics necessary to examine a particular condition. 

One other relationship was uncovered by this study.  Induced Charge and Electric Field 

(CSEM Topic 6) and Models as Multiple Representations (SUMS MR Theme) were significantly 

correlated at the α = 0.05 level.  This means that whether students view models as a way to show 

different perspectives is related to their conceptual understanding of induced charge and electric 

field.  The difficulties students seem to have with CSEM Topic 6 are related to their poor 

understanding of conductors, in particular, the shielding effect of conductors (Maloney, 1985; 
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Maloney, O'Kuma, Hieggelke, & VanHeuvelen, 2001).  As a result, several SUMS MR theme 

questions seem related.  In particular, the questions of greatest interest are those that examine if a 

model can show a relationship clearly and if it has what is needed to explain a scientific 

phenomenon.  Students who perform poorly on these questions most likely do not have adequate 

models to address the scientific phenomenon.  The models most commonly seen in textbooks 

and thus, student models, are of spheres with small pluses and minuses on the surface.  

Depending on the situation, the charges are shown on one side or spread over the sphere.  The 

confusion comes in when the charges “move” from one location to another.   For example, when 

students see a neutral conductor whose electrons are repelled by a charged rod, they visualize “a 

wave” of electrons moving throughout the conductor.  Their model does not account for the fact 

that the attraction of charged bodies can be caused by mobile negative charge, mobile positive 

charge, or the mobility of both simultaneously (Arons, 1997).  

One of the goals of this study is to determine if relationships such as the ones listed above 

(CSEM Topic 6 and the SUMS MR theme etc.) exist.  Further research should examine the exact 

nature of, and the causal connections of, these relationships.  One way to examine the nature of 

the relationship is to further probe student knowledge of conductors with a larger number of 

questions whose distractors are carefully selected to match the common misconceptions. 

Implications for Instruction 

These results have implications for instruction.  According to researchers, students 

generally move through several stages of conceptual development as they learn and use models 

(Bao, Hogg, & Zollman, 2002; Bao & Redish, 2001, 2004).  Figure 11 below illustrates the basic 

stages. 
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Figure 12 – Stages of Conceptual Development 

(Bao & Redish, 2004) 
 

 Researchers (Clement, Brown, & Zeitsman, 1989) point out that students learn best when 

instructors provide opportunities and experiences needed to build upon students’ existing mental 

schema.  MA gives instructors valuable knowledge about where the students are in their 

reasoning.  Students do not learn content and instructors do not learn how to help students learn 

content from listening to a recitation of correct answers memorized explanations.  Students learn 

best when they are led to confront their misconceptions and contradictory ideas (Arons, 1997).  

In a large university physics course, instructors are often not able to question students 

individually to determine what inconsistencies in their reasoning are present; therefore, another 

method must be used.  MA allows instructors to gain an accurate picture of the class model state, 

and tailor instruction to meet the needs of the students.  Valuable class time can be spent 

providing opportunities for students to move through the stages of conceptual development 

shown above.  For example, if students are using the naïve model, instructors can help students 

understand the expert model and provide opportunities for students to see the conflicts in the 

naïve model.  For students in the mixed model-state, instructors must realize that student model 

use is context dependent (Bao & Redish, 2004).  Therefore, instruction should focus on 
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providing examples that conflict with student models and help them compare their reasoning 

when faced with different situations. 

 In summary, even though traditional instruction has been shown to be inadequate in 

reaching many of the goals of educators related to improving student conceptual understanding 

and student understanding of models in science, this study proved that in many situations, it can 

be effective in improving student learning.  This study indicates that in order to improve the 

impact of traditional instruction, instructors must ask questions specifically designed to examine 

student conceptual understanding and then, pay careful attention to the wrong answers given by 

students to these questions.  Additionally, in order to provide students with an authentic 

education or in other words, an authentic view of science, instructors must spend time teaching 

students about the nature of science and specifically about models in science.   

Additional Implications 

This is the first study where MA is used to examine changes in student model use for 

E&M topics.  Researchers (Bao, 1999; Bao, Hogg, & Zollman, 2002; Bao & Redish, 2001) have 

established MA as a valuable data analysis tool to examine student learning of Newtonian 

concepts but the data analysis tool has not been widely applied to other topics.  In fact, only one 

other study has used MA to examine anything other than Newtonian physics topics.  That study 

successfully examined the proof schemes held by students (CadwalladerOlsker, 2009) .  

Consequently, this study further establishes MA as a valid and viable method of data analysis by 

demonstrating that MA yields information about how students use models to solve E&M 

problems.  It shows the changes in student model-states before and after instruction and relates 

those model-state changes to significant changes in performance on a test of E&M conceptual 

development.   



  102

It is also important to note that although a significant increase in CSEM scores did not 

always correspond to movement in model use (Topic 2 – Coulomb’s Law), the converse is true.  

In each case where students showed growth in the sophistication of their model use (Topics 8 

and 9 – Magnetic Field caused by a Current and Magnetic Field Superposition) there was a 

significant improvement in scores on the CSEM.  This is consistent with Elby’s (1999) finding 

that doing well in physics courses and trying to understand physics well are two different goals 

that require different methods of learning.  With a goal of improving student conceptual 

understanding, not just scores on a test, attention to the models students use is prudent.  Careful 

attention to the models students use along with targeted instruction to improve their model use is 

a way to overcome some of the inadequacies of traditional instruction noted in Chapter 1. 

Further Research Questions Raised by this Study 

This study was conducted at one university with a limited number of physics students.  

Therefore, care must be taken when generalizing to all physics students.  However, the students 

at this university are considered representative of the population of physics students enrolled in 

calculus-based and algebra-based physics courses at other universities because the pre-requisites 

to enroll in physics at this university were similar to the pre-requisites for university physics at 

institutions across the country.  Therefore, the findings of this study can be used to guide further 

research.  Several questions for further study are noted in the following paragraphs. 

The most important area of exploration raised by this study is the examination of the 

nature of the relationship between student views of models in science and their conceptual 

understanding of electricity and magnetism.  In particular, special attention should be paid to 

student views of models as exact replicas because this topic is related to numerous electricity and 
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magnetism topics.  In addition, the relationship between CSEM Topic 6 (Induced Charge and 

Electric Field) and the SUMS themes Models as Multiple Representations (MR).  

Although this study established a link between student understanding of models in 

science and their conceptual development of E&M topics, it has raised many more questions.  

One in particular, is related to the finding through Model Analysis that CSEM Topics 8 and 9 

(Magnetic Field caused by a Current and Magnetic Field Superposition) showed the greatest 

improvement in student model use, yet Topic 7 (Magnetic Force) showed no improvement in 

model use or correlation with any SUMS theme.  (Topic 9, Magnetic Field Superposition is 

correlated to SUMS theme, Use of Scientific Models or USM.) 

 Other questions raised by this study are as follows: 

• Why do students show a significant improvement in CESM Topics 3, 8 and 9 (Electric 

Force and Field Superposition, Magnetic Field caused by a Current, and Magnetic Field 

Superposition) but not Topic 7 (Magnetic Force)? 

• Does the relationship between the two CSEM topics above (Topics 3 and 8) and the 

SUMS ER Theme (Models as Exact Replicas) have any significance? Similarly, does the 

lack of the relationship between the SUMS ER Theme and the other CSEM topics have 

any significance? 

• Why do calculus-based students perform significantly better than algebra-based students 

in only two (Topic 3, Electric Force and Field Superposition and Topic 8, Magnetic 

Field Caused by a Current) of the eleven CSEM topics or alternately, is this an anomaly 

due to the size or composition of the sample population? 
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• What is the relationship between prior knowledge of work and force and expert model 

attainment on the electricity and magnetism topics of Work, Electric Potential, Field and 

Force?  

• What are the fundamental differences between student knowledge about CSEM Topics 8 

and 9 (Magnetic Field Caused by a Current and Magnetic Field Superposition) and the 

other CSEM topics that did not show such a profound change in model use?  In addition, 

what is it about traditional physics instruction on those topics that has such a profound 

affect on student model use? 

Conclusion 

 The results of this study suggest that without specific instruction on the use of models in 

science, overall understanding of how models are used in science does not improve after a 

traditional electricity and magnetism course.  Additionally, this study demonstrated that not only 

does student conceptual understanding of electricity and magnetism topics improve after a 

traditionally taught electricity and magnetism course, but also, students demonstrate more 

sophistication in their understanding of some electricity and magnetism topics.  In the latter case, 

students showed improvement in their application of the expert rather than the naïve or null 

model on select electricity and magnetism topics.  Finally, this study established a relationship 

between student conceptual understanding of electricity and magnetism topics and their 

understanding of models in science.  Further research is needed to determine the nature of the 

correlation.  However, now that this link has been established, future studies can be designed to 

examine the relationship in greater detail.  

 Traditional physics instruction continues to be the most prevalent form of physics 

instruction in today’s colleges and universities.  This study provides evidence to indicate that one 
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way to improve the experience and knowledge of college physics students is for instructors to be 

more effective in helping students develop an understanding of the nature of science, in 

particular their knowledge of models in science.  In addition, to improve conceptual 

understanding of physics topics, instructors must pay careful attention to the models used by 

students in order to provide examples that both challenge students’ naïve views and encourage 

the development of expert models.  
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SUMS   1 

STUDENTS’ UNDERSTANDING OF THE USE OF MODELS IN SCIENCE 

(SUMS) 

INSTRUCTIONS: Please rate how strongly you agree or disagree with each of the following 
statements by placing a check mark in the appropriate box. 

  1. Many models may be used to express features 

of a science phenomenon by showing different 

perspectives to view an object. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  2. Many models represent different versions of 

the phenomenon. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  3.  Models can show the relationship of ideas 

clearly. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  4.  Many models are used to show how it 

depends on individual’s different ideas on what 

things look like or how they work. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  5.  Many models may be used to show different 

sides or shapes of an object. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  6.  Many models show different parts of an 

object or show the objects differently. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  7.  Many models show how different information 

is used. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  8.  A model has what is needed to show or 

explain a scientific phenomenon. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

  9.  A model should be an exact replica. 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

10.  A model needs to be close to the real thing. 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

11.  A model needs to be close to the real thing by 

being very exact, so nobody can disprove it. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

12.  Everything about a model should be able to 

tell what it represents. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

13.  A model needs to be close to the real thing by 

being very exact in every way except for size. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

14.  A model needs to be close to the real thing by 

giving the correct information and showing what 

the object/thing looks like. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

15.  A model shows what the real thing does and 

what it looks like. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

16.  Models show a smaller scale size of 

something. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

17.  Models are used to physically or visually 

represent something. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

18.  Models help create a picture in your mind of 

the scientific happening. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 



SUMS   2 

19.  Models are used to explain scientific 

phenomena. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

20.  Models are used to show an idea. 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

21.  A model can be a diagram or a picture, a map, 

graph or a photo. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

22.  Models are used to help formulate ideas and 

theories about scientific events. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

23.  Models are used to show how they are used in 

scientific events. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

24.  Models are used to make and test predictions 

about a scientific event. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

25.  A model can change if new theories or 

evidence prove otherwise. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

26.  A model can change if there are new findings. 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

27.  A model can change if there are changes in 

data or belief. 

Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 
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Conceptual Survey in Electricity and Magnetism (CSEM)

In any question referring to current, conventional current will be used (where conventional current is the
flow of positive charges). In addition, all effects due to the earth’s magnetic field will be so small that they
will be ignored. Note that the term “particle” is meant to be an object without size or structure.

1. A hollow metal sphere is electrically neutral (no excess charge).  A small amount of negative
charge is suddenly placed at one point P on this metal sphere. If we check on this excess negative
charge a few seconds later we will find one of the following possibilities:
(a)  All of the excess charge remains right around P.
(b)  The excess charge has distributed itself evenly over the outside surface of the sphere.
(c)  The excess charge is evenly distributed over the inside and outside surface.
(d)  Most of the charge is still at point P, but some will have spread over the sphere.
(e)  There will be no excess charge left.

2. A hollow sphere made out of electrically insulating material is electrically neutral (no excess
charge). A small amount of negative charge is suddenly placed at one point P on the outside of this
sphere. If we check on this excess negative charge a few seconds later we will find one of the
following possibilities:
(a)   All of the excess charge remains right around P.
(b)  The excess charge has distributed itself evenly over the outside surface of the sphere.
(c)  The excess charge is evenly distributed over the inside and outside surface.
(d)  Most of the charge is still at point P, but some will have spread over the sphere.
(e)  There will be no excess charge left.

For questions 3 -5:
Two small objects each with a net charge of +Q exert a force of magnitude F on each other.

   F  F
 +Q  +Q

We replace one of the objects with another whose net charge is +4Q:

+Q +4Q

3. The original magnitude of the force on the +Q charge was F; what is the magnitude of the force on
the +Q now?

(a) 16F      (b) 4F      (c) F     (d) F/4 (e) other

4. What is the magnitude of the force on the +4Q charge?

(a) 16F      (b) 4F      (c) F     (d) F/4 (e) other

Next we move the +Q and +4Q charges to be 3 times as far apart as they were:

+Q +4Q

5. Now what is the magnitude of the force on the +4Q?

(a) F/9       (b) F/3      (c) 4F/9     (d) 4F/3 (e) other
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6. Which of the arrows is in the direction of the net force on charge B?

+1

+1
A B
-1

C

(a) (b) (c) (d)

        

(e) none of these

7. The picture below shows a particle (labeled B) which has a net electric charge of +1 unit. Several
centimeters to the left is another particle (labeled A) which has a net charge of -2 units. Choose the
pair of force vectors (the arrows) that correctly compare the electric force on A (caused by B) with
the electric force on B (caused by A).

                 -2 units

                 
         A

                +1 unit

           
         B

force on A force on B

(a)                            

(b)                   

(c)
                  

                     

(d)
                           

(e)

8. In the figure below, positive charges q2 and q3 exert on charge q1 a net electric force that points
along the +x axis. If a positive charge Q is added at (b,0), what now will happen to the force on
q1? (All charges are fixed at their locations.)

q1

+q
3

+q2

y

x

before

(b, 0)q1

+q
3

y

x
+Q

after

+q2

(a) No change in the size of the net force since Q is on the x-axis.
(b) The size of the net force will change but not the direction.

 (c) The net force will decrease and the direction may change because of the interaction between
Q and the positive charges q2 and q3.

(d) The net force will increase and the direction may change because of the interaction between 
Q and the positive charges q2 and q3.

(e) Cannot determine without knowing the magnitude of q1 and/or Q.
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9. In the figure below, the electric field at point P is directed upward along the y-axis. If a negative
charge -Q is added at a point on the positive y-axis, what happens to the field at P? (All of the
charges are fixed in position.)

y

x

P

-q      -q

before
y

x

P

-q      -q

after
-Q

(a) Nothing since -Q is on the y-axis.
(b) Strength will increase because -Q is negative.
(c) Strength will decrease and direction may change because of the interactions between -Q and

the two negative q's.
(d) Strength will increase and direction may change because of the interactions between -Q and 

the two negative q's.
(e) Cannot determine without knowing the forces -Q exerts on the two negative q's.

FOR QUESTIONS 10-11
A positive charge is placed at rest at the center of a region of space in which there is a uniform,
three-dimensional electric field. (A uniform field is one whose strength and direction are the same
at all points within the region.)

10. When the positive charge is released from rest in the uniform electric field, what will its subsequent
motion be?
(a) It will move at a constant speed.
(b) It will move at a constant velocity.
(c) It will move at a constant acceleration.
(d) It will move with a linearly changing acceleration.
(e) It will remain at rest in its initial position.

11. What happens to the electric potential energy of the positive charge, after the charge is released
from rest in the uniform electric field?
(a) It will remain constant because the electric field is uniform.
(b) It will remain constant because the charge remains at rest.
(c) It will increase because the charge will move in the direction of the electric field.
(d) It will decrease because the charge will move in the opposite direction of the electric field.
(e) It will decrease because the charge will move in the direction of the electric field.

12. A positive charge might be placed at one of two different locations in a region where there is a
uniform electric field, as shown below.

1 2

How do the electric forces on the charge at positions 1 and 2 compare?
(a) Force on the charge is greater at 1.
(b) Force on the charge is greater at 2.
(c) Force at both positions is zero.
(d) Force at both positions is the same but not zero.
(e) Force at both positions has the same magnitude but is in opposite directions.
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13. The figure below shows a hollow conducting metal sphere which was given initially an evenly
distributed positive (+) charge on its surface.  Then a positive charge +Q was brought up near the
sphere as shown.  What is the direction of the electric field at the center of the sphere after the
positive charge +Q is brought up near the sphere?

(a) Left
(b)  Right
(c)  Up
(d) Down
(e) Zero field

14. The figure below shows an electric charge q located at the center of a hollow uncharged conducting
metal sphere. Outside the sphere is a second charge Q. Both charges are positive. Choose the
description below that describes the net electrical forces on each charge in this situation.

(a) Both charges experience the same net force directed away 
from each other.

(b)  No net force is experienced by either charge.
(c)  There is no force on Q but a net force on q.
(d) There is no force on q but a net force on Q.
(e) Both charges experience a net force but they are different 

from each other.

USE THE FOLLOWING ELECTRIC FIELD DIAGRAM FOR QUESTION 15.

P

15. What is the direction of the electric force on a negative charge at point P in the diagram above?

(a)    (b) (c)   (d)   (e)   the force is zero

+Q

+q +Q
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16. An electron is placed at a position on the x-axis where the electric potential is + 10 V. Which idea
below best describes the future motion of the electron?
(a)  The electron will move left (-x) since it is negatively charged.
(b)  The electron will move right (+x) since it is negatively charged.
(c)  The electron will move left (-x) since the potential is positive.
(d)  The electron will move right (+x) since the potential is positive.
(e)  The motion cannot be predicted with the information given.

FOR QUESTIONS 17-19
In the figures below, the dotted lines show the equipotential lines of electric fields. (A charge
moving along a line of equal potential would have a constant electric potential energy.)  A charged
object is moved directly from point A to point B. The charge on the object is +1 µC.

10V 10V 10V
20V 20V

20V30V 30V 30V
40V 40V

40V50V 50V 50V

A B A B A B

I
I I I I I

17. How does the amount of work needed to move this charge compare for these three cases?
(a) Most work required in I.
(b) Most work required in II.
(c) Most work required in III.
(d) I and II require the same amount of work but less than III.
(e) All three would require the same amount of work.

18. How does the magnitude of the electric field at B compare for these three cases?
(a) I > III > II
(b) I > II > III
(c) III > I > II
(d) II > I > III
(e) I = II = III

19. For case III what is the direction of the electric force exerted by the field on the + 1 µC charged
object when at A and when at B?
(a) left at A and left at B
(b) right at A and right at B
(c) left at A and right at B
(d) right at A and left at B
(e) no electric force at either.
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20. A positively-charged proton is first placed at rest at position I and then later at position II in a
region whose electric potential (voltage) is described by the equipotential lines. Which set of
arrows on the left below best describes the relative magnitudes and directions of the electric force
exerted on the proton when at position I or II?

  Force
   at I

(a)

(b)

(c)

(d)

(e) 0             0

  Force
   at II

Potential          0 1V 2V       3V             4V                      5V     

I                         II

Equipotential lines

21. What happens to a positive charge that is placed at rest in a uniform magnetic field?  (A uniform field is
one whose strength and direction are the same at all points.)

(a) It moves with a constant velocity since the force has a constant magnitude.
(b) It moves with a constant acceleration since the force has a constant magnitude.
(c) It moves in a circle at a constant speed since the force is always perpendicular to the velocity.
(d) It accelerates in a circle since the force is always perpendicular to the velocity.
(e) It remains at rest since the force and the initial velocity are zero.

22. An electron moves horizontally toward a screen.  The electron moves along the path that is shown
because of a magnetic force caused by a magnetic field.  In what direction does that magnetic field
point?

(a) Toward the top of the page
(b) Toward the bottom of the page
(c) Into the page
(d) Out of the page
(e) The magnetic field is in the direction

of the curved path.

  

-q

Screen

B?

v



12/21/99 CSEM Form H - 7 - ©TYC Physics Workshop Project
C. Hieggelke, D. Maloney, T. O'Kuma, A. Van Heuvelen

23. Wire 1 has a large current i flowing out of the page (  ), as shown in the diagram. Wire 2 has a
large current i flowing into the page ( X  ). In what direction does the magnetic field point at position
P?

X
i out i in

P

        (a)   (b)   (c)   (d)

(e) none of the
      above.

24. Two parallel wires I and II that
are near each other carry
currents i and 3i both in the
same direction.  Compare the
forces that the two wires exert
on each other.

      
I II

i

3i

(a) Wire I exerts a stronger force on wire II than II exerts on I.
(b) Wire II exerts a stronger force on wire I than I exerts on II.
(c) The wires exert equal magnitude attractive forces on each other.
(d) The wires exert equal magnitude repulsive forces on each other.
(e) The wires exert no forces on each other.

25. The figures below represent positively charged particles moving in the same uniform magnetic field.
The field is directed from left to right.  All of the particles have the same charge and the same speed v.
Rank these situations according to the magnitudes of the force exerted by the field on the moving
charge, from greatest to least.

       (a)   I = II = III

       (b)   III > I > II

       (c)   II > I > III

       (d)   I > II > III

       (e)   III > II > I

+

vI

Magnetic
Field

+

v
II

Magnetic
Field +

v

III

Magnetic
Field
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26. The diagram shows a wire with a large
electric current i (  ) coming out of the
paper. In what direction would the
magnetic field be at positions A and B?

A

B

i out

                             A                      B    

      (a)                              

     (b)                        

     (c)                              

     (d)                         

     (e)              None of these

27. A positively-charged particle (+q) is at rest in the plane between two fixed bar magnets, as shown.
The magnet on the left is three times as strong as the magnet on the right. Which choice below best
represents the resultant MAGNETIC force exerted by the magnets on the charge?

NS

+q

NS

 (a)               (b)               (c)               (d)               (e)  Zero

28. Two identical loops of wire carry identical currents i. The loops are located as shown in the diagram.
Which arrow best represents the direction of the magnetic field at the point P midway between the
loops?

       (a)                    

       (b)                  

       (c)                     

       (d)                  

       (e)                   Zero
                     

i

i

P
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The five separate figures below involve a cylindrical magnet and a tiny light bulb connected to the ends of
a loop of copper wire. These figures are to be used in the following question. The plane of the wire loop is
perpendicular to the reference axis. The states of motion of the magnet and of the loop of wire are indicated
in the diagram. Speed will be represented by v and CCW represents counter clockwise.

S N axis

S N axis

S N axis

S N axis

moving left

stationary

stationary

stationary

I

II

III

IV

stationary

collapsing loop

loop rotating
CCW about axis

moving left

bulb

bulb

bulb

bulb

v

v
29. In which of the above figures will the light bulb be glowing?

(a) I, III, IV (b) I, IV (c) I, II, IV (d) IV (e) None of these

30. A very long straight wire carries a large steady current i. Rectangular metal loops, in the same plane as
the wire, move with velocity v  in the directions shown. Which loop will have an induced current?

i

v

I
i

v

II

                    

i

v

III
     (a)  only I and II

     (b)  only I and III

     (c)  only II and III

     (d)  all of the above.

       (e)  none of the above.
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31.A neutral metal bar is moving at constant velocity v to the right through a region where there is a uniform
magnetic field pointing out of the page. The magnetic field is produced by some large coils which are not
shown on the diagram.

 

    v

B out of page

Which one of the following diagrams best describes the charge distribution on the surface of the metal bar?

                              +    +          -     -
                                     +     +     -        -

                                   +           -          -              +
                                        +     +     -        -
                                   +           -          -              +

                                   +           -          -              +

                                   +           -          -              +

                                   +           -          -              +
                                          -      -    +        +
                                   +           -          -              +
                                          -      -    +        +
                                 -     -              +    +

      (a) (b)       (c)        (d) (e)
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32.A variable power supply is connected to a coil and an ammeter, and the time dependence of the ammeter
reading is shown.  A nearby coil is connected to a voltmeter.

Ammeter     Power        Voltmeter
reading     supply

Ammeter

          time

Which of the following graphs correctly shows the time dependence of the voltmeter reading?

Voltmeter Voltmeter
reading reading

(a) (b)

       time time

Voltmeter Voltmeter
reading reading

time
(c) (d)

time

Voltmeter
reading

(e)

time
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APPE�DIX C 

 
 
 

Model Plots
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Model Plots 

 

 
Table 23 – Model Points 

 Overall Calculus-Based (CB) Algebra-Based (AB) 
Pre Post Pre Post Pre Post 

Topic  2 (0.33, 0.11) (0.38, 0.07) (0.36, 0.10) (0.38, 0.03) (0.31, 0.13) (0.36, 0.14) 
Topic  3 (0.23, 0.09) (0.46, 0.05) (0.30, 0.04) (0.57, 0.03) (0.15, 0.17) (0.32, 0.09) 
Topic  4 (0.20, 0.28) (0.25, 0.21) (0.20, 0.27) (0.26, 0.20) (0.20, 0.29) (0.25, 0.23) 
Topic  5 (0.22, 0.30) (0.27, 0.28) (0.24, 0.28) (0.29, 0.26) (0.19, 0.33) (0.25, 0.29) 
Topic  8 (0.03, 0.63) (0.24, 0.39) (0.04, 0.61) (0.29, 0.35) (0.02, 0.66) (0.16, 0.46) 
Topic  9 (0.01, 0.60) (0.29, 0.25) (0.03, 0.57) (0.31, 0.23) (0.01, 0.65) (0.23, 0.31) 
Topic 11 (0.09, 0.48) (0.07, 0.46) (0.09, 0.48) (0.06, 0.43) (0.09, 0.48) (0.09, 0.50) 

 

 

 

Figures 13 and 14 – Topic 2 (Coulomb’s Law)  
Student Performance in CB and AB Course Model Plot 

                   
Figure 13 – CB Course         Figure 14 – AB Course 
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Figures 15 and 16 – Topic 3 (Electric Force and Field Superposition)  

Student Performance in CB and AB Course Model Plot 

                
Figure 15 – CB Course         Figure 16 – AB Course 
 

 
 
 
 
 

Figures 17 and 18 – Topic 4 (Force Caused by an Electric Field) 
Student Performance in CB and AB Course Model Plot 

1.0

Probability of using Model 1

Probability of using Model 2

0.40

0.5

0.5 0.8

1

2

                  
Figure 17 – CB Course        Figure 18 – AB Course 
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Figures 19 and 20 – Topic 5 (Work, Electric Potential, Field & Force) 
Student Performance in CB and AB Course Model Plot 

                       
Figure 19 – CB Course         Figure 20 – AB Course 

 
 
 
 
 
 

Figures 21 and 22 – Topic 8 (Magnetic Field Caused by a Current) 
Student Performance in CB and AB Course Model Plot 

               
  Figure 21 – CB Course        Figure 22 – AB Course 
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Figures 23 and 24 – Topic 9 (Magnetic Field Superposition) 
Student Performance in CB and AB Course Model Plot 

                   
Figure 23 – CB Course    Figure 24 – AB Course 
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