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Abstract

This dissertation considers fault detection for large-scale practical systems with many nearly

identical units operating in a shared environment.

A special class of hybrid system model is introduced to describe such multi-unit systems,

and a general approach for estimation and change detection is proposed. A novel fault de-

tection algorithm is developed based on estimating a common Gaussian-mixture distribution

for unit parameters whereby observations are mapped into a common parameter-space and

clusters are then identified corresponding to different modes of operation via the Expectation-

Maximization algorithm. The estimated common distribution incorporates and generalizes

information from all units and is utilized for fault detection in each individual unit.

The proposed algorithm takes into account unit mode switching, parameter drift, and

can handle sudden, incipient, and preexisting faults. It can be applied to fault detection

in various industrial, chemical, or manufacturing processes, sensor networks, and others.

Several illustrative examples are presented, and a discussion on the pros and cons of the

proposed methodology is provided.

The proposed algorithm is applied specifically to fault detection in Heating Ventilation

and Air Conditioning (HVAC) systems. Reliable and timely fault detection is a significant

(and still open) practical problem in the HVAC industry – commercial buildings waste an es-

timated 15% to 30% ($20.8B - $41.61B annually) of their energy due to degraded, improperly

controlled, or poorly maintained equipment.

Results are presented from an extensive performance study based on both Monte Carlo

xi



simulations as well as real data collected from three operational large HVAC systems. The

results demonstrate the capabilities of the new methodology in a more realistic setting and

provide insights that can facilitate the design and implementation of practical fault detection

for systems of similar type in other industrial applications.

Keywords: Fault detection (FD), heating ventilation and air-conditioning (HVAC),

hybrid system, multiple model, estimation, expectation-maximization (EM).
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Introduction

Nomenclature

k Sample, 1 . . . L.

m System mode, 1 . . .M .

s Unit, 1 . . . S.

X
(m,s)
k|n X at time k for mode m in unit s, given data up to time n.

|X| Denotes the determinant of X for a matrix, or the cardinality of X for a set.

[x, y, z]k x, y, z at time k.

{x} The set of all x.

x̂ Estimate of x.

x̄ Mean of x.

x̃ Error of x.

x̊ Global x.

x̌ Local x.

X ,S Calligraphic font denotes a set.

FNC Typewriter font denotes a function.

p (x) The probability distribution function for x.

P {x} The probability of x occurring.

L{x} The likelihood of x.
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1.1 How to Read This Dissertation

An executive summary of sorts is given in Chapter 10 (Conclusion). However for those

wishing to get a general overview of the developments documented in this dissertation, we

suggest starting with Chapters 2 (Overview) and 6 (Algorithms), glancing at the figures in

Chapters 8 (Experiments) and 9 (Performance), and then reading Chapter 10 (Conclusion).

Two conference papers [5, 6] and a journal article [4] have been authored on the work

contained in this dissertation.
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Overview

The Heating, Ventilation, and Air-Conditioning (HVAC) industry focuses on control and

monitoring of equipment in a facility to ensure acceptable occupancy conditions. This in-

cludes temperature, pressure, and air-quality regulation of the hundred or thousands of

individual units at a facility. There is sometimes an overlap between HVAC and regulatory

oversight (such as minimal fresh-air requirements per tenant or square foot), or life-safety

systems (maintaining a negative pressure in a tuberculosis ward, or controlling temperature

in a surgery room). A large site can collect and process several 100 million data samples

per day; however most of this information is not retained due to storage or bandwidth

considerations.

This project focuses on fault detection for systems with many model-correlated units,

and uses the HVAC industry as a detailed example. Currently, the industry does not utilize

complex mathematical models or inference aside from those required for controlling analog

systems. Often, the most mathematically complex components of an HVAC system are the

PID (proportional-integral-derivative) controllers.

One of the reasons for this is the level of expertise and customization required in setting

up complex solutions for control, optimization, or fault detection. Even if a technology

promises better performance in some way than existing solutions, it is unlikely to become

widespread unless it is “plug-and-play” since the current logic- and schedule-based techniques
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are generally considered sufficient.

Currently, almost all automatic fault detection is of the model-free, non-parametric form,

such as alarming on out-of-range sensors. Model-based fault detection is very hard to make

generally applicable since detailed equipment models tend to be manufacturer and model

dependent.

While there have been many approaches suggested for fault detection in HVAC, many

start with a very detailed model of the equipment in question, or spend considerable time

generating such a model. Even those which do not use a transfer-function-based model

(for example, using a neural network, or probability distribution) require significant training

before-hand and may only be applicable to the specific piece of equipment they were trained

on. Other, rule-based solutions (fuzzy-logic, expert system, or Bayesian reasoning) must

be keyed to a specific equipment type and may require more detailed information than is

financially practical.

2.1 Complications

One of the main problems with these methods is that parameters for simple models often

drift, and sometimes quite dramatically, given different externalities. While detailed mod-

els can account for this, expecting a building engineer to develop a non-linear model for a

variable-air-volume box, for example, which properly accounts for disturbances due to inci-

dent sunlight, outside air enthalpy effect on cold-deck reset temperature, leakage of cold or

hot air from adjacent spaces, etc., is unrealistic. Also, such a model would require data that

is almost surely not readily available to “key” the model to a particular unit (window size,

current occupancy of space, configuration and thermal conductivity of bounding walls, etc.)

Another issue is that units are often in different modes, where they operate based on

models which are different from each other. A very basic example of different modes is

cooling mode as opposed to heating mode; however, as discussed later, modes can be, and
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often are, more subtle than this. We can consider each mode to be representative of a

different model for operation. Units may change modes either suddenly or gradually.

Finally, sudden failures are often the simplest form to diagnose in HVAC since they

usually have a dramatic impact on performance which can be detected at a number of

downstream sensors. However, incipient or gradual failures are difficult to detect since they

usually present as a slow degradation in performance which can only be seen over the course

of a number of months. Techniques based on identifying a model and using performance or

error metrics to detect failure will find it very difficult to identify a failure which occurs at

a rate slower (often, much slower) than the model drifts under normal conditions.

Also, we address another class of failure which has largely been overlooked in fault de-

tection literature – pre-existing failure. This is because it is impossible to identify a model

of correct operation simply by looking at a unit after it has already failed.

2.2 Proposal

We propose a novel approach for fault detection in large HVAC systems. A typical “Class-A”

HVAC installation is composed of many identical pieces of equipment: for example, 8 cooling

towers, 6 chillers, 140 air-handling-units (AHU’s), 700 variable-air-volume boxes (VAV’s),

and 6000 assorted liquid and gas temperature, flow, and pressure sensors. At most sites, all

AHU’s are of the same model from the same manufacturer (or possibly from a very small

set of manufacturer-models), as are VAV’s, chillers, and cooling towers. This means that

gathering data from all identical units should provide more information as to whether any

particular unit has failed.

We propose a method where models are identified for identical units and, based on this, a

probability distribution for unit parameters (or models) is generated. Failed units are those

which do not seem to operate according to the identified distribution.

This is achieved by abstracting a model as a structure and set of parameters. Based
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on the data, units are mapped into parameter-space (or parameter-structure space in the

case that different modes are represented by different structures) by using linear (for linear

uniform-structure mode-models), non-linear (for non-linear uniform-structure mode-models),

or hybrid (for non-uniform-structure mode-models) parameter estimators.

We assume that the type of parameter distribution is known, and consider the multi-

variate Gaussian case in particular. This is in part due to simplicity, but some justification

may be found in the Central Limit Theorem.

Given this information, clusters are identified corresponding to the different modes. A

technique based on the expectation-maximization algorithm is used to cluster the data, while

taking into consideration parameter drift, unit-mode probabilities, and transition probabil-

ities. The algorithm is presented in an approximate form, since mode-transitions make

evaluation of the full hypothesis tree infeasible.

In addition to detection of conventional faults, our method should prove useful for de-

tection of incipient and pre-existing failures also. This is because information from other

units can be used to identify acceptable model boundaries at any point in time, without

restricting the estimation process to data collected from a single unit.
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3

Literature Survey

When accurate models of a single-mode system are available, fault detection is relatively

simple. Measurement residuals (i.e., the difference between the predicted and actual system

measurements) can be statistically tested for consistency.

However, when the system in question has more than one mode, i.e. is a multi-mode

or hybrid system [40], the situation becomes considerably more complicated since both the

discrete mode and the continuous state must be estimated. Despite this, several approaches

have been suggested to tackling the hybrid fault detection problem (Section 3.1).

The unit distribution is assumed to be a Gaussian mixture (Section 3.2). In order to

be able to look at the statistics of the Gaussian mixture without the contribution of failed

units, a Truncated Normal Distribution (Section 3.2.1) is used. This allows for detection

of small faults without degrading the estimate through measurements originating from the

faulty unit.

A concrete example of our generic fault detection approach is given by applying the

developed algorithm to large building heating, ventilation, and air-conditioning systems.

The field has a rich body of fault detection literature (Section 3.3) however none of the

approaches previously suggested are well suited to handle unknown hybrid systems.
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3.1 Multiple-Model Fault Detection

As previously mentioned, the parametric uncertainty aspect of this problem introduces signif-

icant complications since both the discrete mode and the continuous state must be estimated.

Despite this, several approaches have been suggested to tackling the hybrid system fault

detection problem [56], such as the multiple-model adaptive estimation algorithm (MMAE)

approach [45,47,49], and the interacting multiple-model fault detection (IMM-FDI) approach

[46, 53, 58, 68]. The difference between these two approaches is in the interaction between

filters. While the MMAE uses a bank of independent (“autonomous”) filters, the newer

IMM-FDI uses interacting filters, generally resulting in more accurate and faster detection.

Interacting multiple model (IMM) estimation has been shown to be a more cost-effective

hybrid estimation technique than autonomous multiple model estimation [40,52].

Unfortunately, these approaches require a model set [57], with detection probability di-

rectly dependent on how well the model set is designed. Specifically, the failure mode must

be represented within the designed model set. While it is possible to automatically design

models for failed sensors and actuators, it is impossible or unrealistit to provide complete

coverage of all possible failures. Systems often fail partially, resulting in degraded per-

formance, or may fail in a gradual fashion. Additionally, insufficient coverage of normal

operating conditions results in false detections when the mode changes to one which is not

well represented within the model set. Inversely, broadening coverage (for example, through

an increased process or measurement noise, or by adding models) to compensate for mod-

elling deficiencies may result in missed or delayed detection since the failure mode is more

likely to be similar to one of the models in the set.

Another approach is to “mix” models to generate a “best” candidate model. In [26]

and [25], the authors generate an estimator model through a convex mixing of candidate

models based on the relative model probabilities. A single filter is used to propagate the
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state estimate, so only a single state estimate exists. In contrast to the more “conventional”

multiple model fusion techniques, they show how the models can be mixed, rather than the

estimates. This approach is similar to that taken to generate the “expected mode” in the

expected mode augmentation algorithm [37, 41, 42]. Hypothesis testing can be performed

against the expected mode, which simplifies the problem by allowing fault detection to be

treated as a binary hypothesis test. Nevertheless, the expected mode is a convex mixture

and, as such, will suffer if the model set is designed poorly or has inadequate coverage.

Fault detection and target maneuver onset detection [55] have a lot in common. Maneuver

onset is often detected by observing a deviation in the model of the target from some nominal

“steady-state”. Similarly, faults can be considered a deviation from “normal-operation”. For

this reason, many of the methodology utilized in maneuver onset detection can be applied

to fault detection.

3.1.1 Change Detection

In general, given an appropriate test statistic, the Shiryaev Sequential Probability Ratio Test

(SSPRT), cumulative sum (CUSUM), or a similar test, can be used for change detection

[8, 54].

Wald’s Sequential Probability Ratio Test (SPRT) is optimal in the sense that it makes the

quickest possible decision for either H0 or H1 for specified false-alarm and missed-detection

thresholds. The Shiryaev SPRT uses the change in the probability density function to provide

the quickest detection of a change in a sequence of conditionally independent measurements

[44]. Since SSPRT is a Bayesian approach, it requires the a priori probabilities for both

hypotheses and transition probabilities to be defined.

First proposed by Page [50], the CUSUM algorithm is a sequential probability ratio

test which is restarted as long as the decision taken is H0. Page suggested (and it was

later proven [43, 59]) that zero is the optimal lower bound if the goal is to reject the null
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hypothesis.

CUSUM is optimal for simple hypotheses, where the distribution is completely known,

before and after the fault. Since this is not the case in most fault detection scenarios, a

composite hypothesis must be assumed, in which case likelihood marginalization may be

used as in [55].

Two different classes of statistical tests are commonly used for maneuver onset detection

algorithms (surveyed in [38]): Chi-squared significance tests such as Measurement Residual

(MR) and Input Estimation (IE), and Likelihood Ratio tests such as Generalized Likelihood

(GLR) and Marginalized Likelihood Ratio (MLR). Since many of the detection tests provide,

or can be modified to provide, a maneuver or failure onset time, smoothing may be performed

to improve the estimate. Given the hybrid nature of the problem, multiple-model smoothing

techniques must be used, as in [10,13,14,31].

3.2 Gaussian Mixtures

Finite mixture models (models expressed as convex combinations of other probability den-

sity functions) have been popularly used to model complex probability distributions. One

particularly important mixture model is the Gaussian mixture model (GMM), which uti-

lizes the easily represented and versatile Gaussian distribution. They are among the most

statistically mature methods for both density estimation and clustering, and have been the

subject of theoretical and experimental study for over a century [61].

A Gaussian mixture model can be used to represent any given probability density with an

arbitrary degree of accuracy if enough mixture components are used [60]. Many approaches

to estimation of mixture density are available [15, 62, 70]. Different approaches of using

Gaussian mixtures to identify failures are looked at in Appendix D, as well as methods of

calculating the distance between different mixtures.
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3.2.1 Truncated Normal Distribution

The calculation of parameters for a truncated normal distribution (TND) is a recurring

problem in real-world testing. A Gaussian distribution assumes limits of ±∞. In practice,

there are usually upper and lower limits imposed on an experiment, so that the actual

distribution being measured is a truncated normal distribution (for example, [20,28,29]).

A truncated distribution is used for the purpose of outlier rejection in Chapter 7. The

statistics for the original distribution are then inferred from the statistics of the truncated

distribution.

For univariate TND’s (i.e. distribution of 1-dimensional random variable), the relation-

ship between the mean and covariance of the truncated sample and the original (untruncated)

distribution is well known [20, 23], as are the statistics of bivariate [9, 18, 48], and trivari-

ate [63] distributions. However no closed-form solution has been presented for the general

multivariate case. In Chapter 7, numerical methods are used to generate a lookup-table for

truncated statistics.

3.3 HVAC Fault Detection

Fault detection research in the HVAC industry started in the late 1980’s and early 1990’s,

when the International Energy Agency (IEA) commissioned the Annex 25 research project

on real-time simulation of heating, ventilation, air conditioning, and refrigeration systems

for building optimization, fault detection, and diagnosis ( [19,30] contain almost 1000 pages

of resulting papers and research). A survey of earlier work is found in [22], while a survey

of recent approaches to FDD in HVAC appears in [33] and [34].

Numerous approaches have been suggested for fault detection in HVAC or industrial

processes. Currently, the most common type of fault detection in production use is of the

model-free, non-parametric form, such as issuing alarms on out-of-range sensors. Model-free
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approaches to fault detection and isolation can broadly be classified into: limit checking,

installation of special sensors, installation of multiple sensors, and frequency analysis of

plant measurements [22].

Model-based fault detection is rarer since it often requires detailed equipment models (as

in [11]), which tend to be manufacturer and model dependent; manufacturers do not generally

provide reference models. Model-based fault detection will often require significantly more

expertise by the installer, and a longer setup time.

An expert systems approach is taken to FDD in [24], where a prototype FDD system

was developed for use in compression refrigeration plants. The expert rules were designed

by combining results from a failure mode and effect analysis (FMEA) study with knowledge

obtained from interviews with system designers and service engineers. The expert rules ana-

lyzed deviations of some variables from their ideal estimated values (as given by a predefined

non-linear statistical model).

In [16], Dexter designs a fuzzy rule set based on expert knowledge or computer simulations

which can be said to represent normal operation and operation under different failure modes.

Another partial fuzzy model is trained using operating data collected from the actual plant

in question and compared to the reference models. Failures are identified by closeness of

match between the trained model and the reference models. A similar approach is taken

in [17], where a semi-qualitative model-based FDD methodology is used. Nonlinear reference

models of normal operation and several different faults are provided and compared to a model

generated on-line using a fuzzy identification scheme.

Separate black-box models were used for system and component failures in [51]. Autore-

gressive exogenous (ARX) and multi-layer back-propagation neural network models were

used. Failure was detected by comparing the actual system output with the output pre-

dicted by the models.

Generally speaking, model-based fault detection often starts with a detailed model of
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the equipment in question, or spends considerable time generating such a model. Even

those which do not use a transfer-function-based model (as in [51], where a neural network

is used) require significant training beforehand and may only be applicable to the piece of

equipment they were trained on. Other, rule-based, solutions (e.g., fuzzy-logic [16,24,65] or

semi-qualitative [17]) must be keyed to a specific equipment type and might require more

detailed information than is financially practical to collect in some situations.
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4

Problem Domain

This chapter introduces the problem domain that the fault detection algorithm (to be devel-

oped later) will be applied to. Heating, Ventilation, and Air-Conditioning (HVAC) system

architecture, unit modes, and fault categories are discussed in very brief detail.

The HVAC industry focuses on control and monitoring of equipment in a facility to en-

sure acceptable occupancy conditions. This includes temperature, pressure, and air-quality

regulation of the hundreds or thousands of individual units at a facility. There is sometimes

an overlap between HVAC and regulatory oversight (such as minimal fresh-air requirements

per tenant or square foot), or life-safety systems (maintaining a negative pressure in a tu-

berculosis ward, or controlling temperature in a surgery room). A large site can collect and

process several 100 million data samples per day however most of this information is not

retained due to storage or bandwidth considerations.

4.1 Economic Considerations

According to the Department of Energy1 about 53% of building energy end-use in America

is spent on HVAC and lighting for a total expenditure of $192.5B in 2006 dollars (Table 4.1).

The total energy usage when lighting is excluded is 35.3%, ($138.7B).

Some types of fault detection can make a big difference in the efficiency of a building.

1http://buildingsdatabook.eren.doe.gov
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Energy (Quad. BTU) Energy (%) Cost (2006-$) Cost (%)
Space Heating 7.66 19.8% $94.5B 22.8%
Lighting 6.86 17.7% $53.8B 13.0%
Space Cooling 4.91 12.7% $38.9B 9.4%
Ventilation 1.10 2.8% $5.3B 1.3%

Table 4.1: DOE Buildings Energy End-Use Expenditure and End-Use Splits

While abrupt faults are often safety issues, incipient faults are more of a maintenance or

efficiency concern [21]. This is because, at the early stages of failure, units with incipient

faults will still be able to maintain set-point targets however will have to work harder to

do so. According to [33], commercial buildings waste an estimated 15% to 30% ($20.8B

– $41.61B annually) of their energy due to poorly maintained, degraded, or improperly

controlled equipment.

Additionally, buildings which do not necessary have any incipient or abrupt faults, but

which have been optimized for HVAC can see performance improvements of 5% to 32%

($6.94B to $44.38B annually) in annual energy consumption for lighting and HVAC [1, 64].

Some of these suboptimal design decisions or miscalibration issues may be considered “pre-

existing” faults.

4.2 HVAC Architecture

An HVAC system is composed of many mechanical units that are nearly-identical. Each unit

may be in one of several modes, with the mode dynamics for similar units being very similar.

These dynamics drift slowly based on global system changes such as the slow change in the

chill-water temperature (from, for example, a chill-water reset energy-savings algorithm), or

static pressure in a duct (for example, gradual pressure increase when all space temperatures

being fed by the duct meet set-point).

Different classes of units exist in an HVAC system (for example, cooling towers, chillers,
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Figure 4.1: Chillers (top left) in the Central Plant (right) release heat from cooling towers
(bottom left), which feed cold water to the AHU’s.

air handling units, and variable or constant air-volume boxes); however, in this treatment,

fault detection will be applied to a single class at a time.

4.3 Modes

We describe a mode as being representative of a unique model for operation. Units with

dynamic modes may change modes either suddenly or gradually, while those with static

modes are mode-fixed and do not change modes during the time in consideration.

4.3.1 Dynamic Modes

As an example of a system with dynamic modes, we consider a chill-water system. Plant

chillers cool supply water to a temperature of 45oF to 55oF, based on outside air temperature.

The supply water feeds many (e.g. 20-200) air handling units (Figure 4.3), some of which
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Figure 4.2: Despite similar mechanical descriptions, AHU’s may come in a variety of config-
urations.

may have outside air “economizer-mode” enabled based on a combination of the outside-air

enthalpy and the load requirements for the floor that the unit feeds. The two modes in this

case are normal-cooling and economizer-mode.

Another example of dynamic modes can be found in combination cooling/heating valves.

Such valves could be represented with two (cooling and heating) or three (cooling, dead-zone,

and heating) modes.

4.3.2 Static Modes

Static modes represent operating dynamics that are different due to a permanent condition.

While we may allow static modes to change, we assume that the likelihood of this happening
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Figure 4.3: There are generally one or more Air Handling Units (pictured above) for each
floor in a tall building.

during data collection for a single run is vanishingly small.

An example of a static mode is a system where there are two different sized ducts or pipes

that feed a particular class of unit. If there are two different duct sizes used throughout the

installation, then units connected to each duct could be considered to be in different modes.

Also, units by different manufacturers often operate under different dynamics. So, for a

campus installation, some buildings may have air handling units designed by one manufac-

turer while others may have units designed by a different manufacturer (possibly because

they were constructed at a later date). The permanent difference in dynamics between units

could be represented by different modes of operation.
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Figure 4.4: More complex Air Handling Units may have additional features.

Note that units with different static modes may also have dynamic modes as in the case

of differently manufactured air handling units with economizer-mode outside air dampers.

4.3.3 Combination Modes

Sometimes, units will have a combination of static and dynamic modes. For example, a

system which has two types of variable air volume boxes (one with heating strips and the

other with heating coils). We might describe the modes as strip-heating, strip-cooling, coil-

heating, and coil-cooling.

4.4 Types of Failure

While it is impossible to enumerate all possible failures which could occur in an HVAC

system, we can broadly categorize them by expected effect and onset characteristics.

Note that some of the following failures exist in all HVAC equipment to a degree (for

19



Figure 4.5: HVAC systems extend throughout large buildings. Pictured above is a small
section of a floor plan.

example, sensor bias) however we consider them failures only if they are present to a greater

than normal degree (where “normal” is described by somewhat arbitrarily chosen likelihood

bounds).

4.4.1 Effect

Additive Measurement Failure Sensor bias normally presents as an additive error. The

specification sheets of sensors normally provide error limits, which generally present

as sensor bias, rather than zero-mean additive noise. Sensor bias is generally a much
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greater problem than additive noise since it cannot be integrated out of the measure-

ments.

Multiplicative Measurement Failure A dead or reduced-effect sensor can be modelled

as a multiplicative error.

Additive Process Failure Disturbances, leaks, or unknown/unmeasured inputs in the

system can be modelled as additive process failures.

Multiplicative Process Failure Deterioration of equipment, reduction of efficacy due to

calcification, coil freeze, pipe clogging, etc. They can be represented through a trans-

formation of the state transition function.

Structural Failure Failures which result in a change in performance, but cannot be clas-

sified as one of the above categories. Examples might include assigning an incorrect

feedback point for temperature control, measurements being “stuck” due to high net-

work traffic, or incorrect programming on a unit.

4.4.2 Onset

Similarly, the different types of failure we expect to encounter can be classified as follows:

Sudden Failure The unit fails in a way that is immediately noticeable. This is consid-

ered an easy fault to diagnose, but ultimately depends on the magnitude of failure.

Examples include:

• Sudden sensor failure.

• Rupture of an actuator diaphragm.

• The severing of sensor or actuator signal/power lines due to construction or human

error.
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• The failure or incorrect programming of a controller responsible for some of the

internal processes of the unit.

Incipient Failure The unit fails slowly such that the change of dynamics is not noticeable

over a short time-frame. A failure may be considered slow if the dynamics change due

to the fault occurring slower than the normal (acceptable) drift in system dynamics.

This is considered a difficult fault to diagnose. Examples include:

• Shortage of coolant in a heat-exchange system due to a slow leak.

• Development of hysteresis or stiction in valves.

• Difficulty for a fan to generate duct pressure due to a dirty filter.

Pre-existing Failure The unit does not operate similar to other units in its mode due to

a pre-existing and possibly permanent fault. This is generally considered a difficult

problem and is not usually considered by FDD techniques that rely on on-line param-

eter estimation or model fitting — since other FDD methodologies do not consider

unit-groups, there is no way to obtain a baseline. Examples include:

• A variable air-volume box that has to reheat the air while others on the floor are

cooling due to it being located too close to a fan or the incorrect use of reduction

sleeves.

• The mislabelling or misconnection of sensor outputs during installation, where a

sensor intended to be connected to one unit is in fact connected to a different

unit.

• A valve connected in reverse. The valve will still work, however the operating

characteristics will be sub-optimal, or the valve may fail to fully close when under

pressure.
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• Disconnected actuator pressure lines. It sometimes happens that a building tech-

nician will forget to reconnect a pressurized air tube or wire to an actuator after

working on it. This failure could, under the correct conditions, go unnoticed

for months. For example, if the valve defaults to open in a chronically under-

powered situation, i.e. where the valve needs to be open most of the time, it is

possible that there will be no deviation in performance until outside temperatures

change significantly. While this is not a permanent fault, it can be classified as a

pre-existing one if it occurred before data acquisition started.

4.5 Model Structure

This section discusses a number of different models which may be encountered in HVAC

systems. A survey of model-based fault detection is given in [22], in addition to the many

HVAC fault detection papers found in [30] and [19].

4.5.1 Model-free Fault Detection

The most common technique used to implement fault detection in HVAC Building Automa-

tion Systems (BAS) is the model-free approach, the most common being setting limits on

acceptable value ranges:

Limit checking Simple, hard-coded limits for sensors. For example, temperature sensor

limits, current limits.

Special Sensors Perform fault detection on behalf of system.

Redundancy For sensor failure only.

Expert Rules Domain-specific logical rules.
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4.5.2 Parametric Models versus Physical Models

While there are reference models available by different manufacturers and organizations

[3, 27, 35], most abstract away the complex internal behavior that may not be necessary

to represent the input-output dynamics of the unit. Observation of some states needed to

make the complex models useful may require sensors readings that are only available to

the manufacturer. Furthermore, each manufacturer might have a different model, and most

actual installations do not include the types of sensors that might be required to use complex

models.

Simpler models are usually represented as a transfer function of the form [36],

G (s) =
Ks

1 + Tcs
exp−TDs

where Ks is the system gain, Tc is the time constant, TD is the dead-time, and s is the

Laplace variable.

And despite the fact that most HVAC subsystems are most accurately modelled as non-

linear distributed-parameter systems, the most commonly used model is given by [12]:

G (s) =
Ks

(1 + T1s) (1 + T2s)
exp−TDs

These simpler models can be considered to be black-box models, since most of the more

complicated dynamics that result in the observed behavior have been abstracted out.
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4.5.3 Linear models

Auto-Regressive Moving Average with Exogenous Input (ARMAX) Model

Simple single-input, single-output linear transfer functions can be represented using an AR-

MAX model,

A =

[
a1 a2 . . .

]T
B =

[
b0 b1 . . .

]T
Zk =

[
zk−1 zk−2 . . .

]T
Uk =

[
uk uk−1 . . .

]T
zk = ATZk +BTUk + ek

where the lengths of A and B are not necessarily the same. Uk and Zk are input and

observation vectors and are sized accordingly, and ek is an Exogenous random input, which

we will assume without loss of generality to be zero-mean.
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Non-Linear Auto-Regressive Moving Average with Exogenous Input (NARMAX) Model

Some transfer functions that are non-linear only in the inputs and/or outputs can be repre-

sented using a NARMAX model:

A =

[
a1 a2 . . .

]T
B =

[
b0 b1 . . .

]T
Zk =

[
zk−1 zk−2 . . .

]T
Uk =

[
uk uk−1 . . .

]T
zk = ATfz (Zk) +BTfu (Uk) + ek

where the lengths of A and B are not necessarily the same. Uk and Zk are input and

observation vectors and are sized accordingly, and ek is an exogenous random input, which

we will assume without loss of generality to be zero-mean. fz(Zk) and fu(Uk) are non-linear

functions that return vector results.

A NARMAX model may be solved using the same techniques as for an ARMAX model,

since they are essentially the same after a transformation in the given data, Uk and Zk.

While a NARMAX model uses non-linear functions of the inputs and observations, the

parameters are multiplied by the transformed observations in a linear fashion. For this

reason, NARMAX models are included in the linear models sections since standard linear

techniques may be used to solve this class of model.

Exogenous Input

While both ARMAX and NARMAX have an exogenous random input whose covariance may

assist in detection, we will only refer to *ARMA (shorthand notation for both ARMA and
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NARMA) models below. This is because unknown inputs will be handled as process and

measurement noise. For the problem domain under consideration, measurement noise is an

easily obtained parameter, while process noise can plausibly be given or estimated.

ARMA State-space Representation

The parameter identification problem can be framed as a state-space formulation,

θ
(m,s)
k|k−1 = F

(m,s)
k−1 θ

(m,s)
k−1 +G

(m,s)
k−1 w

(m,s)
k−1

z
(m,s)
k = H

(s)
k θ

(m,s)
k|k−1 + v

(m,s)
k

where w
(m,s)
k−1 and v

(m,s)
k are the process and measurement noise with given distributions, θ(m,s)

is the parameter vector and H
(s)
k is a unit-specific input and observation vector:

w
(m,s)
k−1 ∼ N

(
w̄

(m,s)
k−1 , Q

(m,s)
k−1

)
v

(m,s)
k ∼ N

(
v̄

(m,s)
k , R

(m,s)
k

)
θ̂(m,s) ,

[
AT |BT

]T
H(s) ,

[
fz

(
Z

(s)
k

)
|fu
(
U

(s)
k

)]

4.5.4 Non-linear Models

In general, any non-linear model may be used since there are well-known and effective ways

to estimate the parameters (we will consider the Unscented Transform Filter in Section A.3).

If the model has internal, unmeasurable, states, then the parameter estimation algorithm

must take these into consideration by performing joint parameter-state estimation.
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5

General Formulation

Before the fault detection problem may be addressed, the problem must be formally stated.

This chapter attempts to produce a general formulation for the problem at hand, and pro-

vides concrete examples to illustrate possible choices of models, states, and parameters.

Finally, a general approach is proposed to solve the fault detection problem.

5.1 Problem Statement

We consider a class of large-scale dynamic systems incorporating (a large number of) sub-

systems that have similar (or possibly, identical) structure and operate in a coupled manner

as explained below.

Each subsystem, referred to as a unit, is described by the following model:

ξ
(s)
k+1 = f

(s)
k

(
ξ

(s)
k , θ

(s)
k , w

(s)
ξk

)
(5.1)

θ
(s)
k+1 = gk

(
θ

(s)
k ,m

(s)
k , w

(s)
θk

)
(5.2)

z
(s)
k = h

(s)
k

(
ξ

(s)
k , θ

(s)
k , v

(s)
k

)
(5.3)

where k = 0, 1, 2, . . . , L is the time index, s = 1, 2, . . . , S is the unit index, x
(s)
k =

[
ξ

(s)′
k , θ

(s)′
k

]′
is the base-state vector of unit s, w

(s)
ξk
∼ N

(
0, Q

(s)
ξk

)
, w

(s)
θk
∼ N (0, Qθk

) and v
(s)
k ∼

N
(

0, R
(s)
k

)
denote white and mutually independent Gaussian process and measurement
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noises, respectively, and f
(s)
k , gk, h

(s)
k are known state and measurement functions.

The mode of operation of unit s is modeled through a Markov chain
〈
m

(s)
k

〉
k=0,1,...

with

states m
(s)
k ∈M = {1, 2, . . . ,M} and initial and transition probabilities as given by

P
{
m

(s)
0 = i

}
= µ0 (5.4)

P
{
m

(s)
k+1 = j|m(s)

k = i
}

= πij (5.5)

for i, j = 1, . . . ,M .

The ultimate aim is to detect whether a fault has occurred in one or more of the units,

s = 1, 2, . . . , S, given observation data Zk = {z(s)
κ : s = 1, 2, . . . , S}kκ=0.

The special structure and features of the above multi-unit hybrid system model can be

exploited to achieve this fault detection goal. First, note that the state x
(s)
k =

[
ξ

(s)′
k , θ

(s)′
k

]′
of each unit is separated into two parts ξ

(s)
k and θ

(s)
k , the latter of which does not depend on

the former.

While the process ξ
(s)
k is determined through the unit-specific state transition model f

(s)
k

in (5.1), the process θ
(s)
k is determined through the state transition model gk which is common

for all units. Thus gk models the common part in the structures of all units, meaning that

for all units this part operates in the same manner. Furthermore, as seen from (5.4)–(5.5)

the Markov transition model for the modal state m
(s)
k , as well as the initial probabilities,

is common for all units, and the statistical properties and parameters of θ
(s)
0 and w

(s)
θk

are

also assumed to be the same for all units. Under these circumstances the processes θ
(s)
k ,

s = 1, 2, . . . , S, will have the same statistical properties.

5.1.1 Assumptions

We assume that the state and measurement functions
(
f

(s)
k , gk, h

(s)
k

)
are known, as is the

transition probability matrix
(
P
{
m

(s)
k+1 = j|m(s)

k = i
})

, while the mode (m), states
(
ξ

(s)
k
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and θ
(s)
k

)
, and initial mode probabilities

(
P
{
m

(s)
0 = i

})
are unknown.

We also place the restriction that no two modes may have f
(s)
k and h

(s)
k such that the

observable distribution is identical for the two different modes. This can be considered a

“mode observability” requirement.

Finally, we assume that if a fault occurs in a unit, s′, it will inevitably exhibit itself in

changed statistical properties of θ
(s′)
k as compared to the remaining processes, θ

(s)
k , s 6= s′.

5.2 Examples

A number of examples are given to illustrate possible choices of global parameters and

internal states. All examples assume:

wk, vk ∼ N
(
0, 12

)
A superscript of s denotes a value that is related to unit s ∈ {1, 2, . . . , S}, while a

superscript of m denotes a value that is related to mode m ∈ {1, 2, . . . ,M}, ∆T is the

sampling interval, Q and R are process and measurement noise covariance matrices, which

are selected appropriately.

5.2.1 Dynamic ARMA: Three-Way Valve

A set of simple 2nd-order auto regressive moving average (ARMA) models may be used to

describe the behavior of a three-way combination heating-cooling valve with a dead-band

(illustrated in Figure 5.1). We designate cooling mode as mode 1, dead-band as mode 2,

and heating mode as mode 3.

We define a, b to be the autoregressive and moving average parameters, respectively.

Valve position and temperature are given by s and t. q−ixk is the delay operator which
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Figure 5.1: A simple three-way ball valve to select cold or hot water.

returns xk−i. The output we are interested in is temperature z. We have:

x ,

[
a1 a2 b0 b1

]T
(5.6a)

Fk = I4,4, Hk =

[
q−1z q−2z q0s q−1s

]
k

(5.6b)

xk = Fkxk−1 +
√
Qwk (5.6c)

zk = Hkxk +
√
Rvk (5.6d)

The parameters and local states for modes 1 and 3 are given by

ξ
(m,s)
k , [empty] (5.7a)

θ
(m,s)
k ,

([
a1 a2 b0 b1

](m,s)

k

)T

(5.7b)

For mode 2 (dead-band), we fix the parameters as:

θ
(2,s)
k ,

[
1 0 0 0

]T
(5.8a)
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5.2.2 Dynamic NARMA – Supply Air Temperature

A 2nd-order NARMA model may be used to represent the relationship between valve position

and differential pressure to chill water supply temperature.

We can define a, b, c to be the autoregressive, valve position, and flow rate parame-

ters, respectively. Valve position and differential pressure measurements are given by s and

∆p. q−ixk is the delay operator which returns xk−i. The output we are interested in is

temperature, z. We have:

x ,

[
a1 a2 b0 b1 c0 c1

]T
Fk = I6,6, Hk =

[
q−1z q−2z q0s q−1s q0

√
∆p q−1

√
∆p

]
k

xk = Fkxk−1 +
√
Qwk

zk = Hkxk +
√
Rvk

Note that any number of inputs (we use 2-input here) and/or outputs can be stacked in

a similar fashion to create a MIMO-system while retaining the general ARMA structure.

The parameters and local states are given by,

ξ
(m,s)
k , [empty]

θ
(m,s)
k ,

([
a1 a2 b0 b1 c0 c1

](m,s)

k

)T

5.2.3 Static Nonlinear – Valve Stiction

Stiction is the resistance to the start of motion caused by static friction and is a common

problem in real-world valves. Excessive stiction can be considered a fault condition.

Given an applied force Fu, a static resistance force Fs, and the current velocity v, we can
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model the resulting velocity after stiction as:

vs (v,K, Fu, Fs) =

 0, v = 0 and |Fu| < Fs

v +KFu, otherwise

If we define our state, measurement, and input vectors as:

x ,



s

v

Fs

K


=



Valve position

Valve velocity

Static resistance

Action Gain


z ,

[
s

]
=

[
Valve position

]
u , [Fu] = [Applied force]

we can describe the system dynamics using the following equations:

xk =



s+ ∆Tv

vs (v,K, Fu, Fs)

Fs

K


k−1

+
√
Qwk

zk =

[
s

]
k

+
√
Rvk

Here, the global parameters are the static resistance and action gain, while the local
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states are valve position and velocity:

θ , [Fs, K] , ξ , [s, v]T

For this example, we assume an installation with 300 pneumatic valves of a particular size,

from 4 different manufacturers. In our example, the valves from the different manufacturers

have slightly different dynamic statistics, which we represent using 4 different static modes.

Note that HVAC installations generally do not provide actuator position feedback; how-

ever assuming a measurement of the position more succinctly illustrates fault detection

based on stiction. To realistically make use of stiction-based fault detection, further dy-

namics should be introduced to correlate the input position with the actual measurements

available (this is generally achieved via the measurement function).

5.2.4 Dynamic Nonlinear with Internal Parameters – VAV Box

Normally, a pressure sensor is used to measure air flow in the building automation industry.

The flow through a duct is given by [12]:

fa = AfCv

√
∆pv
gs

where fa is flow, A is the cross-sectional area of the duct, f is the flow characteristic of

the valve, Cv is the flow coefficient, ∆pv is the impact pressure on the sensor (or differential

pressure for the flow-cross class of pressure sensors), and gs is the specific gravity of the fluid.

Lumping the unknowns into Cv, we get a simple relationship for pressure-flow,

∆pv = Cvf
2
a = R2

f
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where we absorb
√
Cv into Rf , since we are not interested in the actual flow rate, but only

need a proportional flow rate.

If we define our state, measurement, and input vectors as:

x ,



Tr

Rf

V

D


=



Room (return-air) temperature

Duct air flow

Space volume

Disturbance


z ,

 Tr

∆pv

 =

 Room (return-air) temperature

Impact pressure


u , [Ts] = [Supply air temperature]

where we assume that duct air flow, space volume, and disturbance are all in scaled by

unknown constants, we can describe the system dynamics using the following equations:

xk =



Tr − ∆TRf (Tr−Ts)

V
+D

Rf

V

D


k−1

+
∆T

60



0.2 0 0 0

0 25 0 0

0 0 10 0

0 0 0 0.01


wk

zk =

 Tr

R2
f


k

+

 2 0

0 0.1

wk
The (square root of the) process noise covariance matrix is designed using typical values

of the amount of change in a minute. Note that, while volume does not change, opening a

door to an adjacent space does have the effect of changing the apparent volume. Also, the
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absolute value of volume is generally large compared to the other states, so a value of 10

does not constitute a large variance.

In this case, the global parameter would be the disturbance, D since, even though volume,

V , is technically a parameter, it is not shared among units and so will be treated as a state:

θ , [D] , ξ , [Tr, Ts, Rf , V ]T
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6

Algorithms

The expectation maximization (EM) algorithm for a static multi-unit system with no pa-

rameter drift is derived in Appendix B. For systems with parameter drift, it does not help

to batch-process the data since the optimal parameters at the end of the data are not the

same as those at the beginning.

One possible solution is to update the EM estimator sequentially, i.e. perform a single

iteration for the data at a single time, using the final condition of the last sequential iteration

to initialize the starting point of the current one.

As the equivalent of one batch iteration, this sequential form of EM can be performed

forwards or backwards (for invertible models) in time for all available time samples. The

sequential EM algorithm can then be iterated, alternating forwards and backwards, until it

converges.

For dynamic systems, we could make the assumption that no jumps occur during the

period in question however this could seriously impact performance and correctness. A

better mechanism, and one which we will make use of, is to explicitly account for jumps via

a transition probability matrix.
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6.1 System Model

The structure we will consider is a state-space system with additive Gaussian process and

measurement noise,

xk = fk−1 (xk−1, uk) + wk

zk = hk (xk, uk) + vk

where uk is the input,

xk ,
[
θTk |ψTk

]T
and θk, ψk are the unit- and mode-specific parameter vector and internal state respectively.

We denote an estimator suitable for this system with the following function:

[x̂k,Σk, Lk] = Filt (zk, uk;xk−1,Σk−1)

where x̂k is the estimate of [θk, ψk], Σk is a finite-state statistic describing the distribution of

x̂k such that (x̂k,Σk) is a sufficient statistic (for the Gaussian case, this would be covariance),

and the likelihood of the measurement, zk, is

Lk , L (zk|uk, xk−1,Σk−1)

As shorthand notation, we define:

x̌
(m,s)
k ,

[
ξ̌

(m,s)′
k , θ̌

(m,s)′
k

]′
= [local, local]

x̊
(m,s)
k ,

[
ξ̌

(m,s)′
k , θ̊

(m,s)′
k

]′
= [local, global]

x̌
(0,s)
k , active mode matched estimator for unit s
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6.2 Static Mode Systems

If we assume that the mode does not change during the estimation process, i.e., the mode

transition probability matrix Π = I, then only the current estimate is needed for estimating

the mixture distribution at the current time, and since the current estimate includes infor-

mation from all measurements up to that point in time, earlier estimates can be ignored.

This simply means that some initialization period is required before the parameter esti-

mates can be considered accurate. The estimation of the common distribution depends only

on information contained in {θ̂(s)
k }Ss=1 although the estimate of the common process contains

information which could improve local estimates.

Note that, since the mode does not jump, we only need to run one estimator for each

unit to obtain x̌
(s)
k , Σ̌

(s)
k , however to compute the likelihood that z

(s)
k came from mode m, we

will still need one filter per mode for each unit to generate the measurement residual used

in the likelihood calculation.

• Initialization: In the absence of any relevant data, random initial parameter and state

starting points and sufficiently diffuse covariances are chosen. Each unit is assumed to

be in a mode, sampled according to the initial probability masses, until later reassigned

by the mode change hypothesis test.

• Estimation: For each unit s = 1, . . . , S perform

– Mode Matched Estimation: For each mode m = 1, . . . ,M perform one-step fil-

ter update using the global (estimated mixture) parameters, and evaluate the

likelihood L
(m,s)
k

[
L

(m,s)
k , x̌

(m,s)
k , Σ̌

(m,s)
k

]
= Filt

[
z

(s)
k ; x̊

(m,s)
k−1 , Σ̊

(m,s)
k−1

]
(6.2)
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– Active Mode Matched Estimation: Perform one-step filter update of the active

mode estimator [
x̌

(0,s)
k , Σ̌

(0,s)
k

]
= Filt

[
z

(s)
k ; x̌

(0,s)
k−1 , Σ̌

(0,s)
k−1

]
(6.3)

• Active Mode Change Detection: For each unit s = 1, . . . , S perform a statistical

test using the model likelihoods {L(m,s)
k : m = 1, . . . ,M} to establish whether a mode

change has occurred

Detect
[
{L(m,s)

k : m = 1, . . . ,M}
]

(6.4)

Upon detection of an active mode change from m
(s)
κ to m∗κ that occurred at time κ ≤ k,

reinitialize: [
x̌

(0,s)
k , Σ̌

(0,s)
k

]
= Reinit

[
x̊(m,s∗)
κ , Σ̊(m,s∗)

κ ;κ, k
]

(6.5)

• Common Distribution Estimation: Compute the common Gaussian-mixture pa-

rameters µ̊
(m)
k , θ̊

(m)
k , Σ̊

(m)
k , m = 1, 2, . . .M via one iteration of the EM algorithm

µ̊
(m)
k =

1

S

∑S

s=1
µ

(m,s)
k (6.6)

θ̊
(m)
k =

∑S
s=1 µ

(m,s)
k θ̌

(0,s)
k∑S

s=1 µ
(m,s)
k

(6.7)

Σ̊
(m)
k =

∑S
s=1 µ

(m,s)
k

(
θ̌

(0,s)
k − θ̊(m)

k

)(
θ̌

(0,s)
k − θ̊(m)

k

)′
∑S

s=1 µ
(m,s)
k

(6.8)

where the mode probabilities are given by

µ
(m,s)
k =

µ
(m,s)
k−1 L

(m,s)
k∑M

m=1 µ
(m,s)
k−1 L

(m,s)
k

(6.9)

• Fault Detection: For each unit s = 1, . . . , S through the active mode estimator
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compute the likelihood

L
(s)
k = f

(
zsk

∣∣∣ {x̊(m,s)
k , Σ̊

(m,s)
k , µ

(m)
k

}
m=1,...,M

)
(6.10)

to generate a sliding window test statistic which can be tested against a threshold.

6.3 Dynamic Mode Systems

In reality, the mode of a unit can change either gradually or suddenly. For the purpose of

this discussion, we define a gradual change as one in which the parameters can successfully

be tracked by the dynamic system model being used to represent the unit. A sudden change

is one in which the period of adaptation for the parameters is not insignificant.

For gradual mode changes, parameter estimation can progress as described above for a

static mode system with the understanding that mode changes are simply represented as a

directed parameter drift. However, the mode probabilities used for EM estimation should

explicitly take into account the mode transition probabilities (using the algorithm described

below).

If the mode switches suddenly, there will be a period of elevated error as the unit’s

parameters adapt to those of the new mode. In many cases, multiple-model estimators

might be suitable solutions. However if the only difference between modes is parameters

and, more importantly, we do not know before-hand how to separate the modes, then the

parameter estimates for each mode, given the same z
(s)
k , u

(s)
k will converge.

For sudden mode change, some technique should be used to properly initialize the pa-

rameter for the new mode, otherwise the period of sudden parameter mismatch might be

interpreted as a fault. Using standard hybrid estimation techniques may be problematic

since almost all of them assume that the new mode is somehow represented within the

model set, or by a convex combination of the models as in [41]. To avoid this problem a
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different unit parameter reinitialization is implemented in the proposed algorithm. We try

to retain the fast reinitialization of states and probabilities present in an interacting multiple

model estimator, but still use a single estimator for x̂
(s)
k , P

(s)
k .

• Initialization: In the absence of any relevant data, random initial parameter and state

starting points and sufficiently diffuse covariances are chosen. Each unit is assumed to

be in a mode, sampled according to the initial probability masses, until later reassigned

by the mode change hypothesis test.

• Estimation: For each unit s = 1, . . . , S perform

– Mode Matched Estimation: For each mode m = 1, . . . ,M perform one-step fil-

ter update using the global (estimated mixture) parameters, and evaluate the

likelihood L
(m,s)
k

[
L

(m,s)
k , x̌

(m,s)
k , Σ̌

(m,s)
k

]
= Filt

[
z

(s)
k ; x̊

(m,s)
k−1 , Σ̊

(m,s)
k−1

]
(6.11)

– Active Mode Matched Estimation: Perform one-step filter update of the active

mode estimator [
x̌

(0,s)
k , Σ̌

(0,s)
k

]
= Filt

[
z

(s)
k ; x̌

(0,s)
k−1 , Σ̌

(0,s)
k−1

]
(6.12)

• Active Mode Change Detection: For each unit s = 1, . . . , S perform a statistical

test using the model likelihoods {L(m,s)
k : m = 1, . . . ,M} to establish whether a mode

change has occurred

Detect
[
{L(m,s)

k : m = 1, . . . ,M}
]

(6.13)

Upon detection of an active mode change from m
(s)
κ to m∗κ that occurred at time κ ≤ k,

reinitialize: [
x̌

(0,s)
k , Σ̌

(0,s)
k

]
= Reinit

[
x̊(m,s∗)
κ , Σ̊(m,s∗)

κ ;κ, k
]

(6.14)
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• Common Distribution Estimation: Compute the common Gaussian-mixture pa-

rameters µ̊
(m)
k , θ̊

(m)
k , Σ̊

(m)
k , m = 1, 2, . . .M via one iteration of the EM algorithm

µ̊
(m)
k =

1

S

∑S

s=1
µ

(m,s)
k (6.15)

θ̊
(m)
k =

∑S
s=1 µ

(m,s)
k θ̌

(0,s)
k∑S

s=1 µ
(m,s)
k

(6.16)

Σ̊
(m)
k =

∑S
s=1 µ

(m,s)
k

(
θ̌

(0,s)
k − θ̊(m)

k

)(
θ̌

(0,s)
k − θ̊(m)

k

)′
∑S

s=1 µ
(m,s)
k

(6.17)

where the mode probabilities are given by

µ
(m,s)
k =

µ̄
(m,s)
k L

(m,s)
k∑M

m=1 µ̄
(m,s)
k L

(m,s)
k

(6.18)

µ̄
(m,s)
k =

∑M

i=1
µ

(s,i)
k−1πim (6.19)

• Fault Detection: For each unit s = 1, . . . , S through the active mode estimator

compute the likelihood

L
(s)
k = f

(
zsk

∣∣∣ {x̊(m,s)
k , Σ̊

(m,s)
k , µ

(m)
k

}
m=1,...,M

)
(6.20)

to generate a sliding window test statistic which can be tested against a threshold.

6.4 Remarks

Looking at the above algorithms, it is clear that many details are missing. We discuss some

of these below, while noting that there are obviously other methods for estimation, change

detection, reinitialization, etc.
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Estimation (Filt) For linear systems, we use a Kalman Filter to compute the maximum

likelihood estimates (described in Sec. A.2) however most parameter estimation problems

which cannot be stated in (N)ARMA(X) form tend to be non-linear, so an efficient and

effective treatment of non-linear systems is critical.

For non-linear systems, we will use an unscented transform filter to compute the max-

imum likelihood estimates due to the UTF’s simple and effective treatment of non-linear

systems, as well as the relatively low computational burden. The UTF also provides esti-

mates of the measurement covariance which is used for likelihood calculation. The UTF

algorithm is described in Sec. A.3.

For systems where different modes are represented using different structures, and the

structures are separable based on the measurements, a hybrid estimator may be used. In

that case, we make use of the interacting multiple model (IMM) estimator described in Sec.

A.4.

In the case that the likelihood of a measurement is less than some small number, ε, it

is increased to ε to avoid underflow and division-by-zero problems which may result when

calculating probabilities. Unless otherwise stated, ε = 10−9.

Mode Change Detection (Detect) Function Detect detects a change in the mode using

likelihood and/or probability information about the unit. An SSPRT or CUSUM algorithm

may be used [44,50,57].

Alternately, one can use a simpler change detector such as a simple probability test: A

mode change is declared when the probability of one of the (non-active) modes becomes

greater than all others by some threshold value, i.e., iff

µ
(m,s∗)
k > Ts + µ

(m,s)
k ∀m 6= m∗

A threshold is used to avoid switching “chatter” for poorly mode-differentiated units (those

44



which are nearly equidistant, in terms of likelihood, from more than one mode) in the

presence of noise.

Reinitialization (Reinit) When a mode change occurs, we need to use our best estimate

of parameters and state to reinitialize the active mode matched estimator. For systems

where units gradually drift between modes, we can simply identify the new mode and allow

the mode matched estimators to identify the parameters normally. For these systems, the

reinitialization algorithm can be left blank since the active mode matched estimator is likely

better than any of the mode matched estimators.

However, for systems where the mode jumps suddenly, we should initialize the parameters

to our best estimate for that mode. One way of doing this is to use the parameter estimates

from the mode-matched ML-estimator for the new mode,
(
x̌

(m∗,s)
k , Σ̌

(m∗,s)
k

)
, to reinitialize

the active filter:

m(s) ← m∗

θ̌
(0,s)
k−1 ← θ̊

(m∗)
k−1

Σ̌
(0,s)
k−1 ← Σ̊

(m∗)
k−1

[
x̌

(0,s)
k , Σ̌

(0,s)
k

]
= Filt

[
z

(s)
k ; x̌

(0,s)
k−1 , Σ̌

(0,s)
k−1

]
In some cases, local states exist which are mode-related, but not globally mode-correlated

(i.e., they change with respect to mode but are not useful in clustering modes globally). For

these cases, the relevant local states (which act more like parameters) are also reinitialized

from the appropriate running ML-estimator.

Optionally, if the mode-switching algorithm provides a jump-time, smoothing may be

performed to improve the estimate. Given the multi-mode nature of the problem, multiple-
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model smoothing techniques should be used, as in [10,13,14,31].

Fault Detection The no-fault hypothesis H0 is represented by the Gaussian-mixture dis-

tribution:

L
(
z

(s)
k

)
=

M∑
m=1

µ
(m,s)
k−1 N

(
z

(s)
k ; x̊

(m,s)
k , Σ̊

(m,s)
k

)
However, since we have no model for H1, we cannot use detection algorithms based on

likelihood ratios, such as the Neyman-Pearson (NP) or Generalized Likelihood Ratio (GLR)

tests. While we could say that the H1 model is given by the likelihood that z̃
(0,s)
k is not

in H0, i.e., 1 − L
(
z̃

(0,s)
k

)
, this would contain no new information. In such a situation our

test statistic is simply the log likelihood of the measurement residual with an exponential

window of size W :

T
(s)
k =

W − 1

W
T

(s)
k−1 +

1

W
log
(
L
(
z

(s)
k

))
with T

(s)
0 set to a value large enough to cause the initially poor parameter estimates to not

register as failures.

If T
(s)
k < γf , where γf is the failure threshold, a fault is declared.

Unit Exclusion When attempting to detect faults based on set statistics, it is useful to

be able to look at the statistics without the contribution of failed units. This allows for

detection of small faults without degrading the estimate through measurements originating

from the faulty unit. Unit exclusion aids in incipient and preexisting failure detection.

Units with a total likelihood of less than Te(. . . ) are excluded from the cluster statistics

calculation (Eqs. 6.15-6.19). Te(. . . ) may be set to a small number (e.g. 10−4) for simplicity,

or for a more sophisticated treatment, assume different threshold values depending on the

number of units estimated to be in a particular mode, their likelihoods, and the desired

number of units to exclude.
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Obviously, the selective exclusion of some data points changes the sample mean and

variance of the cluster. In order to regenerate the original statistics, the covariance can be

boosted as noted in Chapter 7. If the truncation is symmetric (as it is when truncating

based on likelihood), then the mean is not changed.

Missing Measurements While the algorithm is centralized in nature, it nevertheless

consolidates information from many different sources at once. Often, dozens or hundreds

of different data acquisition and control systems (often called controllers) must report on

the data for each time sample. This raises the possibility that some data will be lost or

delayed. Despite this, the coordination required is distributed cooperation, rather than

parallel cooperation, allowing looser and more forgiving synchronization techniques [7].

In the absence of updates, the state covariance can be boosted for the units failing to

report:

Pκ = Pκ + kQ

When measurements finally arrive, the out-of-sequence measurements can be dealt with

as explained in [2, 66].

In the case of only partial measurements arriving for a unit, the data can still be used by

appropriate adjustment of the measurement covariance matrix. For example, if measurement

i in the measurement vector is missing, we can set

[Rk]ii =∞

Labelling Since there is no mechanism to ensure that identified clusters are labelled iden-

tically to the models used to generate the data, cluster labels must be reassigned if the

probability of correct identification is be measured.

This is done by relabelling identified clusters using the closest mode (true) center. Ob-
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viously, this is only an issue in simulations since the true modes are normally not available

when using real data.

6.5 Limitations and Capabilities

The assumptions underlying the presented algorithm are novel. Because of this, the algo-

rithm has a number of interesting limitations and capabilities.

6.5.1 Limitations

Ensemble Requirement The algorithm is dependent on the availability of multiple cor-

related units. It is completely inapplicable to systems with a single unit, and suffers

performance degradation for systems with few units (e.g., less than twenty units for a

2-mode system).

Mode Representation Requirement In order to detect jumps from one mode to an-

other, the new mode must have some representation, i.e., one or more units must

already be in that mode, otherwise the jump could be considered a fault. Obviously,

this is not an issue with single-mode systems however one of the more significant

strengths of the algorithm is the ability to effortlessly adapt as units jump from mode

to mode.

Slower Detection Than Uni-Mode, No-Drift Algorithms Since the distribution of

the global parameters may have a larger covariance than that of a local parameter

estimate, algorithms that address only a single mode and assume that parameter drift

is either non-existent, or can be ignored over the time in which a fault occurs, will

generally perform better (if the stated assumptions are true). Effectively, this limits

applicability of single-mode slow-drift parameter algorithms to detection of sudden

failures only, which may be sufficient for many problem domains. However, it should
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be noted that the proposed solution can be used to augment single-mode slow-drift

algorithms, thereby allowing fast detection using such algorithms, while providing for

detection of incipient or preexisting failures.

Central Processing Requirement As presented, the solution assumes a central location

where information must be collected for analysis, which may be problematic for sensor

networks. However, the information transfer requirement is minimal, consisting not of

actual sample data but rather parameter statistics estimates (such as mean and covari-

ance). Additionally, complete system synchronization is not an absolute requirement,

but information from most nodes should be collected at a rate faster than parameter

drift is expected to occur.

6.5.2 Capabilities

Multi-Mode Capable The proposed solution excels at addressing multi-mode systems,

even when models are initially unavailable for all the modes.

Incipient and Preexisting Fault Parameter estimation explicitly accounts for parameter

drift, and since fault detection does not depend on sudden deviation of local parame-

ters, incipient and preexisting faults can be detected. This differs from techniques that

account for gradual parameter drift, and assume that a fault is detectable by a sudden

parameter change.

Can be used with other FD algorithms The proposed solution can be used to supple-

ment other fault detection methodologies (such as the single-mode slow-drift algorithms

mentioned above), thereby allowing for the positive features of both, and providing for

detection of incipient or preexisting failures using the new algorithm.

Can Include Additional Mode Information If information is available about which

mode is active at a particular unit, this information can be incorporated into the
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algorithm through the transition probability matrix or the initial mode probabilities.

Fast Parameter Initialization After Jumps The probability distribution for global pa-

rameters is being constantly estimated using data from every unit at the site. So

parameter estimation after the sudden jump of a unit has the advantage of being able

to use the global information to set its initial values, even if that unit has never before

been seen in that mode. This reduced the “improbability”-spike which would occur

otherwise, greatly reducing false positives.
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7

Exclusion of Units in Fault Detection

When attempting to detect faults based on set statistics, it’s useful to be able to look at the

statistics without the contribution of failed units. This allows for detection of small faults

without degrading the estimate through measurements originating from the faulty unit.

7.1 Truncated Normal Distribution

The calculation of parameters for a truncated normal distribution (TND) is a recurring

problem in real-world testing. A Gaussian distribution assumes limits of ±∞. In practice,

there are usually upper and lower limits imposed on an experiment, so that the actual

distribution being measured is a truncated normal distribution (see, for example, [20], [29]).

Consider the multivariate normal distribution given by:

N (z; z̄, Pz) ,
1

|2πPz|
1
2

exp

[
−1

2
(z − z̄)T P−1

z (z − z̄)

]

or, if we set z̃ = z − z̄ and assume Pz = I,

N (z̃) ,
1

(2π)
N
2

exp

[
−1

2
z̃T z̃

]

If we condition the observation on zT z ≤ t, the total probability contained in this region
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can be denoted by

Φ (t) =

∫
· · ·
∫

z̃T z̃≤t

N (z̃) dz̃

Hence, after scaling the probability distribution becomes:

T (z̃; t) =


N (z̃)
Φ(t)

zT z ≤ t

0 elsewhere

7.1.1 Using Likelihood as a Gating Threshold

The focus of most TND work considers arbitrary thresholds described in terms of left-

and right-cutoff values. For multi-modal TND’s, a matrix of cutoff values describes an

N-dimension box outside of which observations are rejected.

For our purposes, we wish to define the threshold in terms of a probability boundary,

beyond which observations are rejected. This has some very handy properties:

• It is mean- and covariance-invariant, meaning that the observation does not have to be

pre-whitened or translated into a zero-mean, unit covariance form before truncation

since the likelihood explicitly considers the distribution statistics.

• Because of the above point, correlation and skew can be safely ignored.

• Using the likelihood circumvents the “curse of dimensionality” for numerical integra-

tion. As the number of dimensions increases, a numerical integration needs exponen-

tially more points to obtain an accurate result. Each random sample produces a result

that may represent every point with that likelihood on the surface of an N-dimensional

hypersphere.

• Since the Gaussian distribution is symmetric, the mean of the original distribution is

equal to the mean of the truncated distribution if likelihood is chosen as the trunca-
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tion threshold measure (meaning that the truncation is symmetric). Additionally, the

covariance of the original distribution is equal to a constant matrix times the covari-

ance of the truncated distribution if likelihood is chosen as the truncation threshold

measure.

7.1.2 Threshold Selection

Consider the set of units where a particular mode, m, is the most probable mode for that

unit, i.e.,

S(m)
− = {s : µ

(m,s)
k ≥ µ

(n,s)
k ∀m 6= n}

where the number of units in S(m)
− is,

S(m) , |S(m)
− |

S(m)
− is sorted in order of ascending likelihood,

s = {S(m)
− }j, r = {S(m)

− }i, j > i⇒

L
(m,s)
k > L

(m,r)
k

Assume that we want to exclude e units,

e = Ne

(
S(m)

) ⌉
, Ne

(
S(m)

)
≥ 0

where Ne is a function chosen to allow for exclusion of more units as the number of units in

mode m increases. For example, the following are possible choices:

Ne

(
S(m)

)
=

1

N
S(m)
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Ne

(
S(m)

)
=

√
S(m)

R

Ne

(
S(m)

)
= max

(
0,
S(m)

R
−N

)
with typical values for N = 10, R = 2.

To assist in the description of the threshold selection, we know that the e-th and e+ 1-th

smallest units are se and se+1,

se = {S(m)
− }e

se+1 = {S(m)
− }e+1

The threshold can be selected either as L
(m,se)
k + ε or L

(m,se+1)
k − ε. Both have philo-

sophical justifications, but selecting one over the other will have an impact on the estimated

covariance; the first option results in a smaller covariance, while the second option results in

a larger estimate. Alternately, a middle point may be chosen,

LT
(m)
k ,

1

2

(
L

(m,se)
k + L

(m,se+1)
k

)

Finally, we designate the truncated set of units as S(m),

S(m) , {s ∈ S(m)
− : L

(m,s)
k ≥ LT

(m)
k }

7.1.3 Table Lookup of Covariance Ratio

The analytical solution for the mean and covariance of arbitrarily dimensioned TND’s is

very difficult to calculate.

For univariate TND’s (where the dimension of the random variable is one), the relation-

ship between the mean and covariance of the truncated sample and the original (untrun-

cated) distribution is well known [20, 23]), as are the statistics of bivariate [9, 18, 48], and
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Figure 7.1: Lookup table of the ratio of the covariances of truncated normal and normal
distributions for 1-5 dimensional distributions at 100 likelihood thresholds between 0 and
0.1. 100,000 Monte-Carlo iterations were used to generate each curve.

trivariate [63] distributions however this does not help in the general multivariate case.

Where no simple closed form solution exists, Monte-Carlo simulations can be used to

generate a lookup table. The ratio of the covariance of the original distribution to the

covariance of the resulting truncated distribution can be calculated from this lookup table,

GT
(m)
k = TNDstat

[
LT

(m)
k

]

TNDstat [L]−1 is plotted in Figs. 7.1 and 7.2 (corresponding to 1-5 unknown parameters

in Fig. 7.1, and 6-10 unknowns in Fig. 7.2). The inverse of the truncated multiplier is

plotted (i.e., the ratio of the covariance of the TND to that of the original distribution) in

order to better show the falloff for different dimensions on the same plot. Note that the

lookup table is independent of the actual covariance of the original distribution – the table
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Figure 7.2: Lookup table of the ratio of the covariances of truncated normal and normal
distributions for 6-10 dimensional distributions at 100 likelihood thresholds between 0 and
0.001. 100,000 Monte-Carlo iterations were used to generate each curve.

applies to any positive definite symmetrical covariance matrix.
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8

Experiments

In order to better understand the performance of the proposed algorithms, we will be using

parameter-space plots of the units. The global mode clusters will be shown using concentric

rings at 1-σ, 2-σ, and 3-σ boundaries.

For simulations, the correct-detection probability can be shown, which we define as “the

sample probability that the identified mode (at time k) for a particular unit is the true mode

for that unit (at time k)”. Detection delay is defined as the time taken, once a unit changes

modes, for the (correct) mode to be detected.

8.1 Simple Reference Models

8.1.1 Simple Static Parameter Simulation

Initially, to test the performance of that algorithm, we will attempt to classify the mode

statistics for units in one of two modes. The measurements are distributed according to

zk ∼ N


A
B

 ,
1.0 0.0

0.0 1.0




The global parameters, A and B, constitute θ̊:
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θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




We will ignore mode-switching for now, and assume that the system is static, i.e., the

probability of mode transition is zero. The performance can be seen in Fig. 8.1. Unit

parameter-distribution is shown at different times in Fig. 8.2.

The experiment is repeated using four modes, with the results shown in Figs. 8.3 and

8.4:

θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




θ̊(3) ∼ N


−1

−1

 ,
0.252 0.0

0.0 0.252




θ̊(4) ∼ N


 1

−1

 ,
0.252 0.0

0.0 0.252




8.1.2 Simple Dynamic Parameter Simulation

We repeat the experiment using the same model as above while allowing for the units to

switch modes 5% of the time, i.e.
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Figure 8.1: Performance of simple static 2-mode parameter estimation (100 units).

zk ∼ N


A
B

 ,
1.0 0.0

0.0 1.0




θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




Π =

0.95 0.05

0.05 0.95


The performance can be seen in Fig. 8.5. Unit parameter-distribution is shown at

different times in Fig. 8.6.

The experiment is repeated using four modes, with the results shown in Figs. 8.7 and
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Figure 8.2: Snapshots of unit parameter-distribution at k = 1, 10, 25, 50.

8.8:

θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




θ̊(3) ∼ N


−1

−1

 ,
0.252 0.0

0.0 0.252




θ̊(4) ∼ N


 1

−1

 ,
0.252 0.0

0.0 0.252



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Figure 8.3: Performance of simple static 4-mode parameter estimation (200 units).

8.1.3 Observations

It can be seen that, as long as the separation between modes is clear, static systems seem to

converge cleanly and quickly. However, if the rate of mode switching is too high, as in Figs.

8.5, 8.6, 8.7, and 8.8, then the identified mode statistics may not have a chance to converge

before the units jump. For a 5%, 200 unit system, it is very likely that several units (10 on

average) are changing modes at any point in time.

8.2 AHU Models

Unless otherwise stated,

wk ∼ N (0, Q)

vk ∼ N (0, R)
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Figure 8.4: Snapshots of unit parameter-distribution at k = 1, 10, 25, 50.

And, for simulations,

uk ∼ U (0, 100)

8.3 Disturbance Model

8.3.1 Simulated Static Disturbance Model

As a first attempt at modelling air handling units, we define a disturbance-based model,

where the state, measurement, and input vector are:
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Figure 8.5: Performance of simple static 2-mode parameter estimation (100 units, 5% mode
switching).

x ,

 K

D

 =

 Input Gain

Disturbance


z , T =

[
Supply Temperature

]
u ,

[
Valve Position

]

The model is given by:

xk = xk−1 +
√
Qwk

zk = Tk−1 +Kk−1uk +Dk−1 + vk

63



−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
System at k=1

A

B

−
−

01
95

 L
50

 M
2 

S
10

0 
P

5:
00

00
00

00
−

50
x1

−3 −2 −1 0 1 2 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
System at k=10

A

B

−
−

01
95

 L
50

 M
2 

S
10

0 
P

5:
00

00
00

00
−

50
x1

−3 −2 −1 0 1 2 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
System at k=25

A

B

−
−

01
95

 L
50

 M
2 

S
10

0 
P

5:
00

00
00

00
−

50
x1

−3 −2 −1 0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
System at k=50

A

B

−
−

01
95

 L
50

 M
2 

S
10

0 
P

5:
00

00
00

00
−

50
x1

Figure 8.6: Snapshots of unit parameter-distribution at k = 1, 10, 25, 50 (5% mode switch-
ing).

For the simulation, two modes were defined, as described below:

Θ̊0 = N


75.0

−0.5

 ,
5.02 0.0

0.0 0.12


 , N


40.0

0.2

 ,
5.02 0.0

0.0 0.12




Π =

1 0

0 1

 , Q̊ =

0.12 0.0

0.0 0.012

 , R = 0.12

Note that the transition probability matrix is the identity matrix, indicating that there

is no possibility of a unit changing modes.
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Figure 8.7: Performance of simple dynamic 4-mode parameter estimation (200 units, 5%
mode switching).

The performance for a single (typical) run with 120 units is shown in Fig. 8.10. We can

see that the mode parameter-clusters are well separated, and that eventually (at k = 14),

all units are correctly identified.

In the figure, estimated parameters for each unit are colored according to the mode for

which they have been identified to belong.

8.3.2 Simulated Dynamic Disturbance Model

Using the same model described above and 120 units, we introduce 1% and 5% transition

probabilities, i.e.:

Π =

0.99 0.01

0.01 0.99

 ,
0.95 0.05

0.05 0.95


The performance for a single run is shown in Figs. 8.11 and 8.13. As can be seen from
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Figure 8.8: Snapshots of unit parameter-distribution at k = 1, 10, 25, 50.

the figures, it is likely that one or more units has switched modes at any time sample in

particular. The units that have switched modes would eventually be classified after more

data arrives.

8.3.3 Real AHU Data Using a Disturbance Model

Data was collected from three different sites with the following characteristics:

SITE1: Large commercial office building in Houston, Texas, with over 70 floors. Supply,

Setpoint, and Valve data is available.

SITE2: Large commercial office building in Miami, Florida, with over 70 floors. Supply,

66



0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1
Probability of correct match

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70
Histogram of detection delay

S
D

00
F

2 
L2

5 
M

2 
S

12
0 

P
0:

00
00

00
00

−
25

x3
0

Figure 8.9: Simulated Disturbance Model with no Mode Switching (120 units).

Setpoint, and Valve data is available.

SITE3: Large commercial office building in Houston, Texas, with over 35 floors. Supply,

Setpoint, Return, Pressure, VFD Speed, and Valve data is available.

In order to better visualize the amount of data used in producing a single plot, a capture

from SITE1 on 2008/07/31 is shown in Fig. 8.15.

Data Collection Issues

Given that the collection sites are commercial properties, their primary concern was not

to disrupt operation of the HVAC system in any way. That being the case, most build-

ing engineers and management staff are reluctant to introduce experimental code into the

automation system. In order to receive permission to test the fault detection algorithm,

passive-only data collection was performed, meaning that no external excitation could be

introduced into the system.
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Figure 8.10: Simulated Disturbance Model with no Mode Switching (120 units).

This poses a problem for parameter identification when insufficient excitation is present,

as is the case for an HVAC system where the space temperatures have stabilized. For this

reason, data collected during early morning start-up proved most useful. After the algorithm

has been established, active data collection, where a control signal can be injected into the

system should improve the results.

Finally, since no true model is available, fault detection performance cannot be automat-

ically deduced except through anecdotal evidence. For example, some faults may have been

due to a technician working on the unit in question at the time, while some faults disappear

after routine maintenance.

We present here some preliminary results, without further comment or explanation on

the performance in real-world scenarios. Future research should contain more real-world

performance metrics such as true detections vs. false alarms.
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Figure 8.11: Simulated Disturbance Model with 1% Mode Switching (120 units).

8.4 Real AHU Data Using an Approximate Physical Model

If we have return air information in addition to supply air (as is available at SITE3), we can

include this in our model:

x ,


K

Tr

Ts

 =


Input Gain

Return Temperature

Supply Temperature


z , T =

 Return Temperature

Supply Temperature


u ,

[
Valve Position

]
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Figure 8.12: Simulated Disturbance Model with 1% Mode Switching (120 units).

with,


K

Tr

Ts


k

=


K

Tr

(Tr − Ts)K u
100


k−1

+ wk

zk =

 Tr

Ts


k

+ vk
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Figure 8.13: Simulated Disturbance Model with 5% Mode Switching (120 units).
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Figure 8.14: Simulated Disturbance Model with 5% Mode Switching (120 units).
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Figure 8.15: Sample data from SITE1.
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Figure 8.16: Passive identification of SITE2 taken on 2008/06/13 (89 units). We can see
that 14-EAST seems to be faulty.
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Figure 8.17: Passive identification of SITE2 taken on 2008/06/30 (89 units). We can see
that 16-WEST seems to be faulty.
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Figure 8.18: Passive identification of two separate systems, SITE1 in Houston (top) and
SITE2 in Miami (bottom). Identified parameters and clusters are remarkably similar, how-
ever there is no reason that this is necessarily the case for all sites.
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Figure 8.19: SITE3 has return air, speed, and pressure sensors, which allows a more detailed
model to be used. Plots show identified parameters on different (successive) days.
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9

Performance

A Receiver Operating Characteristic (ROC) curve is a natural way of displaying Type-I

(false positive) vs. Type-II (false negative) errors for a fault detection algorithm.

The ROC-curves we present show Type-I errors (false negative) on the x-axis, with

one minus Type-II errors (i.e., true positive) on the y-axis. As is customary in detection

literature, we refer to the x- and y-axis as Probability of False Alarm (PFS), and Detection

Probability (PD):

PFA , P (“H1”|H0)

PD , P (“H1”|H1) = 1− P (“H0”|H1)

where “H1” denotes making a decision to choose the Alternate Hypothesis, H1, based on

the detection algorithm.

9.1 Baseline Performance

Before any meaningful comparison can take place, we much choose a baseline which repre-

sents the “standard” performance.

In HVAC FDD, the most common approach is non-parametric fault detection based on

rules (for example, where a fault is declared if a value exceeds some predefined thresholds).
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Clearly, any reasonable sophisticated detection algorithm should be able to perform better

than this.

The more sophisticated (theoretically proposed, but not often used in practice) detection

algorithms measure a single unit’s deviation from some model (fully specified, black-box,

neural-network, or otherwise). However such approaches are not well suited to handling

drifting parameters, mode-switching, or incipient failures.

Since there are no functionally comparable algorithms available, we will have to manufac-

ture a baseline using the proposed algorithm itself. One possibility is to compare performance

of the sub-optimal algorithm to that of the full algorithm. However executing the full al-

gorithm, even for a short run, is prohibitively expensive. Hybrid system, multiple model

estimators share the same exponentially increasing mode-switching hypothesis tree, and so

they are generally compared with other non-optimal multiple model estimators.

In order to remove the effect of switching from performance comparison, we can construct

a scenario with only one mode. This can be seen as the simplest possible scenario, and can

also be seen as an upper-bound on algorithm performance.

9.1.1 Uni-Modal Model

The measurements are distributed according to

zk ∼ N


A
B

 ,
1.0 0.0

0.0 1.0




The global parameters, A and B, constitute θ̊:

θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252



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9.1.2 Bi-Modal Model

The measurements are distributed according to

zk ∼ N


A
B

 ,
1.0 0.0

0.0 1.0




The global parameters, A and B, constitute θ̊:

θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




9.1.3 Quad-Modal Model

The measurements are distributed according to

zk ∼ N


A
B

 ,
1.0 0.0

0.0 1.0




The global parameters, A and B, constitute θ̊:
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θ̊(1) ∼ N


−1

1

 ,
0.252 0.0

0.0 0.252




θ̊(2) ∼ N


1

1

 ,
0.252 0.0

0.0 0.252




θ̊(3) ∼ N


−1

−1

 ,
0.252 0.0

0.0 0.252




θ̊(4) ∼ N


 1

−1

 ,
0.252 0.0

0.0 0.252




9.1.4 Failures

Sudden Failure: A fault occurs in mode 1 of unit 1 (designated as 1E), at time kF = 5,

θ
(1,1)
kF

= θ
(1,1)
kF−1 +

1

0


Incipient Failure: A gradual fault occurs in mode 1 of unit 1 (designated as 1E), for

kF ≥ 5, such that

θ
(1,1)
kF

= θ
(1,1)
kF−1 +

0.2

0


Pre-Existing Failure: A fault occurs in mode 1 of unit 1 (designated as 1E), at time
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kF = 0 such that

θ(1,1) ∼ N


0

1

 ,
0.252 0.0

0.0 0.252



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Figure 9.1: ROC for Uni-Mode Models for k = 6, 7, 10. It can be seen that there is no
significant improvement to having more units - 50 units seems to be able to sufficiently
capture the distribution statistics.
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Figure 9.2: ROC for Bi-Mode Models for k = 6, 7, 10. It can be seen that there is a slight
improvement to having more units; 50 units seems to be too few to capture the distribution
statistics adequately.
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Figure 9.3: ROC for Quad-Mode Models for k = 6, 7, 10. It can be seen that there is some
improvement when increasing the number of units to 100; 50 units seems to be too few to
capture the distribution statistics adequately.
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Figure 9.4: ROC comparison for Uni-, Bi- and Quad-Mode Models for k = 6, 7, 10. When us-
ing a sufficiently large number of units, mode switching does not seem to impact performance
significantly in the tested scenario.
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Figure 9.5: Pre-existing fault in Bi-Mode Models. 10−4 likelihood exclusion used as discussed
in Chapter 7. The plot shows a clear improvement in performance as the global cluster
statistics become more accurate (i.e. as k →∞).
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Figure 9.6: Incipient fault in Bi-Mode Models. While the ROC curve looks unusual for
k = 6, 7, it should be remembered that the error is very small at the beginning, and the
random starting location of unit parameters in a Monte Carlo simulation might actually
cause some realizations to drift closer to a cluster center during the beginning stages of an
incipient failure.
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Figure 9.7: Incipient fault in Bi-Mode Models. Shown for PFA ∈ (0.0, 0.5).
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10

Conclusion

Novel techniques for fault detection in multi-unit, multi-mode systems have been developed

and tested. The resulting algorithm functions when information about the system modes,

system faults, active mode for a unit, and structure and dynamics of the underlying data

generation mechanism (“true model”) are incomplete or missing.

In Chapter 3, we have examined other works that addressed fault detection in HVAC

and approaches that had already been attempted and found that no techniques for dealing

with multiple-modes have been suggested, and that most methodologies required a system

model.

We have proposed a theoretical framework in Chapter 5, which led to a novel solution

which uses information from all units in a system to generate a global parameter distribution.

A practical implementation is presented in Chapter 6 which, based on techniques used in

multiple-model estimation, allows for fast mode-switching when classifying the units in order

to generate the distribution. Also, in order to allow fault detection for incipient and pre-

existing faults, a novel application of the Truncated Normal Distribution (as detailed in in

Chapter 7) was used.

The algorithm was implemented using MATLABTM. A simulated scenario was used to

compute Receiver Operating Characteristics curves (Chapter 9). It was shown that sudden,

incipient, and pre-existing failures were detectable however performance was hard to quantify
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due to the lack of a baseline algorithm to compare against.

A more complex testing framework was also implemented, in order to simulate an HVAC

system with multiple units. The algorithm was tested on the simulated data and seemed to

work very well (Chapter 8).

Finally, code was put into place to collect real-world data from three sites based in

Houston and Miami (using Python and C++). The algorithm was applied to the live data

and appears to show significant promise (Chapter 8).

10.1 Limitations and Capabilities

As mentioned previously, the assumptions underlying the presented algorithm are novel and

hence, the algorithm has a number of interesting limitations and capabilities reproduced

below for convenience.

10.1.1 Limitations

Ensemble Requirement The algorithm is dependent on the availability of multiple cor-

related units. It is completely inapplicable to systems with a single unit, and suffers

performance degradation for systems with few units (e.g., less than twenty units for a

2-mode system).

Mode Representation Requirement In order to detect jumps from one mode to an-

other, the new mode must have some representation, i.e., one or more units must

already be in that mode, otherwise the jump could be considered a fault. Obviously,

this is not an issue with single-mode systems however one of the more significant

strengths of the algorithm is the ability to effortlessly adapt as units jump from mode

to mode.

Slower Detection Than Uni-Mode,No-Drift Algorithms Since the distribution of the
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global parameters may have a larger covariance than that of a local parameter estimate,

algorithms that address only a single mode and assume that parameter drift is either

non-existent, or can be ignored over the time in which a fault occurs, will generally

perform better (if the stated assumptions are true). Effectively, this limits applica-

bility of single-mode slow-drift parameter algorithms to detection of sudden failures

only, which may be sufficient for many problem domains. However, it should be noted

that the proposed solution can be used to augment single-mode slow-drift algorithms,

thereby allowing fast detection using such algorithms, while providing for detection of

incipient or preexisting failures.

Central Processing Requirement As presented, the solution assumes a central location

where information must be collected for analysis, which may be problematic for sensor

networks. However, the information transfer requirement is minimal, consisting not of

actual sample data but rather parameter statistics estimates (such as mean and covari-

ance). Additionally, complete system synchronization is not an absolute requirement,

but information from most nodes should be collected at a rate faster than parameter

drift is expected to occur.

10.1.2 Capabilities

Multi-Mode Capable The proposed solution excels at addressing multi-mode systems,

even when models are initially unavailable for all the modes.

Incipient and Preexisting Fault Parameter estimation explicitly accounts for parameter

drift, and since fault detection does not depend on sudden deviation of local parame-

ters, incipient and preexisting faults can be detected. This differs from techniques that

account for gradual parameter drift, and assume that a fault is detectable by a sudden

parameter change.
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Can be used with other FD algorithms The proposed solution can be used to supple-

ment other fault detection methodologies (such as the single-mode slow-drift algorithms

mentioned above), thereby allowing for the positive features of both, and providing for

detection of incipient or preexisting failures using the new algorithm.

Can Include Tertiary Mode Information If information is available about which mode

is active at a particular unit, this information can be incorporated into the algorithm

through the transition probability matrix or the initial mode probabilities.

Fast Parameter Initialization After Jumps The probability distribution for global pa-

rameters is being constantly estimated using data from every unit at the site. So

parameter estimation after the sudden jump of a unit has the advantage of being able

to use the global information to set its initial values, even if that unit has never before

been seen in that mode. This reduced the “improbability”-spike which would occur

otherwise, greatly reducing false positives.

10.2 Future Work

Future work will include algorithm implementation using “production” languages (such as

C++ and Python) suitable for integration as an “on-line” system into large commercial real-

time building automation systems. One of the primary benefits of an on-line system is that

detected faults may be verified by building technicians and engineers. Experience has shown

that some transient faults can only be confirmed by on-site building staff (for example, a

building engineer replacing a filter could present as a fault)

Additionally, new visualization techniques such as new performance metrics, or video

representations, will need to be developed to assist practitioners to better understand system

performance over time and across units,.

Additionally, it is the intent of the authors to compile sample data sets in order to
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facilitate future work. The data collection needs for implementing fault detection using multi-

unit algorithms are considerable and likely to be a stumbling block for academic researchers.

In practice, data collection may require meetings with building engineers and senior building

management staff, training sessions (for technicians and engineers on how to report on

the efficacy of the detection algorithm), and money (in the form of implementation costs

and participation incentives to offset the risk of testing an experimental solution on a live

building).
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A

Estimation Primitives

This appendix describes the estimation algorithms which are used as components in the

proposed algorithm. Mode switching and fault detection algorithms are also needed and are

discussed below.

A.1 State-Space System Representation

A very common assumption in detection, identification, and estimation is that the noise is

Gaussian in nature. We will consider two cases:

Linear System: The system model can be represented using a linear state-space represen-

tation with additive process and measurement noise.

xk = Fk−1xk−1 + wk

zk = Hkxk + vk

In this representations, we omit the known input, uk, for simplicity. Any known input

may be incorporated into a change of mean(s) of the process and/or measurement

noises.

Non-linear System: A non-linear representation is required to describe the system. Pro-
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cess noise and measurement noise are still considered additive.

xk = fk−1 (xk−1, uk) + wk

zk = hk (xk, uk) + vk

A.2 Linear Systems - Kalman Filter

The Kalman filter (KF) is a recursive, unbiased, minimum variance, consistent estimation

technique that uses all the available data to make an optimal estimate. It provides the best

possible (unbiased) estimate if the system is linear and known.

The KF is described in Table A.1. We will reference this filter as:

[
x̂

(m,s)
k|k , P

(m,s)
k|k , L

(m,s)
k

]
= KF

(
x̂

(m,s)
k−1|k−1, P

(m,s)
k−1|k−1

)

A.3 Nonlinear Systems - Unscented Transform Filter

The unscented transform (UT) is a method for estimating the statistics of a random variable

which undergoes a non-linear transformation. Unlike the Extended Kalman Filter (EKF),

which represents the non-linearity with a truncated Taylor series expansion, a filter built on

the unscented transform (UTF) propagates specially chosen sample points through the non-

linearity such that the resulting statistics capture the first two moments of the transformed

distribution. This addresses the two main problems faced by the EKF: complexity of deriving

the Jacobians required in the EKF, if they exist at all, and inaccuracy or instability caused

by the truncation of the Taylor series expansion.
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Table A.1: Kalman filter block

Predict

x̂
(m,s)
k|k−1 = F

(m,s)
k−1 x̂

(m,s)
k−1|k−1 + w̄

(m,s)
k−1

P
(m,s)
k|k−1 = F

(m,s)
k−1 P

(m,s)
k−1|k−1

(
F

(m,s)
k−1

)T
+Q

(m,s)
k−1

S
(m,s)
k = H

(m,s)
k P

(m,s)
k|k−1(H

(m,s)
k )T +Rk

z̃
(m,s)
k , zk −H(m,s)

k θ̂
(m,s)
k|k−1 − v̄

(m,s)
k

L
(m,s)
k , p

(
z̃

(s)
k , S

(m,s)
k

)
Update

K
(m,s)
k = P

(m,s)
k|k−1(H

(m,s)
k )T (S

(m,s)
k )−1

x̂
(m,s)
k|k = x̂

(m,s)
k|k−1 +K

(m,s)
k z̃

(m,s)
k

P
(m,s)
k|k = P

(m,s)
k|k−1 −K

(m,s)
k S

(m,s)
k (K

(m,s)
k )T

As discussed in [39], the weights and sample points are chosen such that:

N∑
i=0

αi = 1, x̄ =
N∑
i=0

αixi, cov (x) =
N∑
i=0

αi (xi − x̄) (xi − x̄)T

One choice of sample points, Y , {yi} and weights, W , {αi} is [32]:

(yi, αi) =



(
x̄, κ

Nx+κ

)
i = 0(

x̄+
[√

(Nx + κ)Cx

]
i
, 1

2(nx+κ)

)
i = 1 . . . Nx(

x̄−
[√

(Nx + κ)Cx

]
i−Nx

, 1
2(Nx+κ)

)
i = Nx + 1 . . . 2Nx

where Nx is the length of the state vector, κ ∈ R,
[√

(nx + κ)Cx

]
i

is the ith column of the

matrix square root of
√

(nx + κ)Cx.
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In order to simplify the discussion, we define:

(ȳ, Cy) = UT (g (x) , x̄, x+, Cx, C+)

⇒ Y = g (X (x̄, Cx)) , ȳ = x+ +
N∑
i=0

αiyi, Cy = C+ +
N∑
i=0

αi (yi − ȳi) (yi − ȳi)T

Utilizing the principles of best linear unbiased estimation [67, 69], the UTF can now be

described as shown in Table A.2. We will reference this filter as:

[
x̂

(m,s)
k|k , P

(m,s)
k|k , L

(m,s)
k

]
= UTF

(
x̂

(m,s)
k−1|k−1, P

(m,s)
k−1|k−1

)

Table A.2: Unscented transform filter block

Predict (
x̂

(m,s)
k|k−1, P

(m,s)
k|k−1

)
= UT

(
f

(m,s)
k−1 (x, u(s)k) , x̂

(m,s)
k−1|k−1, w̄

(m,s)
k−1 , P

(m,s)
k−1|k−1, Qk−1

)
(
ẑ

(m,s)
k|k−1, S

(m,s)
k

)
= UT

(
h

(m,s)
k (x, u(s)k) , x̂

(m,s)
k|k−1, v̄

(m,s)
k , P

(m,s)
k|k−1, Rk

)
z̃

(m,s)
k = z

(s)
k − ẑ

(m,s)
k|k−1

L
(m,s)
k , p

[
z̃

(m,s)
k , S

(m,s)
k

]
Update

C
(m,s)
k = covα

(
x̃

(m,s)
k|k−1, z̃

(m,s)
k|k−1

)
=

N∑
i=0

αi

(
x̂ik − x̂

(m,s)
k|k−1

)(
z̃ik|k−1 − z̃

(m,s)
k|k−1

)T
K

(m,s)
k = C

(m,s)
k

(
S

(m,s)
k

)−1

x̂
(m,s)
k|k = x̂

(m,s)
k|k−1 +K

(m,s)
k z̃

(m,s)
k

P
(m,s)
k|k = P

(m,s)
k|k−1 −K

(m,s)
k S

(m,s)
k (K

(m,s)
k )T
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A.4 Handling Mode Transitions

The interacting multiple model (IMM) estimation algorithm has been shown to be an efficient

and cost-effective hybrid estimation technique [40,52].

The IMM estimator runs M different filters under M different system models. Each of

the filters is reinitialized at each time sample with an optimally fused (in the MMSE-sense)

set of statistics. Usually, IMM filtering assumes that the estimate is normally distributed,

so the estimate mean and covariance are sufficient to describe the estimate to be fused.

It is assumed that a system starts in a random mode, M
(s)
0 , and experiences Markovian

mode transitions depending on the active mode at the last time sample,

P{M0 = m} = Pm
i

P{Mk = m|M (s)
k−1 = o} = Πk (m, o)

With the Markovian transitions completely defined, the IMM algorithm is described in

Table A.3.

We will reference this algorithm as:

[
{x̂(m,s)

k|k , P
(m,s)
k|k }, {L

(m,s)
k }

]
= IMM (FS, FL)

where FS denotes the filter used to estimate the states for each mode, and FL denotes the

filter used to estimate the mode likelihoods and relative probabilities.

A.5 CUSUM

First proposed by Page [50], the CUSUM algorithm is a sequential probability ratio test

which is restarted as long as the decision taken is H0. Page suggested (and it was later
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proven, [43,59]) that zero is the optimal lower bound if the goal is to reject the null hypothesis.

Using the notation from [8], we denote the log-likelihood ratio of hypotheses as

sk = log
P{H1|zk}
P{H0|zk}

The test statistic for the CUSUM algorithm can then be written as:

tk = (tk−1 + sk)
+

where (x)+ = sup (0, x).

The stopping rule and jump-time is given by,

td = min{k : tk ≥ h}

CUSUM is optimal for simple hypotheses, where the parameter distribution is completely

known, before and after the fault. Since this is not the case in most fault detection scenarios,

a composite hypothesis must be assumed, in which case likelihood marginalization may be

used as in [55].
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Table A.3: Interacting Multiple Model block

Fusion: Using the likelihood from FL, and the state statistics from FS, estimate the local
parameter statistics:

µ
(m,s)
k , P

[
m

(m,s)
k |zk

]
=

µ̂
(m,s)
k|k−1L

(m,s)
k∑

n µ̂
(n,s)
k|k−1L

(n,s)
k

x̂
(s)
k|k = E

[
x

(s)
k |{z

(s)
k }
]

=
∑
m

x̂
(m,s)
k|k µ

(m,s)
k

x̃
(s)
k|k ,

(
x̂k|k − x̂(m,s)

k|k

)
P

(s)
k|k =

∑
m

[
P

(m,s)
k|k + x̃

(s)
k|k

(
x̃

(s)
k|k

)T]
µ

(m,s)
k

Mix: Mode probabilities are adjusted for diffusion through the Πk (. . . ) function:

µ̂
(m,s)
k|k−1 , P

{
m

(m,s)
k |zk−1

}
=
∑
n

π
(mn,s)
k µ

(n,s)
k−1

µ
j|i
k−1 , P

{
m

(j)
k−1|m

(m,s)
k , zk−1

}
=

Πk (j, i)µ
(j)
k−1

µ̂
(m,s)
k|k−1

Reinitialization: The parameter statistics are mixed according to relative mode probabil-
ities:

x̄
(m,s)
k−1|k−1 , E

[
xk−1|m(m,s)

k , zk−1
]

=
∑
j

x̂
(j)
k−1|k−1µ

j|i
k−1

x̃
(mj,s)
k−1|k−1 , x̄

(m,s)
k−1|k−1 − x̂

(j,s)
k−1|k−1

P̄
(m,s)
k−1|k−1 =

∑
j

µ
(j|m,s)
k−1 P

(j,s)
k−1|k−1 + µ

(j|m,s)
k−1 x̃

(mj,s)
k−1|k−1

(
x̃

(mj,s)
k−1|k−1

)T
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B

Expectation Maximization for Multi-Unit Scenarios

B.1 Model

Unit index s = 1, 2, . . . , S

Mode index m = 1, 2, . . . ,M

For each unit s = 1, 2, . . . , S the measurements z
(s)
k , k = 1, 2, . . . ,K are obtained from a

Gaussian mixture:

z
(s)
k ∼ f

(s)(z) =
M∑
m=1

π(s)
m N (z;µm, Cm)

The possible modes (mixtures components) N (z;µm, Cm) , m = 1, 2, . . . ,M are common for

all units but the distributions of these modes
{
π

(s)
m

}N
i=1

within a unit s are different for different

units s = 1, 2, . . . , S.

Data:

Z(s) =
{
z

(s)
k : k = 1, 2, . . . ,K

}
, Z =

{
Z(s) : s = 1, 2, . . . , S

}
Unknown parameters to be estimated:

θ =
{
µm, Cm, π

(s)
m : m = 1, 2, . . . ,M ; s = 1, 2, . . . , S

}

Objective: Given data Z find MLE of θ using EM.
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B.2 Derivation of EM

Define hidden variables (missing data):

a(s) = m ⇐⇒ z
(s)
k ∼ N (z;µm, Cm)

Clearly,

π(s)
m = P

{
a(s) = m

}
and, for a D-dimensional measurement, z(s)

k ,

p
(
z

(s)
k |a

(s) = m, θ
)

= N
(
z

(s)
k ;µm, Cm

)
= (2π)−

D
2 |Cm|−1/2 exp

(
−1

2

(
z

(s)
k − µm

)′
C−1
m

(
z

(s)
k − µm

))

B.2.1 E-step

Let θ[n] − nth EM iterative estimate of θ.

Then

P
{
a(s) = m|z(s)

k , θ[n]
}

=
p
(
a(s) = m, z

(s)
k |θ

[n]
)

p
(
z

(s)
k |θ[n]

)
=

p
(
z

(s)
k |a

(s) = m, θ[n]
)
P
{
a(s) = m|θ[n]

}
∑M

l=1 p
(
z

(s)
k |a(s) = l, θ[n]

)
P
{
a(s) = l|θ[n]

}
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B.2.2 M-step

Calculate the expected log-likelihood to be maximized1

Q(θ) = E

[
ln

S∏
s=1

K∏
k=1

p
(
a(s), z

(s)
k |θ

)
|Z

]

= E

[
S∑
s=1

K∑
k=1

ln p
(
a(s), z

(s)
k |θ

)
|Z

]

=
S∑
s=1

K∑
k=1

E
[
ln p

(
a(s), z

(s)
k |θ

)
|Z
]

=
S∑
s=1

K∑
k=1

E
[
ln p

(
a(s), z

(s)
k |θ

)
|Z
]

=
S∑
s=1

K∑
k=1

M∑
m=1

P
{
a(s) = m|z(s)

k , θ
}

ln p
(
a(s) = m, z

(s)
k |θ

)
=

S∑
s=1

K∑
k=1

M∑
m=1

P
{
a(s) = m|z(s)

k , θ[n]
}

ln p
(
a(s) = m, z

(s)
k |θ

)
=

S∑
s=1

K∑
k=1

M∑
m=1

P
{
a(s) = m|z(s)

k , θ[n]
}

× ln
(
p
(
z

(s)
k |a

(s) = m, θ
)
P
{
a(s) = m|θ

})
(B.1)

Constraints:
M∑
m=1

P
{
a(s) = m|θ

}
= 1, s = 1, 2, . . . , S (B.2)

1

Replace P
{
a(s) = m|z(s)

k , θ
}

by P
{
a(s) = m|z(s)

k , θ[n]
}

.
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Form the Lagrangian:

L(θ) = Q(θ) +
S∑
s=1

λs

(
1−

M∑
m=1

P
{
a(s) = m|θ

})

=
S∑
s=1

K∑
k=1

M∑
m=1

P
{
a(s) = m|z(s)

k , θ[n]
}(

ln (2π)−
D
2 − 1

2
ln |Cm|

−1
2

(
z

(s)
k − µm

)′
C−1
m

(
z

(s)
k − µm

)
+ lnP

{
a(s) = m|θ

})
+

S∑
s=1

λs

(
1−

M∑
m=1

lnP
{
a(s) = m|θ

})

=
S∑
s=1

[
K∑
k=1

M∑
m=1

P
{
a(s) = m|z(s)

k , θ[n]
}(

ln (2π)−
D
2 − 1

2
ln |Cm| −

1
2

(
z

(s)
k − µm

)′
C−1
m

(
z

(s)
k − µm

)
+ lnP

{
a(s) = m|θ

})
+ λs

(
1−

M∑
m=1

lnP
{
a(s) = m|θ

})]

where λs, s = 1, 2, . . . , S - Lagrangian multipliers

Now make ∂L(θ)
∂θ = 0 to get θ[n+1] as follows

For µm, m = 1, 2, . . . ,M

∂L(θ)
∂µm

=
S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}(
−1

2
∂

∂µm

(
z

(s)
k − µm

)′
C−1
m

(
z

(s)
k − µm

))

=
S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}
C−1
m

(
z

(s)
k − µm

)
= 0

gives
S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}
C−1
m µm =

S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}
C−1
m z

(s)
k

which yields the next iteration µ
[n+1]
m for µm:

µ[n+1]
m =

∑S
s=1

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}
z

(s)
k∑S

s=1

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}
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For Cm, m = 1, 2, . . . ,M

∂L(θ)
∂Cm

=
S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}(
−1

2
∂

∂Cm
ln |Cm| −

1
2

∂

∂Cm

(
z

(s)
k − µm

)′
C−1
m

(
z

(s)
k − µm

))

=
S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}(
−1

2
C−1
m +

1
2
C−1
m

(
z

(s)
k − µm

)(
z

(s)
k − µm

)′
C−1
m

)
(B.3)

= 0

gives

S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}
C−1
m =

S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}(

C−1
m

(
z

(s)
k − µm

)(
z

(s)
k − µm

)′
C−1
m

)

S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}
Cm =

S∑
s=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}(

z
(s)
k − µm

)(
z

(s)
k − µm

)′
which yields the next iteration C

[n+1]
m for Cm:

C [n+1]
m =

∑S
s=1

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}(

z
(s)
k − µ

[n+1]
m

)(
z

(s)
k − µ

[n+1]
m

)′
∑S

s=1

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}

For π(s)
m , s = 1, 2, . . . , S, m = 1, 2, . . . ,M

∂L(θ)
∂ lnP

{
a(s) = m|θ

} =
K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
} ∂ lnP

{
a(s) = m|θ

}
∂P
{
a(s) = m|θ

} − λs
∂P
{
a(s) = m|θ

}
∂P
{
a(s) = m|θ

}
=

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
} 1
P
{
a(s) = m|θ

} − λs∂P {a(s) = m|θ
}

∂P
{
a(s) = m|θ

}
= 0

gives

P
{
a(s) = m|θ

}
=

1
λs

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}

(B.4)
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To get λs plugging in (B.4) into the constraint (B.2)

M∑
m=1

P
{
a(s) = m|θ

}
=

1
λs

M∑
m=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}

= 1

gives

λs =
M∑
m=1

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}

Then

P
{
a(s) = m|θ

}
=

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}

∑M
m=1

∑K
k=1 P

{
a(s) = m|z(s)

k , θ[n]
}

=
1
M

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}

which is the next iteration π
(s)[n+1]
i for π(s)

m :

π(s)
m

[n+1] =
1
M

K∑
k=1

P
{
a(s) = m|z(s)

k , θ[n]
}

Note that π(s)[n+1]
i depend directly only on data Z(s) and indirectly on Z\Z(s) through θ[n].

Thus, even though Z\Z(s) is not directly related to the distribution π
(s)
m , it provides information

for estimating π(s)
i through the estimates of the common (coupling) parameters µm, Cm.
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C

Fault Construction Approach

C.1 Introduction

This appendix outlines one of the initial approaches taken to address fault detection in large-scale

systems with similar units.

The principal idea was to perform online model identification using a technique similar to

EMA [37, 41, 42], from which an error model set is generated. This approach requires the user to

parametrically define a set of possible errors, or a set of error-generation functions which could

be tested against. For example, partial and complete sensor or actuator failures can be easily

simulated through very basic manipulation of the observation and input matrices in a state-space

system.

After exploring this mechanism, it was decided that the limitation of this approach were unre-

alistic and unlikely to perform well in real-world scenarios.
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C.2 Representation

A Gaussian Mixture, f (z), is a convex combination of Gaussian distributions:

N (z|µ,Σ) =
1

|2πΣ|
1
2

· exp
[
−1

2
(z − µ)TΣ−1(z − µ)

]
fi (z) = N (z|µi,Σi)

f (z) =
M∑
i=1

aifi (z)

where
∑M

i=1 ai = 1.

C.3 Probability Estimation

The likelihood that a particular measurement, z, came from component i is:

L (z|mi) =
1

|2πΣi|
1
2

· exp
[
−1

2
(z − µi)TΣ−1

i (z − µi)
]

(C.2)

Each measurement arrives from one of the M Gaussian components. It is possible to make a

hard decision as to which component a measurement originates from by picking the component with

the largest likelihood as given in Eq. C.2. Alternately, a soft decision may be made by normalizing

the likelihoods across all components:

P (mi|z) =
L (z|mi)∑M
i=1 L (z|mi)

Since each measurement may come from a different component, and we assume that the mixture

is fixed, combining the soft-decisions for multiple measurements, Z = [z1 . . . zN ], we get:

P (mi|Z) =
1
N

N∑
k=1

L (zk|mi)∑M
i=1 L (zk|mi)

(C.4)
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C.4 Recursive Probability Update

By observation, we can rewrite the sample mean calculation in recursive form:

x̄k =
k − 1
k

x̄k−1 +
1
k
xk

Applying this to the probability estimate, Eq. C.4, yields

γ =
k − 1
k

P (mi|zk) = γP (mi|zk−1) + (1− γ)
L (zk|mi)∑M
i=1 L (zk|mi)

C.5 Multiple Model Estimator

Using the idea we presented above, we can write a multiple model estimator based on the AMM

that assumes (in the model probability update phase) a mixture rather than a single model being

true. This should give us a much better estimate of the mixture probabilities.

L
(i)
k , p

[
z̃

(i)
k |m

(i)
k , z

k−1
]
.=

exp
[
−1

2(z̃(i)
k )T (S(i)

k )−1(z̃(i)
k )
]

|2πS(i)
k |

1
2

(C.7a)

α
(i)
k =

k − 1
k

α
(i)
k−1 +

1
k

L
(i)
k∑M

j=1 L
(j)
k

(C.7b)

We will refer to a multiple model estimator derived from an AMM estimator with the above

probability update equations as the Expected Mixture Multiple Model Estimator (Eem3). In re-

ality, this estimator is not expected to perform well for error detection. However it is useful as a

component of the two-stage fault detector described next.
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C.6 Blended Estimation

We can use the results of the EM3 estimator as the first stage of a “hierarchical” estimator.

The second stage uses the resulting relative model probabilities in the EM3 estimator to create a

“blended” model, in a fashion similar to that of the EMA estimator [37,41,42].

This blended model is then used to generate an error set. The blended and error models form

the model set in the second stage of filtering using an interacting multiple model (IMM) algorithm.

We refer to this 2-stage hierarchical estimator as the Blended Estimator (Eb).

C.7 FDD Approach

• The mixture estimation filter is used to identify the model probabilities, which are then used

to design an FDD model set for each time sample. This on-the-fly model set is used for fault

detection.

• A single mixture estimation filter is used that contains a set of models such that the truth is

expected to be contained within (the H0 set). Additional models represent faults. The fault

models are adapted on-line as a result of the changing mixing probabilities of the H0 set.

• In the spirit of EM Gaussian location and covariance updates, a bank of parameter estimators

can be updated based on P (z̃i|θi) for estimator i. This allows us to simultaneously estimate

parameters for multiple modes based on a soft-assignment for which mode the observation

came from.

• SSPRT detection can be performed on H0 using M̂0 and a set of fault models,M1 . . .MM ,

designed around M̂0. For a window length, w, mixing probabilities (Eq. C.7) are computed

using only the last w samples, i.e.,

α
(i,w)
k =

1
w + 1

w∑
n=0

L
(i)
k−n∑M

j=1 L
(j)
k−n

(C.8a)
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This provides a better mixture representation of H1. A bank of SSPRT are then run against

the candidate M̃1’s.
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C.8 GM Experiments

The truth is given by µact(1) for k = 1 . . . a, µact(2) for k = a+ 1 . . . N . Fault sets are designed by

adding pre-specified offsets to the estimated true model.

µides = µest + µioff

µoff =

 1.0 0.0 1.0

0.0 1.0 1.0


The reference models provided to the IMM estimator have the correct covariance and means

given by:

µref =

 1.0 0.0 1.0 2.0 0.0 2.0

0.0 1.0 1.0 0.0 2.0 2.0



C.8.1 Favor Correct H0 Identification

a = 20

Σ2 =

 0.12 0

0 0.12


µact =

 0.5 0.5

0.6 1.4



112



C.8.2 Fault Caused by Deviation From H0

a = 20

Σ2 =

 0.12 0

0 0.12


µact =

 0.6 1.0

0.3 1.5



C.8.3 Large Covariance to Blur Models

a = 20

Σ2 =

 0.322 0

0 0.322


µact =

 0.5 0.5

1.0 1.6


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Figure C.1: Favor Correct H0 Identification

C.9 Results

In Figs. C.1-C.3, models 1-3 are no-fault models for Eem3 and Eimm, with the faults contained

in models 4-6. For the Eb estimator, model 1 is only the no-fault model, since it is a weighted

combination of models 1-3 in the Eem3 estimator.

As can be seen from the results, the EM3 estimator, being a non-interacting model estimator,

responds very slowly in terms of relative likelihoods.

Fig. C.1 shows the truth to be a combination of the three models in our initial set. This can

be seen quite clearly from the Eem3 and Eimm estimators. The Eb estimator uses the combination

discovered by Eem3 to generate the Null Hypothesis model, Model 1. At time k = 20, an error

occurs which is very quickly recognized to be different from the previously assumed combination

- this results in Eb detecting a fault very quickly. While some probability reassignment occurs in

Eimm, the fault still resembles some of the models in the initial set and so no fault detection occurs.

The next scenario (Fig. C.2) is a situation where the fault is of a larger magnitude. It still
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Figure C.2: Fault Caused by Deviation From H0

closely resembles one of the initial models in the set, but the fault is detected by Eb as sudden

deviation from H0. While Eimm detects a change as quickly as Eb, it does not correctly categorize

it as a fault.

The final scenario (Fig. C.3) shows a relatively smaller fault and uses a large process noise

to “blur” the models. In this case, the Eimm estimator performs better, since the new model set

has been enlarged, in a way. The fault is close enough (in a probabilistic sense) to one of the

covariance-blurred fault models, resulting in a quick identification by the Eimm estimator. The Eb

estimator also identifies a fault, but more slowly.

C.10 Conclusion

It is clear that two-stage multiple model estimation has promise, and may be an ideal solution for

some problem domains. However, we are most concerned with fault detection for systems with

similar, correlated units. One of the shortcomings of this approach is that the Eb estimator does

not use the additional information which can be gathered from other units in the system.
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Figure C.3: Large Covariance to Blur Models

Another shortcoming, which is possibly more serious for practitioners, is the need to define

valid models, as well as the possible errors, for the system.
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D

Gaussian Mixture Identification Approach

D.1 Nomenclature

H Hypothesis.

E Estimator.

∆ Distance.

Mo Set of Gaussian mixture components for Ho.

µm The mean of Gaussian component m.

σm The variance of Gaussian component m.

~x Indicates that x is a vector.

p Dimensionality of the Gaussians in a particular model set.

N Number of samples in a single detection simulation run.

R Number of ensembles used in the simulation.

~zr Measurement data for run r.

Td(~z) Test statistic for measurements, ~z.

PFA False alarm rate.

PD Detection probability.

T dFA Threshold for detector d which produces a false alarm rate of PFA.
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D.2 Introduction

Finite mixture models have been popularly used to model complex probability distributions. One

particularly important mixture model is the Gaussian mixture density, which utilizes the easily

represented and versatile Gaussian distribution. A Gaussian mixture model can be used to represent

any given probability density with an arbitrary degree of accuracy, if enough mixture components

are used [60].

As part of the evaluation of the suitability of Gaussian mixtures in representing the overall

parameter distribution in a building, some time was spent in studying the properties of different

GM-identification mechanisms. The direct GM-identification approach was ultimately abandoned

in favor of the algorithms presented in the main body of this dissertation (for the reasons mentioned

in D.8), however this appendix outlines the direction of the research.

D.3 Problem Statement

In the following treatment, we assume the following: There are N samples in a run of data,

[z1 . . . zN ]. For a Gaussian white additive noise (GWAN) scenario, a typical set of hypotheses is

H0 : zk ∼ N (µ0, σ
2
0) (D.1a)

H1 : zk ∼ N (µ1, σ
2
1) (D.1b)

Unless otherwise specified, under H0, zk ∼ N (0, 12).

For Gaussian Mixture scenarios (GMIX), we formulate the problem as
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H0 : zk ∼
∑
m∈M0

amN (µm, σ2
m) (D.2a)

H1 : zk ∼
∑
m∈M1

amN (µm, σ2
m) (D.2b)

where M0 and M1 are sets containing the Gaussian mixture components of each hypothesis,

respectively. Unless otherwise specified, the null hypothesis, H0 contains a single component which

is distributed as above for the WAN case (i.e. N (0, 12)).

The likelihood of a mixture at a point, zk, is given by:

L(zk; ~µ, ~σ2) =
1
M

M∑
m=1

am√
2πσ2

m

· exp
[
− 1

2σm
(x− µm)2

]
(D.3)

So, the likelihood that a single measurement came from a particular hypothesis Ho, or equiva-

lently, a particular model set, Mo, with Gaussian models m ∈Mo, each of dimension p, is:

Lo (z) =
M∑
m=1

am ·
1

(2π)
1
p |Σ|

1
2

· exp
[
−1

2
(z − ~µm)T (Σm)−1(z − ~µm)

]
(D.4)

D.3.1 Threshold Generation

• R runs, each with N samples, are generated for the H0 model.

• Each detector, d, is fed the data and produces a single test statistic number for run r, Td(~zr).

• Problematic values such as Inf or NaN are removed and replaced with the average threshold

for that detector1.

• Td(~zr) is sorted (for each detector) in ascending order, and T dFA is calculated for detector d

at false alarm rate PFA by selecting the Td(~zr) located at (1− PFA)R.

1So far, Inf and NaN are very rare, but can appear once or twice in 10,000 iterations when using the EM
algorithm in a GLRT estimator
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D.3.2 Detection

• R runs, each with N samples, are generated for the H1 model.

• Each detector, d, is fed the data and produces a single test statistic number for run r, Tr,d.

• Problematic values such as Inf or NaN are removed and replaced with the average test statistic

for that detector.

• The portion of samples that exceed T dFA for a particular detector, d, is calculated for each

false alarm rate, PFA. This is the detection probability, PD.

Figure D.1: Examples of Gaussian Mixtures

D.4 Distance Measures

In order to better evaluate detector performance, we would like to be able to establish how difficult

a particular detection problem is. While many measures exist for the standard Gaussian white
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additive noise scenario (Eq. D.1), a Gaussian mixture scenario (Eq. D.2) poses a problem.

D.4.1 Deflection Coefficient

The deflection coefficient for a detector, d, is given by:

∆DC(~x) =
(E[Td(x|H1)]− E[Td(x|H0)])2

var[Td(x|H1)]
(D.5)

In GWAN scenarios, ∆DC completely describes detector performance - the larger the deflection

coefficient, the better the performance.

D.4.2 Simple Deflection Experiment

A 2G-Mixture was generated:

H0 :xk ∼ N (0, 12) (D.6a)

H1 :xk ∼ 0.5N (−µ, 12) + 0.5N (µ, 12) (D.6b)

and µ was varied from 0→ 2 (giving ∆DC = 0→ 4). See Fig. D.4.2 for results.

D.4.3 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence for a distribution is given by:

∆KL (f(z)|g(z)) =
∫ ∞
−∞

f(z) log2

f(z)
g(z)

dz (D.7a)

It can be understood, from an information theoretic perspective, to be the expected extra

encoding length required to represent a sample distribution (f(z)) using a code based on a different

distribution (g(z)). ∆KL is always positive (f(z) and g(z) represent probability distributions), and

never equal to zero unless f(z) ≡ g(z).
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Figure D.2: HistOverlap experiment

It can be noted from Eq. D.7 that the KL distance is not symmetric, and may be

infinite if there is incomplete coverage of f(z) by g(z) (if g(z) = 0 at some zk, such

that f(z) 6= 0). For Gaussians in particular, g(zk) > 0 ∀k 6= ± inf.

This makes sense, since no amount of extra encoding can represent a symbol not in

the original alphabet (assuming Huffman-style encoding).

Implementation

Since there is no closed form for Eq. D.7, numerical methods must be applied to solve it:

∆KL (f(z)|g(z)) =

B
∆t∑

k=−A
∆t

f(k∆t) log2

f(k∆t)
g(k∆t

)∆t (D.8a)
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Figure D.3: f(z) log2
f(z)
g(z)

for different mixtures

D.5 Detectors

D.5.1 Random Detector

In order to perform a basic sanity check of the detection framework, we include a random detector:

Trnd(~x) ∼ U(0, 1) (D.9)

The random detector replaces the chance-line in our plots. It adds an insignificant computa-

tional burden to use the random detector (less than 0.1% overhead in most cases).

D.5.2 Matched Filter

The matched filter assumes that the signal is known. In the usual formulation, with the noise being

white and uncorrelated, the matched filter detector is given by:
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Tmf (~x) =
1
N

N∑
k=1

xksk (D.10)

It correlates the data with the signal. If the noise is orthogonal to the signal (such as zero-mean

uncorrelated noise), then this is an optimal detector for the single-Gaussian scenarios.

D.5.3 Estimator-Correlator

If we assume no information at all, the best we can do for the Estimator-Correlator for a set of

non-GM hypotheses is the energy detector (see next section). For a set of GM hypotheses, the

Estimator-Correlator is equivalent to the GLRT detector2 (see below).

D.5.4 Energy-Detector

This detector simply measures the energy present in the signal. It is ideal for detection without

any information about the signal for a WAN hypotheses (Eq. D.1).

TE(~x) =
1
N

N∑
k=1

x2
k (D.11)

While the energy detector coincides with the Estimator-Correlator for the WAN-Hypothesis,

the energy of H1 does not necessarily have more energy than H0, and so applying this detector to

such a scenario could cause it to perform worse than the chance line (or Random Detector).

We will denote the energy of a signal as E(xk).

2Or is it?
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D.5.5 H̄0-Detector

Another method of detecting the presence of a signal in the absence of any information on H0 is

to detect if H0 is not true:

L(x;µ, σ) =
1√

2πσ2
· exp

[
− 1

2σ
(x− µ)2

]
(D.12a)

TH̄0
(~x) =

1
N

N∑
k=1

log
[

1
L(xk, µ0, σ2

0)

]
(D.12b)

Ultimately, for H0 ∼ N (0, 12), this translates into:

TH̄0
(~x) ∝ 1

N

N∑
k=1

log

 1

exp
[
−x2

2σ

]
 (D.13a)

TH̄0
(~x) ∝ 1

N

N∑
k=1

x2
k (D.13b)

Since this statistic is essentially equivalent to that of the Estimator-Correlator, the performance

is identical. For this reason, we no longer consider the H̄0-Detector.

D.5.6 Matched PDF Detector

For a Gaussian Mixture, we formulate the Matched PDF Detector as a matched filter that has

perfect knowledge of the mixture densities (i.e. the PDF), but not the actual samples drawn. Since

the GM scenarios do not have an additive noise component (see Eq. D.2), providing the actual

signal is equivalent to providing the correct estimation decision.

The H1 likelihood for the matched PDF filter is given by:
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L (x) =
M∑
m=1

amN (µm, σm) (D.14a)

M∑
m=1

am = 1 (D.14b)

L(x;µ, σ) =
1√

2πσ2
· exp

[
− 1

2σ
(x− µ)2

]
(D.15a)

Tpdf (~x) =
1
N

N∑
k=1

log

[∑M
m=1 amL(xk;µm, σm)

L(xk, µ0, σ2
0)

]
(D.15b)

where the mixture densities, amN (µm, σm) are given.

D.5.7 Generalized Likelihood Ratio Test

The GM-GLRT detector uses the likelihood function of the Matched PDF Detector given in Eq.

D.14, but is not given the mixture densities. The Expectation-Maximization algorithm (EM) is

used to estimate the probabilities, means and variances. Only the model order is given.

Performance of GLRT Detector

The performance of the GLRT detector is especially bad, in some cases (Sec. D.6.3) approaching

that of the random detector. This makes sense, since H0 = N (0, 12) can be represented under H1

by appropriate choice of µ, σ2, and a, for example, for a 2-G mixture:

µ = [0.0, 0.0] σ2 = [1, 1] a = [∗, ∗] (D.16a)

µ = [0.0, ∗] σ2 = [1, ∗] a = [1, 0] (D.16b)

So, while generating the thresholds, the GLRT detector computes L(H1)
L(H0) , which will likely be
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greater than 1, since the estimated Gaussian mixture is usually closer to the sample distribution

than the actual generating distribution (for example, if the sample data drawn from N (0, 12) is

actually distributed as N (−0.12, 1.172)).

This situation is exacerbated if the separation between H0 and H1 is small as seen in Sec. D.6.3.

We can expect the GLRT detector to perform badly for scenarios where H1 ≈ H0. The maxi-

mum likelihood estimate of H1 is H0 under H0, and H1 under H1. Essentially, the detector statistic

measures the distance of H1 from H0.

Furthermore, the fewer samples available, the farther the maximum likelihood estimate for Ĥ1
H0

is from the truth. This means that the test statistic generated under H0 is unnaturally high.

D.5.8 Generalized Likelihood Ratio Test - Probability Estimation Only

The GLRTP detector assumes that the locations and variances of the Gaussians in the mixture

composing H1 are known, and only the mixing probabilities are unknown. This formulation of

the GLRT detector is closer to the multiple-model detection problem, since we generally know the

feasible model-space for H0 and H1.

As can be seen from the scenarios run, this version of GLRT performs better than all the other

detection schemes listed except for the clairvoyant detectors (the Matched Filter and Matched PDF

Filter).

The probabilities are estimated by applying soft assignments to each sample. The mixing

probability for component q, Pq, is given by3:

Pq =
1
N

N∑
k=1

L
(
x;µq, σ2

q

)∑M
m=1 L (x;µm, σ2

m)
(D.17a)

3Is this intuitive? Or does is need some proof or reference? What is this called?
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D.6 Results

D.6.1 Scenario: Framework Test

The signal, noise, and observation (sk, nk, and xk, respectively) are given by:

sk = A

nk = N
(
0, 12

)
H0 : xk = nk

H1 : xk = sk + nk

where A = 0.5

See Fig. D.6.1 for results.

Figure D.4: FrameTest experiment

128



D.6.2 Scenario: GM Baseline

The signal, noise, and observation (sk, nk, and xk, respectively) are given by:

sk ∼
M∑
m=1

amN (µm, σ2
m)

nk = N
(
0, 12

)
H0 : xk = nk

H1 : xk = sk

where µ = [−0.5, 1.5], σ2 = [0.35, 0.35], and a = [0.5, 0.5]

See Fig. D.6.2 for results.

D.6.3 Experiment: GM Baseline With Low-Energy Signal

The above experiment is repeated with a signal containing less energy than the noise. This high-

lights the poor performance of Energy-detector schemes for a test that is not in the form:

H0 : xk = nk

H1 : xk = nk + sk

For this scenario, µ = [−0.25, 0.25], σ2 = [0.25, 0.25], and a = [0.5, 0.5]

See Fig. D.6.3 for results.

D.6.4 Scenario: GM Baseline With Low-Energy Signal - 25 samples

µ = [−0.25, 0.25], σ2 = [0.25, 0.25], and a = [0.5, 0.5]

See Fig. D.6.4 for results.
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D.6.5 Scenario: GM3 - 25 samples

µ = [−1.5,−0.5, 1.5], σ2 = [0.35, 1, 0.35], and a = [0.2, 0.3, 0.5]

See Fig. D.6.5 for results.

D.7 GM-EM Estimation

Gaussian Mixture Expected Mode Estimation can be performed in the hybrid estimation framework

in batch mode. Initially, we will assume that there is no modal jump during the period in question.

To begin, the states are estimated with the assumption that all models are equiprobable. This

means that the states for each model are reinitialized at the beginning of each cycle using the

mixture probabilities, but the probabilities are not allowed to change during the course of a single

iteration. After the iteration is complete, EM is run on the batch of data, using N (z̄K , SK) for

each model as the Gaussian distributions to mix.

The cycle is rerun using the new model probabilities (i.e. the mixture probabilities as identified

by EM). The new observation predictions result in a new N (z̄K , SK) for each model.

This process is iterated until the probabilities (and hence, observations) converge.

D.8 Conclusion

Problems:

• Current formulation is batch

• Current formulation assumes no mode jump

• Since the model probabilities cannot change within an iteration, there is an increased chance

that some models will go unstable. Any model whose state diverges will impact the per-

formance of all other models (since the state cannot be removed by decreasing it’s relative

probability). In order to reduce the possibility of divergence, the probabilities can be allowed
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to change for the first few samples on the first iteration. An uninformative prior can be used,

i.e. Π = 1
M 1̄.

Benefits:

• This technique can represent mixtures very well.

• If the initial poor estimate of mixing probabilities does not cause the estimator to go unstable,

then better estimation of the mixture probabilities should not do so.

131



Figure D.5: GM2 experiment
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Figure D.6: GM2-NoE experiment
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Figure D.7: GM2-25 experiment
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Figure D.8: GM3-25 experiment
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