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Abstract 

 
This manuscript describes a methodology to combine environmental models, acoustic signal 

predictions, statistical detection models and operations research to form a framework for 

calculating and communicating performance.  This methodology has been applied to undersea 

target detection systems and has come to be known as Performance Surface modeling. The term 

Performance Surface refers to a geo-spatial representation of the predicted performance of one 

or more sensors constrained by all-source forecasts for a geophysical area of operations. Recent 

improvements in ocean, atmospheric and underwater acoustic models, along with advances in 

parallel computing provide an opportunity to forecast the effects of a complex and dynamic 

acoustic environment on undersea target detection system performance. This manuscript 

describes a new process that calculates performance in a straight-forward ‘sonar-equation’ 

manner utilizing spatially complex and temporally dynamic environmental models. This 

performance model is constructed by joining environmental acoustic signal predictions with a 

detection model to form a probabilistic prediction which is then combined with probabilities of 

target location to produce conditional, joint and marginal probabilities. These joint and marginal 

probabilities become the scalar estimates of system performance. This manuscript contains two 

invited articles recently accepted for publication. The first article describes the Performance 

Surface model development with sections on current applications and future extensions to a more 

stochastic model.  The second article is written from the operational perspective of a Naval 

commanding officer with co-authors from the active force.  Performance Surface tools have been 

demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic 

Anti-Submarine Warfare (ASW) Center (NOAC) in support of recent naval exercises. The model 

also has recently been a major representation for the ‘performance’ layer of the Naval 

 viii



 ix

Meteorological and Oceanographic Command (NAVMETOCCOM) in its Battlespace on 

Demand strategy for supporting the Fleet with oceanographic products. 

 

Keywords: Underwater Acoustics, Anti-Submarine Warfare, Performance Surface,  Sonar 

Performance, Statistical Performance Modeling 

 
 



 

Chapter 1 Introduction 
 

Background 
A core mission for the U.S. Navy is to conduct Anti-Submarine Warfare (ASW). The motivation 

for this work originated from a report requested by Congress in 1997 to assess the current 

capability of the U.S. Navy to perform the ASW mission.  To prepare this assessment many data 

sources that impact the Navy’s ASW program were gathered. One such source was the Ship 

ASW Readiness/Effectiveness Measurement (SHAREM) exercise program.  SHAREM exercises 

are fleet events conducted by Commander Surface Warfare Development Group in forward areas 

to assess the performance of Navy systems against realistic targets in realistic environments. A 

set of these SHAREM exercises, termed ‘Site-Specific SHAREM Exercises’, were supported by 

the Naval Oceanographic Office (NAVO) with co-incident environmental and transmission loss 

measurements. While results from these exercises produced a quantitative field measured 

accounting of ASW performance, there was little connection made to system and/or 

environmental factors which could be used to explain past and predict future overall ASW 

performance. This inability to effectively predict overall ASW performance over operationally 

significant spatial and temporal scales led to an ONR sponsored research effort (McDowell and 

Gough, 2000) which initiated this research. The objective was to develop a framework to connect 

environmental variability to ASW performance in ways that could account for unexpected 

detection results. 

 

From the tactical and operational point of view, the single most critical metric of sonar 

performance is Range of Detection (Koopman, 1946), meaning the horizontal distance from the 
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sonar at which the target becomes apparent as a target and is correctly declared a target. This 

metric is a random variable that depends on many factors, some deterministic and measurable, 

some deterministic and immeasurable, and some random. The central problem of sonar 

performance prediction has been to convert a heterogeneous collection of specialist’s models 

describing sources of acoustic energy in the ocean environment, acoustic energy propagation in 

the ocean, ocean variability, ocean boundary variability, sonar apertures, signal processing, 

machine and human decision processes into an expression of Expected Range of Detection, at 

least, and at best a complete probability distribution of detection conditional on range.  Interim 

stages of analysis produce estimates of probability of detection conditional on all the variables 

faced by the sonar engineer, the tactician, and the strategic planner. 

 

The advantage of the methodology developed under this project is that it provides a theoretical 

framework for assessing a variety of assertions about sonar performance and its relationship with 

the environment, tactics, sonar design and employment, and many other issues. A simple model 

of the framework is depicted in Figure 1. 

 

 
 
  Figure 1 Performance Model Framework 
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A typical Naval Tactical Decisions Aid (TDA) system (represented in the upper row middle box 

of Figure1 as ‘Acoustic System Model’), takes as input and Environmental Model (represented 

by the upper row right box) of ocean surface, water column sound speed, and bottom properties. 

Traditionally, the Acoustic System Model or TDA consists of acoustic models, some embedded 

environmental databases, and system signal processing models, and is used to make predictions 

of point-to-point sonar performance in terms of Signal Excess. The new concept was to take a 

step beyond, utilize the accepted TDA models to produce a large number of these predictions 

over the entire operational area and temporal time scale, combine these with a probabilistic 

detection model, a probabilistic target location distribution, and conditional probability methods 

in order to produce a model of ASW performance that carries the full range of detection 

probability over the entire operational space.  In the time since the work began notable advances 

have been made in oceanographic forecast models, acoustic propagation models, statistical 

ambient noise climatology, and TDA computational speed.  These advances have made the 

computation of Performance Surface estimates not only operationally viable but better able to 

capture the complex and dynamic nature of the acoustic ASW problem. 

 

Description of Embedded Articles 

This manuscript contains two invited journal articles recently accepted for publication in the 

Journal of Underwater Acoustics. The two articles are founded on Performance Surface as a tool 

that can be used to provide operational insight for Navy commanders conducting ASW 

operations.  This performance model, in its present form, was developed by the author, however 

both articles have valued contributions by co-authors from Navy command institutions, Navy 
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active force, and industry. The first article “Performance Surface: Development, Current Use and 

Future Improvements” by McDowell, Gough, Miller, and Keenan, describes the model 

development, some of its output, puts in the context of its intended usage, and introduces options 

for future extension. The second paper “Performance Surface as a Tool for Increasing ASW 

Proficiency” by Miller, McDowell, and Holton is written from a Navy operational perspective. 

CDR Anthony Miller, a Ph.D. graduate of the Naval Post Graduate School, has served as the 

commanding officer for the Naval Oceanography ASW Center. This paper describes ways that 

his Naval Oceanography ASW Team (NOAT) officers have used this modeling tool to provide 

strategic guidance to Fleet decision-makers in both experimental exercises and real-world events. 

 

Following this introduction, Chapter 2 defines Performance Surface, describes the inputs, 

methodology, and examples of typical results.  Chapter 3 contains the invited journal article 

“Performance Surface: Development, Current Use and Future Improvements”.   This paper 

describes the early development and motivation for this research. Various Performance Surface 

types are described. A small set of current uses are presented. Finally a future extension of this 

methodology is described where a stochastic approach of replacing each component of the sonar 

equation with probability density functions is presented.  Chapter 4 contains the second article, 

“Performance Surface as a Tool for Increasing ASW Proficiency”.  This paper is based on uses 

of Performance Surface products from the perspective of a Navy officer providing guidance of 

high level operational commanders.  Operations Research can be described, in part as providing 

quantitative options or guidance for evaluating alternative courses of action (COAs) in complex 

environments (Moores and Kimbal, 1951).  Performance Surface estimates are presently used to 

evaluate various operational scenarios such as optimal allocations of sensors, sensor placement, 
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and optional routing to name a few. Examples of operational uses are discussed is this paper. 

Strengths and weaknesses are presented.  Chapter 5 summarizes with, a brief steps by step 

description of the method, followed by a discussion of the impact of the work from an 

operational and research perspective.  Future and on-going work resulting from this research is 

discussed.       
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Chapter 2 Method 

 

Performance Surface Overview 

Performance Surface is a geo-spatial representation of relative performance of a sonar system. 

The process begins, depicted graphically in Figure 2, with an environmental model of the ocean. 

An adequate model of the ocean environment consist of bathymetry, geophysical bottom 

properties, water column properties that effect acoustic propagation. Additionally, 

characterization of the surrounding signal interferers, ambient noise and clutter are required.  

 
Figure 2 Combining Environmental Parameters (a) bathymetry,(b) sound velocity, (c) noise, and 
(e) system parameters, with , (d) Sound Propagation and System Models to predict, (f) Plan View 
of SNR(,r) and (g) Vertical Depth View of SNR(z,r) 
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The current Navy Tactical Decision Aid (TDA) systems perform the function of combining 

environmental models with system parameters to calculate estimates of Signal-to-Noise ratio 

(SNR).  Panel (f) of Figure 2 represents SNR in a top-down (plan view) of SNR at a single depth, 

as a functions of range (r), and radial bearing ().  Panel (g) of Figure 2 depicts a depth view of 

the east-looking radial and west-looking radial showing SNR as a function of range (r), and 

depth (z). 

 

 To represent performance well, care must be taken in preparing an accurate characterization of 

the environmental factors. The Naval Oceanographic Office and the Naval Research Laboratory 

have devoted much effort and attention to developing and improving these models and databases. 

Because the environment is such an important component of the process, the next section focuses 

on some of these models and their potential impact on the resulting performance estimates. 

 

Environmental Modeling 

Fundamental to this technique is having an accurate representation of the underlying 

environmental conditions.  Initially, the oceanographic model used to characterize the sound 

velocity structure over a significantly sized operational area (i.e. 100 X 100 nmi) was the 

Modular Ocean Data Assimilation System (MODAS) developed by Fox et al. (2001). MODAS 

is a global model that assimilates in situ salinity and temperature profiles, sea surface height 

(SSH) and sea surface temperature measurements to construct synthetic profiles and predict the 

subsurface. This model performed best when the area was either easy to characterize with static 

climatology or when extensive oceanographic measurements were made.  Figure 3 shows an area 
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with a spatially variable environment. The dots indicate the places where performance 

predictions are calculated. This level of performance sampling is far greater than that typically 

done by on-scene acoustic analysts. However the spatial complexity indicated by the bathymetry 

alone, as depicted here with the contour overlays, suggests a potential for performance variations 

that could be missed with the standard analysis. 

 

 
Figure 3 Oceanographic area with varying bathymetry shown by contours (and shades of blue) 
with overlay points to indicate sonar performance sampling positions 
 
 

MODAS predictions are made routinely over much larger areas, however, in this example 16 

days of sound speed field estimates are used to calculate performance for an arbitrary sonar 

system.  The MODAS model is a climatology-type model, but the assimilation of in-situ 

measurements of sea surface height (SSH), sea surface temperature (SST), and/or any available 

oceanographic profile measurements provide a benefit over static historical climatology 
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databases. With these inputs a more dynamic picture of the ocean environment emerges. 

In this example SSH and SST measurements were incorporated.  

 

The resulting modeled sound speed fields show significant variability across the geographic area 

as indicated by Figure 4 and Figure 5. Both graphics show the spatial extent of a changing ocean 

sound velocity over a 16 day period in winter season where the major changes occur in the 

middle area near land. The most significant changes occur from February 17 to the February 22.  

Figure 4 shows sound velocity in meters at a shallow water depth of 20 meters.  

 
Figure 4 MODAS predicted sound speed at 20 meter depth over 16 days (2/16 – 3/03). 
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Figure 5 is a similar depiction of sound velocity for a water depth of 130 meters where again the 

graphics show oceanographic changes in sound velocity over the 16 day period of the 

experiment.  It can be noted that the major dynamics are seen about latitude 37 N for both the 

shallow 20 meter, and deeper 130 meter depths. 

 

 
Figure 5 MODAS sound velocity predictions at 130 meter depth over 16 days(2/16 – 3/03). 
 
 
As one might suspect, the resulting acoustic predictions arising from this environmental model 

vary greatly over this region.   Figure 6 and Figure 7 show plan views of the SNR vs. Radial at 

the corresponding depths of 20 and 130 meters shown earlier.  Inspection of these results indicate 

that the environment supports good detection results for the  sensor against a target operating at 
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20 meters in the northern portions of the region. Performance degrades somewhat at the mid 

latitudes then further degradation as the target moves south still operating at shallow depths.  

While these depictions can mislead the analyst, in that at this point only SNR is presented, they 

can however communicate a relative spatial effect.  

 

Figure 6 SNR vs. Radial for Target at 20 meter water depth 
  
 
 
Figure 7 shows a similar view for the performance against a deep target operating at 130 meters. 

Notice that the performance story has changed. The target now operating in the northern area is 
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less detectable than before.  SNR is relatively better and more consistent in the middle portions 

of the exercise area, although performance over the entire area, as measured only by SNR, has 

also degraded compared to the previous shallow target.   

 

 
Figure 7 SNR vs. Radial for Target at 130 meter water depth 
 
 

To get a better sense of the environmental effects on acoustic detection sensors, it is helpful to 

use depictions that show performance over depth. Figure 8 is one such graphic. As described 

earlier in Figure 2, a depth view is created by taking a cut across the mid latitude for each radial 

and plotting the depth extent which shows a view from the center to the east and from the center 
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to the west.  This view captures the effect that causes the ‘perceived good’ performance for the 

sensor operating against the shallow target in the north. There appears to be a small surface duct 

present in this region resulting in trapped energy, long ranges and high SNR. However, counting 

on this level of performance which is implied by the SNR or TDA Signal Excess radial plots can 

be problematic for two reasons. One reason is climatological models like MODAS can easily 

miss-represent the oceanographic dynamics of the upper water column. A second reason for 

caution is the statistical nature of sonar performance. Taking the next steps in creating 

Performance Surfaces by applying a statistical detection model gives additional insight to 

address some of these issues.  

 
Figure 8 SNR Depth View Multiples over Computational Region 
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In the radial plan-view graphics (Figure 6 and 7) the depths of these SNR radials are chosen to 

represent where a target would likely operate.  These SNR depictions are typical of single-point 

performance runs that an ASW analyst would make.  However due to time constraints or the 

potential lack of awareness for the spatial variability only a handful of these predictions would 

be generated.   Performance changes due to the underlying dynamic environment which could be 

used to inform maneuver tactics can easily be lost. Increased sampling over the geographic area 

as depicted in Figures 6, 7, and 8 provide a more complete picture of the changing environment 

ant its effect on relative performance. 

Recent Improvements in Environmental Modeling 

The Performance Surface methodology to this point demonstrates the potential impact of a 

dynamic ocean environment and the need to adequately sample this environment.  Before 

moving to the next step in the process, mention should be made of the improved oceanographic 

models currently available. The Navy Coastal Ocean Model (NCOM), based on the Princeton 

Ocean Model (POM) (Blumberg and Mellor, 1983), developed by Barron et al. (2002) at the 

Naval Research Laboratory is a physics-based ocean model that provides 1/8 degree resolution 

forecast predictions. These innovations that capture spatial and temporal dynamics of the ocean 

sound speed structure at scales of tactical significance have made Performance Surface products 

increasingly important. Figure 9 shows an example sound speed field from NCOM that 

illustrates the detailed structure that can be routinely modeled and forecast. 
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Figure 9 Example NCOM sound speed field. Color scale is sound speed in m/s. 
 
 

Gridded calculations of Performance 

Traditional Navy performance models are used to calculate single point-to-point signal excess 

estimates in the standard sonar equations for passive and active systems 

                                       Passive:  SNR = S – NL + DI = SL –TL –NL + DI                               (1) 

                                      Active:  SNR = SL – TL1 + TS – TL2 – (RL + NL) + DI                      (2) 

Where:  

SNR = Signal-to-Noise Ratio,  

S = Signal Level   
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NL = Noise Level   

DI = Array Gain   

SL = Source Level 

TL = Transmission Loss  

TL1 and TL2 = Transmission Loss to and from the Target for Active SONAR 

TS = Target Strength 

RL = Reverberation Level 

 

While these models give an estimate of local performance, calculations are generally limited to 

single point-to-point, radial predictions that inherently assume that a target is always present. 

Multiple points are sometimes calculated to get a spatial sense of performance but typically not 

done is a systematic way to provide an overall estimate of the environmental effects. Our first 

departure from the traditional approach is that calculations are made on finely spaced grid 

covering the entire area of operation. Figure 10 illustrates this process. 
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Figure 10 Repeating SNR calculations over area of interest 
 
 

Signal-to-Noise (SNR) calculations are made on a uniformly spaced grid along multiple radials 

across the geographic area of interest. Figure 10 shows a typical sample grid starting at the left 

panel.  From these geographic locations, calculations  of  SNR are formed as a function of  

location (x,y), Range (r), Radial for Bearing Angle  (), and Depth (z). The two graphics at the 

right represent the repeated calculations over the geographic area to form and array of SNR 

(x,y,r,,z). 
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Another limitation in the standard usage of many Navy TDA models is that after calculation of 

SNR, a detection threshold is applied, and only Signal Excess values are presented to the 

operator with no insight as to the shape of the assumed detection model or the effect of higher 

SNR on probability of detection.  Additionally even more information is lost by only passing 

positive Signal Excess values above the threshold with no distinction in level. This threshold is 

typically 50 % and results are displayed giving the impression that detection is assured. 

 

Accounting for Uncertainty 

 Up to this point in the process, standard performance modeling has been employed with the 

added improvements of using high resolution oceanographic models and increased performance 

sampling. A major strength of our Performance Surface process and a departure from the 

standard ASW modeling is the framework for capturing uncertainty.  Uncertainty associated with 

sonar performance can be grouped into three categories. The first category is kinematical 

parameters associated with source, receiver, and target, such as range, bearing, heading, speed, 

and relative depth.  The second category is the environmental uncertainty. Even with the notable 

improvement in ocean modeling describe earlier, the variability of the environment is such that 

complete knowledge is unlikely. The third category of uncertainty is that embedded with the 

signal processing associated with sonar display. The sonar display lights a pixel and marks the 

screen when the voltage level of a detector circuit exceeds a threshold. The probabilities that 

marks appear on the display are determined by the statistical distributions of the signal and noise.  

These distributions are greatly affected by the properties and variability of the ocean 
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environment (Kinsler and Frey, 1982).  The sonar designer attempts to account for this by 

building a detector that maximizes performance for known distributions of noise and signal.   

 

Probability theory provides methods for accounting for these categories of uncertainty.  A 

detection model can be used to transform SNR to a sonar performance metric Probability of 

Detection (Pd).  This is used to account for the uncertain nature of the signal and noise 

distributions as they affect the signal detector.  

 

This probability metric is conditional on a target being present, P(D|T). To account for 

incomplete knowledge of the target kinematics a joint probability can be formed by using some 

distribution of target location.  As an example, a Performance Surface estimate for sonar position 

at location (X, Y) would be the probability detecting a target within a given range (R). In this 

case the target distribution, P (T) would be represented as uniformly distributed about the point 

(X, Y).  The conditional probability P(D|T) would be transformed to a joint probability, P(D,T) 

thus accounting  for the uncertainty of target location (P(T)). 

                                                          P(D,T) = P(D|T) * P(T)                                                       (3) 

Then these joint probability estimates are summed to form marginal probabilities over the 

uncertain parameters. Similarly uncertain environmental parameters can be included by 

extending the marginal probability to include multiple forecasts and/or ensembles.  
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Applying Detection Model 

Continuing the Performance Surface process, from the point of extensive sampling of the SNR 

versus range, azimuth and depth, to a target, on a finely spaced grid, a detection model or 

Receiver Operator Characteristic (ROC) curve is applied. This is a detection model of 

performance that relates conditional probability of detection, probability of false alarm and 

signal-to-noise ratio. This process is depicted in Figure 11.   

 

 

Figure 11 Transforming SNR to Conditional Probability of Detection  using ROC Detection 
Model 
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Peterson et al. (1950) introduced the approach for relating SNR to Probability of Detection in the 

early 1950s by applying statistical decision theory to the problem of operator performance and 

derived a model of how operators performed detection tasks on radar screens in terms of signal 

to noise ratio.  They developed ROC curves that mapped the probability of making a detection 

given the target is present to the signal-to-noise ratio.  Robertson of Bell Laboratories 

(Robertson, 1999) later derived a set of ROC curves which have been used extensively to relate 

SNR to conditional probability of detection. 

 

The ROC model originally used in this work was a closed-form approximation to Robertson’s 

detection characteristics introduced by Albersheim (1999).  Albersheim simplified Robertson’s 

work for computing the signal to noise power ratio (S/N) at which a signal is detectable in the 

presence of random noise to a simple function of three parameters with an error less than 0.2 dB.    

The equation is a function of the conditional probability of detection, P(D|T); probability of false 

alarm,  (P(D|T’) or Pfa); and the number of independent samples, M.    Albersheim’s formulation 

is given here; 
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                   (4) 

While Albersheim’s model was used in initial work because of its computational simplicity, 

more system specific ROC curves have been applied in recent work. 
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There are many ROC models for explaining underlying noise probability distributions or causal 

mechanisms. A simple example is a threshold model, where there is certain dismissal if signal-

to-noise ratios fall below a given threshold, and certain detection when above the threshold.  

Other models developed in the 1950s found that observed detection behaviors, including 

uncertainty, could be explained and quantified. One such estimator of performance is the 

probability of true detection, which we define as the joint probability of an operator declaring a 

target at X, and a target is present at X, ( P(D,T) ). This measure can be represented in terms of 

the probability matrix illustrated in Table-1. 

 

 Target Present 
T 

Target Absent 
T’ 

Declare 
D 

True Detection: 
Declare and Present 

P(D,T) 

False Alarm: 
Declare and Absent 

P(D,T’) 
Not Declare 

D’ 
False Dismissal: 

Not Declare and Present 
P(D’,T) 

True Dismissal: 
Not Declare and Not 

Present 
P(D’,T’) 

        
Table 1 Probability of Detection Definitions Matrix: The probabilities are measures on the sets 
associated with the joint conditions of operator action and objective target conditions represented 
in the matrix. 
 

This calculation of the Joint Probability of Detection is the next step in the Performance Surface 

model. To form this estimate, assumptions about the target location are made. The broadest 

assumption is made here in that the location of the target is unknown and thus assumed to be 

uniformly distributed within the range of the sensor. This assumption results in a uniformly 

spaced Probability of Target (P(T)) in rectangular coordinates, linearly increasing in a Cartesian 

coordinate system. Reconstructed data from field exercises have shown this to be a reasonable 

assumption.  
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Once these Joint Probability estimates are calculated, they are summed to a Marginal Probability 

scalar value and plotted as map as shown in Figure 12 These scalar values of Marginal 

Probability, color contoured to form a map display, represent the information we know as well as 

the information we don’t know.  This step is very important in that often the underlying 

assumptions of the performance estimate are overlooked or forgotten.  In many if not             

most cases the exact position of the receiving array is unknown.  This is accounted for here 

calculating the marginal probability by summing the joint probabilities over ranges and bearings 

of uncertainty.  The exact position of the target is rarely known. This can be handled by 

marginalizing over depths that the target is expected to cover. Environmental uncertainty is 

always present. This can also be accounted for by including forecast and ensemble environments 

in the estimate.  
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Figure 12 Underwater Acoustic Detection Performance Surface 
 
 

This introduction describes the performance estimate most generally used, i.e. the scalar value of 

the Marginal Probability of Detection. The Performance Surface however can be any metric that 

adequately captures system performance. Examples of such estimates are briefly described here. 

 

Expected Range is a metric calculated by integrating the conditional probability of detection vs. 

range curve. This is a robust estimate much like the classic lateral range curve, with the notable 

difference being the marginalization over the uncertainties of bearing and depth.  The 

performance metrics of Lateral Range and Sweepwidth were first introduced by Koopman 
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(1951) and generally applied to visual search problems.  This metric and the Expected Range 

metric share the property of relating probability of detection to range. The metric is calculated by 

integrating the probability of detection curves over range and bearing at given depths. Figure 13 

shows an example of two Expected Range Performance Surface maps for target at different 

depth

 

Figure 13  Effective Range Performance Surfaces for 2 Target Depths 
  

Two metrics were developed at the urging of users needing to answer specific questions. The two 

metrics Near-Continuous Range and Maximum Detectable Range were designed to address 

propagation path questions. The resulting Performance Surface graphics are depicted in      

Figure 14.  The left panel, Near-Continuous Range captures ranges over which probability of 

detection exceeds a threshold (typically .5) allowing for some small user defined drop-out 

intervals. These drop-out tolerances are set in such a way as to minimize complete loss of target 
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holding.  This type of propagation is typically in areas that support good bottom-bounce 

performance. 

 

Figure 14 Near Continuous Range (with example acoustic full-field plot) and Maximum 
Detectable Range (with example acoustic full-field plot) 
 
 

Maximum Detectable Range is the second requested metric. This Performance Surface type is 

shown in the right panel of Figure 15.  This metric was designed to capture the maximum range 

at which the probability of detection crosses a threshold and remains above for a user-specified 

duration.  This metric is very useful in capturing areas where Convergence Zone (CZ) 

performance is likely.  The user-specified duration is set for a period to provide enough time for 

a detection to be called. 
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Figure 15 depicts another type of metric that provides insight and guidance as to optimum sensor 

depth placement.  This metric, Best Passive Sensor Depth, presents this information in two forms 

as illustrated in Figure 15.   

 

Figure 15 Performance at Best Depth for Pd and Range 
 
 
The left panel shows the maximum probability of detection (color scale) for the geographic 

location, with overlaid contours of the depth at which this performance occurs. Likewise the 

right panel shows the longest ranges for the geographic location with overlaid contours of the 

corresponding depth. This metric is useful for maximizing passive sensor performance. 

 

This concludes the introduction to Performance Surface methodology.  The next two chapters 

contain articles from the Journal of Underwater Acoustics describing some to the current usages. 
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Chapter 3  

Performance Surface: Development, Current Use and Future Improvements  

 

Abstract 

The term Performance Surface refers to a geo-spatial representation of the predicted performance 

of one or more sensors constrained by all-source forecasts for a geophysical area of operations. 

Recent improvements in ocean, atmospheric and underwater acoustic models, along with 

advances in parallel computing provide an opportunity to forecast the effects of a complex and 

dynamic acoustic environment on ASW system performance. This paper describes a process that 

calculates sonar performance in a straight-forward ‘sonar-equation’ manner utilizing spatially 

complex and temporally dynamic environmental models. This deterministic ‘sonar-equation’ 

performance model is combined with a Receiver Operating Characteristics (ROC) detection 

model, and broad target assumptions to form conditional, joint and marginal probabilities. These 

joint and marginal probabilities become the scalar estimates that form the current Performance 

Surface model. On-going work that extends the deterministic sonar equation, representing each 

component as stochastic distributions, is also presented. Performance Surface tools have been 

demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic 

ASW Center (NOAC) in support of recent naval exercises.  An operational example will be 

shown to illustrate current use with realistic sonars, targets, and environment. 
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Introduction 

An essential mission for the U.S. Navy is to conduct Anti-Submarine Warfare (ASW), and an 

essential mission for the Naval Oceanography Program is to understand and forecast how the 

ocean environment will affect ASW operations and tactics at a specific place and time. Over the 

past five years Naval Oceanography has accelerated efforts to operationalize emerging skills in 

ocean observations, forecasts, and system performance prediction to create new products to 

advise naval decision makers.  This paper documents one aspect of this emerging operational 

capability: the sonar Performance Surface. 

 

Since the submarine crises of World War II, and the Cold War up until the early 1990s, the 

United States has invested heavily in understanding sonar performance in the ocean. Although 

much progress was made, the difficulties posed by uncertainties in ocean, target and system 

conditions has meant that performance prediction has had limited operational utility. Now, in the 

early 2000s, the cumulative advances in computing capacity, algorithms and codes over decades 

of public and private investment, advanced sensing technologies from space such as altimeters 

and radiometers, and in situ sensors such as Argo floats and sea gliders, plus global 

communications networks that allow real-time measurement of the global ocean, all mean that 

the ocean can now be forecast on operational time scales. Rather than a static data base of ocean 

conditions, which may or may not be dynamically consistent and stable, a daily dynamic data 

base of ocean conditions can be delivered to planners and warfighters that has the advantage of 

incorporating all available oceanographic information (Barron, 2006 ). Furthermore, in forecast 

mode the information can be used to drive planning cycles and fleet movement to take advantage 

of that knowledge. These ocean data bases, Navy Coastal Ocean Model (NCOM) are published 
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and distributed daily, to be used by fleet planners to feed on-scene Tactical Decision Aids 

(TDAs) as needed in operational areas.  

 

Work sponsored by the Office of Naval Research (McDowell and Gough, 2010) provided a 

framework for producing ASW performance assessments utilizing TDA type sonar prediction 

and probabilistic detection models over  tactically significant spatial scales. In general TDAs are 

used to produce point-to-point Signal Excess (SE) analyses, or multiple radials from a single 

point. These predictions are often made about several points around the given or projected sensor 

position. This work was a method that generated sonar predictions in all directions at uniformly 

spaced grid locations across the entire operational area. These predictions were combined with a 

detection model to produce a geo-spatial ASW performance assessment. 

 

The Performance Surface model, as presented in this paper, builds on the ONR work by 

incorporating the real-time ocean forecasts (Rhodes and  Hurlburt, 1999) produced daily by the 

Naval Oceanographic Office (NAVOCEANO), adding a target location distribution, utilizing 

adaptations to current TDAs for large area predictions, and including a statistical spatial noise 

model as introduced by Mire (Mire and Pflug, 2010). This noise model provides a spatial 

representation of ambient noise across large geographic regions, seasons and environmental 

conditions. Single point mean omni-directional noise levels, varying at each geospatial grid point 

are used as input to the current Performance Surface model.  However, these noise products 

additionally provide probability distributions. These statistical distribution fields can be used in 

the next generation of stochastic Performance Surface models that are discussed in the last 

section of this paper.  The Performance Surface approach uses accepted TDA models to produce 
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a large number of sonar predictions over the entire operational space and temporal scales, 

combine these with a probabilistic detection model, and a probabilistic target location 

distribution to create a model of ASW performance that carries the full range of detection 

probability over the course of an ASW event.   

 

The Performance Surface model is described in terms of the development and performance 

measures chosen to represent ASW capability.  The scalar values calculated as performance 

estimates are described.  The process for computing and generating the Performance Surface 

maps are detailed, and finally various types of Performance Surface maps are shown along with 

a discussion of operational usage.  A real-world problem, where fleet asset allocation and 

movement are in question, is shown. This example will set up a specific sonar / target 

configuration and the resulting Performance Surface results. Finally, a detailed description of the 

next generation of a stochastic Performance Surface model is addressed. A step-by-step method 

describes a process where each component of the sonar equation is accounted for as a 

probabilistic distribution and combined in a way to better represent observed sonar performance. 

 

Performance Surface Description 

Performance Surface is generally defined here as a geospatial representation of system 

performance. Mathematically, the Performance Surface is a scalar field consisting of a scalar 

performance estimate associated with every point of a connected geo-spatial domain.  The 

domain almost always (we know of no exceptions) represents a volume of an environment 

associated with a naval task, say an ocean volume or atmospheric volume. Any point, O, within 

the domain may be taken as the origin of a cylindrical coordinate system such that any other 
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point x= (r, , z) where r represents a radial distance from the origin, �an angular deflection 

from the reference direction, and z the depth or elevation below or above the reference horizontal 

plane represented by z=0. The performance measure can be any scalar estimate that represents 

the sonar system’s capability at O with regard to detecting an undersea target at all x. It should be 

noted that there is no reason one might not have a more general vector field of performance, and 

indeed such fields are produced on the way to the scalar representation, but as an historical 

accident the scalar fields drew initial display and question-answering attention, and as such were 

named performance surfaces because of their topology. These might also be named Performance 

Fields. 

 

Estimating Sonar Performance in the Ocean 

Since the 1940s the standard method for computing sonar performance in the ocean is called the 

Sonar Equation. It has many forms and expressions, but at its core it computes an estimate of 

signal-to-noise or signal-to-interference ratio for a pair of points in the environment using a 

decibel, i.e., logarithmic, representation of terms that contribute to the quantitative expression of 

the signal or noise through a particular sensor. The value is compared to a model of performance 

that relates probability of detection, probability of false alarm and signal-to-noise ratio. We refer 

to this detection model as a Receiver Operating Characteristic (ROC) model, although some 

practitioners maintain that this phrase is reserved only for a projection of the function onto the 

probability-of-detection versus probability-of-false-alarm plane with signal-to-noise represented 

as a parameter producing a family of curves (McDonough and Whalen,1995). One reason for our 

picturing ROC as a surface is to emphasize the unity of the model over three dimensions without 
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parameterization or projection.  

There are many ROC models, depending on the practitioner’s preference for explaining 

underlying noise probability distributions or causal mechanisms. Perhaps the simplest is a 

threshold model, wherein there is certain dismissal if signal-to-noise ratios fall below a given 

threshold, and certain detection when above the threshold. More nuanced models developed 

when, in the 1950s, practitioners applied emerging statistical decision theory (Wald, 1967) to the 

problems of human and machine detection performance of signals embedded in noise and found 

that observed detection behaviors, including uncertainty, could be explained and quantified in 

that way. One such estimator of performance is the probability of true detection, which we 

define as the joint probability of an operator declaring a target at x, and a target is present at x, 

(P(D,T) ).  This measure can be represented in terms of the probability matrix illustrated in  

Table 1. 

 

 Target Present 
T 

Target Absent 
T’ 

Declare 
D 

True Detection: 
Declare and Present 

P(D,T) 

False Alarm: 
Declare and Absent 

P(D,T’) 
Not Declare 

D’ 
False Dismissal: 
Not Declare and 

Present 
P(D’,T) 

True Dismissal: 
Not Declare and Not 

Present 
P(D’,T’) 

        
 Table 1 Probability of Detection Definitions Matrix: The probabilities are measures on the sets 
associated with the joint conditions of operator action and objective target conditions represented 
in the matrix. 
 
 
The joint probability is estimated a priori by combining the Conditional Probability of Detecting 

a Target ( P(D|T) or Pd ) computed by the TDA and the Probability of a Target present ( P(T) ) 

which is designated by the analyst. When the analyst has no prior knowledge of the target 
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location it is represented as a uniform, or maximum-entropy distribution over the domain.  

 

                                           Joint Probability: P(D,T) = P(D|T) x P(T)                                      (1) 

 

The Conditional Probability of Detecting a Target is derived from calculating Signal-to-Noise 

Ratio (SNR) then mapping to Pd through the use of a ROC curve.  An approach of relating SNR 

to Probability of Detection introduced by Peterson (Peterson and Birdsall, 1954) in the early 

1950s applied statistical decision theory to the problem of operator performance and derived a 

model of how operators performed detection tasks on radar screens in terms of signal to noise 

ratio.  They developed ROC curves that mapped the probability of making a detection given the 

target is present to the signal to noise ratio.  Robertson (1967) of Bell Laboratories later derived a 

set of ROC curves which have been used extensively to relate SNR to conditional probability of 

detection. 

 

The ROC model originally used in this work was a closed-form approximation to Robertson’s 

detection characteristics introduced by Albersheim (1981).  Albersheim simplified Robertson’s 

work for computing the signal to noise power ratio (S/N) at which a signal is detectable in the 

presence of random noise to a simple function of three parameters with an error less than 0.2 dB.    

The equation is a function of the conditional probability of detection, P(D|T); probability of false 

alarm,  (P(D|T’) or Pfa) and the number of independent samples, M.    Albersheim’s formulation 

is given here; 
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While Albersheim’s model was use in initial work because of its computational simplicity, more 

system specific ROC curves have been applied in recent work. 

Signal-to Noise Ratio (SNR), represented in dB, is defined as, 

                                                                SNR = S – NL                                                           (3) 

where the received signal (S) intensity present at the hydrophone is the difference between the 

sound emitted from the underwater target or Source Level (SL) intensity,   and the losses accrued 

as the sound travels to the receiving hydrophone or Transmission Loss.  

                                                            S = SL –TL                                                             (4) 

Our sonar system consists of an array of hydrophones where some gain against a directional 

noise field can be obtained through beamforming. This gain is accounted for by convolving the 

spatial beam pattern against a directional noise field to observe a beam noise. For performance 

prediction it is unwieldy to attempt to construct beam noise estimates computationally this way. 

In practice it is accepted to either apply observed beam noise distributions, or make a simplifying 

assumption of isotropic noise. In the latter case it is assumed that all contributions to the omni 

directional noise term are equal from all directions, then spatial gain can be represented by a 

term, DI (Directivity Index) or AG (Array Gain). Thus the SNR for a passive sonar becomes, 

                                        SNRBF = S – NL + DI = SL –TL –NL + DI                                (5) 

SNR for the active sonar is similarly derived with the additional contributions from two-way 

transmission loss, target strength (TS), and reverberation (RL). 
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                                           SNRBF = SL – TL1 + TS – TL2 – (RL + NL) + DI                      (6) 

Given assumptions of target-receiver positions, environmental databases, and system signal 

processing parameters, Tactical Decision Aids (TDA), are employed as the computational 

engines to calculate SNR vs. Range and bearing. 

 
 
Figure 16 depicts the conversion from SNR to Conditional Probability of Detection, Pd. In the 

left-hand panel 16 radials of SNR vs. Range are plotted from a central latitude-longitude 

position. A spline algorithm blends the radial for smoother visual presentation. The colors from 

purple to red represent SNR values of – 40 to + 40 dB. From this example, a radial oriented 

toward North-East, shows very little signal loss in range, while a radial toward the South goes 

from SNR values near 40 dB down to SNRs less than -40 dB.  These azimuthal variations are 

due to environmental factors such as bathymetry, sound speed and bottom type.  The middle 

panel is an example of a typical ROC curve where the Probability of False Alarm is held 

constant at 10-5, the X-axis is SNR and the Y-axis is Pd.  Each value of SNR from the left panel 

is mapped to a conditional probability of detection value and re-plotted in the right panel.  The 

color scale here goes from red, Pd=0, to green, Pd=1. 
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Figure 16 Illustration of mapping SNR conditional on a target present at the spatial coordinates 
(r,) to conditional probability of detection, P(D|T). The underlying spatial domain of the SNR 
field is retained and the resulting scalar performance map represents a conditional field of 
performance referenced to the origin. 
 

Having computed the conditional probability of detection vs. range along many radials centered 

at a geospatial grid point location, we combine this with a target density probability P(T),  to 

form joint probability values. In the case where the Target’s position azimuthally is unknown yet 

given to be present within a range, R, the Probability of Target Present P(T) is defined as a 

uniform distribution over the area out to range R, (P(T(R)). These joint probability values are 

summed to form marginal probability scalar estimates of performance. These scalars are 

interpreted to represent relative system performance at a given geospatial point for stated 

detection conditions. Equations 7 and 8 show this process.  

 
                                         P(D) = P(D,T(R)) = P(D|T) * P(T(R))                                     (7) 

                                                                                                                  (8) daRTDPDP
Area
 ))(,()(
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An example of this process, carried out over a large geographic area, of uniformly space grid 

point is illustrated by Figure 17. 

 
 

 
Figure 17 Process of computing Performance Surface: (a) the overall area of operation is 
partitioned into a regular grid which serves as multiple points of origin for sonar performance 
calculations, the expanded view to the right  shows the outcome of the calculation for a single 
point of origin mapped onto range and azimuth for a single depth, indicating non-isotropic 
performance in signal-to-noise ratio; also, signal-to-noise ratio along a single radial is shown for 
all range and depth; (b) a non linear transform is applied to create a performance grid on 
conditional probability of detection given target present, shown here as a “small-multiple” plot 
over the area; (c) are the conditional probability of detection radials resulting from the detection 
model transformation (d) represents the uniform target present distribution which is combined 
with the conditional probabilities to form joint probabilities; (e) the joint probabilities are 
resolved to marginal probabilities of detection and plotted as a single surface. 
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The upper row of plots show estimates of SNR calculated at each geospatial grid point where the 

x-axis is longitude and the y-axis is latitude. The top left-hand panel is the output display of SNR 

vs. Range radials centered at a latitude-longitude location. The panel in the upper right is a blow-

up on one of those SNR vs. Range depictions with the upper showing SNR vs. Range from a 

plan-view and the lower showing a vertical slice of a single radial.   

 

The center plots in Figure 17 represent the ROC detection model where the left panel depicts a 

family of ROC curves as a function of SNR, Conditional Probability of Detection (Pd), and 

Probability of False Alarm (Pfa). The right panel of one ROC curve where some a constant Pfa is 

fixed and an SNR estimate can be mapped to a conditional probability of detection.  

 

The bottom left panel shows the result of this mapping which produces conditional probability of 

detection versus range for each radial at each geospatial grid point. The final right plot is the 

final scalar value of the joint probability of the conditional probability weighted by the uniform 

distribution of a target present within a specified range. The color scale here from blue to red 

represent probability of detection values from 0 to 1. The blue in the middle left area indicating 

poor detection performance is in this case due to a cold core eddy, while the yellow to red, or 

good performance, in the south is due to warmer water entering the area. It is important to 

understand the parameters and constraints bounding these performance maps. These parameters, 

sensor depth, target depth, and range to which the probabilities are integrated, should always 

accompany the graphics when presented to the operational user. Additionally sensor and target 

specific parameters are also stated in order to provide user with  information relevant to the given 

task. 
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Examples of Performance Surface Types 

 ‘Probability of Detecting Target within Range’, is one of the primary Performance Surface 

maps used operationally.  An example of the current ‘Probability of Detecting Target within 

Range’ Performance Surfaces is depicted in the lower right panel of Figure 17. The color scale 

ranges from red to green represent 0 to 1 probability of detection respectively. This type of 

graphic is used to relay information to the decision maker considering asset allocation or 

movement across the area. The colors are interpreted as the probability of detecting a target 

within the given range, for specified target-receiver depths.  Note in the color scale that yellow is 

assigned to 0.5 probability.  This “0.5” or 50 % probability is the threshold that most TDAs 

present. The TDA implication is that 50% and above will result in detection and below 50% will 

result in a missed detection. An alternative explanation is that half of the detections are made 

above this value, and half are made below. The Performance Surface representation is 

distinguished from current TDA presentations in that the full range of Pd are presented and 

further the probability of target present is included. Albeit the target distribution in this case is 

uniformly distributed, with the only assumption being that a target is present within the stated 

range, with knowledge of a more likely target location, a different distribution could easily be 

included in the present framework.  

 
 
As described earlier, Performance Surface can be any scalar estimate that presents a relative 

measure of ASW capability. The estimate described in detail to this point is the Probability of 

Detection for Target within Range.  Other performance estimates that are currently generated are 

‘Maximum Detectable Range’, ‘Near-Continuous Range’, ‘Best Passive Depth’, and ‘Effective 
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Range’. These estimates and the resulting Performance Surface maps are used to provide insight 

to relative system performance, acoustic propagation characteristics (i.e. convergence zone, 

bottom bounce), and sensor placement alternatives. These types of Performance Surface map 

outputs are described here. 

 

‘Maximum Detectable Range’ is the maximum range at which the conditional probability of 

detection exceeds a threshold (generally “0.5”) and remains above for some range tolerance (i.e. 

4 kyds). The ‘conditional probability of detection’ vs. range curves at each grid location are 

collapsed to a single representative curve. An algorithm then determines the maximum range 

where this curve crosses the stated threshold value. In addition to the threshold crossing the 

curve must remain above long enough given by the ‘range tolerance’ to provide a ‘detection 

opportunity’. This ‘range tolerance’ or ‘detection opportunity’ has been defined by operational 

users. These maps provide insight into determining areas where extended ranges due to 

convergence zone (CZ) propagation are likely.  

 

 ‘Near-Continuous Range’, is defined as the range starting at 0, where the conditional probability 

of detection crosses a threshold (generally”0 .5”) and remains with some allowable drop-out 

tolerance (i.e. 2 kyds). This metric can capture areas where good bottom-bounce propagation is 

expected. Knowledge of areas where bottom-bounce propagation paths are likely can be used to 

aid decisions enabling many navy missions. Areas  where longer ‘Near Continuous’ ranges are 

likely can suggest asset spacing for screens and barriers. 

 

 ‘Effective Range’ is the scalar result of collapsing the conditional probability of detection vs. 

range curves down to one then integrating over range at each grid location. This is a good 
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estimate for comparing different sensors across the full range of the SNR predictions. The is a 

common estimate for the stochastic Performance Surface model, described in the final section of 

this paper. 

 

 ‘Best Passive Sensor Depth’ is the depth at each grid point where the maximum joint probability 

of detecting a target within range occurs, along with the probability value at that depth. The 

metric is used to optimize passive receiver depth. The value of this map is illustrated in the 

operational example described in the next section. The plot in the right panel is a ‘Best Passive 

Sensor Depth’ map where the colors still refer to the joint probability as described  before. 

However these colors now represent the best performance across all (or selected) sensor depths 

and the contours denote the depth.  

 

Current Operational Use  

The Naval Oceanography ASW Center (NOAC) combined with NAVOCEANO Subject Matter 

Expert (SMEs) analysts form an operational support team called the ASW Reach-Back Cell 

(RBC). This RBC was established in September 2006 with a mission to “provide an asymmetric 

warfighting advantage for ASW forces through the application of oceanographic sciences”.  

Performance Surface is one of the tools used to demonstrate the impact of the environment on 

system capability (Miller, McDowell and Holton 2010). Performance Surface maps have been 

tested extensively with Navy Fleet exercises primarily through the RBC. Large Fleet exercises 

where Performance Surface products have been utilized include SHARKHUNT-05, RIMPAC-

06, USWEX-07, and RIMPAC-08.  Performance Surface maps have been used routinely as 

standard products since USWEX-07. 
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The Performance Surface products are used routinely to provide guidance and environmental 

insight to mission planners and theater commanders. Figure 18, Figure 19 and Figure 20 

illustrate three examples.  For any given mission, ASW assets are often scarce. Effective and 

efficient use and allocation of these resources is critical. Performance Surface products can be 

easily used to compare sensor options. Figure 18 shows 2 sensors operating against the same 

threat and environmental conditions.  The active sensor, shown in the upper left panel, exhibits 

good performance against a shallow target throughout the region. The lower left panel shows the 

performance of the same sensor when the same threat is operating deep.  The two panels on the 

upper and lower right show performance for a passive sensor against the shallow and deep 

targets respectively.  
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Figure 18 Comparison of performance of active and passive assets vs. shallow and deep threats 
operating within a 20 kyd range 
 
 

The Performance Surface graphics shown in Figure 19 illustrate how performance can vary 

temporally. The two frames shown were produced from environmental models 6 hours apart. 

This figure shows the improvement in performance in the northern area associated with the 

 44



forecasted oceanographic changes. Temporal changes of this level are frequently encountered. 

Significant environmental changes over as little as 3 hour periods have been seen in some areas. 

 
Figure 19 Active sensor performance show significant degradation over two time periods varying 
from Tau-1 in panel (a) to Tau-1 + 6 hours later in right panel 
 

A final example of how Performance Surface products are used operationally is shown in  

Figure 20.  For passive predictions and natural outcome of the modeling is the varying sensor 

performance over depth. While typically performance products are generated at requested sensor 

depths, an additional output can be produced to provide additional insight and possibly 

alternative guidance. Figure 20 shows a graphic of the Best Passive Sensor Depth metric. The 

two graphics on the left show performance for a passive sensor, detecting a shallow target 

operating at 200 and 400 ft. respectively. The larger panel on the right shows the performance 

when the sensor is located at a depth that maximizes the probability of detection (Pd). The colors 

indicate Pd and the contours indicate the associated depth. This is not used to suggest excessive 

movement of the sensor up or down, rather as information the can be used to exploit depth 

advantages throughout the area when appropriate.  
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Figure 20 Best Passive Sensor Depth map depicted in larger right panel (c) compared with 
performance for single sensor depths at (a) 200 ft and (b) 400 ft. 

 

Future and On-Going Improvements, A Stochastic Performance Surface Model 

The present Performance Surface model is as described earlier, a deterministic combination of 

the terms of the sonar equation with the addition of an SNR to Pd detection model and a target 

location distribution.  This implies exact knowledge, or assumptions, of values for each term of 

the sonar equation. The reality of trying to predict actual ASW performance leads to the 

acknowledgement that these quantities are rarely, if ever, known exactly and should more 

appropriately be described stochastically as probability density functions.  
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The signal to noise ratio can be expressed as a convolution of probability distributions of each 

term: 

                                               PDFSNR  = PDFSL  PDF(N-DI)  PDFTL                                                      (9) 

This is illustrated in Figure 21.  The figure  shows a Gaussian distribution for a notional source 

level centered about 130 dB and a Gaussian distribution for a notional TL distribution centered 

on -20log10(range), where range is expressed in meters.  Heuristically, the standard deviation of 

the example is set to 0.02 dB.  The TL distribution for ranges sampled at 1, 5, 10, 15, and 20 nm 

are illustrated in varying colors.  The convolution of the notional source level distribution with 

the notional TL distributions produces received level distributions.  The 1 nm TL curve is 

centered about -65 dB: when the 130 dB peak source level curve is convolved with the 1 nmi TL 

curve the resulting distribution is centered about 65 dB.  

 
 
Figure 21 Convolution of source level and TL to compute received level 
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In Figure 22 the ambient noise is convolved with the received level.  The ambient noise was 

derived from McCarty (McCarty, 2006).   Matlab scripts modified the Newhall (Newhall et al., 

1995) beam noise probability distributions for wind noise.  The shipping level contribution is 

centered about 70 dB and the wind at 57 dB with an assumed 10 dB array directivity index.  

After application of the McCarty-Newhall algorithm the effective noise peaks about 53 dB. 

When the received level is convolved with –N(x) the probability distributions for the SNR are 

obtained as a function of range.  Thus, the peak received level of 65 dB when convolved with the 

noise peaked at 53 dB yields a 1 nm SNR curve peaked about 12 dB.  These curves are 

probability density functions that integrate to unity. 

 

Figure 22 Convolution of received level with noise to compute signal to noise ratio  
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To compute the conditional probability a target is declared, given the target is present, equation 

(11) needs to be evaluated: 

 

                      P(declare target|target present) = PDFSNR  x  P(PD(target present)|SNR)            (10) 

 

The probability of detection is the product of the SNR probability distribution function 

calculated in equation (9) with the probability of detection given the target is present and given a 

signal to noise ratio.  Albersheim’s equation is used to relate the SNR to PD given the target is 

present.    For an active system the number of pings could be considered the number of 

independent samples.  Albersheim assumes random noise described by a Gaussian process.  For 

a passive system, because the noise is not correlated, the bandwidth-time product represents the 

number of independent samples.   

 

Figure 23 shows the process of computing conditional probability vs.  range from SNR 

probability density functions. The upper left panel is a plot of SNR probability density functions 

for the 5 ranges indicated in the legend (1, 5, 10, 15 and 20 nmi.  The upper right is the ROC 

curve.  The lower left panel is a plot the same probability density function after the ROC 

transformation. Note the brown, 15 nm SNR curve which was centered about -12 dB is greatly 

reduced in amplitude, whereas the purple, 1 nm SNR curve which was centered about 11 dB is 

virtually unchanged.  The lower right panel is the total detection probability for a given range is 

then the integral over all SNR values for the probability curve corresponding to that range.   
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Figure 23 Conversion of signal to noise ratio to probability of detection given target present 
 
 

At this point the conditional probability of detection has been derived from stochastic 

representations of each component of the sonar equation.   

Conclusions 

The nature of the Performance Surface continues to be a work in progress, highly informed by 

our operational customers, the science and engineering community and a rigorous program of 

field measurements and assessments. This paper describes products currently being published, as 

well as an approach to future products, and a strategic or philosophical framework for future 

tools.  This framework suggests that Performance Surfaces should explicitly account for all we 
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know and don’t know about the ocean volume, all we know and don’t know about the target, and 

all we know and don’t know about systems and weapons. There may be many approaches to 

satisfying these criteria being developed across various technical disciplines (machine learning 

for example) but our specific approach now is to represent all our variables as distributions that 

represent the set of plausible conditions. Within this framework those values which are known or 

admit only a single valued solution are represented by delta-function distributions. The 

uncertainty vanishes for these distributions. Many of the distributions are taken on sets of model 

trials made on varying initial or boundary conditions taken on ensembles of model results. These 

ensembles are available to us partly because of the massive computational effort represented in 

computing ocean models and estimating acoustic fields over their domain. We then apply the 

calculus of distributions to standard performance models, such as a sonar equation in the case of 

ASW, to estimate plausible distributions of signal-to-noise ratios. The distributions contain all 

the known information, and as distributions continue to represent the spreads of uncertainty.  
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Chapter 4  

Performance Surface as a Tool for Increasing ASW Proficiency  
 

Abstract 
 
Frequently, meteorology and oceanography (METOC) professionals have sought to characterize 

the physical environment and its impact on the performance of ASW sensors in the context of a 

plan which has already been developed by the decision-maker’s staff. In the past, limitations on 

processing power and the lack of a reliable ocean forecast model have made it difficult for 

METOC personnel to accurately characterize the variability of the ocean environment for the 

purpose of predicting acoustic ASW sensor performance. Advancements in ocean modeling and 

computing systems have enabled the development of acoustic performance surface maps (AcPS 

Maps) that can characterize the performance of several acoustic sensors over a wide 

geographical area and over several time intervals, allowing for a meaningful comparison of the 

efficacy of various sensors at the warfighter's disposal. This capability makes the performance 

surface a tool which can improve the operational planning process and help mission planners 

fully exploit variations in the physical environment when building an ASW plan. AcPS Maps 

can be produced for several time periods of interest based on forecast model output from the 

Navy Coastal Ocean Model (NCOM), allowing for a characterization of future sensor 

performance. By producing performance surfaces for multiple sensors against a threat, one can 

quickly determine whether acoustic advantage lies with active or passive prosecution and 

determine where and when certain platforms will be most effective. This paper addresses 

methods to bring these and other uses of performance surface into every phase of the planning 

process to enhance ASW tactical advantage. 
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 Introduction 

Anti-Submarine Warfare (ASW) is a thinking game, much like a long, slow game of chess. It is 

extremely difficult to acoustically detect a submerged submarine even under the best of 

conditions. Noise produced by the submarine varies greatly in both frequency and intensity as 

equipment lineup, course, and speed change. The underwater environment constantly changes, as 

fluctuations in surface winds, solar heating, ocean currents, and thermal gradients cause wide 

variations in the acoustic transmission properties of the water mass. Even when the ocean 

environment is relatively static, the movement of the submarine itself can cause significant 

changes in exploitable transmission paths for acoustic sensors. Ambient noise levels in the ocean 

vary greatly as shipping density and biologic activity fluctuate spatially and temporally. 

Meteorological activity can also significantly affect acoustic propagation paths and ambient 

noise levels. A heavy storm can cause disturbances in the surface layer, causing mixed layer 

depths to increase significantly, while simultaneously increasing ambient noise levels due to 

wind and rain. The result could be either improved or degraded acoustic sensor performance 

depending upon the acoustic sensors employed or the acoustic frequency of interest. With so 

many environmental variables affecting the performance of acoustic systems, it is very difficult 

to predict how various ASW systems will perform in a given place and time. 

 

Several technologies have been developed since the 1980s that attempt to predict reliably the 

acoustic capabilities of various SONAR systems. Tactical decision aids (TDA) such as Personal 

Computer - Interactive Multi-sensor Analysis Trainer (PC-IMAT) and SONAR  
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Tactical Decision Aid (STDA) can predict acoustic sensor performance with input from several 

oceanographic databases developed by the Naval Oceanographic Office (NAVO). These systems 

rely upon several assumptions entered by the operator to approximate the several factors 

affecting the acoustic properties of a given target, such as acoustic reflectivity (i.e., target 

strength), operating depth, target aspect, acoustic source levels and environmental noise. With 

very accurate inputs, these TDA can produce acoustic detection range predictions of reasonable 

accuracy. A significant limitation of these TDA, however, is that these technologies allow 

planners to analyze only single geographical points at discrete time references, and provide little 

information on levels of variability in space and time around the point being studied. They also 

require significant processing power and a large amount of time to calculate sufficient numbers 

of points to reasonably characterize the acoustic properties of an area.    

 

Current doctrine at the Naval Mine and Anti-Submarine Warfare Center (NMAWC), the center 

for development of ASW and mine-warfare tactics and doctrine for the U.S. Navy, emphasizes 

recognition of the ocean environment as a dynamic fluid and discarding the notion of  

the “range of the day” when attempting to quantify the performance of ASW sensors. The 

development of acoustic performance surface (AcPS) technology as a joint venture between the 

Naval Oceanographic Office (NAVO) and the Naval Oceanography ASW Center, Stennis Space 

Center (NOAC SSC) supports this doctrine by more accurately depicting the ASW battlespace as 

a spatially and temporally dynamic environment. Much as a surveyor or scout would 

exhaustively study and characterize a terrain environment for suitability of deploying ground 

forces for maximum effect, the AcPS allows an ASW commander to truly understand how the 

whole environment in which he or she intends to deploy ASW forces can change in space and 
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time over the course of a campaign. By fully understanding the variability of an entire 

battlespace, rather than only discretely defined points within that battlespace, and the resultant 

impact of the operating environment on the available resources and systems employed, the 

commander and staff can develop more meaningful courses of action (COA) from which to 

choose that which will more likely result in mission success. 

In developing such COA, three distinct thought exercises must be used. First, consider how the 

environment affects our own sensors. Next, consider how the environment affects the 

adversary’s sensors. Finally, and probably most difficult, consider how the environment affects 

the adversary’s behavior – his tactics. With a great deal of time and research, an experienced 

analyst can identify most of the individual factors that will affect acoustic propagation conditions 

and with sufficient processing capabilities, can use existing TDA to characterize an operating 

area (OPAREA) for ASW suitability. However, in the constraints of a short decision cycle, and 

the constantly changing environmental conditions inherent in an operational scenario, it will be 

difficult to perform this analysis effectively over a wide geographical area. The performance 

surface provides a superb tool to use as a starting point in completely and accurately 

characterizing an area for ASW operations. 

 

Performance Surface Maps Defined 

By definition, a Performance Surface (PS) Map is any graphical depiction of the performance of 

a given system over a geospatially and temporally (x, y, z and t) defined area. These maps are 

intended to be a fused view that depicts, in easy to understand terms, the overall result of the 

complex interactions of several factors on a particular combat system. The acoustic Performance 

Surface map (AcPS Map) depicts the sum effect of several complex oceanographic factors on a 
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particular acoustic sensor for a given threat scenario, and is a useful tool for identifying water 

masses with relatively “good” acoustics and those with relatively “bad” acoustics for ASW 

prosecution. Figure 24 shows a basic representation of an AcPS Map.   

 

Figure 24 Generic Performance Surface or AcPS Map 
 
 

The AcPS Map provides the warfighter with a visual representation of how well a particular 

acoustic sensor will perform against a threat at a given time in a given environment. The AcPS 

Map consists of thousands of acoustic transmission loss calculations performed on a grid within 

a particular area of interest. An acoustic transmission loss calculation is based on the active and 

passive sonar equations. 

                                              Active:  SNR = SL + TS - RD - NL + DI - 2TL 

                                               Passive:  SNR = SL –TL –NL + DI 
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Where: 

SNR = Signal to Noise Ratio 

SL = Source Level of the acoustic signal 

TL = Transmission Loss suffered by the signal from source to receiver 

TS = Target Strength.  The reflectivity of a target to active SONAR transmissions. 

NL = Environmental Noise. 

RD = Recognition Differential.  The ability of an average SONAR operator to detect an acoustic 

contact with 50% probability. 

DI = Directivity Index.  Amount of directivity of a SONAR system. 

 

Using STDA, each calculation is performed in three polar dimensions (r, T, z) at hundreds of 

geospatial coordinates in the area of interest. The resultant SNR vector values for each radial 

about the discrete coordinates are averaged and converted to a scalar value of probability of 

detection (Pd) at each grid point. The various probabilities of detection are then assigned a 

discrete color value and smoothed using a geospatial software application (i.e. GIS) to produce a 

graphic representation of probability of detection for a given sensor location  (see Figure 25).   

More detail about this process is discussed in McDowell and Gough (2010).  
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Figure 25 Process of computing Performance Surface: (a) the overall area of operation is 
partitioned into a regular grid which serves as multiple points of origin for sonar performance 
calculations, the expanded view to the right  shows the outcome of the calculation for a single 
point of origin mapped onto range and azimuth for a single depth, indicating non-isotropic 
performance in signal-to-noise ratio; also, signal-to-noise ratio along a single radial is shown for 
all range and depth; (b) a non linear transform is applied to create a performance grid on 
conditional probability of detection given target present, shown here as a “small-multiple” plot 
over the area; (c) are the conditional probability of detection radials resulting from the detection 
model transformation (d) represents the uniform target present distribution which is combined 
with the conditional probabilities to form joint probabilities; (e) the joint probabilities are 
resolved to marginal probabilities of detection and plotted as a single surface. 
 
 

The AcPS Map is well suited to identify areas of acoustic opportunity and vulnerability; 

however, it should not be misconstrued to indicate acoustic “coverage” of an area of interest by a 

particular sensor. Additionally, AcPS Maps are calculated using several inputs of environmental 
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elements, target characteristics and own-ship sensor characteristics to predict a sensor's ability to 

discern a target at a fixed distance. The degree of uncertainty in these estimates will have 

implications on the AcPS Map’s ability to accurately reflect probability of detection of a target at 

a given range. Despite these limitations, the AcPS Map remains the most straightforward and 

efficient way to depict relative acoustic sensor performance over a large geographic area. In the 

next section, some examples of ASW planning scenarios will be discussed for which AcPS Map 

applications are particularly suited. 

 

Use of Performance Surface techniques in ASW analysis 

Performance surface is not a singular tool to provide all answers to the ASW operator and 

decision-maker.  However, it is uniquely suited to answer a number of questions very well and 

quickly.  Additional analysis can be done by military and civilian subject matter experts at the 

ASW NOAC SSC Reachback Cell (ASW RBC) or aboard ship by Naval Oceanography ASW 

Teams (NOAT) analysts.  Using local TDAs tools such as PC-IMAT or STDA, deployed staff 

oceanographers and ASW analysts can provide ASW planners with a relatively complete picture 

analysis of the environment and its effects on ASW acoustic sensors in a moderately short period 

of time.  The primary advantage of the AcPS Map over other TDAs currently in use is that the 

AcPS Map characterizes an entire battlespace for a particular parameter of interest, rather than 

only at discrete points that may be arbitrarily chosen by an inexperienced analyst.   

 

As has been previously discussed, the acoustic environment of the ocean changes rapidly in both 

space and time.  Only a very thorough analysis of those factors which introduce a high degree of 

variability in ocean conditions in both space and time will sufficiently characterize an area’s 
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suitability for ASW operations.  As is evident in any study of statistical analysis, two key 

components of success for identifying trends in a physical property are accurate data and proper 

sampling.  For example, Figure 26 denotes an arbitrary waveform depicting the relationship 

between the range from an arbitrary sensor to the target with acoustic SNR that the associated 

SONAR system detects.  Note how the undersampled case is unable to properly characterize the 

associated waveform due to the paucity of data, whereas the oversampled case, which is sampled 

at twice the frequency, much more accurately reflects the variability in SNR at the range of 

interest.  Likewise, acoustic analysis using single point modeling for “range of the day” metrics 

often employed with current TDA usage is unable to properly characterize the spatially and 

temporally dynamic ASW environment of interest.  As an example, the “range of the day” metric 

associated with the acoustic sensors of interest could easily miss the effects of environmental 

temporal and spatial variability which are commonly present and dominated adequate 

characterization of the ASW battlespace.  The much more thorough sampling of the battlespace 

inherent in the AcPS Map analysis, shown in panels (a) and (c) of Figure 25 allows the analyst to 

readily identify and further analyze features prevalent in the ASW battlespace being considered 

and develop plans accordingly.  The following sections discuss some significant oceanographic 

considerations that the AcPS Map is well suited to address. 
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Figure 26 Sampling SNR vs. Range 

 

Temporal Variability in Acoustic Conditions   

AcPS Map analysis makes temporal variations in acoustic sensor performance readily evident to 

the ASW analyst.  Diurnal heating and cooling of the surface mixed layer has a significant 

impact upon acoustic propagation in the resultant surface duct, a phenomenon known as the 

“afternoon effect”.  PS Map techniques can help an acoustic analyst identify areas where the 

ocean forecast indicates significant degradation in sonic layers through the time frame of interest 

during an ASW operation Figure 27 shows an area where the surface duct layer experiences a 

high degree of diurnal cooling and reduced surface mixing over  
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a 12  hour period and the resultant decrease in detection potential in certain parts of the area of 

interest for an arbitrary active sensor against a target operating in the surface duct.  This 

information can be used by an analyst to recommend operating in an area of less variability or to 

identify time periods where the performance of the available acoustic system can be maximized.    

 

 

Figure 27 Performance Varying over 12 Hours 
 

Sensor Comparison and Asset Allocation  

The ASW RBC can produce PS Maps for both passive and active sensors against a given target 

in a given water space.  Since the environmental parameters used for both sets of transmission 

loss calculations are the same, the result is a true apples-to-apples comparison between different 

sensors over a broad expanse of water space.  In Figure 28 the four  

panels depict the performance of several active and passive acoustic sensors available to the 

mission planner.  Because each of these views is produced using the same input parameters for 

both the environment and the target geometry (i.e. depth, aspect, etc.), the panels provide a true 
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comparison of relative sensor performance over a wide geographic area, allowing a mission 

planner to choose an OPAREA that will maximize the performance of all available acoustic 

sensors.   

 

Figure 28 Performance for different sonar systems.  The left panels are result from an active system vs. a 
shallow (top) and deep (bottom) target. The right panels are for a passive sensor vs. a shallow (top) and deep 
(bottom) target. 

Determining Optimal Array Depth   

Once search boxes are assigned, the performance surface map can be a valuable tool in 

recommending the optimal towed array depth.  Significant improvements in detection potential 

can be achieved wherever the search box is located by optimizing search depth.  In order to 

accomplish this, the acoustic sensor performance is calculated for a fixed target depth and 

 64



multiple receiver depths.  A simple algorithm is then run on all those performance surface 

outputs to pick out the highest probability of detection (Pd) at each grid point.  That probability 

of detection field is color shaded on the map and the depth for each is contoured over the color 

shading, as shown in Figure 29.  Note that by towing the passive sensor at the depth prescribed 

by the contours in panel (c), the area of optimum sensor performance is greater than that 

indicated in panels (a) or (b).  No other analysis technique currently used is able to replicate this 

capability.  

 

Figure 29 Optimum Sensor Depth 
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Identifying Areas for Further Analysis and Water Sampling 

Since the performance surface algorithms, in these cases,  use a range-weighted radial averaging 

scheme to reflect a uniformly distributed target,  the performance measure represented by a 

single scalar value at each grid point does not show directional information.  There is no problem 

with this approach in areas where the performance does not change significantly over a short 

horizontal distance.  However, in areas where there is a gradient in performance, the analyst must 

realize that the performance surface map is not necessarily representing the full range of acoustic 

complexity in these areas.  In order to determine the oceanographic and acoustic structure in the 

water column, an analyst must produce detailed acoustic transmission loss plots in these areas to 

gain a full understanding of this structure and its resultant impacts on the tactical situation.  In 

Figure 30 the circled portion of the AcPS map indicates an area of degraded acoustic 

performance (i.e. significant performance gradient). Figure 30 shows an example ‘Maximum 

Detectable Range’ AcPS Map view of the performance of an arbitrary passive sensor against a 

shallow target.  A casual observation shows that the performance of the sensor degrades when 

operating in the southwest portion of the area of interest.   
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Figure 30 Varying Performance used to advise additional sampling 
 

Further investigation reveals that this is due to the presence of several seamounts of sufficient 

height to disrupt the long-range convergence zone path, as shown by a bathymetric chart 

depicted in Figure 31.  The AcPS Map technique readily displays the sum effect of these 

seamounts on an acoustic sensor of interest, allowing the analyst to further investigate other 

Course of Action (COA) options as needed. 
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Figure 31 Bathymetric Variability determined as cause for performance degradation 
 
 

While this may at first seem to be a weakness of performance surface, rather than a strength, it 

should be noted that the performance surface gives a quick view of performance over a wide 

area.  Without this product, numerous appropriately selected single point transmission loss runs 

would be required to characterize the acoustic environment over the area, which would demand a 

great deal of the on-scene analysis time.  With performance surface, the areas which require 

detailed study are immediately identified,  thereby reducing the number of calculations required. 

Additionally, areas of strong acoustic performance gradients as shown on an AcPS map may 

indicate transition zones which the oceanographic models may not handle well. This should alert 

the on-scene analyst to contact the ASW RBC for recommendations so that water sampling 
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resources can be employed in such a way that their data will most effectively improve the ocean 

forecast which will in turn improve the acoustic forecast. 

Other Assets Required for Success 

While the performance surface is a very good tool for gaining a quick understanding of the 

acoustic environment, it is not intended to answer every question alone.  The Naval 

Oceanography ASW Center (NOAC) provides Naval Oceanography ASW Teams, or NOATs, 

with specific expertise in tactical oceanography to ASW commanders (ASWC) to interpret 

various data and oceanographic products in order to completely characterize the environment and 

make actionable recommendations to the warfighter which will improve the effectiveness of an 

ASW prosecution. In order to do this well, analysts must have a complete understanding of the 

environment and its effects on sensor performance, a good knowledge of the capabilities and 

limitations of own force and adversary assets, tactical expertise, and critical thinking skills. 

Stand-alone tools for Analysis Forward   

The performance surface gives the analyst a large-area view of the predicted acoustic sensor 

performance, but it does not explain why the performance is good or poor.  It is important for the 

analyst to understand why the performance is good or poor for three reasons.  First, “why” is the 

most frequent question the ASW planners receive from watchstanders and decision-makers.  It is 

essential that they understand the environmental impacts on sensor performance and be able to 

articulate their reasoning in order to build and maintain credibility.  Second, they must 

understand the propagation paths and how they respond to environmental factors in order to 

make the best recommendations on asset placement, sensor employment, and force movement.  

Finally, they should have a good understanding of environmental and acoustics basics in order to 

assess the accuracy of the PS Map depiction.  If it does not make sense according to sound 
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acoustic principles, the NOAT will know that they need to contact the ASW RBC for further 

explanation.  When this occurs, the ASW RBC may be able to provide an explanation for why 

something unexpected is occurring or they may determine that the ocean model is not handling 

the situation well. 

  

To achieve this understanding, a tactical decision aid, such as PC-IMAT or STDA, which can 

produce full-field acoustic propagation loss plots is required.  These tools allow an on-scene 

analyst to address uncertainty in PS Map depictions by creating full-field acoustic propagation 

loss plots and acoustic path availability analysis that are not readily evident in the PS Map view.  

These tools allow the analyst to create graphics that fully explain the oceanographic factors that 

contribute to changes in acoustic sensor performance in an operating area.   

 

In addition to the information produced by a tactical decision aid, other products from the ASW 

RBC are helpful in completing the environmental and acoustic picture for interpreting the AcPS 

Map.  Domain-wide sonic layer depth and cut-off frequency graphics are produced daily by 

automated post-processing of the NCOM model output.  These products readily show which 

frequencies will be ducted throughout the operating area.  Bottom slope, composition and loss 

graphics produced with local TDA or by the ASW RBC are also valuable in assessing bottom 

bounce availability and reliability. These additional tools are a vital complement to the AcPS 

map to give the ASW analyst a complete understanding of the total effect of several factors 

influencing the performance of acoustic ASW systems.   
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For an anti-submarine warfare commander (ASWC) planning cell to effectively plan operations, 

the NOAT must also address how environmental conditions will change over time. Due to the 

computing resources required and the length of time needed to run the transmission loss 

calculations, along with time-zone differences between the ASW RBC and deployed team, there 

is usually a later oceanographic model run available by the time the performance surface 

products are delivered. Also due to this lengthy processing time, performance surface is typically 

only run for one time instance (tau) for each model run. The acoustic subject matter experts 

provide an assessment of how conditions will change, but the NOAT can use the TDA and later 

taus of a more recent model run to analyze “what-if” scenarios and provide more effective long 

range planning guidance. 

Brain storming – scenario development   

As discussed previously, knowledge of the environment is not enough for the NOAT to 

effectively augment a warfighting staff. It is the marriage of tactical and environmental 

knowledge that enables the decision superiority which leads to ASW superiority. First the team 

must determine what the adversary forces are and what blue assets are available. Reliable passive 

search tonals and target strength for active prosecution must be determined, usually through 

liaison with acoustic intelligence (ACINT) if available or from staff intelligence personnel. Since 

ASW is rarely the primary mission, constraints placed upon asset placement and employment by 

other mission areas must be balanced against any ASW plans. The ASWC, Anti-Surface Warfare 

Commander (ASUWC), and Air Defense Commander (ADC), share most of the same platforms 

for both surface and air.  In addition, if strike warfare is a coincident mission, then distance from 

the aircraft carrier to the strike objective is of primary concern. Close liaison with staff Material 

Department is absolutely necessary so that the NOAT may stay abreast of any degradation of 
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sensors or engineering plants that place restrictions on the search and prosecution capabilities of 

any platform in the strike group. A host of other information may also need to be gathered, such 

as start time, end time, and time duration requirements for a transit, availability of maritime 

patrol aircraft, and any geographic constraints.  

 

After this initial information is collected, sitting the team down as a group for a brainstorming 

session can be a very useful beginning to sketch out some possible courses of action. Good 

communication with the ASW RBC will also allow the ASW RBC and non-deployed NOAT 

members to do this type of brainstorming at the NOAC and forward recommended options to the 

NOAT afloat. The brainstorming must begin by describing the oceanographic and general 

acoustic conditions in the operating area. The performance surface is a superb tool for providing 

an overview of these acoustic conditions. Then the group will discuss the strengths and 

weaknesses of the adversary submarine in this environment and consider their historical tactics 

to determine their possible actions. The next step is to consider how to use the assets available, 

within the constraints imposed, to counter possible adversary actions. By using this group 

brainstorming approach, many more possibilities can be discovered than one person working 

alone would usually devise. If the brainstorming has been done at the ASW RBC, the plans are 

sent out to the NOAT, where further refinement to the changing situation can be made and the 

best recommendations possible are made to the decision maker. 

Extensive oceanographic and tactical expertise 

In order to provide effective support to ASW decision makers, the NOAT must have an 

extensive understanding of ocean structure, how ocean features change over time, and how those 

features affect acoustic propagation. This knowledge is essential to understanding how different 
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placement of platforms and their sensors will change their sensor performance. They must also 

have a good working knowledge of the sonar equation. This knowledge must be deep enough to 

allow an understanding of which sonar equation terms can be changed by the actions of the strike 

group. They must also know how to mitigate the performance degrading effects of those terms 

which cannot be changed.   

 

A solid understanding of the capabilities, limitations, and operating characteristics of both own-

force and adversary assets is necessary in order to determine how the environment will affect 

them. The NOAT must have knowledge of every mission area and what will be required of each 

platform in executing that mission in order to determine how other tasking will affect the ASW 

plan. They must also have a firm understanding of current ASW tactics to enable them to 

formulate recommended plans which are executable. 

 

Continuous, aggressive, and thought-provoking training   

A strong training program is an absolute necessity to develop personnel with the level of 

oceanographic, acoustic, and tactical expertise required to provide this type of support.  

Multiple hours of training each week must be conducted on oceanography and own-force and 

adversary tactical topics. Critical thinking skills are more difficult to develop, but are essential  

to this process. Frequent group discussions of scenarios and practice at building recommended 

courses of action are used to build and reinforce these thinking skills. 
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Conclusions  

The PS Map is a valuable tool for addressing the complex ASW challenges of today. With the 

advent of high-end diesel electric submarine threats worldwide, the ASW threat is as important 

to national security as it has ever been. This trend has highlighted the need for the Navy to find 

innovative ways to win the ASW fight. The performance surface is a promising tool for that 

purpose. Properly used, it allows an experienced oceanographic analyst to understand the 

combined effect of a host of disparate environmental factors on the performance of various ASW 

sensors and develop meaningful COA to minimize risk to mission and maximize opportunities 

for success. It also gives the analyst a clear and concise graphic product that can help identify 

areas of high and low acoustic variability. With the recent advances in computing power that 

have made these time-consuming calculations possible, the PS Map has become the premier tool 

for oceanographic analysis for ASW. 
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Chapter 5 Conclusions 

The goal of this research was to develop a methodology for computing and communicating 

detection system performance in a way that includes the effects of dynamic physical 

environments, system and target kinematics, signal processing, and the inherent associated 

uncertainties.   This research has led to the development of a new performance modeling 

framework that provides the user with more insight into the environmental effects on underwater 

detection systems.  The model brings together advances in ocean modeling, acoustic modeling, 

and parallel computing with statistical modeling, probability theory, and operations research to a 

common picture for the user to support the high level operational decision-maker.  

 

The method begins with advances in environmental modeling that include higher spatial fidelity, 

extended forecast and ensemble estimates of uncertainty. New in this methodology is a 

framework to include these uncertainties in an estimate of performance that can be easily 

interpreted and exploited by the user.   

 

The next step in the process is sampling SNR over the environment at a much higher fidelity 

than previously done, taking advantage of advances in high-speed parallel computing assets. To 

this point typical application of the standard performance tools has been to sample at single point 

or at points scattered over the region hoping to capture gradients or anomalies. The effect of this 

sampling strategy often results in identifying environmental feature that can be used to achieve 

system positioning advantage. The Performance Surface model has been used as a target and a 

metric for recent work in smarter, more efficient methods for environmental sampling that take 

into account the affected detection system.  These research efforts, termed adaptive sampling, 
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have been explored recently through the Office of Naval Research’s Rapid Transition Program 

projects. 

 

Once SNR over the region has been calculated, a detection model is applied to convert SNR to 

conditional probability of detection.  This conditional probability is joined with an assumption of 

the target position to form a joint probability estimate. These joint probability estimate are then 

summed to include the parameters of uncertainty.  As discussed in Chapter 3, uncertainty can 

also be accounted for stochastically by representing each component of the sonar equation with 

probability density functions.  Stochastic modeling shows promise as an approach to represent 

the unknowns inherent to the undersea detection problem.  Figure 32 depicts a graphical 

overview of the approach. 

 

 

Figure 32 Extending current model to a fully stochastic model in order to include uncertainty for 
each component of sonar equation. 
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This summarizes the process for the most common Performance Surface metric, joint probability 

of detection estimates marginalized over unknown parameters. However Chapter 3 also presents 

other metrics that can be calculated and presented in a similar manner.  Some of these metrics 

such as Expected Range, an extension of Lateral Range and Sweepwidth, are classic measures of 

performance that have been used in some form since the 1940’s. Other metrics, such as Near-

Continuous Range were specifically designed for very narrow questions. A clear strength of this 

methodology is the flexibility to pose different questions, and provide rapid, quantifiable answers 

in an intuitive form.  

 

The ASW Performance Surface Model has been used extensively to support numerous Navy 

Fleet exercises. Chapter 4 describes a number of operational problems where this methodology 

has been successfully applied.  This methodology has also been applied to other non-ASW Navy 

mission areas supported by the Naval Meteorology and Oceanography Command. The 

Performance Surface methodology itself has been used as first example of ‘Performance Tier’ of 

the Naval Meteorology and Oceanography Command’s four tier ‘Battlespace on Demand’ 

(BonD) approach for delivering products to the Fleet.     

 

Numerous research efforts have been initiated in connection to this work.  The Oceanographer of 

the Navy and the Office of Naval Research have and continue to make substantial investments  

in additional research efforts that support, improve and validate Performance Surface efforts and 

associated modeling. Much of this work, presently in its beginnings, is underway at the Naval 

Research Laboratory, the Applied Research Laboratory at the University of  Texas,  the Applied 

Physics Laboratory at the University of Washington and other Industry researchers.   
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In closing, the goal of this research was to develop a model to provide operational decision-

maker with an effective assessment of a given system within a complex environment.  The result 

has been a modeling framework that combines high fidelity dynamic environmental forecasts, 

advanced acoustic system prediction models, and probability theory to form quantitative metrics 

for easy evaluation. The success of the work, to this point, can be seen in its routine usage and 

the new research that it continues to generate. 
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