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Abstract

The polytopic model (PM) structure is often used in the areasof automatic control and fault detec-

tion and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows

for interpolation among local models.

This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as

a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator,

referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented.

The model weights and state estimation in the QBAKF is performed adaptively by a simple QB

weights’ estimator and a single KF on the PM with the estimated weights. Since PM estimation

problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also de-

veloped and implemented similar to MPF. The simulation results show that the newly proposed

algorithms have better estimation accuracy, design simplicity, and computational requirements for

PM estimation.

KEY WORDS: Model interpolation, Quasi-Bayes procedure for mixtures,Dirichlet distribu-

tion, Jump-Markov linear systems, Polytopic model
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Chapter 1

Introduction

Research on multiple-model (MM) approach has spread out in many areas in last decades. The

reason is in the elegant solutions that MM approach providesfor modeling, estimation, and control.

The MM framework can give appealing solutions to almost all filtering problems. A canonical

application of the MM approach is target tracking. An elaborate, in-depth, explanation of different

state-of-the-art MM algorithms and their application to target tracking problems can be found

in [1]. Another important application of the MM framework issystem fault detection and isolation

(FDI), e.g., [2], [3].

Most existing MM estimation algorithms provide a solution to the problem of estimating the

state and the mode of a hybrid, usually Markov jump system (MJS), [4]. A possible alternative

is to use another model structure which relies on representing (approximating) a possible truth

through explicit interpolation between models. For example, if the weighed combinations of the

local models in the MJS model set correspond to physically relevant conditions, which are not

accounted for in the MJS model set, it is desirable to interpolate among these models. Such a

structure is, sometimes, referred to as a blended MM structure [5]. In this structure, the model that

is valid is a weighed combination of some local models in a chosen (designed) model set [6], [7].

When the combinations are restricted to be convex, a subset of blended MM structure is created
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that is usually named as Polytopic Model (PM) or Convex Model(CM). The convexity restriction

is added to ensure that the state estimates based on the ones of the local models are fully valid

and the rest (non-convex combinations) are not. Polytopic models have been most often used in

the area of FDI [8], [9], [10], [11], [12], [13], [14], [15]. The main motivation for using the PM

framework in FDI is that it allows for a large class of fault conditions to be modeled by using a

relatively small numbers of local models, and no explicit modeling of system mode evolution (e.g.,

Markov chain model transitions) is required. Estimation using PM structure consists of estimating

both the state and model weights of the local models directly. This kind of estimation problem is

nonlinear and non-convex due to the products of the state andmodel weights. There exist a number

of methods for PM estimation in the literature. An overview of such methods and numerous issues

associated with their use is provided in Chapter 2.

In this thesis, we propose a novel approach to PM estimation.The main idea is to model the

set of PM weights as a random vector with Dirichlet prior probability distribution. The Dirichlet

distribution (DD) [16] is the most natural model for probability weights of mixtures in Bayesian

statistics [17]. It inherently satisfies the requirements of a probability mass function and offers a

great variety of shapes and flexibility to model different situations (See Chapter 2). Two estimation

methods are carried out.

Under the assumption that the PM weights obey a DD, a new approximate (adaptive) PM

estimator is derived which is referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF).

The operation of the QBAKF filter is based on two main techniques: quasi-Bayesian estimation

of mixture probabilities [18] and approximating the vertex-model likelihoods through a single

Kalman filter (KF). The model weights and state estimation inthe QBAKF filter is performed

adaptively by a simple QB weights’ estimator and a single KF on the PM with the estimated

weights. Since only one KF used, the QBAKF filter is computationally very efficient even for

large vertex-model sets – it is almost independent of the model set size.

Since PM estimation problem is nonlinear and non-Gaussian,a particle filter (PF) is a vi-
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able option to apply. A generic PF is not a good choice becausefor large number of models the

dimension of the particles (state dimension + number of models) becomes large and possibly a

prohibitively large number of particles will be needed. However, based on the observation that

the PM is conditionally-linear (given the model weights), the Rao-Blackwellization technique [19]

can be directly applied. The result is a DD marginalized PF (DDMPF), similar to the one of [20],

that performs linear KF for the linear part, given (an estimate of) the model weights; and a PF for

the nonlinear part with respect to the model weights only, given (an estimate of) the state. The

DDMPF leads to dramatic computation saving as compared to a generic PF. Based again on the

DD weights’ model, a DDMPF is also obtained and implemented in this thesis.

The effectiveness and improved interpolation properties of the new approach are demonstrated

by two examples target tracking. Monte Carlo simulation results are obtained and compared with

the well known Autonomous Multiple Model (AMM) [21], Interacting Multiple Model (IMM)

[22], and augmented Extended Kalman filters [23].

The remaining part of the thesis is organized as follows. Chapter 2 provides background infor-

mation on Polytopic models, the Dirichlet distribution, and a generic Quasi-Bayes procedure for

mixture probability estimation. Chapter 3 presents the algorithm development of the new QBAKF

and the DD marginalized particle filter (DDMPF). Chapter 4 presents Monte Carlo simulation

results of two target tracking examples. Finally, Chapter 5provides summary and conclusions.
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Chapter 2

Background

2.1 Polytopic Model (PM)

2.1.1 PM Definition

A commonly used for MM estimation algorithms is the following jump Markov linear system

(JMLS) [1]

xk+1 = F
(i)
k xk +G

(i)
k uk + Γ

(i)
k w

(i)
k (2.1)

zk = H
(i)
k xk + I

(i)
k uk + v

(i)
k (2.2)

where xk ∈ R
nx is the base state,zk ∈ R

nz is the measurement,u(i)
k is a (known) in-

put, w(i)
k and v

(i)
k are independent process and measurement noises withw

(i)
k ∼ N (w̄

(i)
k , Q

(i)
k ),

v
(i)
k ∼ N (v̄

(i)
k , R

(i)
k ).1 Superscript(i) denotes quantities pertinent to modelm(i) in the model set

M = {m(1), m(2), ..., m(r)}, and the jumps, if any, of the system mode have the following transition

1Throughout the thesis,N (y; ȳ, Py) , 1

|2πPy|1/2
exp[− 1

2
(y − ȳ)′P−1

y (y − ȳ)] denotes the pdf of multivariate
normal distribution with mean̄y and covariancePy.
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probabilities

P{mk+1 = m(j)|mk = m(i)} = πij, ∀m(i), m(j), k (2.3)

An alternative to the JMLS defined in (2.1)-(2.3) is the following polytopic model (PM), given

by [24]

xk+1 =

r
∑

i=1

µ
(i)
k [F (i)xk +G(i)uk] + Γkwk (2.4)

zk =

r
∑

i=1

µ
(i)
k [H(i)xk + I(i)uk] + vk (2.5)

with

µ
(i)
k ≥ 0,

r
∑

i=1

µ
(i)
k = 1 (2.6)

where the model probabilitiesµ(i)
k are unknown. The system (2.4)–(2.5) can be written in a more

compact form as

xk+1 = µ
′
k(Fkxk +Gkuk) + Γwk (2.7)

zk = µ
′
k(Hkxk + Ikuk) + vk (2.8)

where

µk =
[

µ
(1)
k , µ

(2)
k , ..., µ

(r)
k

]′

, Fk =
[

F
(1)
k , F

(2)
k , ..., F

(r)
k

]′

, Gk =
[

G
(1)
k , G

(2)
k , ..., G

(r)
k

]′

Hk =
[

H
(1)
k H

(2)
k , ..., H

(r)
k

]′

, Ik =
[

I
(1)
k , I

(2)
k , ..., I

(r)
k

]′

.

Remarks:

The PM structure explicitly uses weighed combinations of the local models contrary to the

JMLS structure. If the constraints of the model (2.6) are removed, the PM structure can possi-

bly handle larger class of problems. The PM structure relieson the interpolation properties of a

5



weighted combination to compensate when physically relevant conditions are not explicitly repre-

sented in the model set of JMLS. This could be the case, for example, for modeling partial faults

in FDI problems.

The PM structure does not use transition probability matrix. This matrix provides the transition

probabilities between models in the model set. In theory it is known, but practically unknown and

it is a design parameter. Thus, PM requires less prior information as compared to JMLS.

2.1.2 Overview of Approaches for PM Estimation

One straightforward approach is to use state augmentation for joint state and parameter estimation

[25], i.e., consider an augmented state-parameter vector[x′,µ′]′ and use extended Kalman filter

(EKF) for the PM (2.7)–(2.8). EKF is done by using linearization as an approximation to the

nonlinear problem. At each time instant, the nonlinear augmented state-space model is linearized

around the current estimate. In the augmented state, the weight are assumed to evolve as a random

walk process. In this approach, assuming weight vectors follow random walk process means they

are almost constant with small variation [15] which in general does not happen in reality. The major

limitation of this approach is that the EKF produced weight estimates do not satisfy the convexity

constraint (2.6). Implementing EKF with inequality constraints is a complicated problem. Usually,

a projection onto the set constraints is used which may introduce a significant bias in the weight

estimates.

Another approach, also proposed in [15], is based on formulating the joint estimation problem

as a constrained maximum a posteriori probability (MAP) estimation. The resulting algorithm,

referred to as a dual CMF, assumes lack of prior information available about the model weights.

This filter, the dual CMF, uses two linear filtering problems to solve optimization problem.The

state and weights are estimated separately in two steps. In each step one parameter is fixed and

the other is estimated and vice versa. In both steps, to estimate one parameter the other one is

assumed as constant. For the PM constraints (2.6), additional theory for implementing equality and

6



inequality constraints in KF’s is used. This approach requires solving multidimensional constraint

optimization problem which involves a lot of computation. For the constraints extra care need to

be taken, which is itself a challenging problem.

Some methods based on robust observer design via pole assignment can be found in [10],

[11], [12], [13], [14]. For example, in [11] a polytopic observer stability is guaranteed by pole

assignment established through the Linear Matrix Inequality (LMI) method. These methods are

not optimal, in general.

Another approach for adaptive estimation of time varying parameters of linear stochastic dy-

namic systems was developed in [8]. This approach with PM structure uses single KF wherein

hypothesized parameters are updated at each time stage by generating the probability of each hy-

pothesis conditioned on residual process and a given probability of transition. But this approach

requires at least one true hypothesis at every time instant.This approach is not suitable for model

interpolation as it requires the truth be presented in the model set.

In Chapter 3, we propose an algorithm which does not suffer with all these issues addressed

above. The proposed algorithm uses Dirichlet distributionwith Quasi-Bayes (QB) procedure for

mixture estimation to estimate the model weights. This approach is natural because, DD will make

sure PM constraints (2.6) are included. Extra care not needed for PM constraints. The DD with QB

approach will work together very well to estimate the posterior model weights. The new algorithm

works with single KF on PM, which makes algorithm computationally very attractive.

2.2 Dirichlet Distribution (DD)

The multinomial distribution is a discrete distribution which gives the probability of choosing a

given collection ofn items from a set ofr items with repetitions and the probabilities of each

choice is given byµ1, µ2, ..., µr. The Dirichlet distribution (DD) [16] is the conjugate priorof the

parameters of the multinomial distribution. The conjugacyproperty ensure that if a Bayesian up-

7
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Figure 2.1: Two Dimensional Dirichlet PDF

date is performed with a Dirichlet prior, and a multinomially distributed sequence of observations,

the updated distribution is still Dirichlet. Due to this nice property, the Dirichlet prior has been

applied frequently in the Artificial Intelligence literature [26] [27] [28] [29].

The DD forµ = [µ1, µ2, ..., µr]
′ with parametersα =[α1, α2, ..., αr], (αi ≥ 0), of orderr ≥ 2

is defined as

D(µ;α1, ..., αr) =
Γ(α1 + α2 + ...+ αr)

Γ(α1)Γ(α2)...Γ(αr)

r
∏

j=1

µ
αj−1
j (2.9)

for

Σr
j=1µj = 1, µj ∈ [0, 1] (2.10)

whereΓ denotes the gamma function. DD can be viewed as multivariateBeta distribution [30],

which is natural forµ due to the unit simplex requirement. The parametersαj can be interpreted

as “prior observation counts” for events governed byµj.
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Figure 2.2: Three Dimensional Concave Dirichlet PDF

The mean and variance of the DD are

E[µj ] =
αj

α0

V ar[µj ] =
αj(α0 − αj)

α2
0(α0 + 1)

whereα0 =
∑r

i=1 αi. The means of allµj stay the same if allαj are scaled with the same multi-

plicative constant. The variances, however, get smaller asthe parametersα grow.

DD offers a great variety of shapes and flexibility to model different situations through its

parameters[α1, α2, ..., αr]. Figure 2.1 shows the two dimensional DD (beta distribution), when

parametersα are assumed equal. It can be seen that asα is growing, distribution starts to change

from concave to convex shape. Also it can be seen when parametersα are equal to unity, the

distribution is a uniform distribution. Figures 2.2, 2.3 show three dimensional DD withα as

parameter. Figure 2.2 shows DD whenαj are different. Note that the distribution is biased towards
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Figure 2.3: Three Dimensional Convex Dirichlet PDF

the larger value ofαj. In Figure 2.3, DD is plotted with differentαj but less than one. The figure

illustrates that DD is convex in shape. So it can be concludedthat whenαj are greater than one,

DD is concave in shape otherwise convex in shape. The two figures illustrate that DD is biased

with theα-vector.

DD Random Numbers Generation. If Yi, i = 1, 2, ..., r are i.i.d. random variables, following a

Gamma distribution

Yi ∼ Γ(shape = αi, scale = θ)

then

V =
r
∑

i=1

Yi ∼ Γ(shape =
r
∑

i=1

αi, scale = θ)

and

X = [X1, . . . , Xr] = [X1/V, . . . , Xr/V ] ∼ D(α1, . . . , αr)

10



The above DD random number generation method is used later (Chapter 4) for sampling within

the PM marginalized particle filter.

2.3 Quasi-Bayes (QB) Procedure for Mixture Probability Esti-

mation

This section presents an approach to limit the computation/memory increase of the Bayesian mix-

ture probability estimator with the help of Dirichlet prior. It is based on the so called Quasi-

Bayesian (QB) approximation for estimation of finite mixtures [17]. The QB procedure is a nice

choice for prior probability estimation (PPE) of finite mixtures (See [31], [32], [33] for other ap-

proaches) since it provides a quasi-posterior mean of the prior probabilities. It will be used later

(see Chapter 3) to derive a QB filter for Polytopic models. TheQB learning approach was also

utilized for other applications, including transition probability estimation in hybrid system mod-

els [18], and adaptation of hidden Markov models (HMM) within an EM estimation framework

for speech recognition [33] [34] [35] [36].

Consider probability density functionsf1, f2, ..., fr, conditional onµ = (µ1, µ2, ..., µr). As-

sume random variablesXn, n = 1, 2, . . . are independent, with probability densities

p(xn|µ) = µ1f1(xn) + µ2f2(xn ) + ...+ µrfr (xn)

where allµi are non-negative and sum up to unity. The densityfi specifies the probability distri-

bution of the observation, given that it belongs to populationHi, andµi denotes the probability of

this event. Supposep(µ) denotes a prior density forµ, p(µ|xn) = p(µ|x1, x2, ..., xn) denotes the

resulting posterior density forµ givenxn. Also pi(µ|xn) denotes the posterior density forµ if, in

addition toxn, it were also known that thenth observation came fromHi.

11



By Bayes theorem, forn ≥ 1,

p(µ|xn) ∝ p(xn|µ)p(µ|xn−1)

Now defining RV’s Y1, Y2, ..., Yn, such thatYn = i if and only if Xn belongs toHi, i =

1, 2, ..., r, then from above

p(µ|xn) =
r
∑

i=1

p(Y n= i|xn)pi(µ|xn) (2.11)

The QB approximation relies on the assumption of DD [16] for the prior probabilities of the

mixture (2.11).

After observing a measurement, say,x1 from the mixture (2.11), the Dirichlet priorp(µ)

yields a posteriorp(µ|x1), which is a weighed sum ofr DDs. Such a splitting leads in time

to a weighted sum of an ever-increasing number of DD components. By assumingp(µ) =

D(µ;α
(0)
1 , α

(0)
2 , ..., α

(0)
r ), after observingx1,

p(µ|x1) =

r
∑

i=1

p(Y 1= i|x1)D(µ;α(0)
1 +δi1, α

(0)
2 +δi2, ..., α

(0)
r +δir)

wherep(Y1 = i|x1) ∝ fi(x1)α
(0)
i andδij = 0 if i 6= j, δij = 1 if i = j. The above posterior density

is a linear combination ofk DD’s, could itself be approximated by a single DD. Then

p(µ|x1) = D(µ;α(0)
1 +∆11, α

(0)
2 +∆12, ..., α

(0)
r +∆1r)

where∆1i = 1 if x1 belongs toHi,∆1i = 0 otherwise.

If the true population is not informed, then we have∆11 = p(Yi = i|x1). Subsequent updating

12



takes place entirely within the Dirichlet distribution of families;p(µ|xn) is DD with parameters

α
(n)
i = α

(n−1)
i +p(Y n= i|xn)

Also it can be verified from standard properties of DD that theposterior mean forµi, after

observingx1, x2, ..., xn, is given by

µ̄
(n)
i =

α
(n)
i

α0 + n
(2.12)

whereα0 = α
(0)
1 + α

(0)
2 + ... + α

(0)
r .

This idea of the above QB procedure is similar to the idea of the first-order generalized pseudo-

Bayesian (GPB1) approach for MM state estimation [25], where at each time-step, the branching

weighted sum of Gaussian’s is approximated by a single Gaussian. .
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Chapter 3

Proposed Methods for PM Estimation

3.1 QB Adaptive Kalman Filter

This part of thesis presents an algorithm for model weights estimation for PM (2.7)-(2.8) by using

QB procedure explained in Chapter 2. The new algorithm, Quasi-Bayesian adaptive Kalman filter

(QBAKF), estimates the model weights accurately by assuming weights are random and follow

DD. The assumption of DD for model weights ensures that convex constraints for PM (2.6) are

included naturally because DD implicitly accounts for the unit sum constraints, and positivity

constraints. Further QB procedure for mixture probabilityestimation together with DD is perfect

choice for model weights because of the conjugate property of DD. As explained in Chapter 2,

with the QB procedure, the subsequent posterior update takes place within the family of DD’s,

when prior is assumed as DD. This property ensures straightforward calculation of quasi-posterior

means̄µi(k), i = 1, 2, ..., r.

The quasi-posterior mean update (2.12) is done directly through updating parametersαi. The

αi update is done depending on how likely that model is going to happen. So calculating likelihood

for each parameter will be challenging and varies dependingon the problem.

The likelihood for QBAKF is calculated depending on the basis of bias at each time instant.
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The bias is measured between the mixture calculated with previous step estimated model weights

and individual components of the mixture similar to [8]. Thebias is directly proportional to the

mean of mixture components, so it leads to higher weights in the mixture. This larger model weight

implies that truth is more inclined towards the corresponding model.

Upon receiving each measurement, single Kalman Filter (KF)is implemented on the model

mixture with the old weights. Then the likelihood of each model is calculated by approximating the

innovation parameter being normally distributed with meanas bias and covariance as innovation

covariance from KF. Further model weights are updated through likelihood and used for next time

cycle. The appealing thing about this approach is, it uses only one KF on the mixture at every time

instant. The QBAKF is computationally efficient compared toother approaches because of single

KF. It interpolates well between the local models in the model set. It does not require that the truth

is one of the local models in the multiple model set. The QBAKFcan be extended to maneuvering

problems, but it is slow to reach the truth. It can be improvedby proper modeling of the weights

for maneuvers. In the next section, QBAKF development and description are provided.

3.1.1 Derivation

This part explains in detail, how QBAKF algorithm is developed. The QBAKF utilizes QB pro-

cedure and bias to estimate the mixture weights and then state vector. In the following QBAKF is

derived for the problem formulated in (2.7)-(2.8).

As explained in the previous section, estimating weights are done through likelihood of each

parameter. This section will explain in detail, how likelihood is calculated and then weights are

estimated. The weight for each model is calculated by using QB procedure. The main goal here is

to find out the bias of each model and then by calculating likelihood of each modelgi(k) with the

bias. From the Section 2.3, the quasi-posterior mean of the weight for ith model is given by the
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following algorithm,

αi(k) = αi(k − 1) +
αi(k − 1)gi(k)

∑r
l=1 αl(k − 1)gl(k)

(3.1)

µ̄i(k) =
αi(k)

k + α(0)
(3.2)

wherek is the time sample,αi(0) > 0, andα(0) =
∑r

i=1 αi(0).

Consider system equations are forith model from (2.4)–(2.5),

xk = F
(i)
k xk−1 +G

(i)
k uk−1 + wk

zk = H
(i)
k xk + vk

where(F (i)
k , G

(i)
k , H

(i)
k ) corresponds toith model.

Let Fk = µ̄(k − 1)Fk, Gk = µ̄(k − 1)Gk, Hk = µ̄(k − 1)Hk andx̂k, Pk denotes the estimate

of the KF withFk, Gk, Hk.

Consider also a hypothetical one step KF prediction part forith model. So the prediction

equations for modeli are

x̄i
k = F

(i)
k x̂k−1 +G

(i)
k uk−1

z̄
(i)
k = H

(i)
k x̄i

k

= H
(i)
k (F

(i)
k x̂k−1 +G

(i)
k uk−1)

= H
(i)
k (∆F

(i)
k x̂k−1 +∆G

(i)
k uk−1) +H

(i)
k (Fkx̂k−1 +Gkuk−1)

= H
(i)
k (∆F

(i)
k x̂k−1 +∆G

(i)
k uk−1) + (∆H

(i)
k +Hk)(Fkx̂k−1 +Gkuk−1)

= H
(i)
k (∆F

(i)
k x̂k−1 +∆G

(i)
k uk−1)

+ ∆H
(i)
k (Fkx̂k−1 +Gkuk−1) +Hk(Fkx̂k−1 +Gkuk−1)
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wherex̄i
k is the predicted state,̄z(i)k is the predicted measurement, and

∆F
(i)
k = F

(i)
k − Fk, ∆G

(i)
k = G

(i)
k −Gk, ∆H

(i)
k = H

(i)
k −Hk

Next, by manipulating above predicted measurement equations the following relations are ob-

tained.

z̄
(i)
k = z̄k + (H

(i)
k ∆F

(i)
k +∆H

(i)
k Fk)x̂k−1 + (H

(i)
k ∆G

(i)
k +∆H

(i)
k Gk)uk−1

z̃k = z̃
(i)
k + (H

(i)
k ∆F

(i)
k +∆H

(i)
k Fk)x̂k−1 + (H

(i)
k ∆G

(i)
k +∆H

(i)
k Gk)uk−1

wherez̃k = zk − z̄k, z̃
(i)
k = zk − z̄

(i)
k , zk is measurement, and̄zk is predicted measurement for the

mixture model.

Now likelihood forith model can be approximated depending on the bias, similarly to [8], by

gi(k) = N (zk − ẑk|k−1; b
(i)
k , Sk)

whereb(i)k = (H
(i)
k ∆F

(i)
k + ∆H

(i)
k Fk)x̂k−1 + (H

(i)
k ∆G

(i)
k + ∆H

(i)
k Gk)uk−1, zk is measurement,

ẑk|k−1 is the predicted value of the measurement,Sk is innovation covariance. Here likelihood is

assumed to follow Gaussian distribution with parameter as innovation at each time step with mean

b
(i)
k and covariance as innovation covariance from the KF. The approximation is for one time step

of KF, however, it can be extended to multiple steps.

Upon calculating the likelihoods of each model, model weights are calculated using QB proce-

dure mentioned above. These weights are used for next time cycle. For the next time cycle again

single KF is implemented on the mixture of models with these weights. This cycle will repeat.

Because of natural convex property of DD, weights will follow summing to one and positivity

constraints. The next section outlines the QBAKF algorithm.
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3.1.2 QBAKF Algorithm

• A priori parameters:

α(0) = [α1(0), α2(0), ..., αr(0)]
′

α(0) =
∑r

i=1 αi(0), αi(0) > 0, i = 1, 2, ..., r;

• Initialization:

µ̄(0) = 1
α(0)

α(0), x̂0|0, P0|0

• Fork = 1, 2, ...

–State Estimation:

Fk = µ̄(k − 1)Fk, Gk = µ̄(k − 1)Gk, Hk = µ̄(k − 1)Hk

[x̂k|k, Pk|k, zk|k−1, Sk] = KF [x̂k−1|k−1, Pk−1|k−1, zk, Fk, Gk, Hk]

–Weights Estimation:

For i = 1, 2, ..., r;

∆F
(i)
k = F

(i)
k − Fk, ∆G

(i)
k = G

(i)
k −Gk, ∆H

(i)
k = H

(i)
k −Hk

b
(i)
k = (H

(i)
k ∆F

(i)
k +∆H

(i)
k Fk)x̂k−1 + (H

(i)
k ∆G

(i)
k +∆H

(i)
k Gk)uk−1

gi(k) = N (zk − zk|k−1; b
(i)
k , Sk)

αi(k) = αi(k − 1) + αi(k−1)gi(k)∑r
l=1 αl(k−1)gl(k)

µ̄i(k) =
1

k+α(0)
αi(k)

µ̄(k) = [µ̄1(k), µ̄2(k), ..., µ̄r(k)]

The necessary parameter vectorα(0) represent the unnormalized a priori model weight vectors

µ̄(0) and are normalized, so that the initial model weight estimate belongs to the unit simplex of
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valid stochastic matrices.

Regarding the initialization of the algorithm, the following property of the DD is very useful

in practical application: If its parameters are chosen asα1 = α2 = ...= αr = 1,, it coincides with

the uniform distribution over the unit(r− 1)- dimensional simplex. When no a priori information

about the model weights is unavailable, the QBAKF estimatoris initialized with the noninfor-

mative (uniform) prior,µ̄i(0) = 1/r, i = 1, 2, ..., r. The QBAKF algorithm is extremely simple

for implementation and requires very less computation. Theconvergence properties of the QB

approach are discussed in [17] and the relevant references therein.

3.2 DD Marginalized Particle Filter

3.2.1 Motivation

The estimation problem (2.7)-(2.8) is nonlinear and non-Gaussian, and particle filter (PF) is a vi-

able option to apply. However generic PF is not a good choice,because for large number of models

particle state dimension isnx+ r is large and many particles will be needed. Asymptotically as the

number of particles tends to infinity we know that we get the optimal filter. An inherent problem

with the PF is its high computational cost. In practice thereis a tradeoff between accuracy and

computational complexity. The state dimension is biggest limiting factor for PF approximation,

when it is large.

Given model weight vectorµ, the model (2.7)-(2.8) is linear, and Rao-Blackwelizationtech-

nique [19] can be applied. That is, perform linear KF for the linear part givenµ, and perform PF

for the nonlinear part with respect toµ only. This could save a tremendous amount of computa-

tion and make the filter feasible. This method is like marginalizing the linear state variables and

estimating using KF similar to marginalized particle filter(MPF) [20].
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3.2.2 DDMPF Algorithm

This section presents a new algorithm for PM estimation, referred to as a DD Marginalized PF

(DDMPF). The main assumption is that, the weight vectors in the problem (2.7)-(2.8) are random

and obeys DD [17]. The DD makes weights naturally to follow convex property. The importance

sampling step for model weights is according to

µ
(i)(k) ∼ p(µ(k)|µ(i)(k − 1)) = D(µ(k);µ(i)(k − 1) + w(i)

µ
(k))

wherewµ(k) is zero mean white Gaussian noise with small covariance. There is no external adjust-

ment needed for the weights to follow convex property.

In the standard particle filters, obtained variance of the estimates can be decreased by exploiting

linear substructures in the model. The main idea behind MPF is to marginalize corresponding

variables and estimate using an optimal linear filter.

The DDMPF algorithm has two steps, sampling and resampling.In the sampling step new

weightsµ(k) are estimated by using DD with the parameter as old weightsµ(k − 1) with zero

mean white Gaussian noise is added. The problem becomes linear estimation problem because

weights of the models are known. After by usingM linear KFs, correspondinglyM state vectors

are estimated. First step of the algorithm is concluded by calculating probability masses of the

each filter. In the second step, regular resampling is done.

The DDMPF and standard particle filter are closely related. The DDMPF is given below for

one time cycle.
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DDMPF Algorithm

• Initialization:

For i = 1, ...,M

{x̂(i)
0|0, P

(i)
0|0,µ

(i)(0)} = {x̄0, P0, µ̄(0)}

• Sampling:

For i = 1, ...,M

µ
(i)(k) ∼ D(µ(i)(k);µ(i)(k − 1) + w

(i)
µ(k))

F (i)
k = µ

(i)(k)Fk, G(i)
k = µ

(i)(k)Gk, H(i)
k = µ

(i)(k)Hk

[x̂
(i)
k , P

(i)
k , ẑ

(i)
k|k−1, S

(i)
k ] = KF [x̂

(i)
k−1, P

(i)
k−1, zk,F

(i)
k ,G(i)

k ,H(i)
k ]

Importance weights:

q̃
(i)
k = N (zk; ẑ

(i)
k|k−1, S

(i)
k )

• Normalization:

For i = 1, ...,M

q
(i)
k =

q̃
(i)
k

∑M
i=1 q̃

(i)
k

• Resampling:

For i = 1, ...,M

P{x̂(i)
k|k = x̂

(j)
k|k−1} = q

(j)
k

• Output:

x̂k|k =
∑M

i=1 q
(i)
k x̂

(i)
k Pk|k =

∑M
i=1 q

(i)
k (P

(i)
k + (x̂k|k − x̂

(i)
k )(x̂k|k − x̂

(i)
k )′)

The DDMPF algorithm is quite general and further improvements can be made. Initialization
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of model weights can be improved and the evolution of weightsalso can be improved depending

on the nonlinear problem. The number of KFs (M) can be chosen depending on the nonlinearity

of the problem.
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Chapter 4

Simulation Study

In this chapter, two target tracking examples are considered. The unknown parameters are the sam-

pling period and the control input matrix, respectively. For the two examples, the tracking problem

of a non-maneuvering target in the presence of noisy measurements is considered. The goal of

tracking target is to obtain a consistent estimate of the state even in case of noisy measurements.

The target tracking problem considered in this section is based on the tracking problem considered

in [24] [19] [38]. The state of target is given byx = (x, ẋ, y, ẏ)′, wherex and y represent the

positions in the x and y directions of the target andẋ andẏ represent the velocities in the x and y

directions, respectively. The non-maneuvering target evolves according to a JMLS [39].

xk+1 = Fxk +Guk + wk (4.1)

zk = Hxk + vk (4.2)

wherek = 0, 1, . . . is the time index.

The initial state is random and normally distributed, i.e.,x0 ∼ N (x̄0, P0). The Gaussian

process and measurement noises,wk ∼ N (0, Q) andvk ∼ N (0, R), respectively, are white and

mutually uncorrelated.

The matrices, state-transition (F ), input-control (G) and measurement (H) are defined below
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to model different modes of motion. For the two examples, target motion (4.1) is assumed to

follow nearly Constant-Velocity (CV) motion. The CV model is intended to describe the non-

maneuvering mode of motion.

For each tracking filter the following performance measuresare computed by Monte Carlo

simulation withM realizations (runs). For more details regarding evaluating the performance of

estimators the reader is referred to [40].

The accuracy of the algorithms is measured in terms of root-mean-square errors (RMSE):

Position RMSE:

PRMSEk =

(

1

M

M
∑

i=1

[(x
(i)
k − x̂

(i)
k )2 + (y

(i)
k − ŷ

(i)
k )2]

)1/2

Velocity RMSE:

V RMSEk =

(

1

M

M
∑

i=1

[(ẋ
(i)
k − ˆ̇x

(i)
k )2 + (ẏ

(i)
k − ˆ̇y

(i)
k )2]

)1/2

wherexk = (x
(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k )′, x̂k = (x̂

(i)
k , ŷ

(i)
k , ˆ̇x

(i)
k , ˆ̇y

(i)
k )′ denote the true and estimate states,

respectively, in runi at timek.

For the simulations, process and measurement noise covariances are,

Q = 10−3I4, R =



















2500 0 0 0

0 1 0 0

0 0 2500 0

0 0 0 1



















The sensor is located at(0, 0). The noise-free target initial location is at(−500m,−500m)

and the noise-free initial speed is5m/s. Both the state and measurement vectors are in Cartesian

coordinates. The system is simulated for 250 samples. In this simulation non-maneuvering target
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is considered over sampling interval [1, 250]. The state estimation results are obtained with 100

Monte-Carlo (MC) simulations for two examples.

4.1 Example 1 (Unknown Sampling Interval)

In this example, true sampling interval is assumed to be unknown and assumed to belong to a

known interval. The boundaries of the interval are considered as models with certain initial model

weights. Now the problem can be converted into PM. The PM withthe different filters is used to

estimate the weights of those models, so that true sampling interval can be estimated.

The model is given by (4.1) withuk = 0 and system matrices

F =



















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1



















, G =



















1

2

3

1



















, H = I4

are considered. WhereT is the sampling time interval. So the switching term in the model (4.1)

is F matrix. For the simulation purposeT is assumed to interpolate between two values that

correspond to two different sampling periods. These two matches are given by,

T1 = 1s, T2 = 10s

For generating the truth, sampling intervalT = 7s is simulated over the time interval [1, 250].

As explained in Chapter 2, one of the benefits with the PM structure is interpolation property.

To illustrate this property, QBAKF and DDMPF are implemented with two modelsT1 = 1s and

T2 = 10s. The DDMPF is implemented with 100 particles.

The QBAKF and DDMPF are compared with the performances of EKF, AMM, and IMM. The

EKF is implemented by augmented state consisting of the state xk and the weight vector̄π(k).
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Then the problem becomes nonlinear, so non-linear KF, i.e.,EKF is implemented. The covariance

matrices for model weight vector is considered asQµ

k = 0.01I2 for EKF, for all k.

The Autonomous multiple model (AMM) [21] with two models is implemented. The AMM

algorithm runs a conditional Kalman filter (KF) for each model in the model set and evaluates

the posterior probability of each model. The overall fused estimate is obtained as a sum of the

conditioned estimates weighted by their corresponding model probabilities. The conditional filters

operate independently, in an autonomous manner, no information exchanged among the filters.

The Interacting Multiple Model (IMM) [22] algorithm, runs several conditional filters. How-

ever, each filter is individually re-initialized with the estimate, refereed to as mixed estimate, con-

ditioned on the model at the current time instant. After updating the filters IMM provides the

overall output through estimate fusion, but maintains the conditional estimates for the next time

step. The IMM in the present simulation uses two models. The transition probability matrix used

for IMM is given by,

Π =







0.95 0.05

0.05 0.95







The initial model weights are assumed to be equal and follow convex property for all filters

considered here for comparison. The covariance matrices are chosen same asQ andR for all

filters, for allk.

Comparative time-plots of the position and velocity RMSEs are shown in Figures 4.1 and 4.2,

respectively. It can be seen from the RMSE plots, QBAKF is outperforming all other filters by

large margin. The DDMPF is also performing well but not as good as QBAKF. This is probably

because of modeling weights and number of particles. The AMMis performing not really well,

because with the AMM, probability of the model in the model set, with the smallest distance to the

true model tends to unity almost surely as time increases. Inthis case, true mode is not presented in

the model set. So AMM tends to provide the unity probability to the second model i.eT2, because

truth is closer to it. The AMM performance can be improved by increasing the number of valid
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Figure 4.1: Position RMSE
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Figure 4.2: Velocity RMSE
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Figure 4.3: Sampling Time RMSE
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Figure 4.4: AMM Estimated Weights
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Figure 4.5: QBAKF Estimated Weights
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Figure 4.6: IMM Estimated Weights
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Figure 4.7: DDMPF Estimated Weights

models in model set. At the same time EKF is performing badly because model weights in EKF

are assumed to follow random walk process. So most of the times model weights in EKF tries to

be around initial weights as the time goes, which is not suitable for this kind of estimation. The

IMM is also not very good in terms of accuracy of algorithms. It is because of the fundamental

limitation of IMM with fixed structure i.e., IMM believes at any given time one of their filters is

perfect and none of them may provide incorrect information.The filters in IMM trust themselves

so much. In this case truth is not there in the IMM model set. Here IMM is exposed to the mode

that is unknown.

Figure 4.3 illustrates accuracy of parameter estimation. Sampling interval RMSEs with re-

spect to estimatedT are compared. Again QBAKF is far better among all the algorithms because

QBAKF is able to estimate weights very well. Other algorithms are not able to model weights

properly because of their fundamental limitations for thiskind of problem.

In Figures 4.4-4.7, estimated model weights of AMM, QBAKF, IMM and DDMPF are plotted
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respectively. The true weights are also presented. For the truth of T = 7s, model weight vector

should be(0.335, 0.6665). Again it can be seen, QBAKF is best estimating the weights towards

the truth while others are not able to do.

4.2 Example 2 (Unknown Control Input matrix)

The second example, the switching term in the model (4.1) isG matrix. For this example, the

model is given by (4.1) withuk =
√
2 and sampling intervalT = 1s. All remaining parameters

are same as in the Example 1. To modelG matrix, interpolation between three possible matrices is

considered. Three possible values that correspond to threedifferent maneuver commands. These

three matrices are given by

G(1) = [−0.5, 0, 0, 1]′

G(2) = [−0.25, 0.5, 0.25,−0.5]′

G(3) = [0.25,−0.5, 0.25,−0.5]′

The truth is simulated with0.14G(1) + 0.33G(2) + 0.53G(3) over the time interval [0, 250]. So

the true model weight vector is(0.14, 0.33, 0.53). The performances of EKF, AMM and IMM are

compared with QBAKF. All the algorithms use three models with the equal initial weights. The

transition probability matrix for IMM is considered as

Π =













0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90













In Figures 4.8 and 4.9 RMSEs of position and velocity are compared. The QBAKF is one

of the algorithms with least RMSE. As time goes, RMSE of QBAKFis gradually decreasing

31



0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Time (k)

 

 
AMM
QBAKF
EKF
IMM

Figure 4.8: Position RMSE
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Figure 4.9: Velocity RMSE
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Figure 4.10: RMSE of Estimating Parameter G
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Figure 4.11: AMM Estimated Weights
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Figure 4.12: QBAKF Estimated Weights
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Figure 4.13: EKF Estimated Weights
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when compared to all other algorithms. The Figure 4.10 is about RMSE of parameterG from

the estimated model weights. Out of all algorithms, QBAKF iswith almost perfect reconstructed

G matrix. The Figures 4.11-4.13 show estimated model weightsfor AMM, QBAKF and EKF

respectively. The true weights are also shown for comparison. The estimated EKF weights are

not following convex property. This is one of the biggest disadvantage with augmented EKF to

estimate model weights. Out of all those estimated model weights, QBAKF is with almost perfect

estimated model weight vector.

An important conclusion that can be drawn from the above two examples is that the PM struc-

ture is preferred when interpolation between models from the model set is required. The regular

algorithms EKF, AMM, and IMM will not work very well for the PMstructures as because of their

fundamental limitations/assumptions. The QBAKF performsfar better for the interpolation of the

models in the model set. The best thing about this algorithm is able to estimate the model weight

vectors with minimum error. Also QBAKF runs only single KF for mixture and able to estimate

the model weights properly. It is simple to implement when compared to other PM estimation

algorithms. The only shortcoming for QBAKF is when the true mode is in the model set. Other

algorithms like AMM will perform better. Apart from that, QBAKF can be used for the model sets

with PM structure. The DDMPF algorithm simulated in the firstexample is also not doing bad,

but it can be further improved by proper modeling and increasing number of particles. The main

shortcoming is the high computational cost.
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Chapter 5

Summary and Conclusions

In this thesis, an alternative model structure is adopted and utilized for the hybrid model structure

of JMLS. This structure, named polytopic model (PM) structure, explicitly allows for interpolation

between models. The estimation algorithms based on PM have better model interpolation proper-

ties. The PM structure is free of transition probabilities,which simplifies estimation process.

Two novel estimation algorithms, QBAKF and DDMPF, are proposed and implemented for

PM estimation problems. In this thesis, model weights are assumed to be random and follow DD

because of convex property of the model weights. The assumption of DD for model weights is

quite natural, as model weights from the DD follow convex property automatically. The QBAKF

algorithm uses Quasi-Bayesian approach for mixture probability estimation with the single KF for

estimating model weights in the mixture. It is very simple toimplement. The QBAKF is weakly

dependent on the number of models in the model set, it runs only one KF on mixture.

The DDMPF algorithm is similar to MPF. The DDMPF estimates model weights by assuming,

weight vectors follow random walk process with small covariance. Thus by converting problem

into linear estimation problem with known weights, MPF is implemented. Some future work need

to be done on modeling weights to get proper performance.

Monte-Carlo simulation results of a well known target tracking problem is considered with two
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examples. In the first example, sampling interval assumed tobe unknown. To estimate the sam-

pling interval, boundaries of the sampling interval are considered as two models in the model set.

The weights of the models are estimated using QBAKF, DDMPF and compared with well known

AMM, IMM and augmented EKF. The QBAKF performed very well in terms of accuracy and

simplicity. The DDMPF performed reasonably well. For the second example, control input matrix

is assumed to be unknown. Three different choices of the input-control matrices are considered

in the model set. The model weights are estimated using QBAKF, IMM, AMM, and EKF. Again

QBAKF performed well in terms of estimating model weights, accuracy and simplicity. This kind

of approach can be extended to state estimation for maneuvers by improving modeling part of the

weight vectors.
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