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Abstract

The polytopic model (PM) structure is often used in the acdasitomatic control and fault detec-
tion and isolation (FDI). It is an alternative to the mulgphodel approach which explicitly allows
for interpolation among local models.

This thesis proposes a novel approach to PM estimation byelmgthe set of PM weights as
a random vector with Dirichlet Distribution (DD). A new agximate (adaptive) PM estimator,
referred to as a Quasi-Bayesian Adaptive Kalman Filter (BAis derived and implemented.
The model weights and state estimation in the QBAKF is peréat adaptively by a simple QB
weights’ estimator and a single KF on the PM with the estimhateights. Since PM estimation
problem is nonlinear and non-Gaussian, a DD marginalizeticfgfilter (DDMPF) is also de-
veloped and implemented similar to MPF. The simulation ltesshow that the newly proposed
algorithms have better estimation accuracy, design saitygland computational requirements for

PM estimation.

KEY WORDS: Model interpolation, Quasi-Bayes procedure for mixtui@sjchlet distribu-

tion, Jump-Markov linear systems, Polytopic model
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Chapter 1

Introduction

Research on multiple-model (MM) approach has spread outanynareas in last decades. The
reason is in the elegant solutions that MM approach provmtesodeling, estimation, and control.
The MM framework can give appealing solutions to almost #kriing problems. A canonical
application of the MM approach is target tracking. An elatey in-depth, explanation of different
state-of-the-art MM algorithms and their application tog&t tracking problems can be found
in [1]. Another important application of the MM frameworksgstem fault detection and isolation
(FDI), e.g., [2], [3].

Most existing MM estimation algorithms provide a solutianthe problem of estimating the
state and the mode of a hybrid, usually Markov jump systemSiM3]. A possible alternative
is to use another model structure which relies on reprasgrieipproximating) a possible truth
through explicit interpolation between models. For exanpglthe weighed combinations of the
local models in the MJS model set correspond to physicalgvaat conditions, which are not
accounted for in the MJS model set, it is desirable to intateoamong these models. Such a
structure is, sometimes, referred to as a blended MM strai¢l. In this structure, the model that
is valid is a weighed combination of some local models in asengdesigned) model set [6], [7].

When the combinations are restricted to be convex, a subbsdtmded MM structure is created



that is usually named as Polytopic Model (PM) or Convex Md@&#). The convexity restriction
is added to ensure that the state estimates based on the fahesla@cal models are fully valid
and the rest (non-convex combinations) are not. Polytomdets have been most often used in
the area of FDI [8], [9], [10], [11], [12], [13], [14], [15]. e main motivation for using the PM
framework in FDI is that it allows for a large class of faultntiitions to be modeled by using a
relatively small numbers of local models, and no explicid®ling of system mode evolution (e.g.,
Markov chain model transitions) is required. Estimatiomg$®M structure consists of estimating
both the state and model weights of the local models dire@thys kind of estimation problem is
nonlinear and non-convex due to the products of the statenanie| weights. There exist a number
of methods for PM estimation in the literature. An overvieigoch methods and numerous issues
associated with their use is provided in Chapter 2.

In this thesis, we propose a novel approach to PM estimafibe. main idea is to model the
set of PM weights as a random vector with Dirichlet prior @bitity distribution. The Dirichlet
distribution (DD) [16] is the most natural model for probigigiweights of mixtures in Bayesian
statistics [17]. It inherently satisfies the requiremerita probability mass function and offers a
great variety of shapes and flexibility to model differemtigtions (See Chapter 2). Two estimation
methods are carried out.

Under the assumption that the PM weights obey a DD, a new appate (adaptive) PM
estimator is derived which is referred to as a Quasi-Baye&waptive Kalman Filter (QBAKF).
The operation of the QBAKEF filter is based on two main techaguquasi-Bayesian estimation
of mixture probabilities [18] and approximating the veraodel likelihoods through a single
Kalman filter (KF). The model weights and state estimationhiea QBAKF filter is performed
adaptively by a simple QB weights’ estimator and a single KFtlee PM with the estimated
weights. Since only one KF used, the QBAKF filter is compuotadily very efficient even for
large vertex-model sets — it is almost independent of thealset size.

Since PM estimation problem is nonlinear and non-Gaussigparticle filter (PF) is a vi-



able option to apply. A generic PF is not a good choice bectardarge number of models the
dimension of the particles (state dimension + number of ns)decomes large and possibly a
prohibitively large number of particles will be needed. Hmer, based on the observation that
the PM is conditionally-linear (given the model weightfk Rao-Blackwellization technique [19]
can be directly applied. The result is a DD marginalized PBNIPF), similar to the one of [20],
that performs linear KF for the linear part, given (an estara) the model weights; and a PF for
the nonlinear part with respect to the model weights onlegi(an estimate of) the state. The
DDMPF leads to dramatic computation saving as compared &narg PF. Based again on the
DD weights’ model, a DDMPF is also obtained and implementetthis thesis.

The effectiveness and improved interpolation propertide@new approach are demonstrated
by two examples target tracking. Monte Carlo simulatioulssare obtained and compared with
the well known Autonomous Multiple Model (AMM) [21], Intecing Multiple Model (IMM)
[22], and augmented Extended Kalman filters [23].

The remaining part of the thesis is organized as follows.p&#re provides background infor-
mation on Polytopic models, the Dirichlet distributiondaa generic Quasi-Bayes procedure for
mixture probability estimation. Chapter 3 presents themtigm development of the new QBAKF
and the DD marginalized patrticle filter (DDMPF). Chapter €gants Monte Carlo simulation

results of two target tracking examples. Finally, Chaptprdvides summary and conclusions.



Chapter 2

Background

2.1 Polytopic Model (PM)

2.1.1 PM Definition

A commonly used for MM estimation algorithms is the follogifump Markov linear system

(IMLS) [1]

Tpy1 = Féi)xk + G,(f)uk + Fg)w,(f)

2z = ngi)xk + Ilgi)uk + US)

(2.1)

(2.2)

where z;, € R"™ is the base state;, € R™ is the measurememu,(j) is a (known) in-

put, w(”’ andv” are independent process and measurement noisesuffithe A (@\”, Q\),

ol ~ N (@, R™).1 Superscripti) denotes quantities pertinent to mode in the model set

M = {m® m® . m} andthe jumps, if any, of the system mode have the followiagdition

Throughout the thesisV (y; 7, P,) = m exp[—3(y — 4)'P, ' (y — )] denotes the pdf of multivariate

normal distribution with meag and covariance’,.



probabilities

P{mk-‘rl = m(j)|mk = m(l)} = ﬂ-iﬁvm(i)v m(j)7 k (23)

An alternative to the JMLS defined in (2.1)-(2.3) is the fallng polytopic model (PM), given
by [24]

Tp+1 = Z M;(f) [F(i)xk + G(i)uk] + Lpwy (2.4)
i=1
2 = Z ,u,(f) [H(i)l'k + I(i)uk] + vy, (2.5)
i=1
with
e =0, =1 (2.6)
i=1

where the model probabilitiaéf) are unknown. The system (2.4)—(2.5) can be written in a more

compact form as

Tpr1 = ,u;g(Fkxk + Gkuk) + Twy, (27)

2y = pp(Hprp + Lyug) + v (2.8)
where

) (2 n]’ 1 2 r

/ /
o= [0 o, 1] =002,

Remarks:
The PM structure explicitly uses weighed combinations @f litcal models contrary to the
JMLS structure. If the constraints of the model (2.6) areaesd, the PM structure can possi-

bly handle larger class of problems. The PM structure ralieghe interpolation properties of a



weighted combination to compensate when physically reliesanditions are not explicitly repre-
sented in the model set of JIMLS. This could be the case, fanplg for modeling partial faults
in FDI problems.

The PM structure does not use transition probability maifrhis matrix provides the transition
probabilities between models in the model set. In theory kinown, but practically unknown and

it is a design parameter. Thus, PM requires less prior infion as compared to JMLS.

2.1.2 Overview of Approaches for PM Estimation

One straightforward approach is to use state augmentatiqaifnt state and parameter estimation
[25], i.e., consider an augmented state-parameter véctqe']’ and use extended Kalman filter
(EKF) for the PM (2.7)—(2.8). EKF is done by using lineariaatas an approximation to the
nonlinear problem. At each time instant, the nonlinear aenped state-space model is linearized
around the current estimate. In the augmented state, tlihirgrie assumed to evolve as a random
walk process. In this approach, assuming weight vectolsvialandom walk process means they
are almost constant with small variation [15] which in gethéiloes not happen in reality. The major
limitation of this approach is that the EKF produced weigtttreates do not satisfy the convexity
constraint (2.6). Implementing EKF with inequality comsiits is a complicated problem. Usually,
a projection onto the set constraints is used which maydnire a significant bias in the weight
estimates.

Another approach, also proposed in [15], is based on fortimgléhe joint estimation problem
as a constrained maximum a posteriori probability (MAP)neation. The resulting algorithm,
referred to as a dual CMF, assumes lack of prior informatienlable about the model weights.
This filter, the dual CMF, uses two linear filtering problemssblve optimization problem.The
state and weights are estimated separately in two stepsachnstep one parameter is fixed and
the other is estimated and vice versa. In both steps, to &&ione parameter the other one is

assumed as constant. For the PM constraints (2.6), adalitieeory for implementing equality and



inequality constraints in KF's is used. This approach rezgisolving multidimensional constraint
optimization problem which involves a lot of computatiororfhe constraints extra care need to
be taken, which is itself a challenging problem.

Some methods based on robust observer design via pole m&sigican be found in [10],
[11], [12], [13], [14]. For example, in [11] a polytopic obser stability is guaranteed by pole
assignment established through the Linear Matrix IneguéliMI) method. These methods are
not optimal, in general.

Another approach for adaptive estimation of time varyingapegeters of linear stochastic dy-
namic systems was developed in [8]. This approach with PMcgire uses single KF wherein
hypothesized parameters are updated at each time stageénageg the probability of each hy-
pothesis conditioned on residual process and a given pildpais transition. But this approach
requires at least one true hypothesis at every time instdms. approach is not suitable for model
interpolation as it requires the truth be presented in thdahset.

In Chapter 3, we propose an algorithm which does not suffér all these issues addressed
above. The proposed algorithm uses Dirichlet distributiaih Quasi-Bayes (QB) procedure for
mixture estimation to estimate the model weights. This a@ggh is natural because, DD will make
sure PM constraints (2.6) are included. Extra care not reefedtd®M constraints. The DD with QB
approach will work together very well to estimate the pastanodel weights. The new algorithm

works with single KF on PM, which makes algorithm computadlly very attractive.

2.2 Dirichlet Distribution (DD)

The multinomial distribution is a discrete distribution et gives the probability of choosing a
given collection ofn items from a set of- items with repetitions and the probabilities of each
choice is given byu,, pto, ..., .. The Dirichlet distribution (DD) [16] is the conjugate priof the

parameters of the multinomial distribution. The conjugpoyperty ensure that if a Bayesian up-
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Figure 2.1: Two Dimensional Dirichlet PDF

date is performed with a Dirichlet prior, and a multinomyalistributed sequence of observations,
the updated distribution is still Dirichlet. Due to this aiproperty, the Dirichlet prior has been
applied frequently in the Artificial Intelligence literati[26] [27] [28] [29].

The DD forp = [y, o, ..., pt,,] With parametersx =[aq, as, ..., a;], (a; > 0), of orderr > 2

is defined as
Dlay+ oo+ ..+ ) 70 a1
D(w;aq,...,qp) = ! 2.9
(i 00,0 00) = 0 S ) e jl:[l“ﬂ (29)
for
z:;:lluj = 17 :uj < [07 1] (210)

wherel’ denotes the gamma function. DD can be viewed as multivaBiata distribution [30],
which is natural for due to the unit simplex requirement. The parametgrsan be interpreted

as “prior observation counts” for events governegby
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Figure 2.2: Three Dimensional Concave Dirichlet PDF

The mean and variance of the DD are

a .

Elp;] = a_g
v ~aj(ag — ay)
ar[uj] N ad(ag+1)

whereag = >"'_, ;. The means of all; stay the same if all; are scaled with the same multi-
plicative constant. The variances, however, get smallén@aparameters grow.

DD offers a great variety of shapes and flexibility to moddfedent situations through its
parametersa,, ao, ..., a..]. Figure 2.1 shows the two dimensional DD (beta distribgtievhen
parameters are assumed equal. It can be seen that esgrowing, distribution starts to change
from concave to convex shape. Also it can be seen when pagewaetire equal to unity, the
distribution is a uniform distribution. Figures 2.2, 2.3o8hthree dimensional DD witl as

parameter. Figure 2.2 shows DD whepare different. Note that the distribution is biased towards
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Figure 2.3: Three Dimensional Convex Dirichlet PDF

the larger value of;. In Figure 2.3, DD is plotted with different; but less than one. The figure
illustrates that DD is convex in shape. So it can be conclubdatwhena; are greater than one,
DD is concave in shape otherwise convex in shape. The twoelgillustrate that DD is biased

with the a-vector.

DD Random Numbers Generation. If ;.7 = 1,2,...,r are i.i.d. random variables, following a
Gamma distribution

Y; ~ ['(shape = o, scale = 0)

then

T

V = ZYi ~ I'(shape = zr:aia scale = 0)

i=1 i=1

and

X =[X1,...,X] =[X)/V,...,X,/V] ~D(eu,...,a)

10



The above DD random number generation method is used latap(€r 4) for sampling within

the PM marginalized particle filter.

2.3 Quasi-Bayes (QB) Procedure for Mixture Probability Est-
mation

This section presents an approach to limit the computatieniory increase of the Bayesian mix-
ture probability estimator with the help of Dirichlet priott is based on the so called Quasi-
Bayesian (QB) approximation for estimation of finite mixdaff17]. The QB procedure is a nice
choice for prior probability estimation (PPE) of finite mixes (See [31], [32], [33] for other ap-
proaches) since it provides a quasi-posterior mean of tioe probabilities. It will be used later

(see Chapter 3) to derive a QB filter for Polytopic models. Qilearning approach was also
utilized for other applications, including transition pebility estimation in hybrid system mod-
els [18], and adaptation of hidden Markov models (HMM) witlsin EM estimation framework

for speech recognition [33] [34] [35] [36].

Consider probability density functions, f, ..., f., conditional onp = (y, g, ..., t,.). AS-

sume random variables,,, n = 1,2, ... are independent, with probability densities

px, ) = pyfi(x,) + pyfolr, ) + .+ p, fr (2,)

where alli; are non-negative and sum up to unity. The dengitspecifies the probability distri-
bution of the observation, given that it belongs to popolat/;, andy, denotes the probability of
this event. Supposg ) denotes a prior density fqe, p(p|z™) = p(p|z1, 22, ..., x,) denotes the
resulting posterior density fqe givenz™. Also p;(u|z™) denotes the posterior density farif, in

addition toz™, it were also known that the* observation came from;.

11



By Bayes theorem, for > 1,

p(pla") oc p(a”|w)p(plz" ")

Now defining RV’s Y1, Y5, ..., Y,,, such thatY,, = i if and only if X,, belongs toH;,i =

1,2, ...,r, then from above

T

p(pla") = p(Y,= ila")p,(plz") (2.11)

i=1

The QB approximation relies on the assumption of DD [16] fog prior probabilities of the
mixture (2.11).

After observing a measurement, say, from the mixture (2.11), the Dirichlet prigs(u)
yields a posteriop(u|x;), which is a weighed sum aof DDs. Such a splitting leads in time
to a weighted sum of an ever-increasing number of DD compsneBy assuming(up) =

D(p:el”, o ... o), after observing:,
[,L‘JI Zp —’L‘Jfl /1'7041 —|—(521,042 +5z27---70‘7(00)+5ir>

wherep(Y; = i|z1) fl(xl) andém =0if i # j,0,; = 1if ¢ = j. The above posterior density

is a linear combination of DD’s, could itself be approximated by a single DD. Then
p(ulz,) = D(p; oz§°)+Au, a§°)+Au, oV +A)

whereA; = 1if x; belongs toH;, A,; = 0 otherwise.

If the true population is not informed, then we hak¥g = p(Y; = i|z;). Subsequent updating

12



takes place entirely within the Dirichlet distribution @frfilies;p(u|x,,) is DD with parameters

Also it can be verified from standard properties of DD that plsterior mean foy;, after
observinge, xo, ..., x,, IS given by

(2.12)

whereag = a\” + ol + .. + ol
This idea of the above QB procedure is similar to the idea®fitst-order generalized pseudo-
Bayesian (GPB1) approach for MM state estimation [25], wrareach time-step, the branching

weighted sum of Gaussian’s is approximated by a single Gauss

13



Chapter 3

Proposed Methods for PM Estimation

3.1 QB Adaptive Kalman Filter

This part of thesis presents an algorithm for model weigstisration for PM (2.7)-(2.8) by using
QB procedure explained in Chapter 2. The new algorithm, QBagesian adaptive Kalman filter
(QBAKF), estimates the model weights accurately by assgmieights are random and follow
DD. The assumption of DD for model weights ensures that coceastraints for PM (2.6) are
included naturally because DD implicitly accounts for th@tisum constraints, and positivity
constraints. Further QB procedure for mixture probabiitgimation together with DD is perfect
choice for model weights because of the conjugate propérBDo As explained in Chapter 2,
with the QB procedure, the subsequent posterior update falleee within the family of DD’s,
when prior is assumed as DD. This property ensures straigtafd calculation of quasi-posterior
meansy;(k), i =1,2,...,r.

The quasi-posterior mean update (2.12) is done directbutiin updating parametets. The
«; update is done depending on how likely that model is goin@pplen. So calculating likelihood
for each parameter will be challenging and varies depenaiiniipe problem.

The likelihood for QBAKF is calculated depending on the basi bias at each time instant.

14



The bias is measured between the mixture calculated withqare step estimated model weights
and individual components of the mixture similar to [8]. Tias is directly proportional to the
mean of mixture components, so it leads to higher weightsamtixture. This larger model weight
implies that truth is more inclined towards the correspoganodel.

Upon receiving each measurement, single Kalman Filter (Kfinplemented on the model
mixture with the old weights. Then the likelihood of each rakid calculated by approximating the
innovation parameter being normally distributed with maarbias and covariance as innovation
covariance from KF. Further model weights are updated tindikelihood and used for next time
cycle. The appealing thing about this approach is, it usgsmre KF on the mixture at every time
instant. The QBAKF is computationally efficient compareatber approaches because of single
KF. It interpolates well between the local models in the migéé It does not require that the truth
is one of the local models in the multiple model set. The QBAI&R be extended to maneuvering
problems, but it is slow to reach the truth. It can be improlggroper modeling of the weights

for maneuvers. In the next section, QBAKF development asdrijaion are provided.

3.1.1 Derivation

This part explains in detail, how QBAKF algorithm is devetop The QBAKF utilizes QB pro-
cedure and bias to estimate the mixture weights and themaator. In the following QBAKF is
derived for the problem formulated in (2.7)-(2.8).

As explained in the previous section, estimating weighésdame through likelihood of each
parameter. This section will explain in detail, how likedd is calculated and then weights are
estimated. The weight for each model is calculated by usiBgf@cedure. The main goal here is
to find out the bias of each model and then by calculatingihikeld of each mode}; (k) with the

bias. From the Section 2.3, the quasi-posterior mean of #ight/for i"* model is given by the

15



following algorithm,

ai(k — 1)gi(k)

- k)
fii(k) = m (3.2)

wherek is the time sampley;(0) > 0, anda(0) = >, o;(0).

Consider system equations are fédrmodel from (2.4)—(2.5),

T = Fk(i)l’k_l + G](j)uk_1 + Wg

2k = H,gi)xk—i—vk

where(F”, GY | H\") corresponds té" model.

Let F, = p(k — 1)Fy, G, = p(k — 1)Gy, Hy = p(k — 1)Hy andiy, P, denotes the estimate
of the KF with £}, G}, H;,.

Consider also a hypothetical one step KF prediction partifomodel. So the prediction

equations for modelare

T, = Fk(i)i'k—l + G;(f)uk—l

A0 g

= H(F9% 1 + Gy y)

= HYAFD 2y + AG uyp_y) + HY (Fry_y + Grug_y)

= HYAFD 2y + AGup_y) + (AHY + Hy) (Fuip_y + Grup_)
= HYAFD 2y + AG uy_y)

+ AH/Ei)(kakq + Grug—1) + He(FrZg—1 + Grug—1)

16



wherez; is the predicted state*,(f) is the predicted measurement, and
AR = B — B, AGY = GY — Gy, AHY = HY — H,

Next, by manipulating above predicted measurement equeatiee following relations are ob-

tained.

2 = 5+ HYAFY + AHYF)ipoy + (HPAGY + AHP Gy
) DAF® L AFD F DAGH L AFD
wherez, = 2z, — Z, 2,2” =2z — 2,(;), 2, IS measurement, angl is predicted measurement for the
mixture model.

Now likelihood fori** model can be approximated depending on the bias, similaif§] by
9i(k) = N (2x — Zpje—1: b,(f’, Sk)

wheret”) = (HOAFY + AHYF) iy + (HPAGY + AHPGy)uy—, 2, is measurement
Zrk—1 Is the predicted value of the measuremeitis innovation covariance. Here likelihood is
assumed to follow Gaussian distribution with parametenasvation at each time step with mean
b,(f) and covariance as innovation covariance from the KF. Thecpation is for one time step
of KF, however, it can be extended to multiple steps.

Upon calculating the likelihoods of each model, model wisglre calculated using QB proce-
dure mentioned above. These weights are used for next tiole.dyor the next time cycle again
single KF is implemented on the mixture of models with thesgghts. This cycle will repeat.
Because of natural convex property of DD, weights will fallsumming to one and positivity

constraints. The next section outlines the QBAKF algorithm
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3.1.2 QBAKF Algorithm

e A priori parameters:
a(0) = [a1(0), az(0), ..., a,.(0)]
a(0) =37, a;(0), a;(0) > 0, i1=1,2,....7;
e Initialization:
fi(0) = z550x(0), 0, Pojo
o Fork=1,2,...
—State Estimation:
Fy = p(k — DFy, Gy = p(k — 1)Gy, Hy, = p(k — 1)H,,
[Zriks Prjkes 2kjk—1, Sk) = KF [Zr—1j6—1, Pe—1jk—1, 2k, Fi, G, Hy]
—Weights Estimation:
For:=1,2,....r;
AFY = FY — B AGY =GV — ¢y, AHY = HY — 1,
B = (HYAFY + AHVF)#_y + (HPAGY + AHD G )u—y

gz<k> = N(Zk — Zk|k—1; b/(f)7 Sk)

B (k=g (k)
ai(k) = ai(k — 1) + =" 0o
fi;(k) = k+i(0) a; (k)

p(k) = [ (k), iy (k), .. i, (F)]

The necessary parameter veaidf) represent the unnormalized a priori model weight vectors

£(0) and are normalized, so that the initial model weight estintetiongs to the unit simplex of
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valid stochastic matrices.

Regarding the initialization of the algorithm, the followg property of the DD is very useful
in practical application: If its parameters are chosemas oy = ...= «,. = 1,, it coincides with
the uniform distribution over the unft- — 1)- dimensional simplex. When no a priori information
about the model weights is unavailable, the QBAKF estimétanitialized with the noninfor-
mative (uniform) prior,i;;(0) = 1/r,i = 1,2,...,r. The QBAKF algorithm is extremely simple
for implementation and requires very less computation. ddmvergence properties of the QB

approach are discussed in [17] and the relevant refereheesir.

3.2 DD Marginalized Particle Filter

3.2.1 Motivation

The estimation problem (2.7)-(2.8) is nonlinear and nom&S&n, and patrticle filter (PF) is a vi-
able option to apply. However generic PF is not a good chbieeause for large number of models
particle state dimension is, + r is large and many particles will be needed. Asymptoticadlyree
number of particles tends to infinity we know that we get theroal filter. An inherent problem
with the PF is its high computational cost. In practice thisra tradeoff between accuracy and
computational complexity. The state dimension is biggiesiting factor for PF approximation,
when itis large.

Given model weight vectog, the model (2.7)-(2.8) is linear, and Rao-Blackwelizatieah-
nique [19] can be applied. That is, perform linear KF for time&r part givenu, and perform PF
for the nonlinear part with respect poonly. This could save a tremendous amount of computa-
tion and make the filter feasible. This method is like martiag the linear state variables and

estimating using KF similar to marginalized patrticle fil{&tPF) [20].
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3.2.2 DDMPF Algorithm

This section presents a new algorithm for PM estimatiorerretl to as a DD Marginalized PF
(DDMPF). The main assumption is that, the weight vectorbi@gdroblem (2.7)-(2.8) are random
and obeys DD [17]. The DD makes weights naturally to followgex property. The importance

sampling step for model weights is according to

p (k) ~ p(p(k) | (k = 1)) = D(p(k); p (k = 1) + wi) (k)

wherew,, ) is zero mean white Gaussian noise with small covariancer€lib@o external adjust-
ment needed for the weights to follow convex property.

In the standard particle filters, obtained variance of tieneges can be decreased by exploiting
linear substructures in the model. The main idea behind MP#® marginalize corresponding
variables and estimate using an optimal linear filter.

The DDMPF algorithm has two steps, sampling and resamplinghe sampling step new
weightsu (k) are estimated by using DD with the parameter as old weiglits— 1) with zero
mean white Gaussian noise is added. The problem becomes és@émation problem because
weights of the models are known. After by usiffjlinear KFs, correspondingly/ state vectors
are estimated. First step of the algorithm is concluded bgutaing probability masses of the
each filter. In the second step, regular resampling is done.

The DDMPF and standard particle filter are closely relatelde DDMPF is given below for

one time cycle.
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DDMPF Algorithm

e Initialization:
Fori=1,... M
{i(()’io,PO(fg,u (0)} = {Zo, Po, (0)}
e Sampling:
Fori=1,...M
p® (k) ~ D (): 9 (k — 1) + gy
F = WO k)Fy, G = pO (k)G HY) = (k) Hy
@, B 2 S = KR P 2 B, GO 1Y)
Importance weights:
@ = N (s 2 S
e Normalization:

Fori=1,... M

(0 _ _ )
4y ZM ~( )

e Resampling:

Fori=1,... M
~ (1) A(
P{ Thle = k]\k 1}
e Output:

top = a2 P =T 0 (B + G — #) (e — 37))

The DDMPF algorithm is quite general and further improvete@an be made. Initialization
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of model weights can be improved and the evolution of weighge can be improved depending
on the nonlinear problem. The number of KAg)Y can be chosen depending on the nonlinearity

of the problem.
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Chapter 4

Simulation Study

In this chapter, two target tracking examples are consttiéree unknown parameters are the sam-
pling period and the control input matrix, respectivelyr fe two examples, the tracking problem
of a non-maneuvering target in the presence of noisy measms is considered. The goal of
tracking target is to obtain a consistent estimate of thie €@en in case of noisy measurements.
The target tracking problem considered in this section $dan the tracking problem considered
in [24] [19] [38]. The state of target is given by = (x,x,y,y)’, wherex andy represent the
positions in the x and y directions of the target anahdy represent the velocities in the x and y

directions, respectively. The non-maneuvering targelvegoaccording to a JMLS [39].

Ze = H.Tk—FUk (42)

wherek = 0,1, ... is the time index.

The initial state is random and normally distributed, i®&,, ~ N (Zo, Py). The Gaussian
process and measurement noises,~ N (0, Q) andv, ~ N (0, R), respectively, are white and
mutually uncorrelated.

The matrices, state-transitioft’), input-control () and measurementi() are defined below
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to model different modes of motion. For the two examplegggamotion (4.1) is assumed to
follow nearly Constant-Velocity (CV) motion. The CV modal intended to describe the non-
maneuvering mode of motion.

For each tracking filter the following performance measumescomputed by Monte Carlo
simulation with M/ realizations (runs). For more details regarding evalggtie performance of
estimators the reader is referred to [40].

The accuracy of the algorithms is measured in terms of ragdfrrsquare errors (RMSE):

Position RMSE:

Velocity RMSE:
. 1/2
VRMSE, = (— ) =3)” + (31 — 95?)2])
wherez;, = (x\7,y? @ vy 20— & 9 O 0y denote the true and estimate states,

respectively, in run; at timek.

For the simulations, process and measurement noise covasiare,

2500 0 0 0

\ 0 1 0 0
Q=10"I;, R=

0 0 2500 0

0 0 0 1

The sensor is located &b, 0). The noise-free target initial location is @t500m, —500m)
and the noise-free initial speedis:/s. Both the state and measurement vectors are in Cartesian

coordinates. The system is simulated for 250 samples. $rstmulation non-maneuvering target
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is considered over sampling interval [1, 250]. The stateregion results are obtained with 100

Monte-Carlo (MC) simulations for two examples.

4.1 Example 1 (Unknown Sampling Interval)

In this example, true sampling interval is assumed to be owknand assumed to belong to a
known interval. The boundaries of the interval are congiders models with certain initial model
weights. Now the problem can be converted into PM. The PM wighdifferent filters is used to
estimate the weights of those models, so that true sampitegval can be estimated.

The model is given by (4.1) with,, = 0 and system matrices

17 0 0 1
01 0 O 2
F: 7G: 7H:]4
0 01T 3
0 0 0 1 1

are considered. WhefE is the sampling time interval. So the switching term in thedeiq4.1)
is F' matrix. For the simulation purposE is assumed to interpolate between two values that

correspond to two different sampling periods. These twahes are given by,

Tl = 18, T2 = 10s

For generating the truth, sampling interi/al= 7s is simulated over the time interval [1, 250].
As explained in Chapter 2, one of the benefits with the PM #itrecis interpolation property.
To illustrate this property, QBAKF and DDMPF are implemehwth two models/; = 1s and
T, = 10s. The DDMPF is implemented with 100 particles.

The QBAKF and DDMPF are compared with the performances of, B4V, and IMM. The

EKF is implemented by augmented state consisting of the statnd the weight vectof (k).
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Then the problem becomes nonlinear, so non-linear KFEKE, is implemented. The covariance
matrices for model weight vector is considered@s= 0.011, for EKF, for all &.

The Autonomous multiple model (AMM) [21] with two models implemented. The AMM
algorithm runs a conditional Kalman filter (KF) for each mbiatethe model set and evaluates
the posterior probability of each model. The overall fusstineate is obtained as a sum of the
conditioned estimates weighted by their correspondingehibabilities. The conditional filters
operate independently, in an autonomous manner, no infmmaxchanged among the filters.

The Interacting Multiple Model (IMM) [22] algorithm, runseseral conditional filters. How-
ever, each filter is individually re-initialized with thetesate, refereed to as mixed estimate, con-
ditioned on the model at the current time instant. After updgathe filters IMM provides the
overall output through estimate fusion, but maintains theditional estimates for the next time
step. The IMM in the present simulation uses two models. Tdresttion probability matrix used

for IMM is given by,
0.95 0.05

0.05 0.95

The initial model weights are assumed to be equal and follomvex property for all filters
considered here for comparison. The covariance matricestawsen same &3 and R for all
filters, for all %.

Comparative time-plots of the position and velocity RMSEs shown in Figures 4.1 and 4.2,
respectively. It can be seen from the RMSE plots, QBAKF igetforming all other filters by
large margin. The DDMPF is also performing well but not asdjas QBAKF. This is probably
because of modeling weights and number of particles. The ABIperforming not really well,
because with the AMM, probability of the model in the modée| geth the smallest distance to the
true model tends to unity almost surely as time increasehigdrtase, true mode is not presented in
the model set. So AMM tends to provide the unity probabilitylte second model iB,, because

truth is closer to it. The AMM performance can be improved hgreasing the number of valid
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Figure 4.2: Velocity RMSE
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Figure 4.7: DDMPF Estimated Weights

models in model set. At the same time EKF is performing badlyalnse model weights in EKF
are assumed to follow random walk process. So most of thestimaalel weights in EKF tries to

be around initial weights as the time goes, which is not bietéor this kind of estimation. The

IMM is also not very good in terms of accuracy of algorithmsislbecause of the fundamental
limitation of IMM with fixed structure i.e., IMM believes atng given time one of their filters is

perfect and none of them may provide incorrect informatibime filters in IMM trust themselves

so much. In this case truth is not there in the IMM model setreH®IM is exposed to the mode

that is unknown.

Figure 4.3 illustrates accuracy of parameter estimatioam@ing interval RMSEs with re-
spect to estimated are compared. Again QBAKF is far better among all the alpang because
QBAKEF is able to estimate weights very well. Other algorithare not able to model weights
properly because of their fundamental limitations for #ired of problem.

In Figures 4.4-4.7, estimated model weights of AMM, QBAKAN and DDMPF are plotted
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respectively. The true weights are also presented. Forrtitle of 7' = 7s, model weight vector
should be(0.335,0.6665). Again it can be seen, QBAKF is best estimating the weightsatds

the truth while others are not able to do.

4.2 Example 2 (Unknown Control Input matrix)

The second example, the switching term in the model (4.3 matrix. For this example, the
model is given by (4.1) with,, = /2 and sampling interval’ = 1s. All remaining parameters
are same as in the Example 1. To mo@ehatrix, interpolation between three possible matrices is
considered. Three possible values that correspond to tliffeeent maneuver commands. These

three matrices are given by

GY = [-0.5,0,0,1]
G® = [-0.25,0.5,0.25,—0.5]
G® = 10.25,-0.5,0.25, —0.5)

The truth is simulated with.14G™" 4 0.33G® + 0.53G® over the time interval [0, 25050
the true model weight vector (.14, 0.33,0.53). The performances of EKF, AMM and IMM are
compared with QBAKF. All the algorithms use three modelshwite equal initial weights. The

transition probability matrix for IMM is considered as

0.90 0.05 0.05
II=10.05 0.90 0.05

0.05 0.05 0.90

In Figures 4.8 and 4.9 RMSEs of position and velocity are careg. The QBAKF is one

of the algorithms with least RMSE. As time goes, RMSE of QBAKRradually decreasing
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when compared to all other algorithms. The Figure 4.10 iuaBRMSE of parametef; from
the estimated model weights. Out of all algorithms, QBAKRith almost perfect reconstructed
G matrix. The Figures 4.11-4.13 show estimated model weitgit&AMM, QBAKF and EKF
respectively. The true weights are also shown for comparidde estimated EKF weights are
not following convex property. This is one of the biggestadigantage with augmented EKF to
estimate model weights. Out of all those estimated modejhtsj QBAKF is with almost perfect
estimated model weight vector.

An important conclusion that can be drawn from the above txa®les is that the PM struc-
ture is preferred when interpolation between models froenntiodel set is required. The regular
algorithms EKF, AMM, and IMM will not work very well for the PNtructures as because of their
fundamental limitations/assumptions. The QBAKF perfofardetter for the interpolation of the
models in the model set. The best thing about this algorihable to estimate the model weight
vectors with minimum error. Also QBAKF runs only single KR fmixture and able to estimate
the model weights properly. It is simple to implement whempared to other PM estimation
algorithms. The only shortcoming for QBAKEF is when the truedua is in the model set. Other
algorithms like AMM will perform better. Apart from that, QBKF can be used for the model sets
with PM structure. The DDMPF algorithm simulated in the fiesample is also not doing bad,
but it can be further improved by proper modeling and indrepaumber of particles. The main

shortcoming is the high computational cost.
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Chapter 5

Summary and Conclusions

In this thesis, an alternative model structure is adoptedugitized for the hybrid model structure
of JMLS. This structure, named polytopic model (PM) stroefexplicitly allows for interpolation
between models. The estimation algorithms based on PM retter lonodel interpolation proper-
ties. The PM structure is free of transition probabilitisjch simplifies estimation process.

Two novel estimation algorithms, QBAKF and DDMPF, are pregmb and implemented for
PM estimation problems. In this thesis, model weights aseim&d to be random and follow DD
because of convex property of the model weights. The assompt DD for model weights is
quite natural, as model weights from the DD follow convexgeny automatically. The QBAKF
algorithm uses Quasi-Bayesian approach for mixture pritiabstimation with the single KF for
estimating model weights in the mixture. It is very simplertgplement. The QBAKF is weakly
dependent on the number of models in the model set, it rurysom@d KF on mixture.

The DDMPF algorithm is similar to MPF. The DDMPF estimatesi@loveights by assuming,
weight vectors follow random walk process with small coaade. Thus by converting problem
into linear estimation problem with known weights, MPF igolemented. Some future work need
to be done on modeling weights to get proper performance.

Monte-Carlo simulation results of a well known target triagiproblem is considered with two
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examples. In the first example, sampling interval assumdxtonknown. To estimate the sam-
pling interval, boundaries of the sampling interval aresidared as two models in the model set.
The weights of the models are estimated using QBAKF, DDMRFampared with well known
AMM, IMM and augmented EKF. The QBAKF performed very well iertns of accuracy and
simplicity. The DDMPF performed reasonably well. For thea®d example, control input matrix
is assumed to be unknown. Three different choices of thetiopatrol matrices are considered
in the model set. The model weights are estimated using QBAYM, AMM, and EKF. Again
QBAKEF performed well in terms of estimating model weightsgaracy and simplicity. This kind
of approach can be extended to state estimation for margebyemproving modeling part of the

weight vectors.
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