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Abstract

Random projection method is one of the important tools for the dimensionality re-
duction of data which can be made efficient with strong error guarantees. In this thesis, we
focus on linear transforms of high dimensional data to the low dimensional space satisfying
the Johnson-Lindenstrauss lemma. In addition, we also prove some theoretical results re-
lating to the projections that are of interest when applying them in practical applications.
We show how the technique can be applied to synthetic data with probabilistic guarantee
on the pairwise distance. The connection between dimensionality reduction and compressed
sensing is also discussed.

Keywords: principal component analysis, dimensionality reduction, random projec-
tion, fast Johnson Lindenstrauss transform

vil



Chapter 1

Introduction

1.1 Motivations & Background

In many machine learning problems, the data available to us can be viewed as distinct
objects or items, each of which has a number of attributes. For the sake of clustering or
classifying data into different groups, one may model each data entry as a point in certain
high-dimensional space. For n data points, it is convenient to represent the collection of data
points by a matrix

u;
Uy

A—

u,

where each data point u; is assumed to have d dimensions.

The problem posed by high-dimensional data is trivial to state, but not so simple to
solve. Many algorithms of practical interest such as clustering and classification algorithms
can not handle a large number of dimensions efficiently. In addition, a deeper issue called
the “curse of dimensionality” has plagued researchers in machine learning and other fields
for decades. Generally speaking, for any data entry, as we increase the number of dimensions
that it possesses, the complexity involved in processing it for inference purposes increases at
an exponential rate. This poses a dilemma: naturally, we want to use as much information
as is available to us, on the other hand, as we collect more information, we have to spend
dramatically more time trying to make sense of it. Fortunately, there has been abundant
research works trying to get around the problems of dealing with data of high-dimensionality.
Most of the techniques can be seen as to approximate the high-dimensional data with low-
dimensional representations and at the same time to maintain the key structure of the original
data to the best extent. We call these techniques a method of dimensionality reduction.
Formally, dimensionality reduction involves a mapping from a high-dimensional space to a
lower-dimensional one where certain “distance” concept can be preserved.

Note that the distance concept between any pair of data points depends on the nature
of problem. The Euclidean distance may not be meaningful for binary matrix, which could
represent the positive and negative instances of certain words for document categorization.
In such a problem, the Hamming distance seems to be an appropriate measure. Note also



that the data with reduced dimensions can not be viewed as the compressed version of
the original data since data compression concerns to recover the original data from their
compressed representations with a distortion below certain desired level. The effectiveness
of data compression is usually measured in terms of the number of bits used to represent the
data instead of the dimensionality reduction. On the other hand, dimensionality reduction
cares about the pairwise distance between two data points rather than the data point itself,
which sometimes can be summarized by its distance to the origin.

1.1.1 Research Objective

In machine learning field, the constantly growing data dimension causes severe prob-
lems. This difficulty is a problem of long standing and continuing effort. One way is to
reduce the dimension: to map the original data in high dimension to another space of low
dimension, while preserving important properties as much as possible. There are many ways
that map the higher dimensional data to lower dimensional manifold. We would like to
focus on methods that map the higher dimensional data into some lower dimensional mani-
fold without distorting the pairwise distances. This thesis studies the properties of random
projection methods which provide a guarantee of preserving pairwise distances in the lower
dimensional space with small distortion. We perform experimental study of two random
projection algorithms and compare their performance to the theoretical limit delineated by
the Johnson-Lindenstrauss lemma.

1.1.2 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 provides background on
dimensionality reduction via random projection and its connection to compressed sensing.
Chapter 3 contains the analysis of the random projection algorithms. Chapter 4 provides
the experimental study of two random projection algorithms based on the synthetic data.
Chapter 5 concludes this thesis and indicates possible future directions for high dimensional
data analysis.



Chapter 2

Dimensionality Reduction

2.1 Introduction

Dimensionality reduction is a method of obtaining the information from a high di-
mensional feature space using fewer intrinsic dimensions. In machine learning, it is very
important to reduce high dimensional data set for better classification, regression, presenta-
tion and visualization of data. It is also useful for better understanding of the correlations
within the data. This enables us to find the intrinsic dimensionality of the data and provide
possibly better generalization capability.

2.1.1 Principal Component Analysis

Principal component analysis (PCA) is perhaps the most popularly used method in
dimensionality reduction. Suppose that we want to reduce d-dimensional data to k for n-
point data matrix A. Assume that n > d and rank(A) = d, then one possible measure
between original data matrix A and its k-dimensional representation B is the Frobenius
norm given by

1A[r =D layl®
i

and we want to find the best approximation B* such that

B* = i A—B 2.1
arg_min (14— Bls (21)

Solution to the above problem boils down to the singular value decomposition (SVD) of A
given by

A=UAV"
where U and V' are orthonormal matrices and D is a diagonal matrix with entries

AM>X> >N,



called the singular values of A. If we take the first k singular values of A and collect the
corresponding left and right singular vectors, then we obtain the rank-k approximation of A
given by

Ay, = U VE

It can be shown [8] that B* = Aj for any k < d. Note that the PCA minimizes the
mean square error between the original data matrix and the rank-%£ approximation matrix,
however, the pairwise distances between the data in the original space and those in their
low-rank approximations can fluctuate arbitrarily. Thus the PCA may find effective low-
dimensional features from the original data set but not so meaningful in sketching/hashing
high-dimensional data for clustering or classification.

2.1.2 Random Projection Methods

Consider the dimensionality reduction via linear transform so that we can obtain the
reduced dimensional data presentation B via

B =AR

where R is a d x k matrix suitable for preserving the pairwise distance. Note that in Hilbert
space, finding such a transform is possible thanks to the following lemma by Johnson and
Lindenstrauss [9].
Lemma 1: Suppose that we have n data points in d-dimensional space. Then Ve > 0, there
exists a locally Lipschitz mapping f : R? — RF such that Yk > 12105% and any two rows
u,v € A, we have

(L= ollf(w) = FOI* < [Ju = vI]* < T+ O)llf (w) = F(V)II* (2.2)

Note that the Johnson-Lindenstrauss lemma says that we can preserve the pairwise
distance up to a distortion level within (1&e€) if k = O(*%%). The original dimension d of each
data point is irrelevant as far as the pairwise distance is concerned. If we have only two data
points, then even if they have hundreds or millions of dimension, the mapping to O(1/€?)
dimensional space preserves the distance within (1 £ €). In fact, for any data set A, we can
always find a mapping f that preserves the pairwise distance within the desired distortion
level. However, for different As, the mapping may not be the same. In fact, the proof in [9]
is non-constructive — it shows the existence of f but does not say how we actually find one.
In practice, there are ways to find a mapping efficiently with high probability satisfying
the Johnson-Lindenstrauss lemma. These methods usually rely on random projection of the
original high-dimensional data to low-dimensional subspace. By exploiting the concentration
property of the pairwise distance, the probability of success can be made arbitrarily large.
In fact, the authors in [1] provided an explicit construction of the mapping R summarized
by the following lemma.

Lemma 2: Suppose that A is an n x d data matrix and one needs to reduce the dimension
of each data point to k. Let R be a k x d matrix with entries r;; given by the following




distribution:

V3 with probability %
rij = 0 with probability 3
—/3  with probability %

Let B = ﬁAR. For any row u in A, denote by f(u) the corresponding row in B. For any
fixed B > 0and € > 0, if &k > % log n, then for any pair of distinct rows u and v in A,
with probability at least (1 —n=?), we have (2.2).

Note that the above lemma can be interpreted as “I will preserve all pairwise distances
arbitrarily likely in the sense of (2.2) for any given e if you allow me to repeatedly generate
R for many times”. This is one of the appealing properties that random projection methods
can offer. In fact, if one wants to reduce d-dimensional data points to k-dimensional points
with the distortion of pairwise distance to be within (1 % ¢€), most dimensionality reduction
methods such as PCA can not say anything about the lowest dimension k that guarantees
the mapping to be within the desired distortion level for arbitrarily chosen n data points.

2.1.3 Fast Johnson-Lindenstrauss Transform

Ailon and Chazelle proposed an efficient algorithm to compute the random projection
matrix and the method is called the fast Johnson-Lindenstrauss transform (FJLT) [2]. In
particular, the transform is given by

R=PHD (2.3)

where the matrices P and D are random and H is deterministic. The k X d matrix P is
sparse. Each entry of P is either 0 with probability (1—¢) or a random number independently
drawn from normal distribution with zero mean and variance ¢~! with probability ¢ where

¢ = min{ O 6%2%% ,1¢. The d x d matrix H is a Walsh-Hadamard matrix where d is

usually a power of 2. The d x d matrix D is a diagonal matrix with the i-th diagonal element
D;; drawn independently from {—1, 1} with probability %

The computation of Hx can be evaluated in O(dlogd) operations by an algorithm of
fast Fourier transform type [2]. However, computing PH Dz requires only O(dlogk). Note
that the Walsh-Hadamard matrix has a recursive structure as follows.

Hl:(%—ll)>

H H
Hd _ < d/2 Hd/2 )

Hgo —Hg o

Let z = Dx and let z; and 25 be the first and second halves of z. In addition, P, and P, are
the left and right halves of P, respectively. We can compute the random projection by

H H
PHy = (rom) (502 23 ) (3)



P Hyo(z1 + 22) + PoHgpo(21 — 22)

Assume that P, and P, contain k; and ko nonzeros, respectively. Let T'(d, k) be the number
of operations required to compute k coefficients out of a d x d Walsh-Hadamard transform.
The recurrence relation is given by

T(d, k) = T(d/2, k) + T(d/2, ks) + d.

In both cases, we have T'(d,0) = 0 and T'(d, 1) = d. We use induction to show that T'(d, k) <
2dlog(k + 1). From the above definition, we can see that the computation of the random
projection should satisfy

T(dk) = T(d/2, ki) +T(d/2, k) +d
dlog(2(ky +1)(k2 + 1))
dlog((k‘l + k‘g + 1)2) (fOI" k’l -+ k’g =k 2 1)

2dlog(k + 1)

INIACIA

Thus we can see that the fast Johnson-Lindenstrauss transform only takes
T(d, k) = O(dlogk)

shown in [2].

2.2 Computational Aspects of Dimensionality Reduction

In principle, PCA finds the directions of maximal variance from the high-dimensional
data and projects the data onto these directions. The runtime of PCA is O(nd?) and it
will be infeasible for problems with very large dimension d. In contrast, random projection
methods usually have computational complexity linear in d. In addition, since computing
the distance in the original data space takes Q(d) time while computing the distance in
the reduced dimensional space takes (k) time, when k& << d, we can infer the distances
among data points in the original data space by computing the distances of data points
in the reduced dimensional space if the mapping satisfies Johnson-Lindenstrauss lemma.
This seems to be an important aspect when one has to cluster high-dimensional data points
efficiently.

The construction of R to satisfy (2.2) with high probability usually relies on random-
ized techniques. In [7], the authors used independent and identically distributed Gaussian
random variable for r;;. Recently, Ailon et al showed that R can be constructed in with
sparse Gaussian entries such that the mapping B = AR takes O(k*) runtime [2]. For k not
so small compared to d, the 4-wise independent code matrix was used in [3] to improve the
runtime of the mapping to O(dlogk) and [5] showed that the runtime can be made in O(d)
with Lean Walsh transform.



2.3 Connection to Compressed Sensing

In compressed sensing, one is interested in sketching d-dimensional signal x by a
k-dimensional measurement y through some encoder ® such that given

y = dx

one is able to recover x through y by pursuing the maximal sparsity of x. Note that if x is
truly a sparse signal, i.e., most of the elements in x are zero, then one can solve the following
constrained optimization problem to recover x.

x* = argmax ||x||s, subjectto y = &x
Since the above problem is NP hard, in practice, one often works on the relaxed version
x* = arg max ||x||,, subjectto y = &x

which can be solved efficiently via linear programming. It turns out that if x is a k-sparse sig-
nal, then there exists a mapping ® so that with an encoded vector y of dimension O(klogd),
one can recover X from y through the above sparsity pursuit procedure [6]. Note that finding
a good encoder ® that works for any k-sparse signal x is not easy. Interestingly, it has been
shown that a good encoder ® should satisfy the so called restricted isometry property (RIP)
that guarantees Vx, we have

(L= olRxI* < llex]|* < (1 + o)l|x]|” (2.4)

with striking similarity to (2.2). In fact, if we use random projection matrix ®, then the
probability that we fail the RIP property can be made exponentially small so it reveals that
effective compressed sensing procedure exists [4].



Chapter 3

Analysis of Random Projection Algorithms

For dimensionality reduction methods that preserve the pairwise distance with low
distortion, Johnson-Lindenstrauss lemma provides theoretical guideline on how well a metric
can be embedded from a high dimensional space to a low dimensional one. We know that
if the metric is Euclidean, then the embedding can be made with e-distortion. For other
metrics, it is usually worse: maybe with a constant or logarithmic distortion [11]. In fact, a
space with /,-distance metric that satisfies the Johnson-Lindenstrauss lemma is very close
being Euclidean: all of its n-dimensional subspaces are isomorphic to Hilbert space with
distortion 22°*™ [10]. Thus in the subsequent experimental study, we will focus on data
points that have been be embedded onto an Euclidean space for performance evaluation with
practical settings of d, n, and k.

3.1 Error Bound Analysis

From Lemma 2, it seems that if one needs to reduce the dimensionality of data from
d to k, the lowest reduced dimension would be

logn (3.1)

where ¢ is a positive constant not depending on d. However, it is possible that one may
end up with values of n, € and 3 so that k£ > d, i.e., the bound is meaningless. Thus it is
important to know whether there are cases that we can not find any € or § to reduce the
original dimension through random project method.

Lemma 3: One can not reduce the dimension with arbitrary distortion level in the pairwise
distance if and only if the number of data points n grows exponentially in d.

Proof: To fail the dimensionality reduction using Lemma 2, we need

Js o At28

— .
- 062/2 —e3/3 cen

For € € (0,1), we have

1 4424
y logn

/2 —€/3 < 6 <c



To ensure that random projection will fail V5 > 0, we need

1 > d
ogn > —.
& 24c

Clearly, n has to grow exponentially in d. On the other hand, when n grows exponentially
in d, the original Johnson-Lindenstrauss lemma provides a trivial bound, thus the proof is
complete.

3.2 Approximate PCA

Random projection can not only preserve the pairwise distance but also preserve the
principal directions of the original data matrix with high probability. Let us assume that
we want to transform d-dimensional data matrix A to k& dimensional matrix B via random
projection matrix R given by

1
B=-—AR
Vk

where each entry r;; in R is drawn independently from standard Gaussian distribution, i.e.,
rij ~ N(0,1). Assume that d = Cl‘;# where ¢ is some appropriately chosen constant such
that B preserves the pairwise distance within e distortion. Now we compute the principal

components of B via singular value decomposition such that

k
B=> \ab] (3.2)
=1

where A\ > Ay > ... > \i; a; is the left singular vector corresponding to the singular value \;
and b; is the right singular vector, respectively. If we only use the best rank-L approximation
By, to B, then the PCA algorithm can be made very efficient when k << d. Let Aj be the
best rank-L approximation to A and A; be the approximate principal directions obtained
via By, i.e.,

L
A=A bb! (3.3)
i=1
We would expect A;, to be a good approximation to A; if the random projection satisfies
the Johnson-Lindenstrauss lemma. )
(e“—€)k

Theorem 1: With probability at least 1 —4n~" 7, the approximation A; satisfies

|A—ALllr <||A— ALllF + €| ALl|p (3.4)

Proof: Suppose that the SVD yields

d

T

A= E oV,
i=1



k
B=>) Mab]
=1

and we have the approximate PCA given by

L
A=A bb].

1=1

We can see that

A= ALllr = ) [|Ab; — Arbyl?
L
= > ll4b;i =AY b;b)by||”
i j=1
k
= |[Allr = I|Abi|?
i=1
k
= |JA= ALllr +[|ALllr = > || Aby|[?

i=1

We want to relate Zle ||Ab;||?* to the singular values of B. Note that with probability at

(62763)]6
least 1 —4n~ , we have [7]
L L L
S = Sl = Y
i=1 i=1 i=1

L
< (1+¢/2)) [|Aby[?
i=1

(62763)]6

On the other hand, since v; are the basis for A, with probability at least 1 —4n~" 1, we
also have

v

L L 4
Z ||BVi||2 = Z %||ARV1'||2
i=1 1

1=

>
> (1- 6/2)2\\AV2-||2 = (1 —¢/2)|ALllF

Combining the above inequalities, we can lower bound Zle || Ab;]|? by

b 1—¢/2
> lAby[]” > . +€/2||AL||F > (L= o)[|ALllF
=1

10



Thus one should be able to find the approximate principal directions of A from B with
arbitrarily high probability by repeatedly constructing R until the e-distortion is satisfied.

11



Chapter 4

Evaluation of Random Projection Algorithms

4.1 Motivation

We implemented two random projection methods for dimensionality reduction, namely,
Achlioptas random projection method [1] and fast Johnson-Lindenstrauss transform (FJLT)
[2]. For n data points of dimension d, we applied random project algorithms to reduce the di-
mension of each data point to k and computed the distances between data points before and
after the transform. We are interested in knowing the acceptable k£ with desired distortion
level € for some n of practical relevance.

4.2 Performance Comparison

In the experimental study, we generated n data points X; € R? (i = 1,2, ...,n) with
each element of X; drawn independently from Gaussian distribution N (0, 1). We normalized
each data point to have unit distance to the origin. We first implemented Achlioptas random
projection algorithm [1] and computed the ratio of pairwise distances before and after the
transform. From the histogram of the distance ratio, we chose the distortion tolerance € such
that 99% of the distance ratios fall within the interval [1 —¢,1 + ¢]. In addition, we need
to control the sparsity ¢ in implementing the fast Johnson-Lindenstrauss transform. We set

q = 1055". Note that the Johnson-Lindenstrauss lemma states that k& = 0(105%") while we

need to find out the scaling factor C' such that k = % would be meaningful for n and €
in some reasonable ranges.

First, we set the number of data points n = 50. We applied Achlioptas random
projection method to the input data with varying dimensions d from 1024 to 8192. 100 runs
for each case were used to determine e with different input dimension d and the results are
summarized in Table 4.1. We can see that 99% of the ratios between the pairwise distances
before and after the dimensionality reduction fall within the distortion level of 0.26 when
k = 100.

We applied the same procedure for the cases of n=100 and n=200 with varying input
dimension d from 1024 to 8192. The results are listed in Tables 4.2-4.3. Note that ¢ does
not change significantly as d increases in all cases with fixed n and k. This confirms the
theoretical statement of the Johnson-Lindenstrauss lemma. The scaling factor C' varies
slightly as n increases. Thus to reduce the high dimensional data to low dimension with

12



Table 4.1: Finding the appropriate scaling factor using Achlioptas random projection method
(n=>50)

d k € C

1024 100 0.24 1.5
2048 100 0.25 1.6
3072 100 0.25 1.6
4096 100 0.25 1.6
5120 100 0.25 1.6
6144 100 0.25 1.6
7168 100 0.26 1.7
8192 100 0.26 1.7

Table 4.2: Finding the appropriate scaling factor using Achlioptas random projection method
(n=100)

d k € C

1024 100 0.25 14
2048 100 0.25 1.4
3072 100 0.25 1.4
4096 100 0.25 14
5120 100 0.25 14
6144 100 0.25 14
7168 100 0.25 1.4
8192 100 0.26 1.5

Table 4.3: Finding the appropriate scaling factor using Achlioptas random projection method
(n=200)

d k € C

1024 100 0.26 1.3
2048 100 0.26 1.3
3072 100 0.26 1.3
4096 100 0.26 1.3
5120 100 0.26 1.3
6144 100 0.26 1.3
7168 100 0.26 1.3
8192 100 0.26 1.3

13



Table 4.4: Finding the acceptable k£ with various n and d for e=0.4

n d k € C

50 1024 29 04 1.2
50 2048 30 04 1.2
50 4096 31 04 1.3
100 1024 37 04 1.3
100 2048 38 04 1.3
100 4096 39 04 1.4
200 1024 43 04 1.3
200 2048 43 04 1.3
200 4096 44 04 1.3

Table 4.5: Finding the acceptable k£ with various n and d for e=0.1

n d k € C

50 1024 700 0.1 1.8
50 2048 700 0.1 1.8
50 4096 700 0.1 1.8
100 1024 780 0.1 1.7
100 2048 780 0.1 1.7
100 4096 780 0.1 1.7
200 1024 850 0.1 1.6
200 2048 850 0.1 1.6
200 4096 850 0.1 1.6

tolerable distortion around €=0.26, the practical range for k is around 100 for n from 50 to
200. This seems to be still high for the method to be applicable to practical engineering
applications.

We also applied fast Johnson-Lindenstrauss transform with multiple runs to find
the lowest acceptable dimension k for different scenarios with different values of d, n at the
desired distortion level e=0.4. Note that € was chosen based on Achlioptas random projection
method with 99% pairwise distances being within the tolerable distortion range. The results
are summarized in Table 4.4.

When €=0.1, the results are summarized in Table 4.5 with the configurations similar
to those in Table 4.4. We can see that the dimension does not reduce significantly when one
imposes a more stringent distortion tolerance level.

Next, we consider the scenario where the number of data points n=50 and the dimen-
sion of the output k=100 after applying the Achlioptas random projection method and the
fast Johnson-Lindenstrauss transform. We computed the pairwise distances before and after
the dimensionality reduction transform and show the ratio of the pairwise distances using
histogram in Fig. 4.1. Ideally, we expect the histogram to be centered around 1 with high
concentration within 1 4+ €. In order to determine the appropriate distortion tolerance level,

logn

on - We repeated the same procedure

we set the scaling factor C=1 and computed € =

14
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Figure 4.1: Histograms of the pairwise distance ratios, n=>50, k=100, ¢ = 0.24, Pr(pairwise
distance in range)=0.99

for different scenarios by varying the dimension of each input data point d. From Fig. 4.1,
we can see that the results using the fast Johnson-Lindenstrauss transform are similar to
those using the Achlioptas random projection method. We found that with probability 0.99,
we will preserve the pairwise distance within the distortion no greater than e=0.24. This is
in line with the results seen in Tables 4.1-4.3.

When n=100 and k=100, with varying dimension of each input data point d=1024,
2048 and 4096, the probability of preserving pairwise distance is 0.99 with distortion level
€=0.25. We can see from Fig. 4.2 that fast Johnson-Lindenstrauss transform yields similar
histograms to those using the Achlioptas random projection method.

When n=200 and k=100, the performance comparison between fast Johnson-Lindenstrauss
transform and Achlioptas random projection method is shown in Fig. 4.2. We found that
with probability 0.99, we will preserve the pairwise distance within the distortion no greater
than e=0.26.

From the above comparison, we can see that FJLT has comparable performance
to Achlioptas random projection method and the input dimension d does not affect the
performance of both random project methods.
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Figure 4.2: Histograms of the pairwise distance ratios, n=100, k=100, ¢ = 0.25, Pr(pairwise
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Random projections are a powerful method of dimensionality reduction that provide
us with both conceptual simplicity, and very strong error guarantees. The simplicity of pro-
jections allows them to be analyzed thoroughly, and this, combined with the error guarantees,
makes them a very popular method of dimensionality reduction. In this thesis, we studied
two random projection algorithms for dimensionality reduction that preserve the pairwise
distances among the data points with small distortion. We found that the fast Johnson-
Lindenstrauss transform has comparable performance to the Achlioptas random projection
method with better computational efficiency. However, both methods have to sacrifice a
small distortion for data points of moderate size.

5.2 Future work

There are many potential areas in which work can be carried out in the future. A
brief list is compiled below.

e Lower bound analysis for the reduced dimension k, possibly using Ailon’s method but
under special cases, or perhaps a proof of a tight lower bound for specific input data

e An extended study of input distributions and their impact on the distortion of the
projection, possibly trying in different ways of defining a distribution (using e.g., the
moment generating function of the distribution instead of the mean/variance)

e Using the results derived on input sparsity to derive an analytical solution (or at least
to identify some distinct cases) for the distortion as a function of the “true” vector

e Application of the random projection method to prognostic data for remaining useful
life prediction of battery [12]
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