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Abstract

By testing a fiber beard, certain cotton fiber length parameters can be obtained rapidly.

This is the method used by the High Volume Instrument (HVI). This study is aimed to

explore the approaches and obtain the inference of length distributions of HVI beard sam-

ples in order to develop new methods that can help us find the distribution of original fiber

lengths and further improve HVI length measurements. At first, the mathematical functions

were searched for describing three different types of length distributions related to the beard

method as used in HVI: cotton fiber lengths of the original fiber population before picked

by the HVI Fibrosampler, fiber lengths picked by HVI Fibrosampler, and fiber beard’s pro-

jecting portion that is actually scanned by HVI. Eight sets of cotton samples with a wide

range of fiber lengths are selected and tested on the Advanced Fiber Information System

(AFIS). The measured single fiber length data is used for finding the underlying theoreti-

cal length distributions, and thus can be considered as the population distributions of the

cotton samples. In addition, fiber length distributions by number and by weight are dis-

cussed separately. In both cases a mixture of two Weibull distributions shows a good fit to

their fiber length data. To confirm the findings, Kolmogorov-Smirnov goodness-of-fit tests

were conducted. Furthermore, various length parameters such as Mean Length (ML) and

Upper Half Mean Length (UHML) are compared between the original distribution from the

experimental data and the fitted distributions. The results of these obtained fiber length

distributions are discussed by using Partial Least Squares (PLS) regression, where the dis-

tribution of the original fiber length from the distribution of the projected one is estimated.
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Finally, reducing the number of parameters in a regression can enhance the estimation of

parameters. To this end we introduced a new distribution with only three parameters to

describe the distribution of fiber lengths by weight.

KEYWORDS: Fiber Beard, Komogorov-Simirnov goodness-of-fit test, Mixture of Weibull

Distributions, Partial Least Squares.
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1

Chapter 1

1.1 Introduction

Fiber length is considered the most important property of cotton in marketing and

yarn processing. In the past decades, cotton industry and researchers have been trying to

develop efficient methods to measure the length parameters of cotton fiber. These parameters

include Mean Length (ML), Upper Half Means Length (UHML), Short Fiber Content (SFC),

Uniformity Index (UI), etc. Measuring a fiber beard by using the High Volume Instrument

(HVI) instead of individual fibers provides a quick solution for those fiber length parameters,

(Suh and Sasser 1996). In HVI testing, the specimen fibers are picked up by the needles

on the comb/clamp through holes of the HVI Fibrosampler. The specimen fibers are in the

form of a tapered beard. The curve obtained from the measurement, so-called Fibrogram,

describes the relationship of length and density of this tapered beard.

The original theory of the Fibrogram as developed by Hertel (1936, 1940) has served as

the basis of subsequent cotton length measurement methods based on fiber beards. Following

Hertel’s pioneer work, various developments have been made. (Krowicki et al. 1996) gener-

ated distributions from cotton fibers Fibrogram. The generated fiber lengths were presented

as graphical bar charts in discrete form, and not as mathematical functions.

Early investigations of (Prier and Sasser 1971) discussed three different theoretical fiber

length distribution density functions: a uniform density and two triangular densities. They

claimed that one of the triangular densities could be used to describe short fiber lengths, the
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other triangular density could be used for long fiber lengths, and the uniform density could

be used for middle fiber lengths. They further stated that a mixture of these three densities

can closely match any set of measured data. However, they did not provide a method to

mix those densities. Instead, they concluded that it was not feasible to obtain an explicit

expression for the probability density function of the whole fiber length.

Furthermore, (Zeidman et al. 1991) discussed the range and shape of experimental

length distributions and their relationships to length parameters. They found that one

single parameter could not sufficiently characterize the entire fiber length distribution and

concluded that more statistical measures are needed for distribution location, dispersion,

and shape.

In an attempt to describe cotton fiber length distribution, (Krifa) 2006 studied the

modality of fiber length distribution and relationships between modality and other cotton

properties such as maturity and strength. In his later reports (2007 & 2008) mixed Weibull

distribution was utilized to describe cotton fiber length and parameters. Krifa’s main focus

was on the changing of modality during processes.

Other efforts focused on the estimation of statistics from Fibrograms and the difference

between length distribution by number and by weight. (Cui, Calamari and Suh 1998) showed

that when comparing two cottons, this difference may give different rank orders. Sampling

method was discussed regarding its impact on how to explain the relationship between the

original fiber length distribution and the Fibrogram obtained from HVI.

1.2 Scope of research

This study is aimed at exploring several approaches to obtain inference of length distri-

butions of a sample beard as used by HVI and thus investigating its relationship with the

actual fiber length distribution that can be obtained from other test methods and devices

such as AFIS. This can provide information that will help to develop new length parameters
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and as a result better suit the needs of the industry, which in turn expand the utilization

of HVI results. In addition, it will help in the understanding of the different measurement

results between HVI and AFIS, which have been reported by earlier research (Cui 1997).

To achieve such objective, mathematical functions that describe the underlying population

distributions of the fiber lengths related to HVI measurements must be established. In other

words, if the distribution function is known, then all the length parameters can be calculated.

Mixed Weibull distribution was used to describe cotton fiber length. Apparently, this dis-

tribution requires quite a number of parameters, and these parameters could be in nonlinear

forms which will make the estimation of the distribution and matching extremely difficult.

This study focuses on finding and validating the distribution functions dealing with three

different types of fiber length distributions that are related to HVI measurements.

In practice, the distribution of projected fiber lengths is the only available distribution;

on the other hand the original fiber length is unknown and unavailable. To better understand

the quality of cotton, one needs to know the length distribution of the original fiber and thus

would like to obtain the distribution of the original fiber lengths from the distribution of the

observed projected lengths. A mixture of two two-parameter Weibull distributions has five

parameters in total, which completely determines the mixed distribution. This is similar

to the case that a normal distribution is determined by two parameters: its mean and its

standard deviation. Now the second question arises as to how to convert the five parameters

that determine the mixture distribution of projected lengths to the parameters of the mixture

distribution of the original lengths. We will use the partial least squares (PLS) regression

method to convert the parameters. Once the parameters of the original fiber length are

obtained, its distribution is determined completely, and thus as a consequence various cotton

quality parameters can be obtained directly from the distribution. Our calculations show

that the PLS regression performs well. We believe that the method established in this study

can help the cotton industry better understand the distribution of fiber length.

3



1.3 Definitions of parameters and instrument

1.3.1 Instrumentation in cotton classification

Figure 1.1: High Volume Instrument

Representatives of merchants and spinners throughout the world agreed that an inter-

national agreement on the use of instrument based quality evaluation systems is needed to

standardize quality test results. The High Volume Instrument (HVI) was established to be

the standard method for classification of fiber. See Figure1.1.

1.3.2 Definition of some quality parameters

Formal definitions of the following quality parameters are given in Section 3.1 of Chapter

3. A graphical representation of the parameters is given below using a schematic fibrogram

of cotton. See Figure1.2.

1. Two expressions of mean or average length are available. One is mean length by weight

of fibers; the other is mean length by number of fibers. The mean length by number of

4



fibers is formed at the intercept to the length axis by a tangent drawn from the origin

of the Fibrogram at the amount axis. The mean length by weight of fibers is twice

the area under the Fibrogram curve when the amount axis is normalized to unity (1.0

instead of 100%) (Spinlab 1981).

2. Upper half mean length: The average length of the longer half of the fibers.

3. Length uniformity index: The ratio between the mean length and the upper half mean

length of the fibers, expressed as a percentage.

4. Short fiber content: The percentage of fibers in a sample, by weight, less than one half

inch in length (Bargeron, 1991). Direct short fiber content measurements can be made

with methods such as the Suter-Webb Array and AFIS. Another option for obtaining

a measurement of short fiber is through the HVI system.

1.3.3 Materials and method

Eight sets of cotton samples of different lengths with the UHML 0.94 to 1.19 inches were

selected for preparing fiber beards by using an HVI Fibrosampler. The fiber beards were

collected from the clamp and tested on an AFIS. Four types of length distributions that are

related to HVI measurements were measured by using AFIS:

1. Length distribution of the original sample, which was randomly selected by hand in

small pinches from the sample population.

2. Length distribution of fibers sampled by the HVI Fibrosampler clamp.

3. Length distribution of fibers projecting from the clamp, which is the portion that is

actually measured by the instrument using a beard method.

4. Length distribution of the hidden portion of fibers held in the clamp (invisible for an

instrument to measure using a beard method).

5



Figure 1.2: Schematic Fibrogram of Cotton

The projecting fibers were cut off along the baseline of the HVI clamp as shown in

Figure1.3 and the projecting fibers were spray-dyed to show the hidden portion. In this

study the first three types of length distributions are discussed.

Figure 1.3: Projecting and hidden portions of a beard from the HVI clamp
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The frequency-length relationship of the above four types of lengths were used to con-

struct the probability density functions (PDF) for fiber length distributions by number and

by weight. Figure 1.4 shows the PDFs by number of the above length distributions of one

cotton sample.

Figure 1.4: PDFs by number of the original sample, fibers picked by the HVI clamp, pro-
jecting portion of fibers, and the hidden portion of fibers.

As can be seen the measurement results (frequency-length relationship) of the four

types of lengths were used to construct the probability density functions for fiber length

distributions by number and by weight.

7
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Chapter 2

Obtaining the Distribution of Actual Cotton Fiber Length By Number

2.1 Theoretical distribution of fiber length

2.1.1 Introduction

In this section non-linear regression models were constructed with different theoretical

distributions. Gauss-Newton algorithm and least squares principle were used to solve the

models and search for the PDFs that match the PDFs of the measured data. Statistical

software SAS was utilized for the computational analysis. The results showed that a mixture

of two two-parameter Weibull distributions is in good agreement with the available data.

That is, each sample can be characterized by a mixture of Weibull distributions. Each mixed

distribution has five parameters which may vary from sample to sample but similar samples

have similar parameters.

1. Definition of cumulative distribution function

The cumulative distribution function (CDF) completely describes the probability dis-

tribution of real-valued random variable X. For every real number x, the CDF of X

is given by

x 7→ FX(x) = P (X ≤ x)

8



where the right-hand side represents the probability that the random variable X takes

on a value less than or equal to x. The CDF of X can be defined in terms of the

probability density function f as follows:

F (x) =

∫ x

−∞
f(t)dt

2. Empirical distribution function

Let X1, X2, . . . Xn be independent and identically distributed (iid) random vari-

ables with CDF F (x). The empirical distribution function Fn(x) based on sample

X1, X2, . . . Xn is a step function define by

Fn(x) =
1

n

n∑
i=1

I(Xi≤x). (2.1)

where IA is the indicator of event A.

It has been shown that the empirical cumulative distribution function (ECDF) Fn

is the non-parametric maximum likelihood estimate of the true CDF F and that the

ECDF converges to F with probability one. That is, the probability of limn 7→∞ Fn(x) =

F (x) equals one. In other words, when the sample size n goes to infinity, the ECDF

converges to the true CDF F . Since the sample sizes of the data sets used in this

project are considerably large (> 30, 000), the ECDFs based upon these data sets can

be considered as the underlying population CDFs of corresponding data sets. These

ECDFs were the target to fit the distribution functions desired.
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3. Non-parametric least squares estimate

The probability density function g∗(x) is the least squares (LS) estimate of PDF

f ∗(x) if
∫∞

0
[g(x)− f ∗(x)]2dx is minimized at g∗(x) among all choices of g(x), where x

represent the fiber length.

2.1.2 Methodology

Cotton fiber length data was used to fit a distribution by initially dividing the interval [0, 3]

into 30 subintervals of equal lengths. The interval [0, 3] was selected since it mainly covers the

entire possible length of cotton fibers. Based on the selected interval, the frequencies h(x) was

counted (i.e. the number of fibers with length falling into a subinterval). That is, h(x) equals

the number of fibers with length falling into the subinterval covering x. in this equation;

h(x) represents the PDF of the cotton fiber length by number and is used as the underlying

PDF of the data which at the same time is the f ∗(x) in the LS estimation process mentioned

above. After a various attempts of different distributions including normal, lognormal, beta,

Weibull, mixture of normal distributions, etc., it was found that a mixture of two Weibull

distributions is considered the optimum solution.

1. Definition of Weibull distribution function

The PDF of a two-parameter Weibull distribution is given by

f(x, λ, θ) = λθxλ−1e−θxλ

.x > 0, λ > 0, θ > 0

where λ and θ are parameters. The CDF is given by

F (x, λ, θ) =

∫ x

0

f(x, λ, θ)dt = 1− e−θxλ

, x > 0

10



2. Definition of mixture of Weibull PDFs

The PDF of a mixture of two Weibull PDFs is given by

f(x; α, λ1, θ1, λ2, θ2) = αf1(x; λ1, θ1) + (1− α)f1(x; λ2, θ2) (2.2)

where 0 < α < 1 and fi(x, α, λi, θi) is the PDF of a Weibull distribution, i = 1, 2.

Therefore, the PDF of the mixture of two Weibull PDFs contains five parameters

α, λ1, θ1, λ2, θ2. Similarly, the CDF of the mixture is

F (x, α, λ1, θ1, λ2, θ2) = αF1(x; λ1, θ1) + (1− α)F2(x; λ2, θ2)

where Fi(x; λi, θi) is the CDF of fi(x; λi, θi) , i = 1, 2. f(x) was used for f(x; α, λ1, θ1, λ2, θ2)

and F (x) for F (x; α, λ1, θ1, λ2, θ2) to simplify notations. As mentioned earlier, due to

the large sample size, this empirical PDF h(x) can approximate the underlying popu-

lation PDF of the data. Therefore, the LS estimate g∗(x) = f(x), mixture of Weibull

distributions, can be used as the population PDF by number. Once the functional form

of the population PDF is obtained, various cotton quality parameters can be obtained.

2.2 Goodness-of-fit test

Kolmogorov-Smirnov goodness-of-fit test was performed to verify that the mixture of

two Weibull distributions does fit the data. This test can be explained as follow: Let the

hypothesis be ”the data follows distribution G(x)”, where G(x) is a completely specified

CDF. Let Fn(x) denote the ECDF of a data. Define

Dn =
√

n sup
−∞<x<∞

| Fn(x)−G(x) |, x > 0

It is shown that when the hypothesis is true and the sample size n is large (Mood, et al
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1974), Dn is approximately distributed as D(x), where

D(x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2

, x > 0

It is clear that if the hypothesis is false, then Dn tends to be large; hence for a given

significance level α, one would reject the hypothesis if Dn is greater than the critical value

dα, where dα is determined so that D(dα) = 1− α. For example, when α = 0.10, dα ' 1.22,

and when α = 0.05, dα ' 1.44. Then, the hypothesis is rejected if Dn is greater than the

critical value dα ' 1.22 at α = 0.10, and it is rejected if Dn is greater than the critical value

dα ' 1.44 at α = 0.05.

The Kolmogorov-Smirnov goodness-of-fit test is performed in the following steps:

1. Since in practice it is common that the sample size is usually around 2000 to 3000, we

randomly re-sample n=2500 observations from a data set.

2. Fit a mixture of two Weibull distributions to the re-sampled data set. This fitted

mixture CDF is G(x), and the ECDF of the re-sampled data is Fn(x) in Equation 2.1.

3. Use α = 0.10. Compare Dn with dα ' 1.22. If Dn is less than 1.22, the Kolmogorov-

Smirnov statistic is not significant, then the hypothesis that these 2500 re-sampled

data points follow a mixture of two Weibull distributions is accepted.

4. Repeat Steps 1 to 3 500 times and record the number of times that the hypothesis is

accepted. In all the eight sets of fibers, the number of acceptance is higher than 95%

of the 500 tests for each set.

The test was performed for original, sampled, and projecting fibers of all eight cottons,

and the hypothesis was accepted in all cases with a p-value greater than 0.1. Therefore, the

fiber length distribution by number can be described using a mixture distribution of two

Weibull distributions.
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ID Type Rep Pct dα ' 1.22 Pct dα ' 1.44 Std at dα ' 1.22 Std at dα ' 1.44
30 Original 500 1 1 0 0

Sampled 500 1 1 0 0
Projecting 500 0.97 0.99 0.00764 0.00445

31 Original 500 1 1 0 0
Sampled 500 1 1 0 0

Projecting 500 0.996 0.998 0.00283 0.002
33 Original 500 1 1 0 0

Sampled 500 1 1 0 0
Projecting 500 0.998 1 0.002 0

34 Original 500 1 1 0 0
Sampled 500 1 1 0 0

Projecting 500 0.994 0.994 0.00346 0.00346
35 Original 500 1 1 0 0

Sampled 500 1 1 0 0
Projecting 500 0.984 0.99 0.00562 0.00445

36 Original 500 1 1 0 0
Sampled 500 1 1 0 0

Projecting 500 0.998 1 0.002 0
37 Original 500 1 1 0 0

Sampled 500 1 1 0 0
Projecting 500 0.992 1 0.00399 0

38 Original 500 1 1 0 0
Sampled 500 1 1 0 0

Projecting 500 1 1 0 0

Table 2.1: Kolmogorov-Simirnov Goodness of Fit Test
The first column of the above table represents the mean length by number of the eight

samples used in the study. In particular, Sample ID 30 denotes the cotton sample with mean
length of 30/32 inches, and ID 31 denotes the cotton sample with mean length of 31/32
inches, etc. Three types of fiber lengths, original, sampled and projecting, are presented in
the second column. The third column is the number of repeatations in our re-sampling with
replacement. The fourth and the fifth columns give the percentage of cases where the fiber
length distribution by number can be described by a mixture of two Weibull distributions
at two different levels dα ' 1.22 at α = 0.10, and dα ' 1.44 at α = 0.05. For example, the
first row shows 100% of the 500 samples are accepted, and the third row shows 97% of the
500 samples are accepted and so on. Finally, the last two columns show how much variation
or error we have in our test.
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2.3 Estimation of mixture distribution parameters by number and by weight

The above discussion is regarding the fiber length distribution by number. The shorter

fibers may have a large number portion, but not a large weight portion. Therefore, in

practice, the cotton fiber length distribution by weight is more commonly used. The fiber

length has a very weak correlation with the fiber linear density, therefore, the fiber length

and fiber linear density are independent. As previously defined, h(x) denotes the frequency

function of a data set and let x denote the sample mean of the data set. Assuming the

independence between fiber length and fiber linear density, the frequency function by weight

is given by (Zeidman et al, 1991)

hw(x) =
xh(x)

x
(2.3)

A mixture of two Weibull distributions is used to fit hw(x), and Kolmogorov-Smirnov

goodness-of-fit test is also performed for the length by weight and had the same conclusions

as for the length by number. Table 2.1 and Table 2.2 present the parameters of the estimated

mixture distributions by number and by weight for the eight different cottons, respectively.

For simplicity, only the graphs of the PDF’s by number and by weight for Sample ID 34

and Sample ID 38 are shown in Figure 2.1 to Figure 2.12 . It can be seen that both curves

between the sample and the estimated are in good agreement. (λ1, θ1) are the parameters of

the Weibull distribution on the left (labeled pdf1 in figures 2.1 to 2.12) of the two Weibull

distributions in the mixture, which represents mainly shorter fibers, and the one on the right

determined by (λ2, θ2) represents longer fibers (labeled pdf2 in figures 2.1 to 2.12 ).
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ID Type α λ1 θ1 λ2 θ2

30 Original 0.229 2.114 1.336 3.481 0.073
Sampled 0.502 1.980 0.390 4.283 0.032

Projecting 0.946 2.325 0.465 3.383 5.640
31 Original 0.840 3.667 0.060 2.197 1.879

Sampled 0.166 2.143 1.204 3.752 0.055
Projecting 0.039 3.129 4.471 2.367 0.407

33 Original 0.301 1.881 0.910 4.042 0.026
Sampled 0.714 4.006 0.027 1.958 0.614

Projecting 0.031 3.055 4.033 2.335 0.342
34 Original 0.508 5.178 .006 1.841 0.338

Sampled 0.525 5.032 .007 2.076 0.277
Projecting 0.060 2.960 3.082 2.449 0.292

35 Original 0.515 4.931 .007 1.921 0.332
Sampled 0.468 4.924 .008 2.014 0.303

Projecting 0.934 2.358 0.296 2.723 2.149
36 Original 0.554 4.971 .005 1.674 0.416

Sampled 0.591 4.612 .009 1.995 0.340
Projecting 0.090 2.370 1.634 2.369 0.280

37 Original 0.623 4.632 .007 1.738 0.491
Sampled 0.558 4.884 .005 2.034 0.275

Projecting 0.057 2.527 1.820 2.302 0.276
38 Original 0.645 5.151 .003 1.779 0.502

Sampled 0.546 5.396 .002 1.942 0.278
Projecting 0.099 2.245 1.404 2.488 0.206

Table 2.2: Estimation of Mixture Distribution Parameters by Number

The above table presents the five parameters of the mixture of Weibull distributions by
number as given in Equation (2.2).
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ID Type α λ1 θ1 λ2 θ2

30 Original 0.531 4.828 0.017 2.356 0.181
Sampled 0.481 5.017 0.014 2.731 0.124

Projecting 0.820 2.751 0.224 2.640 0.387
31 Original 0.706 4.782 0.018 2.116 0.196

Sampled 0.728 4.606 0.021 2.248 0.180
Projecting 0.721 2.828 0.218 2.899 0.206

33 Original 0.618 5.188 0.006 2.252 0.175
Sampled 0.666 4.817 0.009 2.532 0.143

Projecting 0.842 2.863 0.147 3.145 0.261
34 Original 0.607 5.653 0.003 2.373 0.123

Sampled 0.181 2.748 0.224 5.127 0.006
Projecting 0.998 2.891 0.152 5.482 5.723

35 Original 0.524 5.846 0.002 2.632 0.096
Sampled 0.550 2.770 0.087 5.902 0.003

Projecting 0.998 2.758 0.151 419.980 9.9E-9
36 Original 0.430 2.456 0.104 6.087 0.001

Sampled 0.512 5.846 0.002 2.835 0.075
Projecting 0.996 2.776 0.148 8.161 0.480

37 Original 0.386 2.358 0.114 5.682 0.002
Sampled 0.539 5.960 0.001 2.836 0.070

Projecting 0.999 2.750 0.137 107.020 145.996
38 Original 0.342 2.295 0.116 6.182 0.001

Sampled 0.575 6.410 0.001 2.723 0.073
Projecting 0.998 2.872 0.110 11.964 10E-7

Table 2.3: Estimation of Mixture Distribution Parameters by Weight
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Figure 2.1: Probability density functions by number of ID 34 original fibers.

looking at the graph from left to right,the thick-dashed line and thin-dashed line rep-
resent, respectively, the two pdf’s of the two Weibull distributions. The continuous line
represents the mixture of the two distributions. The experimental data is represented by the
dotted curve. Hence, the graphical relationships between the PDF of the estimated mixture
distributions and the PDF of experimental data are in good fit for the ID 34 original fiber
length by number, which was randomly selected by hand in small pinches from the sample
population.
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Figure 2.2: Probability density functions by number of ID 34 HVI sampled fibers.

This figure shows the comparison between the PDF of the estimated mixture distributions
and the PDF of the experimental data by number. This experiment was performed for
observation 34 that was sampled by the HVI Fibrosampler clamp.

Figure 2.3: Probability density functions by number of ID 34 projecting fibers.

This figure shows the comparison between the PDF of the estimated mixture distributions
and the PDF of the experimental data by number. This experiment was performed for ID
34 projecting fibers which is the portion that is actually measured by the HVI instrument
using a beard method.
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Similarly, the rest of the graphs show the observations ID 34 and ID 38 original fiber
length, sampled fiber length, and projecting fiber length by number and by weight.

Figure 2.4: Probability density functions by number of ID 38 original fibers.

Figure 2.5: Probability density functions by number of ID 38 HVI sampled fibers.
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Figure 2.6: Probability density functions by number of ID 38 projecting fibers.

Figure 2.7: Probability density functions by weight of ID 34 original fibers.
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Figure 2.8: Probability density functions by weight of ID 34 HVI sampled fibers.

Figure 2.9: Probability density functions by weight of ID 34 projecting fibers.
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Figure 2.10: Probability density functions by weight of ID 38 original fibers.

Figure 2.11: Probability density functions by weight of ID 38 HVI sampled fibers.
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Figure 2.12: Probability density functions by weight of ID 38 projecting fibers.
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2.4 Conclusion

We studied the theoretical distribution functions that can describe the underlying

distributions of three types of fiber lengths that are related to HVI measurements: the

lengths of the original fiber population, of the fibers picked by HVI fibrosampler, and of the

beard’s projecting portion that is actually scanned by HVI.

We conducted non-linear regressions based on length data measured by using AFIS from

eight cottons. A mixture of two Weibull distributions fits the data very well. Kolmogorov-

Smirnov goodness-of-fit test confirms that a mixed Weibull distribution can be used as the

underlying distribution of fiber length. The goal is to find a model to predict approximately

the original real length (Fiber collected from the HVI clamps that is not cut), since we

cannot measure the hidden portion of the fiber. Now, while the distribution of fiber length is a

mixture of two Weibull distributions, which is determined by five parameters, conversion from

the distribution function of projected lengths to that of the original lengths has become a

conversion from the parameters that determine the mixture distribution of projected lengths

to those of the mixture distribution of the original lengths. A natural choice of the conversion

method is ordinary least squares regression (OLS). However, OLS is not a good method for

our data because of the small sample size, which is eight (eight cotton samples), and a

high collinearity (multicollinearity) between variables (columns in Table 2.2). Therefore,

to overcome these problems, we are using partial least squares (PLS) regression for the

distribution parameter conversion. The highlight of some characteristics and steps of PLS

are presented in Chapter 4.
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Chapter 3

Quality Parameters

3.1 Estimation of some quality parameters

3.1.1 Fiber length parameters from the mixture of Weibull distributions

In this section, comparisons between the parameters obtained from the original data

and that obtained from the estimated mixture distribution are presented. The purpose of

this chapter is to investigate the ”closeness” of the estimation. These parameters include

upper half mean length (UHML), coefficient of variance (CV), short fiber content (SFC),

uniformity index (UI), and recently introduced lower half mean length (LHML) (Cui et al.,

2004).

The mean and the variance of a Weibull distribution with parameters λ and θ are,

respectively, given by

µ = Γ(1 + 1/λ)θ1/λ (3.1)

and

σ2 = [Γ(1 + 2/λ)− Γ2(1 + 1/λ)]θ−2/λ (3.2)
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where Γ(x) =
∫∞

0
e−xdx denotes the gamma function. Hence, the mean and the variance of

a mixed Weibull distribution are, respectively,

µmix = αµ1 + (1− α)µ2. (3.3)

and

σmix = Emix(x
2)− µ2

mix = α(σ2
1 + µ2

1) + (1− α)(σ2
2 + µ2

2)− [αµ1 + (1− α)µ2]
2 (3.4)

where µi and σi denote, respectively, the mean and the variance of a Weibull distribution

with parameters λi and θi, i = 1, 2.

The mean fiber length can be obtained by µ =
∫ L

0
[1−F (u)]du , where L is the maximum

fiber length in the distribution. The Fibrogram is a curve defined by B(x) = 1
µ

∫ L

x
[1−F (u)]du

(Zeidman et al, 1991). The UHML is the mean length of those fibers that are longer than

the median value of the weight distribution of fibers. Let M denote the weight median value,

such that
∫ M

0
uf(u)du = µ

2
. It is known that the UHML is the x-intercept of the tangent

line to the Fibrogram B(x) passing through y-intercept 0.5, and can be obtained by:

UHML =

∫ L

M
uf(u)du

1− F (M)
(3.5)

The LHML is given by

LHML =

∫ M

0
uf(u)du

F (M)
(3.6)

The SFC by number is the number proportion of fibers shorter than 0.5 inches in the

cotton. When using the fitted distribution, the SFC by number is given by:

αF1(0.5, λ1, θ1) + (1− α)F2(0.5, λ2, θ2). (3.7)

26



Similarly, the SFC by weight can be defined. As pointed out in (Spinlab 1981), (Hertel

1940), the UHML is chosen purely for convenience, since it can be obtained by drawing a

tangent line. The interpretation of the UHML is actually a proportion of fibers by number

longer than the median value of fibers by weight.

3.1.2 Application and comparison

To make numerical comparisons between the length distribution from the data and that

from the estimated mixed Weibull disrbution, we compare some most important quality

parameters used in the cotton industry. Plugging the fitted mixed Weibull distribution into

formulas (3.1)-(3.7) will give us the estimated mean length, UHML, LHML, SFC and CV.

We present the results in Tables 3.1 and 3.2 below. Specifically, for each cotton ID in these

two tables there are three type of fibers, Original, Sampled or Projecting, and each fiber

has two rows of values. For example, the top row of Original cotton ID 30 is from the

experimental data and the second row is from the fitted mixture Weibull distribution. It can

be seen from Table 3.1 and Table 3.2, that the parameter obtained from the experimental

data and that obtained from the mixed Weibull distribution match very well. Considering

the natural non-uniformity of cotton length, the third decimal of the data usually does not

have statistical significance. If we round up the data from Tables 3.1 and 3.2 to the second

decimal, the results obtain from tests and from estimation are identical thus indicating an

excellent fit of the mixture of the Weibull distributions.
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ID 30 Mean UHML LHML CV SFC UI
Original 1.666 2.497 1.250 0.453 0.318 80.42

1.647 2.466 1.237 0.448 0.323 80.25
Sampled 1.740 2.511 1.331 0.415 0.271 81.23

1.728 2.502 1.322 0.425 0.276 81.32
Projecting 1.210 1.892 0.889 0.480 0.577 78.68

1.194 1.863 0.879 0.478 0.579 78.74
ID 31

Original 1.754 2.531 1.342 0.423 0.261 81.67
1.738 2.504 1.331 0.418 0.266 81.56

Sampled 1.782 2.525 1.377 0.401 0.245 81.91
1.767 2.499 1.366 0.396 0.249 81.79

Projecting 1.271 1.951 0.942 0.464 0.530 79.17
1.267 1.949 0.938 0.466 0.531 79.07

ID 33
Original 1.873 2.807 1.405 0.458 0.267 80.74

1.845 2.764 1.384 0.456 0.275 80.64
Sampled 1.937 2.786 1.484 0.414 0.221 81.42

1.920 2.764 1.471 0.413 0.227 81.34
Projecting 1.385 2.137 1.025 0.468 0.465 79.04

1.377 2.125 1.018 0.469 0.467 79.04
ID 34

Original 2.041 2.928 1.567 0.419 0.208 81.94
2.043 2.943 1.565 0.422 0.211 81.76

Sampled 2.071 2.907 1.608 0.392 0.182 82.21
2.074 2.915 1.609 0.392 0.186 82.06

Projecting 1.424 2.184 1.057 0.464 0.440 79.28
1.415 2.170 1.049 0.463 0.443 79.14

Table 3.1: Estimation of Some Quality Parameters by Number of 30 till 34
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ID 35 Mean UHML LHML CV SFC UI
Original 2.058 2.967 1.575 0.419 0.206 81.54

2.056 2.971 1.572 0.420 0.210 81.42
Sampled 1.999 2.881 1.530 0.415 0.214 81.35

1.997 2.889 1.526 0.418 0.218 81.22
Projecting 1.439 2.237 1.061 0.476 0.440 78.89

1.431 2.229 1.054 0.476 0.444 78.79
ID 36

Original 2.145 3.132 1.631 0.436 0.208 81.53
2.149 3.167 1.626 0.447 0.215 81.40

Sampled 2.151 3.074 1.654 0.408 0.185 81.63
2.122 3.028 1.634 0.406 0.188 81.62

Projecting 1.456 2.272 1.071 0.479 0.435 78.82
1.445 2.262 1.062 0.481 0.439 78.67

ID 37
Original 2.176 3.194 1.650 0.441 0.205 81.42

2.168 3.189 1.642 0.442 0.211 81.30
Sampled 2.255 3.203 1.740 0.403 0.165 81.87

2.253 3.201 1.738 0.402 0.168 81.75
Projecting 1.508 2.358 1.108 0.482 0.411 78.77

1.501 2.352 1.103 0.482 0.414 78.69
ID 38

Original 2.284 3.301 1.746 0.432 0.192 82.07
2.298 3.335 1.753 0.435 0.197 81.96

Sampled 2.324 3.293 1.796 0.404 0.164 82.11
2.371 3.388 1.824 0.412 0.166 81.89

Projecting 1.588 2.447 1.176 0.466 0.368 79.02
1.584 2.447 1.171 0.469 0.371 79.01

Table 3.2: Estimation of Some Quality Parameters by Number of 35 till 38
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3.2 Conclusion

The length parameters, such as mean length and upper half mean length calculated

from the mixture of Weibull distributions match extremely well with those calculated from

the actual data. Since the distribution of fiber length can be described as a mixture of

two Weibull distributions, which in turn is determined by five parameters, the relationship

between the length distribution of projecting fibers and that of the original fibers can be

investigated by exploring the relationship between the five parameters of the mixture Weibull

distributions and the five parameters of projecting fiber length distributions.
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4

Chapter 4

Theory of Partial Least Squares Regression

4.1 Partial Least Squares

The partial Least Squares (PLS) regression method is of vitel importance in many

fields. The original work in PLS was done in the late 60’s by Herman Wold in the field of

econometrics. The use of the PLS method was pioneered by Svante Wold and Harald Martens

in the late 70’s. The goal of PLS is to predict the dependent variables from the independent

variables and to describe the common structure underlying the two variables (Abdi, 2003). It

is illustrated that PLS is a better tool than the classical OLS regression because the former

is more robust. This chapter briefly describes the highlight of PLS. PLS regression is a

multivariate regression that has some similarity with principal component regression (PCR)

(Svante Wold 1986). The PCR first summarizes information from independent variables

into principal components and then constructs regression equation between the principal

variables which are new independent variables and the original dependent variables. Since

the number of principal components is usually less than the original number of independent

variables, the PCR can overcome some difficulties that the original ordinary regression may

have. The difference between PLS and PCR is that PCR uses summarized information, from

independent variables alone but PLS utilizes summarized information, called latent variable

or factor, from both independent and dependent variables. Similar to principal components
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the factors extracted are orthogonal. Once the factors are obtained, an ordinary least squares

regression of original dependent variables against factors is used for prediction.

Let yi = (y1i, ...., yni)
T denote a vertical vector of observations of dependent variable Yi,

1 ≤ i ≤ l, and xj = (x1j, ...., xnj)
T denote a vertical vector of observations of independent

variable Xj, 1 ≤ j ≤ m, and ((xi1, . . . , xim)T , (yi1, . . . , yil)
T ), i = 1, 2, . . . , n be paired ob-

servations, where AT denotes the transpose of matrix A. Furthermore, let D = (x1, . . . , xm)

denote the observed independent variable matrix, and Q = (y1, . . . , yl) denote the observed

dependent variable matrix.

Unlike OLS regression or PCR, PLS regression is designed to overcome problems such

as small sample size and/or multicollinearity between variables. PLS is more effective than

OLS when there is a high collinearity or multicollinearity between the independent variables,

the response variables, or both of them, and the sample size is small. PLS can even be used

when the sample size is less than the number of independent variables, which of course

does not work for OLS regression. generally speaking, PLS regression searches for a set of

factors that performs a simultaneous decomposition of D and Q with the constraint that

these factors explain the maximum covariance between D and Q. In the univariate case, i.e.,

there is only one dependent variable, the PLS regression is sometimes called PLS1, while in

the multivariate case, i.e., when there are two or more dependent variables, it is sometimes

called PLS2 (Garthwaite 1994).

For our data, the independent variable vector is (a′, λ′1, θ
′
1, λ

′
2, θ

′
2)

T representing the

five parameters of the mixed Weibull distribution from the projecting fiber length. The

dependent variable vector is (a, λ1, θ1, λ2, θ2)
T representing the parameters of the mixed

Weibull distribution from the actual fiber length. Thus l = m = 5. Since there are eight

cottons in our study which generates five parameters from the projecting length and five

parameters from the original length, eight pairs of observations were obtained. That is,

sample size n = 8, which is considered small. Meanwhile, notice that in addition to small
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sample size, components of independent variables in our data are obviously highly correlated

as well as the dependent variables. Therefore, the use of OLS regression in such case is not

appropriate, thus PLS regression is considered. The objective of PLS regression, like OLS

regression, is to establish an equation between dependent variables and independent variables

such that once the parameters of the distribution of projecting length are obtained, one can

use the equation to obtain the parameters of the distribution of the corresponding original

length.

4.2 Theory of PLS

4.2.1 Theory of PLS1

Garthwaite (1994) gave an excellent description on the fundamental ideas of PLS,

formulas of obtaining factors, and ways to determine the number of factors desired. In this

section we briefly illustrate the approach of PLS1.

Without loss of generality we assume that D and Q are centered and scaled. The

objective is to obtain the following regression equation

Ŷ = β̂0 + β̂1T1 + β̂2T2 + ..... + β̂pTp. (4.1)

where p is the number of factors, and Tk is a factor, a linear combination of Xi, 1 ≤ i ≤ m.

To find the first factor T1, we use a least squares regression of Y against X1 then against

X2 until Xm to have m simple regressions. Since we assumed that the independent variables

are centered, the obtained least squares regression equations have no intercept. We denote

the LS regression equations by

Y1j = b1jXj, j = 1, . . . , m,
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where

b1j = (xT
j xj)

−1xT
j y.

Considering a weighted average of the above m regression equations and let

T1 =
m∑

j=1

ω1jb1jXj,

where ω1j ≥ 0 and
∑m

j=1 ω1j = 1. One choice of weight ωj is ωj = 1/m for all j. Another

possible choice is ω ∼ var(Xj) (Garthwaite 1994). Since each of the m regression equations

contains certain amount of information about the dependent variable, so does T1. Obviously,

T1 contains information not only about Y but about each independent variable Xj as well.

This T1, a linear combination of Xj’s, is the first factor. We now consider the second factor

and hope that the second factor can explain variation of Y and X that has not been explained

by T1.

Treat T1 as an independent variable and let Y regress on T1. Denote r1 = (r11, . . . , r1n)T

the corresponding residuals of the regression. Thus information of Y that is not explained by

T1 must be contained in r. Moreover, regress X1j on T1 and let x2j denote the corresponding

residuals of the regression for each j = 1, 2, . . . ,m. Similarly, information of Xj that is

not explained by T1 is contained in x2j. Notice that since it is assumed that Y and X are

centered and scaled, so are r1, T1, and x2j. In order to account for the rest of variation that

is not been explained by T1, let R1 denote the underlying random ”error” with values r1 and

X2j the underlying random ”error” with values x2j. Now regress residual R1 against residual

X2j for each j and then like T1, denote T2 a linear combination of this second group of the

m simple regressions. This T2 is still a linear combination of Xj’s and is the second factor

desired. The weights in T2 are not necessarily the same as those in T1. Recall that in PCA

the first principal component contains more information about X than all other principal

components. Between T1 and T2, it is true that in terms of percentage T1 contains more
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information about Y and X than does T2. It can be loosely stated that the information that

T1 contains and the information that T2 contains are not overlapping. This is why and how T1

and T2 are örthogonal”. Replacing T1 with T2, Y with R1, and Xj with X2j, one can repeat

the steps of constructing T2 to obtain T3, T4, . . ., etc. In general, the amount of information

of Y and X contained in Tk is more than that contained in Tk+1. There are different criteria

to determine the number of factors needed (Garthwaite 1994). As mentioned earlier, once

the factors are determined, treat them as independent variables and regress Y against them

using OLS regression to have Equation (4.1).

4.2.2 Theory of PLS2

The objective of PLS2 is to determine a relation between the predictors and the responses

in the multivariate level (Garthwaite 1994). In this section we are developing the multivariate

PLS approach when response Y is a vector containing two or more variables. Let us keep

the same notations as used in PLS1 such as D = (x1, . . . , xm), the observed independent

variable matrix and Q = (y1, . . . , yl), the observed dependent variable matrix.

Assuming that D and Q are centered and scaled. Our goal is to obtain the following

regression equation

Ŷk = β̂k0 + β̂k1T1 + β̂k2T2 + ..... + β̂kpTp. (4.2)

where k = 1, . . . , l, p is the number of factors, and Tk, called factor, is a linear combination

of Xj’s.

The PLS2 consists of two steps:

1. The first step is to find the first factor based on the covariance between X and Y . Let

C1 be the eigenvector corresponding to the largest eigenvalue of the sample covariance

matrix between X and Y , Q′DD′Q, and define U1 = QC1. Then the first factor T1 is
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obtained by following the procedures of PLS1 with Y (the Y in PLS1) replaced by U1.

2. Then let each Yi regress on T1 and denote its residual by Ri, 1 ≤ i ≤ l. Let

RY2 = (R1, . . . , Rl) and Q2 the matrix of the corresponding observed residual val-

ues (Note: Q2 is similar to r in PLS1.). Furthermore, still like in PLS1, let Xj

regress against T1 for all j, X2j denote its residual with RX2 = (X21, . . . , X2m) and

x2 = (x21, . . . , x2m) be the observed residual values. Let C2 be the eigenvector corre-

sponding to the largest eigenvalue of the sample covariance matrix between residuals

RY2 and RX2, which is Q′
2x2x

′
2Q2. By defining U2 = Q2C2, the second factor T2 is then

obtained by the procedures of obtaining T1 with U1 and X replaced by U2 and RX2

respectively. Similarly, one can obtain factors T3, T4, . . . , by the same manner. Finally,

Equation (4.2) is obtained by the OLS regression. We now provide an algorithm for

obtaining Equation (4.2).

4.3 PLS algorithm

Let ‖ v ‖ denote the norm of vector v. The above PLS2 procedures can be summarized

by the following algorithm (Jrgensen and Goegebeur 2002). Set initial values X<1> = X

and Y<1> = Y .

1. Let u<1> be an arbitrary column of Y.

2. Let w<1> =
XT

<1>u<1>

‖XT
<1>u<1>‖ .

3. Let t<1> = X<1>u<1> and q<1> =
Y T

<1>t<1>

‖Y T
<1>t<1>‖ .

4. Redefine u<1> = Y<1>q<1>.

5. If u<1> in Step 4 is the same as that in Step 1, then continue with Step 6; otherwise

go back to Step 2 with the new u<1>.
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6. Let c<1> = t<1>u<1>

t<1>t<1>
.

7. Let p<1> =
XT

<1>t<1>

tT<1>t<1>
.

8. Finally, let X<2> = X<1> − t<1>pT
<1> and Y<2> = Y<1> − c<1>t<1>qT

<1>.

Then, repeat the above procedure by replacing X<1> and Y<1> with X<2> and Y<2>

respectively, in steps 1 through 8 to find u<2>, w<2>, t<2>, c<2>, q<2> , and p<2> , etc.

The number of factors desired can be determined by cross-validation among other crite-

ria. Once the number of factors is determined, PLS regression factors and the final regres-

sion equation matrix B (explained in chapter 5) consist of the above established vectors

(u<i>, w<i>, t<i>, c<i>, q<i>, p<i>), i = 1, · · · ,m . See (Jrgensen and Goegebeur 2002) for

details.

4.4 Advantages and disadvantages of PLS

1. One of the advantages of PLS is the capability of predicting multiple dependent vari-

ables simultaneously. By contrast, multiple OLS regression predicts each response

variable at a time. Moreover, it overcomes the difficulty of collinearity between the

variables. Furthermore PLS can cope with small sample size.

2. On the other hand, PLS has some disadvantages such as distribution-free meaning

that PLS does not use any distribution properties of Y and the difficulty to explain

coefficients of the regression equation using factors such as Equation (4.1).

In conclusion, the PLS regression can be considered a very good method in the prediction

reason and not for interpretive reason.
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4.5 Conclusion

The PLS model is acquired using as many factors as possible (latent variables) which

can be examined methodically by the accumulative of variance table to decide the number

of factors necessary for a model. Several software utilizes PLS. In our study, to predicte

the parametrs SAS software (PROC PLS) is utilized, which accommodates various options.

Different study (Garthwaite 1994) including our experience utilizes real data or a simulation

that demonstrates a powerful way of building predictive model, particularly, in the situation

when the ordinary least squares performs ineffectively or inadequately. Application of the

PLS method will be illustrated in chapter 5.
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5

Chapter 5

Obtaining The Actual Cotton Fiber Length By Number Using PLS

5.1 Introduction

As mentioned earlier, fiber length is considered one of the most important properties

of cotton for marketing purposes and yarn processing. Most researches in this field focus

on developing efficient methods to measure the length of cotton. However, nearly all efforts

were concentrated on the distribution of the projecting fiber lengths and various quality

parameters of cotton fiber length, such as the upper half mean length, span length, short

fiber content, etc. Studies on the distribution of actual fiber lengths have not been done

successfully, due to technical difficulties. Since we used ”original” fiber length previously, we

will use both ”actual” and ”original” for actual fiber length in this chapter.

As we have seen that when HVI is used to analyze a projected portion of a cotton fiber

beard, the clamp used in HVI testing causes the unselected portion of the beard not to be

measured. Because of this, we need to find a way to approximately predict the original real

length, which is the projected length plus the unselected portion.

The main objective of this chapter is to find a suitable model for such prediction. We

have tried the classical OLS regression for this data but it did not fit well. Statistically, OLS

regression cannot be used for such prediction because of small sample size and multicollinear-

ity among variables. It is known that PLS regression technique is especially useful, to certain
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extent, in cases where there is a small sample size, multicollinearity among variables, or lack

of normal distribution assumption. In addition, PLS approach leads to stable, accurate, and

highly predictable models, even for correlated variables. In this chapter, we are going to find

a model using PLS regression that can overcome the problem of the unobservable hidden

part when measuring cotton length, and predict the distribution of actual fiber lengths. To

this end, the same eight cotton samples are used. The proposed method in this chapter can

be used for centimeters as well, by converting raw data from inches to centimeters and then

applying the method. There are two samples for each kind of cotton: actual and projecting.

In our earlier chapters, we used Gauss-Newton algorithm and nonparametric least squares

principle to find the cotton length distributions that match the data well. Specifically, it

was established that a mixture of two two-parameter Weibull distributions fits the data

accurately. That is, the density function of each sample (actual or projecting) is given by

f(x) = αf1(x, α, λ1, θ1) + (1− α)f2(x, α, λ2, θ2)

where 0 < a < 1 and f(x, λi, θi) = λiθix
λi−1e−θix

λi , x > 0, λi > 0, θi > 0, is the probability

density function of a Weibull distribution, i = 1, 2. Thus, the distribution of fiber length

is completely determined by its five parameters. Therefore, finding the distribution of fiber

length is equivalent to determining the five parameters. This chapter develops a PLS regres-

sion model that estimates the five parameters of the distribution of actual length. This new

approach shows that the proposed model works efficiently.

5.2 Application on cotton fiber length by number

5.2.1 Estimation of original fiber length by PLS

The objective of the PLS model is to predict the dependent variables. To achieve that,

we need to follow these steps:
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• The prospective sample has to be drawn from the population.

• Use existing data to find the mixure distribution of fibers and then factors.

• These factors are used in the study to build a model.

• The factors are applied to predict the dependent variables.

• Finally, inferences are drawn from the sample to the population.

The mixture distribution contains five parameters. Table 5.1 and Table 5.2 display

the parameters of both fibers. These data are used to fit PLS regression. The first row

of Table 5.1 and Table 5.2 contain respectively the five parameters of the mixed Weibull

distribution of cotton sample Projecting-30 (observed fiber length) and Original-30 (actual

fiber length), where the latter is longer. Also the second row of Table 5.1 is the parameters

for Projecting-31, and that of Table 5.2 is for Original-31, and so on. Thus, the first row

of both Table 5.1 and Table 5.2 constitute a pair of observations, denoted (X1, Y1); second

rows of Table 5.1 and Table 5.2 constitute another pair of observation, denoted (X2, Y2),

and so on. In total we have eight pair of observations. Similar to OLS regression, our goal

is to estimate Y based on the observed X. In other words, we need to estimate the actual

length distribution parameters (α, λ1, θ1, λ2, θ2) from observed projecting length distribution

parameters (α′, λ′1, θ
′
1, λ

′
2, θ

′
2) using PLS regression.

Table 5.3 lists the amount of variation accounted for both individual and cumulative

factors. Formulas for obtaining this table are given in next section. If six factors are used,

the variation accounted 100% and 97.8% for the independent and the dependent variables,

respectively.
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ID Type α λ1 θ1 λ2 θ2

30 Projecting 0.0438 2.0032 7.7581 2.2104 3.8975
31 Projecting 0.0544 2.9038 52.543 2.4082 3.7077
33 Projecting 0.0497 4.1522 2.5435 2.1963 3.0508
34 Projecting 0.0434 6.3001 5.8474 2.1941 2.8298
35 Projecting 0.0639 2.7945 31.340 2.3607 2.6709
36 Projecting 0.0492 5.0431 1.8705 2.1533 2.7233
37 Projecting 0.0604 2.5657 20.7361 2.1650 2.3597
38 Projecting 0.0731 2.1792 2.2907 5.0285 1.4940

Table 5.1: Mixed Distribution Parameters from Projecting Length

Table 5.1 consists of 8 samples of projecting fiber length by number that contains the
five parameters α, λ1, θ1, λ2, θ2. These parameters are the basic component of the mixture
of Weibull distribution.

ID Type α′ λ′1 θ′1 λ′2 θ′2
30 Original 0.5600 1.8437 2.5948 4.3892 1.7057
31 Original 0.4236 1.6834 2.4189 4.3500 1.7956
33 Original 0.3009 1.8814 2.2543 4.0418 1.1020
34 Original 0.4917 1.8414 1.8801 5.1776 0.7985
35 Original 0.4852 1.9211 1.9902 4.9314 0.7200
36 Original 0.4578 1.7431 1.9825 5.0958 0.5340
37 Original 0.3770 1.7375 2.4820 4.6319 0.5486
38 Original 0.4052 1.6817 2.0522 5.3040 0.3853

Table 5.2: Mixed Distribution Parameters from Original Length

Table 5.2 consists of 8 samples of original fiber length by number that contains the five
parameters α′, λ′1, θ′1, λ′2, θ′2.

Percent Variation Accounted for by Partial Least Squares Factors
Number of extracted Model Effects Dependent Variables
Factors Current Total Current Total
1 96.4471 96.4471 46.6810 46.6810
2 3.1414 99.5885 47.2882 93.9692
3 0.2897 99.8782 1.2136 95.1828
4 0.1205 99.9987 1.2241 96.4069
5 0.0013 100.0000 0.7934 97.2003
6 0.0000 100.0000 0.6014 97.8017

Table 5.3: Variance of X and Y Explained by the Factors
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5.2.2 Selection of the number of factors

We now use the proportion of the total variance accounted by the model to determine

the number of factors needed. Using the same notations as in PLS algorithm in Chapter 4,

the above table is constructed by the following method.

The variance in X accounted for by factor i is

tT<i>t<i>pT
<i>p<i>

tr(XT X)
. (5.1)

The cumulative variance in X accounted for by the model with p factors is hence

∑p
i=1 tT<i>tip

T
<i>p<i>

tr(XT X)
(5.2)

The Y -variance accounted for by the model with p factors is

1− tr((Y − Ŷ )T (Y − Ŷ ))

tr(Y T Y )
(5.3)

The number of Factors p should be chosen such that the percentage variation explained

is large enough for both X and Y . For our study, we found that five factors fit the data

best.

For our data the PLS regression equation with five factors is

Ŷ = ZB (5.4)

where Z =




1

X




T
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where matrix B is:

B=




1.242455 −0.14322 −20.75486 8.815067 −1.08788

−11.48905 24.76514 274.27936 −47.0975 −11.4004

−0.028348 0.053074 0.53171 0.01363 −0.04426

0.002026 −0.00728 −0.0852 0.01329 0.00593

0.03255 −0.09499 −0.6346 0.2183 0.26097

−0.067848 0.26520 3.32212 −0.816 0.72028




For comparison purpose, we applied the PLS regression, equation (5.4), for all eight

cotton samples. Table 5.4 shows the estimated parameters. The PDF graphs from the data

Table 5.2 and from the PLS prediction Table 5.4 are presented below. A quick comparison

between Table 5.2 and Table 5.4 shows that the proposed PLS approach gives reasonable

estimates.

ID α̂ λ̂1 θ̂1 λ̂2 θ̂2

30 0.50088 1.89203 3.54949 4.26797 1.68321
31 0.48904 1.95103 2.43263 4.97833 1.53082
33 0.44815 1.81519 2.94534 4.62569 0.99319
34 0.45037 1.92901 2.66745 5.30796 0.62853
35 0.39763 1.62006 2.04437 4.32946 0.99674
36 0.42627 1.78267 2.67496 4.76537 0.72304
37 0.36095 1.46661 1.99217 3.89528 0.86412
38 0.41552 1.76771 2.18543 5.49448 0.29277

Table 5.4: Estimation of Distribution Parameters by Number Using PLS

5.3 Estimation of some quality parameters by number using PLS

Let µi (i = 1, 2) denote the mean of each Weibull distribution, and the mean of the mixture

of these two Weibull distributions determined by Equation (3.3) in Chapter 2. The UHML

is the mean length of those fibers longer than the median value of the weight distribution
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of fibers, which is defined by equation (3.4). The lower half mean length (LHML) is defined

by equation (3.5). The short fiber content (SFC) by number is given by equation (3.7).

Plugging the predicted distribution by number using PLS into the above mentioned

formulas will result into the estimated mean length, UHML, LHML, SFC, CV, and UI,

which in turn are given in Table 5.5. In this table, there are three rows of values. The top

row is from the data, the second row is from the fitted distribution, and the third row is from

the predicted distribution using the PLS model. We can see that the parameters obtained

from the raw data, the mixed Weibull distribution, and the PLS model are very close.
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ID 30 Mean UHML LHML CV (%) SFC (%) UI (%)
Experimental .658 .983 .494 45.4 31.7 80.8

Weibull Distributionn .652 .979 .488 .455 .323 .803
PLS .654 .977 .492 .449 .315 .805
ID 31

Experimental .691 .997 .528 .423 .261 .817
Weibull Distributionn .683 .993 .520 .430 .273 .815

PLS .682 .996 .518 .434 .278 .814
ID 33

Experimental .737 1.105 .553 .458 .267 .807
Weibull Distributionn .792 1.108 .619 .385 .183 .821

PLS .787 1.122 .607 .408 .205 .818
ID 34

Experimental .804 1.153 .617 .419 .208 .819
Weibull Distributionn .798 1.148 .612 .420 .212 .818

PLS .803 1.154 .615 .421 .211 .819
ID 35

Experimental .810 1.168 .620 .419 .205 .815
Weibull Distributionn .806 1.163 .616 .419 .210 .815

PLS .818 1.163 .630 .405 .194 .819
ID 36

Experimental .845 1.233 .642 .436 .208 .815
Weibull Distributionn .839 1.228 .637 .439 .213 .815

PLS .834 1.192 .641 .411 .194 .818
ID 37

Experimental .857 1.257 .650 .441 .205 .814
Weibull Distributionn .847 1.256 .655 .441 .212 .806

PLS .837 1.248 .629 .454 .228 .809
ID 38

Experimental .899 1.299 .687 .432 .192 .821
Weibull Distributionn .892 1.293 .681 .435 .197 .820

PLS .891 1.293 .680 .436 .198 .820

Table 5.5: Estimation of Some Length Quality Parameters by Number
It is seen that the parameters obtained from the three methods are very close.
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Figure 5.1: Probability density functions by number of ID 30 original fibers.

Graphical comparisons between the PDF of the estimated mixture distributions using
PLS and the PDF of data are performed for original-30 fiber length (by number). One can
see that mixture distribution by PLS regression provides a good match with the actual data
fiber length by number.

Figure 5.2: Probability density functions by number of ID 31 original fibers.
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Figure 5.3: Probability density functions by number of ID 33 original fibers.

Figure 5.4: Probability density functions by number of ID 34 original fibers.
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Figure 5.5: Probability density functions by number of ID 35 original fibers.

Figure 5.6: Probability density functions by number of ID 36 original fibers.
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Figure 5.7: Probability density functions by number of ID 37 original fibers.

Figure 5.8: Probability density functions by number of ID 38 original fibers.
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5.4 Conclusion

On one hand, as shown in Chapter 2, the distribution of cotton fiber lengths can be

modeled precisely by a mixture of two two-parameter Weibull distributions. On the other

hand, the present chapter provides an approach to estimating the distribution of the actual

fiber length based on observed projected length. The actual or original fiber length cannot

be obtained in practice, and only projected length can. Meanwhile, knowing the distribution

of original fiber length is critical in the cotton industry due to obvious reasons. Therefore,

finding the distribution of original fiber lengths becomes a necessity.

The method proposed in this chapter is partial least squares regression, where distribu-

tion parameters of projecting length are independent variables and that of original length

are dependent variables. Graphs of density functions obtained from the proposed PLS re-

gression method show a close match with graphs of empirical densities obtained from the

experimental data. Comparing some commonly used quality parameters from Table 5.5 (ex-

perimental data, mixture distribution, and PLS regression), provide a good support of the

proposed method (PLS).

We believe that this study is just a beginning. There are more studies remained to be

done. For example, our current study is based on eight samples. In order to cover a wider

range of cottons, studies with more samples are needed to verify and possibly modify the

method proposed in this chapter. In addition, currently we are using the mixed Weibull

distribution to fit data which contains 5 parameters. It is essential if a distribution with less

number of parameters (< 5) can be found to fit the data, because the less the parameters the

higher the precision PLS regression may provide. As far as we know, the proposed approach

is new. In short, this chapter provides a method to find the distribution of actual cotton

fiber lengths.
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6

Chapter 6

Distribution of Cotton Fiber Length By Weight

6.1 Introduction

As stated in the previous chapter, the methodology can be used for fiber length by weight.

Cui and Calamari (1998) mention that assuming the fiber linear density and its length are

statistically independent, one can calculate the probability density function of fiber length

by number from that by weight and visa versa. Also the length by weight distribution can

be calculated from the fibrogram by taking the ratio of the area between the fibrogram curve

and tangent and the total area under the fibrogram curve as shown in Figure 1.2. The mean

length by weight can be found from the mean length by number and the standard deviation

(Chu and Riley 1997) :

Mean Lenght by Weight = ML +
(SD)2

ML

where ML is the mean length by number, and SD is the standard deviation of the length

distribution by number.
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6.2 Application on cotton fiber length by weight

6.2.1 Data gathering procedure

Following the same steps as in Chapter 5, the distribution of projecting fiber length

by weight and actual fiber length by weight can be modeled by a mixture of two two-

parameter Weibull distributions. This mixed distribution contains five parameters. In the

first part of the study in Chapter 2, we obtained parameters for both projecting and actual

fiber lengths of all eight cotton samples. As shown below, the parameters are displayed

by inches in Table 6.1 and Table 6.2, which are used in PLS regression. As presented

previously for fiber length by number, the first rows of both Tables of the fiber length by

weight will form a pair of observation, denoted by (X1, Y1), second rows denoted by (X2, Y2),

and so on. In total, we have eight pairs of observation. The purpose is to estimate actual

length distribution parameters (a, λ1, θ1, λ2, θ2) from observed projecting length distribution

parameters (a′, λ′1, θ
′
1, λ

′
2, θ

′
2).

Table 6.3 below lists the amount of variation accounted for each of these factors,

both individual and cumulative. Using all the 6 factors, the variation accounted 100% and

98.49% for the independent and dependent variables, respectively.

ID Type α λ1 θ1 λ2 θ2

30 Projecting 0.622 2.777 4.293 2.898 2.236
31 Projecting 0.986 2.885 3.142 6.126 0.267
33 Projecting 0.264 2.944 4.077 2.935 0.267
34 Projecting 0.925 2.764 2.112 4.853 5.232
35 Projecting 0.915 2.801 2.199 2.899 0.985
36 Projecting 0.935 2.788 2.079 2.872 0.864
37 Projecting 0.919 2.774 1.888 2.888 0.921
38 Projecting 0.993 1.888 1.593 17.533 1.998

Table 6.1: Mixed Distribution Parameters from Projecting Length by Weight

Table 6.1 consists of 8 samples of projecting fiber length by weight that contains the five
parameters α, λ1, θ1, λ2, θ2. These parameters are the basic component of the mixture of
Weibull distribution.
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ID Type α′ λ′1 θ′1 λ′2 θ′2
30 Original 0.480 2.399 1.636 4.799 1.492
31 Original 0.305 2.153 1.397 4.784 1.532
33 Original 0.403 2.297 1.402 5.260 0.774
34 Original 0.400 2.395 1.112 5.644 0.647
35 Original 0.164 2.640 3.397 4.915 0.615
36 Original 0.439 2.484 1.010 6.098 0.366
37 Original 0.382 2.350 1.026 5.155 0.369
38 Original 0.347 2.308 0.975 6.155 0.264

Table 6.2: Mixed Distribution Parameters from Original Length by Weight

Table 6.2 consists of 8 samples of original fiber length by number that contains the five
parameters α′, λ′1, θ′1, λ′2, θ′2.

Percent Variation Accounted for by PLS Factors
Number of extracted Model Effects Dependent Variables
Factors Current Total Current Total
1 85.4675 85.4675 78.3502 78.3502
2 11.4934 96.9610 16.3538 94.7040
3 2.0264 98.9874 1.7323 96.4363
4 0.9880 99.9754 1.5874 98.0237
5 0.0244 99.9998 0.3563 98.3800
6 0.0002 100.000 0.1122 98.4922

Table 6.3: Variance of X and Y Explained by the Factors

6.2.2 Selection of the number of factors

Since our data in both Tables 6.1 and 6.2 has five variables, we have chosen five factors out

of six. The variation summary shows that over 99.99% of the predictor variation and 98%

of the response variations are accounted. The number of factors can also be determined by

considering the proportion of the total variance accounted by the model. In one hand, The

cumulative proportion of the total X-variance accounted for by the model with p factors is

given by Equation (5.1), on the other hand, the Y -variance accounted for by the model with

p components is given by Equation (5.3). The number of components p should be chosen
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such that the percentage variation explained is large enough for both X and Y .

For our data the PLS regression equation is Ŷ = ZB

where Z =




1

X




T

, and matrix B is

B=




1.242 −0.143 6.910 8.815 −1.088

−11.489 24.765 −50.167 −47.098 −11.400

−0.028 0.0531 −0.269 0.014 −0.044

0.002 −0.007 0.008 0.013 0.006

0.033 −0.095 −0.007 0.218 0.261

−0.068 0.265 −0.398 −0.816 0.720




For comparison purpose, we applied the PLS regression equation (4.2) for all eight cotton

samples and present the estimated parameters in Table 6.4. The graphs of PDF’s from

the data (i.e. with parameters given in Table 6.2 and from the PLS prediction, i.e. with

parameters given in Table 6.4, are presented below. A quick comparison between Tables 6.2

and 6.4 shows that the proposed PLS regression gives reasonable estimates. More comments

and discussions are given in the conclusion section.

ID α̂ λ̂1 θ̂1 λ̂2 θ̂2

30 0.48554 2.39152 1.57939 4.81509 1.49114
31 0.28500 2.19906 1.65785 4.75767 1.52040
33 0.39542 2.30429 1.47374 5.23375 0.77695
34 0.39206 2.40757 1.20204 5.62465 0.64623
35 0.33081 2.44418 1.70473 5.46135 0.56823
36 0.33419 2.46908 1.72106 5.52150 0.49510
37 0.34472 2.51262 1.70672 5.68755 0.29307
38 0.35185 2.29568 0.90677 6.16283 0.26618

Table 6.4: Estimation of Parameters Distribution by Weight Using PLS
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6.3 Estimation of some quality parameters of fiber length by weight

Plugging the predicted distribution obtained from PLS into these relevant formulas, the

estimated mean length, SFC, and CV are obtained and are given in Table 6.5. For each

fiber sample in Table 6.5 there are three rows of values: The top row is from the data, the

second row is from the fitted mixture distribution, and the third row is from the predicted

distribution using PLS. From Table 6.5 we see that the parameters obtained from the raw

data and that obtained from the mixed Weibull distribution, and that obtained from the

PLS model are very close. The graphs of the PDF’s by weight for Sample ID 30 to 38 are

shown in Figure 6.1 to Figure 6.8. The PDF’s by weight using actual fiber length as well

as the PDF’s from the PLS prediction are presented side to side. It can be seen that both

curves between the sample and the estimated are in good agreement.
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ID 30 Mean CV (%) SFC (%)
Data .791 .357 15.3

Mixed Weibull .785 .349 15.5
PLS .798 .3476 15.30
ID 31
Data .814 .329 11.82

Mixed Weibull .813 .328 12.0
PLS .800 .319 12.54
ID 33

Experimental .892 .343 10.95
Weibull Distribution .885 .333 11.2

PLS .880 .332 11.43
ID 34

Experimental .945 .323 8.26
Weibull Distributionn .935 .315 8.39

PLS .929 .314 8.74
ID 35

Experimental .952 .322 8.13
Weibull Distributionn .938 .307 8.58

PLS .921 .315 9.76
ID 36

Experimental 1.005 .321 7.56
Weibull Distributionn 1.002 .314 7.55

PLS .936 .319 9.64
ID 37

Experimental 1.024 .326 7.30
Weibull Distributionn 1.017 .318 7.43

PLS 1.023 .331 9.29
ID 38

Experimental 1.067 .308 6.42
Weibull Distributionn 1.064 .305 6.40

PLS 1.072 .305 6.18

Table 6.5: Estimation of Some Length Quality Parameters by Weight

From the table we see that the parameters obtained from the three methods are very close.
The difference is at the second decimal place for all parameters.
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Figure 6.1: Probability density functions by weight of ID 30 actual fibers.

It is seen that mixture distribution obtained by PLS regression provides a good match
with the actual data fiber length by weight.

Figure 6.2: Probability density functions by weight of ID 31 actual fibers.
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Figure 6.3: Probability density functions by weight of ID 33 actual fibers.

Figure 6.4: Probability density functions by weight of ID 34 actual fibers.
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Figure 6.5: Probability density functions by weight of ID 35 actual fibers.

Figure 6.6: Probability density functions by weight of ID 36 actual fibers.
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Figure 6.7: Probability density functions by weight of ID 37 actual fibers.

Figure 6.8: Probability density functions by weight of ID 38 actual fibers.
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6.4 Conclusion

In this chapter, it was shown that the distribution of cotton fiber lengths by weight can

be modeled precisely by a mixture of two two-parameter Weibull distributions. The present

chapter provides an approach to estimating the distribution of the actual fiber length by-

weight based on observed projecting lengths. As mentioned earlier, actual fiber length cannot

be obtained in practice, therefore, knowing the distribution of actual fiber length is critical

in the cotton industry.

Partial least squares regression is the method that was used in this chapter, where

distribution parameters of projecting lengths are independent variables and those of original

length are dependent variables. Graphs of density functions obtained from the proposed

PLS regression showed a close match with graphs of empirical densities obtained from the

raw data. Comparisons of some commonly used quality parameters Table 6.5 among data,

mixture distribution and PLS regression provide a good support of the proposed method as

well. In the author’s opinion, this study is an exploratory study. More studies remain to be

done.
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7

Chapter 7

A New Model For The Distribution of Fiber Length By Weight

7.1 Introduction

As mentioned earlier the relation between length by number and length by weight is

defined by hw(x) = xh(x)
x

, where h(x) denotes the probability density function of fiber length

by number, that is, h(x) is a frequency function of lengths, and x denotes the sample mean

of a data set. The frequency function by number and that by weight are equivalent, i.e.,

knowing one implies knowing the other. It is known that reducing the number of parameters

in a regression can enhance the estimation of parameters. That is why we are considering

introducing a new distribution with only three parameters to describe the distribution of fiber

lengths by weight. It is found that the mixture of Weibull distributions fits the data very

well; on the other hand, one Weibull distribution does not fit. Therefore it is worth trying to

generalize a Weibull distribution by adding one more parameter to make it more flexible to

fit data. After tried different forms of distributions, we introduce a new distribution that has

three parameters. We found that the new distribution fits the data very well. Unfortunately,

the new distribution works only for length by weight, not by number. The reason is that

the PDF of length by weight does not have a ”hunk” on the left side (shorter fiber portion)

of the density curse; in contrast the PDF of length by number usually has such a hunk.
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7.2 New Distribution

7.2.1 Definition and properties of the new distribution

A continuous random variable X follows (new) distribution ND(a, b, c) if its PDF is given

by

fX(x) = abcxc−1eaebxc

e−aebxc

, x ≥ 0, a > 0, b > 0, c > 0 (7.1)

The CDF of ND(a, b, c) is

FX(x) = P (X ≤ x) = 1− ea(1−ebxc
) (7.2)

It can be seen that y = exc
has a Weibull distribution with parameters a and b. The

expected value of X is given by

µ = E(X) =

∫ ∞

0

[1− FX(x)] dx =

∫ ∞

0

ea(1−ebxc
) dx

In order to illustrate the flexibility of the new distribution we present graphs of

ND(a, b, c) with various parameter values.
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Figure 7.1: Plot of ND(1, 1, 1) Figure 7.2: Plot of ND(1, 1, 2)

Figure 7.3: Plot of ND(2,1, 1) Figure 7.4: Plot of ND(5, 5, 10)
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We show in this section that the second moment of X is finite, since we need variance

and expected value in our calculation of estimation of some quality parameters. The second

moment is given by

E(X2) =

∫ ∞

0

abcx2xc−1eaebxc

e−aebxc

dx.

Let y = ebxc
. Then ln(y) = bxc and dy = ebxc

bcxc−1dx.

E(X2) = K

∫ ∞

1

xc+1ye−ay

xc+1y
dy = K

∫
x2e−aydy,

E(X2) = K

∫ ∞

1

ln(y)
2
c e−aydy,

where K is a constant.

Since ln(y) ≤ y for all y > 1, we have

K

∫ ∞

1

ln(y)
2
c e−aydy < K

∫ ∞

1

y
2
c e−aydy < ∞.

This was to be shown.

Maximum Likelihood Estimators

In this section the maximum likelihood estimation of the parameters a, b, c of distribu-

tion ND(a, b, c) are considered. That is, we consider estimation of a, b, and c when all are

unknown. If x1, ..., xn is a random sample from ND(a, b, c) , then the log-likelihood function,

L(a, b, c), is given by

L(a, b, c) = n ln(a)+n ln(b)+n ln(c)+(c−1)
n∑

i=1

ln(xi)+na+n ln(b)+c

n∑
i=1

xi−a

n∑
i=1

ebxc
i (7.3)
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The normal equations become:

∂L

∂a
=

n

a
+ n +

n∑
i=1

ebxc
i = 0. (7.4)

∂L

∂b
= 2

n

b
− ab

n∑
i=1

xc
ie

bxc
i = 0. (7.5)

∂L

∂c
=

n

c
+

n∑
i=1

ln(xi) +
n∑

i=1

xi − abc

n∑
i=1

x
(c−1)
i ebxc

i = 0. (7.6)

From (7.5), we obtain a as a function of b and c, say â(b, c), where

â(b, c) =
1

n
(

n∑
i=1

ebxc
i − n). (7.7)

Putting â(b, c) in (7.3), we obtain

L(â(b, c), b, c) = n ln(â)+n ln(b)+n ln(c)+(c−1)
n∑

i=1

ln(xi)+nâ+n ln(b)+c

n∑
i=1

xi−â

n∑
i=1

ebxc
i

(7.8)

Therefore, MLE of b and c, can be obtained by maximizing equation (7.8) with respect

to b and c. It can be seen that if X ∼ ND(a, b, c) then when b = 1 exp(X) has a Weibull

distribution with parameters a and c.

Random Number Generator

Random numbers of distribution ND(a, b, c) can be obtained from random variable

U(0, 1) by using the inverse distribution. For ND(a, b, c) , its inverse is obtained as follows.

Given,

x = F (y) =

∫ y

0

ND(z) dz
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we get

x = F (y) = 1− ea(1−ebxc
) (7.9)

Inverting Equation 7.9 to write y = G(x), we have

y = G(x) = c

√
1

b
ln(1 +

1

a
ln(

1

1− x
)). (7.10)

Therefore; equation 7.10 generates a random value y ∼ ND(a, b, c)once a random value

x ∼ U(0, 1) is generated.

7.3 Goodness-of-fit test

Following the same steps as in Chapter 2, non-linear least squares regression models

were constructed with the new distribution. In other words, we repeated the procedure in

Chapter 2 by replacing the mixture of Weibull distributions with ND(a, b, c). The results

showed that our new distribution is in good agreement with the available data of fiber length

by weight. Therefore, each of the eight samples can be characterized by the new distribution

with appropriate parameters determined by the non-linear LS regression. We present the

estimated parameters of fitted distributions for Original and Projecting lengths in Table 7.1.

Kolmogorov-Smirnov goodness-of-fit test was performed to verify that the new distribution

does fit the data. Let the hypothesis be ”the data follows distribution ND(a, b, c)”. We follow

the same steps as in Chapter 2 and use sample Original ID-30 as an example to re-present

them below.

1. Randomly re-sample 2500 observations from Original ID-30 data set.

2. The fitted CDF for Original ID-30 is ND(1.7384, 0.6514, 2.8169), and the corresponding

ECDF of the re-sampled data is given by Equation (2.1).
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3. Use α = 0.10 and compare Dn (See Chapter 2) with dα ' 1.22. If Dn is less than 1.22,

the Kolmogorov-Smirnov statistic is not significant, i.e. the hypothesis that these 2500

re-sampled data points follow distribution ND(1.7384, 0.6514, 2.8169) is accepted.

4. Repeat steps 1 to 3 500 times and record the number of times that the hypothesis is

accepted.

The above steps were performed for both Original and Projecting fiber lengths of each

of the eight samples. Out of 500 repetitions the percentage of acceptance is higher than

95% every time. Therefore, we can claim that the fiber length distribution by weight can

be described by distribution ND(a, b, c). In addition, for each of the eight cottons, graph-

ical comparisons between the PDF of the estimated ND(a, b, c) and the PDF of data are

performed as presented in Figures 7.5 to 7.12.

ID Type a b c
30 Original 1.5 0.7 2.7

Projecting 50.009 0.06 2.7
31 Original 0.96 0.92 2.75

Projecting 59.68 0.048 2.825
33 Original 0.448 1.184 2.259

Projecting 54.469 0.04 2.79
34 Original 0.835 0.699 2.87

Projecting 53.38 0.0395 2.874
35 Original 0.778 0.705 2.74

Projecting 54.348 0.035 2.746
36 Original 0.0175 3.6076 1.0267

Projecting 56.82 0.0325 2.74
37 Original 0.468 0.814 2.384

Projecting 53.51 0.031 2.716
38 Original 0.386 0.844 2.448

Projecting 55.5 0.01 2.85

Table 7.1: Parameter Estimation of ND(a, b, c)
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Figure 7.5: PDF by weight of original ID 30 Figure 7.6: PDF by weight of original ID 33

Figure 7.7: PDF by weight of original ID 35 Figure 7.8: PDF by weight of original ID 37
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Figure 7.9: PDF by weight of projecting ID 30
Figure 7.10: PDF by weight of projecting ID
33

Figure 7.11: PDF by weight of projecting ID
35

Figure 7.12: PDF by weight of projecting ID
37
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7.4 Estimation of some quality parameters

Comparisons between the quality parameters obtained from the original data and that

obtained from the estimated ND(a, b, c) are presented. The purpose of the comparison is

to further investigate the fit of the estimated distribution to the data. These parameters

include ML, CV, and SFC. The estimated parameters are given in Table 7.2. For each type

of fiber sample, Original or Projecting, there are two rows of values in the table: the top

row (Data) is from the experimental data and the second row (ND(a, b, c)) is from the fitted

distribution. It is seen that parameter values obtained from the experimental data and those

obtained from ND(a, b, c) are in good agreement. Considering the natural non-uniformity of

cotton length, the third decimal of the data usually does not have statistical significance. If

we round up the data in Table 7.2 to the second decimal, the results from data and from

fitted ND(a, b, c) are almost identical, indicating an excellent fit of the new distribution.
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ID 30 Mean CV (%) SFC (%)
Data .791 .357 15.3

ND(a, b, c) .781 .333 15.67
ID 31
Data .814 .329 11.82

ND(a, b, c) .802 .310 13.10
ID 33
Data .892 .343 10.95

ND(a, b, c) .870 .324 11.81
ID 34
Data .945 .323 8.26

ND(a, b, c) .920 .300 8.04
ID 35
Data .952 .322 8.13

ND(a, b, c) .932 .310 8.29
ID 36
Data 1.005 .321 7.56

ND(a, b, c) 1.003 .318 7.58
ID 37
Data 1.024 .326 7.30

ND(a, b, c) 1.010 .313 7.59
ID 38
Data 1.067 .308 6.42

ND(a, b, c) 1.040 .296 6.25

Table 7.2: Estimation of Some Length Quality Parameters by Weight

7.5 Application of PLS using ND(a, b, c)

In this section, we are going to repeat procedure of Chapter 5 by replacing distribution

parameters, Tables 5.1 and 5.2, of mixed Weibull with parameters of ND(a, b, c) given in

Table 7.1. In particular, we will use the PLS regression to estimate parameters (a, b, c)

of Original length based on the parameters of Projecting length. For our data we use 3

factors based on the variation explained by the variation of the independent and dependent

variables. This variation is explained by PLS regression model based on our data that is

given by Table 7.5, which lists the amount of variation accounted for each of these factors
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both individual and cumulative. Note that all of the variation is accounted for by 4 factors

is given by 100% for the independent variables and 99.04% for the dependent variables.

Percent Variation Accounted for by PLS Factors
Number of extracted Model Effects Dependent Variables
Factors Current Cumulative Current Cumulative
1 99.9994 99.9994 97.3893 97.3893
2 0.0005 100.0000 0.5542 97.9435
3 0.0000 100.0000 0.7666 98.7101
4 0.0000 100.0000 0.3334 99.0434

With three factors the variation summary shows that 100% of the independent variation

and 98.7% of the dependent variation are accounted. The dependent variables, which are

distribution parameters of Original length, can be predicted using the multiple regression

formula Ŷ = XB where X = (1, a, b, c) denotes the distribution parameters of Projecting

length from Table 7.1, and matrix B is

B=




−0.403 −0.735 −1.908

−0.030 0.019 −0.006

21.087 0.615 8.623

0.728 0.172 1.613




PLS regression was applied for all eight cotton samples, and the estimated parameters

are presented in Table 7.3. For each of the eight cottons, graphical comparisons between the

PDF of the estimated using PLS and the PDF of data are performed as shown in Figures

7.13 to 7.21.
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ID λ′ θ′ β′

30 1.29812 0.73888 2.67152
31 0.84905 0.94182 2.71829
33 0.81341 0.82952 2.62283
34 0.69436 0.80312 2.63932
35 0.67965 0.81652 2.50946
36 0.54736 0.86203 2.46400
37 0.59896 0.79259 2.43140
38 0.28599 0.85034 2.51035

Table 7.3: New Distribution Parameters by PLS

7.5.1 Estimation of some quality parameters by PLS

Using the same procedure as in chapter 5 the quality parameters, Mean, CV and SFC, are

obtained and presented in Table 7.5. We include Table 7.2 for comparison purpose. From

the table we see that the quality parameters obtained from data, ND(a, b, c) and PLS are

very close.
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Figure 7.13: PDF by weight of original ID 30
using PLS

Figure 7.14: PDF by weight of original ID 31
using PLS

Figure 7.15: PDF by weight of original ID 33
using PLS

Figure 7.16: PDF by weight of original ID 34
using PLS
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Figure 7.17: PDF by weight of original ID 35
using PLS

Figure 7.18: PDF by weight of original ID 36
using PLS

Figure 7.19: PDF by weight of original ID 37
using PLS

Figure 7.20: PDF by weight of original ID 38
using PLS
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ID 30 Mean CV (%) SFC (%)
Data .791 .357 15.3

ND(a, b, c) .781 .333 15.67
PLS .796 .330 14.75
ID 31
Data .814 .329 11.82

ND(a, b, c) .802 .310 13.10
PLS .819 .308 12.25
ID 33
Data .892 .343 10.95

ND(a, b, c) .870 .324 11.81
PLS .865 .315 11.06
ID 34
Data .945 .323 8.26

ND(a, b, c) .920 .300 8.04
PLS .913 .306 9.10
ID 35
Data .952 .322 8.13

ND(a, b, c) .932 .310 8.29
PLS .920 .316 9.94
ID 36
Data 1.005 .321 7.56

ND(a, b, c) 1.003 .318 7.58
PLS .956 .290 8.64
ID 37
Data 1.024 .326 7.30

ND(a, b, c) 1.010 .313 7.59
PLS .960 .320 9.19
ID 38
Data 1.067 .308 6.42

ND(a, b, c) 1.040 .296 6.25
PLS 1.10 .280 5.50

Table 7.4: Estimation of Some Length Quality Parameters by Weight Using ND(a, b, c)
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7.6 Conclusion

In this chapter, we introduced a new distribution with three parameters to model the

distribution of fiber length by weight. In early chapters we used the mixture of Weibull

distributions to model the distribution of fiber length by weight. Our calculations showed

that the proposed new distribution works as well as the mixture of Weibull distributions.

Since the new distribution has only three parameters, two parameters less than that of

the mixture of Weibull distributions, the new distribution should be more efficient in PLS

estimation. That is, the new distribution should work better when estimating the density of

original fiber lengths by weight than the mixed Weibull distributions.
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Concluding Remarks

This dissertation solves three problems.

1. Underlying distribution of fiber length.

Fiber length is regarded as the most important property of cotton in marketing

and yarn processing. The mathematical function describing cotton fiber length was

searched both for the original sample population and the fibers picked and measured by

the beard method (projecting). We found for both projecting and original fiber length

that a mixture of two Weibull distributions fits the data very well. A non-parametric

goodness-of-fit test also confirms the result. Therefore, this distribution can be used

to characterizes the entire fiber length and all length parameters such as the average

fiber length, short fiber cotton, upper-half mean fiber length and so on. Furthermore,

numerical comparisons for various parameters between the distribution of length from

the data and the fitted distribution show a very good agreement.

2. Applying PLS regression to find the distribution of actual fiber length.

For the purpose of improving cotton fiber length measurements and expanding

the application of the test results, knowing the actual length distribution is a ‘must’

and enables a better assessment of the cotton quality. In practice only the projecting

fiber length can be measured and the actual fiber length does not. We established an

approach to obtaining the actual length distribution from the projecting fiber length.

This method is new. Partial least squares regression is the fundamental tool of the
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method. The new approach showed promising potential for estimating the original

length distribution from the observed length distribution of a fiber beard. Although

this method is at beginning stage, we believe it will eventually be adapted by the

industry.

3. A New Distribution.

To make the PLS regression more efficient a new distribution was introduced,

which contains only three parameters, while the mixture of Weibull distributions con-

tains five parameters. It is known that reducing the number of parameters in regression

can enhance the estimation of parameters. Therefore, for length by weight, we found

that the new distribution fits the data very well. Numerical comparisons for various

parameters between the distribution of length from the data and the fitted new dis-

tribution indicated that the new distribution works well. PLS was applied on the new

distribution to investigate the relationship between the observed length distribution in

a fiber beard and the original length distribution.
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8

Appendix

Acronyms

AFIS: Advance fiber information system

CV: Coefficient of variance

ML: Mean fiber length by number (AFIS)

MLw: Mean fiber length by weight (AFIS)

HVI: High volume instrumentation

LHML: Lower-half mean fiber length (HVI)

ML: Mean length

PLS: Partial Least Square

PCA: Principal Component Analysis

SFC: Short fiber content by number (AFIS)

SFCw: Short fiber content by weight (AFIS)

UHML: Upper-half mean fiber length (HVI)

UI: Uniformity index

UQ: Upper-quartile

USDA: United States Department of Agriculture
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Programs

8.1 Mixture of Weibull distribution program

In this section nonlinear regression models were used. Gauss-Newton algorithm and least

squares principal to find best fit of fiber length data.

Options ls = 80 ps = 55 nodate nonumber;

Goption Reset=All;

Symbols to be used in the plots

Symbol1 v = point l = 1 c = black i = spline;

Symbol2 v = point l = 2 c = red i = spline;

Symbol3 v = point l = 1 c = green i = spline;

Symbol4 v = point l = 2 c = bleu i = spline;

Run;

Import data from excel file

Proc import datafile = ”F : Exeel F ile”out = dat replace;

Run;

Requests all statistics and tables example Mean Variance etc

Proc univariate data = dat; var length;

Title ’Statistics for length’;

Run;

fill is for filling in missing values of length

Data fill; do i = 0 to 2499;

Length = i/1000; count = 0; percent = 0; w = .001;

Output; end; drop i; run;

Data dat1; set dat;
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x is rounded to one decimal place. So they are 0, 0.1, 0.2, ...2.5

Length2 = round(length, .1);

Run;

Proc freq data=dat1 noprint;

Tables length2/out = out;

Run;

Proc freq data = dat noprint;

Tables length/out = out3;

Run;

Data merg; merge fill out3; by length;

k = 1; y = .01× percent/w;

Run;

Data out; Set out;

y1 = .01× percent/0.1;

Run;

Proc nlin best = 1 data = out outest = parms;

Parms p = 0.1 to 0.5 by 0.1 a1 = 0.1 to 5.1 by 1 b1 = 0.1 to 5.1 by 1

a2 = 0.1 to 5.1 by 1 b2 = 0.1 to 5.1 by 1;

Bounds 0 ≤ p ≤ 1, a1 > 0, b1 > 0, a2 > 0, b2 > 0;

f1 = a1 ∗ b1 ∗ length2 ∗ ∗(a1− 1) ∗ exp(−b1 ∗ length2 ∗ ∗a1);

f2 = a2 ∗ b2 ∗ length2 ∗ ∗(a2− 1) ∗ exp(−b2 ∗ length2 ∗ ∗a2);

f = p ∗ f1 + (1− p) ∗ f2;

Model y1 = f ;

Output out = out1 p = ŷ;

Title ’compute LS fit to proposed density’;

Run;
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Proc print data = out;

Title ’output from proc freq with missing values filled in’ ;

Title2 ’k is variable for merging, y is proportional to interval prob’;

Run;

Legend1 label = none

shape = symbol(8, 4)

position = (top right inside)

mode = share;

Proc gplot data = out1;

Plot y1 ∗ length2 = 1 ŷ ∗ length2 = 2/overlay legend = legend1;

Label y1 =′ data′ ŷ =′ Weibull Density′ length2 =′ length′;

Title1 box = 1 empirical and fitted density;

Title2 h = 2 color = black Projecting 30;

Run;

Data parms; set parms;

If type =′ iter′;

Run;

Proc sort data = parms; by descending iter;

Run;

Compute mean and variance of estimated distribution

Data parms; set parms;

If N = 1;

mu1 = gamma(1 + 1/a1)/b1 ∗ ∗(1/a1);

sigmasq1 = (gamma(1 + 2/a1)− (gamma(1 + 1/a1)) ∗ ∗2)/b1 ∗ ∗(2/a1);

mu2 = gamma(1 + 1/a2)/b2 ∗ ∗(1/a2);

sigmasq2 = (gamma(1 + 2/a2)− (gamma(1 + 1/a2)) ∗ ∗2)/b2 ∗ ∗(2/a2);
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mu = p ∗mu1 + (1− p) ∗mu2;

sigmasq = p ∗ sigmasq1 + (1− p) ∗ sigmasq2;

sigma = sqrt(sigmasq);

k = 1;

Keep p a1 b1 a2 b2 mu sigmasq sigma k;

Run;

Merge estimated parameters with original data

Data out;

Merge merg parms; by k;

Keep length count p a1 b1 a2 b2;

Run;

Compute cumulative counts;

Data out; Set out;

If N = 1 then cum = count; Else cum = cum + count;

Retain cum;

Run;

Compute empirical and proposed distribution functions;

Data out;

Set out;

pdf2 = (a1 ∗ b1 ∗ length ∗ ∗(a1 − 1)) ∗ exp(−b1 ∗ length ∗ ∗a1); pdf1 = (a2 ∗ b2 ∗ length ∗
∗(a2− 1)) ∗ exp(−b2 ∗ length ∗ ∗a2);

ecdf = cum/35000; cdf = 1− p ∗ exp(−b1 ∗ length ∗ ∗a1)− (1− p) ∗ exp(−b2 ∗ length ∗ ∗a2);

If N = 1 then max = abs(ecdf − cdf); else max = max(max, abs(ecdf − cdf));

Retain max; keep length ecdf cdf max pdf1 pdf2;

Run;

Proc gplot data=out;
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Plot pdf1 ∗ length = 1 pdf2 ∗ length = 2 /overlay legend = legend2;

Run;

Proc gplot data = out;

Plot ecdf ∗ length = 1 cdf ∗ length = 2 /overlay legend = legend2;

Title1 box = 1 ′ECDF and Fitted CDF ′;

Title2 h = 2 ′Projecting 30′;

Run;

Proc gplot data = new;

Plot y1 ∗ length2 = 1 ŷ ∗ length2 = 2 pdf1 ∗ length = 3 pdf2 ∗ length = 4 overlay

legend = legend1;

Label y1 =′ data′ ŷ =′ Fitted Density′ length2 =′ length′;

Title1 box = 1 empirical and fitted density;

Title2 h = 2 color = black ′Projecting 30′;

Run;

Quit;

8.2 Kolmogorov-Smirnov table

This program generates a Kolmogorov-Smirnov table;

For statistic used see Mood,Graybill & Boes, p.508-509;

The table is easily expanded;

Proc iml;

m = 0;

Do x = .4 to 2.4 by .01;

m = m + 1;

Do i = 1 to 100;
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If i = 1 then sum = 2 ∗ exp(−2 ∗ x ∗ ∗2);

Else sum = sum + 2 ∗ (−1) ∗ ∗(i− 1) ∗ exp(−2 ∗ i ∗ ∗2 ∗ x ∗ ∗2);

End;

p = 1− sum;

u = x‖p;

If m = 1 then table = u;

Else table = table/u;

End;

Create table from table [colname = x hx];

Append from table;

Quit;

Proc print data = table split =′ ∗′;
Label hx =′ asymptotic ∗ probability ∗Kolmogorov ∗ Smirnov = ∗sqrt(n)max(d) ≤ X ′;

Run;

8.3 Simulation

Data dat;

Proc import datafile = ”G : Data destination” out = dat replace;

Run;

%Let times = 500;

%Macro Analysis(da);

*Fill is for filling in missing values of length;

Data fill;

Do i = 0 to 2499; length = i/1000; count = 0;

percent = 0; w = .001; output;
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End; drop i;

Run;

Data dat1;

Set &da;

Length2 = round(length, .1);

Run;

Proc freq data = dat1 noprint;

Tables length2 out = out;

Run;

Proc freq data = &da noprint;

Tables length/out = out3;

Run;

Data merg;

Merge fill out3;by length;

k = 1;

y = .01 ∗ percent/w;

Run;

Data out;

Set out;

y1 = .01 ∗ percent/0.1;

Run;

Proc nlin best = 1 data = out outest = parms noprint;

Parms p = 0.1 to 0.9 by 0.1

a1 = 0.1 to 5.1 by 1

b1 = 0.1 to 5.1 by 1

a2 = 0.1 to 5.1 by 1
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b2 = 0.1 to 5.1 by 1;

Bounds 0 ≤ p ≤ 1, a1 > 0, b1 > 0, a2 > 0, b2 > 0;

f1 = a1 ∗ b1 ∗ length2 ∗ ∗(a1− 1) ∗ exp(−b1 ∗ length2 ∗ ∗a1);

f2 = a2 ∗ b2 ∗ length2 ∗ ∗(a2− 1) ∗ exp(−b2 ∗ length2 ∗ ∗a2);

f = p ∗ f1 + (1− p) ∗ f2;

Model y1 = f ;

Output out = out1 p = yhat;

Title ’compute LS fit to proposed density’;

Run;

Data parms;

Set parms;

If Type =′ Iter′;

Run;

Proc sort data = parms;by descending iter ;

Run;

Compute mean and variance of estimated distribution

Data parms;

Set parms;

If N = 1;

mu1 = gamma(1 + (1/a1))/b1 ∗ ∗(1/a1);

sigmasq1 = (gamma(1 + (2/a1))− (gamma(1 + (1/a1))) ∗ ∗2)/b1 ∗ ∗(2/a1);

mu2 = gamma(1 + (1/a2))/b2 ∗ ∗(1/a2);

sigmasq2 = (gamma(1 + (2/a2))− (gamma(1 + (1/a2))) ∗ ∗2)/b2 ∗ ∗(2/a2);

mu = p ∗mu1 + (1− p) ∗mu2;

sigmasq = p ∗ sigmasq1 + (1− p) ∗ sigmasq2;

sigma = sqrt(sigmasq);
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k = 1;

Keep p a1 b1 a2 b2 mu sigmasq sigmak;

Run;

Merge estimated parameters with original data

Data out;

Merge merg parms;by k;

Keep length count p a1 b1 a2 b2;

Run;

Compute cumulative counts

Data out;

Set out;

If N = 1 then cum = count;

Else cum = cum + count;

Retain cum;

Run;

Data out;

Set out;

ecdf = cum/2500;

cdf = 1− p ∗ exp(−b1 ∗ length ∗ ∗a1)− (1− p) ∗ exp(−b2 ∗ length ∗ ∗a2);

d = abs(ecdf − cdf);

Run;

Proc means data = out max noprint;

Var d ;

Output out = out2 max = ra;

Run;

Data final1;
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Set out2;

If ra ∗ sqrt(2500) < 1.23 then p1 = 1;

Else p1 = 0;

Run;

Data final2;

Set out2;

If ra ∗ sqrt(2500) < 1.35 then p2 = 1;

Else p2 = 0;

Run;

%Mend Analysis ;

%Macro permut (population);

%do i = 1 %to & times;

Data randomize&i;

Set &population; z = ranuni(0); run;

Proc sort data = randomize&i; byz;

Run;

Proc surveyselect data = &population method = SRS sampsize = 2500

rep = 1 seed = 0 out = sample&i;

Run;

%End ;

%Mend permut ;

%Permut(dat);

%Macro repetition;

%Do k = 1 %To &times;

%Analysis(sample&k);

%If &k = 1 %then %do;
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Data FinalCalcul;

Set final1 final2;

Run;

%End;

%Else %do;

Data FinalCalcul;

Set FinalCalcul final1 final2;

Run;

%End;

%End;

%Mend repetition;

%Repetition;

8.4 Partial Least Squares program for variable length

The partial least squares regression method to convert the parameters from the projecting

to the original.

Ods pdf (id = fancy) file = ”J : Newdata output8cot.pdf”;

Options ls = 80 ps = 55 nodate nonumber;

Data Fiber;

Input n aOrig b1Orig c1Orig b2Orig c2Orig aProj b1Proj c1Proj b2Proj c2Proj;

Datalines;

’Include the data’

Data Fiber ; set path; Run;

Proc pls data = patha nfac = 6;

Model aOrig b1Orig c1Orig b2Orig c2Orig = aProj b1Proj c1Proj b2Proj c2Proj/intercept;
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Output out = outpls predicted = yhat1− yhat5

yresidual = yres1− yres5

xresidual = xres1− xres5

xscore = xscr

yscore = yscr;

Run;

%Let ifac = 1;

Data cotton; set outpls;

Length text 2;

Retain function ’label’ position ’5’ hsys ’3’ xsys ’2’ ysys ’2’

color ’blue’ style ’swissb’;

Text = %str(n); x = xscr&ifac; y = yscr&ifac;

Axis1 label = (angle = 270rotate = 90”Y score&ifac”)

major = (number = 5)minor = none;

Axis2 label = (”X − score&ifac”)minor = none;

symbol1v = nonei = none;

Proc gplot data = outpls;

Plot yscr&ifac ∗ xscr&ifac = 1

Anno=cotton vaxis = axis1 haxis = axis2 frame cframe = ligr;

Run;

Ods output XWeights = xweights;

Proc pls data = patha nfac = 6 details;

Model aOrig b1Orig c1Orig b2Orig c2Orig = aProj b1Proj c1Proj b2Proj c2Proj/intercept;

Run;

Proc transpose data = xweights(drop = Number Of Factors Inner Reg Coef)

out = xweights;
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Data xweights; set xweights;

Rename col1 = w1 col2 = w2 col3 = w3;

Data wt; set xweights;

Length text $ 2;

Retain function ’label ’ position ’5’ hsys ’3’ xsys ’2’ ysys ’2’ color ’blue’ style

’swissb’;

Text = %str( name ); x = w1; y = w2;

Run;

Axis1 label = (angle = 270rotate = 90”Xweight2”)

major = (number = 5)minor = none;

Axis2 label = (”X weight 1”)minor = none;

Symbol1 v = none i = none;

Proc gplot data = xweights;

Plot w2 ∗ w1 = 1 anno = wtanno vaxis = axis1

haxis = axis2 frame cframe = ligr;

Run; quit;

Ods listing close;

Ods output PercentV ariation = pctvar

XWeights = xweights

CenScaleParms = solution;

Proc pls data = patha nfac = 6 details ;

Model aOrig b1Orig c1Orig b2Orig c2Orig = aProj b1Proj c1Proj b2Proj c2Proj intercept;

Run;

Ods listing ;

Transpose weights and R**2’ s

Data xweights ; set xweights ; name =′ W ′‖|trim(left( n ));
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Data pctvar ; set pctvar ; name =′ R′‖|trim(left( n ));

Proc transpose data = xweights (drop = Number Of Factors InnerRegCoef)

Out = xweights;

Proc transpose data = pctvar(keep = name CurrentY V ariation)

Out = pctvar;

Run;

Proc sql;

Create table vip as

Select ∗,
w1sqrt(uss(w1)) as wnorm1,

w2sqrt(uss(w2)) as wnorm2

From xweights left join pctvar(drop = name )on1;

Data vip; set vip; keep name vip;

Array wnorm2;

Array r2;

V IP = 0;

Do i = 1to2;

V IP = V IP + ri ∗ (wnormi ∗ ∗2)/sum(ofr1− r2);

End;

V IP = sqrt(V IP ∗ 4);

Data vipbpls; merge solution vip(drop = name);

Proc print data = vipbpls;

Run;

Proc pls data = patha cv = random;

Model aorig b1orig c1orig b2orig c2orig = aProj b1Proj c1Proj b2Proj c2Proj intercept;

Run;
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Proc pls data = patha cv = random cvtest(seed = 12345);

Model aorig b1orig c1orig b2orig c2orig = aProj b1Proj c1Proj b2Proj c2Projintercept;

Run;

Data newobs ;

Input n $ aProj b1Proj c1Proj b2Proj c2Proj ;

Datalines ;

Data all; set patha newobs;

Proc pls data = all nfac = 5;

Model aOrig b1Orig c1Orig b2Orig c2Orig = aProj b1Proj c1Proj b2Proj c2Proj intercept;

Output out = pred p = paorig pb1orig pc1orig pb2orig pc2orig;

Proc print data = pred;

Where (nin(′8′));

Var n paorig pb1Orig pc1Orig pb2Orig pc2Orig;

Run;

Ods pdf (id = fancy) close;

Quit ;
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