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Abstract 
  

Image completion is the process of filling missing regions of an image based on the 

known sections of the image. This technique is useful for repairing damaged images or removing 

unwanted objects from images.  Research on this technique is plentiful.  This thesis compares 

three different approaches to image completion. In addition, a new method is proposed which 

combines features from two of these algorithms to improve efficiency. 
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Introduction 

Image completion is the process of filling missing regions of an image based on the 

known sections of the image.  A number of scenarios benefit from this procedure.  Scratches, 

markings, tears, and missing corners are common in old photos.  Image completion  can be used 

to repair these damaged images to a visually acceptable state.  In addition, image completion 

helps users remove unwanted people or objects from foregrounds or backgrounds in photos.  For 

example, family photos at popular vacations spots often contain strangers walking in the 

background.  Through the use of image completion, these strangers can be removed while still 

preserving the scenery and family members. 

Interpolation and exemplar-based algorithms are two types of image completion 

algorithms.  Interpolation generally uses the average value of surrounding pixels to fill in 

missing pixels. The advantages are efficiency and visually acceptable output for small regions of 

missing pixels.  Interpolation tends to produce a blurring effect on the missing spots in the 

image.  For scratches and thin markings, blurring can produce a very acceptable output image. 

However, as the missing region grows in size, the blurring effect becomes more apparent and 

less visually acceptable.  Moreover, interpolation does not consider the structures and edges in 

the image.  If a missing region intersects an edge in the image, typically the output will not 

connect the edge through the missing region.   This can lead to very noticeable defects in the 

output image. 

Exemplar image completion uses image blocks from the known portions of the image to 

fill in sections of the missing regions.  Exemplar algorithms tend to be less computationally 

efficient than interpolation. However, they also fix the problems associated with interpolation.  
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By using actual pixel values from the image instead of average values, the blurring effect is 

generally removed completely.  The size of the missing region has less of an effect on the output 

of exemplar-based algorithms.  In addition, several of these algorithms favor edges in the image 

when choosing pixels to replace. This feature helps preserve the edges within the missing regions 

and creates more edge continuity in the output. 

Related Work 

Many different approaches have been proposed in the literature to solve the problem of 

image completion. In [12], Kuo combines both interpolation and exemplar methods for image 

completion. The algorithm finds the gradient of an image block and, based on a threshold, 

decides whether to use interpolation or Criminisi's exemplar algorithm [5] to fill in the missing 

pixels. Therefore, depending on the image contents and the shape and size of the missing region, 

this algorithm could leverage the speed of interpolation and edge completion of the exemplar 

methods to produce acceptable results quickly.  The algorithm in [8] uses both directional and 

non-directional image completion techniques. By extracting image blocks from multiple versions 

of the input image at different resolutions and calculating the Hessian eigenvalues and 

eigenvectors, the algorithm determines the priority for the directional and non-directional 

synthesis methods. In addition, [8] only searches for a matching source image block along the 

direction of the eigenvector of the Hessian Matrix of the destination image block, which 

significantly reduces the number of image block comparisons performed. The technique 

presented in Orii et al. [16] treats image completion as an optimization problem. The algorithm 

rotates all the source image blocks four times. Then, it calculates a local orientation for the 

original and rotated source image blocks along with the destination image blocks. Finally, the 
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algorithm only compares source image blocks with the same local orientation as the chosen 

destination image block. Another algorithm by Bertalmo [3] decomposes the input image into 

texture and structure. It uses texture synthesis to fill in missing texture information and image 

completion to fill in structure information. The last step is to merge the texture and structure 

information into a single output image.   

 Implemented Algorithms  

Overview of Criminisi’s Exemplar Image completion Algorithm 

One of the popular exemplar-based image completion algorithms was developed by 

Criminisi et al [5].  They combined texture synthesis and edge detection to create a simple but 

effective image completion algorithm.  The following is a brief description of Criminisi’s 

algorithm. 

Given an Image I and missing region Ω, the Source region is defined as Φ = I - Ω. Each 

pixel p ϵ I has a confidence term C ( p ) whose value during initialization is 1 for p ϵ Φ and 0 for 

p ϵ Ω. 

Figure 1: Criminisi's exemplar image completion algorithm 

 

Repeat the following steps: 

1) Identify the fill front pixels δΩ, which are the pixels on the edge of the missing region, and exit if δΩ = 
0. 

2) Calculate or update the priority P(p) for each pixel p ϵ δΩ for each image block Ψp centered at p. 

3) Find the fill front image block Ψṕ with the highest priority among all Ψp  centered on the fill front. 

4) Find the best matching source image block Ψq from Φ when compared to Ψṕ. 

5) Fill in missing pixels in the Ψṕ  with corresponding pixel data from Ψq. 

6) Update the confidence terms C(ṕ) for the pixels that step 5 filled in and return to step 1. 
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P ( p)=C ( p)D( p)   (1) 

   

C ( p)=
∑

q∈Ψ p∩( I−Ω)
C (q)

∣Ψ p∣
  (2) 

 

D( p)=
∣∇ I ⊥

p
⋅n p∣

α
  (3) 

    

Steps 2 and 4 in Figure 1 are the most important steps in the algorithm. Step 2 determines 

the fill order of the missing pixels. The confidence term helps select an image block with the 

highest number of known pixel values.  The confidence of the image block is basically the 

average confidence of all the pixels in the image block.  Since the confidence of missing pixels is 

0, the confidence of an image block is inversely proportional to the number of missing pixels in 

the block. In other words, choosing the image block with the most known pixels is likely to 

produce the most reliable pixel values for the missing pixels in that block. Finally, step 6 updates 

the confidence of the missing pixels in Ψṕ  using the average of the known confidences in Ψṕ. 

The data term in step 2 helps the algorithm focus on missing pixels lying on an edge in I. 

The data term steers the algorithm to choose edge completion over texture synthesis and thus 

create a more visually acceptable output image.  The term α is a normalization factor, which is 

usually assigned a value of 255 for grayscale images, and np is the unit normal vector with 

respect to the fill front. Furthermore, Δ Ip is the isophote that intersects the fill front at point p.  

Essentially, the data term calculation steers the filling algorithm based on the direction and 

magnitude of the isophote intersecting the fill front in the given image block. 
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Looking a little deeper into the D(p) calculation, we find that equation (9) requires the 

angles of the normal vector and isophote, as well as the magnitude of the isophote. First, create a 

mask with the same dimensions as the chosen image block Ψṕ.  For each known pixel in Ψṕ set 

the corresponding mask value to 1, and similarly, for all the missing pixels in Ψṕ, set the mask 

value to 0.  The mask essentially imitates the image block Ψṕ with a very strong sharp edge at the 

fill front. Then, the algorithm applies an edge filter to the mask values of all the pixels in Ψṕ, and 

produces the gradients of the fill front in the x and y directions. Equation (4) uses these gradients 

to calculate the angle of np. Next, after applying the same edge filter to the pixel values in Ψṕ, 

equations (5) and (6) remove the influence of the fill front to find the true X and Y gradients of 

the isophote in the known region of the image block.  Obviously, equation (7) applies the 

Pythagorean Theorem to the X and Y gradients of the isophote to calculate its magnitude.  The 

arctan of the isophote gradients gives us the angle of the isophote in equation (8). After the 

algorithm performs all the previous calculations, it combines the angles of the isophote and 

normal vector and the magnitude of the isophote in the known region of Ψṕ in equation (9) to 

find the dot product of the isophote and normal vector. 

 
∢n p=arctan(δY conf /δ X conf )−π/2   (4) 

 
δ X iso=(δ X patch/α)−δ X conf   (5) 

 
δY iso=(δY patch/α)−δY conf   (6) 

 
∥I p∥=√(δ X iso

2 +δY iso
2 )   (7) 

 
∢I p=arctan(δY iso /δ X iso)   (8) 
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D( p)=∥n p∥∥I p∥cos(∢n p−∢I p)=∥I p∥cos(∢n p−∢ I p)   (9) 

  
In step 4 of Figure 1, Criminisi matches image blocks based on the minimum sum of the 

squared differences (SSD) of the known pixel values in both image blocks.  Therefore, the 

algorithm compares the known pixel values of the chosen image block Ψṕ with the 

corresponding pixel values in every source image block Ψq.   

 Some details were not covered in detail in the paper [5] in which Criminisi et al. 

presented the algorithm. First, the algorithm only briefly describes which edge detection filter 

Criminisi used to find the X and Y gradients when calculating the D(p) for the image block 

priority.  They used a bidimensional Gaussian kernel but only mentioned that several different 

filtering techniques may be employed to complete the data term calculation.  In this thesis, a 3×3 

Sobel filter [12] was used for the implementation of this algorithm. In addition, Criminisi did not 

include a solution for the scenario where more than one Ψq  had the same SSD when compared to 

Ψṕ. In the implementation of this algorithm used in this thesis, the last image block in the array of 

source image blocks with the minimum SSD value was chosen as the match. 

Aside from lacking a few minor details, the Criminisi algorithm does its job well but 

relatively slowly. In particular, step 4 takes the most time to complete. Comparing the chosen fill 

front image block against all of the source image blocks in the image requires a lot of 

computations, especially as the size of the image blocks increases. The size of the image block 

determines the number of squared differences that need to be calculated for each image block 

comparison. However, the benefit of large image block size is a potential reduction in the 

number of iterations of the loop because the algorithm will fill in more missing pixels on every 
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iteration. Criminisi set his default image block size to 9×9 pixels.  In general, the image block 

should be slightly bigger than the largest texel in the image.  In addition, the number of source 

image blocks for a given image depends on the resolution of the image and the size of the 

missing region.  Today's culture is moving toward more high definition imagery and Criminisi's 

performance suffers at these resolutions.  

Overview of Anupam's Algorithm 

Anupam [1] makes some specific tweaks to Criminisi's algorithm to improve its accuracy 

and speed.  Anupam sites Cheng et al. [4] for his accuracy improvements.  Cheng et al. [4] 

noticed that the confidence term defined in Criminisi's algorithm decreases exponentially. As a 

result, they proposed a change to the calculations of the confidence and the priority of an image 

block. To combat the adverse effect of the confidence deterioration on the priority, the priority 

calculation changed from a product of data and confidence terms to a sum.  They regularized the 

confidence term in Equation (10) to match it with the order of the data term.  In Equation (11), 

Cheng adds weights to both confidence and data terms to maintain their balance. 

 
Rc( p)=(1−ω)C ( p)+ω , 0≤ω≤1   (10) 

 
P ( p)=α Rc( p)+βD( p) , whereα+β=1   (11) 

 
Furthermore, Anupam proposes a solution to one of the problems with Criminisi's 

algorithm.  Criminisi did not describe what to do if multiple matches are found for the chosen 

image block. Anupam's algorithm calculates the variance from the mean of the pixel values 

corresponding to the known pixels in the chosen image block.  Then, the algorithm chooses the 

matching image block with the minimum variance. 
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M=∑ f p∈Φ∩Ψ

#{ p∣p∈(Φ−Ψ)}   (12) 

 

V=∑( f p∈Φ∩Ψ−M )2

# {p∣p∈(Φ−Ψ)}   (13) 

 

The final improvement that Anupam proposes is reducing the source area which the 

algorithm searches against and thus improving the speed of the algorithm.  Assuming that most 

matching image blocks can be found in close proximity to the chosen image block, Anupam 

creates a bounding box around the chosen image block.  Equations (14 - 17) calculate the 

boundaries of this search box which is calculated in every iteration of the image completion 

algorithm. These equations incorporate the maximum dimensions of the missing region, cr and 

cc, so that the bounding box includes some image blocks on all sides of the missing region 

corresponding to the chosen image block. The diameter constants Dx and Dy allow the user to 

have some control over the size of the search region in both dimensions.  The width and height of 

an image block are n and m respectively.  These equations also check against the input image 

boundaries, w and h. 

 

startX =max (0, p− n
2
−cr−

Dx

2
)   (14) 

 

startY=max (0, p−m
2
−cc−

D y

2
)   (15) 

 

endX =min (w , p+ n
2
+cr+

Dx

2
)   (16) 
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endY=min(h , p+m
2
+cc+

Dy

2
)   (17) 

  
 

Figure 2: Anupam's image completion algorithm 

Anupam addresses some concerns with Criminisi's algorithm in certain scenarios.  He 

uses variance to break a tie between multiple matching image blocks with the same SSD. In 

addition, he tweaks the priority calculations to improve Criminisi's fill order.  Anupam's biggest 

contribution is eliminating Criminisi's dependence on the input image resolution. Because 

Anupams algorithm restricts the source image blocks to a bounding box of a fixed size, step 4 

will not take longer to perform for higher resolution images.  The number of source blocks is 

only dependent on the size of the image block and the maximum size of the missing regions in 

the image.  

Overview of Kwok’s Exemplar Image Completion with Fast Query Algorithm 

Kwok's algorithm [13] is also based on Criminisi's algorithm [5]. The goal of this 

algorithm is real-time image editing. Kwok focused on optimizing the image block matching step 

4 in Criminisi's algorithm.  Instead of comparing pixel values to find a match, Kwok transforms 

Repeat the following steps: 

1) Identify the fill front pixels δΩ, which are the pixels on the edge of the missing region, and exit if δΩ = 0. 

2) Calculate or update the priority P(p) for each pixel p ϵ δΩ for each image block Ψp centered at p. 

3) Find the fill front image block Ψṕ with the highest priority among all Ψp  centered on the fill front. 

4) Calculate the boundaries of the search region centered on ṕ. 

5) Find all source image blocks Ψq inside the search region. 

6) Find the best matching source image block Ψq from Φ when compared to Ψṕ. 

7) Fill in missing pixels in the Ψṕ  with corresponding pixel data from Ψq. 

8) Update the confidence terms C(ṕ) for the pixels that step 7 filled in and return to step 1. 
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each image block into the frequency domain using a discrete cosine transform (DCT) and 

compares a fraction of the DCT coefficients. In doing so, Kwok drastically reduces the number 

of calculations done for each source image block comparison. The top 0.1 % of source image 

blocks that match in the frequency domain are then compared using the SSD of pixel values to 

find the best matching source image block.   

Figure 3: Kwok's image completion algorithm 

Kwok had to perform a few more tweaks to get this algorithm working properly.  The 

method for choosing the DCT coefficients for comparison needed to be considered.  Choosing 

the coefficients associated with the m lower frequencies from the upper left corner of the block 

does not work for highly textured images.  When comparing images based on DCT coefficients, 

images with similar energy levels at the same frequencies tend to be better matches. Thus, Kwok 

found that using the m most significant coefficients, in terms of their energy, worked best. 

Furthermore, in order to preserve the continuity of image information when calculating 

the DCT of image blocks with missing pixels, the missing pixels needed to be filled in with a 

local gradient.  Using the average pixel value of the image block did not create the proper DCT 

Repeat the following steps: 

1) Identify the fill front pixels δΩ, which are the pixels on the edge of the missing region, and exit if 
δΩ=0. 

2) Calculate or update the priority P(p) for each pixel p ϵ δΩ for each image block Ψp centered at p. 

3) Find the fill front image block Ψṕ with the highest priority among all Ψp  centered on the fill front. 

4) Fill in missing pixels of  Ψṕ with gradient. 

5) Find m truncated DCT coefficients of Ψṕ. 

6) Find the 0.1% source image blocks Ψq from Φ with the lowest scores using Kwok’s fast query 
algorithm. 
7) Compare known pixel values of Ψṕ with the Ψq found in step 6. 

8) Fill in missing pixels in the Ψṕ  with corresponding pixel data from Ψq chosen in step 7. 

9) Update the confidence terms C(ṕ) for the pixels that step 8 filled in and return to step 1. 
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coefficients and, subsequently, poor matches. To find the pixel values for the gradient, the 

algorithm must solve an overdetermined system of linear equations. For each missing pixel pi,j , 

let 

 
pi−1, j−pi , j=0   (18) 

 
pi , j−1− pi , j=0   (19) 

 
Therefore, each missing pixel generates 2 equations with its left and top neighbors.  

Kwok employed the Least Squares Solution to solve this system of equations and minimize the 

norm of gradients at the missing pixels.  Equation (20) shows the matrix form of the Least 

Squares solution. The vector C contains a list of the unknown and known pixels involved in the 

system of equations. The Y vector contains a 0 for each row in X that corresponds to either 

equation (18) or (19).  The other elements in Y are the pixel values of the known pixels. The rows 

in X corresponding to the known pixels simply consist of a 1 at the position of the known pixel in 

C and the rest of the elements in the row are 0. Figure 4 shows an example of the least squares 

calculation. I used the GNU Scientific Library to provide the Least Squares calculations for the 

gradient filling algorithm. 

 
Y=CX   (20) 

 

image={110 , 128
252 , 0 }C={p1,1 p1,0 p0,1} ,Y={ 0

0
252
128}, X ={−11 0

−1 01
0 1 0
0 0 1 }  

Figure 4: An example of least squares setup for gradient filling algorithm 
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Kwok further reduced the calculations required for comparing DCT coefficients.  The 

square of the differences of the coefficients in equation (21) becomes equation (23).  The base 

score of the chosen block dp is constant for all the comparisons and thus, can be ignored in 

equation (22).  Moreover, the base score dq can be calculated for the source blocks in the 

initialization step before the loop starts. This leaves only dpq to be calculated during the 

comparison step of each iteration of the main loop. Originally, the algorithm would do n2 

multiplications and n2 subtractions.  After some simple algebra is applied, the number of 

calculations decreases to 2m+1 multiplications and 1 subtraction. 

 
d (Ψ p ,Ψq)=∑

(i , j )
( p̂i , j−q̂ i , j)

2=∑
(i , j )

( p̂i , j−q̂ i , j)( p̂i , j−q̂ i , j)   (21) 

d (Ψ p ,Ψq)=d p+d q−2d pq

where ,
d p=∑

p̂i, j≠0
( p̂i , j)

2

d q=∑
q̂i , j≠0

(q̂ i , j)
2

d pq= ∑
p̂i , j≠0, q̂i , j≠0

p̂i , j q̂ i , j

  

(22) 

 
S (Ψ p ,Ψ q)=d q−2d pq   (23) 

 

Kwok additionally improves performance by developing a fast image query algorithm. 

During initialization, Kwok's algorithm creates several arrays to be used during the search for a 

match.  All of the source blocks are transformed by the DCT and the coefficients are truncated 

until only m coefficients remain.  Then, the base scores dq are calculated and stored in a base 

score array B, where B[k] is the base score of the kth source block. The non-zero m coefficients 

of each source block are stored in a three dimensional search-array data structure D[i,j][k] , 
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where (i,j) corresponds to the position of the DCT coefficient within the transform.  The term k 

refers to a source block with a non-zero coefficient at (i,j). Every element of the search-array 

contains the global ID of the source block with a coefficient and the value α of that coefficient.  

The following fast query algorithm uses these arrays and the m significant coefficients of the 

chosen image block to find matching source blocks. The algorithm selects 0.1% of source blocks 

with the lowest scores to be matched using the traditional SSD of pixel values as Criminisi did in 

his algorithm. 

 
Figure 5: Kwok's Fast Query Algorithm 

By performing most of the calculations in parallel on a modern GPU, Kwok was able to 

increase the algorithm’s operations per second and minimize its run-time.  Parallelization was not 

included in the implementation of Kwok's algorithm used in this thesis. 

Overview of Proposed Algorithm 

 The proposed work combines Anupam's algorithm and Kwok's algorithm. More 

specifically, Anupam's bounding box was applied to Kwok's DCT-based fast query algorithm.  

Instead of creating the search array before the loop begins, the proposed implementation 

reinitializes the search array structure on every iteration of the main loop. However, the search 

array only includes the transform coefficients from the source blocks that exist within the 

1) initialize scores[k] = B[k] for all k 

2) for each nonzero DCT coefficient pi,j do 

a. for each element e of D[i,j] do 

i. k = D[i,j][e].ID 

ii. scores[k] -= 2 (D[i,j][e]. α * pt_i,j) 

3) find kmin = arg mink scores[k] 
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bounding box limits defined in Anupam's work. Furthermore, the DCT coefficients and 

basescore dq of each source block is only calculated once and saved when the fast query 

algorithm compares it for the first time. They are not calculated during initialization which 

speeds that portion of the algorithm up.  No time is wasted calculating transformations and 

basescores for source blocks that are never used. 

 This additional spatial restriction increases the efficiency of Kwok's fast query algorithm 

when searching for the matching source block. In most cases, far less coefficients need to be 

compared in the search array.  Furthermore, once the DCT matches are found, no time will be 

wasted comparing the source blocks far away from the chosen block using traditional SSD 

calculations. 

Results and Discussion 

 All of the algorithms were implemented in the C programming language and compiled 

with the GCC compiler. The computer used for testing was a Thinkpad R60 with an Intel Core 2 

Duo running at 1.8GHz and 4 GB of ram. The laptop was running Ubuntu 10.04 64-bit for the 

Operating System. Furthermore, two open source libraries were used to aid in the 

implementations. The FreeImage C/C++ library [6] was used for loading, manipulating, and 

saving bitmap images in all of the algorithms discussed in this paper.  In addition, the GNU 

Scientific Library [9] was used to calculate the least-squares approximation in Kwok's gradient 

filling algorithm and, subsequently, in the proposed algorithm.  
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Dx / Dy Value Execution Time (sec) 

1 10.66233  

9 12.17567  

27 15.50333  

Table 1: Timed execution comparison in seconds of Anupam's algorithm with different values for Dx and Dy. 

 

     Figure 6: Input images used in the comparisons. Missing Regions are shown in black patches. From left to right the 
images are: chimney, Lena Wall, Lena Hat, simple, and bricks. 

 

(a) (b) (c) 

Figure 7: Visual Quality comparison of Anupam's outputs with different values of Dx and Dy using Lena all image.. 
From left to right:  Dx = Dy = 1, Dx = Dy = 9, and Dx = Dy = 27. 

 

 First, Anupam’s work and Kwok’s work both glance over some important variables in 

their algorithms.  Anupam's bounding box calculation includes two constants Dx and Dy. Anupam 

[1] does not explain how to calculate values for these constants. These constants basically 
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expand the search area used to find matches in all four directions. Figure 7 shows the output of 

Anupam's algorithm with several different values of Dx and Dy.  The images in Figure 7 look 

almost identical because the smallest bounding box was sufficient to fill in the missing region.  

Some images may need this value enlarged to find better matches and enhance the visual quality 

of the output image. Thus, the user should be able to adjust these constants to accommodate 

different input images. Additionally, the execution times are listed in Table 1. As a result of 

increasing the bounding box size, the algorithm must perform more comparisons during every 

iteration of the main loop, which, in turn, increases execution time. However, the algorithm 

scales well with these constants. The constants increased 2700% but the execution time only 

increased 50%. 

m Execution Time (seconds) 

4 (5%) 108.5617 

 8 (10%) 123.999 

40 (50%) 305.869 

Table 2: Execution time comparison for Kwok's algorithm with different numbers of truncated coefficients. 

Furthermore, the efficiency of Kwok's algorithm is based on truncating the DCT 

coefficients of the image block down to m significant coefficients.  Kwok’s original work [13] 

never mentions a default value for m.  In Figure 8, the visual results for several different values 

of m are shown. Since the number of coefficients change with the size of the image block, the 

algorithm uses a certain percentage of the total coefficients calculated by the DCT.  For Figure 8 

and Table 2, the image block size was 9×9 pixels.  Thus, the values of m correspond to 5%, 10%, 

and 50% of the total coefficients. The best looking output in Figure 8 is m = 8. Theoretically, 

increasing the number of coefficients should give better matches and, hence, better results.  
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However, the output image for m = 40 is less visually appealing than the output image produced 

for m = 8.  Part of the reason is error propagation.  Since the image block is relatively small, 

when compared to the resolution of the input image, and the edge in the missing region is not 

well defined, very little pixel value change occurs within a given block.  As a result, two 

different image blocks with very different pixel values may have similar DCT coefficients.  

Consequently, most of the transforms have similar values, and comparing more coefficients 

could cause a matching error.  In addition, the execution times for different values of m are 

displayed in Table 2. Increasing the number of truncated coefficients gives the algorithm more 

calculations for each image block comparison. Therefore, the execution time will suffer for 

higher values of m. The best scenario would be to let the user adjust the value of m to achieve the 

best combination of performance and visual quality. 

(a) (b) (c) 

Figure 8: Visual Quality Comparison using Lens Wall image of Kwok's algorithm with different numbers of 
truncated coefficients.  From left to right: m = 4, m = 8, and m = 40 

 

Next, some interesting performance results for all four algorithms across multiple images 

are displayed in Table 3.  In general, Kwok’s algorithm is slightly slower than Criminisi’s 

algorithm, and similarly, the proposed algorithm is slower than Anupam’s algorithm. The 
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overhead of DCT transformations in our single-threaded implementation of Kwok’s algorithm 

and the proposed algorithm outweighs the computational efficiency of comparing a small subset 

of DCT coefficients. DCT transformations and the fast query algorithm developed by Kwok 

allow for easy parallelization. Thus, Kwok implemented his algorithm in parallel on a GPU, 

which significantly reduced the execution time of the algorithm.  The proposed algorithm suffers 

from the same single-threaded performance issues in our implementation.   

Image Size (pixels) % Missing Execution Time (in seconds) 

 Criminisi Anupam Kwok Contribution 

simple 16384 6.99 1.006 0.557 1.96 1.548 

bricks 22500 14.89 3.273 7.834 4.374 10.79 

chimney 196608 2.49 38.164 4.069 54.352 12.807 

Lena wall 262144 2.37 83.724 12.176 123.999 27.59 

Lena hat 262144 1.62 42.534 4.828 75.815 14.042 

Table 3: Execution time of all four algorithms across different images. 

 

    

Figure 9: Visual comparison of simple image across all four algorithms. From left to right: Criminisi, Anupam, 
Kwok, and the proposed algorithm. 

 

Anupam's algorithm is the fastest of the four algorithms in most cases. The exception to 

this observation was the bricks image. The relatively large missing region pushes the size of the 

bounding box region to almost equal the size of the actual image.  In this case, the bounding box 

size cannot compensate for the computational overhead of calculating the bounding box 
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boundaries and discovering the source image blocks on every iteration of the main loop. 

Consequently, when compared to Criminisi’s algorithm, Anupam’s algorithm does extra work 

without any computational efficiency benefits in this scenario.  For the same reason, the 

proposed algorithm performs poorly on the bricks image when compared to Kwok’s algorithm. 

 For some users, the visual quality of the outputs of these four algorithms is the 

most important consideration. The visual results in Figure 9 show the difference between pixel 

value matching and DCT coefficient matching.  Criminisi’s algorithm and Anupam’s algorithm 

use pixel value matching and achieve better results than the other two algorithms.  DCT 

matching may choose source image blocks similar to the chosen image block but does not 

always choose the best visual match.  The chimney image in Figure 10 shows that all four 

algorithms can concurrently manage more than one missing region in the input image.  

Considering the missing region on the roof, Criminisi’s algortihm and Anupam’s algorithm have 

better quality output images.  Once again, the algorithms using DCT matching fail to produce 

better visual results.  The proposed method has the worst output on the roof.  A combination of 

its small search region and DCT coefficient matching is to blame.  The missing chimney region 

in Figure 10 is a little more interesting.  None of the algorithms reconstructed the brick layout 

perfectly.  Anupam’s algorithm has the best output because its small search area helps it focus on 

the middle of the chimney, where the best matching image blocks exist.  On the other hand, 

Criminisi’s algorithm searches over the whole image and chooses a few images blocks from 

bricks that touch parts of the flashing around the chimney.  As a result, Criminisi’s algorithm 

produces a result with some major visual imperfections.  Kwok’s algorithm and the proposed 

algorithm produce a more blurry output.  The blurring is a result of the DCT coefficient 
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truncation in both algorithms.  Because of the truncation, image blocks with very little edge 

information were chosen, which broke the brick layout pattern.  Again the small search area 

seems to improve the output of the proposed solution compared to Kwok’s algorithm. Figure 11 

further reinforces these observations on the Lena wall image.  

(a) (b) 

(c) (d) 

Figure 10: Visual comparison of chimney image across all four algorithms: 
Criminisi (a), Anupam (b), Kwok (c), and the proposed algorithm (d). 

 



21 

(a) (b) 

(c) (d) 

Figure 11: Visual comparison of Lena wall image across all four algorithms. Criminisi (a), Anupam (b), Kwok (c), 
and the proposed algorithm (d). 

  
The synthetic brick pattern in the brick image in Figure 12 demonstrates two different 

issues possible in all four algorithms.  The Criminisi algorithm’s output shows overshooting.  

Overshooting occurs when the algorithm does not know when an edge should terminate in the 

image.  Thus, the edge in the algorithm’s output image extends further than it should. Figure 14 

gives a simpler example of overshooting at the corner of an object.  The results in Figure 12 for 

Kwok and the proposed algorithm demonstrate error propagation.  The white lines between the 

blocks do not create significant DCT coefficients and both algorithms toss away image blocks 
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with lines in them during a certain iteration of the loop.  Subsequent iterations based their 

matches on the poor match that came before them. As a result, a single matching error snowballs 

into many errors in the output image.  An additional example of this issue is observed in Figure 

15. 

(a) (b) (c) (d) 

Figure 12: Visual comparison of bricks image across all four algorithms. Criminisi (a), Anupam (b), Kwok (c), and 
the proposed algorithm (d). 
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(a) (b) 

(c) (d) 

Figure 13: Visual comparison of Lena hat image across all four algorithms: Criminisi (a), Anupam (b), Kwok (c), 
and the proposed algorithm (d). 
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Figure 14: An Example of overshooting. Input image on the left and the output image from the proposed algorithm 
on the right. 

 

  

Figure 15: Example of error propagation. Input image on the left and result of Anupam's Algorithm on the right 

 

Conclusion 
 

Each of these four algorithms has its own strengths and weaknesses.  Criminisi’s 

algorithm’s pixel value matching allows it to produce decent results on any image.  However, the 

user may need to adjust the block size used in searching to reduce the effects of error propagation 

and overshooting. In addition, Criminisi’s algorithm is relatively slow and would not be a good 

choice if the user’s primary concern is performance.  
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On the other hand, Anupam’s algorithm’s spatial restriction can significantly improve its 

performance.  Unfortunately, a weakness of the spatial restriction is poor performance for large 

missing regions.  In addition, Anupam’s algorithm creates the best visual results in most of the 

figures in this thesis. However, certain input images may require a larger search region to 

produce the best visual results.  Moreover, Anupam’s algorithm has several more parameters than 

Criminisi and Kwok, which can be adjusted to achieve a better balance between performance and 

visual quality.   

Kwok’s algorithm consistently is the slowest of the four algorithms in the results. 

However, Kwok’s biggest strength is its ability to be parallelized.  The efficiency of the 

algorithm could improve significantly if the algorithm performs the DCT transformations in 

parallel.   Although the results for Kwok are not the best, adjusting block size and m can improve 

the visual output.  Furthermore, error propagation and overshooting are possible in Kwok’s 

algorithm. 

The proposed algorithm inherits the strengths and weaknesses of all three other 

algorithms.  First, the spatial restrictions of Anupam’s algorithm help the proposed algorithm 

perform better than Kwok and Criminisi. However, similar to Anupam’s algoritm, large missing 

regions hinder the performance of the proposed algorithm.  In addition, the proposed algorithm 

can be easily parallelized just like Kwok’s, which could make it faster than Anupam’s algorithm 

in some cases. The visual quality of the results is on par with that of Kwok’s algorithm.  Error 

propagation and overshooting are possible in the proposed algorithm as well.  Finally, the 

proposed algorithm has the most parameters which the user can adjust to achieve the best 

possible balance of performance and visual quality for a given input image. 
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